Sample records for basin scale circulation

  1. IAS Mesoscale Surface Circulation Observed Through Satellite Altimetry and its Influence in a Small Scale, Coastal Domain, Studied with a ROMS Model of the Cariaco Basin.

    NASA Astrophysics Data System (ADS)

    Alvera-Azcarate, A.; Barth, A.; Virmani, J. I.; Weisberg, R. H.

    2007-05-01

    The Intra-Americas Sea (IAS) surface circulation is characterized by large scale currents. The Caribbean current, which originates in the Lesser Antilles, travels westwards through the Caribbean Sea and eastern Mexico and passes through the Gulf of Mexico to finally form the Gulf Stream. This complex system of currents is also characterized by a high mesoscale variability, such as eddies and meanders. The objectives of this work are twofold: first, the multi-scale surface circulation of the IAS is described using satellite altimetry. The topographic influence of the different basins forming the IAS, the characteristic time and spatial scales, and the time variability of the surface circulation will be addressed. The second objective is to analyze the influence of this large scale circulation on a small scale coastal domain with a ROMS-based model of the Cariaco basin (Venezuela). Cariaco is a deep (1400 m), semi-enclosed basin connected to the open ocean by two shallow channels (Tortuga and Centinela Channels). Its connection with the open sea, and therefore the ventilation of the basin, occurs in the surface layers. The Cariaco ROMS model will be used to study the exchanges of mass, heat and salt through the channels. A 1/60 degree ROMS model nested in the global 1/12 degree HYCOM model from the Naval Research Laboratory will be used for this study. In addition, a series of observations (satellite altimetry and in situ temperature, salinity and velocity data), will be used to assess the influence of the Caribbean circulation on the basin.

  2. High sub-seasonal variability in water volume transports, revealed through a new ocean monitoring initiative using autonomous gliders

    NASA Astrophysics Data System (ADS)

    Heslop, E.; Ruiz, S.; Allen, J.; Tintoré, J.

    2012-04-01

    One of the clear challenges facing oceanography today is to define variability in ocean processes at a seasonal and sub-seasonal scale, in order to clearly identify the signature of both natural large-scale climatic oscillations and the long-term trends brought about by the human-induced change in atmospheric composition. Without visibility of this variance, which helps to determine the margins of significance for long-term trends and decipher cause and effect, the inferences drawn from sparse data points can be misleading. The cyclonic basin scale circulation pattern in the Western Mediterranean has long been known; the role/contribution that processes in the Balearic Basin play in modifying this is less well defined. The Balearic Channels (channels between the Balearic Islands) are constriction points on this basin scale circulation that appear to exert a controlling influence on the north/south exchange of water masses. Understanding the variability in current flows through these channels is important, not just for the transport of heat and salt, but also for ocean biology that responds to physical variability at the scale of that variability. Earlier studies at a seasonal scale identified; an interannual summer/winter variation of 1 Sv in the strength of the main circulation pattern and a high cruise-to-cruise variability in the pattern and strength of the flows through the channels brought about by mesoscale activity. Initial results using new high-resolution data from glider based monitoring missions across the Ibiza Channel (the main exchange channel in the Balearic Basin), combined with ship and contemporaneous satellite data, indicate surprisingly high and rapid changes in the flows of surface and intermediate waters imposed on the broad seasonal cycle. To date the data suggests that there are three potential 'modes' of water volume transport, generated from the interplay between basin and mesoscale circulation. We will review the concept of transport modes as seen through the earlier seasonal ship based studies and demonstrate that the scales of variability captured by the glider monitoring provides a unique view of variability in this circulation system, which is as high on a weekly timescale as the previously identified seasonal cycle.

  3. Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...

  4. Latitudinal and Longitudinal Basin-scale Surface Salinity Contrasts and Freshwater Transport by Ocean Thermohaline Circulation

    NASA Astrophysics Data System (ADS)

    Seidov, D.; Haupt, B. J.

    2003-12-01

    The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (THC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. In numerical experiments using an ocean general circulation model, we have aggregated the observed sea surface temperature (SST) and SSS in several different ways: we used observed unchanged SST with SSS taken as constant (34.25 psu) everywhere; SST unchanged, and SSS zonally averaged globally, i.e., in the whole World Ocean; SST averaged globally, and SSS unchanged; SST zonally averaged globally and SSS zonally averaged basin-wide in individual basins, i.e., in the Atlantic, Indian, Pacific, and Southern Oceans separately; and, finally, both SST and SSS zonally averaged in individual basins. Global zonal averaging removes all longitudinal differences in sea surface climatology among ocean basins. However, latitudinal profiles of zonally averaged parameters preserve the main character of large-scale equator-to-pole sea surface variability. Basin-wide zonal averaging does an even better job of preserving latitudinal distributions within each basin. The results of the experiments could hardly be anticipated a priory. Surprisingly, SST could be used as a 2-D field, or as a zonally-averaged field without much difference in the THC dynamics. Moreover, SST could be averaged either globally, or basin-wide, and it also did not change the overall character of THC. At the same time, THC responded vigorously to how the SSS has been changed. It appeared that the THC structure with the globally averaged SST and basin-wide averaged SSS was very close to the one obtained in the control run (control run operates with 2-D observed SST and SSS). Our main conclusion is that ocean-wide inter-basin sea surface salinity contrasts serve as the major controlling element in global thermohaline circulation. Thermal inter-basin contrasts, as well as longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.

  5. Impact of GODAE Products on Nested HYCOM Simulations of the West Florida Shelf

    DTIC Science & Technology

    2009-01-20

    circulation and the Atlantic Meridional Overturning Circulation . For temperature, the non-assimilative outer model had a cold...associated with the basin-scale wind-driven gyres and with the Atlantic Meridional Overturning Circulation is incor- rectly represented. In contrast...not contain realistic LC transport variability associated with the wind-driven gyre circulation and the Atlantic Meridio- nal Overturning Circulation

  6. Deep water characteristics and circulation in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin

    2018-04-01

    This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.

  7. Numerical Simulation of The Mediterranean Sea Using Diecast: Interaction Between Basin, Sub-basin and Local Scale Features and Natural Variability.

    NASA Astrophysics Data System (ADS)

    Fernández, V.; Dietrich, D. E.; Haney, R. L.; Tintoré, J.

    In situ and satellite data obtained during the last ten years have shown that the circula- tion in the Mediterranean Sea is extremely complex in space, with significant features ranging from mesoscale to sub-basin and basin scale, and highly variable in time, with mesoscale to seasonal and interannual signals. Also, the steep bottom topography and the variable atmospheric conditions from one sub-basin to another, make the circula- tion to be composed of numerous energetic and narrow coastal currents, density fronts and mesoscale structures that interact at sub-basin scale with the large scale circula- tion. To simulate numerically and better understand these features, besides high grid resolution, a low numerical dispersion and low physical dissipation ocean model is required. We present the results from a 1/8z horizontal resolution numerical simula- tion of the Mediterranean Sea using DieCAST ocean model, which meets the above requirements since it is stable with low general dissipation and uses accurate fourth- order-accurate approximations with low numerical dispersion. The simulations are carried out with climatological surface forcing using monthly mean winds and relax- ation towards climatological values of temperature and salinity. The model reproduces the main features of the large basin scale circulation, as well as the seasonal variabil- ity of sub-basin scale currents that are well documented by observations in straits and channels. In addition, DieCAST brings out natural fronts and eddies that usually do not appear in numerical simulations of the Mediterranean and that lead to a natural interannual variability. The role of this intrinsic variability in the general circulation will be discussed.

  8. On estimating the basin-scale ocean circulation from satellite altimetry. Part 1: Straightforward spherical harmonic expansion

    NASA Technical Reports Server (NTRS)

    Tai, Chang-Kou

    1988-01-01

    Direct estimation of the absolute dynamic topography from satellite altimetry has been confined to the largest scales (basically the basin-scale) owing to the fact that the signal-to-noise ratio is more unfavorable everywhere else. But even for the largest scales, the results are contaminated by the orbit error and geoid uncertainties. Recently a more accurate Earth gravity model (GEM-T1) became available, providing the opportunity to examine the whole question of direct estimation under a more critical limelight. It is found that our knowledge of the Earth's gravity field has indeed improved a great deal. However, it is not yet possible to claim definitively that our knowledge of the ocean circulation has improved through direct estimation. Yet, the improvement in the gravity model has come to the point that it is no longer possible to attribute the discrepancy at the basin scales between altimetric and hydrographic results as mostly due to geoid uncertainties. A substantial part of the difference must be due to other factors; i.e., the orbit error, or the uncertainty of the hydrographically derived dynamic topography.

  9. Large-scale circulation departures related to wet episodes in north-east Brazil

    NASA Technical Reports Server (NTRS)

    Sikdar, Dhirendra N.; Elsner, James B.

    1987-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season is divided into dry and wet periods; the FGGE and geostationary satellite data was averaged; and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLPs have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  10. Large-scale circulation departures related to wet episodes in northeast Brazil

    NASA Technical Reports Server (NTRS)

    Sikdar, D. N.; Elsner, J. B.

    1985-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  11. Watershed scale response to climate change--Yampa River Basin, Colorado

    USGS Publications Warehouse

    Hay, Lauren E.; Battaglin, William A.; Markstrom, Steven L.

    2012-01-01

    General Circulation Model simulations of future climate through 2099 project a wide range of possible scenarios. To determine the sensitivity and potential effect of long-term climate change on the freshwater resources of the United States, the U.S. Geological Survey Global Change study, "An integrated watershed scale response to global change in selected basins across the United States" was started in 2008. The long-term goal of this national study is to provide the foundation for hydrologically based climate change studies across the nation. Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Yampa River Basin at Steamboat Springs, Colorado.

  12. Mesoscale Circulation Variability from Five years of Quasi-continuous Glider Observations and Numerical Simulation at a Key Sub-basin 'Choke' Point.

    NASA Astrophysics Data System (ADS)

    Heslop, E. E.; Mourre, B.; Juza, M.; Troupin, C.; Escudier, R.; Torner, M.; Tintore, J.

    2016-02-01

    Quasi-continuous glider observations over 5 years have uniquely characterised a high frequency variability in the circulation through the Ibiza Channel, an important `choke' point in the Western Mediterranean Sea. This `choke' point governs the basin/sub-basin scale circulation and the north/south exchanges of different water masses. The resulting multi-scale variability impacts the regional shelf and open ocean ecosystems, including the spawning grounds of Atlantic bluefin tuna. Through the unique glider record we show the relevance of the weekly/mesoscale variability, which is of same order as the previously established seasonal and inter-annual variability. To understand the drivers of this variability we combine the glider data with numerical simulations (WMOP) and altimetry. Two key drivers are identified; extreme winter events, which cause the formation of a cold winter mode water (Winter Intermediate Water) in the shelf areas to the north of the Ibiza Channel, and mesoscale activity, which to the north produce channel `blocking' eddies and to the south intermittent and vigorous flows of fresher `Atlantic' waters through the Ibiza Channel. Results from the 2 km resolution WMOP are compared with the high-resolution (2 - 3 km.) glider data, giving insight into model validation across different scales, for both circulation and water masses. There is an emerging consensus that gliders can uniquely access critical time and length scales and in this study gliders complement existing satellite measurements and models, while opening up new capabilities for multidisciplinary, autonomous and high-resolution ocean observation.

  13. South Atlantic Ocean circulation: Simulation experiments with a quasi-geostrophic model and assimilation of TOPEX/POSEIDON and ERS 1 altimeter data

    NASA Astrophysics Data System (ADS)

    Florenchie, P.; Verron, J.

    1998-10-01

    Simulation experiments of South Atlantic Ocean circulations are conducted with a 1/6°, four-layered, quasi-geostrophic model. By means of a simple nudging data assimilation procedure along satellite tracks, TOPEX/POSEIDON and ERS 1 altimeter measurements are introduced into the model to control the simulation of the basin-scale circulation for the period from October 1992 to September 1994. The model circulation appears to be strongly influenced by the introduction of altimeter data, offering a consistent picture of South Atlantic Ocean circulations. Comparisons with observations show that the assimilating model successfully simulates the kinematic behavior of a large number of surface circulation components. The assimilation procedure enables us to produce schematic diagrams of South Atlantic circulation in which patterns ranging from basin-scale currents to mesoscale eddies are portrayed in a realistic way, with respect to their complexity. The major features of the South Atlantic circulation are described and analyzed, with special emphasis on the Brazil-Malvinas Confluence region, the Subtropical Gyre with the formation of frontal structures, and the Agulhas Retroflection. The Agulhas eddy-shedding process has been studied extensively. Fourteen eddies appear to be shed during the 2-year experiment. Because of their strong surface topographic signature, Agulhas eddies have been tracked continuously during the assimilation experiment as they cross the South Atlantic basin westward. Other effects of the assimilation procedure are shown, such as the intensification of the Subtropical Gyre, the appearance of a strong seasonal cycle in the Brazil Current transport, and the increase of the mean Brazil Current transport. This last result, combined with the westward oriention of the Agulhas eddies' trajectories, leads to a southward transport of mean eddy kinetic energy across 30°S.

  14. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  15. Bottom water circulation in Cascadia Basin

    NASA Astrophysics Data System (ADS)

    Hautala, Susan L.; Paul Johnson, H.; Hammond, Douglas E.

    2009-10-01

    A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below ˜2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.

  16. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  17. Meridional overturning and large-scale circulation of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Ganachaud, Alexandre; Wunsch, Carl; Marotzke, Jochem; Toole, John

    2000-11-01

    The large scale Indian Ocean circulation is estimated from a global hydrographic inverse geostrophic box model with a focus on the meridional overturning circulation (MOC). The global model is based on selected recent World Ocean Circulation Experiment (WOCE) sections which in the Indian Basin consist of zonal sections at 32°S, 20°S and 8°S, and a section between Bali and Australia from the Java-Australia Dynamic Experiment (JADE). The circulation is required to conserve mass, salinity, heat, silica and "PO" (170PO4+O2). Near-conservation is imposed within layers bounded by neutral surfaces, while permitting advective and diffusive exchanges between the layers. Conceptually, the derived circulation is an estimate of the average circulation for the period 1987-1995. A deep inflow into the Indian Basin of 11±4 Sv is found, which is in the lower range of previous estimates, but consistent with conservation requirements and the global data set. The Indonesian Throughflow (ITF) is estimated at 15±5 Sv. The flow in the Mozambique Channel is of the same magnitude, implying a weak net flow between Madagascar and Australia. A net evaporation of -0.6±0.4 Sv is found between 32°S and 8°S, consistent with independent estimates. No net heat gain is found over the Indian Basin (0.1 ± 0.2PW north of 32°S) as a consequence of the large warm water influx from the ITF. Through the use of anomaly equations, the average dianeutral upwelling and diffusion between the sections are required and resolved, with values in the range 1-3×10-5 cm s-1 for the upwelling and 2-10 cm2 s-1 for the diffusivity.

  18. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture

    NASA Astrophysics Data System (ADS)

    Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David

    2017-07-01

    Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.

  19. Multi-platform validation of a high-resolution model in the Western Mediterranean Sea: insight into spatial-temporal variability

    NASA Astrophysics Data System (ADS)

    Aguiar, Eva; Mourre, Baptiste; Heslop, Emma; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín

    2017-04-01

    This study focuses on the validation of the high resolution Western Mediterranean Operational model (WMOP) developed at SOCIB, the Balearic Islands Coastal Observing and Forecasting System. The Mediterranean Sea is often seen as a small scale ocean laboratory where energetic eddies, fronts and circulation features have important ecological consequences. The Medclic project is a program between "La Caixa" Foundation and SOCIB which aims at characterizing and forecasting the "oceanic weather" in the Western Mediterranean Sea, specifically investigating the interactions between the general circulation and mesoscale processes. We use a WMOP 2009-2015 free run hindcast simulation and available observational datasets (altimetry, moorings and gliders) to both assess the numerical simulation and investigate the ocean variability. WMOP has a 2-km spatial resolution and uses CMEMS Mediterranean products as initial and boundary conditions, with surface forcing from the high-resolution Spanish Meteorological Agency model HIRLAM. Different aspects of the spatial and temporal variability in the model are validated from local to regional and basin scales: (1) the principal axis of variability of the surface circulation using altimetry and moorings along the Iberian coast, (2) the inter-annual changes of the surface flows incorporating also glider data, (3) the propagation of mesoscale eddies formed in the Algerian sub-basin using altimetry, and (4) the statistical properties of eddies (number, rotation, size) applying an eddy tracker detection method in the Western Mediterranean Sea. With these key points evaluated in the model, EOF analysis of sea surface height maps are used to investigate spatial patterns of variability associated with eddies, gyres and the basis-scale circulation and so gain insight into the interconnections between sub-basins, as well as the interactions between physical processes at different scales.

  20. An abrupt centennial-scale drought event and mid-holocene climate change patterns in monsoon marginal zones of East Asia.

    PubMed

    Li, Yu; Wang, Nai'ang; Zhang, Chengqi

    2014-01-01

    The mid-latitudes of East Asia are characterized by the interaction between the Asian summer monsoon and the westerly winds. Understanding long-term climate change in the marginal regions of the Asian monsoon is critical for understanding the millennial-scale interactions between the Asian monsoon and the westerly winds. Abrupt climate events are always associated with changes in large-scale circulation patterns; therefore, investigations into abrupt climate changes provide clues for responses of circulation patterns to extreme climate events. In this paper, we examined the time scale and mid-Holocene climatic background of an abrupt dry mid-Holocene event in the Shiyang River drainage basin in the northwest margin of the Asian monsoon. Mid-Holocene lacustrine records were collected from the middle reaches and the terminal lake of the basin. Using radiocarbon and OSL ages, a centennial-scale drought event, which is characterized by a sand layer in lacustrine sediments both from the middle and lower reaches of the basin, was absolutely dated between 8.0-7.0 cal kyr BP. Grain size data suggest an abrupt decline in lake level and a dry environment in the middle reaches of the basin during the dry interval. Previous studies have shown mid-Holocene drought events in other places of monsoon marginal zones; however, their chronologies are not strong enough to study the mechanism. According to the absolutely dated records, we proposed a new hypothesis that the mid-Holocene dry interval can be related to the weakening Asian summer monsoon and the relatively arid environment in arid Central Asia. Furthermore, abrupt dry climatic events are directly linked to the basin-wide effective moisture change in semi-arid and arid regions. Effective moisture is affected by basin-wide precipitation, evapotranspiration, lake surface evaporation and other geographical settings. As a result, the time scales of the dry interval could vary according to locations due to different geographical features.

  1. An Abrupt Centennial-Scale Drought Event and Mid-Holocene Climate Change Patterns in Monsoon Marginal Zones of East Asia

    PubMed Central

    Li, Yu; Wang, Nai'ang; Zhang, Chengqi

    2014-01-01

    The mid-latitudes of East Asia are characterized by the interaction between the Asian summer monsoon and the westerly winds. Understanding long-term climate change in the marginal regions of the Asian monsoon is critical for understanding the millennial-scale interactions between the Asian monsoon and the westerly winds. Abrupt climate events are always associated with changes in large-scale circulation patterns; therefore, investigations into abrupt climate changes provide clues for responses of circulation patterns to extreme climate events. In this paper, we examined the time scale and mid-Holocene climatic background of an abrupt dry mid-Holocene event in the Shiyang River drainage basin in the northwest margin of the Asian monsoon. Mid-Holocene lacustrine records were collected from the middle reaches and the terminal lake of the basin. Using radiocarbon and OSL ages, a centennial-scale drought event, which is characterized by a sand layer in lacustrine sediments both from the middle and lower reaches of the basin, was absolutely dated between 8.0–7.0 cal kyr BP. Grain size data suggest an abrupt decline in lake level and a dry environment in the middle reaches of the basin during the dry interval. Previous studies have shown mid-Holocene drought events in other places of monsoon marginal zones; however, their chronologies are not strong enough to study the mechanism. According to the absolutely dated records, we proposed a new hypothesis that the mid-Holocene dry interval can be related to the weakening Asian summer monsoon and the relatively arid environment in arid Central Asia. Furthermore, abrupt dry climatic events are directly linked to the basin-wide effective moisture change in semi-arid and arid regions. Effective moisture is affected by basin-wide precipitation, evapotranspiration, lake surface evaporation and other geographical settings. As a result, the time scales of the dry interval could vary according to locations due to different geographical features. PMID:24599259

  2. Extreme multi-basin flooding linked with extra-tropical cyclones

    NASA Astrophysics Data System (ADS)

    De Luca, Paolo; Hillier, John K.; Wilby, Robert L.; Quinn, Nevil W.; Harrigan, Shaun

    2017-11-01

    Fluvial floods are typically investigated as ‘events’ at the single basin-scale, hence flood management authorities may underestimate the threat of flooding across multiple basins driven by large-scale and nearly concurrent atmospheric event(s). We pilot a national-scale statistical analysis of the spatio-temporal characteristics of extreme multi-basin flooding (MBF) episodes, using peak river flow data for 260 basins in Great Britain (1975-2014), a sentinel region for storms impacting northwest and central Europe. During the most widespread MBF episode, 108 basins (~46% of the study area) recorded annual maximum (AMAX) discharge within a 16 day window. Such episodes are associated with persistent cyclonic and westerly atmospheric circulations, atmospheric rivers, and precipitation falling onto previously saturated ground, leading to hydrological response times <40 h and documented flood impacts. Furthermore, peak flows tend to occur after 0-13 days of very severe gales causing combined and spatially-distributed, yet differentially time-lagged, wind and flood damages. These findings have implications for emergency responders, insurers and contingency planners worldwide.

  3. A multitracer approach for characterizing interactions between shallow groundwater and the hydrothermal system in the Norris Geyser Basin area, Yellowstone National Park

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2011-01-01

    Multiple environmental tracers are used to investigate age distribution, evolution, and mixing in local- to regional-scale groundwater circulation around the Norris Geyser Basin area in Yellowstone National Park. Springs ranging in temperature from 3??C to 90??C in the Norris Geyser Basin area were sampled for stable isotopes of hydrogen and oxygen, major and minor element chemistry, dissolved chlorofluorocarbons, and tritium. Groundwater near Norris Geyser Basin is comprised of two distinct systems: a shallow, cool water system and a deep, high-temperature hydrothermal system. These two end-member systems mix to create springs with intermediate temperature and composition. Using multiple tracers from a large number of springs, it is possible constrain the distribution of possible flow paths and refine conceptual models of groundwater circulation in and around a large, complex hydrothermal system. Copyright 2011 by the American Geophysical Union.

  4. Modelling the transport and accumulation of floating marine debris in the Mediterranean basin.

    PubMed

    Mansui, J; Molcard, A; Ourmières, Y

    2015-02-15

    In the era of plastic and global environmental issues, when large garbage patches have been observed in the main oceanic basins, this work is the first attempt to explore the possibility that similar permanent accumulation structures may exist in the Mediterranean Sea. The questions addressed in this work are: can the general circulation, with its sub-basins scale gyres and mesoscale instabilities, foster the concentration of floating items in some regions? Where are the more likely coastal zones impacted from open ocean sources? Multi-annual simulations of advected surface passive debris depict the Tyrrhenian Sea, the north-western Mediterranean sub-basin and the Gulf of Sirte as possible retention areas. The western Mediterranean coasts present very low coastal impact, while the coastal strip from Tunisia to Syria appears as the favourite destination. No permanent structure able to retain floating items in the long-term were found, as the basin circulation variability brings sufficient anomalies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Circulation and thermohaline structure of the Aral Sea in the last three years

    NASA Astrophysics Data System (ADS)

    Izhitskiy, A. S.; Zavialov, P. O.

    2012-04-01

    The results of the 3 latest expeditions (2009 - 2011) of the Shirshov Institute to the Aral Sea are reported. We analyze the interannual variability of the basin circulation together with the thermohaline structure in order to identify the underlying mechanisms. The study is based on the results of the field surveys of August, 2009, September, 2010, and November, 2011. The vertical profiles of temperature and salinity were obtained using a CTD profiler at 6 stations across the deepest part of the western basin in 2009 and 2010, and 3 stations in 2011. Additionally, during each of the surveys, mooring stations equipped with current meters and pressure gauges were deployed for 3-5 days in the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the wind stress and the principal meteorological parameters, was installed near the mooring sites. The vertical stratification exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and near the bottom, while the intermediate layer was characterized by a core of minimum salinity and temperature. Such a pattern persisted throughout the 3 years of observations. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity and surface level series versus the wind stress allowed to quantify the response of the system to the wind forcing as well as to formulate a conceptual scheme of the lake's response to wind forcing at synoptic temporal scales.

  6. Wind driven general circulation of the Mediterranean Sea simulated with a Spectral Element Ocean Model

    NASA Astrophysics Data System (ADS)

    Molcard, A.; Pinardi, N.; Iskandarani, M.; Haidvogel, D. B.

    2002-05-01

    This work is an attempt to simulate the Mediterranean Sea general circulation with a Spectral Finite Element Model. This numerical technique associates the geometrical flexibility of the finite elements for the proper coastline definition with the precision offered by spectral methods. The model is reduced gravity and we study the wind-driven ocean response in order to explain the large scale sub-basin gyres and their variability. The study period goes from January 1987 to December 1993 and two forcing data sets are used. The effect of wind variability in space and time is analyzed and the relationship between wind stress curl and ocean response is stressed. Some of the main permanent structures of the general circulation (Gulf of Lions cyclonic gyre, Rhodes gyre, Gulf of Syrte anticylone) are shown to be induced by permanent wind stress curl structures. The magnitude and spatial variability of the wind is important in determining the appearance or disappearance of some gyres (Tyrrhenian anticyclonic gyre, Balearic anticyclonic gyre, Ionian cyclonic gyre). An EOF analysis of the seasonal variability indicates that the weakening and strengthening of the Levantine basin boundary currents is a major component of the seasonal cycle in the basin. The important discovery is that seasonal and interannual variability peak at the same spatial scales in the ocean response and that the interannual variability includes the change in amplitude and phase of the seasonal cycle in the sub-basin scale gyres and boundary currents. The Coriolis term in the vorticity balance seems to be responsible for the weakening of anticyclonic structures and their total disappearance when they are close to a boundary. The process of adjustment to winds produces a train of coastally trapped gravity waves which travel around the eastern and western basins, respectively in approximately 6 months. This corresponds to a phase velocity for the wave of about 1 m/s, comparable to an average velocity of an internal Kelvin wave in the area.

  7. Combining numerical modeling and stable isotope values to quantify groundwater recharge from the Chilean Andes to the Pampa del Tamarugal Basin, Atacama Desert, northern Chile

    NASA Astrophysics Data System (ADS)

    Dodd, J. P.; Pollyea, R.

    2014-12-01

    The Atacama Desert of northern Chile is one of the driest regions on Earth and receives less than 5mm of precipitation annually. The Pampa del Tamarugal (PdT) Basin contains the largest aquifer system in the region, yet the mechanisms and timing of aquifer recharge and continental-scale groundwater flux are poorly understood. Although there is little debate that the source of groundwater recharge is the higher elevation regions of the Andean Altiplano to the east of the PdT Basin, there remains much uncertainty surrounding the mechanisms and timing of aquifer recharge and continental-scale groundwater flux. Most recharge models of the PdT focus on surface water runoff and alluvial fan recharge on shorter time scales, but many of these models explicitly neglect deep flow pathways. Previous investigators have combined the thermal aquifer profile and 14C groundwater ages to propose an alternative conceptual model in which cold meteoric water infiltrates deep into the Cordillera before circulating upward into the PdT by thermal convection through fault-controlled migration pathways. Although this conceptual model provides a convincing theoretical argument for deep fluid circulation, it cannot constrain the magnitude of this deep recharge flux. In this work, we revisit deep-flow conceptual model by combining the spatial distribution of hydrogen and oxygen isotope values as groundwater tracers with a non-isothermal model of continental scale groundwater flow through a two-dimensional transect from the Chilean Andes to the PdT Basin. This work provides first-order estimates on the contribution of deep groundwater circulation within the PdT Aquifer, while providing a framework for (1) quantifying boundary conditions for high resolution models of groundwater resources within the PdT Aquifer, (2) assessing the influence of variable future climate scenarios for groundwater availability in the region, and (3) further integrating conservative tracers and numerical models for groundwater resource evaluation in hyperarid environments.

  8. The Record Los Angeles Heat Event of September 2010: 1. Synoptic-Scale-Meso-β-Scale Analyses of Interactive Planetary Wave Breaking, Terrain- and Coastal-Induced Circulations

    NASA Astrophysics Data System (ADS)

    Kaplan, Michael L.; Tilley, Jeffrey S.; Hatchett, Benjamin J.; Smith, Craig M.; Walston, Joshua M.; Shourd, Kacie N.; Lewis, John M.

    2017-10-01

    On 27 September 2010 the Los Angeles Civic Center reached its all-time record maximum temperature of 45°C before 1330 local daylight time with several other regional stations observing all-time record breaking heat early in that afternoon. This record event is associated with a general circulation pattern predisposed to hemispheric wave breaking. Three days before the event, wave breaking organizes complex terrain- and coastal-induced processes that lead to isentropic surface folding into the Los Angeles Basin. The first wave break occurs over the western two thirds of North America leading to trough elongation across the southwestern U.S. Collocated with this trough is an isentropic potential vorticity filament that is the locus of a thermally indirect circulation central to warming and associated thickness increases and ridging westward across the Great Basin. In response to this circulation, two subsynoptic wave breaks are triggered along the Pacific coast. The isentropic potential vorticity filament is coupled to the breaking waves and the interaction produces a subsynoptic low-pressure center and a deep vortex aloft over the southeastern California desert. This coupling leads to advection of an elevated mixed layer over Point Conception the night before the record-breaking heat that creates a coastally trapped low-pressure area southwest of Los Angeles. The two low-pressure centers create a low-level pressure gradient and east-southeasterly jet directed offshore over the Los Angeles Basin by sunrise on 27 September. This allows the advection of low-level warm air from the inland terrain toward the coastally trapped disturbance and descending circulation resulting in record heating.

  9. Multisensor satellite observations of meso- and submesoscale surface circulation in the Liguro-Provençal Basin

    NASA Astrophysics Data System (ADS)

    Karimova, Svetlana; Alvera-Azcarate, Aida

    2017-04-01

    Despite great efforts being paid to studying circulation of the Western Mediterranean Basin and the factors triggering bioproductivity of its marine ecosystem, the evidence provided by satellite imagery has not been fully analysed yet. In the present paper, we concentrate our attention on mesoscale and submesoscale circulation features of the Liguro-Provençal Basin captured by satellite radiometer, spectroradiometer, and radar images. Using such a dataset makes it possible to observe the circulation features from a wide spatial range, from the basin scale through mesoscale to the scales of a few kilometers. Mesoscale features in this study are being mostly observed with thermal infrared imagery retrieved by AVHRR and AATSR sensors. Special attention in the work was paid to an analysis of the data coming from a geostationary satellite, namely ones provided by SEVIRI. Due to their uniquely high temporal resolution, such imagery allows observing circulation features in their evolution. During the winter blooming events, surface circulation at meso- to submesoscales in the region of interest was additionally highlighted by images obtained in the visible range. Full spatial resolution images provided by Envisat MERIS, Sentinel-2 MSI, and Landsat TM/ETM+/OLI made the greatest contribution to this part. The smallest scales (namely submesoscale) are being observed with synthetic aperture radar (SAR) imagery provided by Envisat ASAR and Sentinel-1 SAR. During an analysis of SAR images, it was noted that there was strikingly great amount of biogenic surfactants on the water surface in the region of interest. Apparently, low biological productivity typical for the Western Mediterranean ecosystem is not a limiting factor for the formation of surfactant films seen in SAR imagery. This finding though requires further consideration in some other researches, and hereafter we just benefited from the presence of surfactants, because they behave as good tracers of surface currents. Even though the region of interest belongs to the areas with low mean eddy kinetic energy, analysis of the images listed above revealed that the Liguro-Provençal Basin was showing a surprisingly high eddy activity among submesoscale and mesoscale features. However, the typical size of eddies in this area was smaller than that in the southern part of the Western Mediterranean. The general impression retrieved from the observations performed is that the main contributors to generation of observed mesoscale vortical structures are (i) the instability of the main currents in the region of interest and especially frontal instability at the Liguro-Provençal front and (ii) instabilities caused by the coastline inhomogeneity, especially in the eastern part of the Basin. Submesoscale eddy activity seems to be developed to its full extent during the periods when the mesoscale activity in the region of interest is not so prominent. This study is supported by the University of Liege and the EU in the context of the FP7-PEOPLE-COFUND-BeIPD project. Satellite imagery is provided by the European Space Agency.

  10. Global-Local Interactions Modulate Tropical Moisture Exports to the Ohio River Basin

    NASA Astrophysics Data System (ADS)

    Doss-Gollin, J.; Farnham, D. J.; Lall, U.

    2016-12-01

    Regional-scale extreme rainfall and flooding are temporally and spatially associated with the occurrence of tropical moisture exports (TMEs) in the Ohio River Basin (ORB). TMEs are related to but not synonymous with atmospheric rivers, which refer to specific filiamentary organizational processes. TMEs to the ORB may be driven by strong, persistent ridging over the Eastern United States and troughing over the Central United States, creating favorable conditions for southerly flow and moisture transport from the Gulf of Mexico and Caribbean Sea. However, the strong inter-annual variation in TME activity over the ORB suggests dependence on global-scale features of the atmospheric circulation. We suggest that this synoptic dipole pattern may be viewed as the passage of one or more high-wavenumber, transient Rossby waves. We build a multi-level hierarchical Bayesian model in which the probability distribution of TME entering the ORB is a function of the phase and amplitude of the traveling waves. In turn, the joint distribution of the phase and amplitude of this wave is modulated by hemispheric-scale features of the atmospheric and oceanic circulation, and the amplitude and synchronization of quasi-stationary Rossby waves with wavenumber 1-4. Our approach bridges information about different features of the atmospheric circulation which inform the predictability of TME at multiple time scales and develops existing understanding of the atmospheric drivers of TMEs beyond existing composite and EOF studies.

  11. Significant Findings: Seasonal Distributions of Global Ocean Chlorophyll and Nutrients With a Coupled Ocean General Circulation, Biogeochemical, and Radiative Model. 2; Comparisons With Satellite and In Situ Data

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model were determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (>1000 km) model chlorophyll seasonal distributions were statistically positively correlated with CZCS chlorophyll in 10 of 12 major oceanographic regions, and with SeaWiFS in all 12. Notable disparities in magnitudes occurred, however, in the tropical Pacific, the spring/summer bloom in the Antarctic, autumn in the northern high latitudes, and during the southwest monsoon in the North Indian Ocean. Synoptic scale (100-1000 km) comparisons of satellite and in situ data exhibited broad agreement, although occasional departures were apparent. Model nitrate distributions agreed with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicated that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on basin and synoptic scales.

  12. Optimum interpolation analysis of basin-scale ¹³⁷Cs transport in surface seawater in the North Pacific Ocean.

    PubMed

    Inomata, Y; Aoyama, M; Tsumune, D; Motoi, T; Nakano, H

    2012-12-01

    ¹³⁷Cs is one of the conservative tracers applied to the study of oceanic circulation processes on decadal time scales. To investigate the spatial distribution and the temporal variation of ¹³⁷Cs concentrations in surface seawater in the North Pacific Ocean after 1957, a technique for optimum interpolation (OI) was applied to understand the behaviour of ¹³⁷Cs that revealed the basin-scale circulation of Cs ¹³⁷Cs in surface seawater in the North Pacific Ocean: ¹³⁷Cs deposited in the western North Pacific Ocean from global fallout (late 1950s and early 1960s) and from local fallout (transported from the Bikini and Enewetak Atolls during the late 1950s) was further transported eastward with the Kuroshio and North Pacific Currents within several years of deposition and was accumulated in the eastern North Pacific Ocean until 1967. Subsequently, ¹³⁷Cs concentrations in the eastern North Pacific Ocean decreased due to southward transport. Less radioactively contaminated seawater was also transported northward, upstream of the North Equatorial Current in the western North Pacific Ocean in the 1970s, indicating seawater re-circulation in the North Pacific Gyre.

  13. Watershed scale response to climate change--Trout Lake Basin, Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hunt, Randall J.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Trout River Basin at Trout Lake in northern Wisconsin.

  14. Watershed scale response to climate change--Clear Creek Basin, Iowa

    USGS Publications Warehouse

    Christiansen, Daniel E.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Clear Creek Basin, near Coralville, Iowa.

  15. Watershed scale response to climate change--Feather River Basin, California

    USGS Publications Warehouse

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Feather River Basin, California.

  16. Watershed scale response to climate change--South Fork Flathead River Basin, Montana

    USGS Publications Warehouse

    Chase, Katherine J.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the South Fork Flathead River Basin, Montana.

  17. Watershed scale response to climate change--Cathance Stream Basin, Maine

    USGS Publications Warehouse

    Dudley, Robert W.; Hay, Lauren E.; Markstrom, Steven L.; Hodgkins, Glenn A.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Cathance Stream Basin, Maine.

  18. Watershed scale response to climate change--Starkweather Coulee Basin, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Starkweather Coulee Basin near Webster, North Dakota.

  19. Watershed scale response to climate change--Sagehen Creek Basin, California

    USGS Publications Warehouse

    Markstrom, Steven L.; Hay, Lauren E.; Regan, R. Steven

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Sagehen Creek Basin near Truckee, California.

  20. Watershed scale response to climate change--Sprague River Basin, Oregon

    USGS Publications Warehouse

    Risley, John; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Sprague River Basin near Chiloquin, Oregon.

  1. Watershed scale response to climate change--Black Earth Creek Basin, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Westenbroek, Steven M.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Black Earth Creek Basin, Wisconsin.

  2. Watershed scale response to climate change--East River Basin, Colorado

    USGS Publications Warehouse

    Battaglin, William A.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the East River Basin, Colorado.

  3. Watershed scale response to climate change--Naches River Basin, Washington

    USGS Publications Warehouse

    Mastin, Mark C.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Naches River Basin below Tieton River in Washington.

  4. Watershed scale response to climate change--Flint River Basin, Georgia

    USGS Publications Warehouse

    Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Flint River Basin at Montezuma, Georgia.

  5. Thermohaline variability in the Adriatic and Northern Ionian Seas observed from the Argo floats during 2010-2014

    NASA Astrophysics Data System (ADS)

    Kovačević, Vedrana; Ursella, Laura; Gačić, Miroslav; Notarstefano, Giulio; Menna, Milena; Bensi, Manuel; Civitarese, Giuseppe; Poulain, Pierre-Marie

    2015-04-01

    The Adriatic Sea is the northernmost basin of the Eastern Mediterranean Sea (EMed). At its southern end, the basin communicates with the adjacent Ionian Sea through the 80 km wide and 850 m deep Strait of Otranto. Due to the river discharge in the north and due to the strong winter cooling, the Adriatic is both a dilution basin and the dense water formation region. The basin-wide circulation is cyclonic. The circulation is however, energetic also at smaller spatial and temporal scales, and several circulation cells and mesoscale features are regularly observed equally along the littoral and in the open sea. The North Adriatic Dense Water (NAdDW) formed during winter is the densest water of the whole Mediterranean Sea (up to 1060 kg/m3). It flows as a density driven bottom current from the northern shelf toward south, filling the deep layers of the middle and southern Adriatic pits. The deep open-sea area of the South Adriatic Pit (SAP, 1200 m) feels the influence of a water mass exchange through the Strait of Otranto. Specifically, it receives salty and warm surface and Levantine Intermediate Waters from the Ionian Sea. Through the open-sea winter convection that homogenizes and ventilates 400-800 m thick upper water column, this salty water contributes to the formation of the Adriatic Deep Water (AdDW, 1029.17-1029.20 kg/m3), which is not as dense as the NAdDW. Both dense waters eventually mix and spill across the sill ventilating the deep and bottom layers of the Ionian Sea, and driving the deep thermohaline cell of the EMed. Thermohaline properties of the Adriatic Sea vary at wide spatial and temporal scales, and this in turn affects the properties of its dense waters. The long-term scales are of a particular interest, as they are often associated with the biogeochemical and biotic variability such as intrusion of alien species into the Adriatic Sea and interconnection with the adjacent Ionian basin. Due to the extremely variable meteo- and climatic conditions, the signal of the Adriatic dense waters can be fairly irregular and impulsive. Sporadic in-situ surveys by research vessels are not always sufficient to capture this irregularity and its consequences on the circulation. The Lagrangian platforms are disseminated within the whole Mediterranean through the international Argo program. They are a useful tool to assess some of the spatial and temporal variability in the two basins. Combining the information from the floats and in-situ CTD profiles from oceanographic campaigns, we picture the inter-annual variability of the thermohaline properties in general during 2010-2014. In addition, the peculiarities of the very dense water overflow that during 2012 spilled out form the Strait of Otranto into the Northern Ionian is evidenced. Also, by the remotely sensed sea surface topography, we depict the most prominent circulation features of the upper layer.

  6. Reversed flow of Atlantic deep water during the Last Glacial Maximum.

    PubMed

    Negre, César; Zahn, Rainer; Thomas, Alexander L; Masqué, Pere; Henderson, Gideon M; Martínez-Méndez, Gema; Hall, Ian R; Mas, José L

    2010-11-04

    The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.

  7. General circulation of the South Atlantic between 5 deg N and 35 deg S

    NASA Technical Reports Server (NTRS)

    Ollitrault, Michel; Mercier, H.; Blanc, F.; Letraon, L. Y.

    1991-01-01

    The TOPEX/POSEIDON altimeter will provide the temporal mean seal level. So, secondly, we propose to compute the difference between these two surfaces (mean sea level minus general circulation dynamic topography). The result will be an estimate of the marine geoid, which is time invariant for the 5-year period under consideration. If this geoid is precise enough, it will permit a description of seasonal variability of the large-scale surface circulation. If there happens to be enough float data, it may be possible to infer the first vertical modes of this variability. Thus the main goal of our investigation is to determine the 3-D general circulation of the South Atlantic and the large-scale seasonal fluctuations. This last objective, however, may be restricted to the western part of the South Atlantic because float deployments have been scheduled only in the Brasil basin.

  8. Mechanisms of flow and water mass variability in Denmark Strait

    NASA Astrophysics Data System (ADS)

    Moritz, Martin; Jochumsen, Kerstin; Quadfasel, Detlef; Mashayekh Poul, Hossein; Käse, Rolf H.

    2017-04-01

    The dense water export through Denmark Strait contributes significantly to the lower limb of the Atlantic Meridional Overturning Circulation. Overflow water is transported southwestward not only in the deep channel of the Strait, but also within a thin bottom layer on the Greenland shelf. The flow on the shelf is mainly weak and barotropic, exhibiting many recirculations, but may eventually contribute to the overflow layer in the Irminger Basin by spilling events in the northern Irminger Basin. Especially the circulation around Dohrn Bank and the Kangerdlussuaq Trough contribute to the shelf-basin exchange. Moored observations show the overflow in Denmark Strait to be stable during the last 20 years (1996-2016). Nevertheless, flow variability was noticed on time scales of eddies and beyond, i.e. on weekly and interannual scales. Here, we use a combination of mooring data and shipboard hydrographic and current data to address the dominant modes of variability in the overflow, which are (i) eddies, (ii) barotropic pulsations of the plume, (iii) lateral shifts of the plume core position, and (iv) variations in vertical extension, i.e. varying overflow thickness. A principle component analysis is carried out and related to variations in sea surface height and wind stress, derived from satellite measurements. Furthermore, a test for topographic waves is performed. Shelf contributions to the overflow core in the Irminger Basin are identified from measurements of temperature and salinity, as well as velocity, which were obtained during recent cruises in the region. The flow and water mass pattern obtained from the observational data is compared to simulations in a high resolution regional model (ROMS), where tracer release experiments and float deployments were carried out. The modelling results allow a separation between different atmospheric forcing modes (NAO+ vs NAO- situations), which impact the water mass distribution and alter the dense water pathways on the Greenland shelf. Finally, the results are discussed with respect to other regional model studies on the circulation in the northern Irminger Basin.

  9. Wind-driven circulation patterns in a shallow estuarine lake: St Lucia, South Africa

    NASA Astrophysics Data System (ADS)

    Schoen, Julia H.; Stretch, Derek D.; Tirok, Katrin

    2014-06-01

    The spatiotemporal structure of wind-driven circulation patterns and associated water exchanges or residence times can drive important bio-hydrodynamic interactions in shallow lakes and estuaries. The St Lucia estuarine lake in South Africa is an example of such a system. It is a UNESCO World Heritage Site and RAMSAR wetland of international importance but no detailed research on its circulation patterns has previously been undertaken. In this study, a hydrodynamic model was used to investigate the structure of these circulations to provide insights into their role in transport and water exchange processes. A strong diurnal temporal pattern of wind speeds, together with directional switching between two dominant directions, drives intermittent water exchanges and mixing between the lake basins. “High speed flows in shallow nearshore areas with slower upwind counter-flows in deeper areas, linked by circulatory gyres, are key features of the circulation”. These patterns are strongly influenced by the complex geometry of St Lucia and constrictions in the system. Water exchange time scales are non-homogeneous with some basin extremities having relatively long residence times. The influence of the circulation patterns on biological processes is discussed.

  10. a Matlab Toolbox for Basin Scale Fluid Flow Modeling Applied to Hydrology and Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Alcanie, M.; Lupi, M.; Carrier, A.

    2017-12-01

    Recent boosts in the development of geothermal energy were fostered by the latest oil crises and by the need of reducing CO2 emissions generated by the combustion of fossil fuels. Various numerical codes (e.g. FEHM, CSMP++, HYDROTHERM, TOUGH) have thus been implemented for the simulation and quantification of fluid flow in the upper crust. One possible limitation of such codes is the limited accessibility and the complex structure of the simulators. For this reason, we began to develop a Hydrothermal Fluid Flow Matlab library as part of MRST (Matlab Reservoir Simulation Toolbox). MRST is designed for the simulation of oil and gas problems including carbon capture storage. However, a geothermal module is still missing. We selected the Geneva Basin as a natural laboratory because of the large amount of data available in the region. The Geneva Basin has been intensely investigated in the past with exploration wells, active seismic and gravity surveys. In addition, the energy strategy of Switzerland promotes the development of geothermal energy that lead to recent geophysical prospections. Previous and ongoing projects have shown the geothermal potential of the Geneva Basin but a consistent fluid flow model assessing the deep circulation in the region is yet to be defined. The first step of the study was to create the basin-scale static model. We integrated available active seismic, gravity inversions and borehole data to describe the principal geologic and tectonic features of the Geneva Basin. Petrophysical parameters were obtained from available and widespread well logs. This required adapting MRST to standard text format file imports and outline a new methodology for quick static model creation in an open source environment. We implemented several basin-scale fluid flow models to test the effects of petrophysical properties on the circulation dynamics of deep fluids in the Geneva Basin. Preliminary results allow the identification of preferential fluid flow pathways, which are critical information to define geothermal exploitation locations. The next step will be the implementation of the equation of state for pure water, CO2 - H2O and H2O - CH4 fluid mixtures.

  11. Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) scientific advances and future west pacific coordination

    NASA Astrophysics Data System (ADS)

    Ganachaud, A. S.; Sprintall, J.; Lin, X.; Ando, K.

    2016-02-01

    The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR (Climate Variability and Predictability). The key objectives are to understand the Southwest Pacific Ocean circulation and Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. It was designed to measure and monitor the ocean circulation, and to validate and improve numerical models. South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. Water transit through the Coral and Solomon Seas is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the SPCZ position and intensity. The circulation is complex, with the SEC splitting into zonal jets upon encountering island archipelagos, before joining either the East Australian Current or the New Guinea Costal UnderCurrent towards the equator. SPICE included large, coordinated in situ measurement programs and high resolution numerical simulations of the area. After 8 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. We will review the recent advancements and discuss our current knowledge gaps and important emerging research directions. In particular we will discuss how SPICE, along with the Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) and Indonesian ThroughFlow (ITF) programs could evolve toward an integrative observing system under CLIVAR coordination.

  12. A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation

    NASA Astrophysics Data System (ADS)

    Hughes, Chris W.; Williams, Joanne; Blaker, Adam; Coward, Andrew; Stepanov, Vladimir

    2018-02-01

    We show how, by focusing on bottom pressure measurements particularly on the global continental slope, it is possible to avoid the "fog" of mesoscale variability which dominates most observables in the deep ocean. This makes it possible to monitor those aspects of the ocean circulation which are most important for global scale ocean variability and climate. We therefore argue that such measurements should be considered an important future component of the Global Ocean Observing System, to complement the present open-ocean and coastal elements. Our conclusions are founded on both theoretical arguments, and diagnostics from a fine-resolution ocean model that has realistic amplitudes and spectra of mesoscale variability. These show that boundary pressure variations are coherent over along-slope distances of tens of thousands of kilometres, for several vertical modes. We illustrate the value of this in the model Atlantic, by determining the time for boundary and equatorial waves to complete a circuit of the northern basin (115 and 205 days for the first and second vertical modes), showing how the boundary features compare with basin-scale theoretical models, and demonstrating the ability to monitor the meridional overturning circulation using these boundary measurements. Finally, we discuss applicability to the real ocean and make recommendations on how to make such measurements without contamination from instrumental drift.

  13. Watershed scale response to climate change--Pomperaug River Watershed, Connecticut

    USGS Publications Warehouse

    Bjerklie, David M.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Pomperaug River Basin at Southbury, Connecticut.

  14. DOUBLED CO2 PRECIPITATION CHANGES FOR THE SUSQUEHANNA BASIN: DOWN-SCALING FROM THE GENESIS GENERAL CIRCULATION MODEL. (R824807)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Atlantic deep water circulation during the last interglacial.

    PubMed

    Luo, Yiming; Tjiputra, Jerry; Guo, Chuncheng; Zhang, Zhongshi; Lippold, Jörg

    2018-03-13

    Understanding how the Atlantic Meridional Overturning Circulation (AMOC) evolved during crucial past geological periods is important in order to decipher the interplay between ocean dynamics and global climate change. Previous research, based on geological proxies, has provided invaluable insights into past AMOC changes. However, the causes of the changes in water mass distributions in the Atlantic during different periods remain mostly elusive. Using a state-of-the-art Earth system model, we show that the bulk of NCW in the deep South Atlantic Ocean below 4000 m migrated from the western basins at 125 ka to the eastern basins at 115 ka, though the AMOC strength is only slightly reduced. These changes are consistent with proxy records, and it is mainly due to more penetration of the AABW at depth at 115 ka, as a result of a larger density of AABW formed at 115 ka. Our results show that depth changes in regional deep water pathways can result in large local changes, while the overall AMOC structure hardly changes. Future research should thus be careful when interpreting single proxy records in terms of large-scale AMOC changes, and considering variability of water-mass distributions on sub-basin scale would give more comprehensive interpretations of sediment records.

  16. Simulation of Water Sources and Precipitation Recycling for the MacKenzie, Mississippi and Amazon River Basins

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Chern, Jiun-Dar

    2005-01-01

    An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets.

  17. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    PubMed

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  18. Untangling biogeochemical processes from the impact of ocean circulation: First insight on the Mediterranean dissolved barium dynamics

    NASA Astrophysics Data System (ADS)

    Jullion, L.; Jacquet, S. H. M.; Tanhua, T.

    2017-08-01

    Based on an unprecedented dissolved barium (D_Ba) data set collected in the Mediterranean Sea during a zonal transect between the Lebanon coast and Gibraltar (M84/3 cruise, April 2011), we decompose the D_Ba distribution to isolate the contribution of biogeochemical processes from the impact of the oceanic circulation. We have built a simple parametric water mass analysis (Parametric Optimum Multiparameter analysis) to reconstruct the contribution of the different Mediterranean water masses to the thermohaline structure. These water mass fractions have then been used to successfully reconstruct the background vertical gradient of D_Ba reflecting the balance between the large-scale oceanic circulation and the biological activity over long time scales. Superimposed on the background field, several D_Ba anomalies have been identified. Positive anomalies are associated with topographic obstacles and may be explained by the dissolution of particulate biogenic barium (P_Ba barite) of material resuspended by the local currents. The derived dissolution rates range from 0.06 to 0.21 μmol m-2 d-1. Negative anomalies are present in the mesopelagic region of the western and eastern basins (except in the easternmost Levantine basin) as well as in the abyssal western basin. This represents the first quantification of the nonconservative component of the D_Ba signal. These mesopelagic anomalies could reflect the subtraction of D_Ba during P_Ba barite formation occurring during organic carbon remineralization. The deep anomalies may potentially reflect the transport of material toward the deep sea during winter deep convection and the subsequent remineralization. The D_Ba subtraction fluxes range from -0.07 to -1.28 μmol m-2 d-1. D_Ba-derived fluxes of P_Ba barite (up to 0.21 μmol m-2 d-1) and organic carbon (13 to 29 mmol C m-2 d-1) are in good agreement with other independent measurements suggesting that D_Ba can help constrain remineralization horizons. This study highlights the importance of quantifying the impact of the large-scale oceanic circulation in order to better understand the biogeochemical cycling of elements and to build reliable geochemical proxies.

  19. High-latitude ocean ventilation and its role in Earth's climate transitions

    PubMed Central

    MacGilchrist, Graeme A. ; Brown, Peter J.; Evans, D. Gwyn; Meijers, Andrew J. S.; Zika, Jan D.

    2017-01-01

    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’. PMID:28784714

  20. High-latitude ocean ventilation and its role in Earth's climate transitions.

    PubMed

    Naveira Garabato, Alberto C; MacGilchrist, Graeme A; Brown, Peter J; Evans, D Gwyn; Meijers, Andrew J S; Zika, Jan D

    2017-09-13

    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.

  1. Mesoscale mixing of the Denmark Strait Overflow in the Irminger Basin

    NASA Astrophysics Data System (ADS)

    Koszalka, Inga M.; Haine, Thomas W. N.; Magaldi, Marcello G.

    2017-04-01

    The Denmark Strait Overflow (DSO) is a major export route for dense waters from the Nordic Seas forming the lower limb of the Atlantic Meridional Overturning Circulation, an important element of the climate system. Mixing processes along the DSO pathway influence its volume transport and properties contributing to the variability of the deep overturning circulation. They are poorly sampled by observations, however, which hinders development of a proper DSO representation in global circulation models. We employ a high resolution regional ocean model of the Irminger Basin to quantify impact of the mesoscale flows on DSO mixing focusing on geographical localization and the time-modulation of water property changes. The model reproduces the observed bulk warming of the DSO plume 100-200 km downstream of the Denmark Strait sill. It also reveals that mesoscale variability of the overflow ('DSO-eddies', of 20-30 km extent and a time scale of 2-5 day) modulates water property changes and turbulent mixing, diagnosed with the vertical shear of horizontal velocity and the eddy heat flux divergence. The space-time localization of the DSO mixing and warming and the role of coherent mesoscale structures should be explored by turbulence measurements and factored into the coarse circulation models.

  2. The oceanic variability of the Lofoten basin: first results from the glider activity of the ProVoLo project

    NASA Astrophysics Data System (ADS)

    Bosse, Anthony; Fer, Ilker

    2017-04-01

    Located in the northern Norwegian Sea at high latitude between 68°N and 73°N, the Lofoten basin is one of the world's most energetic areas regarding the ocean dynamics. It hosts the largest and deepest pool of warm Atlantic Waters in the Nordic Seas, thus leading to very intense air-sea energy fluxes and deep convection in winter. Understanding the physical processes involved in the water mass transformations of this very productive area is thus of crucial interest in a climate perspective, as well as for the fishery economics. The ProVoLo project aims at quantifying the energy pathways from the large-scale circulation to the (sub-)mesoscale, and eventually to the dissipation scale. To this end, the project is largely devoted to in situ observations involving R/V cruises (CTD, LADCP, microstructure), mooring lines, gliders (CTD and microstructure) and RAFOS floats. Collecting data with gliders in such a dynamical environment is a challenge. We present results from two completed Seaglider missions of 8-months duration each, started in May 2016, as well as from three ongoing missions. The observations enable the description of two key features of the Lofoten basin circulation: 1 - The Lofoten Basin eddy, which is permanent anticyclonic vortex that has been regularly detected in the center of the basin over the last decades. The vortex has very intense subsurface peak velocities exceeding 0.7 m/s and a small radius of about 15 km. The collected data also enable a description of the seasonal variability associated with the vortex, and give insight into its interaction with higher frequency flows. 2 - The frontal region situated along the Mohn ridge. The front is characterized by a narrow ( 15 km) and intense baroclinic jet separating the warm Atlantic waters from the cold waters coming from the Arctic. The observations from intensive sampling of this front, testify an important variability, at both seasonal time scale and from meso to submesoscale.

  3. On the role of snow cover ablation variability and synoptic-scale atmospheric forcings at the sub-basin scale within the Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Suriano, Zachary J.

    2018-02-01

    Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.

  4. Vein mineralizations - archives of paleo-fluid systems in the Thuringian basin (Germany)

    NASA Astrophysics Data System (ADS)

    Abratis, M.; Brey, M.; Fritsch, S.; Majzlan, J.; Viereck-Götte, L.

    2012-04-01

    We investigate vein mineralizations within and around the Thuringian basin (Germany) in order to characterize paleo-fluid systems that have been active in the basin. By investigating the composition, temperature, origin, age and evolution of paleo-fluids in the Thuringian basin as a model case, we aim for comprehensive understanding of the character of mineralized fluid systems in sedimentary basins in general and their evolution over geological time scales. Mineralizations along faults are archives for the composition of fluids which intruded the basin and circulated within it millions of years ago. These mineralizations give information on the physical and chemical characteristics of the related fluids as well as on their evolution with time during basin evolution. Mapping of mineralizations in space and time and comparison with the present-day fluid circulation system allows for recognition of the paleo-fluid dynamics and high temperature fluid influx pathways. The chemical characteristics of vein-related mineralizations are proxies for the paleo-fluid sources and their solution load. Methods implied comprise bulk rock analyses (petrography, XRD, XRF, ICP-MS), mineral analyses (EPMA, LA-ICP-MS), fluid inclusion measurements (microthermometry, Raman spectroscopy, ion chromatography) and isotope studies (O, H, C, S, Sr). Vein-related mineralizations within the Mesozoic sediments of the basin occur predominantly along WNW-ESE trending fault systems and comprise mainly carbonates and sulfates. Mineralizations within the basin-confining uplifted Variscan basement rocks and lowermost sedimentary units (Zechstein) show also (Fe-, Cu-, Zn-, As-, Sb-) sulfides, (Fe-, Mn-) oxides, fluorite and barite. The present study is part of INFLUINS, a BMBF-funded project bundle which is dedicated to comprehensive description and understanding of the fluid systems within the Thuringian basin in time and space.

  5. Variability in warm-season atmospheric circulation and precipitation patterns over subtropical South America: relationships between the South Atlantic convergence zone and large-scale organized convection over the La Plata basin

    NASA Astrophysics Data System (ADS)

    Mattingly, Kyle S.; Mote, Thomas L.

    2017-01-01

    Warm-season precipitation variability over subtropical South America is characterized by an inverse relationship between the South Atlantic convergence zone (SACZ) and precipitation over the central and western La Plata basin of southeastern South America. This study extends the analysis of this "South American Seesaw" precipitation dipole to relationships between the SACZ and large, long-lived mesoscale convective systems (LLCSs) over the La Plata basin. By classifying SACZ events into distinct continental and oceanic categories and building a logistic regression model that relates LLCS activity across the region to continental and oceanic SACZ precipitation, a detailed account of spatial variability in the out-of-phase coupling between the SACZ and large-scale organized convection over the La Plata basin is provided. Enhanced precipitation in the continental SACZ is found to result in increased LLCS activity over northern, northeastern, and western sections of the La Plata basin, in association with poleward atmospheric moisture flux from the Amazon basin toward these regions, and a decrease in the probability of LLCS occurrence over the southeastern La Plata basin. Increased oceanic SACZ precipitation, however, was strongly related to reduced atmospheric moisture and decreased probability of LLCS occurrence over nearly the entire La Plata basin. These results suggest that continental SACZ activity and large-scale organized convection over the northern and eastern sections of the La Plata basin are closely tied to atmospheric moisture transport from the Amazon basin, while the warm coastal Brazil Current may also play an important role as an evaporative moisture source for LLCSs over the central and western La Plata basin.

  6. Performance evaluation of pumping systems used in commercial-scale, split-pond aquaculture

    USDA-ARS?s Scientific Manuscript database

    Split-pond aquaculture systems have been adopted widely by United States catfish farmers as a way to improve production performance. The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two water conveyance structures. Water is circulated between the two b...

  7. Cascading ocean basins: numerical simulations of the circulation and interbasin exchange in the Azov-Black-Marmara-Mediterranean Seas system

    NASA Astrophysics Data System (ADS)

    Stanev, Emil Vassilev; Grashorn, Sebastian; Zhang, Yinglong Joseph

    2017-08-01

    In this paper, we use the unstructured grid model SCHISM to simulate the thermohydrodynamics in a chain of baroclinic, interconnected basins. The model shows a good skill in simulating the horizontal circulation and vertical profiles of temperature, salinity, and currents. The magnitude and phases of the seasonal changes of circulation are consistent with earlier observations. Among the mesoscale and subbasin-scale circulation features that are realistically simulated are the anticyclonic coastal eddies, the Sebastopol and Batumi eddies, the Marmara Sea outflow around the southern coast of the Limnos Island, and the pathway of the cold water originating from the shelf. The superiority of the simulations compared to earlier numerical studies is demonstrated with the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Strait down to 700 m depth. The warm temperature intrusions from the strait produce the warm water mass in the intermediate layers of the Black Sea. One novel result is that the seasonal intensification of circulation affects the interbasin exchange, thus allowing us to formulate the concept of circulation-controlled interbasin exchange. To the best of our knowledge, the present numerical simulations, for the first time, suggest that the sea level in the interior part of the Black Sea can be lower than the sea level in the Marmara Sea and even in some parts of the Aegean Sea. The comparison with observations shows that the timings and magnitude of exchange flows are also realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely controlled by the anomalies of wind. The simulations demonstrate the crucial role of the narrow and shallow strait of Bosporus in separating the two pairs of basins: Aegean-Marmara Seas from one side and Azov-Black Seas from the other side. The straits of Kerch and Dardanelles provide sufficient interbasin connectivity that prevents large phase lags of the sea levels in the neighboring basins. The two-layer flows in the three straits considered here show different dependencies upon the net transport, and the spatial variability of this dependence is also quite pronounced. We show that the blocking of the surface flow can occur at different net transports, thus casting doubt on a previous approach of using simple relationships to prescribe (steady) outflow and inflow. Specific attention is paid to the role of synoptic atmospheric forcing for the basin-wide circulation and redistribution of mass in the Black Sea. An important controlling process is the propagation of coastal waves. One major conclusion from this research is that modeling the individual basins separately could result in large inaccuracies because of the critical importance of the cascading character of these interconnected basins.

  8. Resolving key drivers of variability through an important circulation choke point in the western Mediterranean Sea; using gliders, models & satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Heslop, Emma; Aguiar, Eva; Mourre, Baptiste; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín

    2017-04-01

    The Ibiza Channel plays an important role in the circulation of the Western Mediterranean Sea, it governs the north/south exchange of different water masses that are known to affect regional ecosystems and is influenced by variability in the different drivers that affect sub-basins to the north (N) and south (S). A complex system. In this study we use a multi-platform approach to resolve the key drivers of this variability, and gain insight into the inter-connection between the N and S of the Western Mediterranean Sea through this choke point. The 6-year glider time series from the quasi-continuous glider endurance line monitoring of the Ibiza Channel, undertaken by SOCIB (Balearic Coastal Ocean observing and Forecasting System), is used as the base from which to identify key sub-seasonal to inter-annual patterns and shifts in water mass properties and transport volumes. The glider data indicates the following key components in the variability of the N/S flow of different water mass through the channel; regional winter mode water production, change in intermediate water mass properties, northward flows of a fresher water mass and the basin-scale circulation. To resolve the drivers of these components of variability, the strength of combining datasets from different sources, glider, modeling, altimetry and moorings, is harnessed. To the north atmospheric forcing in the Gulf of Lions is a dominant driver, while to the south the mesoscale circulation patterns of the Atlantic Jet and Alboran gyres dominate the variability but do not appear to influence the fresher inflows. Evidence of a connection between the northern and southern sub-basins is however indicated. The study highlights importance of sub-seasonal variability and the scale of rapid change possible in the Mediterranean, as well as the benefits of leveraging high resolution glider datasets within a multi-platform and modelling study.

  9. Dust sources and atmospheric circulation in concert controlling Saharan dust emission and transport towards the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Schepanski, Kerstin; Mallet, Marc; Heinold, Bernd; Ulrich, Max

    2017-04-01

    Dust transported from north African source regions towards Europe is a ubiquitous phenomenon in the Mediterranean region, a geographic region that is in part densely populated. Besides its impacts on the atmospheric radiation budget, dust suspended in the atmosphere results in reduced air quality, which is generally sensed as a reduction in quality of life. Furthermore, the exposure to dust aerosols enhances the prevalence of respiratory diseases, which reduces the general human wellbeing, and ultimately results in an increased loss of working hours due to illness and hospitalization rates. Characteristics of the atmospheric dust life cycle that determine dust transport will be presented with focus on the ChArMEx special observation period in June and July 2013 using the atmosphere-dust model COSMO-MUSCAT (COSMO: Consortium for Small-scale MOdeling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model). Modes of atmospheric circulation were identified from empirical orthogonal function (EOF) analysis of the geopotential height at 850 hPa for summer 2013 and compared to EOFs calculated from 1979-2015 ERA-Interim reanalysis. Generally, two different phases were identified. They are related to the eastward propagation of the subtropical ridge into the Mediterranean basin, the position of the Saharan heat low, and the predominant Iberian heat low. The relation of these centres of action illustrates a dipole pattern for enhanced (reduced) dust emission fluxes, stronger (weaker) meridional dust transport, and consequent increase (decrease) atmospheric dust concentrations and deposition fluxes. In concert, the results from this study aim at illustrating the relevance of knowing the dust source locations in concert with the atmospheric circulation. Ultimately, this study addresses the question of what is finally transported towards the Mediterranean basin and Europe from which source regions - and fostered by which atmospheric circulation pattern. Outcomes from this study contribute to the understanding of varying atmospheric mineral dust contributions to the aerosol burden affecting populated areas around Europe.

  10. Basin-Wide Oceanographic Array Bridges the South Atlantic

    NASA Astrophysics Data System (ADS)

    Ansorge, I. J.; Baringer, M. O.; Campos, E. J. D.; Dong, S.; Fine, R. A.; Garzoli, S. L.; Goni, G.; Meinen, C. S.; Perez, R. C.; Piola, A. R.; Roberts, M. J.; Speich, S.; Sprintall, J.; Terre, T.; Van den Berg, M. A.

    2014-02-01

    The meridional overturning circulation (MOC) is a global system of surface, intermediate, and deep ocean currents. The MOC connects the surface layer of the ocean and the atmosphere with the huge reservoir of the deep sea and is the primary mechanism for transporting heat, freshwater, and carbon between ocean basins. Climate models show that past changes in the strength of the MOC were linked to historical climate variations. Further research suggests that the MOC will continue to modulate climate change scenarios on time scales ranging from decades to centuries [Latif et al., 2006].

  11. Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Nelson, Norman B.; Siegel, David A.; Carlson, Craig A.; Swan, Chantal M.

    2010-02-01

    Basin-scale distributions of light absorption by chromophoric dissolved organic matter (CDOM) are positively correlated (R2 > 0.8) with apparent oxygen utilization (AOU) within the top kilometer of the Pacific and Indian Oceans. However, a much weaker correspondence is found for the Atlantic (R2 < 0.05). Strong correlation between CDOM and AOU indicates that CDOM is created as a byproduct of the oxidation of organic matter from sinking particles. The observed meridional-depth sections of CDOM result from a balance between biogeochemical processes (autochthonous production and solar bleaching) and the meridional overturning circulation. Rapid mixing in the Atlantic dilutes CDOM in the interior and implies that the time scale for CDOM accumulation is greater than ˜50 years. CDOM emerges as a unique tracer for diagnosing changes in biogeochemistry and the overturning circulation, similar to dissolved oxygen, with the additional feature that it can be quantified from satellite observation.

  12. Observations and Modeling of the Transient General Circulation of the North Pacific Basin

    NASA Technical Reports Server (NTRS)

    McWilliams, James C.

    2000-01-01

    Because of recent progress in satellite altimetry and numerical modeling and the accumulation and archiving of long records of hydrographic and meteorological variables, it is becoming feasible to describe and understand the transient general circulation of the ocean (i.e., variations with spatial scales larger than a few hundred kilometers and time scales of seasonal and longer-beyond the mesoscale). We have carried out various studies in investigation of the transient general circulation of the Pacific Ocean from a coordinated analysis of satellite altimeter data, historical hydrographic gauge data, scatterometer wind observations, reanalyzed operational wind fields, and a variety of ocean circulation models. Broadly stated, our goal was to achieve a phenomenological catalogue of different possible types of large-scale, low-frequency variability, as a context for understanding the observational record. The approach is to identify the simplest possible model from which particular observed phenomena can be isolated and understood dynamically and then to determine how well these dynamical processes are represented in more complex Oceanic General Circulation Models (OGCMs). Research results have been obtained on Rossby wave propagation and transformation, oceanic intrinsic low-frequency variability, effects of surface gravity waves, pacific data analyses, OGCM formulation and developments, and OGCM simulations of forced variability.

  13. A tale of two basins: An integrated physical and biological perspective of the deep Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Bluhm, B. A.; Kosobokova, K. N.; Carmack, E. C.

    2015-12-01

    This review paper integrates the current knowledge, based on available literature, on the physical and biological conditions of the Amerasian and Eurasian basins (AB, EB) of the deep Arctic Ocean (AO) in a comparative fashion. The present day (Holocene) AO is a mediterranean sea that is roughly half continental shelf and half basin and ridge complex. Even more recently it is roughly two thirds seasonally and one third perennially ice-covered, thus now exposing a portion of basin waters to sunlight and wind. Basin boundaries and submarine ridges steer circulation pathways in overlying waters and limit free exchange in deeper waters. The AO is made integral to the global ocean by the Northern Hemisphere Thermohaline Circulation (NHTC) which drives Pacific-origin water (PW) through Bering Strait into the Canada Basin, and counter-flowing Atlantic-origin water (AW) through Fram Strait and across the Barents Sea into the Nansen Basin. As a framework for biogeography within the AO, four basic, large-scale circulation systems (with L > 1000 km) are noted; these are: (1) the large scale wind-driven circulation which forces the cyclonic Trans-Polar Drift from Siberia to the Fram Strait and the anticyclonic Beaufort Gyre in the southern Canada Basin; (2) the circulation of waters that comprise the halocline complex, composed largely of waters of Pacific and Atlantic origin that are modified during passage over the Bering/Chukchi and Barents/Siberian shelves, respectively; (3) the topographically-trapped Arctic Circumpolar Boundary Current (ACBC) which carries AW cyclonically around the boundaries of the entire suite of basins, and (4) the very slow exchange of Arctic Ocean Deep Waters. Within the basin domain two basic water mass assemblies are observed, the difference between them being the absence or presence of PW sandwiched between Arctic Surface Waters (ASW) above and the AW complex below; the boundary between these domains is the Atlantic/Pacific halocline front. Both domains have vertical stratification that constrains the transfer of nutrients to the surface layer (euphotic zone), thus leading to their oligotrophic state, particularly in the more strongly stratified Pacific Arctic where, despite high nutrient values in the inflow, convective reset of surface layer nutrients by haline convection in winter is virtually absent. First and multi-year sea ice drastically alters albedo and insulates the underlying water column from extreme winter heat loss while its mechanical properties (thickness, concentration, roughness, etc.) greatly affect the efficiency of momentum transfer from the wind to the underlying water. Biologically, sea ice algal growth in the basins is proportionally almost equal to or exceeding phytoplankton production, and is a habitat and transport platform for sympagic (ice-associated) fauna. Owing to nutrient limitation due to strong stratification and light limitation due to snow and ice cover and extreme sun angle, primary production in the two basin domains is very low compared to the adjacent shelves. Severe nutrient limitation and complete euphotic zone drawdown in the AB favors small phytoplankton, a ubiquitous deep chlorophyll maximum layer, a low f-ratio of new to recycled carbon fixation, and a low energy food web. In contrast, nutrients persist -albeit in low levels- in the western EB, even in summer, suggesting light limitation, heavy grazing or both. The higher stocks of nutrients in the EB are more conducive to marginal ice blooms than in the AB. The large-scale ocean currents (NHTC and ACBC) import substantial expatriate, not locally reproducing zooplankton biomass especially from the adjoining subarctic Atlantic (primarily Calanus finmarchicus), but also from the Pacific (e.g., Pseudocalanus spp., Neocalanus spp. and Metridia pacifica). These advective inputs serve both as source of food to resident pelagic and benthic biota within the basins, and as potential grazers exerting top down control on limited phytoplankton resources. Benthic organisms within the AO basin show previously unappreciated biodiversity and surprising dispersion of species given the isolation of individual basins and low vertical carbon flux and resulting biomass. Larval dispersion is aided by the large-scale flows and perhaps, we hypothesize in the deep benthos by convective updrafts driven by geothermal heating. Zooplankton diversity, in contrast, is low, but again faunal assemblages are equally distributed between the EB and AB. Species pools of both pelagic and benthic communities change more with water depth rather than laterally, with the exception of expatriates and rare species, with close ties to today's North Atlantic biogeographic region. Climate related change in the AO is thus manifest at significantly differing time scales. Throughout ∼90% of the Pleistocene the AO has existed in glacial mode, with narrow continental shelves, greatly restricted river inflow, thicker and perhaps immobile sea ice, and total blockage of exchange with the Pacific Ocean. During the Holocene, on shorter time scales of 1000-100 years, significant changes in high latitude climate are tied to changes in temperature and perhaps moisture delivery patterns. The Arctic also experiences significant multi-decadal variability; however, the pace of change over the past three decades has been without precedent. Within the basin interior the ice is now thinner and less compact, and thus more responsive to wind stress (forcing and mixing). Concurrent with sea ice melt and increased river flow, the accumulation of fresh water and the stratification have increased, thus constraining vertical nutrient flux affecting phytoplankton size distributions, limiting primary production in parts of the basins now and likely in the future, and increasing vulnerability to acidification. In addition, sea ice is now retreating on an annual basis past the shelf break, exposing basin waters directly to sunlight and wind forcing. Thus, upwelling favorable winds (generally from east to west) can now directly and efficiently drive shelf-break upwelling, and draw nutrients from subsurface basin waters onto the shelf; at the same time upwelling favorable winds will also create onshore pressure gradients over the slope and basin which will act to slow or block the flow of waters in the ACBC, and thus alter advective pathways of both abiotic and biotic materials. Given the opening of a new ocean to multiple user groups, we expect that the central AO will play an increasing larger role both in the research and political arenas in the future, and we encourage pan-Arctic international collaboration over focus on territorial boundaries.

  14. Surface drifter derived circulation in the northern and middle Adriatic Sea: Response to wind regime and season

    USGS Publications Warehouse

    Ursella, L.; Poulain, P.-M.; Signell, R.P.

    2007-01-01

    More than 120 satellite-tracked drifters were deployed in the northern and middle Adriatic (NMA) Sea between September 2002 and November 2003, with the purpose of studying the surface circulation at mesoscale to seasonal scale in relation to wind forcing, river runoff, and bottom topography. Pseudo-Eulerian and Lagrangian statistics were calculated from the low-pass-filtered drifter velocity data between September 2002 and December 2003. The structure of the mean circulation is determined with unprecedented high horizontal resolution by the new data. In particular, mean currents, velocity variance, and kinetic energy levels are shown to be maximal in the Western Adriatic Current (WAC). Separating data into seasons, we found that the mean kinetic energy is maximal in fall, with high values also in winter, while it is significantly weaker in summer. High-resolution Local Area Model Italy winds were used to relate the drifter velocities to the wind fields. The surface currents appear to be significantly influenced by the winds. The mean flow during the northeasterly bora regime shows an intensification of the across-basin recirculating currents. In addition, the WAC is strongly intensified both in intensity and in its offshore lateral extension. In the southeasterly sirocco regime, northward flow without recirculation dominates in the eastern half of the basin, while during northwesterly maestro the WAC is enhanced. Separating the data into low and high Po River discharge rates for low-wind conditions shows that the WAC and the velocity fluctuations in front of the Po delta are stronger for high Po River runoff. Lagrangian covariance, diffusivity, and integral time and space scales are larger in the along-basin direction and are maximal in the southern portion of the WAC. Copyright 2006 by the American Geophysical Union.

  15. Hydrodynamic characteristics in the Levantine Basin in autumn 2016 - The CINEL experiment (CIrculation and water mass properties in the North-Eastern Levantine)

    NASA Astrophysics Data System (ADS)

    Mauri, Elena; Poulain, Pierre-Marie; Gerin, Riccardo; Hayes, Dan; Gildor, Hezi; Kokkini, Zoi

    2017-04-01

    During the CINEL experiment, currents and thermohaline properties of the water masses in the eastern areas of the Levantine Basin (Mediterranean Sea) were monitored with mobile autonomous systems in October-December 2016. Two gliders were operated together with satellite-tracked drifters and Argo floats to study the complex circulation features governing the dynamics near the coast and in the open sea. Strong mesoscale and sub-basin scale eddies were detected and were crossed several times by the gliders during the experiment. The physical and biogeochemical parameters were sampled, showing peculiar characteristics in some of the mesoscale features and a probable interaction with a persistent coastal current off Israel. The in-situ observations were interpreted in concert with the distribution of tracers (sea surface temperature, chlorophyll) and altimetry data obtained from satellites. Numerical simulations with a high resolution model in which deep profiles of temperature and salinity from gliders were assimilated, were used in near-real time to fine tune the observational array and to help with the interpretation of the local dynamics.

  16. Basinwide response of the Atlantic Meridional Overturning Circulation to interannual wind forcing

    NASA Astrophysics Data System (ADS)

    Zhao, Jian

    2017-12-01

    An eddy-resolving Ocean general circulation model For the Earth Simulator (OFES) and a simple wind-driven two-layer model are used to investigate the role of momentum fluxes in driving the Atlantic Meridional Overturning Circulation (AMOC) variability throughout the Atlantic basin from 1950 to 2010. Diagnostic analysis using the OFES results suggests that interior baroclinic Rossby waves and coastal topographic waves play essential roles in modulating the AMOC interannual variability. The proposed mechanisms are verified in the context of a simple two-layer model with realistic topography and only forced by surface wind. The topographic waves communicate high-latitude anomalies into lower latitudes and account for about 50% of the AMOC interannual variability in the subtropics. In addition, the large scale Rossby waves excited by wind forcing together with topographic waves set up coherent AMOC interannual variability patterns across the tropics and subtropics. The comparisons between the simple model and OFES results suggest that a large fraction of the AMOC interannual variability in the Atlantic basin can be explained by wind-driven dynamics.

  17. Fluid inclusions and biomarkers in the Upper Mississippi Valley zinc-lead district; implications for the fluid-flow and thermal history of the Illinois Basin

    USGS Publications Warehouse

    Rowan, E. Lanier; Goldhaber, Martin B.

    1996-01-01

    The Upper Mississippi Valley zinc-lead district is hosted by Ordovician carbonate rocks at the northern margin of the Illinois Basin. Fluid inclusion temperature measurements on Early Permian sphalerite ore from the district are predominantly between 90?C and I50?C. These temperatures are greater than can be explained by their reconstructed burial depth, which was a maximum of approximately 1 km at the time of mineralization. In contrast to the temperatures of mineral formation derived from fluid inclusions, biomarker maturities in the Upper Mississippi Valley district give an estimate of total thermal exposure integrated over time. Temperatures from fluid inclusions trapped during ore genesis with biomarker maturities were combined to construct an estimate of the district's overall thermal history and, by inference, the late Paleozoic thermal and hydrologic history of the Illinois Basin. Circulation of groundwater through regional aquifers, given sufficient flow rates, can redistribute heat from deep in a sedimentary basin to its shallower margins. Evidence for regional-scale circulation of fluids is provided by paleomagnetic studies, regionally correlated zoned dolomite, fluid inclusions, and thermal maturity of organic matter. Evidence for igneous acti vity contemporaneous with mineralization in the vicinity of the Upper Mississippi Valley district is absent. Regional fluid and heat circulation is the most likely explanation for the elevated fluid inclusion temperatures (relative to maximum estimated burial depth) in the Upper Mississippi Valley district. One plausible driving mechanism and flow path for the ore-forming fluids is groundwater recharge in the late Paleozoic Appalachian-Ouachita mountain belt and northward flow through the Reelfoot rift and the proto- Illinois Basin to the Upper Mississippi Valley district. Warm fluid flowing laterally through Cambrian and Ordovician aquifers would then move vertically upward through the fractures that control sphalerite mineralization in the Upper Mississippi Valley district. Biomarker reactant-product measurements on rock extracts from the Upper Mississippi Valley district define a relatively low level ofthermal maturity for the district, 0.353 for sterane and 0.577 for hopane. Recently published kinetic constants permit a time-temperature relationship to be determined from these biomarker maturities. Numerical calculations were made to simulate fluid heat flow through the fracture-controlled ore zones of the Thompson-Temperly mine and heat transfer to the adjacent rocks where biomarker samples were collected. Calculations that combine the fluid inclusion temperatures and the biomarker constraints on thermal maturity indicate that the time interval during which mineralizing fluids circulated through the Upper Mississippi Valley district is on the order of 200,000 years. Fluid inclusion measurements and thermal maturities from biomarkers in the district reflect the duration of peak temperatures resulting from regional fluid circulation. On the basis of thermal considerations, the timing of fluorite mineralization in southern Illinois, and the northward-decreasing pattern of fluorine enrichment in sediments, we hypothesize that the principal flow direction was northward through the Cambrian and Ordovician aquifers of the Illinois Basin. A basin-scale flow system would result in mass transport (hydrocarbon migration, transport of metals in solution) and energy (heat) transport, which would in turn drive chemical reactions (for example, maturation of organic matter, mineralization, diagenetic reactions) within the Illinois Basin and at its margins.

  18. Regime Behavior in Paleo-Reconstructed Streamflow: Attributions to Atmospheric Dynamics, Synoptic Circulation and Large-Scale Climate Teleconnection Patterns

    NASA Astrophysics Data System (ADS)

    Ravindranath, A.; Devineni, N.

    2017-12-01

    Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.

  19. Influence of Antarctic Oscillation on Intraseasonal Variability of Large-Scale Circulations Over the Western North Pacific

    DTIC Science & Technology

    2005-03-01

    quartiles, and thus locates the central 50% of the data. The center bar through each box represents the persistence median. The whiskers extend away from...level of tropical cyclone activity. Numerous factors (e.g., scarcity of observations over large ocean basins , various scales of motion present in the... central South Indian Ocean, South Pacific Ocean east of New Zealand, and South Atlantic Ocean near the Falkland Islands. The increased pressure gradient

  20. Centennial-scale links between Atlantic Ocean dynamics and hydroclimate over the last 4400 years: Insights from the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Thirumalai, K.; Quinn, T. M.; Okumura, Y.; Richey, J. N.; Partin, J. W.; Poore, R. Z.

    2015-12-01

    Surface circulation in the Atlantic Ocean is an important mediator of global climate and yet its variability is poorly constrained on centennial timescales. Changes in the Atlantic meridional overturning circulation (AMOC) have been implicated in late Holocene climate variability in the Western Hemisphere, although the relationship between AMOC variability and hydroclimate is uncertain due to the lack of sufficiently highly resolved proxy records. Here we present a replicated reconstruction of sea-surface temperature (SST) and salinity (SSS) from the Garrison Basin in the northern Gulf of Mexico (NGOM) spanning the last 4,400 years to better constrain past sea-surface conditions. We generated time series of paired Mg/Ca (SST proxy) and δ18O (SST and SSS proxy) variations in planktic foraminifer Globigerinoides ruber (white variety) from three multi-cores collected in 2010. Using a Monte Carlo-based technique we produce a stacked record from the three multi-cores and constrain analytical, calibration, chronological, and sampling uncertainties. We apply this technique to existing paired Mg/Ca- δ18O studies in the Gulf of Mexico and Atlantic Ocean to facilitate comparison between time-uncertain proxy reconstructions. The Garrison Basin stack exhibits large centennial-scale variability (σSST~0.6°C; δ18Osw~0.17‰) and indicates a substantially cool (0.9±0.5°C) and fresh (0.26±0.1‰) Little Ice Age (LIA; 1450-1850 A.D.), corroborating extant records from the Gulf of Mexico. Focusing on the last millennium, we analyze a suite of oceanic and terrestrial proxy records to demonstrate a centennial-scale link between salt advection in the Atlantic Ocean, a diagnostic parameter of ocean circulation, and hydroclimate in the adjacent continents. The ensuing multiproxy relationships seem to be consistent with spatial field correlations of limited salinity and rainfall instrumental/reanalysis data, which suggest that NGOM salinity varies with large-scale Atlantic Ocean circulation and continental precipitation. Our results imply significant centennial-scale variability over the late Holocene and are consistent with limited observational analysis indicating a slowdown of AMOC during the LIA.

  1. On Lagrangian residual currents with applications in south San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo

    1982-01-01

    The Lagrangian residual circulation has often been introduced as the sum of the Eulerian residual circulation and the Stokes' drift. Unfortunately, this definition of the Lagrangian residual circulation is conceptually incorrect because both the Eulerian residual circulation and the Stokes' drift are Eulerian variables. In this paper a classification of various residual variables are reviewed and properly defined. The Lagrangian residual circulation is then studied by means of a two-stage formulation of a computer model. The tidal circulation is first computed in a conventional Eulerian way, and then the Lagrangian residual circulation is determined by a method patterned after the method of markers and cells. To demonstrate properties of the Lagrangian residual circulation, application of this approach in South San Francisco Bay, California, is considered. With the aid of the model results, properties of the Eulerian and Lagrangian residual circulation are examined. It can be concluded that estimation of the Lagrangian residual circulation from Eulerian data may lead to unacceptable error, particularly in a tidal estuary where the tidal excursion is of the same order of magnitude as the length scale of the basin. A direction calculation of the Lagrangian residual circulation must be made and has been shown to be feasible.

  2. Detailed spatiotemporal impacts of El Niño on phytoplankton biomass in the South China Sea

    NASA Astrophysics Data System (ADS)

    Siswanto, Eko; Ye, Haijun; Yamazaki, Dai; Tang, DanLing

    2017-04-01

    The lagging and leading correlations among satellite observations, reanalyzed biogeophysical data, and the Nino3.4 El Niño index were investigated to reveal the impacts of El Niño on the phytoplankton biomass (chlorophyll a [Chl a]) in the South China Sea (SCS), in an attempt to identify the probable responsible factors in greater spatiotemporal detail. A basin-scale high Chl a concentration during the developing phase of El Niño changed to basin-scale low Chl a during the weakening phase. Cyclonic wind circulation in the northern basin, increased wind speed in the southern basin, and strengthened upwelling off the Vietnamese coast likely caused a basin-scale nutrient increase during the developing phase of an El Niño event; the opposite conditions led to low nutrient levels during the weakening phase. Decreases in Chl a east of the Vietnamese coast and northwest of Borneo Island were due to decreases in nutrients supplied by rivers. These spatiotemporal changes are considered biogeophysical responses to a variety of types of El Niño. Regardless of the El Niño type, reanalyzing biogeophysical data sets during central Pacific warming separately from those during eastern Pacific warming is recommended for a more robust understanding of the detailed spatiotemporal impacts of different El Niño types on the biogeophysical environment of the SCS.

  3. Investigating Downscaling Methods and Evaluating Climate Models for Use in Estimating Regional Water Resources in Mountainous Regions under Changing Climatic Conditions

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Nolin, Anne W.; Serreze, Mark C.; Armstrong, Richard L.; McGinnis, David L.; Robinson, David A.

    2004-01-01

    The purpose of this three-year study is to develop and evaluate techniques to estimate the range of potential hydrological impacts of climate change in mountainous areas. Three main objectives are set out in the proposal. (1) To develop and evaluate transfer functions to link tropospheric circulation to regional snowfall. (2) To evaluate a suite of General Circulation Models (GCMs) for use in estimating synoptic scale circulation and the resultant regional snowfall. And (3) to estimate the range of potential hydrological impacts of changing climate in the two case study areas: the Upper Colorado River basin, and the Catskill Mountains of southeastern New York State. Both regions provide water to large populations.

  4. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Sofianos, Sarantis S.; Johns, William E.

    2003-03-01

    The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.

  5. Ocean dynamics in the Nordic Seas using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Pettersson, Lasse H.; Johannessen, O. M.; Olaussen, T. I.

    1991-01-01

    The main objective of this TOPEX/POSEIDON project is to integrate the accurately measured sea surface topography, as resolved by both TOPEX/POSEIDON radar altimeters, into the above-mentioned quantitative studies of the short- and long-term variations in the mesoscale ocean dynamics of the Nordic Seas south of 66 deg N. This implies: (1) comparison and validation of the capability to resolve the general basin-scale circulation and the mesoscale variability by, respectively, radar altimeters and numerical ocean circulation models; (2) calibration and validation of the altimeter-derived sea surface topography against in situ measurements from research vessels and moorings, particularly under extreme wind and wave conditions; and (3) improved monitoring and understanding of the flux variations between the North Atlantic and the Nordic Seas, both on the short and seasonal time scales.

  6. Latest Data on Thermohaline Structure and Circulation of the Dying Aral Sea

    NASA Astrophysics Data System (ADS)

    Izhitsky, Alexander; Zavialov, Peter

    2010-05-01

    The results of the latest expedition of the Shirshov Institute to the Aral Sea are reported. The survey encompassed 15 field days in August, 2009. An interdisciplinary oceanographic study in the western basin of the sea was conducted during the expedition. Vertical profiles of temperature, salinity and fluorescence were obtained using a CTD profiler at 8 stations across the western basin. Two mooring stations equipped with current meters, one at the surface and one in the bottom layer at each station, as well as pressure gauges at the bottom, were deployed for 5 days in the deepest portion of the western basin. One of the stations was installed at the western slope of the basin, while the other one was positioned at the eastern slope. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. The vertical structure of the themohaline fields exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and at the bottom. The intermediate layer was characterized by a core of minimum salinity and temperature, also accompanied by maximum fluorescence. Such a pattern indicates that the signature of the denser, saltier water originating from the eastern basin is still evident, even though the eastern basin itself dried up almost completely during the summer of 2009. The surface salinity was around 136 ppt, which constituted a notable increase for about 20 ppt since the summer of 2008. Over the same period, sea level decreased by 164 cm since the summer of 2008. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing.

  7. Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.

    1999-01-01

    In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the potential predictability of the broad-scale and regional monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both Sea Surface Temperatures (SST) and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. However, for regional monsoons, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.

  8. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Sheng; Wan, Li; Jiang, Xiao-Wei; Li, Hailong; Zhou, Yangxiao; Wang, Junzhi; Ji, Xiaohui

    2017-10-01

    Nested groundwater flow systems have been revealed in Tóth's theory as the structural property of basin-scale groundwater circulation but were only well known with two-dimensional (2D) profile models. The method of searching special streamlines across stagnation points for partitioning flow systems, which has been successfully applied in the 2D models, has never been implemented for three-dimensional (3D) Tóthian basins because of the difficulty in solving the dual stream functions. Alternatively, a new method is developed to investigate 3D nested groundwater flow systems without determination of stagnation points. Connective indices are defined to quantify the connection between individual recharge and discharge zones along streamlines. Groundwater circulation cells (GWCCs) are identified according to the distribution of the connective indices and then grouped into local, intermediate and regional flow systems. This method requires existing solution of the flow velocity vector and is implemented via particle tracking technique. It is applied in a hypothetical 3D Tóthian basin with an analytical solution of the flow field and in a real-world basin with a numerical modeling approach. Different spatial patterns of flow systems compared to 2D profile models are found. The outcrops boundaries of GWCCs on water table may significantly deviate from and are not parallel to the nearby water table divides. Topological network is proposed to represent the linked recharge-discharge zones through closed and open GWCCs. Sensitivity analysis indicates that the development of GWCCs depends on the basin geometry, hydraulic parameters and water table shape.

  9. Understanding Changes in Water Availability in the Rio Grande/Rio Bravo del Norte Basin Under the Influence of Large-Scale Circulation Indices Using the Noah Land Surface Model

    NASA Technical Reports Server (NTRS)

    Khedun, C. Prakash; Mishra, Ashok K.; Bolten, John D.; Beaudoing, Hiroko K.; Kaiser, Ronald A.; Giardino, J. Richard; Singh, Vijay P.

    2012-01-01

    Water availability plays an important role in the socio-economic development of a region. It is however, subject to the influence of large-scale circulation indices, resulting in periodic excesses and deficits. An assessment of the degree of correlation between climate indices and water availability, and the quantification of changes with respect to major climate events is important for long-term water resources planning and management, especially in transboundary basins as it can help in conflict avoidance. In this study we first establish the correlation of the Pacific Decadal Oscillation (PDO) and El Nino-Southern Oscillation (ENSO) with gauged precipitation in the Rio Grande basin, and quantify the changes in water availability using runoff generated from the Noah land surface model. Both spatial and temporal variations are noted, with winter and spring being most influenced by conditions in the Pacific Ocean. Negative correlation is observed at the headwaters and positive correlation across the rest of the basin. The influence of individual ENSO events, classified using four different criteria, is also examined. El Ninos (La Ninas) generally cause an increase (decrease) in runoff, but the pattern is not consistent; percentage change in water availability varies across events. Further, positive PDO enhances the effect of El Nino and dampens that of La Nina, but during neutral/transitioning PDO, La Nina dominates meteorological conditions. Long El Ninos have more influence on water availability than short duration high intensity events. We also note that the percentage increase during El Ninos significantly offsets the drought-causing effect of La Ninas.

  10. Sensitivity of the ocean overturning circulation to wind and mixing: theoretical scalings and global ocean models

    NASA Astrophysics Data System (ADS)

    Nikurashin, Maxim; Gunn, Andrew

    2017-04-01

    The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.

  11. Drought Variability in Eastern Part of Romania and its Connection with Large-Scale Air Circulation

    NASA Astrophysics Data System (ADS)

    Barbu, Nicu; Stefan, Sabina; Georgescu, Florinela

    2014-05-01

    Drought is a phenomenon that appears due to precipitation deficit and it is intensified by strong winds, high temperatures, low relative humidity and high insolation; in fact, all these factors lead to increasing of evapotranspiration processes that contribute to soil water deficit. The Standardized Precipitation Evapotranspiration Index (SPEI) take into account all this factors listed above. The temporal variability of the drought in Eastern part of Romania for 50 years, during the period 1961-2010, is investigated. This study is focused on the drought variability related to large scale air circulation. The gridded dataset with spatial resolution of 0.5º lat/lon of SPEI, (https://digital.csic.es/handle/10261/72264) were used to analyze drought periods in connection with large scale air circulation determinate from the two catalogues (GWT - GrossWetter-Typen and WLK - WetterLargenKlassifikation) defined in COST733Action. The GWT catalogue uses at input dataset the sea level pressure and the WLK catalogue uses as input dataset the geopotential field at 925 hPa and 500 hPa, wind at 700 hPa and total water content for entire atmospheric column. In this study we use the GWT catalogue with 18 circulation types and the WLK catalogue with 40 circulation types. The analysis for Barlad Hydrological Basin indicated that the negative values (that means water deficit - drought period) of SPEI are associated with prevailing anticyclonic regime and positive values (that means water excess - rainy period) of SPEI are associated with prevailing cyclonic regime as was expected. In last decade was observed an increase of dry period associated with an increase of anticyclonic activity over Romania. Using GWT18 catalogue the drought are associated with the north-eastern anticyclonic circulation type (NE-A). According to the WLK40 catalogue, the dominant circulation type associated with the drought is north-west-anticyclonic-dry anticyclonic (NW-AAD) type. keywords: drought, SPEI, large-scale atmospheric circulation

  12. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, J.R.

    1997-03-18

    An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.

  13. Inter-annual variability of the Mediterranean thermohaline circulation in Med-CORDEX simulations

    NASA Astrophysics Data System (ADS)

    Vittoria Struglia, Maria; Adani, Mario; Carillo, Adriana; Pisacane, Giovanna; Sannino, Gianmaria; Beuvier, Jonathan; Lovato, Tomas; Sevault, Florence; Vervatis, Vassilios

    2016-04-01

    Recent atmospheric reanalysis products, such as ERA40 and ERA-interim, and their regional dynamical downscaling prompted the HyMeX/Med-CORDEX community to perform hind-cast simulations of the Mediterranean Sea, giving the opportunity to evaluate the response of different ocean models to a realistic inter-annual atmospheric forcing. Ocean numerical modeling studies have been steadily improving over the last decade through hind-cast processing, and are complementary to observations in studying the relative importance of the mechanisms playing a role in ocean variability, either external forcing or internal ocean variability. This work presents a review and an inter-comparison of the most recent hind-cast simulations of the Mediterranean Sea Circulation, produced in the framework of the Med-CORDEX initiative, at resolutions spanning from 1/8° to 1/16°. The richness of the simulations available for this study is exploited to address the effects of increasing resolution, both of models and forcing, the initialization procedure, and the prescription of the atmospheric boundary conditions, which are particularly relevant in order to model a realistic THC, in the perspective of fully coupled regional ocean-atmosphere models. The mean circulation is well reproduced by all the simulations. However, it can be observed that the horizontal resolution of both atmospheric forcing and ocean model plays a fundamental role in the reproduction of some specific features of both sub-basins and important differences can be observed among low and high resolution atmosphere forcing. We analyze the mean circulation on both the long-term and decadal time scale, and the represented inter-annual variability of intermediate and deep water mass formation processes in both the Eastern and Western sub-basins, finding that models agree with observations in correspondence of specific events, such as the 1992-1993 Eastern Mediterranean Transient, and the 2005-2006 event in the Gulf of Lion. Long-term trends of the hydrological properties have been investigated at sub-basin scale and have been interpreted in terms of response to forcing and boundary conditions, detectable differences resulting mainly due either to the different initialization and spin up procedure or to the different prescription of Atlantic boundary conditions.

  14. A tri-modular model for the computation of the meteorological and oceanographic fields in the Adriatic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lionello, P.; Pernigotti, D.; Zampato, L.

    1994-12-31

    The purpose of this research program is the construction of the modelling framework to describe and predict the development of the sea and of the atmosphere in the Adriatic region. There are two time scales that are considered: the medium range time scale of the weather-surge-oceanwave forecast and the interseasonal time scale of the thermohaline circulation in the Adriatic Sea. The phenomenology associated with the medium range is represented by the intense storms that take place in the Adriatic Sea, in spite of its relatively small extension, when the presence of a pressure minimum over Italy generates an intense Sciroccomore » wind which, channeled by the mountain ridges surrounding the basin, blows along its whole length. Because of the long fetch, approximately 1,000 Km., this situation produces high ocean waves and the storm surge that is associated with the flooding of Venice. The interseasonal phenomenology is represented by the formation of dense water in the Northern part of the basin during winter. This is presumably caused by Bora, a strong South-Westerly wind, cold and dry, which produces cooling and evaporation in the shallow water coastal region of the Northern Adriatic. The complex orography surrounding the Adriatic and the short duration of this phenomena require a model framework capable of high space and time resolution on a limited area. This is the motivation for addressing these issues in a coupled model framework consisting of a limited area atmospheric circulation model, an ocean circulation model, and a ocean wave model with high resolution both in space and time.« less

  15. Bias-correction and Spatial Disaggregation for Climate Change Impact Assessments at a basin scale

    NASA Astrophysics Data System (ADS)

    Nyunt, Cho; Koike, Toshio; Yamamoto, Akio; Nemoto, Toshihoro; Kitsuregawa, Masaru

    2013-04-01

    Basin-scale climate change impact studies mainly rely on general circulation models (GCMs) comprising the related emission scenarios. Realistic and reliable data from GCM is crucial for national scale or basin scale impact and vulnerability assessments to build safety society under climate change. However, GCM fail to simulate regional climate features due to the imprecise parameterization schemes in atmospheric physics and coarse resolution scale. This study describes how to exclude some unsatisfactory GCMs with respect to focused basin, how to minimize the biases of GCM precipitation through statistical bias correction and how to cover spatial disaggregation scheme, a kind of downscaling, within in a basin. GCMs rejection is based on the regional climate features of seasonal evolution as a bench mark and mainly depends on spatial correlation and root mean square error of precipitation and atmospheric variables over the target region. Global Precipitation Climatology Project (GPCP) and Japanese 25-uear Reanalysis Project (JRA-25) are specified as references in figuring spatial pattern and error of GCM. Statistical bias-correction scheme comprises improvements of three main flaws of GCM precipitation such as low intensity drizzled rain days with no dry day, underestimation of heavy rainfall and inter-annual variability of local climate. Biases of heavy rainfall are conducted by generalized Pareto distribution (GPD) fitting over a peak over threshold series. Frequency of rain day error is fixed by rank order statistics and seasonal variation problem is solved by using a gamma distribution fitting in each month against insi-tu stations vs. corresponding GCM grids. By implementing the proposed bias-correction technique to all insi-tu stations and their respective GCM grid, an easy and effective downscaling process for impact studies at the basin scale is accomplished. The proposed method have been examined its applicability to some of the basins in various climate regions all over the world. The biases are controlled very well by using this scheme in all applied basins. After that, bias-corrected and downscaled GCM precipitation are ready to use for simulating the Water and Energy Budget based Distributed Hydrological Model (WEB-DHM) to analyse the stream flow change or water availability of a target basin under the climate change in near future. Furthermore, it can be investigated any inter-disciplinary studies such as drought, flood, food, health and so on.In summary, an effective and comprehensive statistical bias-correction method was established to fulfil the generative applicability of GCM scale to basin scale without difficulty. This gap filling also promotes the sound decision of river management in the basin with more reliable information to build the resilience society.

  16. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, Joe R.

    1997-01-01

    An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).

  17. Atlantic Ocean Circulation and Climate: The Current View From the Geological Record

    NASA Astrophysics Data System (ADS)

    Curry, W.

    2006-12-01

    Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.

  18. Regional and long-range transport scenarios for photo-oxidants on the Mediterranean basin in summer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millan, M.; Mantilla, E.; Salvador, R.

    1996-12-31

    Atmospheric research, begun in 1988, has shown that the dynamics of air pollutants in the Mediterranean basin in summer are governed by processes ranging from local to large meso-scale with diurnal cycles. Large scale convection over some regions, and up-slope winds in others, can inject aged pollutants into the Mid-troposphere, where they can participate in long-range processes within Southern and Central Europe. Two scenarios have been identified for the regional and long-range transport of photo-oxidants and other pollutants within, and out of, the Western Mediterranean basin. The first scenario involves the pollutants injected over the Spanish Central Plateau directly intomore » the mid-troposphere, and the second, the reservoir layers created along the Mediterranean coast. In the second scenario the key components are: the semi-permanent high(er) pressure area over the colder waters in the Gulf of Lion-Western Mediterranean basin, the mountain ranges which surround it, and the coastal processes. During the day the coastal circulations renovate the upper reservoir layers while the lower ones are drawn inland with the sea-breeze, and effective flow is mostly perpendicular to the coast.« less

  19. Study of Mesobeta Basin Flows by Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cuxart, J.; Cunillera, J.; Jiménez, M. A.; Martínez, D.; Molinos, F.; Palau, J. L.

    2012-04-01

    If no well-defined synoptic pressure gradients exist over a basin, flows can develop at a variety of scales, the main generators of circulations being spatial thermal differences. These dynamics are studied for the eastern Ebro basin, at the north-eastern part of the Iberian Peninsula, almost isolated from the surrounding areas by mountain ranges. The main tool for the study is the new RASS-Sodar by Scintec, the WindRASS, which combines sound and radio waves to provide profiles of wind and virtual temperature up to 360 m above the ground in the present configuration. One year of operation shows that low-level jets are found routinely, their maximum speed being at a height below 500 m above ground level. The jets are from a constant direction for several hours over the whole observed column, with rapid transitions between these periods. They allow for efficient heat transport at the basin scale and are good producers of vertical mixing due to the strong wind shear. In summer the irrigated plain has larger thermal contrast with the dry slopes, and the winds are stronger than in winter, when katabatic flows can develop at night and usually radiation fog appears and may last for days.

  20. Effect of potential vorticity flux on the circulation in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, Yaohua; Sun, Junchuan; Wang, Yonggang; Wei, Zexun; Yang, Dezhou; Qu, Tangdong

    2017-08-01

    This study analyzes temperature and salinity products from the U.S. Navy Generalized Digital Environment Model. To avoid the fictitious assumption of no-motion reference level, a P-vector inverse method is employed to derive geostrophic velocity. Line integral of geostrophic velocity shows evidence for the existence of a sandwiched circulation in the South China Sea (SCS), i.e., cyclonic circulation in the subsurface and deep layers and anticyclonic in the intermediate layer. To reveal the factors responsible for the sandwiched circulation, we derive the potential vorticity equation based on a four-and-a-half-layer quasi-geostrophic model and apply theoretical potential vorticity constraint to density layers. The result shows that the sandwiched circulation is largely induced by planetary potential vorticity flux through lateral boundaries, mainly the Luzon Strait. This dynamical mechanism lies in the fact that the net potential vorticity inflow in the subsurface and deep layers leads to a positive layer-average vorticity in the SCS basin, yielding vortex stretching and a cyclonic basin-wide circulation. On the contrary, the net potential vorticity outflow in the intermediate layer induces a negative layer-average vorticity, generating an anticyclonic basin-wide circulation in the SCS. Furthermore, by illustrating different consequence from depth/density layers, we clarify that density layers are essential for applying theoretical potential vorticity constraint to the isolated deep SCS basin.

  1. Statistical downscaling of GCM simulations to streamflow using relevance vector machine

    NASA Astrophysics Data System (ADS)

    Ghosh, Subimal; Mujumdar, P. P.

    2008-01-01

    General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology. The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM) to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables. NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and climatic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical methodology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose. The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.

  2. Multi-platform operational validation of the Western Mediterranean SOCIB forecasting system

    NASA Astrophysics Data System (ADS)

    Juza, Mélanie; Mourre, Baptiste; Renault, Lionel; Tintoré, Joaquin

    2014-05-01

    The development of science-based ocean forecasting systems at global, regional, and local scales can support a better management of the marine environment (maritime security, environmental and resources protection, maritime and commercial operations, tourism, ...). In this context, SOCIB (the Balearic Islands Coastal Observing and Forecasting System, www.socib.es) has developed an operational ocean forecasting system in the Western Mediterranean Sea (WMOP). WMOP uses a regional configuration of the Regional Ocean Modelling System (ROMS, Shchepetkin and McWilliams, 2005) nested in the larger scale Mediterranean Forecasting System (MFS) with a spatial resolution of 1.5-2km. WMOP aims at reproducing both the basin-scale ocean circulation and the mesoscale variability which is known to play a crucial role due to its strong interaction with the large scale circulation in this region. An operational validation system has been developed to systematically assess the model outputs at daily, monthly and seasonal time scales. Multi-platform observations are used for this validation, including satellite products (Sea Surface Temperature, Sea Level Anomaly), in situ measurements (from gliders, Argo floats, drifters and fixed moorings) and High-Frequency radar data. The validation procedures allow to monitor and certify the general realism of the daily production of the ocean forecasting system before its distribution to users. Additionally, different indicators (Sea Surface Temperature and Salinity, Eddy Kinetic Energy, Mixed Layer Depth, Heat Content, transports in key sections) are computed every day both at the basin-scale and in several sub-regions (Alboran Sea, Balearic Sea, Gulf of Lion). The daily forecasts, validation diagnostics and indicators from the operational model over the last months are available at www.socib.es.

  3. Extreme hydrometeorological events in the Peruvian Central Andes during austral summer and their relationship with the large-scale circulation

    NASA Astrophysics Data System (ADS)

    Sulca, Juan C.

    In this Master's dissertation, atmospheric circulation patterns associated with extreme hydrometeorological events in the Mantaro Basin, Peruvian Central Andes, and their teleconnections during the austral summer (December-January-February-March) are addressed. Extreme rainfall events in the Mantaro basin are related to variations of the large-scale circulation as indicated by the changing strength of the Bolivian High-Nordeste Low (BH-NL) system. Dry (wet) spells are associated with a weakening (strengthening) of the BH-NL system and reduced (enhanced) influx of moist air from the lowlands to the east due to strengthened westerly (easterly) wind anomalies at mid- and upper-tropospheric levels. At the same time extreme rainfall events of the opposite sign occur over northeastern Brazil (NEB) due to enhanced (inhibited) convective activity in conjunction with a strengthened (weakened) Nordeste Low. Cold episodes in the Mantaro Basin are grouped in three types: weak, strong and extraordinary cold episodes. Weak and strong cold episodes in the MB are mainly associated with a weakening of the BH-NL system due to tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the potential for development of convective cloud cover. The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below the 10-percentile. Extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. Therefore, weak and strong cold episodes in the MB appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection, while the latter plays an important role for extraordinary cold episodes only.

  4. Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.

    1999-01-01

    In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the role of boundary forcing and the potential predictability of the monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both SST and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. For regional monsoons, however, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.

  5. Interaction between Meso-scale Eddies and Sub-polar Front in the East (Japan) Sea based on ARGO, AVHRR, and Numerical Model

    NASA Astrophysics Data System (ADS)

    Ro, Y.; Kim, E.

    2008-12-01

    The East (Japan) Sea is drawing keen international attentions from broad spectrum of groups such as scientists, diplomats, and defense officers for its geopolitical situation, peculiar scientific assets recognized as miniature ocean. From physical oceanographic aspect, it is very rich with many features such as basin-wide circulation pattern, boundary currents, sub-polar front, meso-scale eddy activities and deep water formation. The circulation pattern in the East (Japan) Sea has been of major interests for its peculiar gyre, a western boundary current and its separation that resembles the currents such as Kuroshio and Gulf Stream. In relation to the gyre system in the East Sea, the formation of the East Korea Warm Current (EKWC) has brought up with many numerical experiments. Numerical experiments suggested a new idea to explain the formation of the EKWC in that the potential energy supply into the Ulleung Basin (UB) from the meso-scale eddy is a key process. This is closely linked with the baroclinic instability and the meandering of offshore component of Tsushima Warm Current. The UB has drawn attentions for its role of the formation of two major boundary currents, EKWC, North Korea Warm Current (NKCC), their interaction with the mesoscale UWE, watermass exchange between the Northern Japan Basin and UB. Numerical experiments along with hydrographic and other satellite datasets such as AVHRR, altimeter and ARGO profiles have been analyzed to understand the formation of the UWE. We found that the influence of the bottom topography and frictional forcing against lateral boundary are all closely associated with the sub-polar front. Meandering of the axis of the sub-polar front is closely linked with the separation point of the EKWC, Ulleung Warm Eddy, and other small and meso-scale eddies on the sub-polar front. These will be demonstrated with results of the numerical modeling experiments and animation movie will be presented.

  6. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.

    2016-01-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  7. Traveling Weather Disturbances in Mars' Southern Extratropics: Sway of the Great Impact Basins

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.

    2016-04-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e., globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  8. Extreme multi-basin fluvial flows and their relationship to extra-tropical cyclones

    NASA Astrophysics Data System (ADS)

    De Luca, Paolo; Hillier, John K.; Wilby, Robert L.; Quinn, Nevil W.; Harrigan, Shaun

    2017-04-01

    Fluvial floods are typically investigated as 'events' at the single basin scale, thereby implicitly assuming that severe flooding impacts each catchment independently from those nearby. A statistical analysis of the spatio-temporal characteristics of extreme flows in Great Britain (GB), during 1975-2014, is presented. These observations deepen understanding of the processes leading to multi-basin floods and present helpful insights for contingency planning and emergency responders. The largest multi-basin peak flow events within different time windows were identified by counting the number of coincident annual maximum river peak flows (AMAX) across 261 non-nested catchments, using search windows of 1 to 19 days. This showed that up to 107 basins reached their AMAX within the same plateauing 13-day window, draining a total area equivalent to ˜46% of the overall basins considered, which is an equivalent fraction of ˜27% of Great Britain. Such episodes are typically associated with persistent cyclonic atmospheric circulation and saturated ground, combined with short hydrological response times (<48 h) from large contributing basins. The most spatially extensive episodes also tend to coincide with the most severe gales (i.e. extra-tropical cyclones) on a ±0-13 day time-scale. The analysis suggests that multi-basin peak flow events can be characterised by concurrent peak flow AMAX and that the most extreme are driven by very severe gales (VSG). This has implications for emergency response including planning for combined flood-wind impacts (on for example power and communication systems), meaning that the emergency preparedness need to be reorganised in order to face this peril.

  9. Statistical downscaling of daily precipitation over Llobregat river basin in Catalonia (Spain) using three downscaling methods.

    NASA Astrophysics Data System (ADS)

    Ballinas, R.; Versini, P.-A.; Sempere, D.; Escaler, I.

    2009-09-01

    Any long-term change in the patterns of average weather in a global or regional scale is called climate change. It may cause a progressive increase of atmospheric temperature and consequently may change the amount, frequency and intensity of precipitation. All these changes of meteorological parameters may modify the water cycle: run-off, infiltration, aquifer recharge, etc. Recent studies in Catalonia foresee changes in hydrological systems caused by climate change. This will lead to alterations in the hydrological cycle that could impact in land use, in the regimen of water extractions, in the hydrological characteristics of the territory and reduced groundwater recharge. Besides, can expect a loss of flow in rivers. In addition to possible increases in the frequency of extreme rainfall, being necessary to modify the design of infrastructure. Because this, it work focuses on studying the impacts of climate change in one of the most important basins in Catalonia, the Llobregat River Basin. The basin is the hub of the province of Barcelona. It is a highly populated and urbanized catchment, where water resources are used for different purposes, as drinking water production, agricultural irrigation, industry and hydro-electrical energy production. In consequence, many companies and communities depend on these resources. To study the impact of climate change in the Llobregat basin, storms (frequency, intensity) mainly, we will need regional climate change information. A regional climate is determined by interactions at large, regional and local scales. The general circulation models (GCMs) are run at too coarse resolution to permit accurate description of these regional and local interactions. So far, they have been unable to provide consistent estimates of climate change on a local scale. Several regionalization techniques have been developed to bridge the gap between the large-scale information provided by GCMs and fine spatial scales required for regional and environmental impact studies. Downscaling methods to assess the effect of large-scale circulations on local parameters have. Statistical downscaling methods are based on the view that regional climate can be conditioned by two factors: large-scale climatic state and regional/local features. Local climate information is derived by first developing a statistical model which relates large-scale variables or "predictors" for which GCMs are trustable to regional or local surface "predictands" for which models are less skilful. The main advantage of these methods is that they are computationally inexpensive, and can be applied to outputs from different GCM experiments. Three statistical downscaling methods are applied: Analogue method, Delta Change and Direct Forcing. These methods have been used to determine daily precipitation projections at rain gauge location to study the intensity, frequency and variability of storms in a context of climate change in the Llobregat River Basin in Catalonia, Spain. This work is part of the European project "Water Change" (included in the LIFE + Environment Policy and Governance program). It deals with Medium and long term water resources modelling as a tool for planning and global change adaptation. Two stakeholders involved in the project provided the historical time series: Catalan Water Agency (ACA) and the State Meteorological Agency (AEMET).

  10. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    USGS Publications Warehouse

    Haas, Kevin A.; Warner, John C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.

  11. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    USGS Publications Warehouse

    Haas, K.A.; Warner, J.C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.

  12. Ecologic and Morphologic Analysis of a Proposed Network of Sediment Diversions

    NASA Astrophysics Data System (ADS)

    Meselhe, E. A.; Sadid, K. M.; Jung, H.; Messina, F.; Esposito, C.; Liang, M.

    2017-12-01

    Deltaic processes are governed by factors including the characteristics of inflowing sediment (e.g., temporal variability of the load and size class distribution), receiving basins (e.g., water depth, tidal range, circulation pattern, and wind field), and substrate (e.g., sediment type and soil strength). These factors influence the deltaic growth as well as the size and pattern of channel bifurcations. This topic is of importance to deltas experiencing land loss due to subsidence and sea level rise. The Mississippi River Delta is an example where a number of sediment diversions are being considered in conjunction with other restoration actions to minimize loss of wetlands. Historically, the Mississippi River played a significant role in providing sediment, nutrients, and fresh water to support Louisiana's coastal wetland system. As such, a systems perspective for regional-scale implementation of diversions is important. Field observations coupled with numerical modeling at various temporal and spatial scales, has provided insights toward a system-scale approach to design, evaluate and operate sediment diversions. These research activities investigate the uncertainties associated with morphodynamic processes both on the river and receiving basin sides and identify parameters influencing the magnitude and rate of building new land and sustaining existing wetland areas. Specifically, this presentation discusses the impact of extracting sediment and water from fluvial rivers, the ability to convey (and retain) sediment to the receiving basins. In addition to delivering sediment to receiving basins, some proposed sediment diversions could discharge high volumes of nutrient-rich fresh water into existing wetlands and bays. A goal of the analysis presented here is to improve our understanding of morphodynamic responses of the receiving basins and the ecosystem effects of discharges of freshwater and nutrients at this scale.

  13. The implementation and validation of improved landsurface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales.

  14. Depth of origin of ocean-circulation-induced magnetic signals

    NASA Astrophysics Data System (ADS)

    Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik

    2018-01-01

    As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

  15. Mesoscale eddies control meridional heat flux variability in the subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Bower, Amy; Yang, Jiayan; Lin, Xiaopei; Zhou, Chun

    2017-04-01

    The meridional heat flux in the subpolar North Atlantic is vital to the climate of the high-latitude North Atlantic. For the basinwide heat flux across a section between Greenland and Scotland, much of the variability occurs in the Iceland basin, where the North Atlantic Current (NAC) carries relatively warm and salty water northward. As a component of the Overturning in the Subpolar North Atlantic Program (OSNAP), WHOI and OUC are jointly operating gliders in the Iceland Basin to continuously monitor the circulation and corresponding heat flux in this eddy-rich region. Based on one year of observations, two circulation regimes in the Iceland basin have been identified: a mesoscale eddy like circulation pattern and northward NAC circulation pattern. When a mesoscale eddy is generated, the rotational currents associated with the eddy lead to both northward and southward flow in the Iceland basin. This is quite different from the broad northward flow associated with the NAC when there is no eddy. The transition between the two regimes coupled with the strong temperature front in the Iceland basin can modify the meridional heat flux on the order of 0.3PW, which is the dominant source for the heat flux change the Iceland Basin. According to high-resolution numerical model results, the Iceland Basin has the largest contribution to the meridional heat flux variability along the section between Greenland and Scotland. Therefore, mesoscale eddies in the Iceland Basin provide important dynamics to control the meridional heat flux variability in the subpolar North Atlantic.

  16. Adaptive scaling model of the main pycnocline and the associated overturning circulation

    NASA Astrophysics Data System (ADS)

    Fuckar, Neven-Stjepan

    This thesis examines a number of crucial factors and processes that control the structure of the main pycnocline and the associated overturning circulation that maintains the ocean stratification. We construct an adaptive scaling model: a semi-empirical low-order theory based on the total transformation balance that linearly superimposes parameterized transformation rate terms of various mechanisms that participate in the water-mass conversion between the warm water sphere and the cold water sphere. The depth of the main pycnocline separates the light-water domain from the dense-water domain beneath the surface, hence we introduce a new definition in an integral form that is dynamically based on the large-scale potential vorticity (i.e., vertical density gradient is selected for the kernel function of the normalized vertical integral). We exclude the abyssal pycnocline from our consideration and limit our domain of interest to the top 2 km of water column. The goal is to understand the controlling mechanisms, and analytically predict and describe a wide spectrum of ocean steady states in terms of key large-scale indices relevant for understanding the ocean's role in climate. A devised polynomial equation uses the average depth of the main pycnocline as a single unknown (the key vertical scale of the upper ocean stratification) and gives us an estimate for the northern hemisphere deep water production and export across the equator from the parts of this equation. The adaptive scaling model aims to elucidate the roles of a limited number of dominant processes that determine some key upper ocean circulation and stratification properties. Additionally, we use a general circulation model in a series of simplified single-basin ocean configurations and surface forcing fields to confirm the usefulness of our analytical model and further clarify several aspects of the upper ocean structure. An idealized numerical setup, containing all the relevant physical and dynamical properties, is key to obtaining a clear understanding, uncomplicated by the effect of the real world geometry or intricacy of realistic surface radiative and turbulent fluxes. We show that wind-driven transformation processes can be decomposed into two terms separately driven by the mid-latitude westerlies and the low-latitude easterlies. Our analytical model smoothly connects all the classical limits describing different ocean regimes in a single-basin single-hemisphere geometry. The adjective "adaptive" refers to a simple and quantitatively successful adjustment to the description of a single-basin two-hemisphere ocean, with and without a circumpolar channel under the hemispherically symmetric surface buoyancy. For example, our water-mass conversion framework, unifying wind-driven and thermohaline processes, provides us with further insight into the "Drake Passage effect without Drake Passage". The modification of different transformation pathways in the Southern Hemisphere results in the equivalent net conversion changes. The introduction of hemispheric asymmetry in the surface density can lead to significant hemispheric differences in the main pycnocline structure. This demonstrates the limitations of our analytical model based on only one key vertical scale. Also, we show a strong influence of the northern hemisphere surface density change in high latitudes on the southern hemisphere stratification and circumpolar transport.

  17. Seasonal and interannual variability of surface CDOM in the South China Sea associated with El Niño

    NASA Astrophysics Data System (ADS)

    Ma, Jinfeng; Zhan, Haigang; Du, Yan

    2011-04-01

    Satellite imagery of SeaWiFS from October 1997 to November 2007 is used to investigate the dominant seasonal and interannual variations of the surface light absorption due to Colored Dissolved Organic Materials (CDOM) in the South China Sea (SCS). Results show that the spatial distribution of CDOM mimics the major features of the SCS basin-scale circulation. High values of CDOM are found in upwelling regions like southeast of Vietnam in summer and northwest of Luzon in winter. At a basin scale, CDOM is high in winter when upwelling is strong, solar shortwave radiation and stratification weak, and vertical mixing intense. Opposite conditions exist in spring and summer. Interannual variability of the basin-wide CDOM is characterized by abnormal troughs during the El Niño events. A strong relationship exists between the time series of the first EOF mode (for both winter and summer) and Niño 3.4 Index. Associations of these events with climatic and hydrographic properties (i.e. wind forcing, solar shortwave radiation, Ekman pumping, vertical mixing, sea surface height and temperature) are discussed.

  18. Circulation, Water Temperature, and Larval Settlement Over the Inner Continental Shelves of the Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Fewings, M. R.; Washburn, L.; Ohlmann, C.; Blanchette, C.; Caselle, J.; Gotschalk, C.

    2008-12-01

    We use seven-year time series of wind stress, water velocity, and temperature in 15-18 m water depth to describe the circulation and water temperature over the inner continental shelves of the Channel Islands and California mainland in the Santa Barbara Basin. This area is strongly influenced by the California Current upwelling system. In turn, the water circulation in the Santa Barbara Basin influences the local marine ecosystem by affecting the water temperature and the supply of nutrients and larval fish and invertebrates. Larvae and nutrients traveling from the coast to the open ocean and back again must somehow pass through the inner shelf. The water circulation over the inner continental shelf of the Northern Channel Islands has not been described. Due to the shallowness of the water, an inner shelf has different physical dynamics than either the surfzone or the middle and outer continental shelf. We discuss the relative importance of upwelling- favorable along-shelf winds and of cross-shelf winds as forcing mechanisms for coastal upwelling circulations over the inner shelf; test whether the cross-shelf wind stress and surface gravity waves are important for cross-shelf circulation in the Santa Barbara Basin; and describe the subtidal patterns of water temperature, stratification, and velocity around the Channel Islands and their relation to observed larval settlement patterns. Cross-shelf circulation and the movement of water masses into and out of the Basin have implications for settlement and recruitment of many coastal species, including the economically important kelp rockfish, kelp bass, and sea urchin. Understanding the circulation of the Santa Barbara Basin and its inner shelves is a precursor to determining the source locations of the planktonic larvae. That information on source locations is essential for the design, siting, and assessment of existing and future marine protected areas in California and elsewhere.

  19. Classification of mechanisms, climatic context, areal scaling, and synchronization of floods: the hydroclimatology of floods in the Upper Paraná River basin, Brazil

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; AghaKouchak, Amir; Lall, Upmanu

    2017-12-01

    Floods are the main natural disaster in Brazil, causing substantial economic damage and loss of life. Studies suggest that some extreme floods result from a causal climate chain. Exceptional rain and floods are determined by large-scale anomalies and persistent patterns in the atmospheric and oceanic circulations, which influence the magnitude, extent, and duration of these extremes. Moreover, floods can result from different generating mechanisms. These factors contradict the assumptions of homogeneity, and often stationarity, in flood frequency analysis. Here we outline a methodological framework based on clustering using self-organizing maps (SOMs) that allows the linkage of large-scale processes to local-scale observations. The methodology is applied to flood data from several sites in the flood-prone Upper Paraná River basin (UPRB) in southern Brazil. The SOM clustering approach is employed to classify the 6-day rainfall field over the UPRB into four categories, which are then used to classify floods into four types based on the spatiotemporal dynamics of the rainfall field prior to the observed flood events. An analysis of the vertically integrated moisture fluxes, vorticity, and high-level atmospheric circulation revealed that these four clusters are related to known tropical and extratropical processes, including the South American low-level jet (SALLJ); extratropical cyclones; and the South Atlantic Convergence Zone (SACZ). Persistent anomalies in the sea surface temperature fields in the Pacific and Atlantic oceans are also found to be associated with these processes. Floods associated with each cluster present different patterns in terms of frequency, magnitude, spatial variability, scaling, and synchronization of events across the sites and subbasins. These insights suggest new directions for flood risk assessment, forecasting, and management.

  20. Sediment geochemical records of productivity and oxygen depletion along the margin of western North America during the past 60,000 years: teleconnections with Greenland Ice and the Cariaco Basin

    USGS Publications Warehouse

    Dean, W.E.

    2007-01-01

    Many sediment records from the margins of the Californias (Alta and Baja) collected in water depths between 60 and 1200 m contain anoxic intervals (laminated sediments) that can be correlated with interstadial intervals as defined by the oxygen-isotope composition of Greenland ice (Dansgaard-Oeschger, D-O, cycles). These intervals include all or parts of Oxygen Isotope Stage 3 (OIS3; 60-24 cal ka), the Bo??lling/Allero??d warm interval (B/A; 15-13 cal ka), and the Holocene. This study uses organic carbon (Corg) and trace-element proxies for anoxia and productivity, namely elevated concentrations and accumulation rates of molybdenum and cadmium, in these laminated sediments to suggest that productivity may be more important than ventilation in producing changes in bottom-water oxygen (BWO) conditions on open, highly productive continental margins. The main conclusion from these proxies is that during the last glacial interval (LGI; 24-15 cal ka) and the Younger Dryas cold interval (YD; 13-11.6 cal ka) productivity was lower and BWO levels were higher than during OIS3, the B/A, and the Holocene on all margins of the Californias. The Corg and trace-element profiles in the LGI-B/A-Holocene transition in the Cariaco Basin on the margin of northern Venezuela are remarkably similar to those in the transition on the northern California margin. Correlation between D-O cycles in Greenland ice with gray-scale measurements in varved sediments in the Cariaco Basin also is well established. Synchronous climate-driven changes as recorded in the sediments on the margins of the Californias, sediments from the Cariaco Basin, and in the GISP-2 Greenland ice core support the hypothesis that changes in atmospheric dynamics played a major role in abrupt climate change during the last 60 ka. Millennial-scale cycles in productivity and oxygen depletion on the margins of the Californias demonstrate that the California Current System was poised at a threshold whereby perturbations of atmospheric circulation produced rapid changes in circulation in the eastern North Pacific Ocean. It is likely that the Pacific and Atlantic Oceans were linked through the atmosphere. Warmer air temperatures during interstadials would have strengthened Hadley and Walker circulations, which, in turn, would have strengthened the subtropical high pressure systems in both the North Pacific and the North Atlantic, producing increased rainfall over the Cariaco Basin and increased upwelling along the margins of the Californias. ?? 2006 Elsevier Ltd. All rights reserved.

  1. Internal Dynamics and Boundary Forcing Characteristics Associated with Interannual Variability of the Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K.- M.; Kim, K.-M.; Yang, S.

    1998-01-01

    In this paper, we present a description of the internal dynamics and boundary forcing characteristics of two major components of the Asian summer monsoon (ASM), i.e., the South Asian (SAM) and the Southeast-East Asian monsoon (SEAM). The description is based on a new monsoon-climate paradigm in which the variability of ASM is considered as the outcome of the interplay of a "fast" and an "intermediate" monsoon subsystem, under the influenced of the "slow" varying external forcings. Two sets of regional monsoon indices derived from dynamically consistent rainfall and wind data are used in this study. For SAM, the internal dynamics is represented by that of a "classical" monsoon system where the anomalous circulation is governed by Rossby-wave dynamics, i.e., generation of anomalous vorticity induced by an off-equatorial heat source is balanced by planetary vorticity advection. On the other hand, the internal dynamics of SEAM is characterized by a "hybrid" monsoon system featuring multi-cellular meridional circulation over the East Asian section, extending from the deep tropics to midlatitudes. These meridional-cells link tropical heating to extratropical circulation system via the East Asian jetstream, and are responsible for the characteristic occurrences of zonally oriented anomalous rainfall patterns over East Asian and the subtropical western Pacific. In the extratropical regions, the major upper level vorticity balance is by anomalous vorticity advection and generation by the anomalous divergent circulation. A consequence of this is that compared to SAM, the SEAM is associated with stronger teleconnection patterns to regions outside the ASM. A strong SAM is linked to basin-scale sea surface temperature (SST) fluctuation with significant signal in the equatorial eastern Pacific. During the boreal spring SST warming in the Arabian Sea and the subtropical western Pacific may lead to a strong SAM. For SEAM, interannual variability is tied to SSTA over the Sea of Japan and the South China Sea regions, while the linkage to equatorial basin-scale SSTA is weak at best. A large scale SSTA dipole with warming (cooling) in the subtropical central (eastern) Pacific foreshadows a strong SEAM.

  2. Assessment of circulation and inter-basin transport in the Salish Sea including Johnstone Strait and Discovery Islands pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Long, Wen; Xu, Wenwei

    The Salish Sea consisting of Puget Sound and Georgia Basin in U.S and Canadian waters has been the subject of several independent data collection and modeling studies. However, these interconnected basins and their hydrodynamic interactions have not received attention as a contiguous unit. The Strait of Juan de Fuca is the primary pathway through which Pacific Ocean water enters the Salish Sea but the role played by Johnstone Strait and the complex channels northeast of Vancouver Island, connecting the Salish Sea and the Pacific Ocean, on overall Salish Sea circulation has not been characterized. In this paper we present amore » modeling-based assessment of the two-layer circulation and transport through the multiple interconnected sub-basins within the Salish Sea including the effect of exchange via Johnstone Strait and Discovery Islands. The Salish Sea Model previously developed using the finite volume community ocean model (FVCOM) was expanded over the continental shelf for this assessment encircling Vancouver Island, including Discovery Islands, Johnstone Strait, Broughton Archipelago and the associated waterways. A computational technique was developed to allow summation of volume fluxes across arbitrary transects through unstructured finite volume cells. Tidally averaged volume fluxes were computed at multiple transects. The results were used to validate the classic model of Circulation in Embracing Sills for Puget Sound and to provide quantitative estimates of the lateral distribution of tidally averaged transport through the system. Sensitivity tests with and without exchanges through Johnstone Strait demonstrate that it is a pathway for Georgia Basin runoff and Fraser River water to exit the Salish Sea and for Pacific Ocean inflow. However the relative impact of this exchange on circulation and flushing in Puget Sound Basin is small.« less

  3. Tidally averaged circulation in Puget Sound sub-basins: Comparison of historical data, analytical model, and numerical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Yang, Zhaoqing; Kim, Tae Yun

    2011-07-20

    Through extensive field data collection and analysis efforts conducted since the 1950s, researchers have established an understanding of the characteristic features of circulation in Puget Sound. The pattern ranges from the classic fjordal behavior in some basins, with shallow brackish outflow and compensating inflow immediately below, to the typical two-layer flow observed in many partially mixed estuaries with saline inflow at depth. An attempt at reproducing this behavior by fitting an analytical formulation to past data is presented, followed by the application of a three-dimensional circulation and transport numerical model. The analytical treatment helped identify key physical processes and parameters,more » but quickly reconfirmed that response is complex and would require site-specific parameterization to include effects of sills and interconnected basins. The numerical model of Puget Sound, developed using unstructured-grid finite volume method, allowed resolution of the sub-basin geometric features, including presence of major islands, and site-specific strong advective vertical mixing created by bathymetry and multiple sills. The model was calibrated using available recent short-term oceanographic time series data sets from different parts of the Puget Sound basin. The results are compared against (1) recent velocity and salinity data collected in Puget Sound from 2006 and (2) a composite data set from previously analyzed historical records, mostly from the 1970s. The results highlight the ability of the model to reproduce velocity and salinity profile characteristics, their variations among Puget Sound subbasins, and tidally averaged circulation. Sensitivity of residual circulation to variations in freshwater inflow and resulting salinity gradient in fjordal sub-basins of Puget Sound is examined.« less

  4. Observations of the summer Red Sea circulation

    NASA Astrophysics Data System (ADS)

    Sofianos, Sarantis S.; Johns, William E.

    2007-06-01

    Aiming at exploring and understanding the summer circulation in the Red Sea, a cruise was conducted in the basin during the summer of 2001 involving hydrographic, meteorological, and direct current observations. The most prominent feature, characteristic of the summer circulation and exchange with the Indian Ocean, is a temperature, salinity, and oxygen minimum located around a depth of 75 m at the southern end of the basin, associated with Gulf of Aden Intermediate Water inflowing from the Gulf of Aden during the summer season as an intruding subsurface layer. Stirring and mixing with ambient waters lead to marked increases in temperature (from 16.5 to almost 33°C) and salinity (from 35.7 to more than 38 psu) in this layer by the time it reaches midbasin. The observed circulation presents a very vigorous pattern with strong variability and intense features that extend the width of the basin. A permanent cyclone, detected in the northern Red Sea, verifies previous observations and modeling studies, while in the central sector of the basin a series of very strong anticyclones were observed with maximum velocities exceeding 1 m/s. The three-layer flow pattern, representative of the summer exchange between the Red Sea and the Gulf of Aden, is observed in the strait of Bab el Mandeb. In the southern part of the basin the layer flow is characterized by strong banking of the inflows and outflows against the coasts. Both surface and intermediate water masses involved in the summer Red Sea circulation present prominent spatial variability in their characteristics, indicating that the eddy field and mixing processes play an important role in the summer Red Sea circulation.

  5. Thermal regimes of Malaysian sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdul Halim, M.F.

    1994-07-01

    Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulationmore » time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.« less

  6. Mid-latitude afforestation shifts general circulation and tropical precipitation.

    PubMed

    Swann, Abigail L S; Fung, Inez Y; Chiang, John C H

    2012-01-17

    We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.

  7. Statistical Comparisons of watershed scale response to climate change in selected basins across the United States

    USGS Publications Warehouse

    Risley, John; Moradkhani, Hamid; Hay, Lauren E.; Markstrom, Steve

    2011-01-01

    In an earlier global climate-change study, air temperature and precipitation data for the entire twenty-first century simulated from five general circulation models were used as input to precalibrated watershed models for 14 selected basins across the United States. Simulated daily streamflow and energy output from the watershed models were used to compute a range of statistics. With a side-by-side comparison of the statistical analyses for the 14 basins, regional climatic and hydrologic trends over the twenty-first century could be qualitatively identified. Low-flow statistics (95% exceedance, 7-day mean annual minimum, and summer mean monthly streamflow) decreased for almost all basins. Annual maximum daily streamflow also decreased in all the basins, except for all four basins in California and the Pacific Northwest. An analysis of the supply of available energy and water for the basins indicated that ratios of evaporation to precipitation and potential evapotranspiration to precipitation for most of the basins will increase. Probability density functions (PDFs) were developed to assess the uncertainty and multimodality in the impact of climate change on mean annual streamflow variability. Kolmogorov?Smirnov tests showed significant differences between the beginning and ending twenty-first-century PDFs for most of the basins, with the exception of four basins that are located in the western United States. Almost none of the basin PDFs were normally distributed, and two basins in the upper Midwest had PDFs that were extremely dispersed and skewed.

  8. North-Australian tropical seas circulation study

    NASA Technical Reports Server (NTRS)

    Burrage, Derek; Coleman, R.; Bode, L.; Inoue, M.

    1991-01-01

    This investigation is intended to fully address the stated objective of the TOPEX/POSEIDON mission (National Aeronautics and Space Administration, 1986). Hence, we intend to use TOPEX/POSEIDON altimetry data to study the large-scale circulation of the Coral Sea Basin and the Arafura Sea and the mass exchange between these and adjoining basins. We will obtain data from two such cruises in 1993 and 1994 and combine them with TOPEX/POSEIDON radar altimetry data to identify interannual and seasonal changes in: (1) the location of the major ocean currents and the South Equatorial Current bifurcation in the Coral Sea; (2) the source region of the South Tropical Counter Current (STCC); and (3) the water exchange between the Coral Sea and the adjoining seas. We will also estimate seasonal and interannual variations in the horizontal transport of mass and heat associated with near-surface geostrophic and wind-driven currents. In addition, the tidal components of the Coral Sea will be studied to provide a correction for altimetry subtidal sea level changes and to develop a regional numerical model for tidal forcing in the Great Barrier Reef (GBR) and Papua New Guinea Reef regions.

  9. Variability of the Somali Current and eddies during the southwest monsoon regimes

    NASA Astrophysics Data System (ADS)

    Trott, Corinne B.; Subrahmanyam, Bulusu; Murty, V. S. N.

    2017-09-01

    The meso-scale eddies and currents in the Arabian Sea are analyzed using different satellite observations, Simple Oceanic Data Assimilation (SODA) reanalysis, and Ocean Reanalysis System 4 (ORAS4) from 1993 to 2016 to investigate the impacts of Southwest (SW) Monsoon strength on Somali Current (SC) mesoscale circulations such as the Great Whirl (GW), the Socotra Eddy (SE), the Southern Gyre (SG), and smaller eddies. Increased Ekman pumping during stronger SW monsoons strengthens coastal upwelling along the Somali coast. The Arabian Sea basin-wide anticyclonic circulation and presence of the GW form mesoscale circulation patterns favourable to advection of upwelled waters eastward into the central Arabian Sea. In September, after the SW monsoon winds reach peak strength in July and August, a higher number of discrete anticyclonic eddies with higher (> 20 cm) sea surface height anomalies develop in strong and normal intensity SW monsoon seasons than weaker SW monsoon seasons.

  10. On the role of inter-basin surface salinity contrasts in global ocean circulation

    NASA Astrophysics Data System (ADS)

    Seidov, D.; Haupt, B. J.

    2002-08-01

    The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (TOC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. Ocean-wide inter-basin SSS contrasts serve as the major controlling element in global TOC. These contrasts are shown to be at least as important as high-latitudinal freshwater impacts. It is also shown that intra-basin longitudinal distribution of sea surface salinity, as well as intra- and inter-basin longitudinal distribution of sea surface temperature, is not crucial to conveyor functionality if only inter-basin contrasts in sea surface salinity are retained. This is especially important for paleoclimate and future climate simulations.

  11. Examining the eastern Amazon Basin breeze circulations, channeling and boundary layer properties using altitude controlled meteorological balloons

    NASA Astrophysics Data System (ADS)

    Fitzjarrald, D. R.; Voss, P. B.; Silva, R. D.; Callahan, S.; Dewald, A.; do Vale, R. S.

    2017-12-01

    During the period August 24-28, 2016, in a delayed component the GO-Amazon Project, we launched nine altitude-controlled free balloons (CMET). Smaller than typical rawinsondes, CMET are equipped with altitude control, global communication via Iridium satellite, and aspirated sensors. The aims of our effort were to examine the interactions among convective boundary layer and dual river breeze circulations near the confluence of the Tapajos and Amazon Rivers in the eastern Basin. The week-long field campaign was timed to examine the reestablishment of the breeze circulations shortly after the passage of a strong instability line on August 22. Nine CMET were launched at the Curua-Una hydroelectric dam (2.8S; 54.3W), timed to encounter the Tapajos river breeze front by late afternoon. Soundings were made to establish the thickness of interface between the easterly trade and westerly Tapajos breeze circulation. Careful use of sounding strategies allowed these free balloons to track along the northerly channeled flow in the lowest 300 m above the River. Following the river encounter, balloons tracked to the west, sounding to describe the diurnal course of boundary layer in the forest west of the Tapajos River. The longest flight traveled more than 770 km over three days and twice rested overnight in the rain forest canopy. Ancillary data from surface climate and flux stations as well as the Santarem radiosonde, satellite images will be used to illustrate how the breeze circulations are seen near the surface and how they were disrupted by larger-scale events. Comparisons with HYSPLIT trajectories will illustrate how sensitive real trajectories are to the refraction that the encounter with the breeze effects.

  12. Bridging a possible gap of GRACE observations in the Arctic Ocean using existing GRACE data and in situ bottom pressure sensors

    NASA Astrophysics Data System (ADS)

    Peralta Ferriz, C.; Morison, J.

    2014-12-01

    Since 2003, the Gravity Recovery and Climate Experiment (GRACE) satellite system has provided the means of investigating month-to-month to inter-annual variability of, among many other things, Arctic Ocean circulation over the entire Arctic Basin. Such a comprehensive picture could not have been achieved with the limited in situ pressure observations available. Results from the first 10 years of ocean bottom pressure measurements from GRACE in the Arctic Ocean reveal distinct patterns of ocean variability that are strongly associated with changes in large-scale atmospheric circulation (Peralta-Ferriz et al., 2014): the leading mode of variability being a wintertime basin-coherent mass change driven by winds in the Nordic Seas; the second mode of variability corresponding to a mass signal coherent along the Siberian shelves, and driven by the Arctic Oscillation; and the third mode being a see-saw between western and eastern Arctic shelves, also driven by the large-scale wind patterns. In order to understand Arctic Ocean changes, it is fundamental to continue to track ocean bottom pressure. Our concern is what to do if the present GRACE system, which is already well beyond its design lifetime, should fail before its follow-on is launched, currently estimated to be in 2017. In this work, we regress time series of pressure from the existing and potential Arctic Ocean bottom pressure recorder locations against the fundamental modes of bottom pressure variation. Our aim is to determine the optimum combination of in situ measurements to represent the broader scale variability now observed by GRACE. With this understanding, we can be better prepared to use in situ observations to at least partially cover a possible gap in GRACE coverage. Reference:Peralta-Ferriz, Cecilia, James H. Morison, John M. Wallace, Jennifer A. Bonin, Jinlun Zhang, 2014: Arctic Ocean Circulation Patterns Revealed by GRACE. J. Climate, 27, 1445-1468. doi: http://dx.doi.org/10.1175/JCLI-D-13-00013.1

  13. Satellite-Observed Vertical Structures of Clouds over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Wu, M.; Lee, J. E.

    2017-12-01

    The long wet season of the Amazon basin currently plays a critical role in the terrestrial ecosystem, regulating carbon balance and supporting high biodiversity. It has been argued that the land surface processes are important in maintaining high precipitation; yet, how the land-atmosphere interactions modulate the atmospheric processes are not completely understood. As a first step toward solving this problem, here we examine the vertical structures of clouds and the thermodynamics of the atmosphere over the entire basin at the different time of the year. We combine the vertical distribution of cloud water content from CloudSat, and the atmospheric thermodynamic conditions from the ECMWF ERA-interim reanalysis to compare and contrast the atmospheric condition at different time of the year-the wet, dry, and dry-to-wet transition seasons-and in different regions-ever-wet evergreen broadleaf forests, wet evergreen broadleaf forests with a dry season, and dry wooded grasslands/woodlands-following water stress gradient. In the ever-wet and wet regions, a large amount of cloud ice water is present in the upper atmosphere (above 11km) and convective available potential energy (CAPE) is high during the transition season, supporting the claim that the convective activity is strongest during the transition season. In the dry region, there are more cloud water above 8km over woodlands than over wooded grasslands during the dry and transition seasons, indicating the influence of the land cover. We also classified our data following the large-scale circulation pattern, and the CloudSat data support more deep convective activities in the wet and dry regions when the wind blows from the east during the wet and transition seasons. As a next step, we will focus more on linking the cloud structure to the large-scale circulation and surface processes.

  14. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction

    NASA Astrophysics Data System (ADS)

    Schmittner, Andreas; Galbraith, Eric D.; Hostetler, Steven W.; Pedersen, Thomas F.; Zhang, Rong

    2007-09-01

    Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas.

  15. Modeling the Gulf Stream System: How Far from Reality?

    NASA Technical Reports Server (NTRS)

    Choa, Yi; Gangopadhyay, Avijit; Bryan, Frank O.; Holland, William R.

    1996-01-01

    Analyses of a primitive equation ocean model simulation of the Atlantic Ocean circulation at 1/6 deg horizontal resolution are presented with a focus on the Gulf Stream region. Among many successful features of this simulation, this letter describes the Gulf Stream separation from the coast of North America near Cape Hatteras, meandering of the Gulf Stream between Cape Hatteras and the Grand Banks, and the vertical structure of temperature and velocity associated with the Gulf Stream. These results demonstrate significant improvement in modeling the Gulf Stream system using basin- to global scale ocean general circulation models. Possible reasons responsible for the realistic Gulf Stream simulation are discussed, contrasting the major differences between the present model configuration and those of previous eddy resolving studies.

  16. Investigating the Interannual Variability of the Circulation and Water Mass Formation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Sofianos, S. S.; Papadopoulos, V. P.; Denaxa, D.; Abualnaja, Y.

    2014-12-01

    The interannual variability of the circulation and water mass formation in the Red Sea is investigated with the use of a numerical model and the combination of satellite and in-situ observations. The response of Red Sea to the large-scale variability of atmospheric forcing is studied through a 30-years simulation experiment, using MICOM model. The modeling results demonstrate significant trends and variability that are mainly located in the central and northern parts of the basin. On the other hand, the exchange pattern between the Red Sea and the Indian Ocean at the strait of Bab el Mandeb presents very weak interannual variability. The results verify the regularity of the water mass formation processes in the northern Red Sea but also show significant variability of the circulation and thermohaline conditions in the areas of formation. Enhanced water mass formation conditions are observed during specific years of the simulation (approximately five years apart). Analysis of recent warm and cold events in the northernmost part of the basin, based on a combination of atmospheric reanalysis results and oceanic satellite and in-situ observations, shows the importance of the cyclonic gyre that is prevailing in this part of the basin. This gyre can effectively influence the sea surface temperature (SST) and intensify or mitigate the winter effect of the atmospheric forcing. Upwelling induced by persistent periods of the gyre functioning drops the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme atmospheric forcing. These mechanisms are crucial for the formation of intermediate and deep water masses in the Red Sea and the strength of the subsequent thermohaline cells.

  17. Does the vorticity flux from Agulhas rings control the zonal pathway of NADW across the South Atlantic?

    NASA Astrophysics Data System (ADS)

    van Sebille, Erik; Johns, William E.; Beal, Lisa M.

    2012-05-01

    As part of the global thermohaline circulation, some North Atlantic Deep Water (NADW) exits the Atlantic basin to the south of Africa. Observations have shown that there is a quasi-zonal pathway centered at 25°S carrying NADW eastward, connecting the Deep Western Boundary Current to the Cape Basin. However, it has been unclear what sets this pathway. In particular, waters must move southward through the Cape Basin, thereby crossing isolines of planetary vorticity, in order to exit the basin. Here, we find that an eddy thickness flux induced by Agulhas rings moving northwestward forces a circulation of NADW through the Cape Basin. The pathway at 25°S feeds the southeastward flow of this circulation while conserving potential vorticity. Using Lagrangian floats advected for 300 years in a 1/10° resolution ocean model, we show that the most common pathway for NADW in our model lies directly below the Agulhas ring corridor. By analyzing the velocity and density fields in the model, we find that the decay of these rings, and their forward tilt with depth, results in a southward velocity, across isolines of planetary vorticity, of 1 to 2 cm/s in the deep waters. The associated stream function pattern yields a deep circulation transporting 4 Sv of NADW from the Deep Western Boundary Current at 25°S to the southern tip of Africa.

  18. Using a global ocean circulation model to conduct a preliminary risk assessment of oil spills in the Atlantic

    NASA Astrophysics Data System (ADS)

    Jacobs, Zoe; Popova, Katya; Hirschi, Joel; Coward, Andrew; Yool, Andrew; van Gennip, Simon; Anifowose, Babtunde; Harrington-Missin, Liam

    2017-04-01

    Although oil blowouts from deep-water drilling happen very rarely, they can cause catastrophic damage to the environment. Despite such potentially high impacts, relatively little research effort has gone into understanding subsurface oil plumes in the deep ocean. In this study, we demonstrate the significance of this problem and offer potential solutions using a novel approach based on a leading-edge, high-resolution global ocean circulation model. We present examples demonstrating: (a) the importance of ocean circulation in the propagation of oil spills; and (b) likely circulation footprints for oil spills at four key locations in the Atlantic Ocean that exist in different circulation regimes - the shelves of Brazil, the Gulf of Guinea, the Gulf of Mexico and the Faroe-Shetland Channel. In order to quantify the variability at each site on seasonal timescales, interannual timescales and at different depths, we utilize the Modified Hausdorff Distance (MHD), which is a shape-distance metric that measures the similarity between two shapes. The scale of the footprints across the four focus locations varies considerably and is determined by the main circulation features in their vicinity. For example, the hypothetical oil plume can be affected by variations in the speed and location of a particular current (e.g. Brazil Current at the Brazilian shelf site) or be influenced by different currents entirely depending on the release depth, month and year (e.g. Angola Current or Southern Equatorial Current at the Gulf of Guinea site). Overall, our results demonstrate the need to use state of the art global, or basin-scale, ocean circulation models when assessing the environmental impacts of proposed oil drilling activities.

  19. Coupled Land-Atmosphere Dynamics Govern Long Duration Floods: A Pilot Study in Missouri River Basin Using a Bayesian Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Najibi, N.; Lu, M.; Devineni, N.

    2017-12-01

    Long duration floods cause substantial damages and prolonged interruptions to water resource facilities and critical infrastructure. We present a novel generalized statistical and physical based model for flood duration with a deeper understanding of dynamically coupled nexus of the land surface wetness, effective atmospheric circulation and moisture transport/release. We applied the model on large reservoirs in the Missouri River Basin. The results indicate that the flood duration is not only a function of available moisture in the air, but also the antecedent condition of the blocking system of atmospheric pressure, resulting in enhanced moisture convergence, as well as the effectiveness of moisture condensation process leading to release. Quantifying these dynamics with a two-layer climate informed Bayesian multilevel model, we explain more than 80% variations in flood duration. The model considers the complex interaction between moisture transport, synoptic-to-large-scale atmospheric circulation pattern, and the antecedent wetness condition in the basin. Our findings suggest that synergy between a large low-pressure blocking system and a higher rate of divergent wind often triggers a long duration flood, and the prerequisite for moisture supply to trigger such event is moderate, which is more associated with magnitude than duration. In turn, this condition causes an extremely long duration flood if the surface wetness rate advancing to the flood event was already increased.

  20. A Theory For The Variability of The Baroclinic Quasi-geostrophic Winnd Driven Circulation.

    NASA Astrophysics Data System (ADS)

    Ben Jelloul, M.; Huck, T.

    We propose a theory of the wind driven circulation based on the large scale (i.e. small Burger number) quasi-geostrophic assumptions retained in the Rhines and Young (1982) classical study of the steady baroclinic flow. We therefore use multiple time scale and asymptotic expansions to separate steady and the time dependent component of the flow. The barotropic flow is given by the Sverdrup balance. At first order in Burger number, the baroclinic flow can be decom- posed in two parts. A steady contribution ensures no flow in the deep layer which is at rest in absence of dissipative processes. Since the baroclinic instability is inhibited at large scale a spectrum of neutral modes also arises. These are of three type, classical Rossby basin modes deformed through advection by the barotropic flow, recirculating modes localized in the recirculation gyre and blocked modes corresponding to closed potential vorticity contours. At next order in Burger number, amplitude equations for baroclinic modes are derived. If dissipative processes are included at this order, the system adjusts towards Rhines and Young solution with a homogenized potential vorticity pool.

  1. The implementation and validation of improved land-surface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1993-01-01

    New land-surface hydrologic parameterizations are implemented into the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: 1) runoff and evapotranspiration functions that include the effects of subgrid-scale spatial variability and use physically based equations of hydrologic flux at the soil surface and 2) a realistic soil moisture diffusion scheme for the movement of water and root sink in the soil column. A one-dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three-dimensional GCM. Results of the final simulation with the GISS GCM and the new land-surface hydrology indicate that the runoff rate, especially in the tropics, is significantly improved. As a result, the remaining components of the heat and moisture balance show similar improvements when compared to observations. The validation of model results is carried from the large global (ocean and land-surface) scale to the zonal, continental, and finally the regional river basin scales.

  2. On the glacial and inter-glacial thermohaline circulation and the associated transports of heat and freshwater

    NASA Astrophysics Data System (ADS)

    Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.

    2014-03-01

    The change of the thermohaline circulation (THC) between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present day climate are explored using an Ocean General Circulation Model and stream functions projected in various coordinates. Compared to the present day period, the LGM circulation is reorganised in the Atlantic Ocean, in the Southern Ocean and particularly in the abyssal ocean, mainly due to the different haline stratification. Due to stronger wind stress, the LGM tropical circulation is more vigorous than under modern conditions. Consequently, the maximum tropical transport of heat is slightly larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes and reorganising the freshwater transport. The LGM circulation is represented as a large intrusion of saline Antarctic Bottom Water into the Northern Hemisphere basins. As a result, the North Atlantic Deep Water is shallower in the LGM simulation. The stream functions in latitude-salinity coordinates and thermohaline coordinates point out the different haline regimes between the glacial and interglacial period, as well as a LGM Conveyor Belt circulation largely driven by enhanced salinity contrast between the Atlantic and the Pacific basin. The thermohaline structure in the LGM simulation is the result of an abyssal circulation that lifts and deviates the Conveyor Belt cell from the area of maximum volumetric distribution, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimation of the turnover times reveal a deep circulation almost sluggish during the LGM, and a Conveyor Belt cell more vigorous due to the combination of stronger wind stress and shortened circulation route.

  3. What Drives the Variability of the Atlantic Water Circulation in the Arctic Ocean?

    NASA Astrophysics Data System (ADS)

    Lique, C.; Johnson, H. L.

    2016-02-01

    The Atlantic Water (AW) layer in the Arctic Basin is isolated from the atmosphere by the overlaying surface layer; yet observations of the AW pan-Arctic boundary current have revealed that the velocities in this layer exhibit significant variations on all timescales. Here, analysis of a global ocean/sea ice model hindcast, complemented by experiments performed with an idealized process model, are used to investigate what controls the variability of AW circulation, with a focus on the role of wind forcing. The AW circulation carries the imprint of wind variations, both remotely over the Nordic and Barents seas where they force variability on the AW inflow to the Arctic Basin, and locally over the Arctic Basin through the forcing of the wind-driven Beaufort gyre, which modulates and transfers the wind variability to the AW layer. Our results further suggest that understanding variability in the large amount of heat contained within the AW layer requires a better understanding of the circulation within both AW and surface layers.

  4. Quantifying thermohaline circulations: seawater isotopic compositions and salinity as proxies of the ratio between advection time and evaporation time

    NASA Astrophysics Data System (ADS)

    Paldor, N.; Berman, H.; Lazar, B.

    2017-12-01

    Uncertainties in quantitative estimates of the thermohaline circulation in any particular basin are large, partly due to large uncertainties in quantifying excess evaporation over precipitation and surface velocities. A single nondimensional parameter, γ=(qx)/(hu) is proposed to characterize the "strength" of the thermohaline circulation by combining the physical parameters of surface velocity (u), evaporation rate (q), mixed layer depth (h) and trajectory length (x). Values of g can be estimated directly from cross-sections of salinity or seawater isotopic composition (δ18O and δD). Estimates of q in the Red Sea and the South-West Indian Ocean are 0.1 and 0.02, respectively, which implies that the thermohaline contribution to the circulation in the former is higher than in the latter. Once the value of g has been determined in a particular basin, either q or u can be estimated from known values of the remaining parameters. In the studied basins such estimates are consistent with previous studies.

  5. Renewed circulation scheme of the Baltic Sea - based on the 40-year simulation with GETM.

    NASA Astrophysics Data System (ADS)

    Maljutenko, Ilja; Raudsepp, Urmas

    2015-04-01

    The general circulation of the Baltic Sea has been characterized as cyclonic in all sub-basins based on numerous measurements and model simulations. From the long-term hydrodynamical simulation our model results have verified the general cyclonic circulation in the Baltic Proper and in the Gulf of Bothnia, but the Gulf of Finland and the Gulf of Riga have shown tendency to anticyclonic circulation. We have applied the General Estuarine Transport Model ( GETM ) for the period of 1966 - 2006 with a 1 nautical mile horizontal resolution and density adaptive bottom following vertical coordinates to make it possible to simulate horizontal and vertical density gradients with better precision. The atmospheric forcing from dynamically downscaled ERA40-HIRLAM and parametrized lateral boundary conditions are applied. Model simulation show close agreement with measurements conducted in the main monitoring stations in the BS during the simulation period. The geostrophic adjustment of density driven currents along with the upward salinity flux due to entrainment could explain the anticyclonic circulation and strong coastal current. Mean vertical velocities show that upward and downward movements are forming closed vertical circulation loops along the bottom slope of the Baltic Proper and the Gulf of Bothnia. The model has also reproduced patchy vertical movement across the BS with some distinctive areas of upward advective fluxes in the GoF along the thalweg. The distinctive areas of deepwater upwelling are also evident in the Gdansk Basin, western Gotland Basin, northern Gotland Basin and in the northen part of the Bothnia Sea.

  6. On the Mediterranean Sea inter-basin exchanges and nutrient dynamics

    NASA Astrophysics Data System (ADS)

    Rupolo, V.; Ribera D'Alcalà, M.; Iudicone, D.; Artale, V.

    2009-04-01

    The Mediterranean Sea is an evaporative basin in which the deficit of water is supplied by the inflow from the Gibraltar Strait of Atlantic Water. The net result of the air sea interactions in the entire basin is an outflow at Gibraltar of a salty water that is mainly constituted by the Levantin Intermediate Water, formed in the eastern part of the basin. Despite this simplified pattern, the circulation in the Mediterranean is rather complex. Most of the Mediterranean sub-basins are characterized by water mass formation processes and the presence of sills and straits strongly influence both the spreading and the mixing of intermediate and deep waters. In this context a Lagrangian diagnostics applied to numerical results was used to quantify mass transport in the main pathways of the upper and lower cells of the Mediterranean thermohaline circulation as they results from OGCM simulations. Lagrangian diagnostics reveals to be very useful to quantify both transports between different regions and the associated spectrum of transit times by means of pdf distribution of particles transit times between the different regions of the basin. This method is very effective to estimate the contribution of different water masses in isopycnal and diapycnal transformation processes and in reconstructing the fate of tracers. We use here these previous results on the basin circulation for better understanding the nutrient dynamics within the basin where the inputs from the different sources (atmosphere, runoff and open ocean) have similar order of magnitude. This, to the aim of building scenarios on the impact of climate driven changes in elemental fluxes to the basin on the internal nutrient dynamics.

  7. The Bi-Modal Pattern of the Summer Circulation Over South America

    NASA Technical Reports Server (NTRS)

    Herdies, Dirceu Luis; daSilva, Arlindo; SilvaDias, Maria A. F.; Atlas, Robert (Technical Monitor)

    2001-01-01

    Submonthly variations in warm-season (January-February) precipitation over South America, in special over the Amazon basin, central southwest Brazil, north Argentina, and Paraguay are shown to be strongly linked to variations in the moisture entering the continent from the Atlantic ocean. Two distinct regimes of lower tropospheric winds (westerlies and easterlies) were observed in Rondonia during the Wet Season Atmospheric Mesoscale Campaign (WETAMC) component of the Large Scale Atmosphere-Biosphere Experiment in Amazonia (LBA) and the Tropical Rainfall Measuring Mission (TRMM) field campaign. The westerly (easterly) winds were associated with the strong (weak) convective activity over the South Atlantic Convergence Zone (SACZ). The whole period of this study (January-February) was divided into SACZ and NSACZ (No SACZ) events. The vertically integrated moisture fluxes over the Amazon and Prata basin from the National Aeronautics and Space Administration/Goddard Data Assimilation Office (NASA/DAO) assimilation show that during SACZ (NSACZ) event strong (weak) convergence occurred over the Amazon basin with divergence (convergence) over the Prata basin. Submonthly variations in the SACZ also can be linked to extreme climate anomalies such as droughts or flooding conditions over the Amazon and Prata basin.

  8. Variability of sea surface height and circulation in the North Atlantic: Forcing mechanisms and linkages

    NASA Astrophysics Data System (ADS)

    Wang, Zeliang; Lu, Youyu; Dupont, Frederic; W. Loder, John; Hannah, Charles; G. Wright, Daniel

    2015-03-01

    Simulations with a coarse-resolution global ocean model during 1958-2004 are analyzed to understand the inter-annual and decadal variability of the North Atlantic. Analyses of Empirical Orthogonal Functions (EOFs) suggest relationships among basin-scale variations of sea surface height (SSH) and depth-integrated circulation, and the winter North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) indices. The linkages between the atmospheric indices and ocean variables are shown to be related to the different roles played by surface momentum and heat fluxes in driving ocean variability. In the subpolar region, variations of the gyre strength, SSH in the central Labrador Sea and the NAO index are highly correlated. Surface heat flux is important in driving variations of SSH and circulation in the upper ocean and decadal variations of the Atlantic Meridional Overturning Circulation (AMOC). Surface momentum flux drives a significant barotropic component of flow and makes a noticeable contribution to the AMOC. In the subtropical region, momentum flux plays a dominant role in driving variations of the gyre circulation and AMOC; there is a strong correlation between gyre strength and SSH at Bermuda.

  9. The circulation in the Levantine Basin as inferred from in-situ data and numerical modelling (1995-2013)

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Radhakrishnan, Hari; Lardner, Robin; Hayes, Daniel; Gertman, Isaac; Menna, Milena; Poulain, Pierre-Marie

    2014-05-01

    The general anticlockwise circulation along the coastline of the Eastern Mediterranean Levantine Basin was first proposed by Nielsen in 1912. Half a century later the schematic of the circulation in the area was enriched with sub-basin flow structures. In late 1980s, a more detailed picture of the circulation composed of eddies, gyres and coastal-offshore jets was defined during the POEM cruises. In 2005, Millot and Taupier-Letage have used SST satellite imagery to argue for a simpler pattern similar to the one proposed almost a century ago. During the last decade, renewed in-situ multi-platforms investigations under the framework of CYBO, CYCLOPS, NEMED, GROOM, HaiSec and PERSEUS projects, as well the development of the operational ocean forecasts and hindcasts in the framework of the MFS, ECOOP, MERSEA and MyOcean projects, have made possible to obtain an improved, higher spatial and temporal resolution picture of the circulation in the area. After some years of scientific disputes on the circulation pattern of the region, the new in-situ data sets and the operational numerical simulations confirm the relevant POEM results. The existing POM-based Cyprus Coastal Ocean Forecasting System (CYCOFOS), downscaling the MyOcean MFS, has been providing operational forecasts in the Eastern Mediterranean Levantine Basin region since early 2002. Recently, Radhakrishnan et al. (2012) parallelized the CYCOFOS hydrodynamic flow model using MPI to improve the accuracy of predictions while reducing the computational time. The parallel flow model is capable of modeling the Eastern Mediterranean Levantine Basin flow at a resolution of 500 m. The model was run in hindcast mode during which the innovations were computed using the historical data collected using gliders and cruises. Then, DD-OceanVar (D'Amore et al., 2013), a data assimilation tool based on 3DVAR developed by CMCC was used to compute the temperature and salinity field corrections. Numerical modeling results after the data assimilation will be presented.

  10. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P; Song, Y T; Chao, Y

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less

  11. Variational data assimilative modeling of the Gulf of Maine in spring and summer 2010

    NASA Astrophysics Data System (ADS)

    Li, Yizhen; He, Ruoying; Chen, Ke; McGillicuddy, Dennis J.

    2015-05-01

    A data assimilative ocean circulation model is used to hindcast the Gulf of Maine [GOM) circulation in spring and summer 2010. Using the recently developed incremental strong constraint 4D Variational data assimilation algorithm, the model assimilates satellite sea surface temperature and in situ temperature and salinity profiles measured by expendable bathythermograph, Argo floats, and shipboard CTD casts. Validation against independent observations shows that the model skill is significantly improved after data assimilation. The data-assimilative model hindcast reproduces the temporal and spatial evolution of the ocean state, showing that a sea level depression southwest of the Scotian Shelf played a critical role in shaping the gulf-wide circulation. Heat budget analysis further demonstrates that both advection and surface heat flux contribute to temperature variability. The estimated time scale for coastal water to travel from the Scotian Shelf to the Jordan Basin is around 60 days, which is consistent with previous estimates based on in situ observations. Our study highlights the importance of resolving upstream and offshore forcing conditions in predicting the coastal circulation in the GOM.

  12. Evaluating GCM land surface hydrology parameterizations by computing river discharges using a runoff routing model: Application to the Mississippi basin

    NASA Technical Reports Server (NTRS)

    Liston, G. E.; Sud, Y. C.; Wood, E. F.

    1994-01-01

    To relate general circulation model (GCM) hydrologic output to readily available river hydrographic data, a runoff routing scheme that routes gridded runoffs through regional- or continental-scale river drainage basins is developed. By following the basin overland flow paths, the routing model generates river discharge hydrographs that can be compared to observed river discharges, thus allowing an analysis of the GCM representation of monthly, seasonal, and annual water balances over large regions. The runoff routing model consists of two linear reservoirs, a surface reservoir and a groundwater reservoir, which store and transport water. The water transport mechanisms operating within these two reservoirs are differentiated by their time scales; the groundwater reservoir transports water much more slowly than the surface reservior. The groundwater reservior feeds the corresponding surface store, and the surface stores are connected via the river network. The routing model is implemented over the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project Mississippi River basin on a rectangular grid of 2 deg X 2.5 deg. Two land surface hydrology parameterizations provide the gridded runoff data required to run the runoff routing scheme: the variable infiltration capacity model, and the soil moisture component of the simple biosphere model. These parameterizations are driven with 4 deg X 5 deg gridded climatological potential evapotranspiration and 1979 First Global Atmospheric Research Program (GARP) Global Experiment precipitation. These investigations have quantified the importance of physically realistic soil moisture holding capacities, evaporation parameters, and runoff mechanisms in land surface hydrology formulations.

  13. Circulation in the Mediterranean Sea and consequences on the water quality

    NASA Astrophysics Data System (ADS)

    Millot, C.

    2003-04-01

    Atlantic Water (AW) flows into the Mediterranean Sea (about 10 super(6) m super(3)/s) to compensate for the deficit (about 10 super(5) m super(3)/s) created by evaporation larger than precipitation and river runoff there. Mainly due to the earth's rotation, the current is generally bent to the right, so that AW flows anticlockwise alongslope in both the western and the eastern basins. Meanwhile, it is continuously evaporated and thus made denser. In winter, dry and cold air masses transported by violent northerly winds induce large losses of latent and sensible heat. Hence, AW sinks in some specific regions located in the northern part of the various subbasins. The intermediate and deep waters that are formed in such a way then circulate, still bent to the right by the earth's rotation, before flowing through the various channels and, finally, out from the sea. The Mediterranean Sea is thus a machine that transforms surface oceanic water into saltier (by about 2 psu) cooler (by about 2 °C) and denser (by about 2 kg/m super(3)) waters that will flow and spread at intermediate depths (1000-1200 m) in most of the northern Atlantic. Due to the west-east elongated shape of both basins, and to the specific locations of their openings, AW first flows eastwards in the southern part of each basin. There, the current is markedly unstable and it generates, all year long and a few times per year, 100-200 km anticyclonic eddies that propagate downstream at a few km/day, extend possibly down to the bottom (about 3000 m), and have lifetimes up to 3 years at least. Especially in the eastern basin, similar eddies are induced in specific places by the Etesians, they can propagate then and survive for more than one year. All these eddies strongly interact, either with their parent current of with other eddies, and two eddies can merge. Natural barriers (islands and/or the bathymetry) prevent these eddies from reaching the eastern parts of the basins so that AW there flows northward in a relatively gentle way. In the northern parts of the basins, AW flows westwards, strongly interacting with the process of dense water formation and thus displaying a marked seasonal variability. At intermediate and greater depths, the circulation is less well specified, but it can display a marked variability at seasonal and meso- scales, and it can be much more intense than generally thought. On the whole, consequences on the water quality are that floating materials are transported all around the sea, eventually pushed southwards by the dominant winds, but still maintained within the sea. Conversely, all dissolved materials will, some time, be flushed out of the sea. At basin scale, sewage effluents released along the southern coasts will generally be entrained either alongslope (in one direction or the other) or seaward, before eventually coming back. Effluents from the eastern and northern coasts will generally be entrained alongslope downstream.

  14. Dynamics of the Antarctic Circumpolar Current. Evidence for Topographic Effects from Altimeter Data and Numerical Model Output

    NASA Technical Reports Server (NTRS)

    Gille, Sarah T.

    1995-01-01

    Geosat altimeter data and numerical model output are used to examine the circulation and dynamics of the Antarctic Circumpolar Current (ACC). The mean sea surface height across the ACC has been reconstructed from height variability measured by the altimeter, without assuming prior knowledge of the geoid. The results indicate locations for the Subantarctic and Polar Fronts which are consistent with in situ observations and indicate that the fronts are substantially steered by bathymetry. Detailed examination of spatial and temporal variability indicates a spatial decorrelation scale of 85 km and a temporal e-folding scale of 34 days. Empirical Orthogonal Function analysis suggests that the scales of motion are relatively short, occuring on 1000 km length-scales rather than basin or global scales. The momentum balance of the ACC has been investigated using output from the high resolution primitive equation model in combination with altimeter data. In the Semtner-Chervin quarter-degree general circulation model topographic form stress is the dominant process balancing the surface wind forcing. In stream coordinates, the dominant effect transporting momentum across the ACC is bibarmonic friction. Potential vorticity is considered on Montgomery streamlines in the model output and along surface streamlines in model and altimeter data. (AN)

  15. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and mean currents

    NASA Astrophysics Data System (ADS)

    Lips, Urmas; Zhurbas, Victor; Skudra, Maris; Väli, Germo

    2016-01-01

    A regional model of the Gulf of Riga (GoR) with horizontal grid spacing of 0.5 nautical miles was applied to study the features and driving forces of the whole-basin circulation in the GoR. The initial conditions and atmospheric forcing were taken from the operational models High Resolution Operational Model for the Baltic (HIROMB) and High Resolution Limited Area Model (HIRLAM), respectively. The wind stress curl is shown to be a major contributor to the whole-basin circulation pattern. An anticyclonic circulation pattern in the summer is determined by a combined effect of the negative wind stress curl, thermal density stratification and bottom topography. Positive values of the wind stress curl and a cyclonic circulation pattern prevail during the cold period of the year when seasonal thermocline is absent. During calm periods, the anticyclonic type of circulation is established due to a combined effect of the river runoff, saltier water inflow into and mixed water outflow from the GoR. Two seasonal baroclinic jet-like currents are identified in the summer: the Northward Longshore Current in the western GoR and Southward Subsurface Longshore Current in the eastern GoR. The alteration of the circulation pattern in the GoR from cyclonic in the cold period of the year to anticyclonic in the summer, and vice versa, was shown to be observed not every year due to inter-annual variability of wind forcing.

  16. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction

    USGS Publications Warehouse

    Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, Thomas F.; Zhang, R.

    2007-01-01

    Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones, throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas. Copyright 2007 by the American Geophysical Union.

  17. The Mediterranean Sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins.

    PubMed

    Conversi, Alessandra; Fonda Umani, Serena; Peluso, Tiziana; Molinero, Juan Carlos; Santojanni, Alberto; Edwards, Martin

    2010-05-19

    Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers.

  18. Circulation in the Ecologically Protected Lau Basin

    NASA Astrophysics Data System (ADS)

    Simons, E.; Speer, K. G.; Weijer, W.

    2016-12-01

    The Lau Basin, located in the South Pacific, north of New Zealand and East of Fiji, is a back-arc basin with active hydrothermal vents and volcanoes. In September 2015, the New Zealand Ministry for the Environment announced the new Kermadec Ocean Sanctuary in the southern portion of the basin. The sanctuary, which covers more than 620,000 square kilometers, is the world's largest protected marine environment boasting endangered species from turtles, whales, and seabirds to corals, shellfish, and zooplankton. Though protections are in place for the ecological residents of the basin, little is known about the fluid circulation that permits such ecological diversity. Whitworth et al. (1999), explored the water-masses associated with the deep western boundary current (DWBC) in the Tonga-Kermadec Trench and found the trench to be a passageway for Circumpolar Deep Water (CDW) into the South Pacific. In this project, an analysis of Ridge 2000 Program floats and Argo floats show intrusion of water from the trench into the basin, potentially providing another pathway of CDW into the western edge of the South Pacific. Using a simple model developed by Stommel-Arons (1960) and expanded upon by Pedlosky (1989) for abyssal circulation, the bulk of the flow pattern observed from the floats is qualitatively described, including the well-defined DWBC, first observed in this data, along the Lau-Fiji ridge.

  19. Skilful multi-year predictions of tropical trans-basin climate variability

    PubMed Central

    Chikamoto, Yoshimitsu; Timmermann, Axel; Luo, Jing-Jia; Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Ishii, Masayoshi; Xie, Shang-Ping; Jin, Fei-Fei

    2015-01-01

    Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Niño Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation. PMID:25897996

  20. Skilful multi-year predictions of tropical trans-basin climate variability.

    PubMed

    Chikamoto, Yoshimitsu; Timmermann, Axel; Luo, Jing-Jia; Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Ishii, Masayoshi; Xie, Shang-Ping; Jin, Fei-Fei

    2015-04-21

    Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Niño Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation.

  1. Spatial variability of the Arctic Ocean's double-diffusive staircase

    NASA Astrophysics Data System (ADS)

    Shibley, N. C.; Timmermans, M.-L.; Carpenter, J. R.; Toole, J. M.

    2017-02-01

    The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure overlying the Atlantic Water Layer that can be attributed to the diffusive form of double-diffusive convection. The staircase consists of multiple layers of O(1) m in thickness separated by sharp interfaces, across which temperature and salinity change abruptly. Through a detailed analysis of Ice-Tethered Profiler measurements from 2004 to 2013, the double-diffusive staircase structure is characterized across the entire Arctic Ocean. We demonstrate how the large-scale Arctic Ocean circulation influences the small-scale staircase properties. These staircase properties (layer thicknesses and temperature and salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio spanning the staircase stratification. We show that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (approximately 3-4) on the Eurasian side and higher density ratio (approximately 6-7) on the Canadian side. We find that the Eurasian Basin staircase is characterized by fewer, thinner layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin layers and the absence of a well-defined staircase. A double-diffusive 4/3 flux law parametrization is used to estimate vertical heat fluxes in the Canadian Basin to be O(0.1) W m-2. It is shown that the 4/3 flux law may not be an appropriate representation of heat fluxes through the Eurasian Basin staircase. Here molecular heat fluxes are estimated to be between O(0.01) and O(0.1) W m-2. However, many uncertainties remain about the exact nature of these fluxes.

  2. Mooring Measurements of the Abyssal Circulations in the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, F.

    2016-12-01

    A scientific observing network in the western tropical Pacific has initially been established by the Institute of Oceanology, Chinese Academy of Sciences (IOCAS). Using fifteen moorings that gives unprecedented measurements in the intermediate and abyssal layers, we present multi-timescale variations of the deep ocean circulations prior to and during 2015 El Niño event. The deep ocean velocities increase equatorward with high standard deviation and nearly zero mean. The deep ocean currents mainly flow in meridional direction in the central Philippine Basin, and are dominated by a series of alternating westward and eastward zonal jets in the Caroline Basin. The currents in the deep channel connecting the East and West Mariana Basins mainly flow southeastward. Seasonal variation is only present in the deep jets in the Caroline Basin, associating with vertical propagating annual Rossby wave. The high-frequency flow bands are dominated by diurnal, and semi-diurnal tidal currents, and near-inertial currents. The rough topography has a strong influence on the abyssal circulations, including the intensifications in velocity and internal tidal energy, and the formation of upwelling flow.

  3. Impact of tides in a baroclinic circulation model of the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Pinardi, N.; Oddo, P.; Bortoluzzi, G.; Ravaioli, M.

    2013-01-01

    AbstractThe impact of tides in the circulation of the Adriatic Sea is investigated by means of a nested baroclinic numerical ocean model. Tides are introduced using a modified Flather boundary condition at the open edge of the domain. The results show that tidal amplitudes and phases are reproduced correctly by the baroclinic model and tidal harmonic constants errors are comparable with those resulting from the most consolidated barotropic models. Numerical experiments were conducted to estimate and assess the impact of (i) the modified Flather lateral boundary condition; (ii) tides on temperature, salinity, and stratification structures in the basin; and (iii) tides on mixing and circulation in general. Tides induce a different momentum advective component in the basin, which in turn produces a different distribution of water masses in the basin. Tides impact on mixing and stratification in the River Po region (northwestern Adriatic) and induce semidiurnal fluctuations of salinity and temperature, in all four seasons for the former and summer alone for the latter. A clear presence of internal tides was evidenced in the northern Adriatic Sea basin, corroborating previous findings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUSMOS22A..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUSMOS22A..02H"><span>The volumetric flux through Deception Pass, Washington and its effects on the circulation in the Whidbey Basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heinze, K. R.</p> <p>2002-05-01</p> <p>The volumetric flux through Deception Pass, Washington will be determined by using tidal height differences between Bowman and Cornet Bays, which are located on the seaward and landward sides of Deception Pass respectively in Deception Pass State Park. Hydrolab sensors for measuring temperature, salinity and fluid depth will be attached to public boat docks in each of these bays. The numerical Puget Sound Regional Synthesis Model, PRISM, will be run with and without the flux through Deception Pass and compared to determine theoretically whether or not the flow through Deception Pass plays a significant role in the circulation of the Whidbey Basin, which could affect the circulation in the northern part of the Main Basin known as the Triple Junction. This could influence water movement near the new sewer outfall that King County is proposing to build in that area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRI..110..123A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRI..110..123A"><span>Seasonal variation of the South Indian tropical gyre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.</p> <p>2016-04-01</p> <p>Based on satellite altimeter data and global atlases of temperature, salinity, wind stress and wind-driven circulation we investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR). Results show a year-round, altimeter-derived cyclonic gyre where the upwelling regime appears closely related to seasonality of the ocean gyre, a relationship that has not been previously explored in this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. At basin-scale, the most outstanding feature is the seasonal shrinkage of the ocean gyre and the SCTR. From late autumn to spring, the eastward South Equatorial Countercurrent (SECC) recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as remote forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H43H1333K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H43H1333K"><span>Probabilistic Water Availability Prediction in the Rio Grande Basin using Large-scale Circulation Indices as Precursor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khedun, C. P.; Mishra, A. K.; Giardino, J. R.; Singh, V. P.</p> <p>2011-12-01</p> <p>Hydrometeorological conditions, and therefore water availability, is affected by large-scale circulation indices. In the Rio Grande, which is a transboundary basin shared between the United States and Mexico, the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) influence local hydrological conditions. Different sub-regions of the basin exhibit varying degrees of correlation, but in general, an increase (decrease) in runoff during El Niños (La Niñas) is noted. Positive PDO enhances the effect of El Niño and dampens the negative effect of La Niña, and when it is in its neutral/transition phase, La Niña dominates climatic conditions and reduces water availability. Further, lags of up to 3 months have been found between ENSO and precipitation in the basin. We hypothesize that (1) a trivariate statistical relationship can be established between the two climate indices and water availability, and (2) the relationship can be used to predict water availability based on projected PDO and ENSO conditions. We use copula to establish the dependence between climate indices and water availability. Water availability is generated from Noah land surface model (LSM), forced with the North American Land Data Assimilation System Phase 2 (NLDAS-2). The model is run within NASA GSFC's Land Information System. LSM generated runoff gives a more realistic picture of available surface water as it is not affected by anthropogenic changes, such as the construction of dams, diversions, and other land use land cover changes, which may obscure climatic influences. Marginals from climate indices and runoff are from different distribution families, thus conventional functional forms of multivariate frequency distributions cannot be employed. Copulas offer a viable alternative as marginals from different families can be combined into a joint distribution. Uncertainties in the statistical relationship can be determined and the statistical model can be used for prediction purposes. The outcome of the study can provide advanced warning on the expected state of surface water, based on projected ENSO and PDO conditions. Such warning may help trigger drought management plans in both the US and Mexico for example, and ensure the long-term sustainable management of water in the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS44B..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS44B..02F"><span>Geometrical constraint on the localization of deep water formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferreira, D.; Marshall, J.</p> <p>2008-12-01</p> <p>That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and a large basin in the northern hemisphere).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990DSRA...37.1385C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990DSRA...37.1385C"><span>The formation of Greenland Sea Deep Water: double diffusion or deep convection?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clarke, R. Allyn; Swift, James H.; Reid, Joseph L.; Koltermann, K. Peter</p> <p>1990-09-01</p> <p>An examination of the extensive hydrographic data sets collected by C.S.S. Hudson and F.S. Meteor in the Norwegian and Greenland Seas during February-June 1982 reveals property distributions and circulation patterns broadly similar to those seen in earlier data sets. These data sets, however, reveal the even stronger role played by topography, with evidence of separate circulation patterns and separate water masses in each of the deep basins. The high precision temperature, salinity and oxygen data obtained reveals significant differences in the deep and bottom waters found in the various basins of the Norwegian and Greenland Seas. A comparison of the 1982 data set with earlier sets shows that the renewal of Greenland Sea Deep Water must have taken place sometime over the last decade; however there is no evidence that deep convective renewal of any of the deep and bottom waters in this region was taking place at the time of the observations. The large-scale density fields, however, do suggest that deep convection to the bottom is most likely to occure in the Greenland Basin due to its deep cyclonic circulation. The hypothesis that Greenland Sea Deep Water (GSDW) is formed through dipycnal mixing processes acting on the warm salty core of Atlantic Water entering the Greenland Sea is examined. θ-S correlations and oxygen concentrations suggest that the salinity maxima in the Greenland Sea are the product of at least two separate mixing processes, not the hypothesized single mixing process leading to GSDW. A simple one-dimensional mixed layer model with ice growth and decay demonstrates that convective renewal of GSDW would have occurred within the Greenland Sea had the winter been a little more severe. The new GSDW produced would have only 0.003 less salt and less than 0.04 ml 1 -1 greater oxygen concentration than that already in the basin. Consequently, detection of whether new deep water has been produced following a winter cooling season could be difficult even with the best of modern accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918855A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918855A"><span>Arctic Ocean Pathways in the 21st century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aksenov, Yevgeny; van Gennip, Simon J.; Kelly, Stephen J.; Popova, Ekaterina E.; Yool, Andrew</p> <p>2017-04-01</p> <p>In the last three decades, changes in the Arctic environment have been occurring at an increasing rate. The opening up of large areas of previously sea ice-covered ocean affects the marine environment with potential impacts on Arctic ecosystems, including through changes in Arctic access, industries and societies. Changes to sea ice and surface winds result in large-scale shifts in ocean circulation and oceanic pathways. This study presents a high-resolution analysis of the projected ocean circulation and pathways of the Arctic water masses across the 21st century. The analysis is based on an eddy-permitting high-resolution global simulation of the ocean general circulation model NEMO (Nucleus for European Modelling of the Ocean) at the 1/4-degree horizontal resolution. The atmospheric forcing is from HadGEM2-ES model output from IPCC Assessment Report 5 (AR5) simulations performed for Coupled Model Intercomparison Project 5 (CMIP5), and follow the Representative Concentration Pathway 8.5 (RCP8.5) scenario. During the 21st century the AO experiences a significant warming, with sea surface temperature increased by in excess of 4 deg. C. Annual mean Arctic sea ice thickness drops to less than 0.5m, and the Arctic Ocean is ice-free in summer from the mid-century. We use an off-line tracer technique to investigate Arctic pathways of the Atlantic and Pacific waters (AW and PW respectively) under this future climate. The AW tracers have been released in the eastern Fram Strait and in the western Barents Sea, whereas the PW tracer has been seeded in the Bering Strait. In the second half of the century the upper 1000 m ocean circulation shows a reduction in the eastward AW flow along the continental slopes towards the Makarov and Canada basins and a deviation of the PW flow away from the Beaufort Sea towards the Siberian coast. Strengthening of Arctic boundary current and intensification of the cyclonic gyre in the Nansen basin of the Arctic Ocean is accompanied by weakening of the current and an anti-cyclonic gyre spin-up in the Makarov Basin. This presents a shift of the Arctic circulation "dipole" and of the Transpolar Drift, with the consequence that the PW flow towards Fram Strait is significantly reduced by the end of the century, weakening the Pacific-Atlantic connection via the Arctic Ocean, and reducing the Arctic freshwater outflow into the North Atlantic. Examination of the simulations suggests that these circulation changes are primarily due to the shift in the wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcSci..10..907B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcSci..10..907B"><span>On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.</p> <p>2014-11-01</p> <p>The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude-salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimate of the timescale of the circulation reveals a sluggish abyssal circulation during the LGM, and a Conveyor Belt circulation that is more vigorous due to the combination of a stronger wind stress and a shortened circulation route.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23129710','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23129710"><span>A perspective on the future of physical oceanography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Garabato, Alberto C Naveira</p> <p>2012-12-13</p> <p>The ocean flows because it is forced by winds, tides and exchanges of heat and freshwater with the overlying atmosphere and cryosphere. To achieve a state where the defining properties of the ocean (such as its energy and momentum) do not continuously increase, some form of dissipation or damping is required to balance the forcing. The ocean circulation is thought to be forced primarily at the large scales characteristic of ocean basins, yet to be damped at much smaller scales down to those of centimetre-sized turbulence. For decades, physical oceanographers have sought to comprehend the fundamentals of this fractal puzzle: how the ocean circulation is driven, how it is damped and how ocean dynamics connects the very different scales of forcing and dissipation. While in the last two decades significant advances have taken place on all these three fronts, the thrust of progress has been in understanding the driving mechanisms of ocean circulation and the ocean's ensuing dynamical response, with issues surrounding dissipation receiving comparatively little attention. This choice of research priorities stems not only from logistical and technological difficulties in observing and modelling the physical processes responsible for damping the circulation, but also from the untested assumption that the evolution of the ocean's state over time scales of concern to humankind is largely independent of dissipative processes. In this article, I illustrate some of the key advances in our understanding of ocean circulation that have been achieved in the last 20 years and, based on a range of evidence, contend that the field will soon reach a stage in which uncertainties surrounding the arrest of ocean circulation will pose the main challenge to further progress. It is argued that the role of the circulation in the coupled climate system will stand as a further focal point of major advances in understanding within the next two decades, supported by the drive of physical oceanography towards a more operational enterprise by contextual factors. The basic elements that a strategy for the future must have to foster progress in these two areas are discussed, with an overarching emphasis on the promotion of curiosity-driven fundamental research against opposing external pressures and on the importance of upholding fundamental research as the apex of education in the field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.tmp..490M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.tmp..490M"><span>Statistical downscaling of precipitation using long short-term memory recurrent neural networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra</p> <p>2017-11-01</p> <p>Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.204..286B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.204..286B"><span>Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bates, Stephanie L.; Hendry, Katharine R.; Pryer, Helena V.; Kinsley, Christopher W.; Pyle, Kimberley M.; Woodward, E. Malcolm S.; Horner, Tristan J.</p> <p>2017-05-01</p> <p>We diagnose the relative influences of local-scale biogeochemical cycling and regional-scale ocean circulation on Atlantic barium cycling by analysing four new depth profiles of dissolved Ba concentrations and isotope compositions from the South and tropical North Atlantic. These new profiles exhibit systematic vertical, zonal and meridional variations that reflect the influence of both local-scale barite cycling and large-scale ocean circulation. Epipelagic decoupling of dissolved Ba and Si reported previously in the tropics is also found to be associated with significant Ba isotope heterogeneity. As such, we contend that this decoupling originates from the depth segregation of opal and barite formation but is exacerbated by weak vertical mixing. Zonal influence from isotopically-'heavy' water masses in the western North Atlantic evidence the advective inflow of Ba-depleted Upper Labrador Sea Water, which is not seen in the eastern basin or the South Atlantic. Meridional variations in Atlantic Ba isotope systematics below 2000 m appear entirely controlled by conservative mixing. Using an inverse isotopic mixing model, we calculate the Ba isotope composition of the Ba-poor northern end-member as +0.45 ‰ and the Ba-rich southern end-member +0.26 ‰, relative to NIST SRM 3104a. The near-conservative behaviour of Ba below 2000 m indicates that Ba isotopes can serve as an independent tracer of the provenance of northern- versus southern-sourced water masses in the deep Atlantic Ocean. This finding may prove useful in palaeoceanographic studies, should appropriate sedimentary archives be identified, and offers new insights into the processes that cycle Ba in seawater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CSR...156...43K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CSR...156...43K"><span>Recent surface cooling in the Yellow and East China Seas and the associated North Pacific climate regime shift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Yong Sun; Jang, Chan Joo; Yeh, Sang-Wook</p> <p>2018-03-01</p> <p>The Yellow and East China Seas (YECS) are widely believed to have experienced robust, basin-scale warming over the last few decades. However, the warming reached a peak in the late 1990s, followed by a significant cooling trend. In this study, we investigated the characteristics of this low-frequency sea surface temperature (SST) variance and its dynamic relationship with large-scale climate variability through cyclostationary orthogonal function analysis for the 1982-2014 period. Both regressed surface winds on the primary mode of the YECS SST and trends in air-sea heat fluxes demonstrate that the intensification of the northerly winds in winter contribute largely to the recent cooling trend by increasing heat loss to the atmosphere. As a localized oceanic response to these winds, the upwind flow seems to bring warm waters and partially counteracts the basin-scale cooling, thus contributing to a weakening of the cooling trend along the central trough of the Yellow Sea. In the context of the large-scale climate variabilities, a strong relationship between the YECS SST variability and Pacific Decadal Oscillation (PDO) became weak considerably during the recent cooling period after the late 1990s as the PDO signals appeared to be confined within the eastern basin of the North Pacific in association with the regime shift. In addition to this decoupling of the YECS SST from the PDO, the intensifying Siberian High pressure system likely caused the enhanced northerly winds, leading to the recent cooling trend. These findings highlight relative roles of the PDO and the Siberian High in shaping the YECS SST variance through the changes in the large-scale atmospheric circulation and attendant oceanic advection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815149B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815149B"><span>Characterising the hydrothermal circulation patterns beneath thermal springs in the limestones of the Carboniferous Dublin Basin, Ireland: a geophysical and geochemical approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozár, Jan; Walsh, John; Rath, Volker</p> <p>2016-04-01</p> <p>A hydrogeological conceptual model of the sources, circulation pathways and temporal variations of two low-enthalpy thermal springs is derived from a multi-disciplinary approach. The springs are situated in the Carboniferous limestones of the Dublin Basin, in east-central Ireland. Kilbrook spring (Co. Kildare) has the highest recorded temperatures for any thermal spring in Ireland (maximum of 25.0 °C), and St. Gorman's Well (Co. Meath) has a complex and variable temperature profile (maximum of 21.8 °C). These temperatures are elevated with respect to average Irish groundwater temperatures (9.5 - 10.5 °C), and represent a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon audio-magnetotelluric (AMT) surveys, time-lapse temperature and chemistry measurements, and hydrochemical analysis, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The hydrochemical analysis indicates that the thermal waters flow within the limestones of the Dublin Basin, and there is evidence that Kilbrook spring receives a contribution from deep-basinal fluids. The time-lapse temperature, electrical conductivity and water level records for St. Gorman's Well indicate a strongly non-linear response to recharge inputs to the system, suggestive of fluid flow in karst conduits. The 3-D electrical resistivity models of the subsurface revealed two types of geological structure beneath the springs; (1) Carboniferous normal faults, and (2) Cenozoic strike-slip faults. These structures are dissolutionally enhanced, particularly where they intersect. The karstification of these structures, which extend to depths of at least 500 m, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 240 and 1,000 m) within the Dublin Basin. The results of this study support a hypothesis that the thermal maximum and simultaneous increased discharge observed each winter at both springs is the result of rapid infiltration, heating and re-circulation of meteoric waters within a structurally- and recharge-controlled hydrothermal circulation system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP21B2223D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP21B2223D"><span>Role of Marine Gateways in the Paleoceanography of the Miocene Mediterranean Sea; A Model Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de la Vara, A.; Meijer, P. T.</p> <p>2015-12-01</p> <p>During the Miocene, due to the convergence of the African plate and the Eurasian plate, the Mediterranean region was subject to profound paleogeographic changes. The evolving coastline and bathymetry of the Mediterranean Sea and, in particular, the opening and closure of the marine connections between the Mediterranean and the outside oceans, triggered important changes in Mediterranean circulation and, indirectly, also affected the global-scale ocean circulation. Until about the Middle Miocene the proto-Mediterranean Sea was open to the Indo-Pacific Ocean through the so-called Indian Gateway. Although the exact age of closure of this gateway is still debated, it is accepted that it substantially affected the paleoceanography of the Mediterranean Sea. Later in time, during the Late Miocene, the Mediterranean was only connected to the Atlantic Ocean but by two marine corridors: the Betic and Rifian corridors. Closure of these narrow passages resulted in the Messinian Salinity Crisis, during which a sequence of evaporites was deposited throughout the Mediterranean basin. In this work we use a regional-scale ocean general circulation model (the Princeton Ocean Model) to gain insight into the role of the evolving gateways. The analysis focuses on large-scale (overturning) circulation, patterns of exchange in the gateways and properties of the Mediterranean water. By comparing our model results to geological data we are able to propose new scenarios or rule out previously proposed ones, and determine the conditions evidenced by the geological observations. More specifically we investigate two different topics: (i) the effects of shoaling and closure of the Indian Gateway and (ii) the functioning of the Late Miocene double gateway to the Atlantic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1047/srp/srp053/of2007-1047srp053.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1047/srp/srp053/of2007-1047srp053.pdf"><span>Microstructural study of natural fractures in Cape Roberts Project 3 core, Western Ross Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Millan, C.; Wilson, T.; Paulsen, T.</p> <p>2007-01-01</p> <p>Microstructures in natural fractures in core recovered offshore from Cape Roberts, Ross Sea, Antarctica, provide new constraints on the relative timing of faulting and sedimentation in the Victoria Land Basin along the Transantarctic Mountain rift flank. This study characterizes the textures, fabrics and grain-scale structures from thin section analysis of samples of microfaults, veins, and clastic dikes. Microfaults are abundant and display two different types of textures, interpreted to record two different deformation modes: pre-lithification shearing and brittle faulting of cohesive sediment. Both clastic dikes and calcite veins commonly follow fault planes, indicating that injections of liquefied sediment and circulating fluids used pre-existing faults as conduits. The close association of clastic injections, diagenetic mineralization, and faulting indicates that faulting was synchronous with deposition in the rift basin</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H24D..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H24D..06L"><span>Bayesian Non-Stationary Flood Frequency Estimation at Ungauged Basins Using Climate Information and a Scaling Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lima, C. H.; Lall, U.</p> <p>2010-12-01</p> <p>Flood frequency statistical analysis most often relies on stationary assumptions, where distribution moments (e.g. mean, standard deviation) and associated flood quantiles do not change over time. In this sense, one expects that flood magnitudes and their frequency of occurrence will remain constant as observed in the historical information. However, evidence of inter-annual and decadal climate variability and anthropogenic change as well as an apparent increase in the number and magnitude of flood events across the globe have made the stationary assumption questionable. Here, we show how to estimate flood quantiles (e.g. 100-year flood) at ungauged basins without needing to consider stationarity. A statistical model based on the well known flow-area scaling law is proposed to estimate flood flows at ungauged basins. The slope and intercept scaling law coefficients are assumed time varying and a hierarchical Bayesian model is used to include climate information and reduce parameter uncertainties. Cross-validated results from 34 streamflow gauges located in a nested Basin in Brazil show that the proposed model is able to estimate flood quantiles at ungauged basins with remarkable skills compared with data based estimates using the full record. The model as developed in this work is also able to simulate sequences of flood flows considering global climate changes provided an appropriate climate index developed from the General Circulation Model is used as a predictor. The time varying flood frequency estimates can be used for pricing insurance models, and in a forecast mode for preparations for flooding, and finally, for timing infrastructure investments and location. Non-stationary 95% interval estimation for the 100-year Flood (shaded gray region) and 95% interval for the 100-year flood estimated from data (horizontal dashed and solid lines). The average distribution of the 100-year flood is shown in green in the right side.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T41B0620R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T41B0620R"><span>On the Role of Subduction Dynamics on Emplacement of Metamorphic Core Complexes and Geothermal Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roche, V. M.; Sternai, P.; Guillou-Frottier, L.; Menant, A.; Jolivet, L.; Bouchot, V.; Gerya, T.</p> <p>2017-12-01</p> <p>Subduction-induced extensional tectonics in back-arc domains results in the development of metamorphic core complexes (MCCs) and low-angle normal faults (detachments) that also control magma ascent and fluid circulation. However, possible links with the genesis of high-enthalpy geothermal resources (HEGRs) remain barely explored, and no unifying mechanism responsible for both the generation of MCCs and emplacement of HEGRs has yet been recognized. Although discussions on the possible role of magmatic intrusions beneath these systems are still active, another source of heat is required when one considers the scale of a geothermal Province. An additional source of heat, for instance, could arise from the deep dynamics implied by large-scale tectonic processes such as subduction. Firstly, we investigate subduction dynamics through 3D numerical geodynamic models involving slab rollback and tearing constrained primarily by, geothermal anomaly measurements from western Turkey. Our results show that subduction-induced extensional tectonics controls the genesis and distribution of crustal-scale thermal domes, analogous to crustal and lithospheric boudinage. The thermal domes weaken the crust, localize deformation and enhance development of crustal-scale detachments. Thus, these thermo-mechanical instabilities primarily trigger and control the distribution of MCCs. In addition, subduction-related asthenospheric return flow and shear heating in the mantle increase the temperature of the Moho by up to 250°C. Such forcing is observed in natural settings such as the Menderes (western Anatolia) and the Basin and Range (Western United States). Secondly, the numerically-obtained subduction-induced thermal signature at the base of the continental crust is then imposed as basal thermal condition for 2D high-resolution crustal models dedicated to the understanding of fluid flow around detachments. Our results show that permeable detachments control the bulk of the heat transport and fluid circulation patterns at shallow depth, thus creating favourable zones for HEGRS, as illustrated in the Menderes Massif and in the Basin & Range province.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983SvPhU..26..906A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983SvPhU..26..906A"><span>REVIEWS OF TOPICAL PROBLEMS: Free convection in geophysical processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alekseev, V. V.; Gusev, A. M.</p> <p>1983-10-01</p> <p>A highly significant geophysical process, free convection, is examined. Thermal convection often controls the dynamical behavior in several of the earth's envelopes: the atmosphere, ocean, and mantle. Section 2 sets forth the thermohydrodynamic equations that describe convection in a compressible or incompressible fluid, thermochemical convection, and convection in the presence of thermal diffusion. Section 3 reviews the mechanisms for the origin of the global atmospheric and oceanic circulation. Interlatitudinal convection and jet streams are discussed, as well as monsoon circulation and the mean meridional circulation of ocean waters due to the temperature and salinity gradients. Also described are the hypotheses for convective motion in the mantle and the thermal-wave (moving flame) mechanism for inducing global circulation (the atmospheres of Venus and Mars provide illustrations). Eddy formation by convection in a centrifugal force field is considered. Section 4 deals with medium- and small-scale convective processes, including hurricane systems with phase transitions, cellular cloud structure, and convection penetrating into the ocean, with its stepped vertical temperature and salinity microstructure. Self-oscillatory processes involving convection in fresh-water basins are discussed, including effects due to the anomalous (p,T) relation for water.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP23C2317N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP23C2317N"><span>Investigation into MIS 11 in the U.S. Great Basin Using Trace Elements and Stable Isotopes from two Lehman Caves Stalagmites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neary, A.; McGee, D.; Tal, I.; Shakun, J. D.</p> <p>2015-12-01</p> <p>Marine Isotope Stage 11 (MIS 11) represents a long interglacial period of high temperatures and muted orbital variability that occurred around 424-374 kya, and is referred to as a 'super-interglacial'. MIS 11 is marked by especially pronounced high latitude warming in the Northern Hemisphere from 410-400 ka and thus presents a natural experiment for investigating the response of Great Basin precipitation to high latitude temperatures.MIS 11 is recorded by stalagmites LC3 and BT1 from Lehman Caves in Great Basin National Park, Nevada. LC3 represents 378-413 ka, while BT1 has a bottom age of 410 ka. Ongoing U-Th dating will refine chronologies from these samples. We will present stable isotope (δ13C and δ18O) and trace element (Mg/Ca and Sr/Ca) data from these stalagmites to study changes in precipitation recorded in them. Previous studies have shown a relationship between Mg/Ca, Sr/Ca, δ13C and prior calcite precipitation, and thus infiltration rates, in the cave system (Cross et al., 2015; Steponaitis et al., 2015). Meanwhile, δ18O has been shown to reflect larger scale atmospheric circulation.We will compare the records to previously published trace element and stable isotope data from more recent interglacials (Lachniet et al., 2014; Cross et al., 2015; Steponaitis et al., 2015) to test whether extensive high-latitude warming during MIS 11 was marked by anomalous precipitation patterns in the Great Basin. As they are coeval, we will also test the reproducibility between the stalagmites.References cited:Cross M., et al. (2015) Great Basin hydrology, paleoclimate, and connections with the North Atlantic: A speleothem stable isotope and trace element record from Lehman Caves, NV. Quaternary Science Reviews, in press.Steponaitis E., et al. (2015) Mid-Holocene drying the U.S. Great Basin recorded in Nevada speleothems. Quaternary Science Reviews, in press.Lachniet M. S., et al. (2014) Orbital control of western North America atmospheric circulation and climate over two glacial cycles. Nature Communications 5, 1-8.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70093982','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70093982"><span>Streamflow changes in the Sierra Nevada, California, simulated using a statistically downscaled general circulation model scenario of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilby, Robert L.; Dettinger, Michael D.</p> <p>2000-01-01</p> <p>Simulations of future climate using general circulation models (GCMs) suggest that rising concentrations of greenhouse gases may have significant consequences for the global climate. Of less certainty is the extent to which regional scale (i.e., sub-GCM grid) environmental processes will be affected. In this chapter, a range of downscaling techniques are critiqued. Then a relatively simple (yet robust) statistical downscaling technique and its use in the modelling of future runoff scenarios for three river basins in the Sierra Nevada, California, is described. This region was selected because GCM experiments driven by combined greenhouse-gas and sulphate-aerosol forcings consistently show major changes in the hydro-climate of the southwest United States by the end of the 21st century. The regression-based downscaling method was used to simulate daily rainfall and temperature series for streamflow modelling in three Californian river basins under current-and future-climate conditions. The downscaling involved just three predictor variables (specific humidity, zonal velocity component of airflow, and 500 hPa geopotential heights) supplied by the U.K. Meteorological Office couple ocean-atmosphere model (HadCM2) for the grid point nearest the target basins. When evaluated using independent data, the model showed reasonable skill at reproducing observed area-average precipitation, temperature, and concomitant streamflow variations. Overall, the downscaled data resulted in slight underestimates of mean annual streamflow due to underestimates of precipitation in spring and positive temperature biases in winter. Differences in the skill of simulated streamflows amongst the three basins were attributed to the smoothing effects of snowpack on streamflow responses to climate forcing. The Merced and American River basins drain the western, windward slope of the Sierra Nevada and are snowmelt dominated, whereas the Carson River drains the eastern, leeward slope and is a mix of rainfall runoff and snowmelt runoff. Simulated streamflow in the American River responds rapidly and sensitively to daily-scale temperature and precipitation fluctuations and errors; in the Merced and Carson Rivers, the response to the same short-term influences is much less. Consequently, the skill of simulated flows was significantly lower in the American River model than in the Carson and Merced. The physiography of the three basins also accounts for differences in their sensitivities to future climate change. Increases in winter precipitation exceeding +100% coupled with mean temperature rises greater than +2°C result in increased winter streamflows in all three basins. In the Merced and Carson basins, these streamflow increases reflect large changes in winter snowpack, whereas the streamflow changes in the lower elevation American basin are driven primarily by rainfall runoff. Furthermore, reductions in winter snowpack in the American River basin, owing to less precipitation falling as snow and earlier melting of snow at middle elevations, lead to less spring and summer streamflow. Taken collectively, the downscaling results suggest significant changes to both the timing and magnitude of streamflows in the Sierra Nevada by the end of the 21st Century. In the higher elevation basins, the HadCM2 scenario implies more annual streamflow and more streamflow during the spring and summer months that are critical for water-resources management in California. Depending on the relative significance of rainfall runoff and snowmelt, each basin responds in its own way to regional climate forcing. Generally, then, climate scenarios need to be specified — by whatever means — with sufficient temporal and spatial resolution to capture subtle orographic influences if projections of climate-change responses are to be useful and reproducible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMPP23B1752E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMPP23B1752E"><span>The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elguindi, N.; Thrasher, B.; Sloan, L. C.</p> <p>2006-12-01</p> <p>Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T23E2648E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T23E2648E"><span>From 2012 HAITI-SIS Survey: thick-skin versus thin-skin tectonics partitioned along offshore strike-slip Faults-Haïti</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellouz, N.; Leroy, S. D.; Momplaisir, R.; Mercier de Lepinay, B.</p> <p>2013-12-01</p> <p>The characterization of the deformation along large strike-slip fault-systems like transpressive boundaries between N. Caribbean/N America is a challenging topic, which requires a multi-scale approach. Thanks to Haiti-sis new data, the precise description of the fault segmentation pattern, the sedimentogical distribution, the uplift/subsidence rates, the along-fault and intra-basin fluids circulations, allows to actualize the evolution of the deformation history up to present-day . All the co-seismic surface to near-surface events, have to be also identified in order to integrate geophysical solutions for the earthquake, within the present-day geological and structural pattern. These two approaches, ranging from geological to instantaneous time-scales have been used during multi-tools Haiti-Sis oceanographic survey, allowing to document and image these different aspects at a large scale. The complex strike-slip North Caribbean boundary registered significative stress partitioning. Oblique convergence is expressed by along-strike evolution; from rifted segments (Cayman Through) to transpressive ones (Haiti, Dominican Rep.), to subduction (Porto Rico). In the Haiti-Sis survey, we acquired new offshore data surrounding the active fault areas, in the Gonâve Bay, the Jamaica Channel and along Southern Peninsula. Mapping the sea-floor, and HR seismic acquisition were our main objectives, in order to characterize the fault and fold architecture, with a new delineation of active segments. Offshore piston cores, have been used as representative of the modern basin sedimentation, and to document the catastrophic events (earthquakes, massive flood or sudden destabilization of the platform ) represented by turbiditic or mass-flow sequences, with the objective to track the time recurrence of seismic events by dating some of these catastrophic sediment deposition. At surface, the other markers of the fault activity are linked with along-fault permeability and fluid circulation pathway changes. Geochemical signature and temperature of the fluids and gas, change drastically depending on location and depth provenance. Our first results show that 1) the present-day EPGF geometry results from oblique shortening processes along different segments of the fault. Deep basins previously localized south and north of the fault are inverted at different degrees, 2) the Gonâve Island is only the emerged part of a NW-SE, either growing large " anti-formal stack" or basement inversion responsible for the large present-day fold amplitude, or both of them successively. It separates two sub-basins South and North Gonâve with independant sedimentary and deformation evolution 3) the Jeremie Basin probably has a specific long-living evolution, allowing to precise the geodynamic evolution of the Western Hispaniola Margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25602549','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25602549"><span>Effect of climate change on environmental flow indicators in the narew basin, poland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Piniewski, Mikołaj; Laizé, Cédric L R; Acreman, Michael C; Okruszko, Tomasz; Schneider, Christof</p> <p>2014-01-01</p> <p>Environmental flows-the quantity of water required to maintain a river ecosystem in its desired state-are of particular importance in areas of high natural value. Water-dependent ecosystems are exposed to the risk of climate change through altered precipitation and evaporation. Rivers in the Narew basin in northeastern Poland are known for their valuable river and wetland ecosystems, many of them in pristine or near-pristine condition. The objective of this study was to assess changes in the environmental flow regime of the Narew river system, caused by climate change, as simulated by hydrological models with different degrees of physical characterization and spatial aggregation. Two models were assessed: the river basin scale model Soil and Water Assessment Tool (SWAT) and the continental model of water availability and use WaterGAP. Future climate change scenarios were provided by two general circulation models coupled with the A2 emission scenario: IPSL-CM4 and MIROC3.2. To assess the impact of climate change on environmental flows, a method based conceptually on the "range of variability" approach was used. The results indicate that the environmental flow regime in the Narew basin is subject to climate change risk, whose magnitude and spatial variability varies with climate model and hydrological modeling scale. Most of the analyzed sites experienced moderate impacts for the Generic Environmental Flow Indicator (GEFI), the Floodplain Inundation Indicator, and the River Habitat Availability Indicator. The consistency between SWAT and WaterGAP for GEFI was medium: in 55 to 66% of analyzed sites, the models suggested the same level of impact. Hence, we suggest that state-of-the-art, high-resolution, global- or continental-scale models, such as WaterGAP, could be useful tools for water management decision-makers and wetland conservation practitioners, whereas models such as SWAT should serve as a complementary tool for more specific, smaller-scale, local assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A33J0415R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A33J0415R"><span>Improving Seasonal Climate Predictability in the Colorado River Basin for Enhanced Decision Support</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rajagopal, S.; Mahmoud, M. I.</p> <p>2016-12-01</p> <p>The water resource management community is increasingly seeking skillful seasonal climate forecasts with long lead times. But predicting wet or dry climate with sufficient lead time (3 months) for a season (especially winter) in the Colorado River Basin (CRB) is a challenging problem. The typical approach taken to predicting winter climate is based on using climate indices and climate models to predict precipitation or streamflow in the Colorado River Basin. In addition to this approach; which may have a long lead time, water supply forecasts are also generated based on current observations by the Colorado River Forecast Center. Recently, the effects of coupled atmospheric-ocean phenomena such as ENSO over North America, and atmospheric circulation patterns at the 500 mb pressure level, which make the CRB wet or dry, have been studied separately. In the current work we test whether combining climate indices and circulation patterns improve predictability in the CRB. To accomplish this, the atmospheric circulation data from the Earth System Research Laboratory (ESRL) and climate indices data from the Climate Prediction Center were combined using logical functions. To quantify the skill in prediction, statistics such as the hit ratio and false alarm ratio were computed. The results from using a combination of climate indices and atmospheric circulation patterns suggest that there is an improvement in the prediction skill with hit ratios higher than 0.8, as compared to using either predictor individually (which typically produced a hit ratio of 0.6). Based on this result, there is value in using this hybrid approach when compared to a black box statistical model, as the climate index is an analog to the moisture availability and the right atmospheric circulation pattern helps in transporting that moisture to the Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150007763&hterms=topography&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtopography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150007763&hterms=topography&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtopography"><span>KARIN: The Ka-Band Radar Interferometer for the Proposed Surface Water and Ocean Topography (SWOT) Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Esteban-Fernandez, Daniel; Peral, Eva; McWatters, Dalia; Pollard, Brian; Rodriguez, Ernesto; Hughes, Richard</p> <p>2013-01-01</p> <p>Over the last two decades, several nadir profiling radar altimeters have provided our first global look at the ocean basin-scale circulation and the ocean mesoscale at wavelengths longer than 100 km. Due to sampling limitations, nadir altimetry is unable to resolve the small wavelength ocean mesoscale and sub-mesoscale that are responsible for the vertical mixing of ocean heat and gases and the dissipation of kinetic energy from large to small scales. The proposed Surface Water and Ocean Topography (SWOT) mission would be a partnership between NASA, CNES (Centre National d'Etudes Spaciales) and the Canadian Space Agency, and would have as one of its main goals the measurement of ocean topography with kilometer-scale spatial resolution and centimeter scale accuracy. In this paper, we provide an overview of all ocean error sources that would contribute to the SWOT mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413900G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413900G"><span>Modelling the baroclinic circulation with tidal components in the Adriatic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guarnieri, A.; Pinardi, N.; Oddo, P.; Bortoluzzi, G.; Ravaioli, M.</p> <p>2012-04-01</p> <p>The impact of tides in the circulation of the Adriatic sea has been investigated by means of a nested baroclinic numerical ocean model. Tides have been introduced using a modified Flather boundary condition at the open side of the domain. The results show that tidal amplitudes and phases are reproduced correctly by the baroclinic model and the tidal harmonic constants errors are comparable with those resulting from the most consolidated barotropic models. Numerical experiments were conducted to estimate and assess the impact of (i) the modified Flather lateral boundary condition, (ii) the tides on temperature, salinity and stratification structures in the basin, and (iii) the tides on mixing and circulation in general. Tides induce a different momentum advective component in the basin which in turn produces a different distribution of water masses in the basin. Tides impact on mixing and stratification in the Po river region (north-western Adriatic) and induce fluctuations of salinity and temperature on semidiurnal frequencies in all seasons for the first and only winter for the second.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1002184-multi-scale-modeling-puget-sound-using-unstructured-grid-coastal-ocean-model-from-tide-flats-estuaries-coastal-waters','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1002184-multi-scale-modeling-puget-sound-using-unstructured-grid-coastal-ocean-model-from-tide-flats-estuaries-coastal-waters"><span>Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Zhaoqing; Khangaonkar, Tarang</p> <p>2010-11-19</p> <p>Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolutionmore » (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914928D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914928D"><span>Biogeochemistry and plankton variabilities in the Mediterranean Sea: a long-term 3D coupled modelling approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dos Santos, Alex; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick</p> <p>2017-04-01</p> <p>The Mediterranean Sea is a semi-enclosed basin between Europe, Asia and North Africa. Around half a billion people (7% of the world population) live in this region, in 22 countries. The Mediterranean Sea is crossed by about one third of the world's total merchant shipping each year, representing a strong anthropogenic pressure on its ecosystems. Additionally, important climatic differences between Africa and Europe make the Mediterranean Sea a high gradients area, and thus can explain why it is very sensitive to climate change. Indeed, changes in temperature and salinity have already been observed in its deep waters. The semi-enclosed sea displays hydrodynamical processes which can be observed on a global scale, such as a thermohaline circulation or dense water formations, and a wide variety of trophic regimes. Studying environmental changes in the Mediterranean Sea can therefore bring insights for the global ocean. In this context, we propose to investigate the impact of climate and anthropogenic changes on the Mediterranean Sea pelagic planktonic ecosystems. A long-term historical simulation (hindcast) is performed in order to evaluate these changes. The regional ocean model NEMO-MED12, computing the circulation at a 1/12° resolution, is used to force offline the biogeochemical model ECO3M-S. After a validation of the simulation with existing data, a focus is made on the interannual variability of our key variables for the studied period: biogeochemical cycles are discussed, and nutrients budgets are computed on a basin scale. Finally, estimations of subsequent primary production and the structure of projected planktonic ecosystems are analysed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.3463C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.3463C"><span>Variations in the correlation between teleconnections and Taiwan's streamflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Chia-Jeng; Lee, Tsung-Yu</p> <p>2017-07-01</p> <p>Interannual variations in catchment streamflow represent an integrated response to anomalies in regional moisture transport and atmospheric circulations and are ultimately linked to large-scale climate oscillations. This study conducts correlation analysis to calculate how summertime (July-September, JAS) streamflow data derived at 28 upstream and 13 downstream gauges in Taiwan correlate with 14 teleconnection indices in the current or preceding seasons. We find that the western Pacific (WP) and Pacific-Japan (PJ) patterns, both of which play a critical role in determining cyclonic activity in the western North Pacific basin, exhibit the highest concurrent correlations (most significant r = 0. 50) with the JAS flows in Taiwan. Alternatively, the Quasi-Biennial Oscillation (QBO) averaged over the period from the previous October to June of the current year is significantly correlated with the JAS flows (most significant r = -0. 66), indicating some forecasting utility. By further examining the correlation results using a 20-year moving window, peculiar temporal variations and possible climate regime shifts (CRSs) can be revealed. A CRS test is employed to identify suspicious and abrupt changes in the correlation. The late 1970s and 1990s are identified as two significant change points. During the intermediate period, Taiwan's streamflow and the PJ index exhibit a marked in-phase relationship (r > 0. 8). It is verified that the two shifts are in concordance with the alteration of large-scale circulations in the Pacific basin by investigating the changes in pattern correlation and composite maps before and after the change point. Our results suggest that empirical forecasting techniques should take into account the effect of CRSs on predictor screening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.kgs.ku.edu/Publications/Bulletins/CQS3/cqs3.pdf','USGSPUBS'); return false;" href="http://www.kgs.ku.edu/Publications/Bulletins/CQS3/cqs3.pdf"><span>Saline water in the Little Arkansas River Basin area, south-central Kansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Leonard, Robert B.; Kleinschmidt, Melvin K.</p> <p>1976-01-01</p> <p>Ground water in unconsolidated deposits of Pleistocene age in part of the Little Arkansas River basin has been polluted by the influx of saline water. The source of the saline water generally is oil-field brine that leaked from disposal ponds on the land surface. Locally, pollution by saline water also has been caused by upwelling of oil-field brine injected under pressure into the "lost-circulation zone" of the Lower Permian Wellington Formation and, possibly, by leakage of brine from corroded or improperly cased disposal wells. Anomalously high concentrations of chloride ion in some reaches of the Little Arkansas River probably can be attributed to pollution by municipal wastes rather than from inflow of saline ground water. Hydraulic connection exists between the "lost-circulation zone" and unconsolidated deposits, as evidenced by the continuing development of sinkholes, by the continuing discharge of saline water through springs and seeps along the Arkansas River south of the Little Arkansas River basin and by changes in the chloride concentration in water pumped from wells in the "lost-circulation zone." The hydraulic head in the "lost-circulation zone" is below the base of the unconsolidated deposits, and much below the potentiometric surface of the aquifer in those deposits. Any movement of water, therefore, would be downward from the "fresh-water" aquifer to the saline "lost-circulation zone."</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9532W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9532W"><span>Sub-tidal Circulation in a deep-silled fjord: Douglas Channel, British Columbia (Canada)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wan, Di; Hannah, Charles; Foreman, Mike</p> <p>2016-04-01</p> <p>Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in Kitimat fjord system that opens to Queen Charlotte Sound and Hecate Strait. The fjord is separated from the open shelf by a broad sill that is about 150 m deep, and there is another sill (200 m) that separates the fjord into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected from three moorings deployed during 2013-2015, and the water property observations collected during six cruises (2014 and 2015). Estuarine flow dominates the circulation above the sill-depth. The deep flows are dominated by a yearly renewal that takes place from early June to September, and this dense water renews both basins in the form of gravity currents at 0.1 - 0.2 m/s with a thickness of 100 m. At other times of the year, the deep flow structures and water properties suggest horizontal and vertical processes and support the re-circulation idea in the inner and the outer basins. The near surface current velocity fluctuations are dominated by the along-channel wind. Overall, the circulation in the meteorological band is a mix of the estuarine flow, direct wind driven flow, and the baroclinic response to changes to the surface pressure gradient caused by the wind driven currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CliPa..12..837A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CliPa..12..837A"><span>Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin</p> <p>2016-04-01</p> <p>Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JGR...104.3075R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JGR...104.3075R"><span>Deep inflow into the Mozambique Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Read, J. F.; Pollard, R. T.</p> <p>1999-02-01</p> <p>More than 200 conductivity-temperature-depth (CTD) stations were worked around the Southwest Indian Ridge and Del Caño Rise as part of the World Ocean Circulation Experiment. A selection of these data provides information about the inflow of bottom water into the Mozambique Basin. The basin is closed below 3000 m, yet the inflow is significantly large, of order 1 Sv (1 Sv = 106 m3 s-1). Estimates of the basin-scale upwelling at 4000 m suggest that the vertical velocity is also large, 10 × 10-5 cm s-1 or more, an order of magnitude greater than global ocean estimates. Examination of the characteristics of the bottom water in the Mozambique and Agulhas Basins and the Prince Edward Fracture Zone shows that bottom water enters the Mozambique Basin from the Agulhas Basin and also directly from the Enderby Basin. Most of the transport enters the Mozambique Basin via the Agulhas Basin, where two regions of northward flow below 4000 m are found. The major flow, on the eastern flank of the Mozambique Ridge, is through and above the deep, extending (5900 m) trench that connects the Agulhas and Mozambique Basins. The second, weaker flow enters the Transkei Basin along the deep eastern flank of the Agulhas Plateau, then turning east into the Mozambique Basin. The only source of bottom water to the Agulhas Basin is the Enderby Basin, but a more direct route between the Enderby and Mozambique Basins exists via the Prince Edward fracture, which extends deeper than 4000 m throughout its length and links the two basins directly across the Southwest Indian Ridge. Full depth CTD stations trace the changing characteristics of the deep and bottom water in the fracture, and moored current meter data show the strength and persistence of the throughflow. Strong mixing with the overlying deep water elevates the salt content of the bottom water by comparison with the other water in the Mozambique Basin. Thus two distinct bottom waters of the Mozambique Basin originate in the same place (the Enderby Basin), and their different characteristics are solely a function of the routes they have taken and the processes encountered along the different pathways.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.4691L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.4691L"><span>Early summer southern China rainfall variability and its oceanic drivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Weijing; Ren, Hong-Chang; Zuo, Jinqing; Ren, Hong-Li</p> <p>2018-06-01</p> <p>Rainfall in southern China reaches its annual peak in early summer (May-June) with strong interannual variability. Using a combination of observational analysis and numerical modeling, the present study investigates the leading modes of this variability and its dynamic drivers. A zonal dipole pattern termed the southern China Dipole (SCD) is found to be the dominant feature in early summer during 1979-2014, and is closely related to a low-level anomalous anticyclone over the Philippine Sea (PSAC) and a Eurasian wave-train pattern over the mid-high latitudes. Linear regressions based on observations and numerical experiments using the CAM5 model suggest that the associated atmospheric circulation anomalies in early summer are linked to decaying El Niño-Southern Oscillation-like sea surface temperature (SST) anomalies in the tropical Pacific, basin-scale SST anomalies in the tropical Indian Ocean, and meridional tripole-like SST anomalies in the North Atlantic in the previous winter to early summer. The tropical Pacific and Indian Ocean SST anomalies primarily exert an impact on the SCD through changing the polarity of the PSAC, while the North Atlantic tripole-like SST anomalies mainly exert a downstream impact on the SCD by inducing a Eurasian wave-train pattern. The North Atlantic tripole-like SST anomalies also make a relatively weak contribution to the variations of the PSAC and SCD through a subtropical teleconnection. Modeling results indicate that the three-basin combined forcing has a greater impact on the SCD and associated circulation anomalies than the individual influence from any single oceanic basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H21A1366R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H21A1366R"><span>Large Scale Processes and Extreme Floods in Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.</p> <p>2016-12-01</p> <p>Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMPP33B1574E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMPP33B1574E"><span>Multi-Decadal to Millennial Scale Holocene Hydrologic Variation in the Southern Hemisphere Tropics of South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ekdahl, E. J.; Fritz, S. C.; Baker, P. A.; Burns, S. J.; Coley, K.; Rigsby, C. A.</p> <p>2005-12-01</p> <p>Numerous sites in the Northern Hemisphere show multi-decadal to millennial scale climate variation during the Holocene, many of which have been correlated with changes in atmospheric radiocarbon production or with changes in North Atlantic oceanic circulation. The manifestation of such climate variability in the hydrology of the Southern Hemisphere tropics of South America is unclear, because of the limited number of records at suitably high resolution. In the Lake Titicaca drainage basin of Bolivia and Peru, high-resolution lacustrine records reveal the overall pattern of Holocene lake-level change, the influence of precessional forcing of the South American Summer Monsoon, and the effects of high-frequency climate variability in records of lake productivity and lake ecology. Precessional forcing of regional precipitation is evident in the Lake Titicaca basin as a massive (ca. 85 m) mid-Holocene decline in lake level beginning about 7800 cal yr BP and a subsequent rise in lake level after 4000 cal yr BP. Here we show that multi-decadal to millennial-scale climate variability, superimposed upon the envelope of change at orbital time scales, is similar in timing and pattern to the ice-rafted debris record of Holocene Bond events in the North Atlantic. A high-resolution carbon isotopic record from Lake Titicaca that spans the entire Holocene suggests that cold intervals of Holocene Bond events are periods of increased precipitation, thus indicating an anti-phasing of precipitation variation on the Altiplano relative to the Northern Hemisphere tropics. A similar pattern of variation is also evident in high-resolution (2-30 yr spacing) diatom and geochemical records that span the last 7000 yr from two smaller lakes, Lagos Umayo and Lagunillas, in the Lake Titicaca drainage basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2014/5080/pdf/sir2014-5080.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2014/5080/pdf/sir2014-5080.pdf"><span>Stream classification of the Apalachicola-Chattahoochee-Flint River System to support modeling of aquatic habitat response to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elliott, Caroline M.; Jacobson, Robert B.; Freeman, Mary C.</p> <p>2014-01-01</p> <p>A stream classification and associated datasets were developed for the Apalachicola-Chattahoochee-Flint River Basin to support biological modeling of species response to climate change in the southeastern United States. The U.S. Geological Survey and the Department of the Interior’s National Climate Change and Wildlife Science Center established the Southeast Regional Assessment Project (SERAP) which used downscaled general circulation models to develop landscape-scale assessments of climate change and subsequent effects on land cover, ecosystems, and priority species in the southeastern United States. The SERAP aquatic and hydrologic dynamics modeling efforts involve multiscale watershed hydrology, stream-temperature, and fish-occupancy models, which all are based on the same stream network. Models were developed for the Apalachicola-Chattahoochee-Flint River Basin and subbasins in Alabama, Florida, and Georgia, and for the Upper Roanoke River Basin in Virginia. The stream network was used as the spatial scheme through which information was shared across the various models within SERAP. Because these models operate at different scales, coordinated pair versions of the network were delineated, characterized, and parameterized for coarse- and fine-scale hydrologic and biologic modeling. The stream network used for the SERAP aquatic models was extracted from a 30-meter (m) scale digital elevation model (DEM) using standard topographic analysis of flow accumulation. At the finer scale, reaches were delineated to represent lengths of stream channel with fairly homogenous physical characteristics (mean reach length = 350 m). Every reach in the network is designated with geomorphic attributes including upstream drainage basin area, channel gradient, channel width, valley width, Strahler and Shreve stream order, stream power, and measures of stream confinement. The reach network was aggregated from tributary junction to tributary junction to define segments for the benefit of hydrological, soil erosion, and coarser ecological modeling. Reach attributes are summarized for each segment. In six subbasins segments are assigned additional attributes about barriers (usually impoundments) to fish migration and stream isolation. Segments in the six sub-basins are also attributed with percent urban area for the watershed upstream from the stream segment for each decade from 2010–2100 from models of urban growth. On a broader scale, for application in a coarse-scale species-response model, the stream-network information is aggregated and summarized by 256 drainage subbasins (Hydrologic Response Units) used for watershed hydrologic and stream-temperature models. A model of soil erodibility based on the Revised Universal Soil Loss Equation also was developed at this scale to parameterize a model to evaluate stream condition. The reach-scale network was classified using multivariate clustering based on modeled channel width, valley width, and mean reach gradient as variables. The resulting classification consists of a 6-cluster and a 12-cluster classification for every reach in the Apalachicola-Chattahoochee-Flint Basin. We present an example of the utility of the classification that was tested using the occurrence of two species of darters and two species of minnows in the Apalachicola-Chattahoochee-Flint River Basin, the blackbanded darter and Halloween darter, and the bluestripe shiner and blacktail shiner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21448152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21448152"><span>Observational constraints indicate risk of drying in the Amazon basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shiogama, Hideo; Emori, Seita; Hanasaki, Naota; Abe, Manabu; Masutomi, Yuji; Takahashi, Kiyoshi; Nozawa, Toru</p> <p>2011-03-29</p> <p>Climate warming due to human activities will be accompanied by hydrological cycle changes. Economies, societies and ecosystems in South America are vulnerable to such water resource changes. Hence, water resource impact assessments for South America, and corresponding adaptation and mitigation policies, have attracted increased attention. However, substantial uncertainties remain in the current water resource assessments that are based on multiple coupled Atmosphere Ocean General Circulation models. This uncertainty varies from significant wetting to catastrophic drying. By applying a statistical method, we characterized the uncertainty and identified global-scale metrics for measuring the reliability of water resource assessments in South America. Here, we show that, although the ensemble mean assessment suggested wetting across most of South America, the observational constraints indicate a higher probability of drying in the Amazon basin. Thus, over-reliance on the consensus of models can lead to inappropriate decision making.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920045127&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920045127&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming"><span>Chapman Conference on the Hydrologic Aspects of Global Climate Change, Lake Chelan, WA, June 12-14, 1990, Selected Papers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lettenmaier, Dennis P. (Editor); Rind, D. (Editor)</p> <p>1992-01-01</p> <p>The present conference on the hydrological aspects of global climate change discusses land-surface schemes for future climate models, modeling of the land-surface boundary in climate models as a composite of independent vegetation, a land-surface hydrology parameterizaton with subgrid variability for general circulation models, and conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Attention is given to the impact of global warming on river runoff, the influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin, a comparison of observations and model simulations of tropospheric water vapor, and the use of weather types to disaggregate the prediction of general circulation models. Topics addressed include the potential response of an Arctic watershed during a period of global warming and the sensitivity of groundwater recharge estimates to climate variability and change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970003722&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmit','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970003722&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmit"><span>Oceanic Fluxes of Mass, Heat and Freshwater: A Global Estimate and Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>MacDonald, Alison Marguerite</p> <p>1995-01-01</p> <p>Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional heat and freshwater budgets and are used to examine the sensitivity of the global circulation, both inter and intra-basin exchange rates, to a variety of external constraints provided by estimates of Ekman, boundary current and throughflow transports. A solution is found which is consistent with both the model physics and the global data set, despite a twenty five year time span and a lack of seasonal consistency among the data. The overall pattern of the global circulation suggested by the models is similar to that proposed in previously published local studies and regional reviews. However, significant qualitative and quantitative differences exist. These differences are due both to the model definition and to the global nature of the data set.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC24G..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC24G..06S"><span>A direct estimate of evapotranspiration over the Amazon basin and implications for our understanding of carbon and water cycling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swann, A. L. S.; Koven, C.; Lombardozzi, D.; Bonan, G. B.</p> <p>2017-12-01</p> <p>Evapotranspiration (ET) is a critical term in the surface energy budget as well as the water cycle. There are few direct measurements of ET, and thus the magnitude and variability is poorly constrained at large spatial scales. Estimates of the annual cycle of ET over the Amazon are critical because they influence predictions of the seasonal cycle of carbon fluxes, as well as atmospheric dynamics and circulation. We estimate ET for the Amazon basin using a water budget approach, by differencing rainfall, discharge, and time-varying storage from the Gravity Recovery and Climate Experiment. We find that the climatological annual cycle of ET over the Amazon basin upstream of Óbidos shows suppression of ET during the wet season, and higher ET during the dry season, consistent with flux tower based observations in seasonally dry forests. We also find a statistically significant decrease in ET over the time period 2002-2015 of -1.46 mm/yr. Our direct estimate of the seasonal cycle of ET is largely consistent with previous indirect estimates, including energy budget based approaches, an up-scaled station based estimate, and land surface model estimates, but suggests that suppression of ET during the wet season is underestimated by existing products. We further quantify possible contributors to the phasing of the seasonal cycle and downward time trend using land surface models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.130.1133R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.130.1133R"><span>Drought forecasting in Luanhe River basin involving climatic indices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.</p> <p>2017-11-01</p> <p>Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003CSR....23..317G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003CSR....23..317G"><span>Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao</p> <p>2003-03-01</p> <p>The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JCli...13...18C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JCli...13...18C"><span>Combined Effects of Deforestation and Doubled Atmospheric CO2 Concentrations on the Climate of Amazonia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costa, Marcos Heil; Foley, Jonathan A.</p> <p>2000-01-01</p> <p>It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: 1) increasing areas of forest will be converted to pasture and cropland, and 2) concentrations of atmospheric CO2 will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO2 concentrations (including both physiological and radiative effects) on Amazonian climate.In these simulations, deforestation decreases basin-average precipitation by 0.73 mm day1 over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO2 concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day1. The combined effect of deforestation and doubled CO2, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day1. While the effects of deforestation and increasing CO2 concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO2 concentrations both tend to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO2. The combined effect of deforestation and doubled CO2, including the interactions among the processes, increases the basin-average temperature by roughly 3.5°C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC13A1050D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC13A1050D"><span>A south equatorial African precipitation dipole and the associated atmospheric circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dezfuli, A. K.; Zaitchik, B.; Gnanadesikan, A.</p> <p>2013-12-01</p> <p>South Equatorial Africa (SEA) is a climatically diverse region that includes a dramatic topographic and vegetation contrast between the lowland, humid Congo basin to the west and the East African Plateau to the east. Due to lack of conventional weather data and a tendency for researchers to treat East and western Africa as separate regions, dynamics of the atmospheric water cycle across SEA have received relatively little attention, particularly at subseasonal timescales. Both western and eastern sectors of SEA are affected by large-scale drivers of the water cycle associated with Atlantic variability (western sector), Indian Ocean variability (eastern sector) and Pacific variability (both sectors). However, a specific characteristic of SEA is strong heterogeneity in interannual rainfall variability that cannot be explained by large-scale climatic phenomena. For this reason, this study examines regional climate dynamics on daily time-scale with a focus on the role that the abrupt topographic contrast between the lowland Congo and the East African highlands plays in driving rainfall behavior on short timescales. Analysis of daily precipitation data during November-March reveals a zonally-oriented dipole mode over SEA that explains the leading pattern of weather-scale precipitation variability in the region. The separating longitude of the two poles is coincident with the zonal variation of topography. An anomalous counter-clockwise atmospheric circulation associated with the dipole mode appears over the entire SEA. The circulation is triggered by its low-level westerly component, which is in turn generated by an interhemispheric pressure gradient. These enhanced westerlies hit the East African highlands and produce topographically-driven low-level convergence and convection that further intensifies the circulation. Recent studies have shown that under climate change the position and intensity of subtropical highs in both hemispheres and the intensity of precipitation over equatorial Africa are projected to change. Both of these trends have implications for the manner in which large-scale dynamics will interact with regional topography, affecting the intensity and frequency of the dipole mode characterized in this study and the occurrence of extreme wet and dry spells in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AnGeo..21..251K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AnGeo..21..251K"><span>High resolution simulations on the North Aegean Sea seasonal circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kourafalou, V. H.; Barbopoulos, K.</p> <p>2003-01-01</p> <p>The seasonal characteristics of the circulation in the North Aegean Sea are examined with the aid of a climatological type simulation (three-year run with perpetual year forcing) on a fine resolution grid (2.5 km by 2.5 km). The model is based on the Princeton Ocean Model with a parameterisation of plume dynamics that is employed for the input of waters with hydrographic properties that are different than the properties of basin waters, as the Black Sea Water (BSW) outflow through the Dardanelles Strait and riverine sources. The model is nested with a sequence of coarser regional and basin-wide models that provide for the long-term interaction between the study area and the Eastern Mediterranean at large. The results are employed to discuss the response of the North Aegean to the important circulation forcing mechanisms in the region, namely wind stress, heat and salt fluxes, buoyancy due to rivers and the BSW outflow (which is low in salinity and occasionally low in temperature) and the interaction with the Southern Aegean. The high resolution allows for the detailed representation of the complicated topography that presides in the region. This helps produce a rich eddy field and it allows for variability in the pathways of BSW that has implications in the basin hydrography and circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000112962','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000112962"><span>A Coupled Ocean General Circulation, Biogeochemical, and Radiative Model of the Global Oceans: Seasonal Distributions of Ocean Chlorophyll and Nutrients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)</p> <p>2000-01-01</p> <p>A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE51B..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE51B..06L"><span>On the Freshwater Sensitivity of the Arctic-Atlantic Thermohaline Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lambert, E.; Eldevik, T.; Haugan, P.</p> <p>2016-02-01</p> <p>The North Atlantic thermohaline circulation (THC) carries heat and salt toward the Arctic. This circulation is generally believed to be inhibited by northern freshwater input as indicated by the `box-model' of Stommel (1961). The inferred freshwater-sensitivity of the THC, however, varies considerably between studies, both quantitatively and qualitatively. The northernmost branch of the Atlantic THC, which forms a double estuarine circulation in the Arctic Mediterranean, is one example where both strengthening and weakening of the circulation may occur due to increased freshwater input. We have accordingly built on Stommel's original concept to accomodate a THC similar to that in the Arctic Mediterranean. This model consists of three idealized basins, or boxes, connected by two coupled branches of circulation - the double estuary. The net transport of these two branches represents the extension of the Gulf Stream toward the Arctic. Its sensitivity to a change in freshwater forcing depends largely on the distribution of freshwater over the two northern basins. Varying this distribution opens a spectrum of qualitative behaviours ranging from Stommel's original freshwater-inhibited overturning circulation to a freshwater-facilitated estuarine circulation. Between these limiting cases, a Hopf and a cusp bifurcation divide the spectrum into three qualitative regions. In the first region, the circulation behaves similarly to Stommel's circulation, and sufficient freshwater input can induce an abrupt transition into a reversed flow; in the second, a similar transition can be found, although it does not reverse the circulation; in the third, no transition can occur and the circulation is generally facilitated by the northern freshwater input. Overall, the northern THC appears more stable than what would be inferred based on Stommel's model; it requires a larger amount and more localized freshwater input to `collapse' it, and a double estuary circulation is less prone to flow reversal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53E0939H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53E0939H"><span>Impact of Seawater Nonlinearities on Nordic Seas Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helber, R. W.; Wallcraft, A. J.; Shriver, J. F.</p> <p>2017-12-01</p> <p>The Nordic Seas (Greenland, Iceland, and Norwegian Seas) form an ocean basin important for Arctic-mid-latitude climate linkages. Cold fresh water from the Arctic Ocean and warm salty water from the North Atlantic Ocean meet in the Nordic Seas, where a delicate balance between temperature and salinity variability results in deep water formation. Seawater non-linearities are stronger at low temperatures and salinities making high-latitude oceans highly subject to thermbaricity and cabbeling. This presentation highlights and quantifies the impact of seawater non-linearities on the Nordic Seas circulation. We use two layered ocean circulation models, the Hybrid Coordinate Ocean Model (HYOCM) and the Modular Ocean Model version 6 (MOM6), that enable accurate representation of processes along and across density or neutral density surfaces. Different equations-of-state and vertical coordinates are evaluated to clarify the impact of seawater non-linearities. Present Navy systems, however, do not capture some features in the Nrodic Seas vertical structure. For example, observations from the Greenland Sea reveal a subsurface temperature maximum that deepens from approximately 1500 m during 1998 to 1800 m during 2005. We demonstrate that in terms of density, salinity is the largest source of error in Nordic Seas Navy forecasts, regional scale models can represent mesoscale features driven by thermobaricity, vertical coordinates are a critical issue in Nordic Sea circulation modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918852M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918852M"><span>Hydrology and circulation in the Algerian gyres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mallil, Katia; Mortier, Laurent; Louanchi, Ferial; Testor, Pierre; Bosse, Anthony; Le Goff, Hervé; Schroeder, Kathrin; Margirier, Félix</p> <p>2017-04-01</p> <p>Introduction: The exploitation of data collected during the SOMBA-GE2014 cruise on the R/V Tethys II [1], combined with data from other sources, has allowed to firmly evidence two large scale cyclonic gyres in the East and West of the Algerian basin (already suggested in [2]) and to highlight the hydrological characteristics of these gyres. In particular, the differential warming of the deep waters of the gyres can be shown. Main results: East-West salinity and temperature sections across the Algerian basin for 2008, 2010 and 2014, reveal a clear hydrological separation of the water properties in the basin at around 4° W, especially in the intermediate layer: Waters in this layer are warmer and saltier in the eastern part. This difference in the hydrological properties results in a more pronounced double diffusion phenomenon shown by well defined staircases in the eastern part of the basin (or eastern gyre). A heating of about 0.04 °C/year of the deep waters is observed considering the period of (1980 to 2015) - respectively 0.048°C/year in the eastern gyre and 0.032°C/year in the western one. Indeed, the difference in the double diffusion phenomenon in the two gyres (which is an effective way of heat export to the deep ocean) could explain the difference in deep layer heating trends. References: [1] Mortier Laurent, Ait-Ameur Nadira, and Taillandier Vincent (2014), SOMBA GE cruise, RV Téthys II, http://dx.doi.org/10.17600/14007500 [2] Testor P., Send U., Gascard J.-C., Millot C., Taupier-Letage I., and Béranger K. (2005), The mean circulation of the southwestern Mediterranean Sea - the Algerian Gyres, J. Geophys. Res.,110, C11017, doi:10.1029/2004JC002861 [3] Borghini M., Bryden H., Schroeder K., Sparnocchia S., and Vetrano A. (2014), The Mediterranean is becoming saltier. Ocean Sci., 10, 693-700, doi: 10.1029/2004jc002861</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...179...55A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...179...55A"><span>Monitoring the Algerian Basin through glider observations, satellite altimetry and numerical simulations along a SARAL/AltiKa track</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aulicino, G.; Cotroneo, Y.; Ruiz, S.; Sánchez Román, A.; Pascual, A.; Fusco, G.; Tintoré, J.; Budillon, G.</p> <p>2018-03-01</p> <p>The Algerian Basin is a key component of the general circulation in the Western Mediterranean Sea. The presence of both fresh Atlantic water and more saline Mediterranean water gives the basin an intense inflow/outflow regime and complex circulation patterns. Energetic mesoscale structures that evolve from meanders of the Algerian Current into isolated cyclonic and anticyclonic eddies dominate the area, with marked repercussions on biological activity. Despite its remarkable importance, this region and its variability are still poorly known and basin-wide knowledge of its meso- and submesoscale features is still incomplete. Studying such complex processes requires a synergistic approach that involves integrated observing systems. In recent years, several studies have demonstrated the advantages of combined use of autonomous underwater vehicles, such as gliders, with a new generation of satellite altimetry. In this context, we present results of an observational program conducted in the Algerian Basin during fall 2014 and 2015 that aimed to advance our knowledge of its main features. The study was carried out through analysis of high resolution glider observations, collected along the Algerian BAsin Circulation Unmanned Survey (ABACUS) chokepoint, in synergy with co-located SARAL/AltiKa altimetric products and CMEMS numerical simulations. Results show that glider-derived dynamic height and SARAL/AltiKa absolute dynamic topography have similar patterns, with RMS of the differences ranging between 1.11 and 2.90 cm. Even though larger discrepancies are observed near the Balearic and Algerian coasts, correlation coefficients between glider and satellite observations seem mostly to be affected by reduced synopticity between the measurements. Glider observations acquired during the four surveys reveal the presence of several water masses of Atlantic and Mediterranean origin (i.e., AW and LIW at different modification levels) with marked seasonal variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C12B..08T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C12B..08T"><span>The Southern Ocean's role in ocean circulation and climate transients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.</p> <p>2017-12-01</p> <p>The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3003093','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3003093"><span>Antarctic lakes suggest millennial reorganizations of Southern Hemisphere atmospheric and oceanic circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hall, Brenda L.; Denton, George H.; Fountain, Andrew G.; Hendy, Chris H.; Henderson, Gideon M.</p> <p>2010-01-01</p> <p>The phasing of millennial-scale oscillations in Antarctica relative to those elsewhere in the world is important for discriminating among models for abrupt climate change, particularly those involving the Southern Ocean. However, records of millennial-scale variability from Antarctica dating to the last glacial maximum are rare and rely heavily on data from widely spaced ice cores, some of which show little variability through that time. Here, we present new data from closed-basin lakes in the Dry Valleys region of East Antarctica that show high-magnitude, high-frequency oscillations in surface level during the late Pleistocene synchronous with climate fluctuations elsewhere in the Southern Hemisphere. These data suggest a coherent Southern Hemisphere pattern of climate change on millennial time scales, at least in the Pacific sector, and indicate that any hypothesis concerning the origin of these events must account for synchronous changes in both high and temperate latitudes. PMID:21115838</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21115838','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21115838"><span>Antarctic lakes suggest millennial reorganizations of Southern Hemisphere atmospheric and oceanic circulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hall, Brenda L; Denton, George H; Fountain, Andrew G; Hendy, Chris H; Henderson, Gideon M</p> <p>2010-12-14</p> <p>The phasing of millennial-scale oscillations in Antarctica relative to those elsewhere in the world is important for discriminating among models for abrupt climate change, particularly those involving the Southern Ocean. However, records of millennial-scale variability from Antarctica dating to the last glacial maximum are rare and rely heavily on data from widely spaced ice cores, some of which show little variability through that time. Here, we present new data from closed-basin lakes in the Dry Valleys region of East Antarctica that show high-magnitude, high-frequency oscillations in surface level during the late Pleistocene synchronous with climate fluctuations elsewhere in the Southern Hemisphere. These data suggest a coherent Southern Hemisphere pattern of climate change on millennial time scales, at least in the Pacific sector, and indicate that any hypothesis concerning the origin of these events must account for synchronous changes in both high and temperate latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/332741','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/332741"><span>On simulating flow with multiple time scales using a method of averages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Margolin, L.G.</p> <p>1997-12-31</p> <p>The author presents a new computational method based on averaging to efficiently simulate certain systems with multiple time scales. He first develops the method in a simple one-dimensional setting and employs linear stability analysis to demonstrate numerical stability. He then extends the method to multidimensional fluid flow. His method of averages does not depend on explicit splitting of the equations nor on modal decomposition. Rather he combines low order and high order algorithms in a generalized predictor-corrector framework. He illustrates the methodology in the context of a shallow fluid approximation to an ocean basin circulation. He finds that his newmore » method reproduces the accuracy of a fully explicit second-order accurate scheme, while costing less than a first-order accurate scheme.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1635V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1635V"><span>Observational analysis and large-scale pattern associated with cold events moving up the equator line over South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viana, Liviany; Herdies, Dirceu; Muller, Gabriela</p> <p>2017-04-01</p> <p>An observational study was carried out to quantify the events of cold air outbreak moving above the Equator from 1980 to 2013 during the austral winter period (May, June, July, August and September), and later analyzed the behavior of the circulation responsible for this displacement. The observational datasets from the Sector of Climatological studies of the Institute of Airspace Control of the city of Iauarete (0.61N, 69.0W; 120m), located at the extreme northern of the Brazilian Amazon Basin, were used for the analyzes. The meteorological variables used were the temperatures minimum, maximum and maximum atmospheric pressure. A new methodology was used to identify these events, calculated by the difference between the monthly average and 2 (two) standard deviations for the extremes of the air temperature, and the sum of 1 (one) standard deviation for the maximum atmospheric pressure. As a result, a total of 11 cold events were recorded that reached the extreme northern of the Brazilian Amazon Basin, with values recorded at a minimum temperature of 17.8 °C, at the maximum temperature of 21.0 °C and maximum atmospheric pressure reaching 1021.2 hPa. These reductions and augmentation are equivalent to the negative anomalies of 5.9 and 8.7 °C at the minimum and maximum temperatures, respectively, while a positive anomaly of 7.1 hPa was observed at the maximum pressure. In relation to the dynamic behavior of large-scale circulation, a Rossby wave-type configuration propagating from west to east over subtropical latitudes was observed from the European Center for Medium-Range Weather Forecast (ECMWF) since the days before the arrival of the event in the city of Iauarete. This behavior was observed both in the anomalies of the gepotencial (250 hPa and 850 hPa) and in the southern component of the wind (250 hPa and 850 hPa), both presenting statistical significance of 99 % (Student's T test). Therefore, a new criterion for the identification of "friagens" in the tropical latitude has been able to represent the effects of colds air outbreak and the advancement of the cold air mass, which are subsidized by the large-scale circulation, and consequently contribute to the modifications in the weather and the life of the population over this Equatorial region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......108T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......108T"><span>The Impact of Meteorology on Ozone Levels in the Lake Tahoe Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Theiss, Sandra</p> <p></p> <p>The Lake Tahoe Basin is located on the California-Nevada border and occasionally experiences elevated levels of ozone exceeding the 70 ppb California Air Resources Board (CARB) ambient air quality standard (8-hour average). Previous studies indicate that both the local generation of ozone in the Basin and long-range transport from out-of-Basin sources are important in contributing to ozone exceedances, but little is known about the impact of meteorology on the distribution of ozone source regions. In order to develop a better understanding of the factors affecting ozone levels and sources in the Lake Tahoe Basin, this study combines observational data from a 2010 and 2012 summer field campaigns, HYSPLIT back trajectories, and WRF model output to examine the meteorological influences of ozone transport in the topographically complex Lake Tahoe Basin. Findings from the field work portions of this study include enhanced background ozone levels at higher elevations, the local circulation pattern of lake breezes occurring at Lake level sites, and an indication that ozone precursors are coming off the Lake. Our analysis also showed that if transport of ozone does occur, it is more likely to come from the San Joaquin Valley to the south rather than originate in the large cities to the west, such as Sacramento and San Francisco. Analysis of modeled PBL schemes as compared with observational data showed that the ACM2 PBL scheme best represented the geographical domain. The ACM2 PBL scheme was then used to show wind circulation patterns in the Lake Tahoe Basin and concluded that there is decent vertical mixing over the Basin and no indication of ozone transport from the west however some indication of transport from the east. Overall this study concludes that transport from the west is less significant than transport from the south and east, and that transport only influences ozone values at higher elevations. Within the Basin itself (at lower elevations), local factors including mixing depth, rising or sinking air, and lake/land breeze circulations are more significant in influencing ozone values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023584','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023584"><span>Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Phillips, R.L.; Grantz, A.</p> <p>2001-01-01</p> <p>The composition and distribution of ice-rafted glacial erratics in late Quaternary sediments define the major current systems of the Arctic Ocean and identify two distinct continental sources for the erratics. In the southern Amerasia basin up to 70% of the erratics are dolostones and limestones (the Amerasia suite) that originated in the carbonate-rich Paleozoic terranes of the Canadian Arctic Islands. These clasts reached the Arctic Ocean in glaciers and were ice-rafted to the core sites in the clockwise Beaufort Gyre. The concentration of erratics decreases northward by 98% along the trend of the gyre from southeastern Canada basin to Makarov basin. The concentration of erratics then triples across the Makarov basin flank of Lomonosov Ridge and siltstone, sandstone and siliceous clasts become dominant in cores from the ridge and the Eurasia basin (the Eurasia suite). The bedrock source for the siltstone and sandstone clasts is uncertain, but bedrock distribution and the distribution of glaciation in northern Eurasia suggest the Taymyr Peninsula-Kara Sea regions. The pattern of clast distribution in the Arctic Ocean sediments and the sharp northward decrease in concentration of clasts of Canadian Arctic Island provenance in the Amerasia basin support the conclusion that the modem circulation pattern of the Arctic Ocean, with the Beaufort Gyre dominant in the Amerasia basin and the Transpolar drift dominant in the Eurasia basin, has controlled both sea-ice and glacial iceberg drift in the Arctic Ocean during interglacial intervals since at least the late Pleistocene. The abruptness of the change in both clast composition and concentration on the Makarov basin flank of Lomonosov Ridge also suggests that the boundary between the Beaufort Gyre and the Transpolar Drift has been relatively stable during interglacials since that time. Because the Beaufort Gyre is wind-driven our data, in conjunction with the westerly directed orientation of sand dunes that formed during the last glacial maximum on the North Slope of Alaska, suggests that atmospheric circulation in the western Arctic during late Quaternary was similar to that of the present. ?? 2001 Elsevier Science B.V.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.7235C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.7235C"><span>Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.</p> <p>2017-07-01</p> <p>Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.4171G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.4171G"><span>Interannual and low-frequency variability of Upper Indus Basin winter/spring precipitation in observations and CMIP5 models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greene, Arthur M.; Robertson, Andrew W.</p> <p>2017-12-01</p> <p>An assessment is made of the ability of general circulation models in the CMIP5 ensemble to reproduce observed modes of low-frequency winter/spring precipitation variability in the region of the Upper Indus basin (UIB) in south-central Asia. This season accounts for about two thirds of annual precipitation totals in the UIB and is characterized by "western disturbances" propagating along the eastward extension of the Mediterranean storm track. Observational data are utilized for for spatiotemporal characterization of the precipitation seasonal cycle, to compute seasonalized spectra and finally, to examine teleconnections, in terms of large-scale patterns in sea-surface temperature (SST) and atmospheric circulation. Annual and lowpassed variations are found to be associated primarily with SST modes in the tropical and extratropical Pacific. A more obscure link to North Atlantic SST, possibly related to the North Atlantic Oscillation, is also noted. An ensemble of 31 CMIP5 models is then similarly assessed, using unforced preindustrial multi-century control runs. Of these models, eight are found to reproduce well the two leading modes of the observed seasonal cycle. This model subset is then assessed in the spectral domain and with respect to teleconnection patterns, where a range of behaviors is noted. Two model families each account for three members of this subset. The degree of within-family similarity in behavior is shown to reflect underlying model differences. The results provide estimates of unforced regional hydroclimate variability over the UIB on interannual and decadal scales and the corresponding far-field influences, and are of potential relevance for the estimation of uncertainties in future water availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS43C..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS43C..03S"><span>The impact of multi-decadal sub-surface circulation changes on sea surface chlorophyll patterns in the tropical Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schollaert Uz, S.; Busalacchi, A. J.; Smith, T. M.; Evans, M. N.; Brown, C.; Hackert, E. C.; Wang, X.</p> <p>2016-12-01</p> <p>The tropical Pacific is a region of strong forcing where physical oceanography primarily controls biological variability over the seasonal to interannual time scales observed since dedicated ocean color satellite remote sensing began in 1997. To quantify how multi-decadal, climate-scale changes impact marine biological dynamics, we used the correlation with sea-surface temperature and height to reconstruct a 50-year time series of surface chlorophyll concentrations. The reconstruction demonstrates greatest skill away from the coast and within 10o of the equator where chlorophyll variance is greatest and primarily associated with El Niño Southern Oscillation (ENSO) dynamics and secondarily associated with decadal variability. We observe significant basin-wide differences between east and central Pacific events when the El Niño events are strong: chlorophyll increases with La Niña and decreases with El Niño, with larger declines east of 180o for remotely-forced east Pacific events and west of 180o for locally-forced central Pacific events. Chlorophyll variations also reflect the physical dynamics of Pacific decadal variability with small but significant differences between cool and warm eras: consistent with advection variability west of 180o and likely driven by subsurface changes in the nutricline depth between 110-140oW. Comparisons with output from a fully-coupled biogeochemical model support the hypothesis that this anomalous region is controlled by lower frequency changes in subsurface circulation patterns that transport nutrients to the surface. Basin-wide chlorophyll distributions exhibiting spatial heterogeneity in response to multi-decadal climate forcing imply similar long-term changes in phytoplankton productivity, with implications for the marine food web and the ocean's role as a carbon sink.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2014/5175/pdf/sir2014-5175.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2014/5175/pdf/sir2014-5175.pdf"><span>Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.</p> <p>2014-01-01</p> <p>The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing climate was the appreciable increase in the length of the growing season in the Lake Michigan Basin. The increase in growing season will cause an increase in evapotranspiration across the Lake Michigan Basin, which will directly affect soil moisture and late growing season streamflows. Output from the Lake Michigan Basin PRMS model is available through an online dynamic web mapping service available at (http://pubs.usgs.gov/sir/2014/5175/). The map service includes layers for the each of the 8 global climate models and 4 carbon emission scenarios combinations for 12 hydrologic model state variables. The layers are pre-rendered maps of annual hydrologic response from 1977 through 2099 that provide an easily accessible online method to examine climate change effects across the Lake Michigan Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996PalOc..11..579S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996PalOc..11..579S"><span>Can increased poleward oceanic heat flux explain the warm Cretaceous climate?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, Gavin A.; Mysak, Lawrence A.</p> <p>1996-10-01</p> <p>The poleward transport of heat in the mid-Cretaceous (100 Ma) is examined using an idealized coupled ocean-atmosphere model. The oceanic component consists of two zonally averaged basins representing the proto-Pacific and proto-Indian oceans and models the dynamics of the meridional thermohaline circulation. The atmospheric component is a simple energy and moisture balance model which includes the diffusive meridional transport of sensible heat and moisture. The ocean model is spun up with a variety of plausible Cretaceous surface temperature and salinity profiles, and a consistent atmosphere is objectively derived based on the resultant sea surface temperature and the surface heat and freshwater fluxes. The coupled model does not exhibit climate drift. Multiple equilibria of the coupled model are found that break the initial symmetry of the ocean circulation; several of these equilibria have one-cell (northern or southern sinking) thermohaline circulation patterns. Two main classes of circulation are found: circulations where the densest water is relatively cool and is formed at the polar latitudes and circulations where the densest water is warm, but quite saline, and the strongest sinking occurs at the tropics. In all cases, significant amounts of warm, saline bottom water are formed in the proto-Indian basin which modify the deepwater characteristics in the larger (proto-Pacific) basin. Temperatures in the deep ocean are warm, 10°-17°C, in agreement with benthic foraminiferal oxygen isotope data. The poleward transport of heat in the modeled Cretaceous oceans is larger than in some comparable models of the present day thermohaline circulation and significantly larger than estimates of similar processes in the present-day ocean. It is consistently larger in the polar sinking cases when compared with that seen in the tropical sinking cases, but this represents an increase of only 10%. The largest increase over present-day model transports is in the atmospheric latent heat transport, where an increased hydrological cycle (especially in the tropical sinking cases) contributes up to an extra 1 PW of poleward heat transport. Better constraints on the oceanic deepwater circulation during this period are necessary before the meridional circulation can be unambiguously described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027724','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027724"><span>An integrated environmental tracer approach to characterizing groundwater circulation in a mountain block</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Manning, Andrew H.; Solomon, D. Kip</p> <p>2005-01-01</p> <p>The subsurface transfer of water from a mountain block to an adjacent basin (mountain block recharge (MBR)) is a commonly invoked mechanism of recharge to intermountain basins. However, MBR estimates are highly uncertain. We present an approach to characterize bulk fluid circulation in a mountain block and thus MBR that utilizes environmental tracers from the basin aquifer. Noble gas recharge temperatures, groundwater ages, and temperature data combined with heat and fluid flow modeling are used to identify clearly improbable flow regimes in the southeastern Salt Lake Valley, Utah, and adjacent Wasatch Mountains. The range of possible MBR rates is reduced by 70%. Derived MBR rates (5.5–12.6 × 104 m3 d−1) are on the same order of magnitude as previous large estimates, indicating that significant MBR to intermountain basins is plausible. However, derived rates are 50–100% of the lowest previous estimate, meaning total recharge is probably less than previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS21D..07V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS21D..07V"><span>The pathways of Marine Plastic into the Ocean Garbage Patches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Sebille, E.; England, M. H.; Froyland, G.</p> <p>2013-12-01</p> <p>Much of the plastic debris in the near-surface ocean collects in so-called garbage patches where, due to convergence of the surface flow, the debris is trapped for decades to millennia. Here, we use observational data from the Global Drifter Program in a particle-trajectory tracer approach to study the fate of marine debris in the open ocean from coastal regions around the world on interannual to centennial time scales. We find that garbage patches emerge in each of the five subtropical basins. The evolution of each of the five patches is markedly different, however. With the exception of the North Pacific, all patches are much more dispersive than expected from linear ocean circulation theory, suggesting that on centennial time scales the different basins are much better connected than previously thought and that inter-ocean exchanges play a large role in the spreading of marine debris. In order to increase public awareness on this issue of sustainability in the ocean, we have used the methods and data of this study to create a public website at www.adrift.org.au where all interested can investigate the spread of tracer from any and all points on the ocean surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080047282','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080047282"><span>The Spatiotemporal Structure of 20th Century Climate Variations in Observations and Reanalyses. Part 1; Long-term Trend</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Junye; DelGenio, Anthony D.; Carlson, Barbara e.; Bosilovich, Michael G.</p> <p>2007-01-01</p> <p>The dominant interannual El Nino-Southern Oscillation phenomenon (ENSO) and the short length of climate observation records make it difficult to study long-term climate variations in the spatiotemporal domain. Based on the fact that the ENS0 signal spreads to remote regions and induces delayed climate variation through atmospheric teleconnections, we develop an ENSO-removal method through which the ENS0 signal can be approximately removed at the grid box level from the spatiotemporal field of a climate parameter. After this signal is removed, long-term climate variations, namely, the global warming trend (GW) and the Pacific pan-decadal variability (PDV), are isolated at middle and low latitudes in the climate parameter fields from observed and reanalyses datasets. Except for known GW characteristics, the warming that occurs in the Pacific basin (approximately 0.4K in the 2oth century) is much weaker than in surrounding regions and the other two ocean basins (approximately 0.8K). The modest warming in the Pacific basin is likely due to its dynamic nature on the interannual and decadal time scales and/or the leakage of upper ocean water through the Indonesian Throughflow. Based on NCEP/NCAR and ERA-40 reanalyses, a comprehensive atmospheric structure associated with GW is given. Significant discrepancies exist between the two datasets, especially in the tightly coupled dynamic and water vapor fields. The dynamic field based on NCEP/NCAR reanalysis, which shows a change in the Walker Circulation, is consistent with the GW change in the surface temperature field. However, intensification in the Hadley Circulation is associated with GW trend in the ERA-40 reanalysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A33J0403M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A33J0403M"><span>Modulation of Tropical Cyclone Genesis by Boreal Summer Intraseasonal Oscillation: An Anomalous Dynamic Genesis Potential Index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moon, J.; Wang, B.</p> <p>2016-12-01</p> <p>The large scale circulation anomalies associated with boreal summer intraseasonal oscillation (BSISO) strongly controls the genesis of tropical cyclone in a global perspective. The present study attempts to reveal factors by which BSISO modulation of tropical cyclone genesis (TCG) using two genesis potential indices (GPI): Dynamic GPI (DGPI) and Emanuel and Nolan's GPI (ENGPI). The ENGPI contains two dynamic (the vertical wind shear and absolute vorticity at 850 hPa) and two thermodynamic factors (relative humidity at 600 hPa and maximum potential intensity), while DPGI replaced the two thermodynamic factors by two additional dynamic factors (500 hPa vertical velocity and meridional shear of zonal winds). The major basins of tropical cyclone genesis during May to October from 1979 to 2014 are divided into North Indian Ocean (NIO), Western North Pacific (WNP), Eastern North Pacific (ENP), and North Atlantic (NAT). The genesis numbers of tropical cyclone at each basin increased distinctively at its maximum active phase of BSISO, showing the significant modulation of ISO on tropical cyclone genesis in the Northern Hemisphere. Analysis of the individual contribution of each factors in GPI reveals that the vertical velocity at 500hPa of DGPI and the relative humidity at 600hPa of ENGPI play the most important role in modulating TCG by BSISO. The SST and maximum potential intensity of ENGPI did not represent important physical processes by which the BSISO circulation anomalies affect TCG. The evolution of eight-phase BSISO with intraseasonal prediction of TCG revealed great improvement by DGPI. The evolution of TCG associated with BSISO by basins, such as NIO, WNP, ENP, and NAT showed good performance in featuring the TCG variability, indicating the possibility of improving subseasonal prediction of TCG by our new DGPI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA......374B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA......374B"><span>Overview of the sedimentological processes in the western North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benetti, S.; Weaver, P.; Wilson, P.</p> <p>2003-04-01</p> <p>The sedimentary processes operating within the western North Atlantic continental margin include both along-slope sediment transport, which builds sediment drifts and waves, and down-slope processes involving mass wasting. Sedimentation along a large stretch of the margin (north of 32°N) has been heavily influenced by processes that occurred during glacial times (e.g. cutting of canyons and infilling of abyssal plains) when large volumes of sediment were supplied to the shelf edge either by ice grounded on continental shelves or river discharge. The large area of sea floor occupied by depositional basins and abyssal plains testifies to the dominance of turbidity currents. The widespread presence of slide complexes in this region has been related to earthquakes and melting of gas hydrates. South of 32°N, because of the low sediment supply from rivers even during glacial times and the reduced sedimentation due to the erosive effects of the Gulf Stream, few canyon systems and slides are observed and Tertiary sediment cover is thin and irregular. Turbidity currents filled re-entrant basins in the Florida-Bahama platform. Tectonic activity is primarily responsible for the overall morphology and sedimentation pattern along the Caribbean active margin. Along the whole margin, the reworking of bottom sediments by deep-flowing currents seems to be particularly active during interglacials. To some extent this observation must reflect the diminished effect of downslope transport during interglacials, but our data also contribute to the debate over changes in deep water circulation strength on glacial-interglacial timescales. Strong bottom circulation, an open basin system and high sediment supply have led to the construction of large elongate contourite drifts, mantled by smaller scale bedforms. These drifts are mostly seen in regions protected or distant from the masking influence of turbidity currents and sediment mass movements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.U11A0009M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.U11A0009M"><span>Tropical Cyclones and Climate Controls in the Western Atlantic Basin during the First Half of the Nineteenth Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mock, C. J.; Dodds, S. F.; Rodgers, M. D.; Patwardhan, A.</p> <p>2008-12-01</p> <p>This study describes new comprehensive reconstructions of individual Western Atlantic Basin tropical cyclones for each year of the first half of the nineteenth century in the Western Atlantic Basin that are directly compatible and supplement the National Hurricane Center's HURDAT (Atlantic basin hurricane database). Data used for reconstructing tropical cyclones come from ship logbooks, ship protests, diaries, newspapers, and early instrumental records from more than 50 different archival repositories in the United States and the United Kingdom. Tropical cyclone strength was discriminated among tropical storms, hurricanes, major hurricanes, and non-tropical lows at least at tropical storm strength. The results detail the characteristics of several hundred storms, many of them being newly documented, and tracks for all storms were mapped. Overall, prominent active periods of tropical cyclones are evident along the western Atlantic Ocean in the 1830s but Caribbean and Gulf coasts exhibit active periods as being more evident in the 1810s and 1820s. Differences in decadal variations were even more pronounced when examining time series of activity at the statewide scale. High resolution paleoclimate and historical instrumental records of the AMO, NAO, ENSO, Atlantic SSTs, West African rainfall, and volcanic activity explain how different modes in these forcing mechanisms may explain some of the multidecadal and interannual variations. The early nineteenth century active hurricane activity appears to be particularly unique in corresponding with a low (negative index) AMO period, and as they relate to particular synoptic-scale patterns in the latter part of the Little Ice Age. Model simulations offer some hypotheses on such patterns, perhaps suggesting increased baroclinic-related storms and a slight later possible shift in the seasonal peak of tropical cyclones for some areas at times. Some years, such as 1806, 1837, 1838, 1842, and 1846 have particularly very active seasons, and we critically examined the synoptic-scale circulation responsible and also related some of the storms as they relate to potential modern analogs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ClDy...41.3203V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ClDy...41.3203V"><span>Understanding Madden-Julian-Induced sea surface temperature variations in the North Western Australian Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vialard, J.; Drushka, K.; Bellenger, H.; Lengaigne, M.; Pous, S.; Duvel, J. P.</p> <p>2013-12-01</p> <p>The strongest large-scale intraseasonal (30-110 day) sea surface temperature (SST) variations in austral summer in the tropics are found in the eastern Indian Ocean between Australia and Indonesia (North-Western Australian Basin, or NWAB). TMI and Argo observations indicate that the temperature signal (std. ~0.4 °C) is most prominent within the top 20 m. This temperature signal appears as a standing oscillation with a 40-50 day timescale within the NWAB, associated with ~40 Wm-2 net heat fluxes (primarily shortwave and latent) and ~0.02 Nm-2 wind stress perturbations. This signal is largely related to the Madden-Julian Oscillation. A slab ocean model with climatological observed mixed-layer depth and an ocean general circulation model both accurately reproduce the observed intraseasonal SST oscillations in the NWAB. Both indicate that most of the intraseasonal SST variations in the NWAB in austral winter are related to surface heat flux forcing, and that intraseasonal SST variations are largest in austral summer because the mixed-layer is shallow (~20 m) and thus more responsive during that season. The general circulation model indicates that entrainment cooling plays little role in intraseasonal SST variations. The larger intraseasonal SST variations in the NWAB as compared to the widely-studied thermocline-ridge of the Indian Ocean region is explained by the larger convective and air-sea heat flux perturbations in the NWAB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A11C0047P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A11C0047P"><span>North Atlantic Oscillation and pollutants variability in Europe: model analysis and measurements intercomparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pausata, F.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; Cavalli, F.; Dentener, F. J.</p> <p>2013-12-01</p> <p>Ozone pollution and particulate matter (PM) represent a serious health and environmental problem. While ozone pollution is mostly produced by photochemistry in summer, PM is of main concern during winter. Both pollutants can be influenced nt only by local scale processes but also by long range transport driven by the atmospheric circulation and stratospheric ozone intrusions. We analyze the role of large scale atmospheric circulation variability in the North Atlantic basin in determining surface ozone and PM concentrations over Europe. Here, we show, using ground station measurements and a coupled atmosphere-chemistry model simulation for the period 1980-2005, that with regard to ozone the North Atlantic Oscillation (NAO) does affect surface ozone concentrations - on a monthly timescale, over 10 ppbv in southwestern, central and northern Europe - during all seasons except fall. We find that the first Principal Component, computed from the time variation of the sea level pressure (SLP) field, detects the atmosphere circulation/ozone relationship not only in winter and spring but also during summer, when the atmospheric circulation weakens and regional photochemical processes peak. Given the NAO forecasting skill at intraseasonal time scale, the first Principal Component of the SLP field could be used as an indicator to identify areas more exposed to forthcoming ozone pollution events. Finally, our results suggest that the increasing baseline ozone in western and northern Europe during the 1990s could be related to the prevailing positive phase of the NAO in that period. With regard to PM, our study shows that in winter the NAO modulates surface PM concentrations accounting in average up to 30% of the total PM variability. During positive NAO phases, positive PM anomalies occur over southern Europe, and negative anomalies in central-northern Europe. A positve shift of the NAO mean states, hence, leads to an increase in cardiac and resipratory morbidity related to PM exposure in the Mediterranean countries with up to over 5000 more deaths per 20 million people for a 2000 emission inventory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H51D1399J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H51D1399J"><span>Assessing groundwater recharge mechanisms in the Pampa del Tamarugal Basin of northern Chile's Atacama Desert</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jayne, R., Jr.; Pollyea, R.; Dodd, J. P.; Olson, E. J.; Swanson, S.</p> <p>2015-12-01</p> <p>The hyper-arid Atacama Desert in northern Chile is one of the driest inhabited places on Earth receiving little to no rain (<5 mm/yr). Within the Tarapacá Region of the Atacama Desert, the Pampa del Tamarugal Aquifer (PTA) is the primary source of water for agriculture, industry, mining, and residential uses. The PTA covers 5,000 km2, and is located in the Pampa del Tamarugal Basin, which is situated between the Andes and the Coastal Cordillera, and is filled with ~1700m of Miocene and younger sediments. The source of recharge for the PTA originates as precipitation in the high Andes, which can receive up to 400 mm/yr of precipitation; however, the mechanisms and magnitude of recharge to the PTA are still poorly understood. Here, we present a regional scale, non-isothermal 2-D numerical groundwater model is developed to analyze the time scales and geological controls on fluid flow paths recharging the PTA. Results from this work suggest that (1) both shallow groundwater flow and deep (>1km) hydrothermal fluid circulation are responsible for recharging the PTA; (2) topography and geothermal gradients are the main driving factors for regional groundwater flow; (3) the Altos de Pica member 4, an ignimbrite layer in the sedimentary basin controls both heat and fluid flow in the western part of the basin, this is evident due to the presence of convection cells and meteoric water upwelling and presenting itself as surface water (salars); and (4) it takes meteoric water 100,000 years to travel from the high Andes to reach Pica and 1,000,000 years for salar formation. In addition, this work provides a theoretical basis for the spatial distribution of highly alkaline surface water bodies, known as salars in the western Atacama Desert.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA527114','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA527114"><span>Lagrangian Turbulence and Transport in Semi-enclosed Basins and Coastal Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-01-01</p> <p>enclosed Basins and Coastal Regions Annalisa Griffa Division of Meteorology and Physical Oceanography Rosenstiel School of Marine and Atmospheric...enclosed Basins and Coastal Regions 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...variables. A set of diagnostics is then performed, including hydrological sections, transport, mean circulation and variability, aimed at quantifying</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA543049','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA543049"><span>Buoyant Outflows in the Presence of Ccomplex Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-09-30</p> <p>of the flow exchange through the Dardanelles Strait on the Aegean Sea coastal flows, cross-shelf exchanges and basin -wide eddy field; e) examine...enhance the predictive capability of operational Navy models, by developing and testing a methodology to link the Mediterranean and Black Sea basins ...in the Aegean Sea through the Dardanelles Strait was shown to have a significant impact on the basin -wide circulation, with implications on the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20015079-combined-effects-deforestation-doubled-atmospheric-co-sub-concentrations-climate-amazonia','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20015079-combined-effects-deforestation-doubled-atmospheric-co-sub-concentrations-climate-amazonia"><span>Combined effects of deforestation and doubled atmospheric CO{sub 2} concentrations on the climate of Amazonia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Costa, M.H.; Foley, J.A.</p> <p>2000-01-01</p> <p>It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: (1) increasing areas of forest will be converted to pasture and cropland, and (2) concentrations of atmospheric CO{sub 2} will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO{sub 2} concentrations (including both physiological and radiative effects) on Amazonian climate. In these simulations, deforestation decreases basin-average precipitation by 0.73more » mm day{sup {minus}1} over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO{sub 2} concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day{sup {minus}1}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day{sup {minus}1}. While the effects of deforestation and increasing CO{sub 2} concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO{sub 2} concentrations both tent to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO{sub 2}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, increases the basin-average temperature by roughly 3.5 C.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PIAHS.379..139N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PIAHS.379..139N"><span>Climate change impact on streamflow in large-scale river basins: projections and their uncertainties sourced from GCMs and RCP scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nasonova, Olga N.; Gusev, Yeugeniy M.; Kovalev, Evgeny E.; Ayzel, Georgy V.</p> <p>2018-06-01</p> <p>Climate change impact on river runoff was investigated within the framework of the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP2) using a physically-based land surface model Soil Water - Atmosphere - Plants (SWAP) (developed in the Institute of Water Problems of the Russian Academy of Sciences) and meteorological projections (for 2006-2099) simulated by five General Circulation Models (GCMs) (including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M) for each of four Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Eleven large-scale river basins were used in this study. First of all, SWAP was calibrated and validated against monthly values of measured river runoff with making use of forcing data from the WATCH data set and all GCMs' projections were bias-corrected to the WATCH. Then, for each basin, 20 projections of possible changes in river runoff during the 21st century were simulated by SWAP. Analysis of the obtained hydrological projections allowed us to estimate their uncertainties resulted from application of different GCMs and RCP scenarios. On the average, the contribution of different GCMs to the uncertainty of the projected river runoff is nearly twice larger than the contribution of RCP scenarios. At the same time the contribution of GCMs slightly decreases with time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GGG....13.9006L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GGG....13.9006L"><span>Tectonic and magmatic controls on hydrothermal activity in the Woodlark Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laurila, T. E.; Petersen, S.; Devey, C. W.; Baker, E. T.; Augustin, N.; Hannington, M. D.</p> <p>2012-09-01</p> <p>The Woodlark Basin is one of the rare places on earth where the transition from continental breakup to seafloor spreading can be observed. The potential juxtaposition of continental rocks, a large magmatic heat source, crustal-scale faulting, and hydrothermal circulation has made the Woodlark Basin a prime target for seafloor mineral exploration. However, over the past 20 years, only two locations of active hydrothermalism had been found. In 2009 we surveyed 435 km of the spreading axis for the presence of hydrothermal plumes. Only one additional plume was found, bringing the total number of plumes known over 520 km of ridge axis to only 3, much less than at ridges with similar spreading rates globally. Particularly the western half of the basin (280 km of axis) is apparently devoid of high temperature plumes despite having thick crust and a presumably high magmatic budget. This paucity of hydrothermal activity may be related to the peculiar tectonic setting at Woodlark, where repeated ridge jumps and a re-location of the rotation pole both lead to axial magmatism being more widely distributed than at many other, more mature and stable mid-ocean ridges. These factors could inhibit the development of both a stable magmatic heat source and the deeply penetrating faults needed to create long-lived hydrothermal systems. We conclude that large seafloor massive sulfide deposits, potential targets for seafloor mineral exploration, will probably not be present along the spreading axis of the Woodlark Basin, especially in its younger, western portion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS41A1541G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS41A1541G"><span>Spice: Southwest Pacific Ocean Circulation and Climate Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ganachaud, A. S.; Melet, A.; Maes, C.</p> <p>2010-12-01</p> <p>South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. The transit in the Coral Sea is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. The south branch is associated with comparable impacts in the Tasman Sea area. The Southwest Pacific is a region of complex circulation, with the SEC splitting in strong zonal jets upon encountering island archipelagos. Those jets partition on the Australian eastern boundary to feed the East Australian Current for the southern branch and the North Queensland Current and eventually the Equatorial Undercurrent for the northern branch. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the South Pacific Convergence Zone (SPCZ) position and intensity. The circulation, and its influence on remote and regional climate, is poorly understood due to the lack of appropriate measurements. Ocean and atmosphere scientists from Australia, France, New Zealand, the United States and Pacific Island countries initiated an international research project under the auspices of CLIVAR to comprehend the southwest Pacific Ocean circulation and its direct and indirect influence on the climate and environment. SPICE is a regionally-coordinated experiment to measure, study and monitor the ocean circulation and the SPCZ, to validate and improve numerical models, and to integrate with assimilating systems. This ongoing project reflects a strong sense that substantial progress can be made through collaboration among South Pacific national research groups, coordinated with broader South Pacific projects.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13C..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13C..04M"><span>Reconstructing Deep Ocean Circulation in the North Atlantic from Bermuda Rise, and Beyond</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McManus, J. F.</p> <p>2016-12-01</p> <p>The large-scale subsurface circulation of the ocean is an important component of the Earth's climate system, and contributes to the global and regional transport of heat and mass. Assessing how this system has changed in the past is thus a priority for understanding natural climate variability. A long-coring campaign on Bermuda Rise has provided additional abundant high-quality sediments from this site of rapid accumulation in the deep western basin, situated beneath the subtropical gyre of the North Atlantic Ocean. These sediments allow the high-resolution reconstruction of deepwater chemistry and export from this key location throughout the last 150,000 years, covering the entire last glacial cycle in a continuous section of 35 meters in core KNR191-CDH19. The suite of proxy indicators analyzed includes uranium-series disequilibria, neodymium isotopes, and benthic stable isotopes. Combined with multiple previous studies of nearby cores on Bermuda Rise, the published and new proxy data from CDH19 confirm the variability of the deep circulation in the Atlantic Ocean in association with past climate changes. The multiple indicators, along with complementary data from other locations, display coherent evidence for contrasts between deep circulation during glacial and interglacial intervals, with persistent strong, deep ventilation only within the peak interglacial of marine isotope stage 5e (MIS 5e) and the Holocene. In contrast, repeated, dramatic variability in deep ocean circulation accompanied the millennial climate changes of the last glaciation and deglaciation. The largest magnitude circulation shifts occurred at the transitions into stadials associated with the Hudson strait iceberg discharges and between them and the ensuing northern interstadial warmings, significantly exceeding that of the overall glacial-interglacial difference, highlighting the potential oceanographic and climatic importance of short-term perturbations to the deep ocean circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15961666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15961666"><span>Dilution of the northern North Atlantic Ocean in recent decades.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Curry, Ruth; Mauritzen, Cecilie</p> <p>2005-06-17</p> <p>Declining salinities signify that large amounts of fresh water have been added to the northern North Atlantic Ocean since the mid-1960s. We estimate that the Nordic Seas and Subpolar Basins were diluted by an extra 19,000 +/- 5000 cubic kilometers of freshwater input between 1965 and 1995. Fully half of that additional fresh water-about 10,000 cubic kilometers-infiltrated the system in the late 1960s at an approximate rate of 2000 cubic kilometers per year. Patterns of freshwater accumulation observed in the Nordic Seas suggest a century time scale to reach freshening thresholds critical to that portion of the Atlantic meridional overturning circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRC..119.7660G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRC..119.7660G"><span>The Southwest Pacific Ocean circulation and climate experiment (SPICE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ganachaud, A.; Cravatte, S.; Melet, A.; Schiller, A.; Holbrook, N. J.; Sloyan, B. M.; Widlansky, M. J.; Bowen, M.; Verron, J.; Wiles, P.; Ridgway, K.; Sutton, P.; Sprintall, J.; Steinberg, C.; Brassington, G.; Cai, W.; Davis, R.; Gasparin, F.; Gourdeau, L.; Hasegawa, T.; Kessler, W.; Maes, C.; Takahashi, K.; Richards, K. J.; Send, U.</p> <p>2014-11-01</p> <p>The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Niño-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29059568','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29059568"><span>Regional analysis and derivation of copula-based drought Severity-Area-Frequency curve in Lake Urmia basin, Iran.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Amirataee, Babak; Montaseri, Majid; Rezaie, Hossein</p> <p>2018-01-15</p> <p>Droughts are extreme events characterized by temporal duration and spatial large-scale effects. In general, regional droughts are affected by general circulation of the atmosphere (at large-scale) and regional natural factors, including the topography, natural lakes, the position relative to the center and the path of the ocean currents (at small-scale), and they don't cover the exact same effects in a wide area. Therefore, drought Severity-Area-Frequency (S-A-F) curve investigation is an essential task to develop decision making rule for regional drought management. This study developed the copula-based joint probability distribution of drought severity and percent of area under drought across the Lake Urmia basin, Iran. To do this end, one-month Standardized Precipitation Index (SPI) values during the 1971-2013 were applied across 24 rainfall stations in the study area. Then, seven copula functions of various families, including Clayton, Gumbel, Frank, Joe, Galambos, Plackett and Normal copulas, were used to model the joint probability distribution of drought severity and drought area. Using AIC, BIC and RMSE criteria, the Frank copula was selected as the most appropriate copula in order to develop the joint probability distribution of severity-percent of area under drought across the study area. Based on the Frank copula, the drought S-A-F curve for the study area was derived. The results indicated that severe/extreme drought and non-drought (wet) behaviors have affected the majority of study areas (Lake Urmia basin). However, the area covered by the specific semi-drought effects is limited and has been subject to significant variations. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ERL....11k4003L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ERL....11k4003L"><span>Emergence of new hydrologic regimes of surface water resources in the conterminous United States under future warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leng, Guoyong; Huang, Maoyi; Voisin, Nathalie; Zhang, Xuesong; Asrar, Ghassem R.; Leung, L. Ruby</p> <p>2016-11-01</p> <p>Despite the importance of surface water to people and ecosystems, few studies have explored detectable changes in surface water supply in a changing climate, given its large natural variability. Here we analyze runoff projections from the Variable Infiltration Capacity hydrological model driven by 97 downscaled and bias-corrected Coupled Model Intercomparison Project Phase 5 climate projections over the conterminous United States (CONUS). Our results show that more than 40% of the CONUS land area will experience significant changes in the probability distribution functions (i.e. PDFs) of summer and winter runoff by the end of the 21st century, which may pose great challenges to future surface water supply. Sub-basin mean runoff PDFs are projected to change significantly after 2040s depending on the emission scenarios, with earliest occurrence in the Pacific Northwest and northern California regions. When examining the response as a function of changes in the global mean temperature (ΔGMT), a linear relationship is revealed at the 95% confidence level. Generally, 1 °C increase of GMT leads to 11% and 17% more lands experiencing changes in summer and winter runoff PDFs, respectively. Such changes in land fraction scale with ΔGMT at the country scale independent of emission scenarios, but the same relationship does not necessarily hold at sub-basin scales, due to the larger role of atmospheric circulation changes and their uncertainties on regional precipitation. Further analyses show that the emergence of significant changes in sub-basin runoff PDFs is indicative of the emergence of new hydrology regimes and it is dominated by the changes in variability rather than shift in the mean, regardless of the emission scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......206G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......206G"><span>Mechanisms of Ocean Heat Uptake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garuba, Oluwayemi</p> <p></p> <p>An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC51B0813P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC51B0813P"><span>The Influence of Large-Scale Circulation on Fire Outbreaks in the Amazon Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pires, L. B. M.; Romao, M.; Freitas, A. C. V.</p> <p>2017-12-01</p> <p>The combination of alterations in land use cover and severe droughts may dramatically increase fire outbreaks. Tropical convection in the Amazon Basin is regulated mainly by large-scale atmospheric systems such as the Walker circulation. Many of the documented drought episodes in the Amazon occurred during intense El Niño events such as those recorded in 1926, 1983, 1997-1998, and 2010. However, not all El Niño events are related to drought in the Amazon. Recent studies have also pointed out the importance of the tropical Atlantic Ocean in the modulation of the Amazonian climate, as observed during the drought episodes in 2005 and 2010. This work investigates the fire outbreak tendency in the Amazon region, and the influence of large-scale circulation on these events. Data from the Fire Program of the Center for Weather Forecasting and Climate Studies (CPTEC/INPE) show a substantial increase in the number of fire outbreaks in the last few years, especially during 2016. However, in the 2017 year a sharp drop in fire outbreaks reaching levels similar to the years prior to 2016 is being noted, already showing a reduction of 54% in relation to the preceding 2016 year. The 2015-2016 period was marked by one of the strongest El Niño in history. This was reflected in the increase of the number of fire outbreaks due to the increase of the drought and temperature elevation period. On the other hand, the 2017 year is being characterized by a condition of neutrality in relation to the El Niño-Southern Oscillation (ENSO) phenomena, and have overall presented positive sea surface temperature (SST) anomalies in the tropical Atlantic. Variations of these systems and their relation to fire outbreaks is demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990092375','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990092375"><span>Seasonal Distributions of Global Ocean Chlorophyll and Nutrients: Analysis with a Coupled Ocean General Circulation Biogeochemical, and Radiative Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gregg, Watson W.</p> <p>1999-01-01</p> <p>A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JGR....9924691B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JGR....9924691B"><span>Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blayo, E.; Verron, J.; Molines, J. M.</p> <p>1994-12-01</p> <p>Assimilation experiments were conducted using the first 12 months of TOPEX/POSEIDON (T/P) altimeter measurements in a multilayered quasi-geostrophic model of the North Atlantic between 20°N and 60°N. These experiments demonstrate the feasibility of using T/P data to control a basin-scale circulation model by means of an assimilation procedure. Moreover, they allow us to recreate the four-dimensional behavior of the North Atlantic Ocean during the year October 1992-September 1993 and to improve our knowledge and understanding of such circulation patterns. For this study we used a four-layer quasigeostrophic model of high horizontal resolution (1/6° in latitude and longitude). The assimilation procedure used is an along-track, sequential, nudging technique. The evolution of the model general circulation is described and analyzed from a deterministic and statistical point of view, with special emphasis on the Gulf Stream area. The gross features of the North Atlantic circulation in terms of mean transport and circulation are reproduced, such as the path, penetration and recirculation of the Gulf Stream, and its meandering throughout the eastern basin. The North Atlantic Drift is, however, noticeably underestimated. A northern meander of the north wall of the Gulf Stream above the New England Seamount Chain is present for most of the year, while, just downstream, the southern part of the jet is subject to a 100-km southeastward deflection. The Azores current is shown to remain stable and to shift southward with time from the beginning of December 1992 to the end of April 1993, the amplitude of the shift being about 2°. The computation of the mean latitude of the Gulf Stream as a function of time shows an abrupt shift from a northern position to a southern position in January, and a reverse shift, from a southern position to a northern position, in July. Finally, some issues are addressed concerning the comparison of assimilation experiments using T/P data and Geosat data. The first results show that the T/P simulations are more energetic than the Geosat simulations, especially east of the Mid-Atlantic Ridge, for every wavelength from 50 km to 500 km. This property is also verified in the deep ocean. The predicted abyssal circulation is indeed more energetic in the T/P case, which is more in accordance with what we know of the real ocean. Moreover, the good T/P altimeter coverage near the coasts greatly improves the model eddy kinetic energy levels in these areas, especially east of 25°W.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GBioC..31..745D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GBioC..31..745D"><span>Ventilation versus biology: What is the controlling mechanism of nitrous oxide distribution in the North Atlantic?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de la Paz, Mercedes; García-Ibáñez, Maribel I.; Steinfeldt, Reiner; Ríos, Aida F.; Pérez, Fiz F.</p> <p>2017-04-01</p> <p>The extent to which water mass mixing and ocean ventilation contribute to nitrous oxide (N2O) distribution at the scale of oceanic basins is poorly constrained. We used novel N2O and chlorofluorocarbon measurements along with multiparameter water mass analysis to evaluate the impact of water mass mixing and Atlantic Meridional Overturning Circulation (AMOC) on N2O distribution along the Observatoire de la variabilité interannuelle et décennale en Atlantique Nord (OVIDE) section, extending from Portugal to Greenland. The biological N2O production has a stronger impact on the observed N2O concentrations in the water masses traveling northward in the upper limb of the AMOC than those in recently ventilated cold water masses in the lower limb, where N2O concentrations reflect the colder temperatures. The high N2O tongue, with concentrations as high as 16 nmol kg-1, propagates above the isopycnal surface delimiting the upper and lower AMOC limbs, which extends from the eastern North Atlantic Basin to the Iceland Basin and coincides with the maximum N2O production rates. Water mixing and basin-scale remineralization account for 72% of variation in the observed distribution of N2O. The mixing-corrected stoichiometric ratio N2O:O2 for the North Atlantic Basin of 0.06 nmol/μmol is in agreement with ratios of N2O:O2 for local N2O anomalies, suggesting than up to 28% of N2O production occurs in the temperate and subpolar Atlantic, an overlooked region for N2O cycling. Overall, our results highlight the importance of taking into account mixing, O2 undersaturation when water masses are formed and the increasing atmospheric N2O concentrations when parameterizing N2O:O2 and biological N2O production in the global oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MAP...tmp....9C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MAP...tmp....9C"><span>Spatio-temporal variability of dryness/wetness in the middle and lower reaches of the Yangtze River Basin and correlation with large-scale climatic factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xinchi; Zhang, Liping; Zou, Lei; Shan, Lijie; She, Dunxian</p> <p>2018-02-01</p> <p>The middle and lower reaches of the Yangtze River Basin (MLYR) are greatly affected by frequent drought/flooding events and abrupt alternations of these events in China. The purpose of this study is to analyze the spatial and temporal variability of dryness/wetness based on the data obtained from 75 meteorological stations in the MLYR for the period 1960-2015 and investigate the correlations between dryness/wetness and atmospheric circulation factors. The empirical orthogonal function method was applied in this study based on the monthly Standardized Precipitation Index at a 12-month time scale. The first leading pattern captured the same characteristics of dryness/wetness over the entire MLYR area and accounted for 40.87% of the total variance. Both the second and third leading patterns manifested as regional features of variability over the entire MLYR. The cross-wavelet transform method was applied to explore the potential relationship between the three leading patterns and the large-scale climate factors, and finally the relationships between drought/wetness events and climate factors were also analyzed. Our results indicated that the main patterns of dryness/wetness were primarily associated with the Niño 3.4, Indian Ocean Dipole, Southern Oscillation Index and Northern Oscillation Index, with the first pattern exhibiting noticeable periods and remarkable changes in phase with the indices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMPP11A0201N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMPP11A0201N"><span>Circulation Through the Central American Seaway During the Miocene Carbonate Crash</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newkirk, D. R.; Martin, E. E.</p> <p>2007-12-01</p> <p>Changes in deep sea circulation in the Caribbean Basin were investigated in order to determine the cause of the carbonate crash in the middle to late Miocene and the impact of the shoaling of the Central American Seaway (CAS) on larger scale circulation patterns. Gateway events, such as the shoaling of the CAS, have long been associated with the reorganization of ocean circulation and dramatic climate events. The distribution of water masses in the Caribbean region was evaluated using Nd isotopes from fossil fish teeth from three ODP sites: Site 998 in the northern Caribbean Basin (3179 m water depth), Site 999 in the southern Caribbean (2897 m), and Site 846 from the eastern equatorial Pacific (3296 m). Prior to the carbonate crash in the Caribbean (14 to 12 Ma) ɛNd values increased from -6 to ~-3, while carbonate mass accumulation rates \\(MARs\\) decreased. During the crash interval ɛNd values were highly variable within the Caribbean basin with values ranging between -4.4 and 0; the highest values correlate with intervals of greatest dissolution. As carbonate MARs increased following the crash ɛNd values in the Caribbean began to decrease, reaching a value of ~-6 by 9 Ma. The carbonate crash in the eastern equatorial Pacific lags the Caribbean crash by about 0.5 Ma. Prior to the crash ɛNd values at Site 846 increased from -4 to -2. They then remained relatively steady during the crash. The radiogenic Nd values in the Caribbean basin are much higher than any values recorded in the Atlantic throughout the Cenozoic. The possibility that these values are altered by ash diagenesis in the Caribbean has been evaluated, but there is no correlation between intervals of ash deposition and radiogenic ɛNd values. However, these radiogenic values are similar to values reported for Pacific intermediate and shallow waters during the Miocene. It appears that corrosive, intermediate Pacific waters were gradually introduced into the Caribbean prior to the crash, while pulses of almost exclusively shallow to intermediate Pacific waters filled the Caribbean during the crash. This inflow of Pacific waters through the CAS has been predicted by several GCMs investigating the affects of CAS sill depths and the location of the ITCZ on Northern Component Water (NCW) production and flow directions through the CAS. Periods of enhanced NCW production correlate with intervals of more intense dissolution in the Caribbean, suggesting that aging of the water along the conveyor belt flow path from the North Atlantic to the Pacific creates more corrosive Pacific Deep Water, which then contributes to North Pacific Intermediate Water and Pacific Central Water. These corrosive waters flow southward producing more radiogenic ɛNd values and carbonate dissolution in the equatorial Pacific and Caribbean Basin. Shoaling of the CAS and a decrease in NCW combine to limit the flow of radiogenic, corrosive waters into the Caribbean. This reduction in Pacific throughflow is documented by the decreasing ɛNd values beginning at ~10 Ma at Site 998 and continues until ~5Ma as documented by ɛNd data from a ferromanganese crust located in the Straits of Florida.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP41B1838B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP41B1838B"><span>Physical Modeling of Flow Over Gale Crater, Mars: Laboratory Measurements of Basin Secondary Circulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bristow, N.; Blois, G.; Kim, T.; Anderson, W.; Day, M. D.; Kocurek, G.; Christensen, K. T.</p> <p>2017-12-01</p> <p>Impact craters, common large-scale topographic features on the surface of Mars, are circular depressions delimited by a sharp ridge. A variety of crater fill morphologies exist, suggesting that complex intracrater circulations affect their evolution. Some large craters (diameter > 10 km), particularly at mid latitudes on Mars, exhibit a central mound surrounded by circular moat. Foremost among these examples is Gale crater, landing site of NASA's Curiosity rover, since large-scale climatic processes early in in the history of Mars are preserved in the stratigraphic record of the inner mound. Investigating the intracrater flow produced by large scale winds aloft Mars craters is key to a number of important scientific issues including ongoing research on Mars paleo-environmental reconstruction and the planning of future missions (these results must be viewed in conjunction with the affects of radial katabatibc flows, the importance of which is already established in preceding studies). In this work we consider a number of crater shapes inspired by Gale morphology, including idealized craters. Access to the flow field within such geometrically complex topography is achieved herein using a refractive index matched approach. Instantaneous velocity maps, using both planar and volumetric PIV techniques, are presented to elucidate complex three-dimensional flow within the crater. In addition, first- and second-order statistics will be discussed in the context of wind-driven (aeolian) excavation of crater fill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4180M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4180M"><span>Meridional Overturning Circulation Transport Variability at 34.5°S During 2009-2017: Baroclinic and Barotropic Flows and the Dueling Influence of the Boundaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meinen, Christopher S.; Speich, Sabrina; Piola, Alberto R.; Ansorge, Isabelle; Campos, Edmo; Kersalé, Marion; Terre, Thierry; Chidichimo, Maria Paz; Lamont, Tarron; Sato, Olga T.; Perez, Renellys C.; Valla, Daniel; van den Berg, Marcel; Le Hénaff, Matthieu; Dong, Shenfu; Garzoli, Silvia L.</p> <p>2018-05-01</p> <p>Six years of simultaneous moored observations near the western and eastern boundaries of the South Atlantic are combined with satellite winds to produce a daily time series of the basin-wide meridional overturning circulation (MOC) volume transport at 34.5°S. The results demonstrate that barotropic and baroclinic signals at both boundaries cause significant transport variations, and as such must be concurrently observed. The data, spanning 20 months during 2009-2010 and 4 years during 2013-2017, reveal a highly energetic MOC record with a temporal standard deviation of 8.3 Sv, and strong variations at time scales ranging from a few days to years (peak-to-peak range = 54.6 Sv). Seasonal transport variations are found to have both semiannual (baroclinic) and annual (Ekman and barotropic) timescales. Interannual MOC variations result from both barotropic and baroclinic changes, with density profile changes at the eastern boundary having the largest impact on the year-to-year variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ERL....11i4013P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ERL....11i4013P"><span>Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.</p> <p>2016-09-01</p> <p>The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (<1000 m) between 15° and ˜32°S, largely related to a weakening of the wind stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PrOce.160...68H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PrOce.160...68H"><span>The abyssal and deep circulation of the Northeast Pacific Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hautala, Susan L.</p> <p>2018-01-01</p> <p>Three-dimensional abyssal and deep circulation of the region to the east and north of the Emperor Seamount Chain/Hawaiian Ridge is determined from a compilation of CTD and Argo float data, using a new overdetermined inverse technique for the geostrophic reference velocity and diapycnal/lateral mixing coefficients. The Northeast Pacific Basin is primarily sourced from its northern boundary, at a rate of 3.5 Sv across 47°N below 3000 m. Bottom water in the western subarctic gyre recirculates cyclonically between the Emperor Seamount Chain and 155°W. Bottom water east of 155°W takes a more direct path southward along the flank of a broad topographic slope. In the deep water, a ridge of potential vorticity lying along the Mendocino Fracture Zone separates circulation systems north and south of ∼40°N. The region has very weak diapycnal and lateral mixing, and an aspect ratio for the overturning circulation that is correspondingly flat, with bottom water parcels rising less than 1 km during their long transit from the Aleutian Trench to the latitude of Hawaii.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14729366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14729366"><span>Comet assay and micronucleus test in circulating erythrocytes of Cyprinus carpio specimens exposed in situ to lake waters treated with disinfectants for potabilization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buschini, A; Martino, A; Gustavino, B; Monfrinotti, M; Poli, P; Rossi, C; Santoro, M; Dörr, A J M; Rizzoni, M</p> <p>2004-02-14</p> <p>The detection of a possible genotoxic effect of surface water treated with disinfectants for potabilization is the aim of the present work. The Comet assay and the micronucleus test were applied in circulating erythrocytes of Cyprinus carpio. Young specimens (20-30 g) were exposed in experimental basins, built within the potabilization plant of Castiglione del Lago (Perugia, Italy). In this plant the water of the Trasimeno Lake is treated and disinfected for potabilization before it is distributed to the people in the net of drinkable water. A continuous flow of water at a constant rate was supplied to basins; the water was continuously treated at a constant concentration with one of the three tested disinfectants (sodium hypochlorite, peracetic acid and chloride dioxide), one control basin being supplied with untreated water. Three sampling campaigns were performed: October 2000, February 2001 and June 2001. Repeated blood samplings through intracardiac punctures allowed to follow the same fish populations after different exposure times: before introduction of the disinfectant, and 10 or 20 days afterwards. An additional blood sampling was performed 3 h after addition of the disinfectant in other, simultaneously exposed, fish populations. Genotoxic damage was shown in fish exposed to water disinfected with sodium hypochlorite and chloride dioxide. The Comet assay showed an immediate response, i.e. DNA damage that was induced directly in circulating erythrocytes, whereas micronuclei reached their highest frequencies at later sampling times, when a genotoxic damage in stem cells of the cephalic kidney is expressed in circulating erythrocytes. The quality of the untreated surface water seems to be the most important parameter for the long-term DNA damage in circulating erythrocytes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HydJ..tmp...24J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HydJ..tmp...24J"><span>A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Wang, Dan; Wang, Heng; Wang, Jun-Zhi; Zhang, Hong; Zhang, Zhi-Yuan; Zhao, Ke-Yu</p> <p>2018-01-01</p> <p>The Ordos Basin is one of the most intensively studied groundwater basins in China. The Ordos Plateau, located in the north part of the Ordos Basin, is ideal to study the pattern of regional groundwater circulation induced by water-table undulations due to the wavy topography and the relatively simple aquifer systems with macroscopically homogeneous sandstone. In catchments located near the first-order divide, the water table is found to be a subdued replica of the topography, and the nonclosed water-table contours in topographic highs of a catchment are indicative of regional groundwater outflow to other catchments. In topographic lows, groundwater-fed lakes/rivers, topography-driven flowing wells, water-loving and/or salt-tolerant vegetation, and soap holes are all indicative of discharge areas. In discharge areas, although groundwater inflow from recharge areas is relatively stable, seasonal variations in groundwater recharge and evapotranspiration lead to significant seasonal fluctuations in the water table, which can be used to estimate groundwater inflow and evapotranspiration rates based on water balance at different stages of water-table change. In the lowest reaches of a complex basin, superposition of local flow systems on regional flow systems has been identified based on groundwater samples collected from wells with different depths and geophysical measurements of apparent resistivity, both of which can be used for characterizing groundwater flow systems. This study enhances understanding of the pattern of regional groundwater circulation in the Ordos Plateau, and also tests the effectiveness of methods for groundwater flow-system characterization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917802F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917802F"><span>Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David</p> <p>2017-04-01</p> <p>Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of large-scale circulation influences on sub-regional conditions in terms of their sign, strength and the mechanisms through which it acts, the KV/KZI work substantively advances climate science in this domain. The work also thus provides a new set of criteria for assessing the skill of global circulation models in representation of western HMA climate processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814840S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814840S"><span>Towards a model-based understanding of the Mediterranean circulation during the Messinian Salinity Crisis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simon, Dirk; Meijer, Paul</p> <p>2016-04-01</p> <p>Today, the Atlantic-Mediterranean gateway (the Strait of Gibraltar) and the strong evaporative loss in the east let the Mediterranean Sea attain a salinity of 2-3 g/l higher than the Atlantic Ocean. During the winter months, strong cooling of surface waters in the north forms deep water, which mixes the Mediterranean, while during summer the water column is stratified. During the Messinian Salinity Crisis (MSC, 5.97-5.33Ma) the salt concentration was high enough to reach the saturation of gypsum (~130-160 g/l) and halite (~350 g/l). This caused large deposits of these evaporites all over the basin, capturing 6% of the World Ocean salt within the Mediterranean at the time. Although several mechanisms have been proposed as to how the Mediterranean circulation might have functioned, these mechanisms have yet to be rooted in physics and tested quantitatively. Understanding circulation during the MSC becomes particularly important when comparing Mediterranean marginal to deep basins. On the one hand, many of the marginal basins in the Mediterranean are well studied, like the Sorbas basin (Spain) or the Vena del Gesso basin (Italy). On the other hand, the deep Mediterranean is less well studied, as no full record of the whole deep sequence exists. This makes it very complicated to correlate marginal and deep basin records. Here we are presenting the first steps in working towards a physics-based understanding of the mixing and stratification bahaviour of the Mediterranean Sea during the MSC. The final goal is to identify the physical mechanism needed to form such a salt brine and to understand how it differs from today's situation. We are hoping to compare our results to, and learn from, the much smaller but best available analog to the MSC, the Dead Sea, where recent overturning has been documented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.U71A..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.U71A..06M"><span>Oceanographic Aspects of Recent Changes in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morison, J. H.</p> <p>2002-12-01</p> <p>In the Arctic recent decadal-scale changes have marked the atmosphere, ocean, and land. Connections between the oceanographic changes and large-scale atmospheric circulation changes are emerging. Surface atmospheric pressure has shown a declining trend over the Arctic. In the 1990s, the Arctic Ocean circulation took on a more cyclonic character, and the front separating Atlantic-derived waters of the Eurasian Basin and the Pacific-derived waters of the Canadian Basin shifted counterclockwise. The temperature of Atlantic water in the Arctic Ocean reached record levels. The cold halocline, which isolates the surface from the warm Atlantic water, grew thinner disappearing entirely from the Amundsen Basin at one point [Steele and Boyd, 1998]. Arctic sea ice extent has decreased 3% per decade since the 1970s [Parkinson et al., 1999]. Sea ice thickness over much of the Arctic decreased 43% between 1958-1976 and 1993-1997 [Rothrock et al., 1999]. Arctic ecosystems have responded to these changes. Sea ice studies in the late 1990s indicate that the sea ice algal species composition changed from decades before, with the species recently being characterized by more brackish and freshwater forms. Barents Sea fisheries have shifted north following reductions in ice extent. Pacific salmon species have been found entering rivers in the Arctic. There is evidence that this complex of pan-Arctic changes is connected with the rising trend in the Arctic Oscillation (AO) or Northern Hemisphere atmospheric polar vortex in the 1990s. Theoretical evidence that a positive trend in the AO index might be indicative of greenhouse warming raises the possibility that the recent complex of changes is an Arctic characteristic of global climate change. Also, the changes in ice cover manifest a connection between the complex of change and global climate through ice-albedo feedback, by which reductions in ice cover reduce the amount of sunlight reflected from the earth's surface. Another important climate feedback is that the changes in ocean circulation and ice production have increased the amount of relatively fresh surface water exported to the sub-Arctic Seas, increasing stratification there, and arguably reducing the strength of the global thermohaline circulation. Since the mid-1990s the strength of the Polar Vortex (AO) has relaxed partially toward earlier levels. Recent observations show that Arctic Ocean water mass structure has relaxed somewhat towards climatology near the surface but is still changing at depth. The cold halocline has recovered in some areas. This reinforces the notion that the changes in the Arctic are tied to the atmospheric circulation of the whole northern hemisphere. The events of the last 10-15 years suggest ways the Arctic environment may be an indicator and agent of climate change and highlight the importance of a systematic program to observe the changing Arctic. References Parkinson C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, 1999, Arctic sea ice extents, areas, and trends, 1978-1996, J. Geophys. Res., 104, 20,387-20,856. Rothrock, D. A., Y. Yu, and G. A. Maykut, 1999, Thinning of the Arctic sea-ice cover, Geophys. Res. Lett., 26(23), 3469-3472. Steele, M., and T. Boyd, 1998, Retreat of the cold halocline layer in the Arctic Ocean, J. Geophys. Res., 103, 10,419-10,435.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006ACP.....6.1249D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006ACP.....6.1249D"><span>Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Foy, B.; Clappier, A.; Molina, L. T.; Molina, M. J.</p> <p>2006-04-01</p> <p>Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5) is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21432539','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21432539"><span>Atmospheric mercury concentrations in the basin of the amazon, Brazil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hachiya, N; Takizawa, Y; Hisamatsu, S; Abe, T; Abe, Y; Motohashi, Y</p> <p>1998-01-01</p> <p>A wide regional mercury pollution in Amazon, Brazil is closely associated with goldmining that has been carried out in the basin of tributaries of the Amazon since the eighteenth century. Possible involvement has been discussed on atmospheric circulation in distributing the volatile pollutant. We developed a portable air sampler for the collection of mercury compounds and determined atmospheric mercury concentrations at several sites in Brazil including the basin of the Amazon tributaries. The mean concentration of total mercury was between 9.1 and 14.0 ng/m(3) in the basin of the Uatumã River located in the tropical rain forest far from goldmining sites and from urbanized area. These mercury levels exceeded the background level previously reported in rural area and, furthermore, were higher than concentrations observed in Rio de Janeiro and in Manaus that were compatible with the reference values for urban area. Mercury concentrations were also determined in gold refineries in the basin of the Tapajos River, and detected at a significant but not a health deteriorating level. Although only preliminary data were available, the present observations were in favor of the hypothesis that mercury is distributed widely by long distant transport by the atmospheric circulation after released at gold mining sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........46S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........46S"><span>Intraplate volcanism of the Western Pacific: New insights from geological and geophysical observations in the Pigafetta Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stadler, Timothy J.</p> <p></p> <p>Understanding intraplate volcanism is a key to deciphering the Earth's magmatic history. One of the largest intraplate volcanic events occurred during the mid Cretaceous, roughly 75 to 125 Ma in the western Pacific. To investigate the origin and effects of this volcanism on various Earth systems, we present the first comprehensive study of volcanism in the Pigafetta Basin using seismic surveys, magnetic and gravity modeling, and Ocean Drilling Program drill core and well log data from Site 801. Our results show that intraplate volcanism in the Pigafetta Basin coincides with the rest of the western Pacific, supporting the plumelets scenario for the origin of intraplate volcanism during the mid Cretaceous volcanic event. We also discover that the late stage volcanism does not overprint the original ocean crust in the Pigafetta Basin, and hence, marine magnetic anomalies recorded in the Jurassic basement are preserved. Also, the formerly identified Rough Smooth Boundary (RSB) is indistinguishable from any other rough-smooth topographic boundaries throughout the survey area suggesting that the RSB is unlikely to be a Cretaceous sill-Jurassic basement boundary. Lastly, the apparent ages and spatial distribution of volcanic features suggests a dynamic history of hydrothermal circulation in the Pigafetta Basin, indicating that hydrothermal circulation was ongoing well past 100 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GGG....16.3015S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GGG....16.3015S"><span>Intraplate volcanism of the western Pacific: New insights from geological and geophysical observations in the Pigafetta Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stadler, Timothy J.; Tominaga, Masako</p> <p>2015-09-01</p> <p>Understanding intraplate volcanism is a key to deciphering the Earth's magmatic history. One of the largest intraplate volcanic events occurred during the mid-Cretaceous, roughly 75-125 Ma in the western Pacific. To investigate the origin of this volcanism we present the first comprehensive study of volcanism in the Pigafetta Basin using seismic surveys, magnetic and gravity modeling, and Ocean Drilling Program (ODP) drill core and well log data from Site 801. Our results show that intraplate volcanism in the Pigafetta Basin coincides with the rest of the western Pacific seamount provinces, supporting the previously suggested plumelets scenario for the origin of intraplate volcanism during the mid-Cretaceous volcanic events. Our magnetic modeling suggests that the late-stage volcanism does not overprint the remanant magnetization acquired by the Jurassic ocean crust in the Pigafetta Basin, and hence, marine magnetic anomalies recorded in the Jurassic basement are preserved. Also, the formerly identified Rough-Smooth Boundary (RSB) is indistinguishable from any other rough-smooth topographic boundaries throughout the survey area suggesting that the RSB is unlikely to be a Cretaceous sill-Jurassic basement boundary. Lastly, the apparent ages and spatial distribution of volcanic features suggests a dynamic history of hydrothermal circulation in the Pigafetta Basin, indicating that hydrothermal circulation was ongoing well past 100 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4500253','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4500253"><span>Biologically recycled continental iron is a major component in banded iron formations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.</p> <p>2015-01-01</p> <p>Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ56Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ56Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 100–103 y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 105–106 y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean. PMID:26109570</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26109570','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26109570"><span>Biologically recycled continental iron is a major component in banded iron formations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Weiqiang; Beard, Brian L; Johnson, Clark M</p> <p>2015-07-07</p> <p>Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ(56)Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ(56)Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 10(0)-10(3) y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 10(5)-10(6) y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7898S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7898S"><span>Mediterranean summer climate and the importance of Middle-East Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simpson, Isla; Seager, Richard; Shaw, Tiffany; Ting, Mingfang</p> <p>2015-04-01</p> <p>In summer, the atmospheric circulation over the Mediterranean is characterized by localized intense subsidence and low level northerlies over the central- to eastern portion of the basin. Here, simulations with the Community Atmosphere Model, version 5 are used to investigate the influence of the elevated terrain of North Africa and the Middle East on this summertime circulation. This builds on previous work that recognized a role for North African topography in localizing the Mediterranean subsidence. By flattening the two regions of elevated terrain in the model it is demonstrated that, while they both conspire to produce about 30% of the summertime subsidence, contrary to previous work, the mountains of the Middle-East dominate in this topographic contribution by far. This topography, consisting primarily of the Zagros Mountain range, alters the circulation throughout the depth of the troposphere over the Mediterranean, and further East. The model results suggest that about 20% of the Mediterranean summertime moisture deficit can be attributed to this mountain induced circulation. This topography, therefore, plays an important role in the climate of the Mediterranean and the large scale circulation over the rest of Eurasia during the summer. Further stationary wave modelling reveals that the mountain influence is produced via mechanical forcing of the flow. The greatest influence of the topography occurs when the low level incident flow is easterly, as happens during the summer, primarily due to the presence of condensational heating over Asia. During other seasons, when the low level incident flow is westerly, the influence of Middle-East topography on the Mediterranean is negligible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H21C1193S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H21C1193S"><span>Decomposition of Sources of Errors in Seasonal Streamflow Forecasts in a Rainfall-Runoff Dominated Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinha, T.; Arumugam, S.</p> <p>2012-12-01</p> <p>Seasonal streamflow forecasts contingent on climate forecasts can be effectively utilized in updating water management plans and optimize generation of hydroelectric power. Streamflow in the rainfall-runoff dominated basins critically depend on forecasted precipitation in contrast to snow dominated basins, where initial hydrological conditions (IHCs) are more important. Since precipitation forecasts from Atmosphere-Ocean-General Circulation Models are available at coarse scale (~2.8° by 2.8°), spatial and temporal downscaling of such forecasts are required to implement land surface models, which typically runs on finer spatial and temporal scales. Consequently, multiple sources are introduced at various stages in predicting seasonal streamflow. Therefore, in this study, we addresses the following science questions: 1) How do we attribute the errors in monthly streamflow forecasts to various sources - (i) model errors, (ii) spatio-temporal downscaling, (iii) imprecise initial conditions, iv) no forecasts, and (iv) imprecise forecasts? and 2) How does monthly streamflow forecast errors propagate with different lead time over various seasons? In this study, the Variable Infiltration Capacity (VIC) model is calibrated over Apalachicola River at Chattahoochee, FL in the southeastern US and implemented with observed 1/8° daily forcings to estimate reference streamflow during 1981 to 2010. The VIC model is then forced with different schemes under updated IHCs prior to forecasting period to estimate relative mean square errors due to: a) temporally disaggregation, b) spatial downscaling, c) Reverse Ensemble Streamflow Prediction (imprecise IHCs), d) ESP (no forecasts), and e) ECHAM4.5 precipitation forecasts. Finally, error propagation under different schemes are analyzed with different lead time over different seasons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511515K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511515K"><span>Transport and fate of river waters under flood conditions and rim current influence: the Mississippi River test case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kourafalou, Villy; Androulidakis, Yannis</p> <p>2013-04-01</p> <p>Large river plumes are a major supplier of freshwater, sediments and nutrients in coastal and shelf seas. Novel processes controlling the transport and fate of riverine waters (and associated materials) will be presented, under flood conditions and in the presence of complex topography, ambient shelf circulation and slope processes, controlled by the interaction with rim currents. The Mississippi River (MR) freshwater outflow is chosen as a test case, as a major circulation forcing mechanism for the Northern Gulf of Mexico and a unique river plume for the intense interactions with a large scale ocean current, namely the Loop Current branch of the Gulf Stream, and associated eddy field. The largest MR outflow in history (45,000 m3/sec in 2011) is compared with the second largest outflow in the last 8 years (41,000 m3/sec in 2008). Realistically forced simulations, based on the Hybrid Coordinate Ocean Model (HYCOM) with careful treatment of river plume dynamics and nested to a data assimilated, basin-wide model, reveal the synergistic effect of enhanced discharge, winds, stratification of ambient shelf waters and offshore circulation over the transport of plume waters. The investigation targets a broader understanding of the dynamics of large scale river plumes in general, and of the MR plume in particular. In addition, in situ observations from ship surveys and satellite chl-a data showed that the mathematical simulations with high temporal resolution river outflow input may reproduce adequately the buoyant waters spreading over the Northern Gulf of Mexico shelf and offshore areas. The fate of the river plume is strongly determined and affected by deep basin processes. The strong impacts of the Loop Current system (and its frontal eddies) on river plume evolution are of particular importance under conditions of increased offshore spreading, which is presumed under large discharge rates and can cause loss of riverine materials to the basin interior. Flood conditions can increase both downstream (westward) and upstream (eastward) spreading. The high outflow rates enhance the anticyclonic bulge, strengthen the downstream coastal current toward the western Louisiana-Texas shelf. The substantial eastward spreading over the eastern Mississippi-Alabama-Florida shelf was highly correlated with the Loop Current northward extension. On the contrary, cyclonic eddies east of the Delta effectively block the offshore eastward spreading of the plume and may keep the river waters away from the eastern shelf. We show that the proximity of eddies to the shelf break is a sufficient condition for shelf-to-offshore interaction, which is facilitated by the steep bottom topography near the Delta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..127D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..127D"><span>North-western Mediterranean sea-breeze circulation in a regional climate system model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drobinski, Philippe; Bastin, Sophie; Arsouze, Thomas; Béranger, Karine; Flaounas, Emmanouil; Stéfanon, Marc</p> <p>2017-04-01</p> <p>In the Mediterranean basin, moisture transport can occur over large distance from remote regions by the synoptic circulation or more locally by sea breezes, driven by land-sea thermal contrast. Sea breezes play an important role in inland transport of moisture especially between late spring and early fall. In order to explicitly represent the two-way interactions at the atmosphere-ocean interface in the Mediterranean region and quantify the role of air-sea feedbacks on regional meteorology and climate, simulations at 20 km resolution performed with WRF regional climate model (RCM) and MORCE atmosphere-ocean regional climate model (AORCM) coupling WRF and NEMO-MED12 in the frame of HyMeX/MED-CORDEX are compared. One result of this study is that these simulations reproduce remarkably well the intensity, direction and inland penetration of the sea breeze and even the existence of the shallow sea breeze despite the overestimate of temperature over land in both simulations. The coupled simulation provides a more realistic representation of the evolution of the SST field at fine scale than the atmosphere-only one. Temperature and moisture anomalies are created in direct response to the SST anomaly and are advected by the sea breeze over land. However, the SST anomalies are not of sufficient magnitude to affect the large-scale sea-breeze circulation. The temperature anomalies are quickly damped by strong surface heating over land, whereas the water vapor mixing ratio anomalies are transported further inland. The inland limit of significance is imposed by the vertical dilution in a deeper continental boundary-layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003GeoRL..30.1459L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003GeoRL..30.1459L"><span>Biogeochemical evidence of vigorous mixing in the abyssal ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lampitt, Richard S.; Popova, Ekaterina E.; Tyrrell, Toby</p> <p>2003-05-01</p> <p>The metabolic activities of biological communities living at the abyssal seabed create a strong source of nutrients and a sink for oxygen. If the published estimates of vertical mixing based on instantaneous microstructure measurements are correct, near to the abyssal seabed away from rough topographic features there should be enhanced concentrations of nitrate and phosphate and depletion of oxygen. Recent data on the vertical concentration profiles of inorganic nutrients and oxygen over the bottom 1000 m of the water column (World Ocean Circulation Experiment - WOCE) provide no such evidence. It is concluded that the effective vertical mixing rates are much more vigorous than previously indicated and may even be higher than estimates of average basin scale rates based on temperature and salinity distributions. We propose that the enhanced mixing associated with rough topography influences the entire volume of the abyssal ocean on short time scales (e.g., one month - one year).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994ClDy...10..313H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994ClDy...10..313H"><span>A zonally averaged, three-basin ocean circulation model for climate studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hovine, S.; Fichefet, T.</p> <p>1994-09-01</p> <p>A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70°N at a rate of about 17 Sv (1 Sv=106 m3 s-1) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions (i.e., a restoring condition on sea-surface temperature and flux condition on sea-surface salinity) are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake Passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032419','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032419"><span>Simulating the potential effects of climate change in two Colorado basins and at two Colorado ski areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Battaglin, William; Hay, Lauren E.; Markstrom, Steve</p> <p>2011-01-01</p> <p>The mountainous areas of Colorado are used for tourism and recreation, and they provide water storage and supply for municipalities, industries, and agriculture. Recent studies suggest that water supply and tourist industries such as skiing are at risk from climate change. In this study, a distributed-parameter watershed model, the Precipitation-Runoff Modeling System (PRMS), is used to identify the potential effects of future climate on hydrologic conditions for two Colorado basins, the East River at Almont and the Yampa River at Steamboat Springs, and at the subbasin scale for two ski areas within those basins.Climate-change input files for PRMS were generated by modifying daily PRMS precipitation and temperature inputs with mean monthly climate-change fields of precipitation and temperature derived from five general circulation model (GCM) simulations using one current and three future carbon emission scenarios. All GCM simulations of mean daily minimum and maximum air temperature for the East and Yampa River basins indicate a relatively steady increase of up to several degrees Celsius from baseline conditions by 2094. GCM simulations of precipitation in the two basins indicate little change or trend in precipitation, but there is a large range associated with these projections. PRMS projections of basin mean daily streamflow vary by scenario but indicate a central tendency toward slight decreases, with a large range associated with these projections.Decreases in water content or changes in the spatial extent of snowpack in the East and Yampa River basins are important because of potential adverse effects on water supply and recreational activities. PRMS projections of each future scenario indicate a central tendency for decreases in basin mean snow-covered area and snowpack water equivalent, with the range in the projected decreases increasing with time. However, when examined on a monthly basis, the projected decreases are most dramatic during fall and spring. Presumably, ski area locations are picked because of a tendency to receive snow and keep snowpack relative to the surrounding area. This effect of ski area location within the basin was examined by comparing projections of March snow-covered area and snowpack water equivalent for the entire basin with more local projections for the portion of the basin that represents the ski area in the PRMS models. These projections indicate a steady decrease in March snow-covered area for the basins but only small changes in March snow-covered area at both ski areas for the three future scenarios until around 2050. After 2050, larger decreases are possible, but there is a large range in the projections of future scenarios. The rates of decrease for snowpack water equivalent and precipitation that falls as snow are similar at the basin and subbasin scale in both basins. Results from this modeling effort show that there is a wide range of possible outcomes for future snowpack conditions in Colorado. The results also highlight the differences between projections for entire basins and projections for local areas or subbasins within those basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3974B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3974B"><span>Impact of opening of the Central America Seaway on climate in a coupled atmosphere-ocean-sea-ice model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrier, N.; Ferreira, D.; Marshall, J.</p> <p>2012-04-01</p> <p>We investigate the climatic impact of opening the Central America Seaway (CAS) in a coupled atmosphere-ocean-sea-ice model. A highly idealized land distribution is employed in which two meridional barriers extend from the North Pole in to the southern hemisphere, thus dividing the ocean in to a large basin, a small basin and a circumpolar flow around the South Pole. Such a configuration captures the essential zonal and inter-hemispheric asymmetries of the current climate. These simple geometrical constraints are sufficient to localize the deep-reaching meridional overturning circulation (MOC) to the northern extremity of the small basin. Given this reference experiment, we open up an analogue of the Central America Seaway on the western margin of the small basin north of the equator. Both deep and shallow passageways are considered. We find that although a major reorganization of ocean circulation occurs, along with significant local water-mass changes, global heat and freshwater meridional transports are largely unchanged, as are temperatures over the North Pole. In particular we do not observe a weakening of the MOC in the small basin, with salinity exchange between the large basin playing only a minor role. The simplicity of the geometrical configuration used in our experiments enables us to tease apart exactly what is going on. Experiments in which the salinity and temperature states of the small and large basins are interchanged, for example, show that our solutions are robust, with deep convection returning to the small basin after 800 years or so. Our experiments suggest to us that the closing of the CAS alone is not sufficient to lead to the onset of northern hemisphere glaciations 2 Ma years or so ago.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A43F0342S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A43F0342S"><span>Evidence of Teleconnections between the Peruvian central Andes and Northeast Brazil during extreme rainfall events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sulca, J. C.; Vuille, M. F.; Silva, F. Y.; Takahashi, K.</p> <p>2013-12-01</p> <p>Knowledge about changes in regional circulation and physical processes associated with extreme rainfall events in South America is limited. Here we investigate such events over the Mantaro basin (MB) located at (10°S-13°S; 73°W-76°W) in the central Peruvian Andes and Northeastern Brazil (NEB), located at (9°S-15°S; 39°W-46°W). Occasional dry and wet spells can be observed in both areas during the austral summer season. The main goal of this study is to investigate potential teleconnections between extreme rainfall events in MB and NEB during austral summer. We define wet (dry) spells as periods that last for at least 3 (5) consecutive days with rainfall above (below) the 70 (30) percentile. To identify the dates of ocurrence of these events, we used daily accumulated rainfall data from 14 climate stations located in the Mantaro basin for the period 1965 to 2002. In NEB we defined a rainfall index which is based on average daily gridded rainfall data within the region for the same period. Dry (wet spells) in the MB are associated with positive (negative) OLR anomalies which extend over much of the tropical Andes, indicating the large-scale nature of these events. At 200 hPa anomalous easterly (westerly) zonal winds aloft accompany wet (dry) spells. Composite anomalies of dry spells in MB reveal significant contemporaneous precipitation anomalies of the opposite sign over NEB, which suggest that intraseasonal precipitation variability over the two regions may be dynamically linked. Indeed upper-tropospheric circulation anomalies over the central Andes extend across South America and appear to be tied to an adjustment in the Bolivian High-Nordeste Low system. Dry (wet) spells in NEB are equally associated with a large-scale pattern of positive (negative) OLR anomalies; however, there are no related significant OLR anomalies over the MB during these events. Dry (wet) spells are associated with robust patterns of anomalous wind fields at both low and upper levels, caused by a changing position of the South Atlantic Convergence Zone (SACZ) toward the southwest (northeast). But, there is no coincident robust pattern of wind anomalies over the Mantaro Basin. In conclusion, dry spells in the Mantaro basin appear to be dynamically linked to wet spells in NEB, since 62% of all dry events in MB coincide with wet spells in NEB (35% of all events). The dynamical link explaining the observed teleconnection and the resulting dipole pattern between precipitation extremes in the MB and NEB region, respectively, appears to be related to intraseasonal variability in the Bolivian High - Nordeste Low system. Only 26.53% of all wet spells, however, coincide with dry spells in NEB (12.15% of all events). While circulation anomalies that affect precipitation extremes in the MB have the potential to also affect the precipitation characteristics in NEB, the opposite is not the case. Extreme events in NEB are primarily affected by NE-SW displacement in the SACZ, a mechanism that is of little relevance for precipitation extremes in the MB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25294324','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25294324"><span>Matching oceanography and genetics at the basin scale. Seascape connectivity of the Mediterranean shore crab in the Adriatic Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schiavina, M; Marino, I A M; Zane, L; Melià, P</p> <p>2014-11-01</p> <p>Investigating the interactions between the physical environment and early life history is crucial to understand the mechanisms that shape the genetic structure of marine populations. Here, we assessed the genetic differentiation in a species with larval dispersal, the Mediterranean shore crab (Carcinus aestuarii) in the Adriatic Sea (central Mediterranean), and we investigated the role of oceanic circulation in shaping population structure. To this end, we screened 11 polymorphic microsatellite loci from 431 individuals collected at eight different sites. We found a weak, yet significant, genetic structure into three major clusters: a northern Adriatic group, a central Adriatic group and one group including samples from southern Adriatic and Ionian seas. Genetic analyses were compared, under a seascape genetics approach, with estimates of potential larval connectivity obtained with a coupled physical-biological model that integrates a water circulation model and a description of biological traits affecting dispersal. The cross-validation of the results of the two approaches supported the view that genetic differentiation reflects an oceanographic subdivision of the Adriatic Sea into three subbasins, with circulation patterns allowing the exchange of larvae through permanent connections linking north Adriatic sites and ephemeral connections like those linking the central Adriatic with northern and southern locations. © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ClDy...24..781D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ClDy...24..781D"><span>The role of SST on the South American atmospheric circulation during January, February and March 2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drumond, Anita Rodrigues De Moraes; Ambrizzi, Tércio</p> <p>2005-06-01</p> <p>Precipitation deficits were observed over southeastern, northeastern and Central Brazil during the 2001 Austral Summer. They contributed to the worsening of the energy crisis that was occurring in the country. A low-level anomalous anticyclonic circulation observed over eastern Brazil enhanced the deviation of moisture transport that usually occurs from the Amazon Basin to southeastern Brazil and inhibited the occurrence of South Atlantic Convergence Zone events in that period. However, an anomalous low-level northerly moisture flux was observed over the La Plata Basin, and positive precipitation anomalies occurred over Bolivia, Paraguay, northeastern Argentina and southern Brazil. Using the ensemble technique, a numerical study was carried out to investigate the role of different sea surface temperature (SST) forcings observed over this anomalous South American atmospheric circulation. Reynolds SST monthly means were used as boundary conditions to study the influence of South Atlantic, South Indian, South Pacific and Equatorial Pacific oceans. The simulations were run from September 2000 to April 2001 using the Community Climate Model version 3.6 General Circulation Model. Ten integrations using different initial conditions were done to each experiment. Numerical experiments suggested that the combined influence of South Pacific and Equatorial Pacific oceans could be responsible for the drought observed over Central Brazil. These experiments simulated the low-level anticyclonic anomaly observed over eastern Brazil. However, both experiments have poorly reproduced the intensity of the anomalous low-level northerly moisture flux observed over the La Plata Basin. Therefore, the intensity of the simulated precipitation anomalies over the subtropical regions was much weaker than observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GCarp..61..393S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GCarp..61..393S"><span>Paleoenvironmental changes across the Eocene-Oligocene boundary: insights from the Central-Carpathian Paleogene Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soták, Ján</p> <p>2010-10-01</p> <p>The sedimentary sequence of the Central-Carpathian Paleogene Basin provides proxy records of climatic changes related to cooling events at the Eocene/Oligocene boundary (TEE). In this basin, climatic deterioration is inferred from the demise of the carbonate platform and oligotrophic benthic biota in the SBZ19 and from the last species of warm-water planktonic foraminifers in the E14 Zone. Upper Eocene formations already indicate warm-temperate to cool-temperate productivity and nutrient-enriched conditions (Bryozoan Marls, Globigerina Marls). Rapid cooling during the earliest Oligocene (Oi-1 event) led to a temperature drop (~11 °C), humidity, fresh water influx and continental runoff, water mass stratification, bottom water anoxia, eutrofication, estuarine circulation and upwelling, carbonate depletion, sapropelitic and biosiliceous deposition, H2S intoxication and mass faunal mortality, and also other characteristics of Black Sea-type basins. Tectonoeustatic events with the interference of TA 4.4 sea-level fall and the Pyrenean phase caused basin isolation at the beginning of the Paratethys. The Early Oligocene stage of Paratethyan isolation is indicated by a stagnant regime, low tide influence, endemic fauna development, widespread anoxia and precipitation of manganese deposits. The episodic rise in the sea-level, less humid conditions and renewed circulation is marked by calcareous productivity, nannoplankton blooms and the appearance of planktic pteropods and re-oxygenation. Paleogeographic differentiation of the Carpatho-Pannonian Paleogene basins resulted from plate-tectonic reorganization during the Alpine orogenesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS23C2030N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS23C2030N"><span><p>Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.</p> <p>2015-12-01</p> <p>In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT........66L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT........66L"><span>Climate dynamics of South America during summer: Connections between the large-scale circulation and regional precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lenters, Johh Derick</p> <p>1997-05-01</p> <p>Relationships between the large-scale circulation and regional precipitation over South America during austral summer are examined using a GCM, linear model, and observational analyses. Emphasis is placed on understanding the origin of upper-tropospheric circulation features such as the Bolivian high and its effects on South American precipitation variability, particularly on the Central Andean Altiplano. Results from the linear model indicate that the Bolivian high and 'Nordeste low' are generated in response to precipitation over the Amazon basin, Central Andes, and South Atlantic convergence zone (SACZ), with African precipitation also playing a crucial role in the formation of the low. The direct mechanical and sensible heating effects of the Andes are minimal, acting only to induce a weak lee trough in midlatitudes and a shallow monsoonal circulation over the Central Andes. In the GCM the effects of the Andes include a strengthening of the Bolivian high and northward shift of the Nordeste low, primarily through changes in the precipitation field. The position of the Bolivian high is primarily determined by Amazonian precipitation and is little affected by the removal of the Andes. Strong subsidence to the west of the high is found to be important for the maintenance of the high's warm core, while large-scale convective overshooting to the east is responsible for a layer of cold air above the high. Observations from eight summer seasons reveal a close relationship between precipitation variability in the Central Andes and the position and intensity of the Bolivian high. The physical mechanisms of this connection are explored using composite, EOF, and correlation techniques. On intraseasonal to interannual timescales, rainy episodes on the Altiplano are found to be associated with warm, moist, poleward flow along the eastern flank of the Andes, often in conjunction with extratropical disturbances and a westward displacement of the SACZ. Corresponding to this northerly advection of warm air is the southward enhancement of the Bolivian high. During dry periods such as the 1987 El Nino, enhanced frontal activity and associated cool, dry, southerly flow east of the Altiplano results in a northward displacement of the Bolivian high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930026726&hterms=consequences+climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dconsequences%2Bclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930026726&hterms=consequences+climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dconsequences%2Bclimate%2Bchange"><span>Regional climates in the GISS global circulation model - Synoptic-scale circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hewitson, B.; Crane, R. G.</p> <p>1992-01-01</p> <p>A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009DSRII..56.2427H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009DSRII..56.2427H"><span>A comparison of remote vs. local influence of El Niño on the coastal circulation of the northeast Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hermann, Albert J.; Curchitser, Enrique N.; Haidvogel, Dale B.; Dobbins, Elizabeth L.</p> <p>2009-12-01</p> <p>A set of spatially nested circulation models is used to explore interannual change in the northeast Pacific (NEP) during 1997-2002, and remote vs. local influence of the 1997-1998 El Niño on this region. Our nested set is based on the primitive equations of motion, and includes a basin-scale model of the north Pacific at ˜40-km resolution (NPac), and a regional model of the Northeast Pacific at ˜10-km resolution. The NEP model spans an area from Baja California through the Bering Sea, from the coast to ˜2000-km offshore. In this context, "remote influence" refers to effects driven by changes in ocean velocity and temperature outside of the NEP domain; "local influence" refers to direct forcing by winds and runoff within the NEP domain. A base run of this model using hindcast winds and runoff for 1996-2002 replicates the dominant spatial modes of sea-surface height anomalies from satellite data, and coastal sea level from tide gauges. We have performed a series of sensitivity runs with the NEP model for 1997-1998, which analyze the response of coastal sea level to: (1) hindcast winds and coastal runoff, as compared to their monthly climatologies and (2) hindcast boundary conditions (from the NPac model), as compared to their monthly climatologies. Results indicate penetration of sea-surface height (SSH) from the basin-scale model into the NEP domain (e.g., remote influence), with propagation as coastal trapped waves from Baja up through Alaska. Most of the coastal sea-level anomaly off Alaska in El Niño years appears due to direct forcing by local winds and runoff (local influence), and such anomalies are much stronger than those produced off California. We quantify these effects as a function of distance along the coastline, and consider how they might impact the coastal ecosystems of the NEP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032415','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032415"><span>A heuristic simulation model of Lake Ontario circulation and mass balance transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McKenna, J.E.; Chalupnicki, M.A.</p> <p>2011-01-01</p> <p>The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006epsc.conf..276N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006epsc.conf..276N"><span>Early Archaean collapse basins, a habitat for early bacterial life.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nijman, W.</p> <p></p> <p>For a better definition of the sedimentary environment in which early life may have flourished during the early Archaean, understanding of the basin geometry in terms of shape, depth, and fill is a prerequisite. The basin fill is the easiest to approach, namely from the well exposed, low-grade metamorphic 3.4 - 3.5 Ga rock successions in the greenstone belts of the east Pilbara (Coppin Gap Greenstone Belt and North Pole Dome) in West Australia and of the Barberton Greenstone Belt (Buck Ridge volcano-sedimentary complex) in South Africa. They consist of mafic to ultramafic volcanic rocks, largely pillow basalts, with distinct intercalations of intermediate to felsic intrusive and volcanic rocks and of silicious sediments. The, partly volcaniclastic, silicious sediments of the Buck Ridge and North Pole volcano-sedimentary complexes form a regressive-transgressive sequence. They were deposited close to base level, and experienced occasional emersion. Both North Pole Chert and the chert of the Kittys Gap volcano-sedimentary complex in the Coppin Gap Greenstone Belt preserve the flat-and-channel architecture of a shallow tidal environment. Thickness and facies distribution appear to be genetically linked to systems, i.e. arrays, of syn-depositionally active, extensional faults. Structures at the rear, front and bottoms of these fault arrays, and the fault vergence from the basin margin towards the centre characterize the basins as due to surficial crustal collapse. Observations in the Pilbara craton point to a non-linear plan view and persistence for the basin-defining fault patterns over up to 50 Ma, during which several of these fault arrays became superposed. The faults linked high-crustal level felsic intrusions within the overall mafic rock suite via porphyry pipes, black chert veins and inferred hydrothermal circulations with the overlying felsic lavas, and more importantly, with the cherty sediments. Where such veins surfaced, high-energy breccias, and in the case of the North Pole Chert huge barite growths, are juxtaposed with the otherwise generally low-energy sediments. Such localities are interpreted as sites of hydrothermal vents. Within this large-scale geological context, many environments on the micro-scale were habitable for life, such as hydrothermal vents and their vicinities, volcanic rock surfaces, subsurface sediments and sediment surfaces. These early collapse basins, hosting this bacterial life, are only partially comparable to Earthly analogues. A resemblance with Venus' coronae and the chaos terranes on Mars is suggested. This study forms part of an international project on Earth's Earliest Sedimentary Basins, supported by the Dutch Foundation Dr. Schürmannfonds. 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032670','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032670"><span>Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.</p> <p>2011-01-01</p> <p>Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140009146','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140009146"><span>Aqua-planet simulations of the formation of the South Atlantic convergence zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nieto Ferreira, Rosana; Chao, Winston C.</p> <p>2013-01-01</p> <p>The impact of Amazon Basin convection and cold fronts on the formation and maintenance of the South Atlantic convergence zone (SACZ) is studied using aqua-planet simulations with a general circulation model. In the model, a circular patch of warm sea-surface temperature (SST) is used to mimic the effect of the Amazon Basin on South American monsoon convection. The aqua-planet simulations were designed to study the effect of the strength and latitude of Amazon Basin convection on the formation of the SACZ. The simulations indicate that the strength of the SACZ increases as the Amazon convection intensifies and is moved away from the equator. Of the two controls studied here, the latitude of the Amazon convection exerts the strongest effect on the strength of the SACZ. An analysis of the synoptic-scale variability in the simulations shows the importance of frontal systems in the formation of the aqua-planet SACZ. Composite time series of frontal systems that occurred in the simulations show that a robust SACZ occurs when fronts penetrate into the subtropics and become stationary there as they cross eastward of the longitude of the Amazon Basin. Moisture convergence associated with these frontal systems produces rainfall not along the model SACZ region and along a large portion of the northern model Amazon Basin. Simulations in which the warm SST patch was too weak or too close to the equator did not produce frontal systems that extended into the tropics and became stationary, and did not form a SACZ. In the model, the SACZ forms as Amazon Basin convection strengthens and migrates far enough southward to allow frontal systems to penetrate into the tropics and stall over South America. This result is in agreement with observations that the SACZ tends to form after the onset of the monsoon season in the Amazon Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..780A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..780A"><span>Applicability of ranked Regional Climate Models (RCM) to assess the impact of climate change on Ganges: A case study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anand, Jatin; Devak, Manjula; Gosain, Ashvani Kumar; Khosa, Rakesh; Dhanya, Ct</p> <p>2017-04-01</p> <p>The negative impact of climate change is felt over wide range of spatial scales, ranging from small basins to large watershed area, which can possibly outweighs the benefits of natural water system. General Circulation Models (GCMs) has been widely used as an input to a hydrological models (HMs), to simulate different hydrological components of a river basin. However, the coarser scale of GCMs and spatio-temporal biases, restricted its use at finer resolution. If downscaled, adds one more level of uncertainty i.e., downscaling uncertainty together with model and scenario uncertainty. The outputs computed from Regional Climate Models (RCM) may aid the uncertainties arising from GCMs, as the RCMs are the miniatures of GCMs. However, the RCMs do have some inherent systematic biases, hence bias correction is a prerequisite process before it is fed to HMs. RCMs, together with the input from GCMs at later boundaries also takes topography of the area into account. Hence, RCMs need to be ranked a priori. In this study, impact of climate change on the Ganga basin, India, is assessed using the ranked RCMs. Firstly, bias correction of 14 RCM models are done using Quantile-Quantile mapping and Equidistant cumulative distribution method, for historic (1990-2004) and future scenario (2021-2100), respectively. The runoff simulations from Soil Water Assessment Tool (SWAT), for historic scenario is used for ranking of RCMs. Entropy and PROMETHEE-2 method is employed to rank the RCMs based on five performance indicators namely, Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), normalised root mean square error (NRMSE), absolute normalised mean bias error (ANMBE) and average absolute relative error (AARE). The results illustrated that each of the performance indicators behaves differently for different RCMs. RCA 4 (CNRM-CERFACS) is found as the best model with the highest value of  (0.85), followed by RCA4 (MIROC) and RCA4 (ICHEC) with  values of 0.80 and 0.53, respectively, for Ganga basin. Flow-duration curve and long-term average of streamflow for ranked RCMs, confirm that SWAT model is efficient in capturing the hydrology of the basin. For monsoon months (June, July, August and September), future annual mean surface runoff decreases substantially ( -50 % to -10%), while the base flow for October, November and December is projected to increase ( 10- 20 %). Analysis of snow-melt hydrology, indicated that the snow-melt is projected to increase during the months of November to March, with a maximum increase (400%) shown by RCA 4 (CNRM-CERFACS) and least by RCA4 (ICHEC) (15%). Further, all the RCMs projected higher and lower frequency of dry and wet monsoon, respectively. The analysis of simulated base flow and recharge illustrates that the change varies from +100% to - 500% and +97% to -600%, respectively, with central part of the basin undergoing major loss in the recharge. Hence, this research provides important insights of surface runoff to climate change projections and therefore, better administration and management of available resources is necessary. Keyword: Climate change, uncertainty, Soil Water Assessment Tool (SWAT), General Circulation Model (GCM), Regional Climate Models (RCM), Bias correction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO44C3165S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO44C3165S"><span>Monsoon-driven variability in the southern Red Sea and the exchange with the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sofianos, S. S.; Papadopoulos, V. P.; Abualnaja, Y.; Nenes, A.; Hoteit, I.</p> <p>2016-02-01</p> <p>Although progress has been achieved in describing and understanding the mean state and seasonal cycle of the Red Sea dynamics, their interannual variability is not yet well evaluated and explained. The thermohaline characteristics and the circulation patterns present strong variability at various time scales and are affected by the strong and variable atmospheric forcing and the exchange with the Indian Ocean and the gulfs located at the northern end of the basin. Sea surface temperature time-series, derived from satellite observations, show considerable trends and interannual variations. The spatial variability pattern is very diverse, especially in the north-south direction. The southern part of the Red Sea is significantly influenced by the Indian Monsoon variability that affects the sea surface temperature through the surface fluxes and the circulation patterns. This variability has also a strong impact on the lateral fluxes and the exchange with the Indian Ocean through the strait of Bab el Mandeb. During summer, there is a reversal of the surface flow and an intermediate intrusion of a relatively cold and fresh water mass. This water originates from the Gulf of Aden (the Gulf of Aden Intermediate Water - GAIW), is identified in the southern part of the basin and spreads northward along the eastern Red Sea boundary to approximately 24°N and carried across the Red Sea by basin-size eddies. The GAIW intrusion plays an important role in the heat and freshwater budget of the southern Red Sea, especially in summer, impacting the thermohaline characteristics of the region. It is a permanent feature of the summer exchange flow but it exhibits significant variation from year to year. The intrusion is controlled by a monsoon-driven pressure gradient in the two ends of the strait and thus monsoon interannual variability can laterally impose its signal to the southern Red Sea thermohaline patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980024228','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980024228"><span>Origin of Ozone NO(x) in the Tropical Troposphere: A Photochemical Analysis of Aircraft Observations Over the South Atlantic Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacob, D. J.; Heikes, B. G.; Fan, S.-M.; Logan, J. A.; Mauzerall, D. L.; Bradshaw, J. D.; Singh, H. B.; Gregory, G. L.; Talbot, R. W.; Blake, D. R.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_19980024228'); toggleEditAbsImage('author_19980024228_show'); toggleEditAbsImage('author_19980024228_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_19980024228_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_19980024228_hide"></p> <p>1996-01-01</p> <p>The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September-October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss Of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0-12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NO(x) over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NO(x) throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NO(x) in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NO(x) from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NO(x) emissions in the tropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC51D1231H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC51D1231H"><span>Holocene climatic variations documented by multiple biomarker proxies from Lake Gahai on the Northeastern Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Y.; Liu, Z.; Zheng, Z.; Zhao, C.; Sun, Y.</p> <p>2012-12-01</p> <p>The Northeastern Tibetan Plateau is a high elevation region sensitive to large-scale climate change, thus allows us better understanding the Holocene climate interactions between the mid-latitude westerly and subtropical Asia monsoon circulations. This region is now and in the late Holocene out of the influence of Asian monsoon systems and inconsistency hydrological variations from monsoon controlled region is suggested. However, the boundary and the interactions between the westerly and the Asian monsoon circulations during the whole Holocene have not been well documented. Here we present multiple biomarker alkane and alkenone based records from Lake Gahai in the Qaidam Basin on the northeastern Tibetan Plateau to study the lake level and climate variability over the past 12,000 years. Characterized by marked alkane-based average chain length (ACL) and carbon preference index (CPI) values, our records provide unambiguous evidence of a generally dry climate from 9 to 2 ka (1 ka = 1,000 cal yr BP), and a relatively wet climate after 2 ka and before 9 ka. The occurrence of alkenones during the period of low ACL and CPI values also supports this result. Good match between our records and other earlier paleoclimatic records derived from the same basin was found, suggesting the paleoenvironment record obtained at Lake Gahai is a regional record rather than a local signal, at least in the Qaidam Basin. This generally dry climate between 9 and 2 ka was almost synchronous with the weakening of East Asian and Indian monsoon intensities. However, our data suggest an opposite moisture relation from our region and westerly controlled region. This phenomenon may lie on the interaction between westerly and monsoon systems, probably contributed to the topographic subsidence associated with stronger atmospheric convergence and rising motion on the plateau. Also this discrepancy was likely due to the enhanced evaporation than to the increased monsoon precipitation in the northeastern Tibetan Plateau, which accounts for the high temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcSci..14...53M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcSci..14...53M"><span>South Atlantic meridional transports from NEMO-based simulations and reanalyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mignac, Davi; Ferreira, David; Haines, Keith</p> <p>2018-02-01</p> <p>The meridional heat transport (MHT) of the South Atlantic plays a key role in the global heat budget: it is the only equatorward basin-scale ocean heat transport and it sets the northward direction of the global cross-equatorial transport. Its strength and variability, however, are not well known. The South Atlantic transports are evaluated for four state-of-the-art global ocean reanalyses (ORAs) and two free-running models (FRMs) in the period 1997-2010. All products employ the Nucleus for European Modelling of the Oceans (NEMO) model, and the ORAs share very similar configurations. Very few previous works have looked at ocean circulation patterns in reanalysis products, but here we show that the ORA basin interior transports are consistently improved by the assimilated in situ and satellite observations relative to the FRMs, especially in the Argo period. The ORAs also exhibit systematically higher meridional transports than the FRMs, which is in closer agreement with observational estimates at 35 and 11° S. However, the data assimilation impact on the meridional transports still greatly varies among the ORAs, leading to differences up to ˜ 8 Sv and 0.4 PW in the South Atlantic Meridional Overturning Circulation and the MHTs, respectively. We narrow this down to large inter-product discrepancies in the western boundary currents (WBCs) at both upper and deep levels explaining up to ˜ 85 % of the inter-product differences in MHT. We show that meridional velocity differences, rather than temperature differences, in the WBCs drive ˜ 83 % of this MHT spread. These findings show that the present ocean observation network and data assimilation schemes can be used to consistently constrain the South Atlantic interior circulation but not the overturning component, which is dominated by the narrow western boundary currents. This will likely limit the effectiveness of ORA products for climate or decadal prediction studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.tmp..290J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.tmp..290J"><span>Threshold determination and hazard evaluation of the disaster about drought/flood sudden alternation in Huaihe River basin, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Zhonghui; Li, Ning; Wu, Xianhua</p> <p>2017-08-01</p> <p>Based on the related impact factors of precipitation anomaly referred in previous research, eight atmospheric circulation indicators in pre-winter and spring picked out by correlation analysis as the independent variables and the hazard levels of drought/flood sudden alternation index (DFSAI) as the dependent variables were used to construct the nonlinear and nonparametric classification and regression tree (CART) for the threshold determination and hazard evaluation on bimonthly and monthly scales in Huaihe River basin. Results show that the spring indicators about Arctic oscillation index (AOI_S), Asia polar vortex area index (APVAI_S), and Asian meridional circulation index (AMCI_S) were extracted as the three main impact factors, which were proved to be suitable for the hazard levels assessment of the drought/flood sudden alternation (DFSA) disaster based on bimonthly scale. On monthly scale, AOI_S, northern hemisphere polar vortex intensity index in pre-winter (NHPVII_PW), and AMCI_S are the three primary variables in hazard level prediction of DFSA in May and June; NHPVII_PW, AMCI_PW, and AMCI_S are for that in June and July; NHPVII_PW and EASMI are for that in July and August. The type of the disaster (flood to drought/drought to flood/no DFSA) and hazard level under different conditions also can be obtained from each model. The hazard level and type were expressed by the integer from - 3 to 3, which change from the high level of disaster that flood to drought (level - 3) to the high level of the reverse type (level 3). The middle number 0 represents no DFSA. The high levels of the two sides decrease progressively to the neutralization (level 0). When AOI_S less than - 0.355, the disaster of the quick turn from drought to flood is more apt to happen (level 1) on bimonthly scale; when AOI_S less than - 1.32, the same type disaster may occur (level 2) in May and June on monthly scale. When NHPVII_PW less than 341.5, the disaster of the quick turn from flood to drought will occur (level - 1) in June and July on monthly scale. By this analogy, different hazard types and levels all can be judged from the optimal models. The corresponding data from 2011 to 2015 were selected to verify the final models through the comparison between the predicted and actual levels, and the models of M1 (bimonthly scale), M2, and M3 (monthly scale) were proved to be acceptable by the prediction accuracy rate (compared the predicted with the observed levels, 73%, 11/15). The proposed CART method in this research is a new try for the short-term climate prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.6395N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.6395N"><span>Measured and Modelled Tidal Circulation Under Ice Covered Van Mijenforden</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nilsen, F.</p> <p></p> <p>The observation and model area Van Mijenfjorden is situated at the west coast of Spits- bergen. An area of 533 km2 makes it the second largest fjord on Spitsbergen and the distance from the head to the mouth of the fjord is approximately 70 km. An 8.5km long and 1km wide island, Akseløya, is lying across the fjord mouth and blocking exchanges between the fjord and the coastal water masses outside. The sound Aksel- sundet on the northern side of the island is 1km wide and has a sill at 34m depth. On the southern side an islet, Mariaholmen, is between two sounds that are 200m wide and 2m deep, and 500m wide and 12m deep. Strong tidal currents exist in these sounds. Van Mijenfjorden has special ice conditions in that Akseløya almost closes the fjord, and comparatively little ice comes in from west. On the other hand, there are periods with fast ice in the fjord inside Akseløya longer than in other places, as the sea waves have little chance to break up fast ice here, or delay ice formation in autumn/winter. Van Mijenfjorden is often separated into two basins by a sill at 30m depth. The inner basin is typical 5km wide and has a maximum depth of 80m, while the outer basin is on average 10 km wide and has a maximum depth of 115m. Hydrographic measurements have been conducted since 1958 and up to the present. Through the last decade, The University Courses on Svalbard (UNIS) has used this fjord as a laboratory for their student excursions, in connection to courses in air-ice- ocean interaction and master programs, and build up an oceanographic data base. In this work, focus is put on the wintertime situation and the circulation under an ice covered fjord. Measurements show a mean cyclonic circulation pattern in the outer basin with tidal oscillation (mainly M2) superposed on this mean vector. A three- dimensional sigma layered numerical model called Bergen Ocean Model (BOM) was used to simulate the circulation in Van Mijenfjorden with only tidal forcing. The four most pronounced tidal components were used to force the model area outside Ak- seløya. The calculated cyclonic circulation pattern fits the measurements, proving that the fjord circulation is controlled by tides in periods when the ice cover shade the fjord water masses from direct wind forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24250755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24250755"><span>Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin -Upper Blue Nile Basin of Ethiopia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dile, Yihun Taddele; Berndtsson, Ronny; Setegn, Shimelis G</p> <p>2013-01-01</p> <p>Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3824061','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3824061"><span>Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin - Upper Blue Nile Basin of Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dile, Yihun Taddele; Berndtsson, Ronny; Setegn, Shimelis G.</p> <p>2013-01-01</p> <p>Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin. PMID:24250755</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C51A0646C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C51A0646C"><span>Modeling the Impact of Fjord-glacier Geometry on Subglacial Plume, Wind, and Tidally-forced Circulation in Outlet Glacier Fjords</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carroll, D.; Sutherland, D.; Nash, J. D.; Shroyer, E.; de Steur, L.; Catania, G. A.; Stearns, L. A.</p> <p>2016-12-01</p> <p>The acceleration, retreat, and thinning of Greenland's outlet glaciers coincided with a warming of Atlantic waters, suggesting that marine-terminating glaciers are sensitive to ocean forcing. However, we still lack a precise understanding of what factors control the variability of ocean heat transport toward the glacier terminus. Here we use an idealized ocean general circulation model (3D MITgcm) to systematically evaluate how fjord circulation driven by subglacial plumes, wind stress (along-fjord and along-shelf), and tides depends on grounding line depth, fjord width, sill height, and latitude. Our results indicate that while subglacial plumes in deeply grounded systems can draw shelf waters over a sill and toward the glacier, shallowly grounded systems require external forcing to renew basin waters. We use a coupled sea ice model to explore the competing influence of tidal mixing and surface buoyancy forcing on fjord stratification. Passive tracers injected in the plume, fjord basin, and shelf waters are used to quantify turnover timescales. Finally, we compare our model results with a two-year mooring record to explain fundamental differences in observed circulation and hydrography in Rink Isbræ and Kangerlussuup Sermia fjords in west Greenland. Our results underscore the first-order effect that geometry has in controlling fjord circulation and, thus, ocean heat flux to the ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51L..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51L..02D"><span>Role of the North Atlantic Ocean in Low Frequency Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danabasoglu, G.; Yeager, S. G.; Kim, W. M.; Castruccio, F. S.</p> <p>2017-12-01</p> <p>The Atlantic Ocean is a unique basin with its extensive, North - South overturning circulation, referred to as the Atlantic meridional overturning circulation (AMOC). AMOC is thought to represent the dynamical memory of the climate system, playing an important role in decadal and longer time scale climate variability as well as prediction of the earth's future climate on these time scales via its large heat and salt transports. This oceanic memory is communicated to the atmosphere primarily through the influence of persistent sea surface temperature (SST) variations. Indeed, many modeling studies suggest that ocean circulation, i.e., AMOC, is largely responsible for the creation of coherent SST variability in the North Atlantic, referred to as Atlantic Multidecadal Variability (AMV). AMV has been linked to many (multi)decadal climate variations in, e.g., Sahel and Brazilian rainfall, Atlantic hurricane activity, and Arctic sea-ice extent. In the absence of long, continuous observations, much of the evidence for the ocean's role in (multi)decadal variability comes from model simulations. Although models tend to agree on the role of the North Atlantic Oscillation in creating the density anomalies that proceed the changes in ocean circulation, model fidelity in representing variability characteristics, mechanisms, and air-sea interactions remains a serious concern. In particular, there is increasing evidence that models significantly underestimate low frequency variability in the North Atlantic compared to available observations. Such model deficiencies can amplify the relative influence of external or stochastic atmospheric forcing in generating (multi)decadal variability, i.e., AMV, at the expense of ocean dynamics. Here, a succinct overview of the current understanding of the (North) Atlantic Ocean's role on the regional and global climate, including some outstanding questions, will be presented. In addition, a few examples of the climate impacts of the AMV via atmospheric teleconnections from a set of coupled simulations, also considering the relative roles of its tropical and extratropical components, will be highlighted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918288S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918288S"><span>A propagating freshwater mode in the Arctic Ocean with multidecadal time scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmith, Torben; Malskær Olsen, Steffen; Margrethe Ringgaard, Ida</p> <p>2017-04-01</p> <p>We apply Principal Oscillatory Pattern analysis to the Arctic Ocean fresh water content as simulated in a 500 year long control run with constant preindustrial forcing with the EC-Earth global climate model. Two modes emerge from this analysis. One mode is a standing mode with decadal time scale describing accumulation and release of fresh water in the Beaufort Gyre, known in the literature as the Beaufort Gyre flywheel. In addition, we identify a propagating mode with a time scale around 80 years, propagating along the rim of the Canadian Basin. This mode has maximum variability of the fresh water content in the Transpolar Drift and represents the bulk of the total variability of the fresh water content in the Arctic Ocean and also projects on the fresh water through the Fram Strait. Therefore, potentially, it can introduce a multidecadal variability to the Atlantic meridional overturning circulation. We will discuss the physical origin of this propagating mode. This include planetary-scale internal Rossby waves with multidecadal time scale, due to the slow variation of the Coriolis parameter at these high latitudes, as well as topographic steering of these Rossby waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26232978','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26232978"><span>On identifying relationships between the flood scaling exponent and basin attributes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Medhi, Hemanta; Tripathi, Shivam</p> <p>2015-07-01</p> <p>Floods are known to exhibit self-similarity and follow scaling laws that form the basis of regional flood frequency analysis. However, the relationship between basin attributes and the scaling behavior of floods is still not fully understood. Identifying these relationships is essential for drawing connections between hydrological processes in a basin and the flood response of the basin. The existing studies mostly rely on simulation models to draw these connections. This paper proposes a new methodology that draws connections between basin attributes and the flood scaling exponents by using observed data. In the proposed methodology, region-of-influence approach is used to delineate homogeneous regions for each gaging station. Ordinary least squares regression is then applied to estimate flood scaling exponents for each homogeneous region, and finally stepwise regression is used to identify basin attributes that affect flood scaling exponents. The effectiveness of the proposed methodology is tested by applying it to data from river basins in the United States. The results suggest that flood scaling exponent is small for regions having (i) large abstractions from precipitation in the form of large soil moisture storages and high evapotranspiration losses, and (ii) large fractions of overland flow compared to base flow, i.e., regions having fast-responding basins. Analysis of simple scaling and multiscaling of floods showed evidence of simple scaling for regions in which the snowfall dominates the total precipitation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EOSTr..91...93W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EOSTr..91...93W"><span>Is Hurricane Activity in One Basin Tied to Another?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Chunzai; Lee, Sang-Ki</p> <p>2010-03-01</p> <p>Each year, tropical cyclones and hurricanes leave millions homeless worldwide and account for, on average, over $100 billion of damage in the United States alone [Schmidt et al., 2009]. In 2005, a record-breaking 15 hurricanes formed in the North Atlantic, four of which reached category 5 strength. Over the course of that season, more than 3000 hurricane-related deaths occurred and fiscal damage reached $157 billion. Because a better understanding of when and where tropical cyclones and hurricanes will form and strike will help societies better prepare for adverse effects, improving the understanding of these storms is very important. In the Western Hemisphere, tropical cyclones can form and develop in both the tropical North Atlantic and eastern North Pacific oceans, which are separated by the landmass of Central America. From the point of view of large-scale atmospheric circulation and its influence on tropical cyclones [e.g., Bell and Chelliah, 2006], it is not surprising that tropical cyclone variabilities in these two basins are related, because of their geographic proximity. But several questions remain: How they are related? What physical mechanisms drive this relation?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.1643C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.1643C"><span>The influence of ENSO on an oceanic eddy pair in the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chu, Xiaoqing; Dong, Changming; Qi, Yiquan</p> <p>2017-03-01</p> <p>An eddy pair off the Vietnam coast is one of the most important features of the summertime South China Sea circulation. Its variability is of interest due to its profound impact on regional climate, ecosystems, biological processes, and fisheries. This study examines the influence of the El Niño-Southern Oscillation (ENSO), a basin-scale climatic mode, on the interannual variability of this regional eddy pair using satellite observational data and historical hydrographic measurements. Over the last three decades, the eddy pair strengthened in 1994 and 2002, and weakened in 2006, 2007, and 2008. It was absent in 1988, 1995, 1998, and 2010, coinciding with strong El Nino-to-La Nina transitions. Composite analyses showed that the strong transition events of ENSO led to radical changes in the summer monsoon, through the forcing of a unique sea surface temperature anomaly structure over the tropical Indo-Pacific basin. With weaker zonal wind, a more northward wind direction, and the disappearance of a pair of positive and negative wind stress curls, the eastward current jet turns northward along the Vietnam coast and the eddy pair disappears.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7110A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7110A"><span>Intercomparison of numerical simulations, satellite altimetry and glider observations in the Algerian Basin during fall 2014 and 2015: focus on a SARAL/AltiKa track</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aulicino, Giuseppe; Cotroneo, Yuri; Ruiz, Simon; Sanchez Roman, Antonio; Pascual, Ananda; Fusco, Giannetta; Tintoré, Joaquin; Budillon, Giorgio</p> <p>2017-04-01</p> <p>The Algerian Basin is a key-place for the study of the general circulation of the Western Mediterranean Sea and its role in reaction to climate change. The presence of both fresh Atlantic waters and more saline resident Mediterranean ones characterizes the basin with an intense inflow/outflow regime and complex circulation patterns. Very energetic mesoscale structures, that evolve from meander of the Algerian Current to isolated cyclonic and anti-cyclonic eddies, dominate the area with marked repercussions on the biological activity. Despite their remarkable importance, this region and its variability are still poorly known and basin-wide high resolution knowledge of its mesoscale and sub-mesoscale features is still incomplete. The monitoring of such complex processes requires a synergic approach that involves integrated observing systems. In recent years, several studies proved the advantages of the combined use of autonomous underwater vehicles, such as gliders, with a new generation of satellite altimeters. In this context, we present the first results of a new integrated oceanographic observing system built up in the Algerian Basin during fall 2014 and 2015, aiming at advancing our knowledge on its main features. The study was realized through the analysis of glider high resolutions three-dimensional observations, collected along the Algerian BAsin Circulation Unmanned Survey (ABACUS) monitoring line, in synergy with co-located SARAL/AltiKa altimetric products and CMEMS numerical simulations. The achieved results confirm that glider derived dynamic height and SARAL/AltiKa absolute dynamic topography present similar patterns, with RMS of the differences ranging between 1.11 and 2.90 cm. Generally, the maximum discrepancies are located nearby the Balearic Islands and the Algerian Coast, but it is important to remark that the correlation coefficients seem to mostly depend on the synopticity between in situ and satellite measurements. Still, this study confirm that the numerical simulations derived from the analyzed CMEMS products agree well with the high resolution glider measurements and provide valuable information for multiplatform observatories that strongly complement in situ and remote sensed observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3757977','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3757977"><span>Finding the ‘lost years’ in green turtles: insights from ocean circulation models and genetic analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Putman, Nathan F.; Naro-Maciel, Eugenia</p> <p>2013-01-01</p> <p>Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as ‘the lost years’. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their ‘lost years’. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many ‘lost years hotspots’ are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period. PMID:23945687</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026421','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026421"><span>Are big basins just the sum of small catchments?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shaman, J.; Stieglitz, M.; Burns, D.</p> <p>2004-01-01</p> <p>Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km 2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes. Copyright ?? 2004 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1337239-sensitivity-circulation-skagit-river-estuary-sea-level-rise-future-flows','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1337239-sensitivity-circulation-skagit-river-estuary-sea-level-rise-future-flows"><span>Sensitivity of Circulation in the Skagit River Estuary to Sea Level Rise and Future Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khangaonkar, Tarang; Long, Wen; Sackmann, Brandon</p> <p></p> <p>Future climate simulations based on the Intergovernmental Panel on Climate Change emissions scenario (A1B) have shown that the Skagit River flow will be affected, which may lead to modification of the estuarine hydrodynamics. There is considerable uncertainty, however, about the extent and magnitude of resulting change, given accompanying sea level rise and site-specific complexities with multiple interconnected basins. To help quantify the future hydrodynamic response, we developed a three dimensional model of the Skagit River estuary using the Finite Volume Coastal Ocean Model (FVCOM). The model was set up with localized high-resolution grids in Skagit and Padilla Bay sub-basins withinmore » the intermediate-scale FVCOM based model of the Salish Sea (greater Puget Sound and Georgia Basin). Future changes to salinity and annual transport through the basin were examined. The results confirmed the existence of a residual estuarine flow that enters Skagit Bay from Saratoga Passage to the south and exits through Deception Pass. Freshwater from the Skagit River is transported out in the surface layers primarily through Deception Pass and Saratoga Passage, and only a small fraction (≈4%) is transported to Padilla Bay. The moderate future perturbations of A1B emissions, corresponding river flow, and sea level rise of 0.48 m examined here result only in small incremental changes to salinity structure and inter-basin freshwater distribution and transport. An increase in salinity of ~1 ppt in the near-shore environment and a salinity intrusion of approximately 3 km further upstream is predicted in Skagit River, well downstream of the drinking water intakes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H13K1539M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H13K1539M"><span>Impact of climate change on precipitation distribution and water availability in the Nile using CMIP5 GCM ensemble.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mekonnen, Z. T.; Gebremichael, M.</p> <p>2017-12-01</p> <p>ABSTRACT In a basin like the Nile where millions of people depend on rainfed agriculture and surface water resources for their livelihoods, changes in precipitation will have tremendous social and economic consequences. General circulation models (GCMs) have been associated with high uncertainty in their projection of future precipitation for the Nile basin. Some studies tried to compare performance of different GCMs by doing a Multi-Model comparison for the region. Many indicated that there is no single model that gives the "best estimate" of precipitation for a very complex and large basin like the Nile. In this study, we used a combination of satellite and long term rain gauge precipitation measurements (TRMM and CenTrends) to evaluate the performance of 10 GCMs from the 5th Coupled Model Intercomparison Project (CMIP5) at different spatial and seasonal scales and produce a weighted ensemble projection. Our results confirm that there is no single model that gives best estimate over the region, hence the approach of creating an ensemble depending on how the model performed in specific areas and seasons resulted in an improved estimate of precipitation compared with observed values. Following the same approach, we created an ensemble of future precipitation projections for four different time periods (2000-2024, 2025-2049 and 2050-2100). The analysis showed that all the major sub-basins of the Nile will get will get more precipitation with time, even though the distribution with in the sub basin might be different. Overall the analysis showed a 15 % increase (125 mm/year) by the end of the century averaged over the area up to the Aswan dam. KEY WORDS: Climate Change, CMIP5, Nile, East Africa, CenTrends, Precipitation, Weighted Ensembles</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710922B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710922B"><span>How Amazonian deforestation can alter the South American circulation regime: Insights from a non-linear moisture transport model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boers, Niklas; Marwan, Norbert; Barbosa, Henrique; Kurths, Jürgen</p> <p>2015-04-01</p> <p>A key driver of South American climate are the low-level trade winds from the tropical Atlantic Ocean towards the continent. After crossing the Amazon Basin, they are blocked by the Andes mountain range, and forced southward to the subtropics. These winds are crucial for the atmospheric moisture supply in most parts of South America. In particular, the hydrology of the two largest river basins of the Continent, namely the Amazon and the La Plata Basins, strongly depend on the moisture inflow provided by the trade winds. In turn, the Amazon rainforest can be assumed to have a strong influence on this low-level moisture circulation over South America by exchanging moisture with the atmosphere through precipitation and evapotranspiration. A pronounced positive feedback in this context is established through precipitation-induced release of latent heat over the Amazon Basin, which significantly enhances the moisture inflow from the tropical Atlantic Ocean toward the continent and can thus be considered to be crucial for the existence of today's South American climate. Ongoing deforestation and resulting reduction in evapotranspiration rates in particular in the eastern Amazon carry the risk of a strongly nonlinear response in these interactions with the low-level atmosphere. We propose a simple differential transport model describing the cascading moisture transport from the eastern coast of South America across the Amazon Basin to the Andes, taking into account the nonlinearity associated with the release of latent heat. The results of the model suggest that the system is indeed very sensitive to relatively small reductions of the evapotranspiration rates in the eastern Amazon Basin. These reductions increase river runoff, but limit the moisture availability farther west. This leads to a reduction in precipitation rates and thereby diminishes the release of latent heat which, in turn, reduces the overall moisture inflow. We show that, according to our model, there exist critical thresholds on the spatial extents and intensities of deforestation. Beyond these thresholds, the positive feedback between the Amazon rainforest and the low-level circulation would collapse, resulting in substantial reductions in moisture available for precipitation in the western part of the Amazon Basin and further downstream of the low-level flow, including most of subtropical South America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/883585','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/883585"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Herrnstein, Aaron R.</p> <p></p> <p>An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration,more » and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO 2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No dramatic or persistent signs of error growth in the passive tracer outgassing or the ocean circulation are observed to result from AMR.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9921T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9921T"><span>Influence of spatial resolution on precipitation simulations for the central Andes Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trachte, Katja; Bendix, Jörg</p> <p>2013-04-01</p> <p>The climate of South America is highly influenced by the north-south oriented Andes Mountains. Their complex structure causes modifications of large-scale atmospheric circulations resulting in various mesoscale phenomena as well as a high variability in the local conditions. Due to their height and length the terrain generates distinctly climate conditions between the western and the eastern slopes. While in the tropical regions along the western flanks the conditions are cold and arid, the eastern slopes are dominated by warm-moist and rainy air coming from the Amazon basin. Below 35° S the situation reverses with rather semiarid conditions in the eastern part and temperate rainy climate along southern Chile. Generally, global circulation models (GCMs) describe the state of the global climate and its changes, but are disabled to capture regional or even local features due to their coarse resolution. This is particularly true in heterogeneous regions such as the Andes Mountains, where local driving features, e. g. local circulation systems, highly varies on small scales and thus, lead to a high variability of rainfall distributions. An appropriate technique to overcome this problem and to gain regional and local scale rainfall information is the dynamical downscaling of the global data using a regional climate model (RCM). The poster presents results of the evaluation of the performance of the Weather Research and Forecasting (WRF) model over South America with special focus on the central Andes Mountains of Ecuador. A sensitivity study regarding the cumulus parametrization, microphysics, boundary layer processes and the radiation budget is conducted. With 17 simulations consisting of 16 parametrization scheme combinations and 1 default run a suitable model set-up for climate research in this region is supposed to be evaluated. The simulations were conducted in a two-way nested mode i) to examine the best physics scheme combination for the target and ii) to analyze the impact of spatial resolution and thus, the representation of the terrain on the result.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70104212','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70104212"><span>Hindcasting of decadal‐timescale estuarine bathymetric change with a tidal‐timescale model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ganju, Neil K.; Schoellhamer, David H.; Jaffe, Bruce E.</p> <p>2009-01-01</p> <p>Hindcasting decadal-timescale bathymetric change in estuaries is prone to error due to limited data for initial conditions, boundary forcing, and calibration; computational limitations further hinder efforts. We developed and calibrated a tidal-timescale model to bathymetric change in Suisun Bay, California, over the 1867–1887 period. A general, multiple-timescale calibration ensured robustness over all timescales; two input reduction methods, the morphological hydrograph and the morphological acceleration factor, were applied at the decadal timescale. The model was calibrated to net bathymetric change in the entire basin; average error for bathymetric change over individual depth ranges was 37%. On a model cell-by-cell basis, performance for spatial amplitude correlation was poor over the majority of the domain, though spatial phase correlation was better, with 61% of the domain correctly indicated as erosional or depositional. Poor agreement was likely caused by the specification of initial bed composition, which was unknown during the 1867–1887 period. Cross-sectional bathymetric change between channels and flats, driven primarily by wind wave resuspension, was modeled with higher skill than longitudinal change, which is driven in part by gravitational circulation. The accelerated response of depth may have prevented gravitational circulation from being represented properly. As performance criteria became more stringent in a spatial sense, the error of the model increased. While these methods are useful for estimating basin-scale sedimentation changes, they may not be suitable for predicting specific locations of erosion or deposition. They do, however, provide a foundation for realistic estuarine geomorphic modeling applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H21L..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H21L..04S"><span>Projections of Flood Risk using Credible Climate Signals in the Ohio River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlef, K.; Robertson, A. W.; Brown, C.</p> <p>2017-12-01</p> <p>Estimating future hydrologic flood risk under non-stationary climate is a key challenge to the design of long-term water resources infrastructure and flood management strategies. In this work, we demonstrate how projections of large-scale climate patterns can be credibly used to create projections of long-term flood risk. Our study area is the northwest region of the Ohio River Basin in the United States Midwest. In the region, three major teleconnections have been previously demonstrated to affect synoptic patterns that influence extreme precipitation and streamflow: the El Nino Southern Oscillation, the Pacific North American pattern, and the Pacific Decadal Oscillation. These teleconnections are strongest during the winter season (January-March), which also experiences the greatest number of peak flow events. For this reason, flood events are defined as the maximum daily streamflow to occur in the winter season. For each gage in the region, the location parameter of a log Pearson type 3 distribution is conditioned on the first principal component of the three teleconnections to create a statistical model of flood events. Future projections of flood risk are created by forcing the statistical model with projections of the teleconnections from general circulation models selected for skill. We compare the results of our method to the results of two other methods: the traditional model chain (i.e., general circulation model projections to downscaling method to hydrologic model to flood frequency analysis) and that of using the historic trend. We also discuss the potential for developing credible projections of flood events for the continental United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H32C..05J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H32C..05J"><span>Modeling The Hydrology And Water Allocation Under Climate Change In Rural River Basins: A Case Study From Nam Ngum River Basin, Laos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jayasekera, D. L.; Kaluarachchi, J.; Kim, U.</p> <p>2011-12-01</p> <p>Rural river basins with sufficient water availability to maintain economic livelihoods can be affected with seasonal fluctuations of precipitation and sometimes by droughts. In addition, climate change impacts can also alter future water availability. General Circulation Models (GCMs) provide credible quantitative estimates of future climate conditions but such estimates are often characterized by bias and coarse scale resolution making it necessary to downscale the outputs for use in regional hydrologic models. This study develops a methodology to downscale and project future monthly precipitation in moderate scale basins where data are limited. A stochastic framework for single-site and multi-site generation of weekly rainfall is developed while preserving the historical temporal and spatial correlation structures. The spatial correlations in the simulated occurrences and the amounts are induced using spatially correlated yet serially independent random numbers. This method is applied to generate weekly precipitation data for a 100-year period in the Nam Ngum River Basin (NNRB) that has a land area of 16,780 km2 located in Lao P.D.R. This method is developed and applied using precipitation data from 1961 to 2000 for 10 selected weather stations that represents the basin rainfall characteristics. Bias-correction method, based on fitted theoretical probability distribution transformations, is applied to improve monthly mean frequency, intensity and the amount of raw GCM precipitation predicted at a given weather station using CGCM3.1 and ECHAM5 for SRES A2 emission scenario. Bias-correction procedure adjusts GCM precipitation to approximate the long-term frequency and the intensity distribution observed at a given weather station. Index of agreement and mean absolute error are determined to assess the overall ability and performance of the bias correction method. The generated precipitation series aggregated at monthly time step was perturbed by the change factors estimated using the corrected GCM and baseline scenarios for future time periods of 2011-2050 and 2051-2090. A network based hydrologic and water resources model, WEAP, was used to simulate the current water allocation and management practices to identify the impacts of climate change in the 20th century. The results of this work are used to identify the multiple challenges faced by stakeholders and planners in water allocation for competing demands in the presence of climate change impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2081V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2081V"><span>Hydrological study of climate change impact on the Llobregat basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Versini, Pierre-Antoine; Ballinas-Gonzáles, Romeo; Sempere-Torres, Daniel; Escaler, Isabel</p> <p>2010-05-01</p> <p>Climate change may cause a progressive increase of atmospheric temperature and consequently may change the amount, frequency and intensity of precipitation. All these changes of meteorological variables may modify the water cycle: run-off, infiltration, aquifer recharge, etc… In Spain, climate change scenarios describe a general trend to increase temperature and reduced precipitation. This would result in a reduction of available water between 5 and 14% that can rise to 20-22% for the scenarios of the XXI century (AEMET, 2008). This work has focused on studying the impacts of climate change in one of the most important basins in Catalonia (Spain), the Llobregat river basin. It is a highly populated and urbanized catchment, where water resources are used for different purposes, such as drinking water production, agriculture irrigation, industry and hydro-electric energy production. This work is part of the European project "Water Change" (included in the LIFE + Environment Policy and Governance program) which deals with medium and long-term water resources modelling as a tool for planning and global change adaptation. Usually, to study the impact of climate change, future climate scenarios produced by general circulation models (GCMs) are used. To adapt the large-scale information provided by GCMs to a finer spatial scale required for regional and environmental impact studies, downscaling techniques have been developed. Here, an analogues downscaling method has been applied to simulate daily precipitation projections at rain gauge locations. The HBV hydrological model has been chosen to evaluate the discharges for strategic points (dam, channel and water extractions) in different areas within the watershed. The first results have shown that the water available for supply has a tendency to decrease, implying that measures have to be taken to face the future miss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNS43A3862G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNS43A3862G"><span>Imaging the Subsurface of the Thuringian Basin (Germany) on Different Spatial Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goepel, A.; Krause, M.; Methe, P.; Kukowski, N.</p> <p>2014-12-01</p> <p>Understanding the coupled dynamics of near surface and deep fluid flow patterns is essential to characterize the properties of sedimentary basins, to identify the processes of compaction, diagenesis, and transport of mass and energy. The multidisciplinary project INFLUINS (Integrated FLUid dynamics IN Sedimentary basins) aims for investigating the behavior of fluids in the Thuringian Basin, a small intra-continental sedimentary basin in Germany, at different spatial scales, ranging from the pore scale to the extent of the entire basin. As hydraulic properties often significantly vary with spatial scales, e.g. seismic data using different frequencies are required to gain information about the spatial variability of elastic and hydraulic subsurface properties. For the Thuringian Basin, we use seismic and borehole data acquired in the framework of INFLUINS. Basin-wide structural imaging data are available from 2D reflection seismic profiles as well as 2.5D and 3D seismic travel time tomography. Further, core material from a 1,179 m deep drill hole completed in 2013 is available for laboratory seismic experiments on mm- to cm-scale. The data are complemented with logging data along the entire drill hole. This campaign yielded e.g. sonic and density logs allowing the estimation of in-situ P-velocity and acoustic impedance with a spatial resolution on the cm-scale and provides improved information about petrologic and stratigraphic variability at different scales. Joint interpretation of basin scale structural and elastic properties data with laboratory scale data from ultrasound experiments using core samples enables a detailed and realistic imaging of the subsurface properties on different spatial scales. Combining seismic travel time tomography with stratigraphic interpretation provides useful information of variations in the elastic properties for certain geological units and therefore gives indications for changes in hydraulic properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.2351P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.2351P"><span>Changing monsoon and midlatitude circulation interactions over the Western Himalayas and possible links to occurrences of extreme precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Priya, P.; Krishnan, R.; Mujumdar, Milind; Houze, Robert A.</p> <p>2017-10-01</p> <p>Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June-September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basin have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNG22A..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNG22A..02R"><span>Dynamics of Extreme Floods in Southeast and South Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ribeiro Lima, C. H.; Lall, U.</p> <p>2015-12-01</p> <p>Many extreme floods result from a causal chain, where exceptional rain and floods in water basins from different sizes are related to large scale, anomalous and persistent patterns in atmospheric and oceanic circulation. Organized moisture plumes from oceanic sources are often implicated. One could use an Eulerian-Lagrangian climate model to test a causal chain hypothesis, but the parameterization and testing of such a model covering convection and transport continues to be a challenge. Consequently, empirical data based studies can be useful to establish the need to formally model such events using this approach. Here we consider two flood-prone regions in Southeast and South Brazil as case studies. A hypothesis of the causal chain of extreme floods in these regions is investigated by means of observed streamflow and reanalysis data and some machine learning tools. The signatures of the organization of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the integrated moisture flux and its divergence field and storm track data, so that a better understanding of the relations between the flood magnitude and duration, strength of moisture convergence and role of regional moisture recycling or teleconnected moisture is established. Persistent patterns and anomalies in the sea surface temperature (SST) field in the Pacific and Atlantic oceans that may be associated with disturbances in the atmospheric circulation and with the flood dynamics are investigated through composite analysis. Finally, machine learning algorithms for nonlinear dimension reduction are employed to visualize and understand some of the spatio-temporal patterns of the dominated climate variables in a reduced dimensional space. Prospects for prediction are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GPC...151..108M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GPC...151..108M"><span>Non-stationarities in the relationships of heavy precipitation events in the Mediterranean area and the large-scale circulation in the second half of the 20th century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Merkenschlager, Christian; Hertig, Elke; Jacobeit, Jucundus</p> <p>2017-04-01</p> <p>In the context of analyzing temporal varying relationships of heavy precipitation events in the Mediterranean area and associated anomalies of the large-scale circulation, quantile regression models were established. The models were calibrated using different circulation and thermodynamic variables at the 700 hPa and 850 hPa levels as predictors as well as daily precipitation time series at different stations in the Mediterranean area as predictand. Analyses were done for the second half of the 20th century. In the scope of assessing non-stationarities in the predictor-predictand relationships the time series were divided into calibration and validation periods. 100 randomized subsamples were used to calibrate/validate the models under stationary conditions. The highest and lowest skill score of the 100 random samples was used to determine the range of random variability. The model performance under non-stationary conditions was derived from the skill scores of cross-validated running subintervals. If the skill scores of several consecutive years are outside the range of random variability a non-stationarity was declaimed. Particularly the Iberian Peninsula and the Levant region were affected by non-stationarities, the former with significant positive deviations of the skill scores, the latter with significant negative deviations. By means of a case study for the Levant region we determined three possible reasons for non-stationary behavior in the predictor-predictand relationships. The Mediterranean Oscillation as a superordinate system affects the cyclone activity in the Mediterranean basin and the location and intensity of the Cyprus low. Overall, it is demonstrated that non-stationarities have to be taken into account within statistical downscaling model development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..556..944G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..556..944G"><span>Circulation pattern-based assessment of projected climate change for a catchment in Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gupta, Hoshin V.; Sapriza-Azuri, Gonzalo; Jódar, Jorge; Carrera, Jesús</p> <p>2018-01-01</p> <p>We present an approach for evaluating catchment-scale hydro-meteorological impacts of projected climate change based on the atmospheric circulation patterns (ACPs) of a region. Our approach is motivated by the conjecture that GCMs are especially good at simulating the atmospheric circulation patterns that control moisture transport, and which can be expected to change in response to global warming. In support of this, we show (for the late 20th century) that GCMs provide much better simulations of ACPs than those of precipitation amount for the Upper Guadiana Basin in central Spain. For the same period, four of the twenty GCMs participating in the most recent (5th) IPCC Assessment provide quite accurate representations of the spatial patterns of mean sea level pressure, the frequency distribution of ACP type, the 'number of rainy days per month', and the daily 'probability of rain' (they also reproduce the trend of 'wet day amount', though not the actual magnitudes). A consequent analysis of projected trends and changes in hydro-climatic ACPology between the late 20th and 21st Centuries indicates that (1) actual changes appear to be occurring faster than predicted by the models, and (2) for two greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5) the expected decline in precipitation volume is associated mainly with a few specific ACPs (primarily directional flows from the Atlantic Ocean and Cantabric Sea), and with decreasing probability of rain (linked to increasing temperatures) rather than wet day amount. Our approach is a potentially more insightful alternative for catchment-scale climate impacts assessments than the common approach of statistical downscaling and bias correction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51L..06W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51L..06W"><span>The Oceanic Contribution to Atlantic Multi-Decadal Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wills, R. C.; Armour, K.; Battisti, D. S.; Hartmann, D. L.</p> <p>2017-12-01</p> <p>Atlantic multi-decadal variability (AMV) is typically associated with variability in ocean heat transport (OHT) by the Atlantic Meridional Overturning Circulation (AMOC). However, recent work has cast doubt on this connection by showing that slab-ocean climate models, in which OHT cannot vary, exhibit similar variability. Here, we apply low-frequency component analysis to isolate the variability of Atlantic sea-surface temperatures (SSTs) that occurs on decadal and longer time scales. In observations and in pre-industrial control simulations of comprehensive climate models, we find that AMV is confined to the extratropics, with the strongest temperature anomalies in the North Atlantic subpolar gyre. We show that warm subpolar temperatures are associated with a strengthened AMOC, increased poleward OHT, and local heat fluxes from the ocean into the atmosphere. In contrast, the traditional index of AMV based on the basin-averaged SST anomaly shows warm temperatures preceded by heat fluxes from the atmosphere into the ocean, consistent with the atmosphere driving this variability, and shows a weak relationship with AMOC. The autocorrelation time of the basin-averaged SST index is 1 year compared to an autocorrelation time of 5 years for the variability of subpolar temperatures. This shows that multi-decadal variability of Atlantic SSTs is sustained by OHT variability associated with AMOC, while atmosphere-driven SST variability, such as exists in slab-ocean models, contributes primarily on interannual time scales.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4801315','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4801315"><span>Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F.; McWilliams, James C.</p> <p>2016-01-01</p> <p>Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth. PMID:26929376</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6611C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6611C"><span>Subglacial discharge-driven renewal of tidewater glacier fjords</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.</p> <p>2017-08-01</p> <p>The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26929376','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26929376"><span>Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F; McWilliams, James C</p> <p>2016-03-15</p> <p>Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000034198','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000034198"><span>Intrinsic Coupled Ocean-Atmosphere Modes of the Asian Summer Monsoon: A Re-assessment of Monsoon-ENSO Relationships</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, K.-M.; Wu, H. T.</p> <p>2000-01-01</p> <p>Using global rainfall and sea surface temperature (SST) data for the past two decades (1979-1998), we have investigated the intrinsic modes of Asian summer monsoon (ASM) and ENSO co-variability. Three recurring ASM rainfall-SST coupled modes were identified. The first is a basin scale mode that features SST and rainfall variability over the entire tropics (including the ASM region), identifiable with those occurring during El Nino or La Nina. This mode is further characterized by a pronounced biennial variation in ASM rainfall and SST associated with fluctuations of the anomalous Walker circulation that occur during El Nino/La Nina transitions. The second mode comprises mixed regional and basin-scale rainfall and SST signals, with pronounced intraseasonal and interannual variabilities. This mode features a SST pattern associated with a developing La Nina, with a pronounced low level anticyclone in the subtropics of the western Pacific off the coast of East Asia. The third mode depicts an east-west rainfall and SST dipole across the southern equatorial Indian Ocean, most likely stemming from coupled ocean-atmosphere processes within the ASM region. This mode also possesses a decadal time scale and a linear trend, which are not associated with El Nino/La Nina variability. Possible causes of year-to-year rainfall variability over the ASM and sub-regions have been evaluated from a reconstruction of the observed rainfall from singular eigenvectors of the coupled modes. It is found that while basin-scale SST can account for portions of ASM rainfall variability during ENSO events (up to 60% in 1998), regional processes can accounts up to 20-25% of the rainfall variability in typical non-ENSO years. Stronger monsoon-ENSO relationship tends to occur in the boreal summer immediately preceding a pronounced La Nina, i.e., 1998, 1988 and 1983. Based on these results, we discuss the possible impacts of the ASM on ENSO variability via the west Pacific anticyclone and articulate a hypothesis that anomalous wind forcings derived from the anticyclone may be instrumental in inducing a strong biennial modulation to natural ENSO cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770003390&hterms=mecanica&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmecanica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770003390&hterms=mecanica&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmecanica"><span>Use of variational methods in the determination of wind-driven ocean circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gelos, R.; Laura, P. A. A.</p> <p>1976-01-01</p> <p>Simple polynomial approximations and a variational approach were used to predict wind-induced circulation in rectangular ocean basins. Stommel's and Munk's models were solved in a unified fashion by means of the proposed method. Very good agreement with exact solutions available in the literature was shown to exist. The method was then applied to more complex situations where an exact solution seems out of the question.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U13B0058G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U13B0058G"><span>How well do the GCMs replicate the historical precipitation variability in the Colorado River Basin?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guentchev, G.; Barsugli, J. J.; Eischeid, J.; Raff, D. A.; Brekke, L.</p> <p>2009-12-01</p> <p>Observed precipitation variability measures are compared to measures obtained using the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project (CMIP3) General Circulation Models (GCM) data from 36 model projections downscaled by Brekke at al. (2007) and 30 model projections downscaled by Jon Eischeid. Three groups of variability measures are considered in this historical period (1951-1999) comparison: a) basic variability measures, such as standard deviation, interdecadal standard deviation; b) exceedance probability values, i.e., 10% (extreme wet years) and 90% (extreme dry years) exceedance probability values of series of n-year running mean annual amounts, where n=1,12; 10% exceedance probability values of annual maximum monthly precipitation (extreme wet months); and c) runs variability measures, e.g., frequency of negative and positive runs of annual precipitation amounts, total number of the negative and positive runs. Two gridded precipitation data sets produced from observations are used: the Maurer et al. (2002) and the Daly et al. (1994) Precipitation Regression on Independent Slopes Method (PRISM) data sets. The data consist of monthly grid-point precipitation averaged on a United States Geological Survey (USGS) hydrological sub-region scale. The statistical significance of the obtained model minus observed measure differences is assessed using a block bootstrapping approach. The analyses were performed on annual, seasonal and monthly scale. The results indicate that the interdecadal standard deviation is underestimated, in general, on all time scales by the downscaled model data. The differences are statistically significant at a 0.05 significance level for several Lower Colorado Basin sub-regions on annual and seasonal scale, and for several sub-regions located mostly in the Upper Colorado River Basin for the months of March, June, July and November. Although the models simulate drier extreme wet years, wetter extreme dry years and drier extreme wet months for the Upper Colorado basin, the differences are mostly not-significant. Exceptions are the results about the extreme wet years for n=3 for sub-region White-Yampa, for n=6, 7, and 8 for sub-region Upper Colorado-Dolores, and about the extreme dry years for n=11 for sub-region Great Divide-Upper Green. None of the results for the sub-regions in the Lower Colorado Basin were significant. For most of the Upper Colorado sub-regions the models simulate significantly lower frequency of negative and positive 4-6 year runs, while for several sub-regions a significantly higher frequency of 2-year negative runs is evident in the model versus the Maurer data comparisons. The model projections versus the PRISM data comparison reveals similar results for the negative runs, while for the positive runs the results indicate that the models simulate higher frequency of the 2-6 year runs. The results for the Lower Colorado basin sub-regions are similar, in general, to these for the Upper Colorado sub-regions. The differences between the simulated and the observed total number of negative or positive runs were not significant for almost all of the sub-regions within the Colorado River Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HydJ...26...71M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HydJ...26...71M"><span>Hydrochemical constraints between the karst Tabular Middle Atlas Causses and the Saïs basin (Morocco): implications of groundwater circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miche, Hélène; Saracco, Ginette; Mayer, Adriano; Qarqori, Khaoula; Rouai, Mohamed; Dekayir, Abdelilah; Chalikakis, Konstantinos; Emblanch, Christophe</p> <p>2018-02-01</p> <p>The karst Tabular Middle Atlas Causses reservoir is the main drinking-water supply of Fez-Meknes region (Saïs Basin) in Morocco. Recent analyses showed a decline in associated groundwater chemical quality and increased turbidity. To understand this hydrosystem, four surveys were undertaken during fall and spring, 2009-2011. Hydrogeochemical studies coupled with isotopic analyses (δ18O, δD and 222Rn) showed that the aquifers between the causses (mountains) and the Saïs Basin are of Liassic origin and at the southern extremities are of Triassic origin. Five recharge zones of different altitudes have been defined, including two main mixing zones in the south. Deuterium excess results suggest local recharge, while a plot of δ18O versus δD characterizes a confined aquifer in the eastern sector. 222Rn results reveal areas of rapid exchanges with an upwelling time of less than 2 weeks. A schematic conceptual model is presented to explain the groundwater circulation system and the behavior of this karst system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMED11A..04E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMED11A..04E"><span>Familiarity of Alpine magnitude and geometry as a critical pedagogic element in student visualisation of basin- & crustal-scale sub-surface structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, M. A.</p> <p>2004-12-01</p> <p>A geoscience education stumbling block that typically re-currs throughout the early years of student progress is bringing three dimensional spatial scales of Earth's features in perspective. This far more so than temporal scales; the concept of geological timescale is normally quickly adopted into a students perception. Providing a sense of proportion for three dimensional objects is two fold: the first, the actual "thinking in 3D" while often depicting in 2D (e.g. seismic moment "beachballs", stereonets, cross-sections, atmospheric circulation cells) has been dramatically assisted by accelerated graphics imaging software. The second, proportion across all scales, is subtle yet crucial and not necessarily better-conveyed to students exclusively via computer-assisted learning. My experiences teaching students from a range of geographical backgrounds strongly indicates a much firmer grasp overall, by students from Alpine regions, of magnitudes and scales of crustal features. The intensity of topography in these regions, where cablecar and steep walking are the primary accesses, is a unique opportunity to illustrate the km-scale of structures in 3D, a lesson far beyond one of simply illustrating the appearance of typical rocks "in the great outdoors" and very tricky to convery through "virtual" field trips alone. Examples include; 1. the embodiment of a shallow seismic reflection profile to a several hundrend metre cliff of intercalated (i.e. switching impedance contrast) turbidites whose km-long overthrust line is traceable along a valley floor far below. 2. the weight of the thrust pile underfoot and corresponding amounts of lithosphere bending and foreland basin growth - a perspective often lost with beam engineering-only approaches. 3. fluid-volumes: intensely solution-strained &/or vein-bearing masses can be estimated for volume percentage and total cubic amount across a mountain region. 4. instantaneous river bedload versus yearly versus m.y. total volumes. Such 3D realism is crucial is subsurface modelling of hydrocarbon/water/waste potentials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DPS....4741905H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DPS....4741905H"><span>Large-Scale Weather Disturbances in Mars’ Southern Extratropics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hollingsworth, Jeffery L.; Kahre, Melinda A.</p> <p>2015-11-01</p> <p>Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC13J0823B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC13J0823B"><span>Extratropical Respones to Amazon Deforestation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badger, A.; Dirmeyer, P.</p> <p>2014-12-01</p> <p>Land-use change (LUC) is known to impact local climate conditions through modifications of land-atmosphere interactions. Large-scale LUC, such as Amazon deforestation, could have a significant effect on the local and regional climates. The question remains as to what the global impact of large-scale LUC could be, as previous modeling studies have shown non-local responses due to Amazon deforestation. A common shortcoming in many previous modeling studies is the use of prescribed ocean conditions, which can act as a boundary condition to dampen the global response with respect to changes in the mean and variability. Using fully coupled modeling simulations with the Community Earth System Model version 1.2.0, the Amazon rainforest has been replaced with a distribution of representative tropical crops. Through the modifications of local land-atmosphere interactions, a significant change in the region, both at the surface and throughout the atmosphere, can be quantified. Accompanying these local changes are significant changes to the atmospheric circulation across all scales, thus modifying regional climates in other locales. Notable impacts include significant changes in precipitation, surface fluxes, basin-wide sea surface temperatures and ENSO behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27198665','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27198665"><span>Interactions of Multiple Atmospheric Circulation Drive the Drought in Tarim River Basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Yong-Ping; Feng, Guo-Lin; Li, Bai-Lian</p> <p>2016-05-20</p> <p>Global warming is likely to cause overall drying of land surfaces and aridity increasing leading to expansion of dry climate zones. There is an increased risk of extremely arid environment and large deserts developed progressively in the central Asia. However, the key factors causing the drying in mid-Asia remain inconclusive. Here, we analyzed the relationship among precipitation, water vapor transportation in Tarim River Basin (TRB) and Multiple Atmospheric Circulation (MAC) to explore the mechanism of MAC driving the drying in TRB, through comparing MAC between abundant and scarce precipitation years. We found that Westerly Circulation (WC) and Asian Summer Monsoon (ASM) are likely to promote the precipitation respectively. Whereas, they not only have their own influence but also restrict each other and facilitate the forming of peculiar water vapor transport channel for TRB, which is probably to restrain the precipitation and its distribution pattern and accelerate the drying in this region. Our results enrich the findings on mechanisms of wet places becoming wetter while dry areas getting drier under the global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...626470W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...626470W"><span>Interactions of Multiple Atmospheric Circulation Drive the Drought in Tarim River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Yong-Ping; Feng, Guo-Lin; Li, Bai-Lian</p> <p>2016-05-01</p> <p>Global warming is likely to cause overall drying of land surfaces and aridity increasing leading to expansion of dry climate zones. There is an increased risk of extremely arid environment and large deserts developed progressively in the central Asia. However, the key factors causing the drying in mid-Asia remain inconclusive. Here, we analyzed the relationship among precipitation, water vapor transportation in Tarim River Basin (TRB) and Multiple Atmospheric Circulation (MAC) to explore the mechanism of MAC driving the drying in TRB, through comparing MAC between abundant and scarce precipitation years. We found that Westerly Circulation (WC) and Asian Summer Monsoon (ASM) are likely to promote the precipitation respectively. Whereas, they not only have their own influence but also restrict each other and facilitate the forming of peculiar water vapor transport channel for TRB, which is probably to restrain the precipitation and its distribution pattern and accelerate the drying in this region. Our results enrich the findings on mechanisms of wet places becoming wetter while dry areas getting drier under the global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20036006','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20036006"><span>Contaminant fate and transport in the Venice Lagoon: results from a multi-segment multimedia model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sommerfreund, J K; Gandhi, N; Diamond, M L; Mugnai, C; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L G; Giuliani, S</p> <p>2010-03-01</p> <p>Contaminant loadings to the Venice Lagoon peaked from 1950s-1980s and although they have since declined, contaminant concentrations remain elevated in sediment and seafood. In order to identify the relative importance of contaminant sources, inter-media exchange and removal pathways, a modified 10-segment fugacity/aquivalence-based model was developed for octachlorodibenzodioxin/furan (OCDD/F), PCB-180, Pb and Cu in the Venice Lagoon. Results showed that in-place pollution nearby the industrial area, current industrial discharges, and tributary loadings were the main sources of contaminants to the lagoon, with negligible contributions from the atmosphere. The fate of these contaminants was governed by sediment-water exchange with simultaneous advective transport by water circulation. Contaminants circulated amongst the northern and central basins with a small fraction reaching the far southern basin and the Chioggia inlet. As a consequence, we estimated limited contaminant transfer to the Adriatic Sea, trapping the majority of contaminants in the sediment in this "average" circulation scenario which does not account for periodic flooding events. (c) 2009 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001846','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001846"><span>Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roberts, J. Brent; Clayson, Carol A.</p> <p>2012-01-01</p> <p>The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRD..11413110Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRD..11413110Y"><span>Influence of wintertime large-scale circulation on the explosively developing cyclones over the western North Pacific and their downstream effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshiike, Satoki; Kawamura, Ryuichi</p> <p>2009-07-01</p> <p>The relationships between large-scale wintertime circulation and extratropical cyclones that develop explosively (the so-called bomb cyclones) over the western North Pacific are investigated using Japanese long-term reanalysis project data. On a monthly basis, the East Asian winter monsoon variability strongly modulates the bomb cyclone activity in terms of its geographical distribution. When the monsoon is strong, the bomb cyclone activity tends to concentrate in the vicinity of the Kuroshio Current and the Kuroshio Extension near Japan, while when the monsoon is weak, it disperses over the broader areas. The enhancement of the monsoon increases the heat and moisture supply from warm currents, facilitating unstable conditions within the atmospheric boundary layer and intensifying baroclinicity in the lower troposphere. These factors are believed to play a role in inducing bomb cyclones, particularly along the warm currents. On submonthly timescales, the stationary Rossby wave propagation along the South Asian waveguide serves as a prominent trigger for the rapid reinforcement of synoptic-scale disturbances around Japan. When a pronounced bomb cyclone comes to its mature stage northeast of Japan, it is capable of exciting stationary Rossby waves downstream from the Asian jet exit region as vorticity forcing. The stationary wave packets developing southeastward across the North Pacific Ocean basin induce surface cyclogenesis in the vicinity of the Hawaiian Islands by leading to the equatorward advection of higher potential vorticity from the midlatitudes, bringing about the occurrence of kona storms, which cause weather hazards in Hawaii.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814124P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814124P"><span>Large scale atmospheric drivers for heat waves in the Mediterranean Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pasqui, Massimiliano; Di Giuseppe, Edmondo</p> <p>2016-04-01</p> <p>West African Heat Low (WAHL) is one of the prominent dynamical components of the West African Monsoon (WAM) system playing a key role in the summer atmospheric circulation over Mediterranean as well. It is characterized by a semi-permanent low pressure system generated and maintained by surface heating over the western part of Saharan desert in summer, and a divergent flux pattern above the atmospheric boundary level. In this study we analyse the formation and occurrence of heat waves in the Mediterranean Basin connected to the WAHL regimes in combination with the subtropical anticyclone regimes over North Atlantic basin (the "Azore High") . In this work, heat waves are defined when more than 6 consecutive days with a daily temperature above 90th percentile corresponding threshold are observed. We use 1971-2000 as reference period for thresholds calculation, based on two datasets: a) the European Climate Assessment & Dataset (ECAD/E-OBS) data; b) the Berkeley-Earth Project data; the analysis period covers March-September from 1951 to 2015 and 1951 to 2011 respectively. The WAHL index is calculated following the method proposed by Chauvin et al. (2010) and based on NCAR/NCEP Reanalysis dataset, while the Azore High pressure system regimes variability are computed as in Davis et al. (1997). We show that a statistical relationship between heat waves in Western and Central Mediterranean Basin and WAHL mechanism exists, being the latter a prominent causal factor. The relationships and causal connections between WAHL and Azores High atmospheric systems are also analysed to highlight potential implications for heat waves outlooks and early warning systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSMGC11A..04T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSMGC11A..04T"><span>A new Calibrated Deglacial Drainage History for North America and Evidence for an Arctic Trigger for the Younger Dryas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarasov, L.; Peltier, W. R.</p> <p>2004-05-01</p> <p>We present a new deglacial drainage history for the North American ice complex using the 3D University of Toronto glacial systems model calibrated against a large set of RSL and geodetic data. During melt-water pulse 1a, large order 0.15 to 0.2 Sverdrup century-scale melt-water discharges into both the Gulf of Mexico and western Atlantic occur. During this period, it has generally been inferred that strong thermohaline overturning circulation (TOC) was maintained. As such, our results suggest that the TOC is relatively insensitive to injection of melt-water into the Western Atlantic. In contrast with past inferences, we find the periods of strongest combined melt-water and ice calving discharge (with peak flows of order 0.2 Sverdrups over a century) into the NW Arctic to be during both the onset of and within the Younger Dryas. Model results also show no significant freshwater flux into the Western Atlantic during the Younger Dryas onset period. Given that the Greenland-Iceland-Norwegian (GIN) seas basin was the only outlet route for Arctic waters at this time, we infer that some combination of reduced Canadian Basin sea surface salinities in combination with enhanced sea-ice export into the GIN seas basin played a critical role in triggering and sustaining the altered TOC that is believed to be responsible for the Younger Dryas cold interval. We also speculate that the prior lack of such large discharges into the Canadian Arctic Basin may explain the apparent uniqueness of the Younger Dryas interval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..562..492R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..562..492R"><span>Assessing changes in extreme river flow regulation from non-stationarity in hydrological scaling laws</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodríguez, Estiven; Salazar, Juan Fernando; Villegas, Juan Camilo; Mercado-Bettín, Daniel</p> <p>2018-07-01</p> <p>Extreme flows are key components of river flow regimes that affect manifold hydrological, geomorphological and ecological processes with societal relevance. One fundamental characteristic of extreme flows in river basins is that they exhibit scaling properties which can be identified through scaling (power) laws. Understanding the physical mechanisms behind such scaling laws is a continuing challenge in hydrology, with potential implications for the prediction of river flow regimes in a changing environment and ungauged basins. After highlighting that the scaling properties are sensitive to environmental change, we develop a physical interpretation of how temporal changes in scaling exponents relate to the capacity of river basins to regulate extreme river flows. Regulation is defined here as the basins' capacity to either dampen high flows or to enhance low flows. Further, we use this framework to infer temporal changes in the regulation capacity of five large basins in tropical South America. Our results indicate that, during the last few decades, the Amazon river basin has been reducing its capacity to enhance low flows, likely as a consequence of pronounced environmental change in its south and south-eastern sub-basins. The proposed framework is widely applicable to different basins, and provides foundations for using scaling laws as empirical tools for inferring temporal changes of hydrological regulation, particularly relevant for identifying and managing hydrological consequences of environmental change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70039932','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70039932"><span>Intra- and inter-basin mercury comparisons: Importance of basin scale and time-weighted methylmercury estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bradley, Paul M.; Journey, Celeste A.; Bringham, Mark E.; Burns, Douglas A.; Button, Daniel T.; Riva-Murray, Karen</p> <p>2013-01-01</p> <p>To assess inter-comparability of fluvial mercury (Hg) observations at substantially different scales, Hg concentrations, yields, and bivariate-relations were evaluated at nested-basin locations in the Edisto River, South Carolina and Hudson River, New York. Differences between scales were observed for filtered methylmercury (FMeHg) in the Edisto (attributed to wetland coverage differences) but not in the Hudson. Total mercury (THg) concentrations and bivariate-relationships did not vary substantially with scale in either basin. Combining results of this and a previously published multi-basin study, fish Hg correlated strongly with sampled water FMeHg concentration (p = 0.78; p = 0.003) and annual FMeHg basin yield (p = 0.66; p = 0.026). Improved correlation (p = 0.88; p < 0.0001) was achieved with time-weighted mean annual FMeHg concentrations estimated from basin-specific LOADEST models and daily streamflow. Results suggest reasonable scalability and inter-comparability for different basin sizes if wetland area or related MeHg-source-area metrics are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24784218','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24784218"><span>North Atlantic forcing of tropical Indian Ocean climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas</p> <p>2014-05-01</p> <p>The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JAtS...54..656L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JAtS...54..656L"><span>On the Origin of the Bolivian High and Related Circulation Features of the South American Climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lenters, J. D.; Cook, K. H.</p> <p>1997-03-01</p> <p>The climatological structure in the upper-tropospheric summertime circulation over South America is diagnosed using a GCM (with and without South American topography), a linear model, and observational data. Emphasis is placed on understanding the origin of observed features such as the Bolivian high and the accompanying `Nordeste low' to the east. Results from the linear model indicate that these two features are generated in response to precipitation over the Amazon basin, central Andes, and South Atlantic convergence zone, with African precipitation also playing a crucial role in the formation of the Nordeste low. The direct mechanical and sensible heating effects of the Andes are minimal, acting only to induce a weak lee trough in midlatitudes and a shallow monsoonal circulation over the central Andes. In the GCM, the effects of the Andes include a strengthening of the Bolivian high and northward shift of the Nordeste low, primarily through changes in the precipitation field. The position of the Bolivian high is primarily determined by Amazonian precipitation and is little affected by the removal of the Andes. Strong subsidence to the west of the high is found to be important for the maintenance of the high's warm core, while large-scale convective overshooting to the east is responsible for a layer of cold air above the high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5606501','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5606501"><span>Black Sea thermohaline properties: Long‐term trends and variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stips, A.; Garcia‐Gorriz, E.; Macias Moy, D.</p> <p>2017-01-01</p> <p>Abstract The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatological or observational data fields. This property of the model allows us to estimate independent temporal trends, in addition to resolving the spatial structure. The simulations suggest that the intermediate layer temperature is characterized by a weak positive trend (warming), whereas the surface temperature does not show a clear linear trend. Different salinity trends have been established at the surface (negative), upper (weaker negative) and main halocline (positive). Three distinct dynamic periods are identified (1960–1970, 1970–1995, 1995–2015), which exhibit pronounced changes in the Black Sea's thermohaline properties and basin circulation. Strengthening of the main cyclonic circulation, accompanied by intensification of the mesoscale anticyclonic eddy formation is found. Both events strongly affect the sea surface salinity but contribute in opposing directions. Specifically, strong composite large‐scale circulation leads to an increase in sea surface salinity, while enhanced formation of mesoscale anticyclones decreases it. Salinity evolution with time is thus the result of the competition of these two opposing yet interdependent processes. PMID:28989833</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H13O..05P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H13O..05P"><span>The use of subsurface thermal data, isotopic tracers and earthquake hypocenter locations to unravel deep regional flow systems within the crystalline basement beneath the Rio Grande rift, New Mexico. (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Person, M. A.; Woolsey, E.; Pepin, J.; Crossey, L. J.; Karlstrom, K. E.; Phillips, F. M.; Kelley, S.; Timmons, S.</p> <p>2013-12-01</p> <p>The Rio Grande rift in New Mexico hosts a number of low-temperature geothermal systems as well as the 19 km deep Socorro Magma Body. The presence of a mantle helium anomaly measured at San Acacia spring (3He/4He = 0.295 RA) and in an adjacent shallow well (50m < ; 0.8 RA) overlying the Socorro Magma Body at the southern terminus of the Albuquerque Basin suggests that deeply sourced fluids mix with the sedimentary basin groundwater flow system. Temperatures recorded at the base of the San Acacia well is elevated (29 oC). Published estimates of uplift rates and heat flow suggest that the magma body was emplaced about 1-3 ka and reflects a long-lived (several Ma) magmatic system. Further south near the southern terminus of the Engle Basin, much warmer temperatures (42 oC) occur at shallow depths within the spa district in the town of Truth or Consequences at shallow depths also suggesting deep-fluid circulation. 14C constrained apparent groundwater residence times in the spa district range between 6-10 ka. We have developed two 6-19 km deep crustal-scale, cross-sectional models that simulate subsurface fluid flow, heat and isotope (3He/4He) transport as well as groundwater residence times along the Rio Grande rift. The North-South oriented model of the Albuquerque Basin incorporates a high-permeability conduit 100 m wide having hydrologic properties differing from surrounding crystalline basement units. We use these models to constrain the crustal permeability structure and fluid circulation patterns beneath the Albuquerque and Engle Basins. Model results are compared to measurements of groundwater temperatures, residence times (14C), and 3He/4He data. We also use the distribution of earthquake hypocenters to constrain likely fault-crystalline basement hydraulic interactions in the seismogenic crust above the Socorro Magma Body. For the case of the southern Albuquerque Basin, conduit permeability associated with the Indian Hill conduit/fault zone must range between about 1.0E-13 to 1.0E-15 m2 in order for simulated 3He/4He, solute concentrations, and temperatures to match observed conditions. Basement permeability outside of the fault damage zone must range between 1.0E-17 to 1.0E-18 m2. However, a much longer transport time is required (between about 20-30 ka) in order to match observed conditions suggesting multiple magmatic intrusion events. For the case of the Engle Basin near Truth or Consequences, bulk crustal permeability between a depth of 2-6 km below the sedimentary succession must approach 1.0E-12 m2 in order to reproduce hot spring temperatures and groundwater residence times. We compare these model derived permeability estimates to published permeability-depth relationships for crustal rocks (Manning and Ingebritsen, 1999; Ingebritsen and Manning, 2010).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA348887','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA348887"><span>Variability of the Arctic Basin Oceanographic Fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1996-02-01</p> <p>the model a very sophisticated turbulence closure scheme. 9. Imitation of the CO2 doubling We parameterized the " greenhouse " effect by changing the...of the Arctic Ocean. A more realistic model of the Arctic Ocean circulation was obtained, and an estimation of the impact of the greenhouse effect on... greenhouse effect is in freshening of the upper Arctic Basin. Although some shortcomings of the model still exist (an unrealistic high coefficient of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NPGeo..20.1095P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NPGeo..20.1095P"><span>Large eddy simulation model for wind-driven sea circulation in coastal areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petronio, A.; Roman, F.; Nasello, C.; Armenio, V.</p> <p>2013-12-01</p> <p>In the present paper a state-of-the-art large eddy simulation model (LES-COAST), suited for the analysis of water circulation and mixing in closed or semi-closed areas, is presented and applied to the study of the hydrodynamic characteristics of the Muggia bay, the industrial harbor of the city of Trieste, Italy. The model solves the non-hydrostatic, unsteady Navier-Stokes equations, under the Boussinesq approximation for temperature and salinity buoyancy effects, using a novel, two-eddy viscosity Smagorinsky model for the closure of the subgrid-scale momentum fluxes. The model employs: a simple and effective technique to take into account wind-stress inhomogeneity related to the blocking effect of emerged structures, which, in turn, can drive local-scale, short-term pollutant dispersion; a new nesting procedure to reconstruct instantaneous, turbulent velocity components, temperature and salinity at the open boundaries of the domain using data coming from large-scale circulation models (LCM). Validation tests have shown that the model reproduces field measurement satisfactorily. The analysis of water circulation and mixing in the Muggia bay has been carried out under three typical breeze conditions. Water circulation has been shown to behave as in typical semi-closed basins, with an upper layer moving along the wind direction (apart from the anti-cyclonic veering associated with the Coriolis force) and a bottom layer, thicker and slower than the upper one, moving along the opposite direction. The study has shown that water vertical mixing in the bay is inhibited by a large level of stable stratification, mainly associated with vertical variation in salinity and, to a minor extent, with temperature variation along the water column. More intense mixing, quantified by sub-critical values of the gradient Richardson number, is present in near-coastal regions where upwelling/downwelling phenomena occur. The analysis of instantaneous fields has detected the presence of large cross-sectional eddies spanning the whole water column and contributing to vertical mixing, associated with the presence of sub-surface horizontal turbulent structures. Analysis of water renewal within the bay shows that, under the typical breeze regimes considered in the study, the residence time of water in the bay is of the order of a few days. Finally, vertical eddy viscosity has been calculated and shown to vary by a couple of orders of magnitude along the water column, with larger values near the bottom surface where density stratification is smaller.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3299C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3299C"><span>Glider and satellite high resolution monitoring of a mesoscale eddy in the Algerian basin: effects on the mixed layer depth and biochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cotroneo, Yuri; Aulicino, Giuseppe; Ruiz, Simón; Pascual, Ananda; Budillon, Giorgio; Fusco, Giannetta; Tintoré, Joaquin</p> <p>2016-04-01</p> <p>Despite of the extensive bibliography about the circulation of the Mediterranean Sea and its sub-basins, the debate on mesoscale dynamics and its impacts on biochemical processes is still open because of their intrinsic time scales and of the difficulties in sampling. In order to clarify some of these processes, the "Algerian BAsin Circulation Unmanned Survey - ABACUS" project was proposed and realized through access to JERICO Trans National Access (TNA) infrastructures between September and December 2014. In this framework, a deep glider cruise was carried out in the area between Balearic Islands and Algerian coasts to establish an endurance line for monitoring the basin circulation. During the mission, a mesoscale eddy, identified on satellite altimetry maps, was sampled at high-spatial horizontal resolution (4 km) along its main axes and from surface to 1000 m depth. Data were collected by a Slocum glider equipped with a pumped CTD and biochemical sensors that collected about 100 complete casts inside the eddy. In order to describe the structure of the eddy, in situ data were merged with new generation remotely sensed data as daily synoptic sea surface temperature (SST) and chlorophyll concentration (Chl-a) images from MODIS satellites as well as sea surface height and geostrophic velocities from AVISO. From its origin along the Algerian coast in the eastern part of the basin, the eddy propagated to north-west at a mean speed of about 4 km/day with a mean diameter of 112/130 km, a mean elevation of 15.7 cm and clearly distinguished by the surrounding waters thanks to its higher SST and Chl-a values. Temperature and salinity values along the water column confirm the origin of the eddy from the AC showing the presence of recent Atlantic water in the surface layer and Levantine Intermediate Water (LIW) in the deeper layer. Eddy footprint is clearly evident in the multiparametric vertical sections conducted along its main axes. Deepening of temperature, salinity and density isolines at the center of the eddy is associated with variations in the Chl-a, oxygen concentration and turbidity pattern. In particular at 50 m depth, along the eddy borders, Chl-a values are higher (1.1-5.2 μg/l) than in correspondence of the eddy center (0.5-0.7 μg/l) with maxima values registered in the southeastern sector of the eddy. Calculation of geostrophic velocities along transects and vertical quasi geostrophic velocities (QG-w) over a regular 5 km grid from glider data, helped in describing the mechanism and functioning of the eddy. QG-w presents an asymmetric pattern, with associated relatively strong downwelling in the western part of the eddy and upwelling in the southeastern part of it. This asymmetry in the vertical velocity pattern, bringing LIW in the euphotic layer, as well as eventual advection from the northeastern sector of the eddy may justify the observed increase in Chl-a values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA532787','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA532787"><span>Tropical Cyclone Genesis and Sudden Changes of Track and Intensity in the Western Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-09-30</p> <p>North Atlantic . (Published in 2008) Our work on the effect of internally generated inner-core asymmetries on tropical cyclone potential intensity has...of the atmospheric circulation in TC basins to the global warming is more critical than increasing SST to understanding the impacts of global warming...Japan and its adjacent seas is studied with WRF model. The results suggest that the northward moisture transport through the outer cyclonic circulation</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.7950S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.7950S"><span>Observations of a diapycnal shortcut to adiabatic upwelling of Antarctic Circumpolar Deep Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silvester, J. Mead; Lenn, Yueng-Djern; Polton, Jeff A.; Rippeth, Tom P.; Maqueda, M. Morales</p> <p>2014-11-01</p> <p>In the Southern Ocean, small-scale turbulence causes diapycnal mixing which influences important water mass transformations, in turn impacting large-scale ocean transports such as the Meridional Overturning Circulation (MOC), a key controller of Earth's climate. We present direct observations of mixing over the Antarctic continental slope between water masses that are part of the Southern Ocean MOC. A 12 h time series of microstructure turbulence measurements, hydrography, and velocity observations off Elephant Island, north of the Antarctic Peninsula, reveals two concurrent bursts of elevated dissipation of O(10-6) W kg-1, resulting in heat fluxes ˜10 times higher than basin-integrated Drake Passage estimates. This occurs across the boundary between adjacent adiabatic upwelling and downwelling overturning cells. Ray tracing to nearby topography shows mixing between 300 and 400 m is consistent with the breaking of locally generated internal tidal waves. Since similar conditions extend to much of the Antarctic continental slope where these water masses outcrop, diapycnal mixing may contribute significantly to upwelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NatSR...4E3876D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NatSR...4E3876D"><span>Climatic controls on hurricane patterns: a 1200-y near-annual record from Lighthouse Reef, Belize</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denommee, K. C.; Bentley, S. J.; Droxler, A. W.</p> <p>2014-01-01</p> <p>Tropical cyclones (TCs) are powerful agents of destruction, and understanding climatic controls on TC patterns is of great importance. Over timescales of seasons to several decades, relationships among TC track, frequency, intensity and basin-scale climate changes are well documented by instrumental records. Over centuries to millennia, climate-shift influence on TC regimes remains poorly constrained. To better understand these relationships, records from multiple locations of TC strikes spanning millennia with high temporal resolution are required, but such records are rare. Here we report on a highly detailed sedimentary proxy record of paleo-TC strikes from the Blue Hole of Lighthouse Reef, Belize. Our findings provide an important addition to other high-resolution records, which collectively demonstrate that shifts between active and inactive TC regimes have occurred contemporaneously with shifts hemispheric-scale oceanic and atmospheric circulation patterns such as MDR SSTs and NAO mode, rather than with changes in local climate phenomena as has previously been suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812622A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812622A"><span>Seasonal variation of the South Indian tropical gyre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.</p> <p>2016-04-01</p> <p>The South Indian tropical gyre receives and redistributes water masses from the Indonesian Throughflow (ITF), a source of Pacific Ocean water which represents the only low-latitude connector between the world oceans and, therefore, a key component in the global ocean circulation and climate system. We investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR), based on satellite altimeter data (AVISO) and global atlases of temperature and salinity (CARS09), wind stress (SCOW) and wind-driven circulation. Two novel large-scale features governing the upper geostrophic circulation of the South Indian tropical gyre are revealed. First, the seasonal shrinkage of the ocean gyre. This occurs when the South Equatorial Countercurrent (SECC) recirculates before arrival to Sumatra from winter to spring, in apparent synchronization with the annual cycle of the ITF. Second, the open-ocean upwelling is found to vary following seasonality of the overlying geostrophic ocean gyre, a relationship that has not been previously shown for this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. Broadly speaking, the seasonal shrinkage of the ocean gyre (and the SCTR) is the one feature that differs most when the geostrophic circulation is compared to the wind-driven Sverdrup circulation. From late autumn to spring, the eastward SECC recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC at longitudes more westward than predicted from the barotropic wind-driven circulation. Because our findings are based on time-averaged seasonal fields from 22 years of satellite altimeter data and from about 60 years of non-systematic sampling of ocean temperature and salinity data (CARS09), we stress the importance of further study on the possibility that interanual variability in the seasonal ITF may cause changes in the seasonal resizing of the ocean gyre and its associated upwelling ridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H14D..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H14D..04S"><span>The Role of Forests in Regulating the River Flow Regime of Large Basins of the World</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.</p> <p>2016-12-01</p> <p>Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H14D..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H14D..04S"><span>The Role of Forests in Regulating the River Flow Regime of Large Basins of the World</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.</p> <p>2017-12-01</p> <p>Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4309M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4309M"><span>The influence of Seychelles Dome on the large scale Tropical Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manola, Iris; Selten, Frank; Hazeleger, Wilco</p> <p>2013-04-01</p> <p>The Seychelles Dome (SD) is the thermocline ridge just South of the equator in the Western Indian Ocean basin. It is characterized by strong atmospheric convection and a shallow thermocline and is associated with large intraseasonal convection and SST variability (Harrison and Vecchi 2001). The SD is influenced by surface and subsurface processes, such as air-sea fluxes, Ekman upwelling from wind stress curl, ocean dynamics (vertical mixing) and oceanic Rossby waves from southeastern Indian Ocean. The favoring season for a strong SD is the boreal winter, where the thermocline is most shallow. Then the southeasterly trade winds converge with the northwesterly monsoonal winds over the intertropical convergence zone and cause cyclonic wind stress curl that drives Ekman divergence and a ridging of the thermocline. It is found that the subseasonal and interranual variability of the SD is influenced by large scale events, such as the Indian Ocean Dipole (IOD), the ENSO and the Madden-Julian Oscillation (MJO) (Tozuka et al., 2010, Lloyd and Vecchi, 2010). The SD is enhanced by cooling events in the Western Indian Ocean and easterly winds that raise the thermocline and increase the upwelling. This can be associated with a strong Walker circulation, like negative IOD conditions or La Nina-like conditions. So far the studies focus on the origins of the SD variability, but the influence of the SD itself on regional or large scale climate is largely unknown. In this study we focus on the influence of the SD variations on the large scale tropical circulation. We analyze the covariance of the SD variations and the tropical circulation in a 200 year control imulation of the climate model EC-EARTH and perform idealized SST forced simulations to study the character of the atmospheric response and its relation to ENSO, IOD and MJO. References -Harrison, D. E. and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Geophys. Res. Lett., 28, 3717-3720. -Lloyd, I. D., and G. A. Vecchi, 2010: Submonthly Indian Ocean cooling events and their interaction with large-scale conditions. J. Climate, 23, 700-716. -Tozuka, T., T. Yokoi, and T. Yamagata, 2010: A modeling study of interannual variations of the Seychelles Dome. J. Geophys. Res., 115, C04005, doi:10.1029/2009JC005547.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995PalOc..10..197S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995PalOc..10..197S"><span>Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from Alkenone sea surface temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, Ralph R.; Müller, Peter J.; Ruhland, GöTz</p> <p>1995-04-01</p> <p>Angola Basin and Walvis Ridge records of past sea surface temperatures (SST) derived from the alkenone Uk37 index are used to reconstruct the surface circulation in the east equatorial South Atlantic for the last 200,000 years. Comparison of SST estimates from surface sediments between 5° and 20°S with modern SST data suggests that the alkenone temperatures represent annual mean values of the surface mixed layer. Alkenone-derived temperatures for the warm climatic maxima of the Holocene and the penultimate interglacial are 1 to 4°C higher than latest Holocene values. All records show glacial to interglacial differences of about 3.5°C in annual mean SST, which is about 1.5°C greater than the difference estimated by CLIMAP (1981) for the eastern Angola Basin. At the Walvis Ridge, significant SST variance is observed at all of the Earth's orbital periodicities. SST records from the Angola Basin vary predominantly at 23- and 100-kyr periodicities. For the precessional cycle, SST changes at the Walvis Ridge correspond to variations of boreal summer insolation over Africa and lead ice volume changes, suggesting that the east equatorial South Atlantic is sensitive to African monsoon intensity via trade-wind zonality. Angola Basin SST records lag those from the Walvis Ridge and the equatorial Atlantic by about 3 kyr. The comparison of Angola Basin and Walvis Ridge SST records implies that the Angola-Benguela Front (ABF) (currently at about 14-16°S) has remained fairly stationary between 12° and 20°S (the limits of our cores) during the last two glacial-interglacial cycles. The temperature contrast associated with the ABF exhibits a periodic 23-kyr variability which is coherent with changes in boreal summer insolation over Africa. These observations suggest that surface waters north of the present ABF have not directly responded to monsoon-modulated changes in the trade-wind vector, that the central field of zonally directed trades in the southern hemisphere was not shifted or extended northward by several degrees of latitude during glacials, and that a cyclonic gyre circulation has existed in the east equatorial South Atlantic over the last 200,000 years. This scenario contradicts former assumptions of glacial intensification of the Benguela Current into the eastern Angola Basin and increased coastal upwelling off Angola.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoOD..59..209P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoOD..59..209P"><span>The role of the thermal convection of fluids in the formation of unconformity-type uranium deposits: the Athabasca Basin, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pek, A. A.; Malkovsky, V. I.</p> <p>2017-05-01</p> <p>In the global production of uranium, 18% belong to the unconformity-type Canadian deposits localized in the Athabasca Basin. These deposits, which are unique in terms of their ore quality, were primarily studied by Canadian and French scientists. They have elaborated the diagenetic-hydrothermal hypothesis of ore formation, which suggests that (1) the deposits were formed within a sedimentary basin near an unconformity surface dividing the folded Archean-Proterozoic metamorphic basement and a gently dipping sedimentary cover, which is not affected by metamorphism; (2) the spatial accommodation of the deposits is controlled by the rejuvenated faults in the basement at their exit into the overlying sedimentary sequence; the ore bodies are localized above and below the unconformity surface; (3) the occurrence of graphite-bearing rocks is an important factor in controlling the local structural mineralization; (4) the ore bodies are the products of uranium precipitation on a reducing barrier. The mechanism that drives the circulation of ore-forming hydrothermal solutions has remained one of the main unclear questions in the general genetic concept. The ore was deposited above the surface of the unconformity due to the upflow discharge of the solution from the fault zones into the overlying conglomerate and sandstone. The ore formation below this surface is a result of the downflow migration of the solutions along the fault zones from sandstone into the basement rocks. A thermal convective system with the conjugated convection cells in the basement and sedimentary fill of the basin may be a possible explanation of why the hydrotherms circulate in the opposite directions. The results of our computations in the model setting of the free thermal convection of fluids are consistent with the conceptual reasoning about the conditions of the formation of unique uranium deposits in the Athabasca Basin. The calculated rates of the focused solution circulation through the fault zones in the upflow and downflow branches of a convection cell allow us to evaluate the time of ore formation up to the first hundreds of thousands years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712605P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712605P"><span>Meteorological predictions for Mars 2020 Exploration Rover high-priority landing sites throug MRAMS Mesoscale Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pla-García, Jorge; Rafkin, Scot C. R.</p> <p>2015-04-01</p> <p>The Mars Regional Atmospheric Modeling System (MRAMS) is used to predict meteorological conditions that are likely to be encountered by the Mars 2020 Exploration Rover at several proposed landing sites during entry, descent, and landing (EDL). The meteorology during the EDL window at most of the sites is dynamic. The intense heating of the lower atmosphere drives intense thermals and mesoscale thermal circulations. Moderate mean winds, wind shear, turbulence, and vertical air currents associated with convection are present and potentially hazardous to EDL [1]. Nine areas with specific high-priority landing ellipses of the 2020 Rover, are investigated: NE Syrtis, Nili Fossae, Nili Fossae Carbonates, Jezero Crater Delta, Holden Crater, McLaughlin Crater, Southwest Melas Basin, Mawrth Vallis and East Margaritifer Chloride. MRAMS was applied to the landing site regions using nested grids with a spacing of 330 meters on the innermost grid that is centered over each landing site. MRAMS is ideally suited for this investigation; the model is explicitly designed to simulate Mars' atmospheric thermal circulations at the mesoscale and smaller with realistic, high-resolution surface properties [2, 3]. Horizontal wind speeds, both vertical profiles and vertical cross-sections wind speeds, are studied. For some landing sites simulations, two example configurations -including and not including Hellas basin in the mother domain- were generated, in order to study how the basin affects the innermost grids circulations. Afternoon circulations at all sites pose some risk entry, descent, and landing. Most of the atmospheric hazards are not evident in current observational data and general circulation model simulations and can only be ascertained through mesoscale modeling of the region. Decide where to go first and then design a system that can tolerate the environment would greatly minimize risk. References: [1] Rafkin, S. C. R., and T. I. Michaels (2003), J. Geophys. Res., 108(E12), 8091. [2] Rafkin, S. C. R., R. M. Haberle, and T. I. Michaels (2001), Icarus, 151, 228-256.
[3] Rafkin, S. C. R., M. R. V. Sta. Maria, and T. I. Michaels (2002), Nature, 419, 697-699.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMEP53C..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMEP53C..08B"><span>Using 10Be to quantify rates of landscape change in 'dead' orogens - millennial scale rates of bedrock and basin-scale erosion in the southern and central Appalachian Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bierman, P. R.; Reusser, L.; Portenga, E.</p> <p>2011-12-01</p> <p>The Appalachian Mountain chain stretches north-south along the eastern margin of North America, in places rising a thousand meters and more above the adjacent piedmont. Here, Davis built his paradigm of landscape evolution, seeing landscape rejuvenation and dissected peneplains, a transient landscape. Hack saw the Appalachians as a dynamic system where topography was adjusted to rock strength, a steady-state landscape. Neither had quantitative data by which to test their theories. Today, we approach landscapes of the Appalachian Mountains quite differently. Over the past decade, we and others have measured in situ-produced 10Be in more than 300 samples of quartz isolated from Appalachian drainage basin sediments and in more than 100 samples from exposed Appalachian bedrock outcrops, most of which are on ridgelines. Samples have been collected from the Susquehanna, Potomac, and Shenandoah drainage basins as well as from the area around the Great Smoky Mountain National Park and the Blue Ridge escarpment, and from rivers draining from the Appalachians across the southeastern United States Piedmont. Most areas of the Appalachian Mountains are eroding only slowly; the average for all drainage basin samples analyzed to date is ~18 m/My (n=328). The highest basin-scale erosion rates, 25-70 m/My are found in the Appalachian Plateau and in the Great Smoky Mountains. Lower rates, on the order on 10-20 m/My, characterize the Shenandoah, Potomac, and Blue Ridge escarpment areas. There is a significant, positive relationship between basin-scale erosion rates and average basin slope. Steeper basins are in general eroding more rapidly than less steep basins. On the whole, the erosion rates of bedrock outcrops are either lower than or similar to those measured at a basin scale. The average erosion rate for samples of outcropping bedrock collected from the Appalachians is ~15 m/My (n=101). In the Potomac River Basin and the Great Smoky Mountains, bedrock and basin-scale erosion rates are similar implying long-term steady erosion consistent with dynamic steady state as advocated by Hack. However, in the Susquehanna drainage, basin scale erosion rates are significantly higher than those measured from outcrops suggesting that over time, relief is increasing. The Susquehanna River basin appears to be responding to a transient perturbation, ala Davis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.177..253B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.177..253B"><span>Relationship between AOD and synoptic circulation over the Eastern Mediterranean: A comparison between subjective and objective classifications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bodenheimer, Shalev; Nirel, Ronit; Lensky, Itamar M.; Dayan, Uri</p> <p>2018-03-01</p> <p>The Eastern Mediterranean (EM) Basin is strongly affected by dust originating from two of the largest world sources: The Sahara Desert and the Arabian Peninsula. Climatologically, the distribution pattern of aerosol optical depth (AOD), as proxy to particulate matter (PM), is known to be correlated with synoptic circulation. The climatological relationship between circulation type classifications (CTCs) and AOD levels over the EM Basin ("synoptic skill") was examined for the years 2000-2014. We compared the association between subjective (expert-based) and objective (fully automated) classifications and AOD using autoregressive models. After seasonal adjustment, the mean values of R2 for the different methods were similar. However, the distinct spatial pattern of the R2 values suggests that subjective classifications perform better in their area of expertise, specifically in the southeast region of the study area, while, objective CTCs had better synoptic skill over the northern part of the EM. This higher synoptic skill of subjective CTCs stem from their ability to identify distinct circulation types (e.g. Sharav lows and winter lows) that are infrequent but are highly correlated with AOD. Notably, a simple CTC based on seasonality rather than meteorological parameters predicted well AOD levels, especially over the south-eastern part of the domain. Synoptic classifications that are area-oriented are likely better predictors of AOD and possibly other environmental variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22809179','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22809179"><span>Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cuhel, Russell L; Aguilar, Carmen</p> <p>2013-01-01</p> <p>Lake Michigan, a 58,000-km(2) freshwater inland sea, is large enough to have persistent basin-scale circulation yet small enough to enable development of approximately balanced budgets for water, energy, and elements including carbon and silicon. Introduction of nonindigenous species-whether through invasion, intentional stocking, or accidental transplantation-has transformed the lake's ecosystem function and habitat structure. Of the 79 nonindigenous species known to have established reproductive populations in the lake, only a few have brought considerable ecological pressure to bear. Four of these were chosen for this review to exemplify top-down (sea lamprey, Petromyzon marinus), middle-out (alewife, Alosa pseudoharengus), and bottom-up (the dreissenid zebra and quagga mussels, Dreissena polymorpha and Dreissena rostriformis bugensis, respectively) transformations of Lake Michigan ecology, habitability, and ultimately physical environment. Lampreys attacked and extirpated indigenous lake trout, the top predator. Alewives outcompeted native planktivorous fish and curtailed invertebrate populations. Dreissenid mussels-especially quagga mussels, which have had a much greater impact than the preceding zebra mussels-moved ecosystem metabolism basin-wide from water column to bottom dominance and engineered structures throughout the lake. Each of these non indigenous species exerted devastating effects on commercial and sport fisheries through ecosystem structure modification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO34D3105A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO34D3105A"><span>Variability of Equatorward Transport in the Tropical Southwestern Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alberty, M. S.; Sprintall, J.; MacKinnon, J. A.; Cravatte, S. E.; Ganachaud, A. S.; Germineaud, C.</p> <p>2016-02-01</p> <p>Situated in the Pacific warm pool, the Solomon Sea is a semi-enclosed sea containing a system of low latitude Western boundary currents that serve as the primary source water for the Equatorial Undercurrent. The variability of equatorward heat and volume transport through the Solomon Sea has the capability to modulate regional and basin-scale climate processes, yet there are few and synoptic observations of these fluxes. Here we present the mean and variability of heat and volume transport out of the Solomon Sea observed during the MoorSPICE experiment. MoorSPICE is the Solomon Sea mooring-based observational component of the Southwest Pacific Ocean Circulation and Climate Experiment (SPICE), an international research project working to observe and improve our understanding of the southwest Pacific Ocean circulation and climate. Arrays of moorings were deployed in the outflow channels of the Solomon Sea for July 2012 until March 2014 to resolve the temperature and velocity fields in each strait. In particular we will discuss the phasing of the observed transport variability for each channel compared to that of the satellite-observed monsoonal wind forcing and annual cycle of the mesoscale eddy field.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010111480','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010111480"><span>Design and Implementation of a Parallel Multivariate Ensemble Kalman Filter for the Poseidon Ocean General Circulation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keppenne, Christian L.; Rienecker, Michele M.; Koblinsky, Chester (Technical Monitor)</p> <p>2001-01-01</p> <p>A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel computer architecture has been implemented for the Poseidon ocean circulation model and tested with a Pacific Basin model configuration. There are about two million prognostic state-vector variables. Parallelism for the data assimilation step is achieved by regionalization of the background-error covariances that are calculated from the phase-space distribution of the ensemble. Each processing element (PE) collects elements of a matrix measurement functional from nearby PEs. To avoid the introduction of spurious long-range covariances associated with finite ensemble sizes, the background-error covariances are given compact support by means of a Hadamard (element by element) product with a three-dimensional canonical correlation function. The methodology and the MvEnKF configuration are discussed. It is shown that the regionalization of the background covariances; has a negligible impact on the quality of the analyses. The parallel algorithm is very efficient for large numbers of observations but does not scale well beyond 100 PEs at the current model resolution. On a platform with distributed memory, memory rather than speed is the limiting factor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H11E0914H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H11E0914H"><span>River Inflows into Lakes: Basin Temperature Profiles Driven By Peeling Detrainment from Dense Underflows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.</p> <p>2014-12-01</p> <p>Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017248','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017248"><span>Thermal maturity patterns of Cretaceous and Tertiary rocks, San Juan Basin, Colorado and New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Law, B.E.</p> <p>1992-01-01</p> <p>Horizontal and vertical thermal maturity patterns and time-temperature modeling indicate that the high levels of thermal maturity in the northern part of the basin are due to either: 1) convective heat transfer associated with a deeply buried heat source located directly below the northern part of the basin or 2) the circulation of relatively hot fluids into the basin from a heat source north of the basin located near the San Juan Mountains. Time-temperature and kinetic modeling of nonlinear Rm profiles indicates that present-day heat flow is insufficient to account for the measured levels of thermal maturity. Furthermore, in order to match nonlinear Rm profiles, it is necessary to assign artifically high thermal-conductivity values to some of the stratigraphic units. These unrealistically high thermal conductivities are interpreted as evidence of convective heat transfer. -from Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912963S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912963S"><span>Common behaviour of the Adriatic and Black Seas level in the 20th century as response to a Mediterranean forcing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scarascia, Luca; Stanica, Adrian; Dinu, Irina; Lionello, Piero</p> <p>2017-04-01</p> <p>The Adriatic and Black Seas are two marginal seas, both connected with the Eastern Mediterranean Sea, through the Otranto and Bosporus straits respectively. This contribution aims to evidence the fraction of the interannual sea level variability that is common to the two basins, likely an effect of the common forcing produced by Mediterranean Sea. In order to identify the common signal, the effect of the main local factors (wind, inverse barometer effect, steric effects, river runoff) determining the larger fraction of the interannual sea level variability have been identified and subtracted. Using 7 and 5 tide gauge timeseries located along the Adriatic and Black Sea coasts respectively, provided by PSMSL (Permanent Service of Mean Sea Level), two seamless timeseries representing the sea level of the basins from 1900 to 2009 have been produced. The comparison with satellite data, between 1993 and 2009, confirms that these reconstructions are representative of the actual sea level in the two basins (values are 0.87 for the Adriatic and 0.72 for the Black Sea). When considering local factors, for the Adriatic Sea the annual cycle of inverse barometer effect, steric contribution due to local temperature and salinity variations, and wind set-up have been computed. For the Black Sea, the wind factor (negligible in this case) has been replaced by the Danube river contribution estimated from the available discharge data of Sulina (one of the exits of the Danube delta). After subtracting these local factors from the observed sea level of each basin, the correlation between the residual time series amounts to 0.47, suggesting the presence of a common factor acting at Mediterranean scale, which can be attributed to the effect of the large-scale circulation on the mass exchange between the Mediterranean and the two local basins. The present analysis is still unable to explain a non-negligible fraction of interannual variability of sea level of the Black Sea. This is likely, to a substantial extent, due to uncertainties of hydrographic data caused by their irregular distribution in space and time and to the lack of regular records of past river discharge for most rivers contributing to the Black Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22..417T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22..417T"><span>The role of storm scale, position and movement in controlling urban flood response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>ten Veldhuis, Marie-claire; Zhou, Zhengzheng; Yang, Long; Liu, Shuguang; Smith, James</p> <p>2018-01-01</p> <p>The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PIAHS.379...37M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PIAHS.379...37M"><span>Understanding the Impacts of Climate Change in the Tana River Basin, Kenya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muthuwatta, Lal; Sood, Aditya; McCartney, Matthew; Sandeepana Silva, Nishchitha; Opere, Alfred</p> <p>2018-06-01</p> <p>In the Tana River Basin in Kenya, six Regional Circulation Models (RCMs) simulating two Representative Concentration Pathways (RCPs) (i.e., 4.5 and 8.5) were used as input to the Soil and Water Assessment Tool (SWAT) model to determine the possible implications for the hydrology and water resources of the basin. Four hydrological characteristics - water yield, groundwater recharge, base flow and flow regulation - were determined and mapped throughout the basin for three 30-year time periods: 2020-2049, 2040-2069 and 2070-2099. Results were compared with a baseline period, 1983-2011. All four hydrological characteristics show steady increases under both RCPs for the entire basin but with considerable spatial heterogeneity and greater increases under RCP 8.5 than RCP 4.5. The results have important implications for the way water resources in the basin are managed. It is imperative that water managers and policy makers take into account the additional challenges imposed by climate change in operating built infrastructure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27544352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27544352"><span>Spatial scale effect on sediment dynamics in basin-wide floods within a typical agro-watershed: A case study in the hilly loess region of the Chinese Loess Plateau.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Le-Tao; Li, Zhan-Bin; Wang, Shan-Shan</p> <p>2016-12-01</p> <p>Scale issues, which have been extensively studied in the domain of soil erosion, are considerably significant in geomorphologic processes and hydrologic modelling. However, relatively scarce efforts have been made to quantify the spatial scale effect on event-based sediment dynamics in basin-wide floods. To address this issue, sediment-runoff yield data of 44 basin-wide flood events were collected from gauging stations at the Chabagou river basin, a typical agro-basin (unmanaged) in the hilly loess region of the Chinese Loess Plateau. Thus, the spatial scale effect on event-based sediment dynamics was investigated in the basin system across three different spatial scales from sublateral to basin outlet. Results showed that the event-based suspended sediment concentration, as well as the intra- and inter-scale flow-sediment relationships remained spatially constant. Hence, almost all the sediment-laden flows can reach at the detachment-limited maximum concentration across scales, specifically for hyperconcentrated flows. Consequently, limited influence was exerted by upstream sediment-laden flow on downstream sediment output, particularly for major sediment-producing events. However, flood peak discharge instead of total flood runoff amount can better interpret the dynamics of sediment yield across scales. As a composite parameter, the proposed stream energy factor combines flood runoff depth and flood peak discharge, thereby showing more advantages to describe the event-based inter-scale flow-sediment relationship than other flow-related variables. Overall, this study demonstrates the process-specific characteristics of soil erosion by water flows in the basin system. Therefore, event-based sediment control should be oriented by the process to cut off the connectivity of hyperconcentrated flows and redistribute the erosive energy of flowing water in terms of temporality and spatiality. Furthermore, evaluation of soil conservation benefits should be based on the process of runoff regulation to comprehensively assess the efficiency of anti-erosion strategies in sediment control at the basin scale. Copyright © 2016. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRD..11213105D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRD..11213105D"><span>Regional transport and dilution during high-pollution episodes in southern France: Summary of findings from the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drobinski, P.; SaïD, F.; Ancellet, G.; Arteta, J.; Augustin, P.; Bastin, S.; Brut, A.; Caccia, J. L.; Campistron, B.; Cautenet, S.; Colette, A.; Coll, I.; Corsmeier, U.; Cros, B.; Dabas, A.; Delbarre, H.; Dufour, A.; Durand, P.; GuéNard, V.; Hasel, M.; Kalthoff, N.; Kottmeier, C.; Lasry, F.; Lemonsu, A.; Lohou, F.; Masson, V.; Menut, L.; Moppert, C.; Peuch, V. H.; Puygrenier, V.; Reitebuch, O.; Vautard, R.</p> <p>2007-07-01</p> <p>In the French Mediterranean basin the large city of Marseille and its industrialized suburbs (oil plants in the Fos-Berre area) are major pollutant sources that cause frequent and hazardous pollution episodes, especially in summer when intense solar heating enhances the photochemical activity and when the sea breeze circulation redistributes pollutants farther north in the countryside. This paper summarizes the findings of 5 years of research on the sea breeze in southern France and related mesoscale transport and dilution of pollutants within the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE) program held in June and July 2001. This paper provides an overview of the experimental and numerical challenges identified before the ESCOMPTE field experiment and summarizes the key findings made in observation, simulation, and theory. We specifically address the role of large-scale atmospheric circulation to local ozone vertical distribution and the mesoscale processes driving horizontal advection of pollutants and vertical transport and mixing via entrainment at the top of the sea breeze or at the front and venting along the sloped terrain. The crucial importance of the interactions between processes of various spatial and temporal scales is thus highlighted. The advances in numerical modeling and forecasting of sea breeze events and ozone pollution episodes in southern France are also underlined. Finally, we conclude and point out some open research questions needing further investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912551Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912551Z"><span>Numerical investigations with WRF about atmospheric features leading to heavy precipitation and flood events over the Central Andes' complex topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zamuriano, Marcelo; Brönnimann, Stefan</p> <p>2017-04-01</p> <p>It's known that some extremes such as heavy rainfalls, flood events, heatwaves and droughts depend largely on the atmospheric circulation and local features. Bolivia is no exception and while the large scale dynamics over the Amazon has been largely investigated, the local features driven by the Andes Cordillera and the Altiplano is still poorly documented. New insights on the regional atmospheric dynamics preceding heavy precipitation and flood events over the complex topography of the Andes-Amazon interface are added through numerical investigations of several case events: flash flood episodes over La Paz city and the extreme 2014 flood in south-western Amazon basin. Large scale atmospheric water transport is dynamically downscaled in order to take into account the complex topography forcing and local features as modulators of these events. For this purpose, a series of high resolution numerical experiments with the WRF-ARW model is conducted using various global datasets and parameterizations. While several mechanisms have been suggested to explain the dynamics of these episodes, they have not been tested yet through numerical modelling experiments. The simulations captures realistically the local water transport and the terrain influence over atmospheric circulation, even though the precipitation intensity is in general unrealistic. Nevertheless, the results show that Dynamical Downscaling over the tropical Andes' complex terrain provides useful meteorological data for a variety of studies and contributes to a better understanding of physical processes involved in the configuration of these events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080045467','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080045467"><span>Interannual Variability of Boreal Summer Rainfall in the Equatorial Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gu, Guojun; Adler, Robert F.</p> <p>2007-01-01</p> <p>Tropical Atlantic rainfall patterns and variation during boreal summer [June-July-August (JJA)] are quantified by means of a 28-year (1979-2006) monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP). Rainfall variability during boreal spring [March-April-May (MAM)] is also examined for comparison in that the most intense interannual variability is usually observed during this season. Comparable variabilities in the Intertropical Convergence Zone (ITCZ) strength and the basin-mean rainfall are found during both seasons. Interannual variations in the ITCZ's latitudinal location during JJA however are generally negligible, in contrasting to intense year-to-year fluctuations during MAM. Sea surface temperature (SST) oscillations along the equatorial region (usually called the Atlantic Nino events) and in the tropical north Atlantic (TNA) are shown to be the two major local factors modulating the tropical Atlantic climate during both seasons. During MAM, both SST modes tend to contribute to the formation of an evident interhemispheric SST gradient, thus inducing anomalous shifting of the ITCZ and then forcing a dipolar structure of rainfall anomalies across the equator primarily in the western basin. During JJA the impacts however are primarily on the ITCZ strength likely due to negligible changes in the ITCZ latitudinal location. The Atlantic Nino reaches its peak in JJA, while much weaker SST anomalies appear north of the equator in JJA than in MAM, showing decaying of the interhemispheric SST mode. SST anomalies in the tropical central-eastern Pacific (the El Nino events) have a strong impact on tropical Atlantic including both the tropical north Atlantic and the equatorial-southern Atlantic. However, anomalous warming in the tropical north Atlantic following positive SST anomalies in the tropical Pacific disappears during JJA because of seasonal changes in the large-scale circulation cutting off the ENSO influence passing through the mid-latitudes. Hence the anomalies associated with the tropical Pacific during JJA are forced through an anomalous Walker circulation primarily working on the western basin, and likely a lagged oceanic response in the equatorial region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS41F..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS41F..02H"><span>The quiet revolution: continuous glider monitoring at ocean 'choke' points as a key component of new cross-platform ocean observation systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heslop, E. E.; Tintore, J.; Ruiz, S.; Allen, J.; López-Jurado, J. L.</p> <p>2014-12-01</p> <p>A quiet revolution is taking place in ocean observations; in the last decade new multi-platform, integrated ocean observatories have been progressively implemented by forward looking countries with ocean borders of economic and strategic importance. These systems are designed to fill significant gaps in our knowledge of the ocean state and ocean variability, through long-term, science and society-led, ocean monitoring. These ocean observatories are now delivering results, not the headline results of a single issue experiment, but carefully and systematically improving our knowledge of ocean variability, and thereby, increasing model forecast skill and our ability to link physical processes to ecosystem response. Here we present the results from a 3-year quasi-continuous glider monitoring of a key circulation 'choke' point in the Western Mediterranean, undertaken by SOCIB (Balearic Islands Coastal Ocean Observing and Forecasting System). For the first time data from the high frequency glider sampling show variations in the transport volumes of water over timescales of days to weeks, as large as those previously only identifiable as seasonal or eddy driven. Although previous surveys noted high cruise-to-cruise variability, they were insufficient to show that in fact water volumes exchanged through this narrow 'choke' point fluctuate on 'weather' timescales. Using the glider data to leverage an 18-year record of ship missions, we define new seasonal cycles for the exchange of watermasses, challenging generally held assumptions. The pattern of the exchange is further simplified through the characterisation of 5 circulation modes and the defining of a new seasonal cycle for the interplay between mesoscale and basin scale dynamics. Restricted 'choke points' between our ocean basins are critical locations to monitor water transport variability, as they constrain the inter-basin exchange of heat, salt and nutrients. At the Ibiza Channel 'choke' point, the exchange of watermass is known to affect local ecosystems, including the spawning grounds of commercially important fish stocks, at a biodiversity hotspot. This new insight will be vital in improving our ocean model forecast skill and in the development of integrated ocean products for society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.1808M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.1808M"><span>The importance of deep, basinwide measurements in optimized Atlantic Meridional Overturning Circulation observing arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCarthy, G. D.; Menary, M. B.; Mecking, J. V.; Moat, B. I.; Johns, W. E.; Andrews, M. B.; Rayner, D.; Smeed, D. A.</p> <p>2017-03-01</p> <p>The Atlantic Meridional Overturning Circulation (AMOC) is a key process in the global redistribution of heat. The AMOC is defined as the maximum of the overturning stream function, which typically occurs near 30°N in the North Atlantic. The RAPID mooring array has provided full-depth, basinwide, continuous estimates of this quantity since 2004. Motivated by both the need to deliver near real-time data and optimization of the array to reduce costs, we consider alternative configurations of the mooring array. Results suggest that the variability observed since 2004 could be reproduced by a single tall mooring on the western boundary and a mooring to 1500 m on the eastern boundary. We consider the potential future evolution of the AMOC in two generations of the Hadley Centre climate models and a suite of additional CMIP5 models. The modeling studies show that deep, basinwide measurements are essential to capture correctly the future decline of the AMOC. We conclude that, while a reduced array could be useful for estimates of the AMOC on subseasonal to decadal time scales as part of a near real-time data delivery system, extreme caution must be applied to avoid the potential misinterpretation or absence of a climate time scale AMOC decline that is a key motivation for the maintenance of these observations.<abstract type="synopsis"><title type="main">Plain Language SummaryThe Atlantic Overturning Circulation is a system of ocean currents that carries heat northwards in the Atlantic. This heat is crucial to maintaining the mild climate of northwest Europe. The Overturning Circulation is predicted to slow in future in response to man-made climate change. The RAPID program is designed to measure the Overturning Circulation using a number of fixed point observations spanning the Atlantic between the Canary Islands and the Bahamas. We look at whether we could reduce the number of these fixed point observations to continue to get accurate estimates of the overturning strength but for less cost. We conclude that variations on timescales from seasons to years could be captured by focusing observations in the upper ocean but that to observe a future climate change related slowdown, deep measurements across the ocean basin are needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO13E..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO13E..02R"><span>A Better MOC Index: AMOC-θ/S in the North Atlantic Ocean: Spatial Circulation, Water-mass Transformation and Heat Transport on the Temperature/Salinity Plane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rhines, P. B.; Xu, X.; Chassignet, E.; Schmitz, W. J., Jr.</p> <p>2016-02-01</p> <p>An eddy-resolving HYCOM circulation model (driven by a reanalysis atmosphere) shows the structure of the North Atlantic meridional overturning circulation (AMOC), heat transport (MHT) and freshwater transport (MFWT). We project the zonal-mean lateral volume transport, called V(θ,S,y), onto the potential temperature/salinity (θ/S-) plane, and `collapse' V into four zonally integrated volume-transport stream-functions with respect to potential density σ, θ, S and vertical coordinate. The figure shows V(θ,S,y) at 4 latitudes, y, labeled a-d, with northward volume transport in red, southward in blue; Sverdrups of transport are inscribed in σ-bands. Collapsing V onto overturning streamfunctions loses the connection with classic water masses, the hydrologic cycle and convective mode-water production. It is essential that the model resolve boundary currents and the dense northern overflows: model and observations show the dominance of basin-scale AMOC in both MHT and MFWT with potential density, σ, as the vertical coordinate... but much less so with z as a vertical coordinate. With adequate resolution of deep sinking, the Lower North Atlantic Deep Water contributes significantly to MHT. Time-mean MHT and MFWT are dominated by 5-year mean-fields: contributions from annual cycles of velocity and θ are surprisingly small. Quantitative comparison between model and observations at 26N and in the subpolar gyre is supportive of these results. Yet isopycnal processes involving lateral gyres and wind forcing are important. They concentrate the activity of the MOC near western boundaries where essential water-mass transformation (WMT) takes place. V(θ,S,y) transport adds thermohaline `spice' to the MOC, revealing both isopycnal and diapycnal mixing and transport and connects directly with classical water masses. 3-dimensional maps of diapycnal and isopycnal mixing/transport connect internal and externally driven WMT and transports. Particularly important transformation sites are the downslope overflow regions, boundary current extensions (Gulf Stream/North Atlantic Current), mode-water convection sites, deep western boundary currents where topographic transitions occur, and frontal regions (Newfoundland Basin) where northward and southward AMOC branches brush against one another.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS53A2110P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS53A2110P"><span>Detecting Global Hydrological Cycle Intensification in Sea Surface Salinity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poague, J.; Stine, A.</p> <p>2016-12-01</p> <p>Global warming is expected to intensify the global hydrological cycle, but significant regional differences exist in the predicted response. The proposed zonal mean thermodynamic response is enhanced horizontal moisture transport associated with increased saturation vapor pressure, which in turn drives additional net precipitation in the tropics and at high latitudes and additional net evaporation in the subtropics. Sea surface salinity (SSS) anomalies are forced from above by changes in evaporation minus precipitation (E-P) and thus will respond to changes in the global hydrological cycle, opening the possibility of using historical SSS anomalies to diagnose the response of the hydrological cycle to warming. We estimate zonal mean SSS trends in the Atlantic and Pacific ocean basins from 1955-2015 to test whether historical changes in the global hydrological cycle are consistent with a primarily thermodynamic response. Motivated by this observation, we calculate the sensitivity of basin zonal-mean SSS anomalies to sea surface temperature (SST) forcing as a function of timescale to diagnose and estimate the signal-to-noise ratio of the purely thermodynamic signal as a function of timescale. High-frequency variability in SSS anomalies is likely to be influenced by variability in atmospheric circulation, complicating the attribution of the link between basin zonal-mean SSS anomalies and global SST anomalies. We therefore estimate the basin zonal mean SSS anomaly response to the major modes of large-scale dynamic variability. We find a strong correlation between detrended zonal-mean SSS anomalies and the Pacific-North American index (R=0.71,P<0.01) in the Pacific Ocean. We interpret the relationship between zonal mean SSS anomalies and temperature in terms of the relative contribution of thermodynamic and dynamic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1320/pdf/OF2008-1320.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1320/pdf/OF2008-1320.pdf"><span>Preliminary classification of water areas within the Atchafalaya Basin Floodway System by using landsat imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Allen, Yvonne C.; Constant, Glenn C.; Couvillion, Brady R.</p> <p>2008-01-01</p> <p>The southern portion of the Atchafalaya Basin Floodway System (ABFS) is a large area (2,571 km2) in south central Louisiana bounded on the east and west sides by a levee system. The ABFS is a sparsely populated area that includes some of the Nation's most significant extents of bottomland hardwoods, swamps, bayous, and backwater lakes, holding a rich abundance and diversity of terrestrial and aquatic species. The seasonal flow of water through the ABFS is critical to maintaining its ecological integrity. Because of strong interdependencies among species, habitat quality, and water flow in the ABFS, there is a need to better define the paths by which water moves at various stages of the hydrocycle. Although river level gages have collected a long historical record of water level variation, very little synoptic information has been available regarding the distribution and character of water at more remote locations in the basin. Most water management plans for the ABFS strive to improve water quality by increasing water flow and circulation from the main stem of the Atchafalaya River into isolated areas. To describe the distribution of land and water on a basin-wide scale, we chose to use Landsat 5 and Landsat 7 imagery to determine the extent of water distribution from 1985 to 2006 and at a variety of river stages. Because the visual signature of river water is high turbidity, we also used Landsat imagery to describe the distribution of turbid water in the ABFS. The ability to track water flow patterns by tracking turbid waters will enhance the characterization of water movement and aid in planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53D2285R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53D2285R"><span>A Skilful Marine Sclerochronological Network Based Reconstruction of North Atlantic Subpolar Gyre Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reynolds, D.; Hall, I. R.; Slater, S. M.; Scourse, J. D.; Wanamaker, A. D.; Halloran, P. R.; Garry, F. K.</p> <p>2017-12-01</p> <p>Spatial network analyses of precisely dated, and annually resolved, tree-ring proxy records have facilitated robust reconstructions of past atmospheric climate variability and the associated mechanisms and forcings that drive it. In contrast, a lack of similarly dated marine archives has constrained the use of such techniques in the marine realm, despite the potential for developing a more robust understanding of the role basin scale ocean dynamics play in the global climate system. Here we show that a spatial network of marine molluscan sclerochronological oxygen isotope (δ18Oshell) series spanning the North Atlantic region provides a skilful reconstruction of basin scale North Atlantic sea surface temperatures (SSTs). Our analyses demonstrate that the composite marine series (referred to as δ18Oproxy_PC1) is significantly sensitive to inter-annual variability in North Atlantic SSTs (R=-0.61 P<0.01) and surface air temperatures (SATs; R=-0.67, P<0.01) over the 20th century. Subpolar gyre (SPG) SSTs dominates variability in the δ18Oproxy_PC1 series at sub-centennial frequencies (R=-0.51, P<0.01). Comparison of the δ18Oproxy_PC1 series against variability in the strength of the European Slope Current and maximum North Atlantic meridional overturning circulation derived from numeric climate models (CMIP5), indicates that variability in the SPG region, associated with the strength of the surface currents of the North Atlantic, are playing a significant role in shaping the multi-decadal scale SST variability over the industrial era. These analyses demonstrate that spatial networks developed from sclerochronological archives can provide powerful baseline archives of past ocean variability that can facilitate the development of a quantitative understanding for the role the oceans play in the global climate systems and constraining uncertainties in numeric climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC42B..03E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC42B..03E"><span>Simulating the impact of brine from desalination plants on the salinity of the Persian/Arabian Gulf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eltahir, E. A. B.; Ibrahim, H. D.</p> <p>2016-12-01</p> <p>The Middle East has an arid climate and very little freshwater from river runoff, which has forced a rapid expansion of desalination plants in the region in order to meet current and future freshwater demand due to rising population. The Gulf is the source of feedwater and sink of concentrated discharge (brine) for plants producing more than half of the world's desalination capacity. Moreover, the Gulf is one of the most saline water bodies in the world due to large evaporation that far exceeds the input of freshwater from precipitation and river runoff. An increase in salinity at the regional scale due to brine discharge may reduce the quality of feedwater to plants and efficiency of desalination, and at the basin scale, a rise in salinity may change the dynamics of water circulation and adversely impact the marine biota. Here we present modeling results from simulating the impact of desalination on the natural Gulf environment using a coupled Gulf-atmosphere regional model (GARM). GARM is the first two-way coupled model developed for the Gulf system. The hydrodynamic component of GARM is the unstructured grid finite volume coastal ocean model (FVCOM) and the atmosphere component of GARM is the MIT regional climate model (MRCM), both of which have been widely used in simulating regional ocean and atmospheric dynamics. Desalination activity is incorporated into GARM as a boundary condition and the Gulf system is simulated for a ten-year time period in order to quantify the impact of brine discharge both at regional and basin scales. These results will be useful for desalination plant design and planning for current and future water security in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43A0737F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43A0737F"><span>Force balance and deformation characteristics of anisotropic Arctic sea ice (a high resolution study)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feltham, D. L.; Heorton, H. D.; Tsamados, M.</p> <p>2016-12-01</p> <p>The spatial distribution of Arctic sea ice arises from its deformation, driven by external momentum forcing, thermodynamic growth and melt. The deformation of Arctic sea ice is observed to have structural alignment on a broad range of length scales. By considering the alignment of diamond-shaped sea ice floes, an anisotropic rheology (known as the Elastic Anisotropic Plastic, EAP, rheology) has been developed for use in a climate sea ice model. Here we present investigations into the role of anisotropy in determining the internal ice stress gradient and the complete force balance of Arctic sea ice using a state-of-the-art climate sea ice model. Our investigations are focused on the link between external imposed dynamical forcing, predominantly the wind stress, and the emergent properties of sea ice, including its drift speed and thickness distribution. We analyse the characteristics of deformation events for different sea ice states and anisotropic alignment over different regions of the Arctic Ocean. We present the full seasonal stress balance and sea ice state over the Arctic ocean. We have performed 10 km basin-scale simulations over a 30-year time scale, and 2 km and 500 m resolution simulations in an idealised configuration. The anisotropic EAP sea ice rheology gives higher shear stresses than the more customary isotropic EVP rheology, and these reduce ice drift speed and mechanical thickening, particularly important in the Archipelago. In the central Arctic the circulation of sea ice is reduced allowing it to grow thicker thermodynamically. The emergent stress-strain rate correlations from the EAP model suggest that it is possible to characterise the internal ice stresses of Arctic sea ice from observable basin-wide deformation and drift patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H33G1695H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H33G1695H"><span>Groundwater Variability in a Sandstone Catchment and Linkages with Large-scale Climatic Circulatio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hannah, D. M.; Lavers, D. A.; Bradley, C.</p> <p>2015-12-01</p> <p>Groundwater is a crucial water resource that sustains river ecosystems and provides public water supply. Furthermore, during periods of prolonged high rainfall, groundwater-dominated catchments can be subject to protracted flooding. Climate change and associated projected increases in the frequency and intensity of hydrological extremes have implications for groundwater levels. This study builds on previous research undertaken on a Chalk catchment by investigating groundwater variability in a UK sandstone catchment: the Tern in Shropshire. In contrast to the Chalk, sandstone is characterised by a more lagged response to precipitation inputs; and, as such, it is important to determine the groundwater behaviour and its links with the large-scale climatic circulation to improve process understanding of recharge, groundwater level and river flow responses to hydroclimatological drivers. Precipitation, river discharge and groundwater levels for borehole sites in the Tern basin over 1974-2010 are analysed as the target variables; and we use monthly gridded reanalysis data from the Twentieth Century Reanalysis Project (20CR). First, groundwater variability is evaluated and associations with precipitation / discharge are explored using monthly concurrent and lagged correlation analyses. Second, gridded 20CR reanalysis data are used in composite and correlation analyses to identify the regions of strongest climate-groundwater association. Results show that reasonably strong climate-groundwater connections exist in the Tern basin, with a several months lag. These lags are associated primarily with the time taken for recharge waters to percolate through to the groundwater table. The uncovered patterns improve knowledge of large-scale climate forcing of groundwater variability and may provide a basis to inform seasonal prediction of groundwater levels, which would be useful for strategic water resource planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.6106G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.6106G"><span>Ocean Hydrodynamics Numerical Model in Curvilinear Coordinates for Simulating Circulation of the Global Ocean and its Separate Basins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir</p> <p>2010-05-01</p> <p>The original program complex is proposed for the ocean circulation sigma-model, developed in the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS). The complex can be used in various curvilinear orthogonal coordinate systems. In addition to ocean circulation model, the complex contains a sea ice dynamics and thermodynamics model, as well as the original system of the atmospheric forcing implementation on the basis of both prescribed meteodata and atmospheric model results. This complex can be used as the oceanic block of Earth climate model as well as for solving the scientific and practical problems concerning the World ocean and its separate oceans and seas. The developed program complex can be effectively used on parallel shared memory computational systems and on contemporary personal computers. On the base of the complex proposed the ocean general circulation model (OGCM) was developed. The model is realized in the curvilinear orthogonal coordinate system obtained by the conformal transformation of the standard geographical grid that allowed us to locate the system singularities outside the integration domain. The horizontal resolution of the OGCM is 1 degree on longitude, 0.5 degree on latitude, and it has 40 non-uniform sigma-levels in depth. The model was integrated for 100 years starting from the Levitus January climatology using the realistic atmospheric annual cycle calculated on the base of CORE datasets. The experimental results showed us that the model adequately reproduces the basic characteristics of large-scale World Ocean dynamics, that is in good agreement with both observational data and results of the best climatic OGCMs. This OGCM is used as the oceanic component of the new version of climatic system model (CSM) developed in INM RAS. The latter is now ready for carrying out the new numerical experiments on climate and its change modelling according to IPCC (Intergovernmental Panel on Climate Change) scenarios in the scope of the CMIP-5 (Coupled Model Intercomparison Project). On the base of the complex proposed the Pacific Ocean circulation eddy-resolving model was realized. The integration domain covers the Pacific from Equator to Bering Strait. The model horizontal resolution is 0.125 degree and it has 20 non-uniform sigma-levels in depth. The model adequately reproduces circulation large-scale structure and its variability: Kuroshio meandering, ocean synoptic eddies, frontal zones, etc. Kuroshio high variability is shown. The distribution of contaminant was simulated that is admittedly wasted near Petropavlovsk-Kamchatsky. The results demonstrate contaminant distribution structure and provide us understanding of hydrological fields formation processes in the North-West Pacific.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP33E..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP33E..04G"><span>500 kyr of Indian Ocean Walker Circulation Variability Using Foraminiferal Mg/Ca and Stable Isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Groeneveld, J.; Mohtadi, M.; Lückge, A.; Pätzold, J.</p> <p>2017-12-01</p> <p>The tropical Indian Ocean is a key location for paleoclimate research affected by different oceanographic and atmospheric processes. Annual climate variations are strongly controlled by the Indian and Asian Monsoon characterized by bi-annually reversing trade winds. Inter-annual climate variations in the Walker circulation are caused by the Indian Ocean Dipole and El Niño-Southern Oscillation resulting in either heavy flooding or severe droughts like for example the famine of 2011 in eastern Africa. Oceanographically the tropical western Indian Ocean receives water masses from the Indonesian Gateway area, sub-Antarctic waters that upwell south of the equator, and the outflow waters from the highly saline Red Sea. On the other hand, the tropical western Indian Ocean is a major source for providing water masses to the Agulhas Current system. Although the eastern Indian Ocean has been studied extensively, the tropical western Indian Ocean is still lacking in high quality climate-archives that have the potential to provide important information to understand how the ocean and atmospheric zonal circulation have changed in the past, and possibly will change in the future. Until now there were no long sediment cores available covering several glacial-interglacial cycles in the tropical western Indian Ocean. Core GeoB 12613-1, recovered during RV Meteor Cruise M75/2 east of the island of Pemba off Tanzania, provides an open-ocean core with well-preserved sediments covering the last five glacial-interglacial cycles ( 500 kyr). Mg/Ca and stable isotopes on both surface- and thermocline dwelling foraminifera have been performed to test how changes in sea water temperatures and relative sea water salinity were coupled on orbital time scales. The results are compared with similar records generated for the tropical eastern Indian Ocean in core SO139-74KL off Sumatra. Water column stratification on both sides of the Indian Ocean and the cross-basin gradients in sea water temperature and relative salinity varied both on millennial and orbital time scales implying changes in the Walker circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060040319&hterms=Scrum&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DScrum','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060040319&hterms=Scrum&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DScrum"><span>Application of the generalized vertical coordinate ocean model for better representing satellite data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Song, Y. T.</p> <p>2002-01-01</p> <p>It is found that two adaptive parametric functions can be introduced into the basic ocean equations for utilizing the optimal or hybrid features of commonly used z-level, terrain- following, isopycnal, and pressure coordinates in numerical ocean models. The two parametric functions are formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara (1 974), the Jacobian pressure gradient formulation of Song (1 998), and a newly developed metric factor that permits both compressible (non-Boussinesq) and incompressible (Boussinesq) approximations. Based on the new formulation, an adaptive modeling strategy is proposed and a staggered finite volume method is designed to ensure conservation of important physical properties and numerical accuracy. Implementation of the combined techniques to SCRUM (Song and Haidvogel1994) shows that the adaptive modeling strategy can be applied to any existing ocean model without incurring computational expense or altering the original numerical schemes. Such a generalized coordinate model is expected to benefit diverse ocean modelers for easily choosing optimal vertical structures and sharing modeling resources based on a common model platform. Several representing oceanographic problems with different scales and characteristics, such as coastal canyons, basin-scale circulation, and global ocean circulation, are used to demonstrate the model's capability for multiple applications. New results show that the model is capable of simultaneously resolving both Boussinesq and non-Boussinesq, and both small- and large-scale processes well. This talk will focus on its applications of multiple satellite sensing data in eddy-resolving simulations of Asian Marginal Sea and Kurosio. Attention will be given to how Topex/Poseidon SSH, TRMM SST; and GRACE ocean bottom pressure can be correctly represented in a non- Boussinesq model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22222749','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22222749"><span>Changing Arctic Ocean freshwater pathways.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike</p> <p>2012-01-04</p> <p>Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5031/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5031/"><span>Simulation of streamflows and basin-wide hydrologic variables over several climate-change scenarios, Methow River basin, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Voss, Frank D.; Mastin, Mark C.</p> <p>2012-01-01</p> <p>A database was developed to automate model execution and to provide users with Internet access to voluminous data products ranging from summary figures to model output timeseries. Database-enabled Internet tools were developed to allow users to create interactive graphs of output results based on their analysis needs. For example, users were able to create graphs by selecting time intervals, greenhouse gas emission scenarios, general circulation models, and specific hydrologic variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040015279&hterms=warm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwarm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040015279&hterms=warm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwarm"><span>Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King</p> <p>2003-01-01</p> <p>Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29494979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29494979"><span>Combined top-down and bottom-up climate change impact assessment for the hydrological system in the Vu Gia- Thu Bon River Basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tra, Tran Van; Thinh, Nguyen Xuan; Greiving, Stefan</p> <p>2018-07-15</p> <p>Vu Gia- Thu Bon (VGTB) River Basin, located in the Central Coastal zone of Viet Nam currently faces water shortage. Climate change is expected to exacerbate the challenge. Therefore, there is a need to study the impacts of climate change on water shortage in the river basin. The study adopts a combined top-down and bottom-up climate change impact assessment to address the impacts of climate change on water shortage in the VGTB River Basin. A MIKE BASIN water balance model for the river basin was established to simulate the response of the hydrological system. Simulations were performed through parametrically varying temperature and precipitation to determine the vulnerability space of water shortage. General Circulation Models (GCMs) were then utilized to provide climate projections for the river basin. The output from GCMs was then mapped onto the vulnerability space determined earlier. In total, 9 out of 55 water demand nodes in the simulation are expected to face problematic conditions as future climate changes. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20383707','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20383707"><span>How widely applicable is river basin management? An analysis of wastewater management in an arid transboundary case.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie</p> <p>2010-05-01</p> <p>The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EnMan..45.1112D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EnMan..45.1112D"><span>How Widely Applicable is River Basin Management? An Analysis of Wastewater Management in an Arid Transboundary Case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie</p> <p>2010-05-01</p> <p>The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS51B1664Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS51B1664Z"><span>The Atlantic Multidecadal Variability in surface and deep ocean temperature and salinity fields from unperturbed climate simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zanchettin, D.; Jungclaus, J. H.</p> <p>2013-12-01</p> <p>Large multidecadal fluctuations in basin-average sea-surface temperature (SST) are a known feature of observed, reconstructed and simulated variability in the North Atlantic Ocean. This phenomenon is often referred to as Multidecadal Atlantic Variability or AMV. Historical AMV fluctuations are associated with analog basin-scale changes in sea-surface salinity, so that warming corresponds to salinification and cooling to freshening [Polyakov et al., 2005]. The surface imprint of the AMV further corresponds to same-sign fluctuations in the shallow ocean and with opposite-sign fluctuations in the deep ocean for both temperature and salinity [Polyakov et al., 2005]. This out-of-phase behavior reflects the thermohaline overturning circulation shaping North Atlantic's low-frequency variability. Several processes contribute to the AMV, involving both ocean-atmosphere coupled processes and deep ocean circulation [e.g., Grossmann and Klotzbach, 2009]. In particular, recirculation in the North Atlantic subpolar gyre region of salinity anomalies from Arctic freshwater export may trigger multidecadal variability in the Atlantic meridional overturning circulation, and therefore may be part of the AMV [Jungclaus et al., 2005; Dima and Lohmann, 2007]. With this contribution, we aim to improve the physical interpretation of the AMV by investigating spatial and temporal patterns of temperature and salinity fields in the shallow and deep ocean. We focus on two unperturbed millennial-scale simulations performed with the Max Planck Institute Earth system model in its paleo (MPI-ESM-P) and low-resolution (MPI-ESM-LR) configurations, which provide reference control climates for assessments of pre-industrial and historical climate simulations. The two model configurations only differ for the presence, in MPI-ESM-LR, of an active module for dynamical vegetation. We use spatial-average indices and empirical orthogonal functions/principal components to track the horizontal and vertical propagation of temperature and salinity anomalies related to the AMV. In particular, we discuss the potential predictability of multidecadal fluctuations in North Atlantic SSTs based on indices derived from the sea-surface salinity field. We show how the two simulations provide AMV realizations with some distinguishable characteristics, e.g., the typical fluctuations' frequencies and the linkage with the North Atlantic meridional overturning and gyre circulations. We further show how information gained by investigating different definitions of the AMV [Zanchettin et al., 2013] helps designing numerical sensitivity studies for understanding the mechanism(s) behind this phenomenon, concerning both its origin and global impacts. References Dima, M., and G. Lohmann [2007], J. Clim., 20, 2706-2719, doi:10.1175/JCLI4174.1 Jungclaus, J.H., et al. [2005], J. Clim., 18, 4013- 4031, doi:10.1175/JCLI3462.1 Polyakov, I. V., et al. [2005], J. Clim., 18:4562-4581 Grossmann, I., and P. J. Klotzbach [2009], J. Geophys. Res., 114, D24107, doi:10.1029/2009JD012728 Zanchettin D., et al. [2013], Clim. Dyn., doi:10.1007/s00382-013-1669-0</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H54B..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H54B..05M"><span>Implication of Guigo and L'Hajeb Causses in the renewal and circulations of Saïs basin groundwaters (Middle-Atlas Causses, Morocco).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miche, H.; Saracco, G.; Mayer, A.; Qarqori, K.; Rouai, M.; Dekayir, A.; Chalikakis, K.; Emblanch, C.</p> <p>2017-12-01</p> <p>In a context of overexploitation of the karst system of the Middle-Atlas Causses feeding the Saïs basin and, with the current climatic variations, the study of circulations and of renewal of waters of this system in the Fes-Meknes area becomes essential for the population, in order to maintain a sufficient quality of waters with a good management. By coupling hydrochemical and isotopic analyzes methods (δD, δ18O, 222Rn), saturation indices obtained from PHREEQC code and the help of a principal component analysis (PCA) of ten springs and three wells, a first conceptual model of groundwater flows of this karst system was obtained. These waters are mainly renewed by the rainfall of L'Hajeb Causse and secondarily by the rainfall of Guigo Causse containing several springs. Hydrochemistry and saturation indexes allowed us to highlight two types of waters: a main contribution of Liasic origin and two low contributions of Triassic origin at the southern extremities (SW, SE) of the basin. We pointed out the existence of five local recharge zones of different altitudes (900 to 1500 m asl.) including the two main mixing zones to the south (SE, SW). Radon-222 showed areas of rapid exchanges (upwelling time less than two weeks) between waters of Liasic aquifer and the ones of Triassic origin of high radon activity. The use of PCA on hydrochemical data, allowed us to refine the kind of waters, their transit times and highlighted the existence of several mixing zones between the Triassic aquitard and the Liasic aquifers in more or less faulted structures for the two causses. Our results allow us to obtain a first conceptual model of groundwater circulations between the two causses and the Saïs basin. Previous campaigns of electrical resistivity tomography coupled with electromagnetic measurements (EM34) revealed lateral and vertical variations of electrical conductivity changing with the depth along the North-South axis, and a preferential drain perpendicularly to the causses (EGU 2009). We can note that groundwater flows are conditioned by two major fracture networks, NE-SW and NW-SE directions (Bentayeb & Leclerc 1977, Amraoui 2005). A karstic complex water circulation is especially developed locally at the border of the two hydrogeological units (Qarqori 2015).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991EOSTr..72..209B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991EOSTr..72..209B"><span>Underway Doppler current profiles in the Gulf of California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badan-Dangon, Antoine; Lavin, Miguel F.; Hendershott, Myrl C.</p> <p></p> <p>The circulation of the Gulf of California has long been of scientific interest. The first hydrographic expedition there was in 1889 [Roden and Groves, 1959], followed half a century later by Sverdrup's cruise on the R/V E.W. Scripps [Suerdrup, 1941] in February and March of 1939. Since then, the Gulfs circulation has been the subject of active research [Alvarez-Boirego, 1983]. During the 1980s, scientists at CICESE and at the Scripps Institution of Oceanography designed a cooperative effort, the Pichicuco project, to investigate some of the notable physical oceanographic features of the Gulf.The Gulf of California is a marginal sea close to 1500 km long and about 200 km wide, oriented northwest to southeast, between the peninsula of Baja California and western continental Mexico. It consists of a succession of basins that shoal progressively from about 3500 m at the mouth, where the Gulf connects with the Pacific Ocean, to just over 2000 m in the central Guaymas Basin. In contrast, the far northern Gulf is a continental shelf sea whose depth exceeds 200 m only in a few small basins. The Gulf's circulation is profoundly influenced by processes taking place at the narrows that connect Guaymas Basin to the northern Gulf between 28°N and 29°N (see Figure 1). These are a sequence of channels, each about 15 km wide, between San Lorenzo, San Esteban, and Tiburón islands, which reduce the effective cross section of the Gulf to about 2.25×106m2. The westernmost connection, close to Baja California, is the Ballenas-Salsipuedes (hereafter Ballenas) channel, whose depth exceeds 1600 m in its central part. It is bounded partially to the north by a lateral constriction with a maximum depth of 600 m, near the northern extreme of Angel de la Guarda island, and to the east by a ridge from which rise Angel de la Guarda, San Lorenzo, and other smaller islands. This ridge extends underwater about 20 km to the southeast from San Lorenzo into Guaymas Basin, where it forms the eastern wall of San Lorenzo sill, the southern end of Ballenas channel. A narrow canyon on this sill has a maximum depth of about 430 m. The central San Esteban channel is located between San Lorenzo and San Esteban islands, and is the deepest and widest of the three. It possesses a single, rather broad sill, formed by a westward underwater extension of San Esteban island. The third channel, between San Esteban and Tiburon islands, is narrower than the first two, has a broad sill at about 300 m depth, and connects the extension of the Sonoran shelf with the deeper basin to the north. Little studied before, it now appears to play a significant role in the regional exchange of water. A fourth, narrow channel between Tiburon island and mainland Mexico is too shallow to participate strongly in the circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998DSRI...45..573M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998DSRI...45..573M"><span>A sigma-coordinate primitive equation model for studying the circulation in the South Atlantic Part II: Meridional transports and seasonal variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marchesiello, P.; Barnier, B.; de Miranda, A. P.</p> <p>1998-04-01</p> <p>The mean and seasonal variability of the circulation and meridional heat transport in the South Atlantic are investigated using a set of numerical experiments. The primitive equation model uses a topography-following (sigma) coordinate. The model domain is limited to the South Atlantic basin. Artificial boundaries at Drake Passage, between Brazil and Angola, and between South Africa and Antarctica are treated as open boundaries. Finally, recent and self-consistent estimates of seasonal fluxes are used to define a model-dependent atmospheric forcing. Quasi-diagnostic simulations forced by constant climatological winds are first conducted to determine the sensitivity of model solutions to bottom topography smoothing, and to diagnose meridional fluxes from a mass field that is relaxed to the annual climatology of Levitus (1982). Model results show good agreement with known climatological circulation features in this basin, especially in the Confluence Region, where coarse resolution models usually give smooth structures. Sensitivity studies show that the more detailed features of the circulation are influenced by the model bathymetry. The model simulates a meridional circulation whose upper branch (the return flow that balances the southward flow of North Atlantic Deep Water) is composed of Intermediate (IW) and Thermocline (TW) Waters. The transport of IW is found to be predominant, and the value of meridional heat transport consequently falls within the low estimates. We notice that the meridional heat balance is sensitive to the position of the Confluence. When this region occurs too far south, the amount of IW contributing to the return flow of the overturning cell is reduced. Prognostic simulations forced by seasonal winds and heat fluxes are studied to quantify the impact of wind forcing on the circulation in the South Atlantic. Particular attention is focused on meridional transports at 30°S. Analysis of the mean annual circulation confirms that the upper branch of the meridional circulation is predominantly composed of IW (9 Sv), rather than TW (5.3 Sv). The mean transport of the lower branch is 16 Sv, in agreement with recent estimates by Schlitzer (1996). The annual meridional heat transport (0.29 PW) is still within the low estimates, but agrees well with other estimates that give a dominant role to IW (Rintoul, 1991). Original results also concern the variability of the upper branch of the meridional circulation. It is shown that the wind creates seasonal variability in the Subtropical Gyre, which has a marked impact on the water mass balance in the South Atlantic. In winter, a large convergence to the north of the Subtropical Gyre (27°S) reduces the northward flow of IW, whereas stronger Ekman pumping favors an equatorward transport of TW. In summer, this convergence disappears and a larger transport of IW is allowed. Thus a more complex scheme is proposed for the meridional circulation, in which local wind forcing in the South Atlantic Basin has a significant role in preconditioning the surface waters of the global overturning cell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012HESSD...9...93L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012HESSD...9...93L"><span>Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal adjustment scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, H.; Seo, D.-J.; Liu, Y.; Koren, V.; McKee, P.; Corby, R.</p> <p>2012-01-01</p> <p>State updating of distributed rainfall-runoff models via streamflow assimilation is subject to overfitting because large dimensionality of the state space of the model may render the assimilation problem seriously under-determined. To examine the issue in the context of operational hydrology, we carry out a set of real-world experiments in which streamflow data is assimilated into gridded Sacramento Soil Moisture Accounting (SAC-SMA) and kinematic-wave routing models of the US National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM) with the variational data assimilation technique. Study basins include four basins in Oklahoma and five basins in Texas. To assess the sensitivity of data assimilation performance to dimensionality reduction in the control vector, we used nine different spatiotemporal adjustment scales, where state variables are adjusted in a lumped, semi-distributed, or distributed fashion and biases in precipitation and potential evaporation (PE) are adjusted hourly, 6-hourly, or kept time-invariant. For each adjustment scale, three different streamflow assimilation scenarios are explored, where streamflow observations at basin interior points, at the basin outlet, or at both interior points and the outlet are assimilated. The streamflow assimilation experiments with nine different basins show that the optimum spatiotemporal adjustment scale varies from one basin to another and may be different for streamflow analysis and prediction in all of the three streamflow assimilation scenarios. The most preferred adjustment scale for seven out of nine basins is found to be the distributed, hourly scale, despite the fact that several independent validation results at this adjustment scale indicated the occurrence of overfitting. Basins with highly correlated interior and outlet flows tend to be less sensitive to the adjustment scale and could benefit more from streamflow assimilation. In comparison to outlet flow assimilation, interior flow assimilation at any adjustment scale produces streamflow predictions with a spatial correlation structure more consistent with that of streamflow observations. We also describe diagnosing the complexity of the assimilation problem using the spatial correlation information associated with the streamflow process, and discuss the effect of timing errors in a simulated hydrograph on the performance of the data assimilation procedure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T33A0522J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T33A0522J"><span>Ridge Flank Flux as a Potential Source for the North Pacific Silica Plume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, H. P.; Hautala, S. L.; Bjorklund, T. A.</p> <p>2005-12-01</p> <p>The North Pacific silica plume is a global scale anomaly, extending from the North American continental margin to west of the Hawaii-Emperor seamount chain. Inventory of the plume at depths between 2000 and 3000 meters indicates that it contains 164 Teramols of dissolved silica, and is maintained by a horizontal flux of approximately 1.5 Tmols/year from the Eastern Pacific. The source region of this silica plume has been previously reported to be Cascadia Basin in the NE Pacific. However, simple box models based both on new hydrostations and compilations of archive data indicate that only a third of the dissolved silica that enters the larger North Pacific plume originates locally within the Cascadia/Gorda Basin. As it encounters the North American continental margin, the eastward-flowing deep Pacific bottom water is forced into `a U-turn' by seafloor topography. A portion of the bottom water is elevated from 4000 to 2300 meter depths by the high geothermal heat flow during rapid passage through Cascadia/Gorda Basin, and subsequently flows westward as the North Pacific mid-water plume. The plume water also absorbs an estimated 0.47 Tmol/year of locally derived silica during its passage adjacent to the continental margin. However, the Pacific bottom water is already relatively enriched in dissolved silica when it passes the Gorda Ridge/Mendocino junction, and the remaining 1 Tmol/year of silica must be acquired during near-bottom transit from the Western Pacific, over the portion of the easternmost Pacific plate where basement is younger than 65 Ma. Global compilations based on heat flow data argue that the upper crustal section of the young, eastern Pacific plate is an enormous aquifer, with active hydrothermal circulation and presumably diffuse venting into the bottom water. The suggestion that the large-scale flux of silica-rich hydrothermal fluid from the young eastern portion of the Pacific plate contributes to the North Pacific silica plume is a consequence of that interpretation, but is only a plausible and still untested hypothesis. If correct, however, it implies that the ridge flanks of the eastern Pacific Ocean are a global-scale source of a critically important nutrient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2928S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2928S"><span>Synoptic climatological analysis of persistent cold air pools over the Carpathian Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szabóné André, Karolina; Bartholy, Judit; Pongrácz, Rita</p> <p>2016-04-01</p> <p>A persistent cold air pool (PCAP) is a winter-time, anticyclone-related weather event over a relatively large basin. During this time the air is colder near the surface than aloft. This inversion near the surface can last even for weeks. As the cold air cools down, relative humidity increases and fog forms. The entire life cycle of a PCAP depends on the large scale circulation pattern. PCAP usually appears when an anticyclone builds up after a cold front passed over the examined basin, and it is usually destructed by a coming strong cold front of another midlatitude cyclone. Moreover, the intensity of the anticyclone affects the intensity of the PCAP. PCAP may result in different hazards for the population: (1) Temperature inversion in the surface layers together with weak wind may lead to severe air pollution causing health problems for many people, especially, elderly and children. (2) The fog and/or smog during chilly weather conditions often results in freezing rain. Both fog and freezing rain can distract transportation and electricity supply. Unfortunately, the numerical weather prediction models have difficulties to predict PCAP formation and destruction. One of the reasons is that PCAP is not defined objectively with a simple formula, which could be easily applied to the numerical output data. However, according to some recommendations from the synoptic literature, the shallow convective potential energy (SCPE) can be used to mathematically describe PCAP. In this study, we used the ERA-Interim reanalysis datasets to examine this very specific weather event (i.e., PCAP) over the Carpathian Basin. The connection between the mean sea level pressure and some PCAP measures (e.g., SCPE, energy deficit, etc.) is evaluated. For instance, we used logistic regression to identify PCAP periods over the Carpathian Basin. Then, further statistical analysis includes the evaluation of the length and intensity of these PCAP periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017P%26SS..145...49V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017P%26SS..145...49V"><span>Grid-mapping Hellas Planitia, Mars - Insights into distribution, evolution and geomorphology of (Peri)-glacial, fluvial and lacustrine landforms in Mars' deepest basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voelker, M.; Hauber, E.; Schulzeck, F.; Jaumann, R.</p> <p>2017-10-01</p> <p>Traditional maps of Hellas Planitia, the most prominent impact basin on Mars, have focused on the delineation of continuous surface units. We applied the newly developed grid-mapping method in order to quantitatively analyze the distribution and geostatistics of selected (peri)-glacial, fluvial, and lacustrine landforms. The study area was subdivided in grid cells with a mesh size of 20 × 20 km, and more than 10,000 grids have been inspected manually in a GIS environment at a mapping scale of 1:30,000. Each grid has been checked for the presence or absence of a landform. Thus, we were able to statistically evaluate the geographical behavior of landforms with respect to elevation, slope inclination, aspect, and other parameters. We searched for 24 pre-selected landforms. However, only 15 of them had a sufficient abundance for scientific research. Whereas the latitude-dependent mantle is widespread in most of Hellas, it was found to be mostly missing in the northeastern part, likely a result of desiccating winds circulating clockwise within the basin. The location and morphologic expression of scalloped terrain also seems to be influenced by winds, as the local orientation of scalloped depressions appears to be aligned along the dominant wind direction, indicating that insolation is not the only factor controlling their formation. Hellas Planitia has been suggested as the site of a former sea. We also searched each grid for the presence of possible shorelines. Despite the small scale of our mapping, no clear evidence for coastal landforms has been detected. Our results reveal a distinctive asymmetry with respect to fluvial channels and Noachian light-toned sediments along the rim of the impact basin. While the northern rim shows a high density of both channels and sediments, the southern counterpart basically lacks channels and light-toned deposits. We suggest different climatic conditions for this imbalance, as the northern part of Hellas likely experienced higher temperatures throughout most of Mars' evolution, while the colder conditions at the southern rim may have prohibited aqueous processes, preventing the development of channels and related sediments. As Hellas contains the deepest areas of the planet's surface, and thus the highest air pressure, its climatic environment can exceed the triple point of water until today, making it a potential habitat. However, our results have shown that the basin floor displays only a very low density of landforms that may indicate liquid water and ice, and especially gullies and viscous-flow features are scarce. The high air pressure and relatively mild temperatures in Hellas decrease the relative atmospheric water content, resulting in a desiccated air and soil, and hence, may explain the lack of viscous-flow features and gullies. All these findings extended our knowledge not only of Hellas Planitia, but of the screened landforms themselves too. In conclusion, small-scale grid-mapping made it possible to recognize large-scale patterns and distributions in Hellas Planitia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..164A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..164A"><span>Cyclonic circulation of Saturn's atmosphere due to tilted convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afanasyev, Y. D.; Zhang, Y.</p> <p>2018-03-01</p> <p>Saturn displays cyclonic vortices at its poles and the general atmospheric circulation at other latitudes is dominated by embedded zonal jets that display cyclonic circulation. The abundance of small-scale convective storms suggests that convection plays a role in producing and maintaining Saturn's atmospheric circulation. However, the dynamical influence of small-scale convection on Saturn's general circulation is not well understood. Here we present laboratory analogue experiments and propose that Saturn's cyclonic circulation can be explained by tilted convection in which buoyancy forces do not align with the planet's rotation axis. In our experiments—conducted with a cylindrical water tank that is heated at the bottom, cooled at the top and spun on a rotating table—warm rising plumes and cold sinking water generate small anticyclonic and cyclonic vortices that are qualitatively similar to Saturn's convective storms. Numerical simulations complement the experiments and show that this small-scale convection leads to large-scale cyclonic flow at the surface and anticyclonic circulation at the base of the fluid layer, with a polar vortex forming from the merging of smaller cyclonic storms that are driven polewards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V21A4733M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V21A4733M"><span>The scale of hydrothermal circulation of the Iheya-North field inferred from intensive heat flow measurements and ocean drilling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Masaki, Y.; Kinoshita, M.; Yamamoto, H.; Nakajima, R.; Kumagai, H.; Takai, K.</p> <p>2014-12-01</p> <p>Iheya-North hydrothermal field situated in the middle Okinawa trough backarc basin is one of the largest ongoing Kuroko deposits in the world. Active chimneys as well as diffuse ventings (maximum fluid temperature 311 °C) have been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and ~100 heat flow data in and around the field from 2002 to 2014. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 was carried out, and subbottom temperature data were obtained around the hydrothermal sites. During the JAMSTEC R/V Kaiyo cruise, KY14-01 in 2014, Iheya-North "Natsu" and "Aki" hydrothermal fields were newly found. The Iheya-Noth "Natsu" and "Aki" sites are located 1.2 km and 2.6 km south from the Iheya-North original site, respectively, and the maximum venting fluid temperature was 317 °C. We obtained one heat flow data at the "Aki" site. The value was 17 W/m2. Currently, the relationship between these hydrothermal sites are not well known. Three distinct zones are identified by heat flow values within 3 km from the active hydrothermal field. They are high-heat flow zone (>1 W/m2; HHZ), moderate-heat-flow zone (1-0.1 W/m2; MHZ); and low-heat-flow zone (<0.1 W/m2; LHZ). With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. In the LHZ, temperature at 37m below the seafloor (mbsf) was 6 °C, that is consistent with the surface low heat flow suggesting the recharge of seawater. However, between 70 and 90 mbsf, the coarser sediments were cored, and temperature increased from 25 °C to 40°C. The temperature was 905°C at 151 mbsf, which was measured with thermoseal strips. The low thermal gradient in the upper 40 m suggests downward fluid flow. We infer that a hydrothermal circulation in the scale of ~1.5 km horizontal vs. ~a few hundred meters vertical.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1210834S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1210834S"><span>20th century trends of drought conditions in the Mediterranean: the influence of large-scale circulation patterns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sousa, Pedro; Trigo, Ricardo; Garcia-Herrera, Ricardo</p> <p>2010-05-01</p> <p>Here we have used the Self Calibrated PDSI (scPDSI) proposed by Wells et al (2004) as a more appropriate approach to characterize drought conditions in the Mediterranean area. The scPDSI has been shown to perform better (than the original PDSI) when evaluating spatial and temporal drought characteristics for regions outside the USA (Schrier et al, 2005). Seasonal and annual trends for the 1901-2000, 1901-1950 and 1951-2000 periods were computed using the standard Mann-Kendall test for trend significance evaluation. However, statistical significance obtained with this test can be highly misleading because it does not take into account the low variability nature that dominates the seasonal evolution of scPDSI fields. We have now improved these results by employing a modified Mann-Kendall test for auto-correlated series (Hamed and Ramachandra, 1997), such as the scPDSI case. This development allowed for a better definition of the Mediterranean areas characterized by significant changes in the scPDSI, namely the largely negative trends that dominate the Mediterranean basin, with the exceptions of parts of eastern Turkey and northwestern Iberia, since initially these areas were overestimated. The spatio-temporal variability of these indices was evaluated with an EOF analysis, in order to reduce the large dimensionality of the fields under analysis. Spatial representation of the first EOF patterns shows that EOF 1 covers the entire Mediterranean basin (16.4% of EV), while EOF2 is dominated by a W-E dipole (10% EV). The following EOF patterns present smaller scale features, and explain smaller amounts of variance. The EOF patterns have also facilitated the definition of four sub-regions with large socio-economic relevance: 1) Iberia, 2) Italian Peninsula, 3) Balkans and 4) Turkey. Afterwards we perform a comprehensive analysis on the links between the scPDSI and the large-scale atmospheric circulation indices that affect the Mediterranean basin, namely; NAO, EA, and SCAND (Trigo et al., 2006) and where we have also taken into account once again the effect of autocorrelation. Some of these links were obtained with 3 or 6 months lagged relationships, while others were achieved with instantaneous (no lag) links. This analysis was performed for the entire Mediterranean region as a whole, but also for each considered sub-domain. Finally, a stepwise regression model was developed to reproduce summer scPDSI series during the 1951-2002 period, using these large scale indices as predictors in the model. This procedure results in positive Skill Score values against the persistence model. Hamed K.H., Ramachandra A. (1997) "A modified Mann-Kendall trend test for autocorrelated data", Journal of Hidrology, 204, 182-196. Schrier G, Briffa KR, Jones PD, Osborn TJ. (2005). Summer moisture variability across Europe. Journal of Climate 19: 2818-2834. Trigo, R. and 21 authors (2006) Relations between variability in the Mediterranean region and mid-latitude variability. In: P. Lionello, P. Malanotte-Rizzoli & R. Boscolo (Eds), Mediterranean Climate Variability, Amsterdam: Elsevier, pp. 179-226. Wells N, Goddard S and Hayes MJ (2004) A self-calibrating Palmer Drought Severity Index. Journal of Climate 17, 2335-2351.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28725004','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28725004"><span>Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern Human dispersal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Obreht, Igor; Hambach, Ulrich; Veres, Daniel; Zeeden, Christian; Bösken, Janina; Stevens, Thomas; Marković, Slobodan B; Klasen, Nicole; Brill, Dominik; Burow, Christoph; Lehmkuhl, Frank</p> <p>2017-07-19</p> <p>Understanding the past dynamics of large-scale atmospheric systems is crucial for our knowledge of the palaeoclimate conditions in Europe. Southeastern Europe currently lies at the border between Atlantic, Mediterranean, and continental climate zones. Past changes in the relative influence of associated atmospheric systems must have been recorded in the region's palaeoarchives. By comparing high-resolution grain-size, environmental magnetic and geochemical data from two loess-palaeosol sequences in the Lower Danube Basin with other Eurasian palaeorecords, we reconstructed past climatic patterns over Southeastern Europe and the related interaction of the prevailing large-scale circulation modes over Europe, especially during late Marine Isotope Stage 3 (40,000-27,000 years ago). We demonstrate that during this time interval, the intensification of the Siberian High had a crucial influence on European climate causing the more continental conditions over major parts of Europe, and a southwards shift of the Westerlies. Such a climatic and environmental change, combined with the Campanian Ignimbrite/Y-5 volcanic eruption, may have driven the Anatomically Modern Human dispersal towards Central and Western Europe, pointing to a corridor over the Eastern European Plain as an important pathway in their dispersal.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003SPIE.4890..461W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003SPIE.4890..461W"><span>Remote sensing research on fragile ecological environment in continental river basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Ranghui; Peng, Ruyan; Zhang, Huizhi</p> <p>2003-07-01</p> <p>Based on some remote sensing data and software platform of image processing and analysis, the standard image for ecological thematic mapping is decided. Moreover, the vegetation type maps and land sandy desertification type maps are made. Relaying on differences of natural resources and ecological environment in Tarim River Basin, the assessment indicator system and ecological fragility index (EFI) of ecological environment are built up. The assessment results are very severely. That is, EFI is only 0.08 in Akesu River Basin, it belongs to slight fragility area. EFI of Yarkant River Basin and upper reaches of Tarim River Basin are 0.23 and 0.25 respectively, both of them belong to general fragility areas. Meanwhile, EFI of Hotan River Basin and middle reaches of Tarim River Basin are 0.32 and 0.49 respectively; they all belong to middle fragility areas. However, the fragility of the lower reaches of Tarim River Basin belongs to severe fragility area that the EFI is 0.87.The maladjustment among water with hot and land as well as salt are hindrance of energy transfer and material circulation and information transmission. It is also the main reason that caused ecological environment fragility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...46.2305P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...46.2305P"><span>Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pokhrel, Samir; Saha, Subodh Kumar; Dhakate, Ashish; Rahman, Hasibur; Chaudhari, Hemantkumar S.; Salunke, Kiran; Hazra, Anupam; Sujith, K.; Sikka, D. R.</p> <p>2016-04-01</p> <p>A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5-L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project, CPC Merged Analysis of Precipitation and the India Meteorological Department precipitation dataset respectively for L3. Despite significant El-Niño Southern Oscillation (ENSO) spring predictability barrier at L3, the ISMR skill score is highest at L3. Further, large scale zonal wind shear (Webster-Yang index) and SST over Niño3.4 region is best at L1 and L0. This implies that predictability aspect of ISMR is controlled by factors other than ENSO and Indian Ocean Dipole. Also, the model error (forecast error) outruns the error acquired by the inadequacies in the initial conditions (predictability error). Thus model deficiency is having more serious consequences as compared to the initial condition error for the seasonal forecast. All the model parameters show the increase in the predictability error as the lead decreases over the equatorial eastern Pacific basin and peaks at L2, then it further decreases. The dynamical consistency of both the forecast and the predictability error among all the variables indicates that these biases are purely systematic in nature and improvement of the physical processes in the CFSv2 may enhance the overall predictability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060036567&hterms=oceanography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceanography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060036567&hterms=oceanography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceanography"><span>(abstract) TOPEX/Poseidon: Four Years of Synoptic Oceanography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fu, Lee-Lueng</p> <p>1996-01-01</p> <p>Exceeding all expectations of measurement precision and accuracy, the US/France TOPEX/Poseidon satellite mission is now in its 5th year. Returning more than 98 percent of the altimetric data, the measured global geocentric height of the sea surface has provided unprecedented opportunities to address a host of scientific problems ranging from the dynamics of ocean circulation to the distribution of internal tidal energy. Scientific highlights of this longest-running altimetric satellite mission include improvements in our understanding of the dynamics and thermodynamics of the large-scale ocean variability, such as, the properties of planetary waves; the energetics of basin-wide gyres; the heat budget of the ocean; and the ocean's response to wind forcing. For the first time, oceanographers have quantitative descriptions of a dynamic variable of the physical state of the global oceans available in near-real-time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H21B1022G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H21B1022G"><span>Data-based discharge extrapolation: estimating annual discharge for a partially gauged large river basin from its small sub-basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, L.</p> <p>2013-12-01</p> <p>Large-scale hydrological models and land surface models are by far the only tools for accessing future water resources in climate change impact studies. Those models estimate discharge with large uncertainties, due to the complex interaction between climate and hydrology, the limited quality and availability of data, as well as model uncertainties. A new purely data-based scale-extrapolation method is proposed, to estimate water resources for a large basin solely from selected small sub-basins, which are typically two-orders-of-magnitude smaller than the large basin. Those small sub-basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large basin In the Baltic Sea drainage basin, best discharge estimation for the gauged area was achieved with sub-basins that cover 2-4% of the gauged area. There exist multiple sets of sub-basins that resemble the climate and hydrology of the basin equally well. Those multiple sets estimate annual discharge for gauged area consistently well with 5% average error. The scale-extrapolation method is completely data-based; therefore it does not force any modelling error into the prediction. The multiple predictions are expected to bracket the inherent variations and uncertainties of the climate and hydrology of the basin. The method can be applied in both un-gauged basins and un-gauged periods with uncertainty estimation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.escholarship.org/uc/item/01n4z228','USGSPUBS'); return false;" href="http://www.escholarship.org/uc/item/01n4z228"><span>Downscaling future climate projections to the watershed scale: A north San Francisco Bay estuary case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Micheli, Elisabeth; Flint, Lorraine; Flint, Alan; Weiss, Stuart; Kennedy, Morgan</p> <p>2012-01-01</p> <p>We modeled the hydrology of basins draining into the northern portion of the San Francisco Bay Estuary (North San Pablo Bay) using a regional water balance model (Basin Characterization Model; BCM) to estimate potential effects of climate change at the watershed scale. The BCM calculates water balance components, including runoff, recharge, evapotranspiration, soil moisture, and stream flow, based on climate, topography, soils and underlying geology, and the solar-driven energy balance. We downscaled historical and projected precipitation and air temperature values derived from weather stations and global General Circulation Models (GCMs) to a spatial scale of 270 m. We then used the BCM to estimate hydrologic response to climate change for four scenarios spanning this century (2000–2100). Historical climate patterns show that Marin’s coastal regions are typically on the order of 2 °C cooler and receive five percent more precipitation compared to the inland valleys of Sonoma and Napa because of marine influences and local topography. By the last 30 years of this century, North Bay scenarios project average minimum temperatures to increase by 1.0 °C to 3.1 °C and average maximum temperatures to increase by 2.1 °C to 3.4 °C (in comparison to conditions experienced over the last 30 years, 1981–2010). Precipitation projections for the 21st century vary between GCMs (ranging from 2 to 15% wetter than the 20th-century average). Temperature forcing increases the variability of modeled runoff, recharge, and stream discharge, and shifts hydrologic cycle timing. For both high- and low-rainfall scenarios, by the close of this century warming is projected to amplify late-season climatic water deficit (a measure of drought stress on soils) by 8% to 21%. Hydrologic variability within a single river basin demonstrated at the scale of subwatersheds may prove an important consideration for water managers in the face of climate change. Our results suggest that in arid environments characterized by high topo-climatic variability, land and water managers need indicators of local watershed hydrology response to complement regional temperature and precipitation estimates. Our results also suggest that temperature forcing may generate greater drought stress affecting soils and stream flows than can be estimated by variability in precipitation alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13A0492D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13A0492D"><span>Crustal-scale alpine tectonic evolution of the western Pyrenees - eastern Cantabrian Mountains (N Spain) from integration of structural data, low-T thermochronology and seismic constraint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeFelipe, I.; Pedreira, D.; Pulgar, J. A.; Van der Beek, P.; Bernet, M.; Pik, R.</p> <p>2017-12-01</p> <p>The Pyrenean-Cantabrian Mountain belt extends in an E-W direction along the northern border of Spain and resulted from the convergence between the Iberian and European plates from the Late Cretaceous to the Miocene, in the context of the Alpine orogeny. The main aim of this work is to characterize the tectonic evolution at a crustal-scale of the transition zone from the Pyrenees to the Cantabrian Mountains, in the eastern Basque-Cantabrian Basin (BCB). We integrate structural work, thermochronology (apatite fission track and zircon (U-Th)/He) and geophysical information (shallow seismic reflection profiles, deep seismic refraction/wide-angle reflection profiles and seismicity distribution) to propose an evolutionary model since the Jurassic to the present. During the Albian, hyperextension related to the opening of the Bay of Biscay yielded to mantle unroofing to the base of the BCB. This process was favored by a detachment fault that connected the mantle in its footwall with the base of a deep basin in its hanging wall. During this process, the basin experienced HT metamorphism and fluid circulation caused the serpentinization of the upper part of the mantle. There is no evidence of seafloor mantle exhumation before the onset of the Alpine orogeny. The thermochronological study points to a N-vergent phase of contractional deformation in the late Eocene represented by the thin-skinned Leiza fault system followed in the early Oligocene by the S-vergent, thick-skinned, Ollín thrust. Exhumation rates for the late Eocene-early Oligocene are of 0.2-0.7 km/Myr. After that period, deformation continues southwards until the Miocene. The crustal-scale structure resultant of the Alpine orogeny consists of an Iberian plate that subducts below the European plate. The crust is segmented into four blocks separated by three S-vergent crustal faults inherited from the Cretaceous extensional period. The P-wave velocities in this transect show anomalous values (7.4 km/s) in the deepest part of the Iberian crust that may correspond to serpentinized mantle formed during the Cretaceous and later subducted. The Alpine shortening in this transect is estimated in ca. 90 km. Integration of structural, geophysical and thermochronological data, allows a more precise reconstruction of the crustal-scale Alpine cycle in the eastern BCB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/50876','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/50876"><span>Impact of basin scale and time-weighted mercury metrics on intra-/inter-basin mercury comparisons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Paul Bradley; Mark E. Brigham</p> <p>2016-01-01</p> <p>Understanding anthropogenic and environmental controls on fluvial Mercury (Hg) bioaccumulation over global and national gradients can be challenging due to the need to integrate discrete-sample results from numerous small scale investigations. Two fundamental issues for such integrative Hg assessments are the wide range of basin scales for included studies and how well...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP22B..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP22B..08H"><span>A 400-kyr record of millennial-scale carbonate preservation events in the Southern Ocean: Implications for Atlantic Meridional Overturning Circulation and atmospheric CO2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodell, D. A.; Vautravers, M. J.; Barker, S.; Charles, C.; Crowhurst, S.</p> <p>2014-12-01</p> <p>Hodell et al. (2001) suggested that carbonate preservation in the deep Cape Basin represented a qualitative, high-resolution record of the temporal evolution of the carbonate saturation state of the deep sea. The carbonate signal reflects both transient events in the redistribution of alkalinity and DIC in the deep ocean and steady-state mass balance processes. Here we re-analyzed the carbonate records of Sites 1089/TN057-21 using an Avaatech XRF core scanner and measured elemental variations at 2.5-mm resolution for the past 400 kyrs. Log Ca/Ti is highly correlated to weight percent carbonate content and other dissolution proxies and resolves millennial-scale events in carbonate preservation. A high-pass filter removes the low-frequency (orbital) variability in carbonate preservation, which is attributed mainly to steady-state mass balance processes. The high-frequency (suborbital) component reflects transient responses to the redistribution of carbonate ion that is related mainly to changing deep-water circulation. During the last glacial period, distinct millennial-scale increases in carbonate preservation in piston core TN057-21 occurred during times of enhanced Atlantic Meridional Overtunring Circulation (AMOC) (Barker et al., 2010; Barker and Diz, 2014), as supported by increases in benthic δ13C and less radiogenic ɛNd values. Carbonate preservation peaked particularly during long, warm interstadials in Greenland when a deep water mass with high carbonate ion concentration was formed in the North Atlantic. Export of NADW may have been greater than the Holocene during some of these events ("overshoots") and/or preformed carbonate ion concentrations in North Atlantic source areas may have been higher owing to lower atmospheric CO2 and less carbonate production in surface water. Each South Atlantic carbonate peak is associated with the start of Antarctic cooling and declining or leveling of atmospheric CO2, reflecting the signature of a thermal bipolar seesaw. The increased flux of carbonate ion to the Southern Ocean during strong interstadials may have played a role in titrating respiratory CO2, thereby slowing CO2 degassing to the atmosphere and providing a secondary mechanism, in addition to heat transport, for interhemispheric coupling on millennial time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.1917S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.1917S"><span>Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil</p> <p>2017-09-01</p> <p>Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26544070','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26544070"><span>Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing</p> <p>2015-01-01</p> <p>The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4636145','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4636145"><span>Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing</p> <p>2015-01-01</p> <p>The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale. PMID:26544070</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.493..242W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.493..242W"><span>The circulation of the Dead Sea brine in the regional aquifer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weber, Nurit; Yechieli, Yoseph; Stein, Mordechai; Yokochi, Reika; Gavrieli, Ittai; Zappala, Jake; Mueller, Peter; Lazar, Boaz</p> <p>2018-07-01</p> <p>Ca-chloride brines have circulated between the lakes and the adjacent aquifers throughout the history of the Dead Sea lacustrine-hydrology system. The Ein-Qedem (EQ) hydrothermal saline springs system discharging at the western shores of the modern Dead Sea is the modern manifestation of this essential and continuous process. The EQ springs comprise the most significant source of Ca-chloride brine that currently discharges into the lake. The chemical composition of EQ brine has remained virtually uniform during the past ca. 40 yr, indicating that the brine represents a large groundwater reservoir. The EQ brine evolved from ancient Ca-chloride brine that occupied the tectonic depression of the Dead Sea Basin during the Quaternary. During this period, the composition of lake's brine was affected by mixing with freshwater and formation of primary minerals. Based on chronological and geochemical data, we argue that the EQ brine comprises the epilimnetic solution of last glacial Lake Lisan that penetrated and circulated through the adjacent Judea Group aquifer. 14C and 81Kr dating indicates recharge ages spanning the time interval of ∼40-20 ka, coinciding with the period when the lake reached its highest stand (of ∼ 200 ± 30 m below msl, at ∼31-17.4 ka) and maintained a stable layered (stratified) configuration for a period of several ten thousand years. The presented evidence suggests that the circulation of the Ca-chloride brine involves penetration into the aquifer during high stands (EQ brine recharge) and its discharge back into the lake during the modern low stands (∼400 to 430 m below msl). Accordingly, the mechanism of brine circulation between the lake and the marginal aquifers is related to the long-term hydro-climate history of the Dead Sea basin and its vicinity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9810A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9810A"><span>Using an atmospheric boundary layer model to force global ocean models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abel, Rafael; Böning, Claus</p> <p>2014-05-01</p> <p>Current practices in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in the conjunction with a prescribed, and unresponsive, atmospheric state (as given by reanalysis products). This can have impacts both on mesoscale processes as well as on the dynamics of the large-scale circulation. First, a possible local mismatch between the given atmospheric state and evolving sea surface temperature (SST) signatures can occur, especially for mesoscale features such as frontal areas, eddies, or near the sea ice edge. Any ocean front shift or evolution of mesoscale anomalies results in excessive, unrealistic surface fluxes due to the lack of atmospheric adaptation. Second, a subtle distortion in the sensitive balance of feedback processes being critical for the thermohaline circulation. Since the bulk formulations assume an infinite atmospheric heat capacity, resulting SST anomalies are strongly damped even on basin-scales (e.g. from trends in the Atlantic meridional overturning circulation). In consequence, an important negative feedback is eliminated, rendering the system excessively susceptible to small anomalies (or errors) in the freshwater fluxes. Previous studies (Seager et al., 1995, J. Clim.) have suggested a partial forcing issue remedy that aimed for a physically more realistic determination of air-sea fluxes by allowing some (thermodynamic) adaptation of the atmospheric boundary layer to SST changes. In this study a modernized formulation of this approach (Deremble et al., 2013, Mon. Weather Rev.; 'CheapAML') is implemented in a global ocean-ice model with moderate resolution (0.5°; ORCA05). In a set of experiments we explore the solution behaviour of this forcing approach (where only the winds are prescribed, while atmospheric temperature and humidity are computed), contrasting it with the solution obtained from the classical bulk formulation with a non-responsive atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP43D..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP43D..03K"><span>Global Synthesis of Common Era Hydroclimate using Water Isotope Proxies from Multiple Archives: First Results from the PAGES Iso2k Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konecky, B. L.; Partin, J. W.; Conroy, J. L.; Fischer, M.; Jones, M.; Jonkers, L.; McKay, N.; Stevenson, S.; Thompson, D. M.; Tyler, J. J.; Churakova (Sidorova), O.; Comas-Bru, L.; Dassie, E. P.; Dee, S.; DeLong, K. L.; Falster, G.; Martrat, B.</p> <p>2017-12-01</p> <p>Global, multi-proxy paleoclimate data syntheses for the Common Era (CE) have revealed a long-term cooling over the past millennium followed by a recent warming, with possible multi-decadal to centennial temperature variability in some regions. However, changes in atmospheric-oceanic circulation or hydroclimate have yet to be assessed on a global scale. Excellently suited to this purpose are proxies for the δ18O and δD of environmental waters found in glacier and ground ice, speleothems, corals, tree rings, and lake and marine sediments, which track common signals related to circulation and hydroclimate. Here, we utilize the new PAGES Iso2k database, a global compilation of CE δ18O and δD records, to investigate spatiotemporal variability and secular trends in global hydroclimate during the past 2 kyr. Overall, subtle but robust circulation shifts are apparent during the CE. We find preliminary evidence for secular trends in δ18O of lake water, precipitation/soil water, and seawater, with the direction and magnitude of trends varying by the type of environmental water (e.g., precipitation vs. seawater) and by region. We also find evidence for centennial-scale variations in regional δ18O and δD, for example a basin-wide Atlantic δ18Oseawater anomaly emerging during the 18th century and possible freshening of the western Pacific during the 20th century. On land, latitudinal trends in mean CE δ18Olake are consistent with present day gradients of δ18Oprecipitation, with evaporation exerting additional strong influence at mid-latitudes. In the ocean, coral δ18O in the western equatorial Pacific is found to reflect salinity rather than (or in addition to) temperature, providing potential quantitative constraints on past moisture balance from corals. We evaluate the dynamics of these spatiotemporal patterns through comparison with isotope-enabled model simulations, discuss relevant climatic inferences, and reexamine proxy interpretations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988JGR....93.4993B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988JGR....93.4993B"><span>Thermohaline circulation in the Gulf of California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bray, N. A.</p> <p>1988-05-01</p> <p>The Gulf of California, a narrow, semienclosed sea, is the only evaporative basin of the Pacific Ocean. As a result of evaporative forcing, salinities in the gulf are 1 to 2 ‰ higher than in the adjacent Pacific at the same latitude. This paper examines the thermohaline structure of the gulf and the means by which thermohaline exchange between the Pacific and the gulf occurs, over time scales of months to years. In addition to evaporative forcing, air-sea heat fluxes and momentum fluxes are important to thermohaline circulation in the gulf. From observations presented here, it appears that the gulf gains heat from the atmosphere on an annual average, unlike the Mediterranean and Red seas, which have comparable evaporative forcing. As a result, outflow from the gulf tends to be less dense than inflow from the Pacific. Winds over the gulf change direction with season, blowing northward in summer and southward in winter. This same seasonal pattern appears in near-surface transports averaged across the gulf. The thermohaline circulation, then, consists of outflow mostly between about 50 m and 250 m, inflow mostly between 250 m and 500 m, and a surface layer in which the direction of transport changes with seasonal changes in the large-scale winds. Using hydrographic observations from a section across the central gulf, total transport in or out of the northern gulf is estimated to be 0.9 Sv, heat gain from the atmosphere is estimated to be 20 to 50 W m-2, and evaporation is estimated to be 0.95 m yr-1. These estimates are annual averages, based on cruises from several years. Seasonal variations in thermohaline structure in the gulf are also examined and found to dominate the variance in temperature and density in the top 500 m of the water column. Salinity has little seasonal variability but does exhibit more horizontal variablility than temperature or density. Major year-to-year variations in thermohaline structure may be attributable to El Niño-Southern Oscillation events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513897W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513897W"><span>Multidecadal oscillations in rainfall and hydrological extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Willems, Patrick</p> <p>2013-04-01</p> <p>Many studies have anticipated a worldwide increase in the frequency and intensity of precipitation extremes and floods since the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extreme quantiles, it is shown that hydrological extremes have oscillatory behaviour at multidecadal time scales. Results are based on nearly independent extremes extracted from long-term historical time series of precipitation intensities and river flows. Study regions include Belgium - The Netherlands (Meuse basin), Ethiopia (Blue Nile basin) and Ecuador (Paute basin). For Belgium - The Netherlands, the past 100 years showed larger and more hydrological extremes around the 1910s, 1950-1960s, and more recently during the 1990-2000s. Interestingly, the oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930-1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years. References: Ntegeka V., Willems P. (2008), 'Trends and multidecadal oscillations in rainfall extremes, based on a more than 100 years time series of 10 minutes rainfall intensities at Uccle, Belgium', Water Resources Research, 44, W07402, doi:10.1029/2007WR006471 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water Resources Research, 48, W03513, 13p. Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., Nguyen, V-T-V. (2012), 'Impacts of climate change on rainfall extremes and urban drainage', IWA Publishing, 252p., Paperback Print ISBN 9781780401256; Ebook ISBN 9781780401263</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ECSS..169...95P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ECSS..169...95P"><span>Valuing the non-market benefits of estuarine ecosystem services in a river basin context: Testing sensitivity to scope and scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pinto, R.; Brouwer, R.; Patrício, J.; Abreu, P.; Marta-Pedroso, C.; Baeta, A.; Franco, J. N.; Domingos, T.; Marques, J. C.</p> <p>2016-02-01</p> <p>A large scale contingent valuation survey is conducted among residents in one of the largest river basins in Portugal to estimate the non-market benefits of the ecosystem services associated with implementation of the European Water Framework Directive (WFD). Statistical tests of public willingness to pay's sensitivity to scope and scale are carried out. Decreasing marginal willingness to pay (WTP) is found when asking respondents to value two water quality improvement scenarios (within sample comparison), from current moderate water quality conditions to good and subsequently excellent ecological status. However, insensitivity to scale is found when asking half of the respondents to value water quality improvements in the estuary only and the other half in the whole basin (between sample comparison). Although respondents living outside the river basin value water quality improvements significantly less than respondents inside the basin, no spatial heterogeneity can be detected within the basin between upstream and downstream residents. This finding has important implications for spatial aggregation procedures across the population of beneficiaries living in the river basin to estimate its total economic value based on public WTP for the implementation of the WFD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/2000/4112/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/2000/4112/report.pdf"><span>Hydrologic aspects of the 1998-99 drought in the Delaware River basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Paulachok, Gary N.; Krejmas, Bruce E.; Soden, Heidi L.</p> <p>2000-01-01</p> <p>A notable drought in the Delaware River Basin during late 1998 and most of 1999 had a major effect on surface and subsurface components of the hydrologic system. The drought conditions resulted from anomalous patterns in the general atmospheric circulation that diverted Gulf and subtropical Atlantic moisture away from the basin. From September 1998 to August 1999, the accumulated precipitation deficiency was greater than 12 inches in the part of the basin above Trenton, N.J. Flows in some streams, mainly in the middle and lower parts of the basin, decreased to levels near or less than those measured during the drought of the 1960's, the most severe drought of record in the basin. On several dates in August 1999, combined storage in three New York City water-supply reservoirs in the upper Delaware River Basin decreased by more than 2 billion gallons per day. The drought had a pronounced effect on ground-water levels, as the combination of below-normal recharge and elevated rates of evapotranspiration produced abnormal water-level declines and record low water levels in much of the basin. The drought was broken in mid-September 1999 when the remnants of Tropical Storm Floyd delivered drenching rains throughout the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996RvGeo..34...61P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996RvGeo..34...61P"><span>Basin-scale hydrogeologic modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Person, Mark; Raffensperger, Jeff P.; Ge, Shemin; Garven, Grant</p> <p>1996-02-01</p> <p>Mathematical modeling of coupled groundwater flow, heat transfer, and chemical mass transport at the sedimentary basin scale has been increasingly used by Earth scientists studying a wide range of geologic processes including the formation of excess pore pressures, infiltration-driven metamorphism, heat flow anomalies, nuclear waste isolation, hydrothermal ore genesis, sediment diagenesis, basin tectonics, and petroleum generation and migration. These models have provided important insights into the rates and pathways of groundwater migration through basins, the relative importance of different driving mechanisms for fluid flow, and the nature of coupling between the hydraulic, thermal, chemical, and stress regimes. The mathematical descriptions of basin transport processes, the analytical and numerical solution methods employed, and the application of modeling to sedimentary basins around the world are the subject of this review paper. The special considerations made to represent coupled transport processes at the basin scale are emphasized. Future modeling efforts will probably utilize three-dimensional descriptions of transport processes, incorporate greater information regarding natural geological heterogeneity, further explore coupled processes, and involve greater field applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A23F2422R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A23F2422R"><span>Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reboredo, B.; Bellon, G.</p> <p>2017-12-01</p> <p>The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33O..05T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33O..05T"><span>How spatial and temporal rainfall variability affect runoff across basin scales: insights from field observations in the (semi-)urbanised Charlotte watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.</p> <p>2017-12-01</p> <p>Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812930G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812930G"><span>Climatic controls on arid continental basin margin systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni</p> <p>2016-04-01</p> <p>Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed models suggest that the deposits of the Brockram alluvial fans have the potential to contain numerous preferential flow zones. Where these flow zones are adjacent to the unique deposits of the zone of interaction it affects basin-scale fluid flow by: 1) interconnecting decent reservoirs in the distal extent of the basin; 2) creating flow pathways away from these reservoirs; 3) introducing secondary baffles into the system; and, 4) creating a bypass to charge these distal reservoirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGE....11a5001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGE....11a5001C"><span>Wellbore stability analysis and its application in the Fergana basin, central Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han</p> <p>2014-02-01</p> <p>Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195899','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195899"><span>Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Siler, Drew; Zhang, Yingqi; Spycher, Nicolas F.; Dobson, Patrick; McClain, James S.; Gasperikova, Erika; Zierenberg, Robert A.; Schiffman, Peter; Ferguson, Colin; Fowler, Andrew; Cantwell, Carolyn</p> <p>2017-01-01</p> <p>The region surrounding the Modoc Plateau, encompassing parts of northeastern California, southern Oregon, and northwestern Nevada, lies at an intersection between two tectonic provinces; the Basin and Range province and the Cascade volcanic arc. Both of these provinces have substantial geothermal resource base and resource potential. Geothermal systems with evidence of magmatic heat, associated with Cascade arc magmatism, typify the western side of the region. Systems on the eastern side of the region appear to be fault controlled with heat derived from high crustal heat flow, both of which are typical of the Basin and Range. As it has the potential to host Cascade arc-type geothermal resources, Basin and Range-type geothermal resources, and/or resources with characteristics of both provinces, and because there is relatively little current development, the Modoc Plateau region represents an intriguing potential for undiscovered geothermal resources. It remains unclear however, what specific set(s) of characteristics are diagnostic of Modoc-type geothermal systems and how or if those characteristics are distinct from Basin and Range-type or Cascade arc-type geothermal systems. In order to evaluate the potential for undiscovered geothermal resources in the Modoc area, we integrate a wide variety of existing data in order to evaluate geothermal resource potential and exploration risk utilizing ‘play-fairway’ analysis. We consider that the requisite parameters for hydrothermal circulation are: 1) heat that is sufficient to drive circulation, and 2) permeability that is sufficient to allow for fluid circulation in the subsurface. We synthesize data that indicate the extent and distribution of these parameters throughout the Modoc region. ‘Fuzzy logic’ is used to incorporate expert opinion into the utility of each dataset as an indicator of either heat or permeability, and thus geothermal favorability. The results identify several geothermal prospects, areas that are highly favorable for the occurrence of both heat and permeability. These are also areas where there is sufficient data coverage, quality, and consistency that the exploration risk is relatively low. These unknown, undeveloped, and under-developed prospects are well-suited for continued exploration efforts. The results also indicate to what degree the two ‘play-types,’ i.e. Cascade arc-type or Basin and Range-type, apply to each of the geothermal prospects, a useful guide in exploration efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11327163','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11327163"><span>Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muss, A; Robertson, D R; Stepien, C A; Wirtz, P; Bowen, B W</p> <p>2001-03-01</p> <p>Many tropical reef fishes are divided into Atlantic and East Pacific taxa, placing similar species in two very different biogeographic regimes. The tropical Atlantic is a closed ocean basin with relatively stable currents, whereas the East Pacific is an open basin with unstable oceanic circulation. To assess how evolutionary processes are influenced by these differences in oceanography and geography, we analyze a 630-bp region of mitochondrial cytochrome b from 171 individuals in the blenniid genus Ophioblennius. Our results demonstrate deep genetic structuring in the Atlantic species, O. atlanticus, corresponding to recognized biogeographic provinces, with divergences of d = 5.2-12.7% among the Caribbean, Brazilian, St. Helena/Ascension Island, Gulf of Guinea, and Azores/Cape Verde regions. The Atlantic phylogeny is consistent with Pliocene dispersal from the western to eastern Atlantic, and the depth of these separations (along with prior morphological comparisons) may indicate previously unrecognized species. The eastern Pacific species, O. steindachneri, is characterized by markedly less structure than O. atlanticus, with shallow mitochondrial DNA lineages (dmax = 2.7%) and haplotype frequency shifts between locations in the Sea of Cortez, Pacific Panama, Clipperton Island, and the Galapagos Islands. No concordance between genetic structure and biogeographic provinces was found for O. steincdachneri. We attribute the phylogeographic pattern in O. atlanticus to dispersal during the reorganization of Atlantic circulation patterns that accompanied the shoaling of the Isthmus of Panama. The low degree of structure in the eastern Pacific is probably due to unstable circulation and linkage to the larger Pacific Ocean basin. The contrast in genetic signatures between Atlantic and eastern Pacific blennies demonstrates how differences in geology and oceanography have influenced evolutionary radiations within each region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000341','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000341"><span>Trace-element budgets in the Ohio/Sunbury shales of Kentucky: Constraints on ocean circulation and primary productivity in the Devonian-Mississippian Appalachian Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Perkins, R.B.; Piper, D.Z.; Mason, C.E.</p> <p>2008-01-01</p> <p>The hydrography of the Appalachian Basin in late Devonian-early Mississippian time is modeled based on the geochemistry of black shales and constrained by others' paleogeographic reconstructions. The model supports a robust exchange of basin bottom water with the open ocean, with residence times of less than forty years during deposition of the Cleveland Shale Member of the Ohio Shale. This is counter to previous interpretations of these carbon-rich units having accumulated under a stratified and stagnant water column, i.e., with a strongly restricted bottom bottom-water circulation. A robust circulation of bottom waters is further consistent with the palaeoclimatology, whereby eastern trade-winds drove upwelling and arid conditions limited terrestrial inputs of siliciclastic sediment, fresh waters, and riverine nutrients. The model suggests that primary productivity was high (~ 2??g C m- 2 d- 1), although no higher than in select locations in the ocean today. The flux of organic carbon settling through the water column and its deposition on the sea floor was similar to fluxes found in modern marine environments. Calculations based on the average accumulation rate of the marine fraction of Ni suggest the flux of organic carbon settling out of the water column was approximately 9% of primary productivity, versus an accumulation rate (burial) of organic carbon of 0.5% of primary productivity. Trace-element ratios of V:Mo and Cr:Mo in the marine sediment fraction indicate that bottom waters shifted from predominantly anoxic (sulfate reducing) during deposition of the Huron Shale Member of the Ohio Shale to predominantly suboxic (nitrate reducing) during deposition of the Cleveland Shale Member and the Sunbury Shale, but with anoxic conditions occurring intermittently throughout this period. ?? 2008 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004EOSTr..85..333P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004EOSTr..85..333P"><span>Global Change and the Earth System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pollack, Henry N.</p> <p>2004-08-01</p> <p>The Earth system in recent years has come to mean the complex interactions of the atmosphere, biosphere, lithosphere and hydrosphere, through an intricate network of feedback loops. This system has operated over geologic time, driven principally by processes with long time scales. Over the lifetime of the solar system, the Sun has slowly become more radiant, and the geography of continents and oceans basins has evolved via plate tectonics. This geography has placed a first-order constraint on the circulation of ocean waters, and thus has strongly influenced regional and global climate. At shorter time scales, the Earth system has been influenced by Milankovitch orbital factors and occasional exogenous events such as bolide impacts. Under these influences the system chugged along for eons, until some few hundred thousand years ago, when one remarkable species evolved: Homo sapiens. As individuals, humans are of course insignificant in shaping the Earth system, but collectively the six billion human occupants of the planet now rival ``natural'' processes in modifying the Earth system. This profound human influence underlies the dubbing of the present epoch of geologic history as the ``Anthropocene.''</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OcScD..12.2073L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OcScD..12.2073L"><span>The role of vertical shear on the horizontal oceanic dispersion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lanotte, A. S.; Corrado, R.; Lacorata, G.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.</p> <p>2015-09-01</p> <p>The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion simulated by an eddy-permitting ocean model, like, e.g., the Mediterranean Forecasting System, is mosty affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out; (2) poorly resolved time variability of vertical velocity profiles in the upper layer. For the case study we have analysed, we show that a suitable use of kinematic parameterisations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160006514&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160006514&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dclimate%2Bchange"><span>Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.</p> <p>2016-01-01</p> <p>Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51G1360P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51G1360P"><span>Modeling Effects of Groundwater Basin Closure, and Reversal of Closure, on Groundwater Quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pauloo, R.; Guo, Z.; Fogg, G. E.</p> <p>2017-12-01</p> <p>Population growth, the expansion of agriculture, and climate uncertainties have accelerated groundwater pumping and overdraft in aquifers worldwide. In many agricultural basins, a water budget may be stable or not in overdraft, yet disconnected ground and surface water bodies can contribute to the formation of a "closed" basin, where water principally exits the basin as evapotranspiration. Although decreasing water quality associated with increases in Total Dissolved Solids (TDS) have been documented in aquifers across the United States in the past half century, connections between water quality declines and significant changes in hydrologic budgets leading to closed basin formation remain poorly understood. Preliminary results from an analysis with a regional-scale mixing model of the Tulare Lake Basin in California indicate that groundwater salinization resulting from open to closed basin conversion can operate on a decades-to-century long time scale. The only way to reverse groundwater salinization caused by basin closure is to refill the basin and change the hydrologic budget sufficiently for natural groundwater discharge to resume. 3D flow and transport modeling, including the effects of heterogeneity based on a hydrostratigraphic facies model, is used to explore rates and time scales of groundwater salinization and its reversal under different water and land management scenarios. The modeling is also used to ascertain the extent to which local and regional heterogeneity need to be included in order to appropriately upscale the advection-dispersion equation in a basin scale groundwater quality management model. Results imply that persistent managed aquifer recharge may slow groundwater salinization, and complete reversal may be possible at sufficiently high water tables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980034835&hterms=lakshmi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dlakshmi','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980034835&hterms=lakshmi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dlakshmi"><span>Altimetry in Marginal, Semi-Enclosed and Coastal Seas. Part 1; Marginal and Semi-Enclosed Seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kantha, Lakshmi H.; Beitzell, Diane M.; Harper, Scott L.; Leben, Robert R.</p> <p>1994-01-01</p> <p>The objective of this research is to deduce subtidal sea level anomalies in marginal, semi enclosed and coastal seas around the world from altimetric observations so that this data resource can be used both by itself and in conjunction with numerical circulation models to better understand and predict the circulation in these seas. The regions of interest include bodies of water that form the periphery of the principal ocean basins, both here and abroad as shown in the world bathymetry map.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850024258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850024258"><span>Diagnostics of severe convection and subsynoptic scale ageostrophic circulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1985-01-01</p> <p>Diagnostics of severe convection and subsynoptic scale ageostrophic circulations are reported. Mesoscale circulations through forcing of ageostrophic motion by adiabatic, diabatic and frictional processes were studied. The development and application of a hybrid isentropic sigma coordinate numerical model was examined. The numerical model simulates mesoscale ageostrophic circulations associated with propagating jet streaks and severe convection. A complete list of publications and these completed through support of the NASA severe storms research project is included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29374166','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29374166"><span>Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thirumalai, Kaustubh; Quinn, Terrence M; Okumura, Yuko; Richey, Julie N; Partin, Judson W; Poore, Richard Z; Moreno-Chamarro, Eduardo</p> <p>2018-01-26</p> <p>Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196179','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196179"><span>Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thirumalai, Kaustubh; Quinn, Terrence M.; Okumura, Yuko; Richey, Julie; Partin, Judson W.; Poore, Richard Z.; Moreno-Chamarro, Eduardo</p> <p>2018-01-01</p> <p>Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPA13B3909S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPA13B3909S"><span>Rain Basin Design Implications for Soil Microbial Activity and N-mineralization in a Semi-arid Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, C.; Pavao-Zuckerman, M.</p> <p>2014-12-01</p> <p>Rain basins have been an increasingly popular Green Infrastructure (GI) solution to the redistribution of water flow caused by urbanization. This study was conducted to examine how different approaches to basin design, specifically mulching (gravel vs. compost and gravel), influence the water availability of rain basins and the effects this has on the soil microbial activity of the basins. Soil microbes are a driving force of biogeochemical process and may impact the carbon and nitrogen dynamics of rain basin GI. In this study we sampled 12 different residential-scale rain basins, differing in design established at Biosphere 2, Arizona in 2013. Soil samples and measurements were collected before and after the onset of the monsoon season in 2014 to determine how the design of basins mediates the transition from dry to wet conditions. Soil abiotic factors were measured, such as moisture content, soil organic matter (SOM) content, texture and pH, and were related to the microbial biomass size within the basins. Field and lab potential N-mineralization and soil respiration were measured to determine how basin design influences microbial activity and N dynamics. We found that pre-monsoon basins with compost had higher moisture contents and that there was a positive correlation between the moisture content and the soil microbial biomass size of the basins. Pre-monsoon data also suggests that N-mineralization rates for basins with compost were higher than those with only gravel. These design influences on basin-scale biogeochemical dynamics and nitrogen retention may have important implications for urban biogeochemistry at neighborhood and watershed scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC41E..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC41E..07W"><span>SDSM-DC: A smarter approach to downscaling for decision-making? (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilby, R. L.; Dawson, C. W.</p> <p>2011-12-01</p> <p>General Circulation Model (GCM) output has been used for downscaling and impact assessments for at least 25 years. Downscaling methods raise awareness about risks posed by climate variability and change to human and natural systems. However, there are relatively few instances where these analyses have translated into actionable information for adaptation. One reason is that conventional ';top down' downscaling typically yields very large uncertainty bounds in projected impacts at regional and local scales. Consequently, there are growing calls to use downscaling tools in smarter ways that refocus attention on the decision problem rather than on the climate modelling per se. The talk begins with an overview of various application of the Statistical DownScaling Model (SDSM) over the last decade. This sample offers insights to downscaling practice in terms of regions and sectors of interest, modes of application and adaptation outcomes. The decision-centred rationale and functionality of the latest version of SDSM is then explained. This new downscaling tool does not require GCM input but enables the user to generate plausible daily weather scenarios that may be informed by climate model and/or palaeoenvironmental information. Importantly, the tool is intended for stress-testing adaptation options rather than for exhaustive analysis of uncertainty components. The approach is demonstrated by downscaling multi-basin, multi-elevation temperature and precipitation scenarios for the Upper Colorado River Basin. These scenarios are used alongside other narratives of future conditions that might potential affect the security of water supplies, and for evaluating steps that can be taken to manage these risks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC41E..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC41E..07W"><span>SDSM-DC: A smarter approach to downscaling for decision-making? (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilby, R. L.; Dawson, C. W.</p> <p>2013-12-01</p> <p>General Circulation Model (GCM) output has been used for downscaling and impact assessments for at least 25 years. Downscaling methods raise awareness about risks posed by climate variability and change to human and natural systems. However, there are relatively few instances where these analyses have translated into actionable information for adaptation. One reason is that conventional ';top down' downscaling typically yields very large uncertainty bounds in projected impacts at regional and local scales. Consequently, there are growing calls to use downscaling tools in smarter ways that refocus attention on the decision problem rather than on the climate modelling per se. The talk begins with an overview of various application of the Statistical DownScaling Model (SDSM) over the last decade. This sample offers insights to downscaling practice in terms of regions and sectors of interest, modes of application and adaptation outcomes. The decision-centred rationale and functionality of the latest version of SDSM is then explained. This new downscaling tool does not require GCM input but enables the user to generate plausible daily weather scenarios that may be informed by climate model and/or palaeoenvironmental information. Importantly, the tool is intended for stress-testing adaptation options rather than for exhaustive analysis of uncertainty components. The approach is demonstrated by downscaling multi-basin, multi-elevation temperature and precipitation scenarios for the Upper Colorado River Basin. These scenarios are used alongside other narratives of future conditions that might potential affect the security of water supplies, and for evaluating steps that can be taken to manage these risks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JHyd..498...46B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JHyd..498...46B"><span>Downscaling of a global climate model for estimation of runoff, sediment yield and dam storage: A case study of Pirapama basin, Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braga, Ana Cláudia F. Medeiros; Silva, Richarde Marques da; Santos, Celso Augusto Guimarães; Galvão, Carlos de Oliveira; Nobre, Paulo</p> <p>2013-08-01</p> <p>The coastal zone of northeastern Brazil is characterized by intense human activities and by large settlements and also experiences high soil losses that can contribute to environmental damage. Therefore, it is necessary to build an integrated modeling-forecasting system for rainfall-runoff erosion that assesses plans for water availability and sediment yield that can be conceived and implemented. In this work, we present an evaluation of an integrated modeling system for a basin located in this region with a relatively low predictability of seasonal rainfall and a small area (600 km2). The National Center for Environmental Predictions - NCEP’s Regional Spectral Model (RSM) nested within the Center for Weather Forecasting and Climate Studies - CPTEC’s Atmospheric General Circulation Model (AGCM) were investigated in this study, and both are addressed in the simulation work. The rainfall analysis shows that: (1) the dynamic downscaling carried out by the regional RSM model approximates the frequency distribution of the daily observed data set although errors were detected in the magnitude and timing (anticipation of peaks, for example) at the daily scale, (2) an unbiased precipitation forecast seemed to be essential for use of the results in hydrological models, and (3) the information directly extracted from the global model may also be useful. The simulated runoff and reservoir-stored volumes are strongly linked to rainfall, and their estimation accuracy was significantly improved at the monthly scale, thus rendering the results useful for management purposes. The runoff-erosion forecasting displayed a large sediment yield that was consistent with the predicted rainfall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC23D..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC23D..07C"><span>Variability of extreme rainfall over La Plata Basin and Amazon Basin in South America in model simulations of the 20th century and projections under global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cavalcanti, I. F.</p> <p>2011-12-01</p> <p>The two largest river basins in South America are Amazon Basin (AMB) in the tropical region and La Plata Basin (LPB) in subtropical and extratropical regions. Extreme droughts have occurred during this decade in Amazonia region which have affected the transportation, fishing activities with impacts in the local population, and also affecting the forest. Droughts or floods over LPB have impacts on agriculture, hydroelectricity power and social life. Therefore, monthly wet and dry extremes in these two regions have a profound effect on the economy and society. Observed rainfall over Amazon Basin (AMB) and La Plata Basin (LPB) is analyzed in monthly timescale using the Standardized Precipitation Index (SPI), from 1979 to 1999. This period is taken to compare GPCP data with HADCM3 simulations (Hadley Centre) of the 20th century and to analyze reanalyses data which have the contribution of satellite information after 1979. HADCM3 projections using SRES A2 scenario is analyzed in two periods: 2000 to 2020 and 2079 to 2099 to study the extremes frequency in a near future and in a longer timescale. Extreme, severe and moderate cases are identified in the northern and southern sectors of LPB and in the western and eastern sectors of AMB. The main objective is to analyze changes in the frequency of cases, considering the global warming and the associated mechanisms. In the observations for the 20th century, the number of extreme rainy cases is higher than the number of dry cases in both sectors of LPB and AMB. The model simulates this variability in the two sectors of LPB and in the west sector of AMB. In the near future 2000 to 2020 the frequency of wet and dry extremes does not change much in LPB and in the western sector of AMB, but the wet cases increase in the eastern AMB. However, in the period of 2079 to 2099 the projections indicate increase of wet cases in LPB and increase of dry cases in AMB. The influence of large scale features related to Sea Surface Temperature Anomalies, Walker and Hadley circulations, teleconnections, as well as the regional features related to humidity flux are discussed. The extreme droughts of 2005 and 2010 in Amazonia are show to be related to these features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.9893B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.9893B"><span>Can the Ocean's Heat Engine Control Horizontal Circulation? Insights From the Caspian Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruneau, Nicolas; Zika, Jan; Toumi, Ralf</p> <p>2017-10-01</p> <p>We investigate the role of the ocean's heat engine in setting horizontal circulation using a numerical model of the Caspian Sea. The Caspian Sea can be seen as a virtual laboratory—a compromise between realistic global models that are hampered by long equilibration times and idealized basin geometry models, which are not constrained by observations. We find that increases in vertical mixing drive stronger thermally direct overturning and consequent conversion of available potential to kinetic energy. Numerical solutions with water mass structures closest to observations overturn 0.02-0.04 × 106 m3/s (sverdrup) representing the first estimate of Caspian Sea overturning. Our results also suggest that the overturning is thermally forced increasing in intensity with increasing vertical diffusivity. Finally, stronger thermally direct overturning is associated with a stronger horizontal circulation in the Caspian Sea. This suggests that the ocean's heat engine can strongly impact broader horizontal circulations in the ocean.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24563556','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24563556"><span>Characteristic mega-basin water storage behavior using GRACE.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reager, J T; Famiglietti, James S</p> <p>2013-06-01</p> <p>[1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km 2 ), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world's largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤  E f  ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3925992','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3925992"><span>Characteristic mega-basin water storage behavior using GRACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reager, J T; Famiglietti, James S</p> <p>2013-01-01</p> <p>[1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km2), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world’s largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤ Ef ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation. PMID:24563556</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.132..465R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.132..465R"><span>Diversity in the representation of large-scale circulation associated with ENSO-Indian summer monsoon teleconnections in CMIP5 models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.</p> <p>2018-04-01</p> <p>Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are underestimated. On the other hand, many G2 models are able to represent most of large-scale circulation over Indo-Pacific region associated with El Niño and hence provide more realistic ENSO-ISM teleconnections. Therefore, this study advocates the importance of representation/simulation of large-scale circulation patterns during El Niño years in coupled models in order to capture El Niño-monsoon teleconnections well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036869','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036869"><span>Development and application of a pollen-based paleohydrologic reconstruction from the lower Roanoke River Basin, North Carolina, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Willard, D.; Bernhardt, C.; Brown, R.; Landacre, B.; Townsend, P.</p> <p>2011-01-01</p> <p>We used pollen assemblages to reconstruct late-Holocene paleohydrologic patterns in floodplain deposits from the lower Roanoke River basin (North Carolina, southeastern USA). Using 120 surface samples from 38 transects, we documented statistical relationships between pollen assemblages, vegetation, and landforms. Backswamp pollen assemblages (long hydroperiods) are dominated by Nyssa (tupelo) and Taxodium (cypress) and have high pollen concentrations. Sediments from elevated levees and seasonally flooded forests (shorter hydroperiods) are characterized by dominant Pinus (pine) pollen, variable abundance of hardwood taxa, and low pollen concentrations. We apply the calibration data set to interpret past vegetation and paleohydrology. Pollen from a radiocarbon-dated sediment core collected in a tupelo-cypress backswamp indicates centennial-scale fluctuations in forest composition during the last 2400 years. Backswamp vegetation has occupied the site since land clearance began ~300 years ago. Recent dam emplacement affected sedimentation rates, but vegetation changes are small compared with those caused by pre-Colonial climate variability. The occurrence of wetter conditions from ~2200 to 1800 cal. yr BP, ~1100 to 750 cal. yr BP, and ~400 to 250 cal. yr BP may indicate changes in cyclonic circulation patterns related to shifts in the position of the Bermuda High and jet stream.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15183052','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15183052"><span>Phylogeography and molecular evolution of dengue 2 in the Caribbean basin, 1981-2000.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Foster, Jerome E; Bennett, Shannon N; Carrington, Christine V F; Vaughan, Helen; McMillan, W Owen</p> <p>2004-06-20</p> <p>We sequenced the envelope (E) genes of 59 DEN-2 isolates collected from ten Caribbean islands, six South American countries, and two Central American countries between 1981 and 2000, a period characterized by hyperendemicity and increased incidence of severe dengue. Fifty-two isolates belonged to "American/Asian" subtype IIIb, possessing a characteristic polar residue at envelope aa position 390 (N [n = 48] or S [n = 4]) common to that group. Six isolates from Trinidad (1981), Honduras (1991 [4]), and El Salvador (1987) fell into the "Native American" subtype V (D at aa 390), and one from Honduras (1986) belonged to "Asian" subtype I. The data suggest that after its first isolation in the Caribbean in 1981, genotype IIIb spread throughout the Americas and effectively replaced subtype V throughout the Caribbean basin. The strain also evolved into several distinct lineages, based on substitutions in the E glycoprotein (amino acids 91 and 131), two of which were still in circulation in 2000. Interestingly, a molecular clock did not fit the data well, suggesting that other sources of rate variation, such as differential selection or differences in effective population sizes, may exist among lineages. Our results indicate the importance of large temporal- and geographical-scale phylogenetic studies in understanding disease dynamics, particularly where replacements between regions can occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918261A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918261A"><span>3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier</p> <p>2017-04-01</p> <p>Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network (DFN) and 3D elements to simulate groundwater flow in the 3D regional fault network and in sedimentary deposits, respectively. Firstly, the geometry of the 3D fracture network and its hydraulic connections with 3D elements (sedimentary cover) is built in accordance with the tectonic history and based on geological and geophysical evidences. Secondly, data from previous studies and site-specific geological knowledge provide information on the fault zones family sets and on respective hydraulic properties. Then, from the simulated 3D groundwater flow model and based on a particle tracking methodology, groundwater flow paths are constructed. The regional groundwater flow paths results are extracted and analysed to delineate preferential zones to explore at finer scale and so to define the potential positions of the exploration wells. This work is conducted in the framework of the IMAGE project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553), which aims to develop new methods for better siting of exploitation wells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930010903','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930010903"><span>Observational and modeling studies of heat, moisture, precipitation, and global-scale circulation patterns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vincent, Dayton G.; Robertson, Franklin</p> <p>1993-01-01</p> <p>The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940020409&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940020409&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplanetary%2Bmotion"><span>Regarding tracer transport in Mars' winter atmosphere in the presence of nearly stationary, forced planetary waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hollingsworth, Jeffrey L.; Haberle, R. M.; Houben, Howard C.</p> <p>1993-01-01</p> <p>Large-scale transport of volatiles and condensates on Mars, as well as atmospheric dust, is ultimately driven by the planet's global-scale atmospheric circulation. This circulation arises in part from the so-called mean meridional (Hadley) circulation that is associated with rising/poleward motion in low latitudes and sinking/equatorward motion in middle and high latitudes. Intimately connected to the mean circulation is an eddy-driven component due to large-scale wave activity in the planet's atmosphere. During winter this wave activity arises both from traveling weather systems (i.e., barotropic and baroclinic disturbances) and from 'forced' disturbances (e.g., the thermal tides and surface-forced planetary waves). Possible contributions to the effective (net) transport circulation from forced planetary waves are investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CNSNS..20..794I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CNSNS..20..794I"><span>Transport induced by mean-eddy interaction: II. Analysis of transport processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ide, Kayo; Wiggins, Stephen</p> <p>2015-03-01</p> <p>We present a framework for the analysis of transport processes resulting from the mean-eddy interaction in a flow. The framework is based on the Transport Induced by the Mean-Eddy Interaction (TIME) method presented in a companion paper (Ide and Wiggins, 2014) [1]. The TIME method estimates the (Lagrangian) transport across stationary (Eulerian) boundaries defined by chosen streamlines of the mean flow. Our framework proceeds after first carrying out a sequence of preparatory steps that link the flow dynamics to the transport processes. This includes the construction of the so-called "instantaneous flux" as the Hovmöller diagram. Transport processes are studied by linking the signals of the instantaneous flux field to the dynamical variability of the flow. This linkage also reveals how the variability of the flow contributes to the transport. The spatio-temporal analysis of the flux diagram can be used to assess the efficiency of the variability in transport processes. We apply the method to the double-gyre ocean circulation model in the situation where the Rossby-wave mode dominates the dynamic variability. The spatio-temporal analysis shows that the inter-gyre transport is controlled by the circulating eddy vortices in the fast eastward jet region, whereas the basin-scale Rossby waves have very little impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..135H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..135H"><span>Global-scale hydrological response to future glacier mass loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huss, Matthias; Hock, Regine</p> <p>2018-01-01</p> <p>Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources1-4, but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce5,6. Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum (`peak water') is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950032432&hterms=regional+impacts+climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dregional%2Bimpacts%2Bclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950032432&hterms=regional+impacts+climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dregional%2Bimpacts%2Bclimate%2Bchange"><span>Regional climates in the GISS general circulation model: Surface air temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hewitson, Bruce</p> <p>1994-01-01</p> <p>One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..553..130B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..553..130B"><span>The near-term prediction of drought and flooding conditions in the northeastern United States based on extreme phases of AMO and NAO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berton, Rouzbeh; Driscoll, Charles T.; Adamowski, Jan F.</p> <p>2017-10-01</p> <p>A series of hydroclimatic teleconnection patterns were identified between variations in either Atlantic or Pacific oceanic indices with precipitation and discharge anomalies in the northeastern United States. We hypothesized that temporal annual or seasonal changes in discharge could be explained by variations in extreme phases of the Atlantic Multi-decadal Oscillation (AMO index, SST: Sea Surface Temperature anomalies) and the North Atlantic Oscillation (NAO index, SLP: Sea-Level Pressure anomalies) up to three seasons in advance. The Merrimack River watershed, the fourth largest basin in New England, with a drainage area of 13,000 km2, is a compelling study site because it not only provides an opportunity to investigate the teleconnection between hydrologic variables and large-scale climate circulation patterns, but also how those patterns may become obscured by anthropogenic disturbances such as river regulation or urban development. We considered precipitation and discharge data of 21 gauging stations within the Merrimack River watershed, including the Hubbard Brook Experimental Forest (HBEF), NH, with a median record length of 55 years beginning as early as 1904. The discharge anomalies were statistically significant (p-value ≤ 0.2) between extreme positive and negative phases of AMO (1857-2011) and NAO (1900-2011) and revealed the potential teleconnectivity of climate circulation patterns with discharge. Annual and seasonal correlations of discharge were examined with the extreme phases of AMO and NAO at zero-, one-, or two- year/season lags (total of 30 scenarios). When AMO was greater than 0.2, the strongest correlations of AMO and NAO with discharge were observed at headwater catchments. This correlation weakened downstream towards larger regulated and/or developed sub-basins. We introduced a simple approach for near-term prediction of drought and flooding events. An exponential decay function was regressed through the historic occurrence of the relative frequency of wet, average, and dry discharge conditions with regards to the extreme phases of AMO and NAO. While the function was decaying, the tail asymptotically merged into and stabilized at the theoretical probability of the event. As the basin scale increased, the probability of wet, average, and dry discharge conditions decreased. The Merrimack River watershed will most likely experience greater than average discharge as its extreme condition, therefore development should be avoided on flood plains. Furthermore, the current reservoir storage capacity in the Merrimack should be improved in order to accommodate excess water input and minimize flood damage. Future research should target changes in the magnitude and timing of high discharge events in order to develop adaptation strategies for aging hydraulic infrastructure in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5117/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5117/"><span>Implementation of local grid refinement (LGR) for the Lake Michigan Basin regional groundwater-flow model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hoard, C.J.</p> <p>2010-01-01</p> <p>The U.S. Geological Survey is evaluating water availability and use within the Great Lakes Basin. This is a pilot effort to develop new techniques and methods to aid in the assessment of water availability. As part of the pilot program, a regional groundwater-flow model for the Lake Michigan Basin was developed using SEAWAT-2000. The regional model was used as a framework for assessing local-scale water availability through grid-refinement techniques. Two grid-refinement techniques, telescopic mesh refinement and local grid refinement, were used to illustrate the capability of the regional model to evaluate local-scale problems. An intermediate model was developed in central Michigan spanning an area of 454 square miles (mi2) using telescopic mesh refinement. Within the intermediate model, a smaller local model covering an area of 21.7 mi2 was developed and simulated using local grid refinement. Recharge was distributed in space and time using a daily output from a modified Thornthwaite-Mather soil-water-balance method. The soil-water-balance method derived recharge estimates from temperature and precipitation data output from an atmosphere-ocean coupled general-circulation model. The particular atmosphere-ocean coupled general-circulation model used, simulated climate change caused by high global greenhouse-gas emissions to the atmosphere. The surface-water network simulated in the regional model was refined and simulated using a streamflow-routing package for MODFLOW. The refined models were used to demonstrate streamflow depletion and potential climate change using five scenarios. The streamflow-depletion scenarios include (1) natural conditions (no pumping), (2) a pumping well near a stream; the well is screened in surficial glacial deposits, (3) a pumping well near a stream; the well is screened in deeper glacial deposits, and (4) a pumping well near a stream; the well is open to a deep bedrock aquifer. Results indicated that a range of 59 to 50 percent of the water pumped originated from the stream for the shallow glacial and deep bedrock pumping scenarios, respectively. The difference in streamflow reduction between the shallow and deep pumping scenarios was compensated for in the deep well by deriving more water from regional sources. The climate-change scenario only simulated natural conditions from 1991-2044, so there was no pumping stress simulated. Streamflows were calculated for the simulated period and indicated that recharge over the period generally increased from the start of the simulation until approximately 2017, and decreased from then to the end of the simulation. Streamflow was highly correlated with recharge so that the lowest streamflows occurred in the later stress periods of the model when recharge was lowest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1110513','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1110513"><span>3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Siler, Drew L; Faulds, James E; Mayhew, Brett</p> <p>2013-04-16</p> <p>Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundarymore » between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000039787&hterms=energy+regions+Remote&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denergy%2Bregions%2BRemote','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000039787&hterms=energy+regions+Remote&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denergy%2Bregions%2BRemote"><span>Diagnosing Warm Season Precipitation Over the GCIP Region from a GCM and Reanalysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oglesby, Robert; Marshall, Susan; Roads, John; Robertson, Franklin R.</p> <p>2000-01-01</p> <p>A 45 year simulation using a global general circulation model (GCM), the National Center for Atmospheric Research (NCAR) Community Climate Model v.3 (CCM3), forced with observed sea surface temperatures (SST), and 39 years of global National Centers for Environmental Prediction (NCEP) reanalyses were analyzed to determine Mississippi River basin warm season (May, June, July or MJJ) wet and dry year composites in the water and energy budgets. Years that have increased MJJ soil moisture over the GEWEX (Global Water and Energy Experiment) Continental Interior Project (GCIP) region also have high precipitation, lower surface temperature, decreased Bowen ratio, and reduced 500 hPa geopotential height (essentially reduced MJJ ridging). The reverse is true for years that have reduced MJJ soil moisture. Wet years are also accompanied by a general increase in moisture transport from the Gulf of Mexico into the central U.S. There is some indication (though weaker) that soil moisture may then affect precipitation and other quantities and be affected in turn by 500 hPa geopotential heights. The correlations are somewhat low, however, demonstrating the difficulty in providing definitive physical links between the remote and local effects. Analysis of two individual years with an extreme wet event (1993) and an extreme dry event (1988) yields the same general relationships as with the wet and dry composites. The composites from this study are currently serving as the basis for a series of experiments aimed at determining the predictability of the land surface and remote SST on the Mississippi River basin and other large-scale river basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GPC...162..199W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GPC...162..199W"><span>Historical and future changes of frozen ground in the upper Yellow River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Taihua; Yang, Dawen; Qin, Yue; Wang, Yuhan; Chen, Yun; Gao, Bing; Yang, Hanbo</p> <p>2018-03-01</p> <p>Frozen ground degradation resulting from climate warming on the Tibetan Plateau has aroused wide concern in recent years. In this study, the maximum thickness of seasonally frozen ground (MTSFG) is estimated by the Stefan equation, which is validated using long-term frozen depth observations. The permafrost distribution is estimated by the temperature at the top of permafrost (TTOP) model, which is validated using borehole observations. The two models are applied to the upper Yellow River Basin (UYRB) for analyzing the spatio-temporal changes in frozen ground. The simulated results show that the areal mean MTSFG in the UYRB decreased by 3.47 cm/10 a during 1965-2014, and that approximately 23% of the permafrost in the UYRB degraded to seasonally frozen ground during the past 50 years. Using the climate data simulated by 5 General Circulation Models (GCMs) under the Representative Concentration Pathway (RCP) 4.5, the areal mean MTSFG is projected to decrease by 1.69 to 3.07 cm/10 a during 2015-2050, and approximately 40% of the permafrost in 1991-2010 is projected to degrade into seasonally frozen ground in 2031-2050. This study provides a framework to estimate the long-term changes in frozen ground based on a combination of multi-source observations at the basin scale, and this framework can be applied to other areas of the Tibetan Plateau. The estimates of frozen ground changes could provide a scientific basis for water resource management and ecological protection under the projected future climate changes in headwater regions on the Tibetan Plateau.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9267S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9267S"><span>Computing 3-D wavefields in mantle circulations models to test hypotheses on the origin of lower mantle heterogeneity under Africa directly against seismic observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schuberth, Bernhard; Zaroli, Christophe; Nolet, Guust</p> <p>2015-04-01</p> <p>Of particular interest for the tectonic evolution of the Atlantic region is the influence of lower mantle structure under Africa on flow in the upper mantle beneath the ocean basin. Along with its Pacific counterpart, the large African anomaly in the lowermost mantle with strongly reduced seismic velocities has received considerable attention in seismological and geodynamic studies. Several seismological observations are typically taken as an indication that these two anomalies are being caused by large-scale compositional variations and that they are piles of material with higher density than normal mantle rock. This would imply negative buoyancy in the lowermost mantle under Africa, which has important implications for the flow at shallower depth and inferences on the processes that led to the formation of the Atlantic Ocean basin. However, a large number of recent studies argue for a strong thermal gradient across the core-mantle boundary that might provide an alternative explanation for the lower mantle anomaly through the resulting large lateral temperature variations. Recently, we developed a new joint forward modeling approach to test such geodynamic hypotheses directly against the seismic observations: Seismic heterogeneity is predicted by converting the temperature field of a high-resolution 3-D mantle circulation model into seismic velocities using thermodynamic models of mantle mineralogy. 3-D global wave propagation in the synthetic elastic structures is then simulated using a spectral element method. Being based on forward modelling only, this approach allows us to generate synthetic wavefields and seismograms independently of seismic observations. The statistics of observed long-period body wave traveltime variations show a markedly different behaviour for P- and S-waves: the standard deviation of P-wave delay times stays almost constant with ray turning depth, while that of the S-wave delay times increases strongly throughout the mantle. In an earlier study, we showed that synthetic traveltime variations computed for an isochemical mantle circulation model with strong core heating can reproduce these different trends. This was taken as a strong indication that seismic heterogeneity in the lower mantle is likely dominated by thermal variations on large length-scales (i.e., relevant for long-period body waves). We will discuss the robustness of this earlier conclusion by exploring the uncertainties in the mineralogical models used to convert temperatures to seismic velocities. In particular, we investigate the influence of anelasticity on the standard deviation of our synthetic traveltime variations. Owing to the differences in seismic frequency content between laboratory measurements (MHz to GHz) and the Earth (mHz to Hz), the seismic velocities given in the mineralogical model need to be adjusted; that is, corrected for dispersion due to anelastic effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412181M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412181M"><span>Effects of Medieval Warm Period and Little Ice Age on the hydrology of Mediterranean region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Markonis, Y.; Kossieris, P.; Lykou, A.; Koutsoyiannis, D.</p> <p>2012-04-01</p> <p>Medieval Warm Period (950 - 1250) and Little Ice Age (1450 - 1850) are the most recent periods that reflect the magnitude of natural climate variability. As their names suggest, the first one was characterized by higher temperatures and a generally moister climate, while the opposite happened during the second period. Although their existence is well documented for Northern Europe and North America, recent findings suggest strong evidence in lower latitudes as well. Here we analyze qualitatively the influence of these climatic fluctuations on the hydrological cycle all over the Mediterranean basin, highlighting the spatial characteristics of precipitation and runoff. We use both qualitative estimates from literature review in the field of paleoclimatology and statistical analysis of proxy data series. We investigate possible regional patterns and possible tele-connections with large scale atmospheric circulation phenomena such as North Atlantic Oscillation, Siberian High, African Sahel Rainfall and Indian Monsoon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GBioC..32..680H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GBioC..32..680H"><span>Mesoscale Effects on Carbon Export: A Global Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.; Moore, Jefferson K.</p> <p>2018-04-01</p> <p>Carbon export from the surface to the deep ocean is a primary control on global carbon budgets and is mediated by plankton that are sensitive to physical forcing. Earth system models generally do not resolve ocean mesoscale circulation (O(10-100) km), scales that strongly affect transport of nutrients and plankton. The role of mesoscale circulation in modulating export is evaluated by comparing global ocean simulations conducted at 1° and 0.1° horizontal resolution. Mesoscale resolution produces a small reduction in globally integrated export production (<2%) however, the impact on local export production can be large (±50%), with compensating effects in different ocean basins. With mesoscale resolution, improved representation of coastal jets block off-shelf transport, leading to lower export in regions where shelf-derived nutrients fuel production. Export is further reduced in these regions by resolution of mesoscale turbulence, which restricts the spatial area of production. Maximum mixed layer depths are narrower and deeper across the Subantarctic at higher resolution, driving locally stronger nutrient entrainment and enhanced summer export production. In energetic regions with seasonal blooms, such as the Subantarctic and North Pacific, internally generated mesoscale variability drives substantial interannual variation in local export production. These results suggest that biogeochemical tracer dynamics show different sensitivities to transport biases than temperature and salinity, which should be considered in the formulation and validation of physical parameterizations. Efforts to compare estimates of export production from observations and models should account for large variability in space and time expected for regions strongly affected by mesoscale circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeCoA.193...14D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeCoA.193...14D"><span>Neodymium isotopes in authigenic phases, bottom waters and detrital sediments in the Gulf of Alaska and their implications for paleo-circulation reconstruction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Du, Jianghui; Haley, Brian A.; Mix, Alan C.</p> <p>2016-11-01</p> <p>The isotopic composition of neodymium (εNd) extracted from sedimentary Fe-Mn oxyhydroxide offers potential for reconstructing paleo-circulation, but its application depends on extraction methodology and the mechanisms that relate authigenic εNd to bottom water. Here we test methods to extract authigenic εNd from Gulf of Alaska (GOA) sediments and assess sources of leachate Nd, including potential contamination from trace dispersed volcanic ash. We show that one dominant phase is extracted via leaching of core-top sediments. Major and trace element geochemistry demonstrate that this phase is authigenic Fe-Mn oxyhydroxide. Contamination of leachate (authigenic) Nd from detrital sources is insignificant (<1%); our empirical results are consistent with established kinetic mineral dissolution rates and theory. Contamination of extracted εNd from leaching of volcanic ash is below analytical uncertainty. However, the εNd of core-top leachates in the GOA is consistently more radiogenic than bottom water. We infer that authigenic phases record pore water εNd, and the relationships of εNd among bottom waters, pore waters, authigenic phases and detrital sediments are primarily governed by the exposure time of bottom water to sea-floor sediments, rate of exchange across the sediment-water interface and the reactivity and composition of detrital sediments. We show that this conceptual model is applicable on the Pacific basin scale and provide a new framework to understand the role of authigenic phases in both modern and paleo-applications, including the use of authigenic εNd as a paleo-circulation tracer.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JGRC..11012019H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JGRC..11012019H"><span>Canary Current and North Equatorial Current from an inverse box model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>HernáNdez-Guerra, Alonso; Fraile-Nuez, Eugenio; López-Laatzen, Federico; MartíNez, Antonio; Parrilla, Gregorio; VéLez-Belchí, Pedro</p> <p>2005-12-01</p> <p>The large-scale Canary Basin circulation is estimated from a box inverse model applied to hydrographic data from a quasi-synoptic survey carried out in September 2003. The cruise consisted of 76 full depth CTD and oxygen stations. Circulation is required to nearly conserve mass and anomalies of salinity and heat within layers bounded by neutral surfaces. It permits advective and diffusive exchange between layers and an adjustment of the Ekman transport and the freshwater flux divergences. The Canary Current at the thermocline layer transports a net mass of 4.7 ± 0.8 Sv southward north of the Canary Islands from the African coast to 19°W. It is divided into a northward circulation at a rate of 1.1 ± 0.5 Sv between the African coast and Lanzarote Island and a southward transport of 5.8 ± 0.6 Sv. It transports North Atlantic Central Water and organic matters advected offshore by the filaments protruding from the upwelling system off northwest Africa. At 24°N, the Canary Current feeds the North Equatorial Current that transports a mixture of North and South Atlantic Central Waters westward. In the intermediate layer a southwestward flow of 1.2 ± 1.1 Sv transports Mediterranean Water to the Subtropical Gyre, though the highest salt flux is transported by a meddy. Oxygen distribution and mass transport suggest a northeastward deep flow of a water mass colder than 2.2°C consisting of diluted Antarctic Bottom Water. The heat and freshwater divergences and the average dianeutral velocity and diffusion between the sections and the African coast are negligible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987PalOc...2..333R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987PalOc...2..333R"><span>Rainy Periods and Bottom Water Stagnation Initiating Brine Accumulation and Metal Concentrations: 1. The Late Quaternary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rossignol-Strick, Martine</p> <p>1987-06-01</p> <p>A working hypothesis is proposed to account for the present accumulation of brines in isolated pockets of the ocean floor and for the formation of the underlying organic and metal-rich sediments. These are the Tyro and Bannock basins in the East Mediterranean, the Red Sea Deeps, and the Orca Basin in the northern Gulf of Mexico. Initiation of brine-derived deposition in the Red Sea Deeps and Orca Basin occurred between 12,000 and 8000 years B.P. This time bracket also encompasses the formation of the latest East Mediterranean sapropel and the wettest global climate since the last glacial maximum. This wet period first appeared in the tropics around 12,000 years B.P, then in the subtropical and middle latitudes. During the same period, the 23,000 year precession cycle brought the summer insolation of the northern hemisphere to its peak at 11,000 years B.P. with retreating northern hemisphere ice sheets. The Red Sea Deeps and the Orca Basin became anoxic during this humid period, and metal-rich sapropel deposition then began. In contrast, the Tyro and Bannock basins began accumulating a brine long before and persisted beyond this climatic stage. The hypothesis involves two propositions: (1) As in the Eastern Mediterranean Sea, marine anoxia was mainly the consequence of the large influx of continental runoff and local precipitation. Longer residence time of bottom waters, so-called "stagnation," in silled rimmed basins would have resulted from lower salinity at the sea surface in areas of deep water formation in the Eastern Mediterranean, the Red Sea, and the Gulf of Mexico and (2) Miocene or older evaporites underlie these basins or outcrop on their flanks. Leaching from these evaporites was an ongoing process before the quasi-stagnation phase, but the initial leachate, much less saline than the present brines, was continuously flushed by bottom circulation. The climate-induced quiescence of bottom waters in these basins enabled the leachate to accumulate. The feedback of stagnation by increased density progressively raised the salinity of entrapped bottom waters to the present brine concentration. The high density has resisted brine removal by bottom circulation until present time, long after cessation of the initiating wet period. The brines therefore are stagnant, fossil waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.183..283Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.183..283Y"><span>Temporal and spatial variations of precipitation in Northwest China during 1960-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Peng; Xia, Jun; Zhang, Yongyong; Hong, Si</p> <p>2017-01-01</p> <p>Based on the precipitation data from 96 weather stations in Northwest China (NWC) during 1960-2013, the Continuous Wavelet Transform (CWT) and the Mann-Kendall (MK) test were applied to analyze the precipitation spatiotemporal variations at different time scales. The relationships between the original precipitation and different periodic components were investigated. The results indicated that the annual precipitation was significantly increasing (P < 0.01) at the rate of 0.55 mm/a in the NWC. In terms of seasonal precipitation, the summer original precipitation significantly increased (P < 0.05) in the Southern Altay Mountain Basin (SAMB), Qaidam Basin (QB), Qiang Tang Plateau Basin (QTPB), Turpan-Hami Basin (THB), Tarim Desert Basin (TDB), Northern Tianshan Mountain Basin (NTMB) and NWC. For the winter original precipitation, except the Inner Mongolia Inland Rivers Basin and Northern Kunlun Mountain Basin, the significant increases (P < 0.05) were detected in the other sub-basins. In terms of monthly precipitation, significant increases were detected in January in the SAMB, NTMB and NWC, and July in the QB, Headstreams of Tarim River Basin (HTRB) and N. Additionally, most of the increasing and decreasing trends began in the mid-1980s or mid-1990s. Moreover, the periodic components were not always similar to the original data with the significant trends. The dominant scale of the original data from the periodic components was different in spatiotemporal distribution. Meanwhile, the relationship between the precipitation and El Niño-Southern Oscillation (ENSO) was different from period to period and from time scale to time scale. This study will help to develop better management measures to account for climate change and the supply/demand of water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC31E1042A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC31E1042A"><span>Trans-Pacific ENSO teleconnections pose a correlated risk to global agriculture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, W. B.; Seager, R.; Cane, M. A.; Baethgen, W.</p> <p>2017-12-01</p> <p>The El Niño Southern Oscillation (ENSO) is a major source of interannual climate variability, particularly in the Pacific Basin. ENSO life-cycles tend to evolve over multiple years, as do the associated trans-Pacific ENSO teleconnections. This analysis, however, represents the first attempt to characterize the structure of the risk posed by ENSO to wheat, maize and soybean production across the Pacific Basin. Our results indicate that most ENSO teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the spring. During the late summer and early fall of a developing ENSO event, the tropical Pacific forces an atmospheric anomaly in the midlatitudes that spans the Pacific Basin. This teleconnection directly links the soybean and maize growing seasons of the US, Mexico and China. It also connects the wheat growing seasons of Argentina, southern Brazil and Australia. The ENSO event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the ENSO-induced circulation anomalies persist through the wheat flowering seasons in China and the US. While the prospect of ENSO forcing simultaneous droughts in major food producing regions seems disastrous, there may be a silver lining from the perspective of global food security: trans-Pacific ENSO teleconnections to yields are often offsetting between major producing regions in the eastern and western portions of the Pacific Basin. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in China, Mexico and northeast Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Finally, we investigate how trade networks interact with this structure of ENSO teleconnections to influence food security. Global trade may shift the burden of poor growing conditions onto import-dependent countries if multiple exporting nations experience crop failures simultaneously. But trade may also mitigate food security crises if shortfalls from one major producing region are compensated by good harvests elsewhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PrOce.160..101S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PrOce.160..101S"><span>The accuracy of estimates of the overturning circulation from basin-wide mooring arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinha, B.; Smeed, D. A.; McCarthy, G.; Moat, B. I.; Josey, S. A.; Hirschi, J. J.-M.; Frajka-Williams, E.; Blaker, A. T.; Rayner, D.; Madec, G.</p> <p>2018-01-01</p> <p>Previous modeling and observational studies have established that it is possible to accurately monitor the Atlantic Meridional Overturning Circulation (AMOC) at 26.5°N using a coast-to-coast array of instrumented moorings supplemented by direct transport measurements in key boundary regions (the RAPID/MOCHA/WBTS Array). The main sources of observational and structural errors have been identified in a variety of individual studies. Here a unified framework for identifying and quantifying structural errors associated with the RAPID array-based AMOC estimates is established using a high-resolution (eddy resolving at low-mid latitudes, eddy permitting elsewhere) ocean general circulation model, which simulates the ocean state between 1978 and 2010. We define a virtual RAPID array in the model in close analogy to the real RAPID array and compare the AMOC estimate from the virtual array with the true model AMOC. The model analysis suggests that the RAPID method underestimates the mean AMOC by ∼1.5 Sv (1 Sv = 106 m3 s-1) at ∼900 m depth, however it captures the variability to high accuracy. We examine three major contributions to the streamfunction bias: (i) due to the assumption of a single fixed reference level for calculation of geostrophic transports, (ii) due to regions not sampled by the array and (iii) due to ageostrophic transport. A key element in (i) and (iii) is use of the model sea surface height to establish the true (or absolute) geostrophic transport. In the upper 2000 m, we find that the reference level bias is strongest and most variable in time, whereas the bias due to unsampled regions is largest below 3000 m. The ageostrophic transport is significant in the upper 1000 m but shows very little variability. The results establish, for the first time, the uncertainty of the AMOC estimate due to the combined structural errors in the measurement design and suggest ways in which the error could be reduced. Our work has applications to basin-wide circulation measurement arrays at other latitudes and in other basins as well as quantifying systematic errors in ocean model estimates of the AMOC at 26.5°N.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914729D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914729D"><span>Observing mass exchange with the Lofoten Basin using surface drifters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dugstad, Johannes S.; LaCasce, Joe; Koszalka, Inga M.; Fer, Ilker</p> <p>2017-04-01</p> <p>The Lofoten Basin in the Nordic Seas plays a central role in the global overturning circulation, acting as a reservoir for northward-flowing Atlantic water. Substantial heat loss occurs here, permitting the waters to become denser and eventually sink nearer the Arctic. Idealized modeling studies and theoretical arguments suggest the warm water enters the Lofoten Basin via eddy transport from the boundary current over the adjacent continental slope. But there is no observational evidence that this is the major contribution to mass exchange between the warm Atlantic Current and the Basin. How the basin waters exit also remains a mystery. Surface drifters offer an unique possibility to study the pathways of the boundary-basin exchange of mass and heat. We thereby examine trajectories of surface drifters released in the Nordic Seas in the POLEWARD and PROVOLO experiments, and supplemented by historical data from the Global Drifter Array. Contrary to the idea that the boundary current eddies are the main source, the results suggest that fluid is entering the Lofoten Basin from all sides. However, the drifters exit preferentially in the northeast corner of the basin. This asymmetry likely contributes to the extended residence times of the warm Atlantic waters in the Lofoten Basin. We consider various measures to quantify the effect, and test whether this is captured in a high resolution numerical model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/27598','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/27598"><span>Potential vegetation hierarchy for the Blue Mountains section of northeastern Oregon, southeastern Washington, and west-central Idaho.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David C. Powell; Charles G. Johnson; Elizabeth A. Crowe; Aaron Wells; David K. Swanson</p> <p>2007-01-01</p> <p>The work described in this report was initiated during the Interior Columbia Basin Ecosystem Management Project (ICBEMP). The ICBEMP produced a broad-scale scientific assessment of ecological, biophysical, social, and economic conditions for the interior Columbia River basin and portions of the Klamath and Great Basins. The broad-scale assessment made extensive use of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21922685','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21922685"><span>Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François</p> <p>2011-01-01</p> <p>As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51B1259S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51B1259S"><span>Studying Basin Water Balance Variations at Inter- and Intra-annual Time Scales Based On the Budyko Hypothesis and GRACE Gravimetry Satellite Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, H.</p> <p>2017-12-01</p> <p>Increasing intensity in global warming and anthropogenic activities has triggered significant changes over regional climates and landscapes, which, in turn, drive the basin water cycle and hydrological balance into a complex and unstable state. Budyko hypothesis is a powerful tool to characterize basin water balance and hydrological variations at long-term average scale. However, due to the absence of basin water storage change, applications of Budyko theory to the inter-annual and intra-annual time scales has been prohibited. The launch of GRACE gavimetry satellites provides a great opportunity to quantify terrestrial water storage change, which can be further introduced into the Budyko hypothesis to reveal the inter- and intra-annual response of basin water components under impacts of climate variability and/or human activities. This research targeted Hai River Basin (in China) and Murray-Darling Basin (in Australia), which have been identified with a continuous groundwater depletion trend as well as impacts by extreme climates in the past decade. This can help us to explore how annual or seasonal precipitation were redistributed to evapotranspiration and runoff via changing basin water storage. Moreover, the impacts of vegetation on annual basin water balance will be re-examined. Our results are expected to provide deep insights about the water cycle and hydrological behaviors for the targeted basins, as well as a proof for a consideration of basin water storage change into the Budyko model at inter- or intra-annual time steps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ClDy...40.1903B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ClDy...40.1903B"><span>Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.</p> <p>2013-04-01</p> <p>The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H51M..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H51M..04M"><span>River Networks and Human Activities: Global Fractal Analysis Using Nightlight Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCurley, K. 4553; Fang, Y.; Ceola, S.; Paik, K.; McGrath, G. S.; Montanari, A.; Rao, P. S.; Jawitz, J. W.</p> <p>2016-12-01</p> <p>River networks hold an important historical role in affecting human population distribution. In this study, we link the geomorphological structure of river networks to the pattern of human activities at a global scale. We use nightlights as a valuable proxy for the presence of human settlements and economic activity, and we employ HydroSHEDS as the main data source on river networks. We test the hypotheses that, analogous to Horton's laws, human activities (magnitude of nightlights) also show scaling relationship with stream order, and that the intensity of human activities decrease as the distance from the basin outlet increase. Our results demonstrate that the distribution of human activities shows a fractal structure, with power-law scaling between human activities and stream order. This relationship is robust among global river basins. Human activities are more concentrated in larger order basins, but show large variation in equivalent order basins, with higher population density emergent in the basins connected with high-order rivers. For all global river basins longer than 400km, the average intensity of human activities decrease as the distance to the outlets increases, albeit with signatures of large cities at varied distances. The power spectrum of human width (area) function is found to exhibit power law scaling, with a scaling exponent that indicates enrichment of low frequency variation. The universal fractal structure of human activities may reflect an optimum arrangement for humans in river basins to better utilize the water resources, ecological assets, and geographic advantages. The generalized patterns of human activities could be applied to better understand hydrologic and biogeochemical responses in river basins, and to advance catchment management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A23F0362C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A23F0362C"><span>Influence of SST from Pacific and Atlantic Ocean and atmospheric circulation in the precipitation regime of basin from Brazilian SIN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Custodio, M. D.; Ramos, C. G.; Madeira, P.; de Macedo, A. L.</p> <p>2013-12-01</p> <p>The South American climate presents tropical, subtropical and extratropical features because of its territorial extension, being influenced by a variety of dynamical systems with different spatial and temporal scales which result in different climatic regimes in their subregions. Furthermore, the precipitation regime in South America is influenced by low-frequency phenomena as El Niño-Southern Oscillation (ENSO), the Atlantic dipole and the Madden Julian Oscilation (MJO), in other words, is directly influenced by variations of the Sea Surface Temperature (SST). Due to the importance of the precipitation for many sectors including the planning of productive activities, such as agriculture, livestock and hydropower energy, many studies about climate variations in Brazil have tried to determine and explain the mechanisms that affect the precipitation regime. However, because of complexity of the climate system, and consequently of their impacts on the global precipitation regime, its interactions are not totally understood and therefore misrepresented in numerical models used to forecast climate. The precipitation pattern over hydrographic basin which form the Brasilian National Interconnected System (Sistema Interligado Nacional-SIN) are not yet known and therefore the climate forecast of these regions still presents considerable failure that need to be corrected due to its economic importance. In this context, the purpose here is to determine the precipitation patterns on the Brazilian SIN, based on SST and circulation observed data. In a second phase a forecast climate model for these regions will be produced. In this first moment 30 years (1983 to 2012) of SST over Pacific and Atlantic Ocean were analyzed, along with wind in 850 and 200 hPa and precipitation observed data. The precipitation patterns were analyzed through statistical analyses for interannual (ENSO) and intraseasonal (MJO) anomalies for these variables over the SIN basin. Subsequently, these precipitation patterns will be used for the development of a statistical model for climate prediction for each of these regions, with which it is expected an improvement of up to 20% of climate prediction in these basins. In this first stage was evident a high correlation between precipitation in the basins of SIN and SST Pacific anomalies over the region of Niños, as well as on the coast of Chile and Peru. The effect of SST anomalies in the Niños region on precipitation in the South America is already known, however its quantification was not yet well understood. The coast of Chile determines the positioning and movement of cold fronts directly affecting rainfall in southern and southeastern of Brazil, then the correlation and rain pattern indicate the parameters for the climate prediction model. The anomalies over the Atlantic ocean present high correlation with the precipitation in North and Northeast of Brazil, as well as its connection with the Pacific anomalies. This quantification generated climatic parameters for predictions for these regions. The relationship between the canonical ENSO events and precipitation regime on the basins were also quantified which represents a high degree of assertiveness in predicting climate of these regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026128','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026128"><span>Methods of testing parameterizations: Vertical ocean mixing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tziperman, Eli</p> <p>1992-01-01</p> <p>The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G11D..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G11D..01K"><span>Sea-level variability in the Common Era along the Atlantic coast of North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kemp, A.; Kopp, R. E.; Horton, B.; Little, C. M.; Engelhart, S. E.; Mitrovica, J. X.</p> <p>2017-12-01</p> <p>Common Era relative sea-level trends on the margins of the North Atlantic Ocean vary through time and across space as a result of simultaneous global (basin-wide)-, regional- (linear and non-linear), and local-scale processes. A growing suite of relative sea-level reconstructions derived from dated salt-marsh (and mangrove) sediment on the Atlantic coast of North America provides an opportunity to quantify the contributions from several physical processes to Common Era sea-level trends. In particular, this coastline is susceptible to relative sea-level changes caused by melting of the Greenland Ice Sheet and redistribution of existing ocean mass on timescales of days to centuries by evolving patterns and strengths of atmospheric and oceanic circulation. Using a case study from Newfoundland, Canada, we demonstrate how high-resolution (decadal- and decimeter-scale) relative sea level reconstructions are produced from sequences of salt-marsh sediment that were deposited under conditions of long-term sea-level rise. We use an expanded database of Common Era relative sea-level reconstructions from the Atlantic coast of North America that spans locations from Newfoundland to the southern Florida to identify spatial and temporal patterns of change. A spatio-temporal statistical model enables us to decompose each reconstruction (with uncertainty) into contributions from global-, regional- (linear and non-linear), and local-scale processes. This analysis shows that spatially-variable glacio-isostatic adjustment was the primary driver of sea-level change. The global signal is dominated by the onset of anthropogenic sea-level rise in the late 19th century, which caused the 20th century to experience a faster rate of rise than any of the preceding 26 centuries. Differentiating between regional non-linear and local-scale processes is a challenging using an inherently sparse network of reconstructions. However, we show that sites south of Cape Hatteras have sea-level histories distinct to those from more northward locations and propose that this spatial pattern is best explained by dynamic processes that could include century-scale NAO-driven circulation changes. Complementary paleoenvironmental reconstructions from diverse proxies support this interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.3068P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.3068P"><span>Are flood occurrences in Europe linked to specific atmospheric circulation types?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prudhomme, C.; Genevier, M.</p> <p>2009-04-01</p> <p>Flood damages are amongst the most costly climate-related hazard damages, with annual average flood damage in Europe in the last few decades of around €4bn per year (Barredo, 2007). With such economic and sometimes human losses, it is important to improve our estimations of flood risk for time scales from a few months (for increased preparedness) and to several decades (necessary to establish long-term flood management strategies). This paper investigates links between the occurrence of flood events and the atmospheric circulation patterns that have prevailed in the days leading to the flood. With the recent advances in climate modelling, such links could be exploited to anticipate the extent of potential damages due to flood using seasonal atmospheric forecasts products or future climate projections. The research is undertaken at a pan-European scale and exploits latest research in automatic classification techniques developed within the EU research network COST733 Action. Daily flow data from over 450 sites were used, available from the Global Runoff Data Centre, the European Water Archive, the UK National River Flow Archive and the French Banque Hydro. The atmospheric circulation types were defined following the Objective GrossWetterLagen classification (OGWL) developed by (James, 2007) using the ERA-40 mslp re-analysis, similar to the Hess-Brezowsky subjective classification (Hess and Brezowsky, 1977). Flood events were here defined according to the peak-over-threshold method, selecting the highest independent peaks observed in streamflow time series. The association between flood and atmospheric circulation types is assessed using two indicators. The first indicator calculates the difference between the frequency of occurrence of a circulation type CTi during a flood event to that for any day, expressed in percent. The significance of the anomaly is assessed using the χ2 statistics. The second indicator measures the probability of finding at last k days of N* of CTi using historical frequencies of occurrence. N* represents the number of days preceding a flood when the atmospheric conditions could significantly influence flood production processes, and could be interpreted as an upper limit of the concentration time of the basin. This evaluates the persistence of an atmospheric circulation type CTi prior to a flood event, and the associated level of significance. The indicators are calculated at-site and discussed regionally. Results show significant links with two circulation types related to Cyclonic Westerly (Wz) and the Low over the British Isles (TB), while the anticyclonic north-westerly type (Nea) systematically doesn't occur before any flood event. References Barredo, J.I., 2007. Major flood disasters in Europe: 1950-2005. Natural Hazards and Earth System Sciences, 42 doi: 10.1007/s11069-006-9065-2: 125-148. Hess, P. and Brezowsky, H., 1977. Katalog der Grobwetterlagen Europas 1881-1976. 3 verbesserte und ergäntze Auflage. Ber Dt. Wetterd. 15 (113). James, P.M., 2007. An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. Theoretical and Applied Climatology, 88(1): 17-42.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1995/4287/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1995/4287/report.pdf"><span>Description, instructions, and verification for Basinsoft, a computer program to quantify drainage- basin characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harvey, Craig A.; Eash, David A.</p> <p>1996-01-01</p> <p>Statistical comparison tests indicate Basinsoft quantifications are not significantly different from manual topographic-map measurements for 9 of 10 basin characteristics tested. The results also indicate that elevation contours generated by ARC/INFO from l:250,000-scale digital elevation model (DEM) data are over-generalized when compared to elevation contours shown on l:250,000-scale topographic maps, and that quantification of basin-slope thus is underestimated using DEM data. A qualitative comparison test indicated that the Basinsoft module used to quantify basin slope is valid and that differences in the quantification of basin slope are due to sourcedata differences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195226','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195226"><span>Hydroclimatology of the Missouri River basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wise, Erika K.; Woodhouse, Connie A.; McCabe, Gregory; Pederson, Gregory T.; St. Jacques, Jeannine-Marie</p> <p>2018-01-01</p> <p>Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO11C..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO11C..06C"><span>Interannual evolutions of (sub)mesoscale dynamics in the Bay of Biscay and the English Channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Charria, G.; Vandermeirsch, F.; Theetten, S.; Yelekçi, Ö.; Assassi, C.; Audiffren, N. J.</p> <p>2016-02-01</p> <p>In a context of global change, ocean regions as the Bay of the Biscay and the English Channel represent key domains to estimate the local impact on the coasts of interannual evolutions. Indeed, the coastal (considering in this project regions above the continental shelf) and regional (including the continental slope and the abyssal plain) environments are sensitive to the long-term fluctuations driven by the open ocean, the atmosphere and the watersheds. These evolutions can have impacts on the whole ecosystem. To understand and, by extension, forecast evolutions of these ecosystems, we need to go further in the description and the analysis of the past interannual variability over decadal to pluri-decadal periods. This variability can be described at different spatial scales from small (< 1 km) to basin scales (> 100 km). With a focus on smaller scales, the modelled dynamics, using a Coastal Circulation Model on national computing resources (GENCI/CINES), is discussed from interannual simulations (10 to 53 years) with different spatial (4 km to 1 km) and vertical (40 to 100 sigma levels) resolutions compared with available in situ observations. Exploring vorticity and kinetic energy based diagnostics; dynamical patterns are described including the vertical distribution of the mesoscale activity. Despite the lack of deep and spatially distributed observations, present numerical experiments draw a first picture of the 3D mesoscale distribution and its evolution at interannual time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDL17006H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDL17006H"><span>Stratification established by peeling detrainment from gravity currents: laboratory experiments and models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hogg, Charlie; Dalziel, Stuart; Huppert, Herbert; Imberger, Jorg; Department of Applied Mathematics; Theoretical Physics Team; CentreWater Research Team</p> <p>2014-11-01</p> <p>Dense gravity currents feed fluid into confined basins in lakes, the oceans and many industrial applications. Existing models of the circulation and mixing in such basins are often based on the currents entraining ambient fluid. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the mixing in such currents. Laboratory experiments were carried out which visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the stratification in the basin. This new model gives a better approximation of the stratification observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ESSD....8..651V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ESSD....8..651V"><span>An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venticinque, Eduardo; Forsberg, Bruce; Barthem, Ronaldo; Petry, Paulo; Hess, Laura; Mercado, Armando; Cañas, Carlos; Montoya, Mariana; Durigan, Carlos; Goulding, Michael</p> <p>2016-11-01</p> <p>Despite large-scale infrastructure development, deforestation, mining and petroleum exploration in the Amazon Basin, relatively little attention has been paid to the management scale required for the protection of wetlands, fisheries and other aspects of aquatic ecosystems. This is due, in part, to the enormous size, multinational composition and interconnected nature of the Amazon River system, as well as to the absence of an adequate spatial model for integrating data across the entire Amazon Basin. In this data article we present a spatially uniform multi-scale GIS framework that was developed especially for the analysis, management and monitoring of various aspects of aquatic systems in the Amazon Basin. The Amazon GIS-Based River Basin Framework is accessible as an ESRI geodatabase at <a href="http://dx.doi.org/10.5063/F1BG2KX8" target="_blank">doi:10.5063/F1BG2KX8</a>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28628816','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28628816"><span>Are calanco landforms similar to river basins?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caraballo-Arias, N A; Ferro, V</p> <p>2017-12-15</p> <p>In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MinDe..51..249R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MinDe..51..249R"><span>Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richard, Antonin; Cathelineau, Michel; Boiron, Marie-Christine; Mercadier, Julien; Banks, David A.; Cuney, Michel</p> <p>2016-02-01</p> <p>The Paleoproterozoic Athabasca Basin (Canada) hosts numerous giant unconformity-related uranium deposits. The scope of this study is to establish the pressure, temperature, and composition (P-T-X conditions) of the brines that circulated at the base of the Athabasca Basin and in its crystalline basement before, during and after UO2 deposition. These brines are commonly sampled as fluid inclusions in quartz- and dolomite-cementing veins and breccias associated with alteration and U mineralization. Microthermometry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data from five deposits (Rabbit Lake, P-Patch, Eagle Point, Millennium, and Shea Creek) complement previously published data for the McArthur River deposit. In all of the deposits investigated, fluid inclusion salinity is between 25 and 40 wt.% NaCl equiv., with compositions displaying a continuum between a "NaCl-rich brine" end-member (Cl > Na > Ca > Mg > K) and a "CaCl2-rich brine" end-member (Cl > Ca ≈ Mg > Na > K). The CaCl2-rich brine has the highest salinity and shows evidence for halite saturation at the time of trapping. The continuum of compositions between the NaCl-rich brine and the CaCl2-rich brine end-members combined with P-T reconstructions suggest anisothermal mixing of the two brines (NaCl-rich brine, 180 ± 30 °C and 800 ± 400 bars; CaCl2-rich brine, 120 ± 30 °C and 600 ± 300 bars) that occurred under fluctuating pressure conditions (hydrostatic to supra-hydrostatic). However, because the two brines were U bearing and therefore oxidized, brine mixing was probably not the driving force for UO2 deposition. Several scenarios are put forward to account for the Cl-Na-Ca-Mg-K composition of the brines, involving combinations of seawater evaporation, halite dissolution, mixing with a halite-dissolution brine, Mg/Ca exchange by dolomitization, Na/Ca exchange by albitization of plagioclase, Na/K exchange by albitization of K-feldspar, and Mg loss by Mg-rich alteration. Finally, the metal concentrations in the NaCl-rich and CaCl2-rich brines are among the highest recorded compared to present-day sedimentary formation waters and fluid inclusions from basin-hosted base metal deposits (up to 600 ppm U, 3000 ppm Mn, 4000 ppm Zn, 6000 ppm Cu, 8000 ppm Pb, and 10,000 ppm Fe). The CaCl2-rich brine carries up to one order of magnitude more metal than the NaCl-rich brine. Though the exact origin of major cations and metals of the two brines remains uncertain, their contrasting compositions indicate that the two brines had distinct flow paths and fluid-rock interactions. Large-scale circulation of the brines in the Athabasca Basin and Basement was therefore a key parameter for metal mobility (including U) and formation of unconformity-related U deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS43C..06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS43C..06F"><span>Regional and climate forcing on forage fish and apex predators in the California Current: new insights from a fully coupled ecosystem model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fiechter, J.; Rose, K.; Curchitser, E. N.; Huckstadt, L. A.; Costa, D. P.; Hedstrom, K.</p> <p>2016-12-01</p> <p>A fully coupled ecosystem model is used to describe the impact of regional and climate variability on changes in abundance and distribution of forage fish and apex predators in the California Current Large Marine Ecosystem. The ecosystem model consists of a biogeochemical submodel (NEMURO) embedded in a regional ocean circulation submodel (ROMS), and both coupled with a multi-species individual-based submodel for two forage fish species (sardine and anchovy) and one apex predator (California sea lion). Sardine and anchovy are specifically included in the model as they exhibit significant interannual and decadal variability in population abundances, and are commonly found in the diet of California sea lions. Output from the model demonstrates how regional-scale (i.e., upwelling intensity) and basin-scale (i.e., PDO and ENSO signals) physical processes control species distributions and predator-prey interactions on interannual time scales. The results also illustrate how variability in environmental conditions leads to the formation of seasonal hotspots where prey and predator spatially overlap. While specifically focused on sardine, anchovy and sea lions, the modeling framework presented here can provide new insights into the physical and biological mechanisms controlling trophic interactions in the California Current, or other regions where similar end-to-end ecosystem models may be implemented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1386S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1386S"><span>Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Studholme, Joshua; Gulev, Sergey</p> <p>2016-04-01</p> <p>Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact posits an interesting start for further theoretical and physical consideration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3115S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3115S"><span>Basin Analysis and Petroleum System Characterisation of Western Bredasdorp Basin, Southern Offshore of South Africa: Insights from a 3d Crust-Scale Basin Model - (Phase 1)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sonibare, W. A.; Scheck-Wenderoth, M.; Sippel, J.; Mikeš, D.</p> <p>2012-04-01</p> <p>In recent years, construction of 3D geological models and their subsequent upscaling for reservoir simulation has become an important tool within the oil industry for managing hydrocarbon reservoirs and increasing recovery rate. Incorporating petroleum system elements (i.e. source, reservoir and trap) into these models is a relatively new concept that seems very promising to play/prospect risk assessment and reservoir characterisation alike. However, yet to be fully integrated into this multi-disciplinary modelling approach are the qualitative and quantitative impacts of crust-scale basin dynamics on the observed basin-fill architecture and geometries. The focus of this study i.e. Western Bredasdorp Basin constitutes the extreme western section of the larger Bredasdorp sub-basin, which is the westernmost depocentre of the four southern Africa offshore sub-basins (others being Pletmos, Gamtoos and Algoa). These basins, which appear to be initiated by volcanically influenced continental rifting and break-up related to passive margin evolution (during the Mid-Late Jurassic to latest Valanginian), remain previously unstudied for crust-scale basin margin evolution, and particularly in terms of relating deep crustal processes to depo-system reconstruction and petroleum system evolution. Seismic interpretation of 42 2D seismic-reflection profiles forms the basis for maps of 6 stratigraphic horizons which record the syn-rift to post-rift (i.e. early drift and late drift to present-day seafloor) successions. In addition to this established seismic markers, high quality seismic profiles have shown evidence for a pre-rift sequence (i.e. older than Late Jurassic >130 Ma). The first goal of this study is the construction of a 3D gravity-constrained, crust-scale basin model from integration of seismics, well data and cores. This basin model is constructed using GMS (in-house GFZ Geo-Modelling Software) while testing its consistency with the gravity field is performed using IGMAS+ (Interactive Gravity and Magnetic Assistant System; Götze et al., 2010 and Schmidt et al., 2011). The ensuing model will be applied to predict the present-day deep crustal configuration and thermal field characteristics of the basin. Thereafter, 3D volumetric backstripping analysis will be performed to predict basin subsidence mechanisms (i.e. tectonic, thermal and sediment load) through time as well as to estimate paleo-water depths for paleogeographic reconstruction. The information gathered from crust-scale basin dynamics will be subsequently used at the petroleum system modelling stage to holistically assess the hydrocarbon potential of the basin in terms of source rock maturity and hydrocarbon generation, migration, timing and accumulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1450V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1450V"><span>Abrupt drying events in the Caribbean related to large Laurentide meltwater pulses during the glacial-to-Holocene transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vieten, Rolf; Warken, Sophie; Winter, Amos; Scholz, Denis; Black, David; Zanchettin, Davide; Miller, Thomas E.</p> <p>2017-04-01</p> <p>At the end of the last deglaciation North Atlantic meltwater pulses from the retreating Laurentide ice sheet triggered a chain of oceanic and atmospheric responses including temporary slow-down of the thermohaline circulation and hemispheric-scale alterations of the atmospheric circulation. The 8.2 ka event (occurring about 8.2 ka BP) is the most pronounced meltwater pulse during the Holocene and serves as an analogue to understand how North Atlantic fresh water influxes can affect the ocean-atmosphere coupled system on a basin, hemispheric or global scale. This event left strong regional climate imprints, such as abrupt cooling reconstructed over the North Atlantic and Europe lasting 100 to 150 years and drying in the northern hemispheric tropics. However, there is a lack of high resolution proxies to learn about the event's temporal structure especially in the tropics. We present geochemical evidence from a stalagmite indicating sudden climate fluctuations towards drier conditions in the northeastern Caribbean possibly related to rapid cooling in the high northern latitudes and a southward shift of the Inter-Tropical Convergence Zone (ITCZ). Stalagmite PR-PA-1 was collected in Palco cave, Puerto Rico, and it is a remarkable record of the 8.2 ka event because 15 MC-ICPMS 230Th/U-dates produce a precise chronology of its Holocene period growing solely between 9.0 ka BP to 7.5 ka BP. Based on 240 trace element and stable isotope ratio measurement we reconstructed hydrological changes with sub-decadal resolution. Our proxy data show large and rapid climate variations before 8.0 ka. Pronounced peaks in the Mg/Ca and δ13C records indicate three major events of abrupt drying. These fluctuations towards drier conditions took place in less than 10 years and the climate remained drier than the natural range for 10 to 20 years, before it returned to pre-fluctuation conditions again. Our observations confirm previous studies suggesting that repeated meltwater pulses affected the thermohaline circulation leading to the temporal and spatial extension of the 8.2 ka event. Moreover, based on our results we hypothesize that three large meltwater pulses decreased the thermohaline circulation, cooled the North Atlantic region and pushed the region of ITCZ influence further southward leading to decreased rainfall in the northeastern Caribbean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020032','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020032"><span>Geomorphic considerations for erosion prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Osterkamp, W.R.; Toy, T.J.</p> <p>1997-01-01</p> <p>Current soil-erosion prediction technology addresses processes of rainsplash, overland-flow sediment transport, and rill erosion in small watersheds. The effects of factors determining sediment yield from larger-scale drainage basins, in which sediment movement is controlled by the combined small-scale processes and a complex set of channel and other basin-scale sediment-delivery processes, such as soil creep, bioturbation, and accelerated erosion due to denudation of vegetation, have been poorly evaluated. General suggestions are provided for the development of erosion-prediction technology at the geomorphic or drainage-basin scale based on the separation of sediment-yield data for channel and geomorphic processes from those of field-scale soil loss. An emerging technology must consider: (1) the effects on sediment yield of climate, geology and soils, topography, biotic interactions with other soil processes, and land-use practices; (2) all processes of sediment delivery to a channel system; and (3) the general tendency in most drainage basins for progressively greater sediment storage in the downstream direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=60733&keyword=System+AND+recommendation&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=60733&keyword=System+AND+recommendation&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>RELATION OF LANDSCAPE-SCALE ENVIRONMENTAL CHARACTERISTICS TO FISH ASSEMBLAGES IN THE UPPER FRENCH BROAD RIVER BASIN, NORTH CAROLINA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Fish assemblages at 16 sites in the upper French Broad river basin in North Carolina were related to environmental characteristics at the landscape scale, the scale at which management activities and decisions are most likely to occur. Indirect gradient analysis and subsequent re...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EaFut...3..206B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EaFut...3..206B"><span>Implications of freshwater flux data from the CMIP5 multimodel output across a set of Northern Hemisphere drainage basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bring, Arvid; Asokan, Shilpa M.; Jaramillo, Fernando; Jarsjö, Jerker; Levi, Lea; Pietroń, Jan; Prieto, Carmen; Rogberg, Peter; Destouni, Georgia</p> <p>2015-06-01</p> <p>The multimodel ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) synthesizes the latest research in global climate modeling. The freshwater system on land, particularly runoff, has so far been of relatively low priority in global climate models, despite the societal and ecosystem importance of freshwater changes, and the science and policy needs for such model output on drainage basin scales. Here we investigate the implications of CMIP5 multimodel ensemble output data for the freshwater system across a set of drainage basins in the Northern Hemisphere. Results of individual models vary widely, with even ensemble mean results differing greatly from observations and implying unrealistic long-term systematic changes in water storage and level within entire basins. The CMIP5 projections of basin-scale freshwater fluxes differ considerably more from observations and among models for the warm temperate study basins than for the Arctic and cold temperate study basins. In general, the results call for concerted research efforts and model developments for improving the understanding and modeling of the freshwater system and its change drivers. Specifically, more attention to basin-scale water flux analyses should be a priority for climate model development, and an important focus for relevant model-based advice for adaptation to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..111...58H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..111...58H"><span>Simulation of nitrate reduction in groundwater - An upscaling approach from small catchments to the Baltic Sea basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, A. L.; Donnelly, C.; Refsgaard, J. C.; Karlsson, I. B.</p> <p>2018-01-01</p> <p>This paper describes a modeling approach proposed to simulate the impact of local-scale, spatially targeted N-mitigation measures for the Baltic Sea Basin. Spatially targeted N-regulations aim at exploiting the considerable spatial differences in the natural N-reduction taking place in groundwater and surface water. While such measures can be simulated using local-scale physically-based catchment models, use of such detailed models for the 1.8 million km2 Baltic Sea basin is not feasible due to constraints on input data and computing power. Large-scale models that are able to simulate the Baltic Sea basin, on the other hand, do not have adequate spatial resolution to simulate some of the field-scale measures. Our methodology combines knowledge and results from two local-scale physically-based MIKE SHE catchment models, the large-scale and more conceptual E-HYPE model, and auxiliary data in order to enable E-HYPE to simulate how spatially targeted regulation of agricultural practices may affect N-loads to the Baltic Sea. We conclude that the use of E-HYPE with this upscaling methodology enables the simulation of the impact on N-loads of applying a spatially targeted regulation at the Baltic Sea basin scale to the correct order-of-magnitude. The E-HYPE model together with the upscaling methodology therefore provides a sound basis for large-scale policy analysis; however, we do not expect it to be sufficiently accurate to be useful for the detailed design of local-scale measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70142162','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70142162"><span>Regional analysis of spiculite faunas in the permian phosphoria basin: Implications for paleoceanography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Murchey, Benita L.</p> <p>2004-01-01</p> <p>During the Permian, the relative abundance and apparent diversity of siliceous sponges expanded over a wide range of depths in the basins from Nevada and Idaho to the open ocean. Radiolarian preservation and apparent diversity increased in the deeper Cordilleran basins as well. In the Arctic regions, significant sponge spiculites were deposited in epicratonic basins. At the same time that siliceous sponge populations expanded along the northwestern margin of Pangea, warm-water carbonate producers disappeared. Suppression of carbonate-producing organisms along the margin was critical to the accu- mulation and preservation of both the demosponge spiculites in the Eastern Belt and the spicule-rich argillites of the Central Belt. Vigorous thermohaline circulation was the major control on the paleobiogeography of the late Early, Middle, and early Late Permian along northwest Pangea. It was driven by cold, nutrient- and oxygen-rich northern waters and it produced a coastal current that swept down the margin of the supercontinent. The upwelling associated with deposition of world-class phosphorites in the Phosphoria basin was a part of this larger oceanographic system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240444-eddy-driven-sediment-transport-argentine-basin-height-zapiola-rise-hydrodynamically-controlled','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240444-eddy-driven-sediment-transport-argentine-basin-height-zapiola-rise-hydrodynamically-controlled"><span>Eddy-driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Weijer, Wilbert; Maltrud, Mathew E.; Homoky, William B.; ...</p> <p>2015-03-27</p> <p>In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years,more » with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/974558','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/974558"><span>Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Q.; Birkholzer, J.T.; Mehnert, E.</p> <p></p> <p>Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of highmore » injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1406769-modeling-study-tidal-energy-extraction-associated-impact-tidal-circulation-multi-inlet-bay-system-puget-sound','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1406769-modeling-study-tidal-energy-extraction-associated-impact-tidal-circulation-multi-inlet-bay-system-puget-sound"><span>A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Taiping; Yang, Zhaoqing</p> <p></p> <p>Previous tidal energy projects in Puget Sound have focused on major deep channels such as Admiralty Inlet that have a larger power potential but pose greater technical challenges than minor tidal channels connecting to small sub-basins. This paper focuses on the possibility of extracting energy from minor tidal channels by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the studymore » site and calibrated for tidal elevations and currents. We examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. The model suggests that with the proposed level of energy extraction, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PIAHS.377....3B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PIAHS.377....3B"><span>A multi-approach and multi-scale study on water quantity and quality changes in the Tapajós River basin, Amazon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bezerra Nóbrega, Rodolfo Luiz; Lamparter, Gabriele; Hughes, Harold; Chenjerayi Guzha, Alphonce; Santos Silva Amorim, Ricardo; Gerold, Gerhard</p> <p>2018-04-01</p> <p>We analyzed changes in water quantity and quality at different spatial scales within the Tapajós River basin (Amazon) based on experimental fieldwork, hydrological modelling, and statistical time-trend analysis. At a small scale, we compared the river discharge (Q) and suspended-sediment concentrations (SSC) of two adjacent micro-catchments ( < 1 km2) with similar characteristics but contrasting land uses (forest vs. pasture) using empirical data from field measurements. At an intermediary scale, we simulated the hydrological responses of a sub-basin of the Tapajós (Jamanxim River basin, 37 400 km2), using a hydrological model (SWAT) and land-use change scenario in order to quantify the changes in the water balance components due to deforestation. At the Tapajós' River basin scale, we investigated trends in Q, sediments, hydrochemistry, and geochemistry in the river using available data from the HYBAM Observation Service. The results in the micro-catchments showed a higher runoff coefficient in the pasture (0.67) than in the forest catchment (0.28). At this scale, the SSC were also significantly greater during stormflows in the pasture than in the forest catchment. At the Jamanxim watershed scale, the hydrological modelling results showed a 2 % increase in Q and a 5 % reduction of baseflow contribution to total Q after a conversion of 22 % of forest to pasture. In the Tapajós River, however, trend analysis did not show any significant trend in discharge and sediment concentration. However, we found upward trends in dissolved organic carbon and NO3- over the last 20 years. Although the magnitude of anthropogenic impact has shown be scale-dependent, we were able to find changes in the Tapajós River basin in streamflow, sediment concentration, and water quality across all studied scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950012714','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950012714"><span>NASA Goddard Earth Sciences Graduate Student Program. [FIRE CIRRUS-II examination of coupling between an upper tropospheric cloud system and synoptic-scale dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ackerman, Thomas P.</p> <p>1994-01-01</p> <p>The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN54A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN54A..06S"><span>Google Earth-Based Grand Tours of the World's Ocean Basins and Marine Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>St John, K. K.; De Paor, D. G.; Suranovic, B.; Robinson, C.; Firth, J. V.; Rand, C.</p> <p>2016-12-01</p> <p>The GEODE project has produced a collection of Google Earth-based marine geology teaching resources that offer grand tours of the world's ocean basins and marine sediments. We use a map of oceanic crustal ages from Müller et al (2008; doi:10.1029/2007GC001743), and a set of emergent COLLADA models of IODP drill core data as a basis for a Google Earth tour introducing students to the world's ocean basins. Most students are familiar with basic seafloor spreading patterns but teaching experience suggests that few students have an appreciation of the number of abandoned ocean basins on Earth. Students also lack a valid visualization of the west Pacific where the oldest crust forms an isolated triangular patch and the ocean floor becomes younger towards the subduction zones. Our tour links geographic locations to mechanical models of rifting, seafloor spreading, subduction, and transform faulting. Google Earth's built-in earthquake and volcano data are related to ocean floor patterns. Marine sediments are explored in a Google Earth tour that draws on exemplary IODP core samples of a range of sediment types (e.g., turbidites, diatom ooze). Information and links are used to connect location to sediment type. This tour compliments a physical core kit of core catcher sections that can be employed for classroom instruction (geode.net/marine-core-kit/). At a larger scale, we use data from IMLGS to explore the distribution of the marine sediments types in the modern global ocean. More than 2,500 sites are plotted with access to original data. Students are guided to compare modern "type sections" of primary marine sediment lithologies, as well as examine site transects to address questions of bathymetric setting, ocean circulation, chemistry (e.g., CCD), and bioproductivity as influences on modern seafloor sedimentation. KMZ files, student exercises, and tips for instructors are available at geode.net/exploring-marine-sediments-using-google-earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1016494','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1016494"><span>Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in chinook salmon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neville, Helen; Isaak, Daniel; Dunham, J.B.; Thurow, Russel; Rieman, B.</p> <p>2006-01-01</p> <p>Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060013209','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060013209"><span>Changes in Tropical Cyclone Intensity Over the Past 30 Years: A Global and Dynamic Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, Liguang; Wang, Bin; Braun, Scott A.</p> <p>2006-01-01</p> <p>The hurricane season of 2005 was the busiest on record and Hurricane Katrina (2005) is believed to be the costliest hurricane in U. S. history. There are growing concerns regarding whether this increased tropical cyclone activity is a result of global warming, as suggested by Emanuel(2005) and Webster et al. (2005), or just a natural oscillation (Goldenberg et al. 2001). This study examines the changes in tropical cyclone intensity to see what were really responsible for the changes in tropical cyclone activity over the past 30 years. Since the tropical sea surface temperature (SST) warming also leads to the response of atmospheric circulation, which is not solely determined by the local SST warming, this study suggests that it is better to take the tropical cyclone activities in the North Atlantic (NA), western North Pacific (WNP) and eastern North Pacific (ENP) basins as a whole when searching for the influence of the global-scale SST warming on tropical cyclone intensity. Over the past 30 years, as the tropical SST increased by about 0.5 C, the linear trends indicate 6%, 16% and 15% increases in the overall average intensity and lifetime and the annual frequency. Our analysis shows that the increased annual destructiveness of tropical cyclones reported by Emanuel(2005) resulted mainly from the increases in the average lifetime and annual frequency in the NA basin and from the increases in the average intensity and lifetime in the WNP basin, while the annual destructiveness in the ENP basin generally decreased over the past 30 years. The changes in the proportion of intense tropical cyclones reported by Webster et a1 (2005) were due mainly to the fact that increasing tropical cyclones took the tracks that favor for the development of intense tropical cyclones in the NA and WNP basins over the past 30 years. The dynamic influence associated with the tropical SST warming can lead to the impact of global warming on tropical cyclone intensity that may be very different from our current assessments, which were mainly based on the thermodynamic theory of tropical cyclone intensity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26PSL.387...34V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26PSL.387...34V"><span>River fluxes to the sea from the oceanʼs 10Be/9Be ratio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>von Blanckenburg, Friedhelm; Bouchez, Julien</p> <p>2014-02-01</p> <p>The ratio of the meteoric cosmogenic radionuclide 10Be to the stable isotope 9Be is proposed here to be a flux proxy of terrigenous input into the oceans. The ocean's dissolved 10Be/9Be is set by (1) the flux of meteoric 10Be produced in the atmosphere; (2) the denudational flux of the rivers discharging into a given ocean basin; (3) the fraction of 9Be that is released from primary minerals during weathering (meaning the 9Be transported by rivers in either the dissolved form or adsorbed onto sedimentary particles and incorporated into secondary oxides); and (4) the fraction of riverine 10Be and 9Be actually released into seawater. Using published 10Be/9Be data of rivers for which independent denudation rate estimates exist we first find that the global average fraction of 9Be released during weathering into river waters and their particulate load is 20% and does not depend on denudation rate. We then evaluate this quantitative proxy for terrigenous inputs by using published dissolved seawater Be isotope data and a compilation of global river loads. We find that the measured global average oceanic dissolved 10Be/9Be ratio of about 0.9×10-7 is satisfied by the mass balance if only about 6% of the dissolved and adsorbed riverine Be is eventually released to the open ocean after escaping the coastal zone. When we establish this mass balance for individual ocean basins good agreement results between 10Be/9Be ratios predicted from known river basin denudation rates and measured ocean 10Be/9Be ratios. Only in the South Atlantic and the South Pacific the 10Be/9Be ratio is dominated by advected Be and in these basins the ratio is a proxy for ocean circulation. As the seawater 10Be/9Be ratio is faithfully recorded in marine chemical precipitates the 10Be/9Be ratio extracted from authigenic sediments can now serve to estimate relative changes in terrigenous input into the oceans back through time on a global and on an ocean basin scale.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>