Imaging the Subsurface of the Thuringian Basin (Germany) on Different Spatial Scales
NASA Astrophysics Data System (ADS)
Goepel, A.; Krause, M.; Methe, P.; Kukowski, N.
2014-12-01
Understanding the coupled dynamics of near surface and deep fluid flow patterns is essential to characterize the properties of sedimentary basins, to identify the processes of compaction, diagenesis, and transport of mass and energy. The multidisciplinary project INFLUINS (Integrated FLUid dynamics IN Sedimentary basins) aims for investigating the behavior of fluids in the Thuringian Basin, a small intra-continental sedimentary basin in Germany, at different spatial scales, ranging from the pore scale to the extent of the entire basin. As hydraulic properties often significantly vary with spatial scales, e.g. seismic data using different frequencies are required to gain information about the spatial variability of elastic and hydraulic subsurface properties. For the Thuringian Basin, we use seismic and borehole data acquired in the framework of INFLUINS. Basin-wide structural imaging data are available from 2D reflection seismic profiles as well as 2.5D and 3D seismic travel time tomography. Further, core material from a 1,179 m deep drill hole completed in 2013 is available for laboratory seismic experiments on mm- to cm-scale. The data are complemented with logging data along the entire drill hole. This campaign yielded e.g. sonic and density logs allowing the estimation of in-situ P-velocity and acoustic impedance with a spatial resolution on the cm-scale and provides improved information about petrologic and stratigraphic variability at different scales. Joint interpretation of basin scale structural and elastic properties data with laboratory scale data from ultrasound experiments using core samples enables a detailed and realistic imaging of the subsurface properties on different spatial scales. Combining seismic travel time tomography with stratigraphic interpretation provides useful information of variations in the elastic properties for certain geological units and therefore gives indications for changes in hydraulic properties.
Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate
NASA Astrophysics Data System (ADS)
Quesada, C. A.; Phillips, O. L.; Schwarz, M.; Czimczik, C. I.; Baker, T. R.; Patiño, S.; Fyllas, N. M.; Hodnett, M. G.; Herrera, R.; Almeida, S.; Alvarez Dávila, E.; Arneth, A.; Arroyo, L.; Chao, K. J.; Dezzeo, N.; Erwin, T.; di Fiore, A.; Higuchi, N.; Honorio Coronado, E.; Jimenez, E. M.; Killeen, T.; Lezama, A. T.; Lloyd, G.; López-González, G.; Luizão, F. J.; Malhi, Y.; Monteagudo, A.; Neill, D. A.; Núñez Vargas, P.; Paiva, R.; Peacock, J.; Peñuela, M. C.; Peña Cruz, A.; Pitman, N.; Priante Filho, N.; Prieto, A.; Ramírez, H.; Rudas, A.; Salomão, R.; Santos, A. J. B.; Schmerler, J.; Silva, N.; Silveira, M.; Vásquez, R.; Vieira, I.; Terborgh, J.; Lloyd, J.
2012-06-01
Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interacting effects of soil physical and chemical properties with climate. A hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining endogenous disturbance levels, species composition, and forest productivity across the Amazon Basin.
NASA Astrophysics Data System (ADS)
Michaelides, R. J.; Hayes, A. G.; Mastrogiuseppe, M.; Zebker, H. A.; Farr, T. G.; Malaska, M. J.; Poggiali, V.; Mullen, J. P.
2016-05-01
We use repeat synthetic aperture radar (SAR) observations and complementary altimetry passes acquired by the Cassini spacecraft to study the scattering properties of Titan's empty lake basins. The best-fit coefficients from fitting SAR data to a quasi-specular plus diffuse backscatter model suggest that the bright basin floors have a higher dielectric constant, but similar facet-scale rms surface facet slopes, to surrounding terrain. Waveform analysis of altimetry returns reveals that nadir backscatter returns from basin floors are greater than nadir backscatter returns from basin surroundings and have narrower pulse widths. This suggests that floor deposits are structurally distinct from their surroundings, consistent with the interpretation that some of these basins may be filled with evaporitic and/or sedimentary deposits. Basin floor deposits also express a larger diffuse component to their backscatter, which is likely due to variations in subsurface structure or an increase in roughness at the wavelength scale (Hayes, A.G. et al. [2008]. Geophys. Res. Lett. 35, 9). We generate a high-resolution altimetry radargram of the T30 altimetry pass over an empty lake basin, with which we place geometric constraints on the basin's slopes, rim heights, and depth. Finally, the importance of these backscatter observations and geometric measurements for basin formation mechanisms is briefly discussed.
NASA Astrophysics Data System (ADS)
Rusillon, Elme; Clerc, Nicolas; Makhloufi, Yasin; Brentini, Maud; Moscariello, Andrea
2017-04-01
A reservoir assessment was performed in the Greater Geneva Basin to evaluate the geothermal resources potential of low to medium enthalpy (Moscariello, 2016). For this purpose, a detail structural analysis of the basin was performed (Clerc et al., 2016) simultaneously with a reservoir appraisal study including petrophysical properties assessment in a consistent sedimentological and stratigraphical frame (Brentini et al., 2017). This multi-disciplinary study was organised in 4 steps: (1) investigation of the surrounding outcrops to understand the stratigraphy and lateral facies distribution of the sedimentary sequence from Permo-Carboniferous to Lower Cretaceous units; (2) development of 3D geological models derived from 2D seismic and well data focusing on the structural scheme of the basin to constrain better the tectonic influence on facies distribution and to assess potential hydraulic connectivity through faults between reservoir units ; (3) evaluation of the distribution, geometry, sedimentology and petrophysical properties of potential reservoir units from well data; (4) identification and selection of the most promising reservoir units for in-depth rock type characterization and 3D modeling. Petrophysical investigations revealed that the Kimmeridgian-Tithonian Reef Complex and the underlying Calcaires de Tabalcon units are the most promising geothermal reservoir targets (porosity range 10-20%; permeability to 1mD). Best reservoir properties are measured in patch reefs and high-energy peri-reefal depositional environments, which are surrounded by synchronous tight lagoonal deposits. Associated highly porous dolomitized intervals reported in the western part of the basin also provide enhanced reservoir quality. The distribution and geometry of best reservoir bodies is complex and constrained by (1) palaeotopography, which can be affected by synsedimentary fault activity during Mesozoic times, (2) sedimentary factors such as hydrodynamics, sea level variations, or sedimentation rates and (3) diagenetic history (Makhloufi et al., 2017). A detail structural characterization of the basin using 2D seismic data reveals the existence of several wrench fault zones and intra-basinal thrusts across the basin, which could act as hydraulic conduits and play a key role in connecting the most productive reservoir facies. To understand the propagation of these heterogeneous reservoirs, rock types are currently defined and will be integrated into 3D geological models. This integrated study allows us to understand better the distribution and properties of productive reservoir facies as well as hydraulic connectivity zones within the study area. This provides consistent knowledge for future geothermal exploration steps toward the successful development of this sustainable energy resource in the Greater Geneva Basin. Brentini et al. 2017 : Geothermal prospection in the Greater Geneva Basin: integration of geological data in the new Information System. Abstract, EGU General Assembly 2017, Vienna, Austria Clerc et al. 2016 : Structural Modeling of the Geneva Basin for Geothermal Ressource Assessment. Abstract, 14th Swiss Geoscience Meeting, Geneva, Switzerland Makhloufi et al. 2017 : Geothermal prospection in the Greater Geneva Basin (Switzerland and France) : impact of diagenesis on reservoir properties of the Upper Jurassic carbonate sediments. Abstract, EGU General Assembly 2017, Vienna, Austria Moscariello, A. 2016 : Geothermal exploration in SW Switzerland, Proceeding , European Geotermal Congress 2016, Strasbourg, France
Anatomy of the Attraction Basins: Breaking with the Intuition.
Hernando, Leticia; Mendiburu, Alexander; Lozano, Jose A
2018-05-22
Solving combinatorial optimization problems efficiently requires the development of algorithms that consider the specific properties of the problems. In this sense, local search algorithms are designed over a neighborhood structure that partially accounts for these properties. Considering a neighborhood, the space is usually interpreted as a natural landscape, with valleys and mountains. Under this perception, it is commonly believed that, if maximizing, the solutions located in the slopes of the same mountain belong to the same attraction basin, with the peaks of the mountains being the local optima. Unfortunately, this is a widespread erroneous visualization of a combinatorial landscape. Thus, our aim is to clarify this aspect, providing a detailed analysis of, first, the existence of plateaus where the local optima are involved, and second, the properties that define the topology of the attraction basins, picturing a reliable visualization of the landscapes. Some of the features explored in this paper have never been examined before. Hence, new findings about the structure of the attraction basins are shown. The study is focused on instances of permutation-based combinatorial optimization problems considering the 2-exchange and the insert neighborhoods. As a consequence of this work, we break away from the extended belief about the anatomy of attraction basins.
NASA Astrophysics Data System (ADS)
Makhloufi, Yasin; Rusillon, Elme; Brentini, Maud; Clerc, Nicolas; Meyer, Michel; Samankassou, Elias
2017-04-01
Diagenesis of carbonate rocks is known to affect the petrophysical properties (porosity, permeability) of the host rock. Assessing the diagenetic history of the rock is thus essential when evaluating any reservoir exploitation project. The Canton of Geneva (Switzerland) is currently exploring the opportunities for geothermal energy exploitation in the Great Geneva Basin (GGB) sub-surface. In this context, a structural analysis of the basin (Clerc et al., 2016) associated with reservoir appraisal (Brentini et al., 2017) and rock-typing of reservoir bodies of potential interest were conducted (Rusillon et al., 2017). Other geothermal exploitation projects elsewhere (e.g. Bavaria, south Germany, Paris Basin, France) showed that dolomitized carbonate rocks have good reservoir properties and are suitable for geothermal energy production. The objectives of this work are to (1) describe and characterize the dolomitized bodies in the GGB and especially their diagenetic history and (2) quantify the reservoir properties of those bodies (porosity, permeability). Currently, our study focuses on the Upper Jurassic sedimentary bodies of the GGB. Field and well data show that the dolomitization is not ubiquitous in the GGB. Results from the petrographical analyses of the Kimmeridgian cores (Humilly-2) and of field analogues (Jura, Saleve and Vuache mountains) display complex diagenetic histories, dependent of the study sites. The paragenesis exhibits several stages of interparticular calcite cementation as well as different stages of dolomitization and/or dedolomitization. Those processes seem to follow constrained path of fluid migrations through burial, faulting or exhumation during the basin's history. These complex diagenetic histories affected the petrophysical and microstructural properties via porogenesis (conservation of initial porosity, moldic porosity) and/or poronecrosis events. The best reservoir properties appear to be recorded in patch reef and peri-reefal depositional environments in association with porous dolomitized intervals (Rusilloon et al., 2017). The work presented here will help to constrain and quantify reservoir heterogeneities in a complex reservoir and to provide insights into porosity and permeability distribution that will ultimately help in reservoir modeling, a crucial step for further possible exploitation. Brentini et al. 2017: Geothermal prospection in the Greater Geneva Basin: integration of geological data in the new Information System. Abstract, EGU General Assembly 2017, Vienna, Austria. Clerc et al. 2016: Structural Modeling of the Geneva Basin for Geothermal Ressource Assessment. Abstract, 14th Swiss Geoscience Meeting, Geneva, Switzerland. Rusillon et al., 2017: Geothermal prospection in the Greater Geneva Basin (Switzerland and France): structural and reservoir quality assessment. Abstract, EGU General Assembly 2017, Vienna, Austria.
Mercury. [Mariner 10 observations and planetary properties
NASA Technical Reports Server (NTRS)
Gault, D. E.; Cassen, P.; Burns, J. A.; Strom, R. G.
1977-01-01
Information about Mercury obtained with the Mariner 10 spacecraft is summarized together with results of theoretical studies and ground-based observations. It is shown that Mercury is very likely a differentiated body, probably contains a large earthlike iron-rich core, and displays a surface similar to the moon's, which suggests a similar evolutionary history. The size and mass of Mercury are discussed along with its orbit, rotation, atmosphere, magnetic field, and magnetosphere. Surface features of Mercury are described on the basis of Mariner 10 pictures, with detailed attention given to the major physiographic provinces, the structure of the Caloris basin, the tectonic framework of the planet, crater morphology, the planet's optical and thermal properties, and cartography. The composition and structure of the interior are examined, and the thermal history of Mercury is considered. The planet's geologic history is divided into five stages or epochs: (1) accretion and differentiation, (2) terminal heavy bombardment, (3) Caloris basin formation, (4) basin flooding, and (5) postfilling lighter bombardment.
NASA Astrophysics Data System (ADS)
Botter, C. D.; Prada, M.; Fullea, J.
2017-12-01
The Porcupine is a North-South oriented basin located southwest of Ireland, along the North Atlantic continental margin, formed by several rifting episodes during Late Carboniferous to Early Cretaceous. The sedimentary cover is underlined by a very thin continental crust in the center of the basin (<5 km) that has been generally associated with hyperextension and mantle serpentinization. From North to South lithospheric stretching factors increase drastically from 2 in the North to >10 in the South. In spite of the abundant literature, most of the oil and gas exploration in the Porcupine Basin has been targeting its northern part and is mostly restricted to relatively shallow depths, giving a restrained overview of the basin structure. Therefore, studying the thermodynamic and composition of the deep and broader structures is needed to understand the processes linked to the formation and the symmetry signature of the basin. Here, we model the present-day thermal and compositional structure of the continental crust and lithospheric mantle underneath the Porcupine basin using gravity, seismic, heat flow and elevation data. We use an integrated geophysical-petrological framework where most relevant rock properties (density, seismic velocities) are determined as a function of temperature, pressure and composition. Our modelling approach solves simultaneously the heat transfer, thermodynamic, geopotential, seismic and isostasy equations, and fit the results to all available geophysical and petrological observables (LitMod software). In this work we have implemented a module to compute self-consistently a laterally variable lithospheric elastic thickness based on mineral physics rheological laws (yield strength envelopes over the 3D volume). An appropriate understanding of local and flexural isostatic behavior of the basin is essential to unravel its tectonic history (i.e. stretching factors, subsidence etc.). Our Porcupine basin 3D model is defined by four lithological layers, representing properties from post- and syn-rift sequences to the lithospheric mantle. The computed yield strength envelopes are representative of hyperextended lithosphere and reveal the sensitivity of the lithospheric strength to the geotherm, as well as to the thickness and composition of the crust.
Shaqour, F; Taany, R; Rimawi, O; Saffarini, G
2016-01-01
Modeling groundwater properties is an important tool by means of which water resources management can judge whether these properties are within the safe limits or not. This is usually done regularly and in the aftermath of crises that are expected to reflect negatively on groundwater properties, as occurred in Jordan due to crises in neighboring countries. In this study, specific capacity and salinity of groundwater of B2/A7 aquifer in Amman Zarqa Basin were evaluated to figure out the effect of population increase in this basin as a result of refugee flux from neighboring countries to this heavily populated basin after Gulf crises 1990 and 2003. Both properties were found to exhibit a three-parameter lognormal distribution. The empirically calculated β parameter of this distribution mounted up to 0.39 m(3)/h/min for specific capacity and 238 ppm for salinity. This parameter is suggested to account for the global changes that took place all over the basin during the entire period of observation and not for local changes at every well or at certain localities in the basin. It can be considered as an exploratory result of data analysis. Formal and implicit evaluation followed this step using structural analysis and construction of experimental semivariograms that represent the spatial variability of both properties. The adopted semivariograms were then used to construct maps to illustrate the spatial variability of the properties under consideration using kriging interpolation techniques. Semivariograms show that specific capacity and salinity values are spatially dependent within 14,529 and 16,309 m, respectively. Specific capacity semivariogram exhibit a nugget effect on a small scale (324 m). This can be attributed to heterogeneity or inadequacies in measurement. Specific capacity and salinity maps show that the major changes exhibit a northwest southeast trend, near As-Samra Wastewater Treatment Plant. The results of this study suggest proper management practices.
NASA Astrophysics Data System (ADS)
Ouahrani, Tarik
2013-09-01
Local properties of the XSiP2 (X = Be, Mg, Cd, Zn and Hg) compounds are revisited through the partition of static thermodynamic properties under pressure. We pay attention to the metallization that occurs when the investigated compounds undergo a phase transition from chalcopyrite to the NaCl structure. Electron localization function analysis shows that the local valence basin attractors values decrease as a function of pressure. As the pressure increases, the tetragonal distortion ( c/ a) diminishes while the degree of ionicity enhances. In addition, by means of atom in molecule approach, atomic-like local compressibility and pressures are analyzed. We found that the basins volumes of the investigated compounds in the NaCl phase have lower compressibilities than those in the chalcopyrite phase. According to the predicted core-valence basins, the phosphorus cation is found to be the more affected by the hydrostatic pressure.
Ponce, David A.; Glen, Jonathan M.G.; Egger, Anne E.; Bouligand, Claire; Watt, Janet T.; Morin, Robert L.
2009-01-01
From May 2006 to August 2007, the U.S. Geological Survey (USGS) collected 793 gravity stations, about 102 line-kilometers of truck-towed and ground magnetometer data, and about 325 physical-property measurements in northeastern California, northwestern Nevada, and southern Oregon. Gravity, magnetic, and physical-property data were collected to study regional crustal structures and geology as an aid to understanding the geologic framework of the Surprise Valley geothermal area and, in general, geothermal systems throughout the Great Basin. The Warner Mountains and Surprise Valley mark the transition from the extended Basin and Range province to the unextended Modoc Plateau. This transition zone, in the northwestern corner of the Basin and Range, is relatively diffuse compared to other, more distinct boundaries, such as the Wasatch front in Utah and the eastern Sierran range front. In addition, this transition zone is the site of a geothermal system with potential for development, and previous studies have revealed a complex structural setting consisting of several obliquely oriented fault sets. As a result, this region has been the subject of several recent geological and geophysical investigations. The gravity and magnetic data presented here support and supplement those studies, and although the study area is composed predominantly of Tertiary volcanic rocks of the Modoc Plateau rocks, the physical properties of these and others rocks create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer subsurface geologic structure.
Exploring Sedimentary Basins with High Frequency Receiver Function: the Dublin Basin Case Study
NASA Astrophysics Data System (ADS)
Licciardi, A.; Piana Agostinetti, N.
2015-12-01
The Receiver Function (RF) method is a widely applied seismological tool for the imaging of crustal and lithospheric structures beneath a single seismic station with one to tens kilometers of vertical resolution. However, detailed information about the upper crust (0-10 km depth) can also be retrieved by increasing the frequency content of the analyzed RF data-set (with a vertical resolution lower than 0.5km). This information includes depth of velocity contrasts, S-wave velocities within layers, as well as presence and location of seismic anisotropy or dipping interfaces (e.g., induced by faulting) at depth. These observables provides valuable constraints on the structural settings and properties of sedimentary basins both for scientific and industrial applications. To test the RF capabilities for this high resolution application, six broadband seismic stations have been deployed across the southwestern margin of the Dublin Basin (DB), Ireland, whose geothermal potential has been investigated in the last few years. With an inter-station distance of about 1km, this closely spaced array has been designed to provide a clear picture of the structural transition between the margin and the inner portion of the basin. In this study, a Bayesian approach is used to retrieve the posterior probability distributions of S-wave velocity at depth beneath each seismic station. A multi-frequency RF data-set is analyzed and RF and curves of apparent velocity are jointly inverted to better constrain absolute velocity variations. A pseudo 2D section is built to observe the lateral changes in elastic properties across the margin of the basin with a focus in the shallow portion of the crust. Moreover, by means of the harmonic decomposition technique, the azimuthal variations in the RF data-set are isolated and interpreted in terms of anisotropy and dipping interfaces associated with the major fault system in the area. These results are compared with the available information from previous seismic active surveys in the area, including boreholes data.
NASA Astrophysics Data System (ADS)
Song, J.; Liu, K. H.; Yu, Y.; Mickus, K. L.; Gao, S. S.
2017-12-01
The Williston Basin of the northcentral United States and southern Canada is a typical intracratonic sag basin, with nearly continuous subsidence from the Cambrian to the Jurassic. A number of contrasting models on the subsidence mechanism of this approximately circular basin have been proposed. While in principle 3D variations of crustal thickness, layering, and Poisson's ratio can provide essential constraints on the models, thick layers of Phanerozoic sediment with up to 4.5 km thickness prevented reliable determinations of those crustal properties using active or passive source seismic techniques. Specifically, the strong reverberations of teleseismic P-to-S converted waves (a.k.a. receiver functions or RFs) from the Moho and intracrustal interfaces in the loose sedimentary layer can severely contaminate the RFs. Here we use RFs recorded by about 200 USArray and other stations in the Williston Basin and adjacent areas to obtain spatial distributions of the crustal properties. We have found that virtually all of the RFs recorded by stations in the Basin contain strong reverberations, which are effectively removed using a recently developed deconvolution-based filter (Yu et al., 2015, DOI: 10.1002/2014JB011610). A "double Moho" structure is clearly imaged beneath the Basin. The top interface has a depth of about 40 km beneath the Basin, and shallows gradually toward the east from the depocenter. It joins with the Moho beneath the western margin of the Superior Craton, where the crust is about 30 km thick. The bottom interface has a depth of 55 km beneath the Wyoming Craton, and deepens to about 70 km beneath the depocenter. Based on preliminary results of H-k stacking and gravity modeling, we interpret the layer between the two interfaces as a high density, probably eclogized layer. Continuous eclogitization from the Cambrian to the Jurassic resulted in the previously observed rates of subsidence being nearly linear rather than exponential.
NASA Astrophysics Data System (ADS)
González-Escobar, Mario; Suárez-Vidal, Francisco; Hernández-Pérez, José Antonio; Martín-Barajas, Arturo
2010-12-01
This study examines the structural characteristics of the northern Gulf of California by processing and interpreting ca. 415 km of two-dimensional multi-channel seismic reflection lines (data property of Petróleos Mexicanos PEMEX) collected in the vicinity of the border between the Wagner and Consag basins. The two basins appear to be a link between the Delfín Superior Basin to the south, and the Cerro Prieto Basin to the north in the Mexicali-Imperial Valley along the Pacific-North America plate boundary. The seismic data are consistent with existing knowledge of four main structures (master faults) in the region, i.e., the Percebo, Santa María, Consag Sur, and Wagner Sur faults. The Wagner and Consag basins are delimited to the east by the Wagner Sur Fault, and to the west by the Consag Sur Fault. The Percebo Fault borders the western margin of the modern Wagner Basin depocenter, and is oriented N10°W, dipping (on average) ˜40° to the northeast. The trace of the Santa María Fault located in the Wagner Basin strikes N19°W, dipping ˜40° to the west. The Consag Sur Fault is oriented N14°W, and dips ˜42° to the east over a distance of 21 km. To the east of the study area, the Wagner Sur Fault almost parallels the Consag Sur Fault over a distance of ˜86 km, and is oriented N10°W with an average dip of 59° to the east. Moreover, the data provide new evidence that the Wagner Fault is discontinuous between the two basins, and that its structure is more complex than previously reported. A structural high separates the northern Consag Basin from the southern Wagner Basin, comprising several secondary faults oriented NE oblique to the main faults of N-S direction. These could represent a zone of accommodation, or transfer zone, where extension could be transferred from the Wagner to the Consag Basin, or vice versa. This area shows no acoustic basement and/or intrusive body, which is consistent with existing gravimetric and magnetic data for the region.
Sweetkind, Donald S.; Drake II, Ronald M.
2007-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill-hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin such as alluvial fan, channel, basin axis, and playa deposits.
Sweetkind, Donald S.; Drake II, Ronald M.
2007-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.
Variation of the hydraulic properties within gravity-driven deposits in basinal carbonates
NASA Astrophysics Data System (ADS)
Jablonska, D.; Zambrano, M.; Emanuele, T.; Di Celma, C.
2017-12-01
Deepwater gravity-driven deposits represent important stratigraphic heterogeneities within basinal sedimentary successions. A poor understanding of their distribution, internal architecture (at meso- and micro-scale) and hydraulic properties (porosity and permeability), may lead to unexpected compartmentalization issues in reservoir analysis. In this study, we examine gravity-driven deposits within the basinal-carbonate Maiolica Formation adjacent to the Apulian Carbonate Plaftorm, southern Italy. Maiolica formation is represented by horizontal layers of thin-bedded cherty pelagic limestones often intercalated by mass-transport deposits (slumps, debris-flow deposits) and calcarenites of diverse thickness (0.1 m - 40 m) and lateral extent (100 m - >500 m). Locally, gravity-driven deposits compose up to 60 % of the exposed succession. These deposits display broad array of internal architectures (from faulted and folded strata to conglomerates) and various texture. In order to further constrain the variation of the internal architectures and fracture distribution within gravity-driven deposits, field sedimentological and structural analyses were performed. To examine the texture and hydraulic properties of various lithofacies, the laboratory porosity measurements of suitable rock samples were undertaken. These data were supported by 3D pore network quantitative analysis of X-ray Computed microtomography (MicroCT) images performed at resolutions 1.25 and 2.0 microns. This analysis helped to describe the pores and grains geometrical and morphological properties (such as size, shape, specific surface area) and the hydraulic properties (porosity and permeability) of various lithofacies. The integration of the analyses allowed us to show how the internal architecture and the hydraulic properties vary in different types of gravity-driven deposits within the basinal carbonate succession.
Spatial variability of the Arctic Ocean's double-diffusive staircase
NASA Astrophysics Data System (ADS)
Shibley, N. C.; Timmermans, M.-L.; Carpenter, J. R.; Toole, J. M.
2017-02-01
The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure overlying the Atlantic Water Layer that can be attributed to the diffusive form of double-diffusive convection. The staircase consists of multiple layers of O(1) m in thickness separated by sharp interfaces, across which temperature and salinity change abruptly. Through a detailed analysis of Ice-Tethered Profiler measurements from 2004 to 2013, the double-diffusive staircase structure is characterized across the entire Arctic Ocean. We demonstrate how the large-scale Arctic Ocean circulation influences the small-scale staircase properties. These staircase properties (layer thicknesses and temperature and salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio spanning the staircase stratification. We show that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (approximately 3-4) on the Eurasian side and higher density ratio (approximately 6-7) on the Canadian side. We find that the Eurasian Basin staircase is characterized by fewer, thinner layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin layers and the absence of a well-defined staircase. A double-diffusive 4/3 flux law parametrization is used to estimate vertical heat fluxes in the Canadian Basin to be O(0.1) W m-2. It is shown that the 4/3 flux law may not be an appropriate representation of heat fluxes through the Eurasian Basin staircase. Here molecular heat fluxes are estimated to be between O(0.01) and O(0.1) W m-2. However, many uncertainties remain about the exact nature of these fluxes.
Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China
NASA Astrophysics Data System (ADS)
Wu, X.; Qi, X.; Zheng, M.
2015-12-01
Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows. Tacheng Basin, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.
Minor, Scott A.; Hudson, Mark R.
2006-01-01
Motivated by the need to document and evaluate the types and variability of fault zone properties that potentially affect aquifer systems in basins of the middle Rio Grande rift, we systematically characterized structural and cementation properties of exposed fault zones at 176 sites in the northern Albuquerque Basin. A statistical analysis of measurements and observations evaluated four aspects of the fault zones: (1) attitude and displacement, (2) cement, (3) lithology of the host rock or sediment, and (4) character and width of distinctive structural architectural components at the outcrop scale. Three structural architectural components of the fault zones were observed: (1) outer damage zones related to fault growth; these zones typically contain deformation bands, shear fractures, and open extensional fractures, which strike subparallel to the fault and may promote ground-water flow along the fault zone; (2) inner mixed zones composed of variably entrained, disrupted, and dismembered blocks of host sediment; and (3) central fault cores that accommodate most shear strain and in which persistent low- permeability clay-rich rocks likely impede the flow of water across the fault. The lithology of the host rock or sediment influences the structure of the fault zone and the width of its components. Different grain-size distributions and degrees of induration of the host materials produce differences in material strength that lead to variations in width, degree, and style of fracturing and other fault-related deformation. In addition, lithology of the host sediment appears to strongly control the distribution of cement in fault zones. Most faults strike north to north-northeast and dip 55? - 77? east or west, toward the basin center. Most faults exhibit normal slip, and many of these faults have been reactivated by normal-oblique and strike slip. Although measured fault displacements have a broad range, from 0.9 to 4,000 m, most are <100 m, and fault zones appear to have formed mainly at depths less than 1,000 m. Fault zone widths do not exceed 40 m (median width = 15.5 m). The mean width of fault cores (0.1 m) is nearly one order of magnitude less than that of mixed zones (0.75 m) and two orders of magnitude less than that of damage zones (9.7 m). Cements, a proxy for localized flow of ancient ground water, are common along fault zones in the basin. Silica cements are limited to faults that are near and strike north to northwest toward the Jemez volcanic field north of the basin, whereas carbonate fault cements are widely distributed. Coarse sediments (gravel and sand) host the greatest concentrations of cement within fault zones. Cements fill some extension fractures and, to a lesser degree, are concentrated along shear fractures and deformation bands within inner damage zones. Cements are commonly concentrated in mixed zones and inner damage zones on one side of a fault and thus are asymmetrically distributed within a fault zone, but cement does not consistently lie on the basinward side of faults. From observed spatial patterns of asymmetrically distributed fault zone cements, we infer that ancient ground-water flow was commonly localized along, and bounded by, faults in the basin. It is apparent from our study that the Albuquerque Basin contains a high concentration of faults. The geometry of, internal structure of, and cement and clay distribution in fault zones have created and will continue to create considerable heterogeneity of permeability within the basin aquifers. The characteristics and statistical range of fault zone features appear to be predictable and consistent throughout the basin; this predictability can be used in ground-water flow simulations that consider the influence of faults.
A Basin-Wide Examination of the Arctic Ocean's Double-Diffusive Staircase
NASA Astrophysics Data System (ADS)
Shibley, N.; Timmermans, M. L.; Carpenter, J. R.; Toole, J. M.
2016-02-01
The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure above the Atlantic Water Layer consisting of multiple mixed layers of order 1-m in height separated by sharp interfaces. This double-diffusive staircase structure is characterized across the entire Arctic Ocean through a detailed analysis of Ice-Tethered Profiler measurements acquired between 2004 and 2013. Staircase properties (mixed layer thicknesses and temperature-salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio for 50-m spanning the staircase stratification. It is shown that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (on the Eurasian side) and higher density ratio (on the Canadian side). We find that the diffusive staircase in the Eurasian Basin is characterized by fewer, thinner mixed layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin staircase mixed layers. Using a double-diffusive 4/3 flux law parameterization, the distribution of vertical heat fluxes through the staircase is estimated across the Arctic; it is found that heat fluxes in the Eurasian Basin [O(1) W/m^2] are generally an order of magnitude larger than those in the Canadian Basin [O(0.1) W/m^2].
NASA Astrophysics Data System (ADS)
Bayer, U.; Littke, R.; Gajewski, D.; Brink, H.-J.
In 2001 a major research program "Dynamics of Sedimentary Systems under Varying Stress Conditions" has been established by the German Science Foundation (DFG). The programme effectively will start early in 2002 and in some sense provides a continuation of the EUROPROBE project TESZ. However, it will focus mainly on post-Paleozoic processes. The following sub-themes for this programme capture a wide range of areas of interest, calling for interdisciplinary research: 1. Structure and evolution of the crust. This topic will be based on the three- dimensional structural interpretation, pre-stack migration, and modelling of geophysi- cal data such as seismic, gravimetric, magnetic, and magnetotelluric data. The deriva- tion of interval velocities and the prediction of lateral inhomogeneities will be essential for the interpretation of rheological properties on one hand and historical geodynamic processes on the other. 2. Basin dynamics in space and time. Methods of basin anal- ysis, seismic stratigraphy,sedimentology, sequence- and event stratigraphy should be used in combination with subsidence analysis and basin modelling to interpret facies distributions within the evolving accomodation space of a sedimentary basin. An ad- vanced interpretation of seismic lines using new modelling tools is of key interest to extract facies patterns and related petrophysical properties for the three dimensional space of a sedimentary basin. 3. Fluid- and salt dynamics. Salt dynamics is related to the recent and historic stress fields of a basin and greatly governs the sedimentation and erosion processes at the surface. In addition, the rheology of the upper crust and the temperature field within sedimentary basins greatly depends on salt doming. Fluid dynamics is coupled to the temperature and pressure field, but depends also on the permeability of sedimentary rocks which varies by more than 15 orders of magnitude. The origin of non-hydrocarbon gases (CO2, N2, H2S), each dominating over methane in specific provinces of the Central European Basin as well as in many other basins 1 worldwide, is of special interest. 4. Recent state and young processes. It is the inten- tion to develop an understanding of the most recent structural and sedimentological evolution as a response to processes intrinsic to the basin or related to external causes, including glaciation periods in the Quaternary. In particular, knowledge about recently active fault systems and salt doming will be of crucial importance for any future risk assessment, e.g. with respect to the protection of coast lines and landscapes. All above mentioned topics will benefit from the further development of modelling tools for non-linear transport processes, including compaction, porosity- and perme- ability evolution, temperature evolution, maturation of organic matter and clay miner- als, diagenesis, and fluid flow. 2
Basin boundaries and focal points in a map coming from Bairstow's method.
Gardini, Laura; Bischi, Gian-Italo; Fournier-Prunaret, Daniele
1999-06-01
This paper is devoted to the study of the global dynamical properties of a two-dimensional noninvertible map, with a denominator which can vanish, obtained by applying Bairstow's method to a cubic polynomial. It is shown that the complicated structure of the basins of attraction of the fixed points is due to the existence of singularities such as sets of nondefinition, focal points, and prefocal curves, which are specific to maps with a vanishing denominator, and have been recently introduced in the literature. Some global bifurcations that change the qualitative structure of the basin boundaries, are explained in terms of contacts among these singularities. The techniques used in this paper put in evidence some new dynamic behaviors and bifurcations, which are peculiar of maps with denominator; hence they can be applied to the analysis of other classes of maps coming from iterative algorithms (based on Newton's method, or others). (c) 1999 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Choi, S.; Kim, C.; Park, C.; Kim, H.
2013-12-01
The North Fiji Basin is belong to one of the youngest basins of back-arc basins in the southwest Pacific (from 12 Ma ago). We performed the marine magnetic and the bathymetry survey in the North Fiji Basin for finding the submarine hydrothermal deposits in April 2012. We acquired magnetic and bathymetry datasets by using Multi-Beam Echo Sounder EM120 (Kongsberg Co.) and Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduce to the pole(RTP), analytic signal and magnetization. The study areas composed of the two areas(KF-1(longitude : 173.5 ~ 173.7 and latitude : -16.2 ~ -16.5) and KF-3(longitude : 173.4 ~ 173.6 and latitude : -18.7 ~ -19.1)) in Central Spreading Ridge(CSR) and one area(KF-2(longitude : 173.7 ~ 174 and latitude : -16.8 ~ -17.2)) in Triple Junction(TJ). The seabed topography of KF-1 existed thin horst in two grabens that trends NW-SE direction. The magnetic properties of KF-1 showed high magnetic anomalies in center part and magnetic lineament structure of trending E-W direction. In the magnetization distribution of KF-1, the low magnetization zone matches well with a strong analytic signal in the northeastern part. KF-2 area has TJ. The seabed topography formed like Y-shape and showed a high feature in the center of TJ. The magnetic properties of KF-2 displayed high magnetic anomalies in N-S spreading ridge center and northwestern part. In the magnetization distribution of KF-2, the low magnetization zone matches well with a strong analytic signal in the northeastern part. The seabed topography of KF-3 presented a flat and high topography like dome structure at center axis and some seamounts scattered around the axis. The magnetic properties of KF-3 showed high magnetic anomalies in N-S spreading ridge center part. In the magnetization of KF-2, the low magnetization zone mismatches to strong analytic signal in this area. The difference of KF-3 between the low magnetization zones and the analytic signals is considered that the submarine magnetic strength of KF-3 is lower than that of KF-1 and KF-2. The spreading ridges of the study areas showed common Central Anomaly Magnetization Highs (CAMH). As a whole, the previous studies on the structure of this study area (Auzende et al, 1990) support our results of the magnetic properties (Magnetic Anomaly and RTP). We can expect to have the better results by comparing with the other study like geophysics (seismic), geology, and geochemistry in this area. Reference Auzende, J.M., and 29 others, Active Spreading and Hydrothermalism in North Fiji Basin(SW Pacific). Results of Japanese French Cruise Kaiyo 87, Marine Geophysical Researches., 12, 269-283, 1990.
System metabolism in the Kanawha River basin: comparing two models
Resource managers and regulatory agencies typically monitor aquatic ecosystem condition using a combination of measures that describe stream structure (e.g. physical habitat variables, species richness metrics) and physiochemical properties (e.g., pH, DO, turbidity). Recently, me...
NASA Astrophysics Data System (ADS)
Kim, Ji-Soo; Han, Soo-Hyung; Ryang, Woo-Hun
2001-12-01
Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole-dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E-W magnetotelluric lines and dipole-dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.
Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugler, R.L.; Pashin, J.C.; Carroll, R.E.
1994-04-01
Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes themore » geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.« less
Water Induced Hazard Mapping in Nepal: A Case Study of East Rapti River Basin
NASA Astrophysics Data System (ADS)
Neupane, N.
2010-12-01
This paper presents illustration on typical water induced hazard mapping of East Rapti River Basin under the DWIDP, GON. The basin covers an area of 2398 sq km. The methodology includes making of base map of water induced disaster in the basin. Landslide hazard maps were prepared by SINMAP approach. Debris flow hazard maps were prepared by considering geology, slope, and saturation. Flood hazard maps were prepared by using two approaches: HEC-RAS and Satellite Imagery Interpretation. The composite water-induced hazard maps were produced by compiling the hazards rendered by landslide, debris flow, and flood. The monsoon average rainfall in the basin is 1907 mm whereas maximum 24 hours precipitation is 456.8 mm. The peak discharge of the Rapati River in the year of 1993 at station was 1220 cu m/sec. This discharge nearly corresponds to the discharge of 100-year return period. The landslides, floods, and debris flows triggered by the heavy rain of July 1993 claimed 265 lives, affected 148516 people, and damaged 1500 houses in the basin. The field investigation and integrated GIS interpretation showed that the very high and high landslide hazard zones collectively cover 38.38% and debris flow hazard zone constitutes 6.58%. High flood hazard zone occupies 4.28% area of the watershed. Mitigation measures are recommendated according to Integrated Watershed Management Approach under which the non-structural and structural measures are proposed. The non-structural measures includes: disaster management training, formulation of evacuation system (arrangement of information plan about disaster), agriculture management practices, protection of water sources, slope protections and removal of excessive bed load from the river channel. Similarly, structural measures such as dike, spur, rehabilitation of existing preventive measures and river training at some locations are recommendated. The major factors that have contributed to induce high incidences of various types of mass movements and inundation in the basin are rock and soil properties, prolonged and high-intensity rainfall, steep topography and various anthropogenic factors.
Friction melt distribution in a multi-ring impact basin.
Spray, J G; Thompson, L M
1995-01-12
It is generally accepted that multi-ring basins are the consequence of very large impacts, but the mechanism by which they form is still a matter of contention. Most of what is currently known about multi-ring basins is based on remote studies of the Moon and, to a lesser extent, Mars and Mercury. But at least two multi-ring impact basins have been recognized on Earth--the Sudbury (Canada) and Vredefort (South Africa) impact structures--providing an opportunity to study their properties directly. Here we describe the distribution of friction melt (pseudotachylyte) in the floor of the Sudbury impact basin. Although the veins and dykes of pseudotachylyte decrease in both thickness and frequency of occurrence towards the basin periphery, the greatest volumes of friction melt appear to define four rings around the central impact melt sheet. Field evidence indicates that the rings originated as zones of large displacement, which facilitated localized frictional melting of the basin floor during the modification (collapse) stage of the cratering process. By analogy, we argue that the rings of other multi-ring impact basins are also likely to be the remnants of such large-displacement fault zones.
NASA Astrophysics Data System (ADS)
Alemayehu, Taye; Kebede, Tesfaye; Liu, Lanbo
2018-01-01
Despite being the longest river and the fourth in drainage area, Nile River has the lowest discharge per unit areas among the top ten rivers of the world. Understanding the hydrologic significance of the regional litho-stratigraphy and structures help to better understand the hydrodynamics. This work is aimed at characterizing the Baro-Akobo-Sobbat sub-basin of Nile and determine trans-basin flows. Integrated method is used to characterize the basin and determine the Baro-Akobo-Sobbat sub-basin's relationship with African Mesozoic Rifts. Oil and water well drilling logs; aeromagnetic, gravity and vertical electrical sounding data; and various study reports are used to establish regional lithostratigraphic correlations and determine trans-regional hydrogeological connectivity. A total of 633 samples collected from wells, springs, rivers, lakes, swamps and rain water are analysed for their chemical, stable isotopes, tritium and radon properties. The Baro-Akobo river basin is commonly presumed to have good groundwater potential, particularly in its lowland plain. However, it has poor exploitable groundwater potential and recharge rate due to the extensive clay cover, limited retention capacity and the loss of the bulk of the groundwaters through regional geological structures to the deep seated continental sediments; presumably reaching the hydraulically connected African Mesozoic Rifts; mainly Melut and Muglad. The deep underground northward flows, along Nile River is, presumably, retarded by Central African Shear Zone in the Sudan.
Fractal Analysis of Drainage Basins on Mars
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.
2002-01-01
We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.
NASA Astrophysics Data System (ADS)
Hajek, E. A.; Heller, P.
2009-12-01
A primary goal of sedimentary geologists is to interpret past tectonic, climatic, and eustatic conditions from the stratigraphic record. Stratigraphic changes in alluvial-basin fills are routinely interpreted as the result of past tectonic movements or changes in climate or sea level. Recent physical and numerical models have shown that sedimentary systems can exhibit self-organization on basin-filling time scales, suggesting that structured stratigraphic patterns can form spontaneously rather than as the result of changing boundary conditions. The Ferris Formation (Upper Cretaceous/Paleogene, Hanna Basin, Wyoming) exhibits stratigraphic organization where clusters of closely-spaced channel deposits are separated from other clusters by intervals dominated by overbank material. In order to evaluate the role of basinal controls on deposition and ascertain the potential for self-organization in this ancient deposit, the spatial patterns of key channel properties (including sand-body dimensions, paleoflow depth, maximum clast size, paleocurrent direction, and sediment provenance) are analyzed. Overall the study area lacks strong trends sand-body properties through the stratigraphic succession and in cluster groups. Consequently there is no indication that the stratigraphic pattern observed in the Ferris Formation was driven by systematic changes in climate or tectonics.
NASA Astrophysics Data System (ADS)
Mukai, Y.; Furumura, T.; Maeda, T.
2017-12-01
In the Kanto Basin (including Tokyo in Japan), the long-period (T=3-10 s) ground motions are strongly developed when large earthquakes occur nearby. The amplitude of the long-period ground motion in the basin varies strongly among earthquakes; it is tremendous from the earthquakes in Niigata (northwest of Kanto), but is several times weaker from the earthquakes in Tohoku (north of Kanto). In this study, we examined the cause of such azimuthal-dependent amplitude variation for the 2004 Niigata Chuetsu (M6.8) and the 2011 Fukushima Hamadori (M7.0) earthquake based on numerical simulations of seismic wave propagation by the finite-difference method. We first examined the non-isotropic source-radiation effect of these events. By performing numerical simulations for different strike angles of these source faults, significant variation in amplitude of the long-period ground motions were observed in Tokyo for both the events. Among tested strike angles, the source of the 2004 event (strike = 212 deg.) produced the largest long-period ground motion due to strong radiation of surface wave towards the Kanto Basin, while the 2011 event (strike = 132 deg.) produced the least. The minimum-to-maximum ratio of their amplitudes with respect to strike angle is about 2 and 1.3, respectively. These investigations suggest the source radiation effect considerably contributes to the variations of the long-period ground motions. We then examined the effect of the 3D structure of the Kanto Basin on the generation of the long-period ground motion. For the 2004 event, we found that the long-period signal first arrives at the central Tokyo from the western edge of the Kanto Basin. Then, later signals containing both the Rayleigh and Love waves were amplified dramatically due to the localized low-velocity structure to the northwestern part of the basin. On the other hand, in the case of the 2011 event, the seismic waves propagating towards the basin were dissipated significantly as it travels over the ridge structure of the basement in the northern part of the basin, where the seismic wave speed is faster than the surroundings. Therefore, the large variation of the long-period ground motion among earthquakes occurs due to the combined effects of source radiation and propagation properties in the 3D heterogeneous structure of the Kanto Basin.
Effects of Faults on Petroleum Fluid Dynamics, Borderland Basins of Southern California
NASA Astrophysics Data System (ADS)
Jung, B.; Garven, G.; Boles, J. R.
2012-12-01
Multiphase flow modeling provides a useful quantitative tool for understanding crustal processes such as petroleum migration in geological systems, and also for characterizing subsurface environmental issues such as carbon sequestration in sedimentary basins. However, accurate modeling of multi-fluid behavior is often difficult because of the various coupled and nonlinear physics affecting multiphase fluid saturation and migration, including effects of capillarity and relative permeability, anisotropy and heterogeneity of the medium, and the effects of pore pressure, composition, and temperature on fluid properties. Regional fault structures also play a strong role in controlling fluid pathlines and mobility, so considering hydrogeologic effects of these structures is critical for testing exploration concepts, and for predicting the fate of injected fluids. To address these issues on spatially large and long temporal scales, we have developed a 2-D multiphase fluid flow model, coupled to heat flow, using a hybrid finite element and finite volume method. We have had good success in applying the multiphase flow model to fundamental issues of long-distance petroleum migration and accumulation in the Los Angeles basin, which is intensely faulted and disturbed by transpressional tectonic stresses, and host to the world's richest oil accumulation. To constrain the model, known subsurface geology and fault structures were rendered using geophysical logs from industry exploration boreholes and published seismic profiles. Plausible multiphase model parameters were estimated, either from known fault permeability measurements in similar strata in the Santa Barbara basin, and from known formation properties obtained from numerous oil fields in the Los Angeles basin. Our simulations show that a combination of continuous hydrocarbon generation and primary migration from upper Miocene source rocks in the central LA basin synclinal region, coupled with a subsiding basin fluid dynamics, favored the massive accumulation and alignment of hydrocarbon pools along the Newport-Inglewood fault zone (NIFZ). According to our multiphase flow calculations, the maximum formation water velocities within fault zones likely ranged between 1 ~ 2 m/yr during the middle Miocene to Pliocene (13 to 2.6 Ma). The estimated time for long-distance (~ 25 km) petroleum migration from source beds in the central basin to oil fields along the NIFZ is approximately 150,000 ~ 250,000 years, depending on the effective permeability assigned to the faults and adjacent interbedded sandstone and siltstone "petroleum aquifers". With an average long-distance flow rate (~ 0.6 m/yr) and fault permeability of 100 millidarcys (10-13 m2), the total petroleum oil of Inglewood oil field of 450 million barrels (~ 1.6 × 105 m3) would have accumulated rather quickly, likely over 25,000 years or less. The results also suggest that besides the thermal and structural history of the basin, the fault permeability, capillary pressure, and the configuration of aquifer and aquitard layers played an important role in controlling petroleum migration rates, patterns of flow, and the overall fluid mechanics of petroleum accumulation.
Yunus, Ahmad Jailani Muhamed; Nakagoshi, Nobukazu; Salleh, Khairulmaini Osman
2003-03-01
This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge (Q min) was dependent of basin area (AU), stream length (LS), maximum relief (Hmax), average relief (HAV) and stream frequency (SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.
Ahnert, S E; Fink, T M A
2016-07-01
Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. © 2016 The Authors.
The scaling of complex craters
NASA Technical Reports Server (NTRS)
Croft, S. K.
1985-01-01
The empirical relation between the transient crater diameter (Dg) and final crater diameter (Dr) of complex craters and basins is estimated using cumulative terrace widths, central uplift diameters, continuous ejecta radii, and transient crater reconstructions determined from lunar and terrestrial impact structures. The ratio Dg/Dr is a power law function of Dr, decreasing uniformly from unity at the diameter of the simple-complex crater morphology transition to about 0.5 for large multiring basins like Imbrium on the moon. The empirical constants in the Dg/Dr relation are interpreted physically to mean that the position of the final rim relative to the transient crater, and hence the extent of collapse, is controlled or greatly influenced by the properties of the zone of dissociated material produced by the impact shock. The continuity of the Dg/Dr relation over the entire spectrum of morphologic types from complex craters to multiring basins implies that the rims of all these structures form in the same tectonic environment despite morphologic differences.
Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements
Neumann, Gregory A.; Zuber, Maria T.; Wieczorek, Mark A.; Head, James W.; Baker, David M. H.; Solomon, Sean C.; Smith, David E.; Lemoine, Frank G.; Mazarico, Erwan; Sabaka, Terence J.; Goossens, Sander J.; Melosh, H. Jay; Phillips, Roger J.; Asmar, Sami W.; Konopliv, Alexander S.; Williams, James G.; Sori, Michael M.; Soderblom, Jason M.; Miljković, Katarina; Andrews-Hanna, Jeffrey C.; Nimmo, Francis; Kiefer, Walter S.
2015-01-01
Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population. PMID:26601317
Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements.
Neumann, Gregory A; Zuber, Maria T; Wieczorek, Mark A; Head, James W; Baker, David M H; Solomon, Sean C; Smith, David E; Lemoine, Frank G; Mazarico, Erwan; Sabaka, Terence J; Goossens, Sander J; Melosh, H Jay; Phillips, Roger J; Asmar, Sami W; Konopliv, Alexander S; Williams, James G; Sori, Michael M; Soderblom, Jason M; Miljković, Katarina; Andrews-Hanna, Jeffrey C; Nimmo, Francis; Kiefer, Walter S
2015-10-01
Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population.
Power-law tail probabilities of drainage areas in river basins
Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.
2003-01-01
The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.
Heino, Jani; Melo, Adriano S; Bini, Luis Mauricio; Altermatt, Florian; Al-Shami, Salman A; Angeler, David G; Bonada, Núria; Brand, Cecilia; Callisto, Marcos; Cottenie, Karl; Dangles, Olivier; Dudgeon, David; Encalada, Andrea; Göthe, Emma; Grönroos, Mira; Hamada, Neusa; Jacobsen, Dean; Landeiro, Victor L; Ligeiro, Raphael; Martins, Renato T; Miserendino, María Laura; Md Rawi, Che Salmah; Rodrigues, Marciel E; Roque, Fabio de Oliveira; Sandin, Leonard; Schmera, Denes; Sgarbi, Luciano F; Simaika, John P; Siqueira, Tadeu; Thompson, Ross M; Townsend, Colin R
2015-03-01
The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.
NASA Astrophysics Data System (ADS)
Bertrand, Lionel; Jusseaume, Jessie; Géraud, Yves; Diraison, Marc; Damy, Pierre-Clément; Navelot, Vivien; Haffen, Sébastien
2018-03-01
In fractured reservoirs in the basement of extensional basins, fault and fracture parameters like density, spacing and length distribution are key properties for modelling and prediction of reservoir properties and fluids flow. As only large faults are detectable using basin-scale geophysical investigations, these fine-scale parameters need to be inferred from faults and fractures in analogous rocks at the outcrop. In this study, we use the western shoulder of the Upper Rhine Graben as an outcropping analogue of several deep borehole projects in the basement of the graben. Geological regional data, DTM (Digital Terrain Model) mapping and outcrop studies with scanlines are used to determine the spatial arrangement of the faults from the regional to the reservoir scale. The data shows that: 1) The fault network can be hierarchized in three different orders of scale and structural blocks with a characteristic structuration. This is consistent with other basement rocks studies in other rifting system allowing the extrapolation of the important parameters for modelling. 2) In the structural blocks, the fracture network linked to the faults is linked to the interplay between rock facies variation linked to the rock emplacement and the rifting event.
The effect of size and composition on structural transitions in monometallic nanoparticles
NASA Astrophysics Data System (ADS)
Rossi, Kevin; Pavan, Luca; Soon, YeeYeen; Baletto, Francesca
2018-02-01
Predicting the morphological stability of nanoparticles is an essential step towards the accurate modelling of their chemophysical properties. Here we investigate solid-solid transitions in monometallic clusters of 0.5-2.0 nm diameter at finite temperatures and we report the complex dependence of the rearrangement mechanism on the nanoparticle's composition and size. The concerted Lipscomb's Diamond-Square-Diamond mechanisms which connects the decahedral or the cuboctahedral to the icosahedral basins, take place only below a material dependent critical size above which surface diffusion prevails and leads to low-symmetry and defected shapes still belonging to the initial basin.
Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 1. Process Analysis.
1984-09-01
Uinta Basin .......................too.... 11 b . Asphalt Ridge ........................ 13 c.* Tar Sand Triangle ..... to .. .. . .. .. . 15 e...Estimated ............**..* 7 3 CHARACTERISTICS OF UTAH’S MAJOR TAR SANDS ....... 12 4 UINTA BASIN DEPOSITS ................... *........ 13 *.5 UINTA ...7 UINTA BASIN , UTAH PROPERTIES -SUNNYSIDE ........ 20 8 UINTA BASIN , UTAH PROPERTIES -P. R. SPRINGS . 22 r9 ESTIMATED CALIFORNIA TAR SAND DISTRIBUTION
Levings, G.W.; Kernodle, J.M.; Thorn, C.R.
1996-01-01
Ground-water resources are the only source of water in most of the San Juan structural basin and are mainly used for municipal, industrial, domestic, and stock purposes. Industrial use increased dramatically during the late 1970's and early 1980's because of increased exploration and development of uranium and coal resources. The San Juan structural basin is a northwest-trending, asymmetric structural depression at the eastern edge of the Colorado Plateau. The basin contains as much as 14,000 feet of sedimentary rocks overlying a Precambrian basement complex. The sedimentary rocks dip basinward from the basin margins toward the troughlike structural center, or deepest part of the basin. Rocks of Triassic age were selected as the lower boundary for the study. The basin is well defined by structural boundaries in many places with structural relief of as much as 20,000 feet reported. Faulting is prevalent in parts of the basin with displacement of several thousand feet along major faults. The regional aquifers in the basin generally are coincident with the geologic units that have been mapped. Data on the hydrologic properties of the regional aquifers are minimal. Most data were collected on those aquifers associated with uranium and coal resource production. These data are summarized in table format in the report. The regional flow system throughout most of the basin has been affected by the production of oil or gas and subsequent disposal of produced brine. To date more than 26,000 oil- or gas- test holes have been drilled in the basin, the majority penetrating no deeper than the bottom of the Cretaceous rocks. The general water chemistry of the regional aquifers is based on available data. The depositional environments are the major factor controlling the quality of water in the units. The dominant ions are generally sodium, bicarbonate, and sulfate. A detailed geochemical study of three sandstone aquifers--Morrison, Dakota, and Gallup--was undertaken in the northwestern part of the study area. Results of this study indicate that water chemistry changed in individual wells over short periods of time, not expected in a regional flow system. The chemistry of the water is affected by mixing of recharge, ion filtrate, or very dilute ancient water, and by leakage of saline water. The entire system of ground-water flow and its controlling factors has been defined as the conceptual model. A steady-state, three-dimensional ground-water flow model was constructed to simulate modern predevelopment flow in the post-Jurassic rocks of the regional flow system. In the ground-water flow model, 14 geologic units or combinations of geologic units were considered to be regional aquifers, and 5 geologic units or combinations of geologic units were considered to be regional confining units. The model simulated flow in 12 layers (hydrostratigraphic units) and used harmonic-mean vertical leakance to indirectly simulate aquifer connection across 3 other hydrostratigraphic confining units in addition to coupling the 12 units.
NASA Astrophysics Data System (ADS)
Hilario Bezerra, Francisco; Araujo, Renata; Maciel, Ingrid; Cezar Nogueira, Francisco; Balsamo, Fabrizio; Storti, Fabrizio; Souza, Jorge Andre; Carvalho, Bruno
2017-04-01
Many studies have investigated on the evolution and properties of deformation bands, but their occurrence and relationships with basin-boundary faults remain elusive when the latter form by brittle reactivation of structural inheritance in crystalline basements. The main objective of our study was to systematically record the location, kinematics, geometry, and density of deformation bands in the early Cretaceous Rio do Peixe basin, NE Brazil, and analyze their relationship with major syn-rift fault zones. Reactivation in early Cretaceous times of continental-scale ductile shear zones led to the development of rift basins in NE Brazil. These shear zones form a network of NE- and E-W-trending structures hundreds of kilometers long and 3-10 km wide. They were active in the Brasiliano orogeny at 540-740 Ma. Brittle reactivation of these structures occurred in Neocomian times ( 140-120 Ma) prior the breakup between the South American and African plates in the late Cretaceous. The Rio do Peixe basin formed at the intersection between the NE-SW-striking Portalegre shear zone and the E-W-striking Patos shear zone. The brittle fault systems developed by the shear zone reactivation are the Portalegre Fault and the Malta Fault, respectively. In this research we used field structural investigations and drone imagery with centimetric resolution. Our results indicate that deformation bands occur in poorly sorted, medium to coarse grain size sandstones and localize in 3-4 km wide belts in the hanging wall of the two main syn-rifts fault systems. Deformation bands formed when sandstones were not completely lithified. They strike NE along the Portalegre Fault and E-W along the Malta Fault and have slip lineations with rake values ranging from 40 to 90. The kinematics recorded in deformation bands is consistent with that characterizing major rift fault systems, i.e. major extension with a strike-slip component. Since deformations bands are typical sub-seismic features, our findings can have implications for the prediction of deformation band occurrence in sedimentary basins and their geometric and kinematic relations with major basin-boundary fault systems.
Power-law distributions for the areas of the basins of attraction on a potential energy landscape.
Massen, Claire P; Doye, Jonathan P K
2007-03-01
Energy landscape approaches have become increasingly popular for analyzing a wide variety of chemical physics phenomena. Basic to many of these applications has been the inherent structure mapping, which divides up the potential energy landscape into basins of attraction surrounding the minima. Here, we probe the nature of this division by introducing a method to compute the basin area distribution and applying it to some archetypal supercooled liquids. We find that this probability distribution is a power law over a large number of decades with the lower-energy minima having larger basins of attraction. Interestingly, the exponent for this power law is approximately the same as that for a high-dimensional Apollonian packing, providing further support for the suggestion that there is a strong analogy between the way the energy landscape is divided into basins, and the way that space is packed in self-similar, space-filling hypersphere packings, such as the Apollonian packing. These results suggest that the basins of attraction provide a fractal-like tiling of the energy landscape, and that a scale-free pattern of connections between the minima is a general property of energy landscapes.
Relationship between deep structure and oil-gas in the eastern Tarim Basin
NASA Astrophysics Data System (ADS)
Yu, Changqing; Qu, Chen; Han, Jianguang
2017-04-01
The Tarim Basin is a large composite superimposed basin which developed in the Presinian continental basement. It is an important area for oil and gas replacement in China. In the eastern part of Tarim Basin, the exploration and research degree is very low and less system, especially in the study of tectonic evolution and physical property change. Basing on the study of geophysics, drilling and regional geological data in this area, analysis of comprehensive geophysical, geological and geophysical analysis comparison are lunched by new methods and new technology of geophysical exploration. Fault, tectonic evolution and change of deep character in the eastern Tarim Basin are analyzed in system. Through in-depth study and understanding of the deep structure and physical changes of the eastern region, we obtain the fault characteristics in the study area and the deep structure and physical change maps to better guide the oil and gas exploration in this area. The east area is located in the eastern Tarim Basin, west from the Garr Man depression, Well Kunan 1 - Well Gucheng 4 line to the East, north to Kuruketage uplift group near Qunke 1 wells, south to Cherchen fault zone, east to Lop Nor depression, an area of about 9 * 104 square kilometres, Including the East of Garr Man sag, Yingjisu depression, Kongquehe slope, Tadong low uplift and the Lop Nor uplift, five two grade tectonic units. The east area of Tarim is belonging to Tarim plate. It changes with the evolution of the Tarim plate. The Tarim plate is closely related to the collision between the Yining - the Junggar plate, the Siberia plate and the southern Qiangtang - the central Kunlun plate. Therefore, it creates a complex tectonic pattern in the eastern Tarim basin. Earth electromagnetic, gravity, deep seismic and other geophysical data are processed by a new generation of geophysical information theory and method, including multi-scale inversion of potential field inversion (Hou and Yang, 2011), 3D magnetotelluric data (Yang et al., 2012) and micro seismic wave field information recognition technology in the eastern Tarim Basin. Combining the information of the deep faults, tectonic evolution characteristics of the study area and the physical changes from geological data, we analyze the relationship between the change of the physical structure and the oil and gas, and predict the favorable oil and gas area and the exploration target area by information extraction, processing and interpretation analysis based on integrated geophysical technology. References 1. Hou, Z. Z., W. C. Yang, 2011, multi scale gravity field inversion and density structure in Tarim Basin: Chinese science, 41, 29-39. 2. Yang W. C., J. L. Wang, H. Z. Zhong, 2012, The main port of the Tarim Basin Analysis of magnetic field and magnetic source structure: Chinese Journal of Geophysics, 55, 1278-1287.
Watt, Janet T.; Ponce, David A.
2007-01-01
A geophysical investigation was undertaken as part of an effort to characterize the geologic framework influencing ground-water resources in east-central Nevada and west-central Utah. New gravity data were combined with existing aeromagnetic, drill-hole, and geologic data to help determine basin geometry, infer structural features, estimate depth to pre-Cenozoic basement rocks, and further constrain the horizontal extents of exposed and buried plutons. In addition, a three-dimensional (3D) geologic model was constructed to help illustrate the often complex geometries of individual basins and aid in assessing the connectivity of adjacent basins. In general, the thirteen major valleys within the study area have axes oriented north-south and frequently contain one or more sub-basins. These basins are often asymmetric and typically reach depths of 2 km. Analysis of gravity data helped delineate geophysical lineaments and accommodation zones. Structural complexities may further compartmentalize ground-water flow within basins and the influence of tectonics on basin sedimentation further complicates their hydrologic properties. The horizontal extent of exposed and, in particular, buried plutons was estimated over the entire study area. The location and subsurface extents of these plutons will be very important for regional water resource assessments, as these features may act as either barriers or pathways for groundwater flow. A previously identified basement gravity low strikes NW within the study area and occurs within a highly extended terrane between the Butte and Confusion synclinoria. Evidence from geophysical, geologic, and seismic reflection data suggests relatively lower density plutonic rocks may extend to moderate crustal depths and rocks of similar composition may be the source of the entire basement gravity anomaly.
NASA Astrophysics Data System (ADS)
Grevemeyer, Ingo; Kodaira, Shuichi; Fujie, Gou; Takahashi, Narumi
2017-04-01
The proto Izu-Ogasawara (Bonin)-Mariana (IBM) Island arc was created when subduction of the Pacific plate began during the Eocene. Today, the Kyushu-Palau Ridge (KPR) at the centre of the Philippine Sea and the western Mariana Ridge (WMR) are considered to be a remnant of the proto IBM Island arc. The KPR and WMR were separated when back-arc spreading began at 30 to 29 Ma in the Shikoku Basin and ParceVela Basin (PVB). Volcanic activity along the arcs diminished at 27 Ma and there is little evidence of volcanic activity between 23-17 Ma. Arc volcanism was reactivated at 15 Ma, when the opening of the Shikoku Basin and PVB ceased. At about 5 Ma the Mariana Basin opened, rifting the WMR from the Mariana arc. Here, we report results from the seismic refraction and wide-angle profile MR101c shot in summer of 2003 by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) aboard the RV KAIYO during the cruise KY03-06, extending from the PVB across the WMR and terminating just to the east of the WMR. Along MR101c 46 OBS recorded shots from an airgun array of 12,000 cubic inches (197 litres); 44 OBS provided excellent P-wave data, including arrivals sampling the crust (Pg), the crust/mantle boundary (PmP), the uppermost mantle (Pn) and a deep reflection (PnP) under the WMR. To yield the seismic velocity structure, we used a joint reflection and refraction tomography, revealing the crustal and mantle P-wave velocity structure, the seismic Moho, and a deep-seated reflector. Distinct features are a 14 km thick crust forming the WMR, a high-velocity lower crust in both transition zones to the ParceVela Basin and Mariana Basin, and a reflector at 24 km depth, which shallows to 18 km in the transition zone to the Mariana Basin, perhaps reflecting rifting-related thinning of the entire lithosphere. The deep-reflector, however, did not occur under the PVB. Upper mantle velocity below the WMR is <7.5 km/s. High velocities of the lower crust of the WMR flanking the adjacent basins mimic the structure found in the Lau Basin - Tonga Arc system, perhaps indicating entrainment of hydrous melts from the adjacent arc governing early seafloor spreading when the spreading centre was at close distant to the volcanic arc. Upper mantle below the PVB shows typical mantle properties, supporting a P-wave velocity of >8 km/s. However, with respect to oceanic crust sampled in the Pacific Basin, PVB crust is with 5 km thinner and seismic velocities in the lower crust are with 6.7 km/s much lower.
NASA Astrophysics Data System (ADS)
Cassola, Teodoro; Willett, Sean D.; Kopp, Heidrun
2010-05-01
In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between wedge deformation and forearc basin formation. The aim of this work is to gain an insight into the dynamics of the formation of the forearc basin, in particular the mechanism of formation of accommodation space and the preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle and thermally-dependent viscosity. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy of the basin will also be studied, because in underfilled conditions the sediments are more likely to undergo tectonic deformation due to inner wedge deformation. We compare the numerical model with basins along the Sunda-Java Trench. This margin shows a variety of structural-settings and basin types including underfilled and overfilled basins and different wedge geometries. We interpret and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available through the IFM-GEOMAR and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR). One important aspect of these margins that we observe is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stable field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.
NASA Astrophysics Data System (ADS)
He, B.; Jiao, C.; Huang, T.; Zhou, X.; Cai, Z.; Cao, Z.; Jiang, Z.; Cui, J.; Yu, Z.; Chen, W.
2017-12-01
The Tarim Basin is the largest, oil-bearing and superimposed basin in the northwest of China. The development and tectonic property of the initial Tarim basin have been acutely disputed and remain enigmatic. Urgently need to reveal the origin and formation dynamics of the Tarim Carton and evaluate the potential of the deep energy resources. However, covered by vast desert and huge-thickness sedimentary strata, suffered by multiple tectonic movements, seismic data with low signal- to- noise ratio in the deep are the critical difficulties. We analyse 4 field outcrops, 18 wells, 27 reprocessed seismic reflection profiles with high SNR across the basin and many ancillary ones and aeromagnetic data. We find about 20 normal fault-controlled rift depressions of the Cryogenian and Ediacaran scattered in the Tarim basin, which developed on the Precambrian metamorphic and crystalline basements and covered by the epeiric sea and basin facies sediments of the Lower Cambrian. The structural styles of the rifts are mainly half grabens, symmetrical troughs and horst-grabens. The regional differences exist obviously in spatial and temporal. The WNW-ESE-trending faults occur in the central part and northern of the basin and the NE, and the NEE-trending faults occur in the southern parts, which response with the anomaly of aeromagnetic. Some main faults of the Ediacaran inherited from the Cryogenian and some occurred newly, the more rifting depressions occurred during the Ediacaran. The extensional NNW-SSE-oriented and NNE-SSW-oriented paleostress field occurred simultaneously during rifting, and accompanied with the clockwise shearing. According to the activities of syn-sedimentary faults, magmatic events and sediments, the tectonic properties of the rifts are different depending on their locations in the Tarim craton. The rifting phases mainly occurred from 780 Ma to 615 Ma. The formation of rifts were associated with the opening of the South Tianshan Ocean and the South Altun-West Kunlun Oceans, which located at the north and south margin of the Tarim block, respectively, in response to break-up of the Rodinia supercontinent. The multiple rifts recognized reflect the fine-scale structure of the initiation of the Tarim craton and is the significant for understanding of the plate system and formation dynamics.
NASA Astrophysics Data System (ADS)
Satyana, Awang Harun; Nugroho, Djoko; Surantoko, Imanhardjo
1999-04-01
The Barito, Kutei, and Tarakan Basins are located in the eastern half of Kalimantan (Borneo) Island, Indonesia. The basins are distinguished by their different tectonic styles during Tertiary and Pleistocene times. In the Barito Basin, the deformation is a consequence of two distinct, separate, regimes. Firstly, an initial transtensional regime during which sinistral shear resulted in the formation of a series of wrench-related rifts, and secondly, a subsequent transpressional regime involving convergent uplift, reactivating old structures and resulting in wrenching, reverse faulting and folding within the basin. Presently, NNE-SSW and E-W trending structures are concentrated in the northeastern and northern parts of the basin, respectively. In the northeastern part, the structures become increasingly imbricated towards the Meratus Mountains and involve the basement. The western and southern parts of the Barito Basin are only weakly deformed. In the Kutei Basin, the present day dominant structural trend is a series of tightly folded, NNE-SSW trending anticlines and synclines forming the Samarinda Anticlinorium which is dominant in the eastern part of the basin. Deformation is less intense offshore. Middle Miocene to Recent structural growth is suggested by depositional thinning over the structures. The western basin area is uplifted, large structures are evident in several places. The origin of the Kutei structures is still in question and proposed mechanisms include vertical diapirism, gravitational gliding, inversion through regional wrenching, detachment folds over inverted structures, and inverted delta growth-fault system. In the Tarakan Basin, the present structural grain is typified by NNE-SSW normal faults which are mostly developed in the marginal and offshore areas. These structures formed on older NW-SE trending folds and are normal to the direction of the basin sedimentary thickening suggesting that they developed contemporaneously with deposition, as growth-faults, and may be the direct result of sedimentary loading by successive deltaic deposits. Older structures were formed in the onshore basin, characterized by the N-S trending folds resulting from the collision of the Central Range terranes to the west of the basin. Hydrocarbon accumulations in the three basins are strongly controlled by their tectonic styles. In the Barito Basin, all fields are located in west-verging faulted anticlines. The history of tectonic inversion and convergent uplift of the Meratus Mountains, isostatically, have caused the generation, migration, and trapping of hydrocarbons. In the Kutei Basin, the onshore Samarinda Anticlinorium and the offshore Mahakam Foldbelt are prolific petroleum provinces, within which most Indonesian giant fields are located. In the offshore, very gentle folds also play a role as hydrocarbon traps, in association with stratigraphic entrapment. These structures have recently become primary targets for exploratory drilling. In the Tarakan Basin, the prominent NW-SE anticlines, fragmented by NE-SW growth-faults, have proved to be petroleum traps. The main producing pools are located in the downthrown blocks of the faults. Diverse tectonic styles within the producing basins of Kalimantan compel separate exploration approaches to each basin. To discover new opportunities in exploration, it is important to understand the structural evolution of neighbouring basins.
Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.
2014-01-01
Regionally, water in the lower Tertiary and Upper Cretaceous aquifer systems flows in a northerly or northeasterly direction from the Powder River structural basin to the Williston structural basin. Groundwater flow in the Williston structural basin generally is easterly or northeasterly. Flow in the uppermost hydrogeologic units generally is more local and controlled by topography where unglaciated in the Williston structural basin than is flow in the glaciated part and in underlying aquifers. Groundwater flow in the Powder River structural basin generally is northerly with local variations greatest in the uppermost aquifers. Groundwater is confined, and flow is regional in the underlying aquifers.
Tremors from earthquakes and blasting in the Powder River basin of Wyoming and Montana
Miller, C.H.; Osterwald, F.W.
1980-01-01
We are not aware of any damage to people or to property caused by blasting in the coal surface mines even though thousands of tons of explosives are detonated each year in the basin. The maximum weight of an individual explosive charge and the time interval between blasts are regulated so that any nearby structures will not be damaged or the residents disturbed. Blasting, nevertheless, does produce seismic tremors that can be recorded over 200 kilometers away. In addition, at one mine, some very low order aftershocks were recorded relatively close to the source within 2 hours after blasting.
Thomaz, A T; Malabarba, L R; Knowles, L L
2017-10-01
Past shifts in connectivity in riverine environments (for example, sea-level changes) and the properties of current drainages can act as drivers of genetic structure and demographic processes in riverine population of fishes. However, it is unclear whether the same river properties that structure variation on recent timescales will also leave similar genomic signatures that reflect paleodrainage properties. By characterizing genetic structure in a freshwater fish species (Hollandichthys multifasciatus) from a system of basins along the Atlantic coast of Brazil we test for the effects of paleodrainages caused by sea-level changes during the Pleistocene. Given that the paleodrainage properties differ along the Brazilian coast, we also evaluate whether estimated genetic diversity within paleodrainages can be explained by past riverine properties (i.e., area and number of rivers in a paleodrainage). Our results demonstrate that genetic structure between populations is not just highly concordant with paleodrainages, but that differences in the genetic diversity among paleodrainages correspond to the joint effect of differences in the area encompassed by, and the number of rivers, within a paleodrainage. Our findings extend the influence of current riverine properties on genetic diversity to those associated with past paleodrainage properties. We discuss how these findings may explain the inconsistent support for paleodrainages in structuring divergence from different global regions and the importance of taking into account past conditions for understanding the high species diversity of freshwater fish that we currently observe in the world, and especially in the Neotropics.
NASA Astrophysics Data System (ADS)
Reyer, D.; Philipp, S. L.
2012-04-01
Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical phenomena in sedimentary basins such as the North German Basin. To be able to model reservoir stimulation in layered stratifications and to better adapt the drilling strategy to the rock mechanical conditions it is important to have knowledge about the effects of heterogeneous rock properties on fracture propagation and fault zone infrastructure for typical sedimentary reservoir rocks in the North German Basin. Therefore we aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses. The field studies in Rotliegend sandstones (Lower Permian), the sandstones of the Middle Bunter (Lower Triassic) and the sandstones of the Upper Keuper (Upper Triassic) focus on 1) host rock fracture systems and 2) fault zone infrastructure. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems separately for host rocks and fault damage zones. The results show that in rocks with distinctive layering (sandstones and shales) natural fractures are often restricted to individual layers, that is, they are stratabound. The probability of fracture arrest seems to depend on the stiffness contrast between the two layers and on the thickness of the softer layer. The field studies are complemented by systematic sampling to obtain mechanical property variations caused by the layering. For the samples we measure the parameters Young's modulus, compressive and tensile strengths, elastic strain energy, density and porosity. The results show that the mechanical properties vary considerably and many samples are clearly anisotropic. That is, samples taken perpendicular to layering commonly have higher strengths but lower stiffnesses than those taken parallel to layering. We combine the results of laboratory analyses and field measurements to specify the mechanical heterogeneities of the sedimentary reservoir rocks of the North German Basin and of the mechanical units of fault zones therein. To estimate the in situ rock properties at different depths it is further important to understand how rocks from outcrops differ from rocks at depth (for example due to alteration and removal of the overburden load). To answer these questions we analyse samples from drill cores from depths relevant for the use as geothermal reservoirs which are stratigraphically and lithologically equivalent to those taken in outcrop analogues. The results from drill-core sample analyses are then compared with the results from the outcrop samples. Another approach is to analyse how rock mechanical properties correlate with petrographic properties (e.g., mineral content, cementation, fabric, porosity) to use this knowledge to extrapolate the data to depth. Altogether these results will be very useful to make better assumptions on natural reservoir permeabilities and to better adapt the drilling and reservoir stimulation strategy to the rock mechanical conditions.
Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent
NASA Astrophysics Data System (ADS)
Park, H.; Kim, J. W.; Lee, J. W.
2017-12-01
Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.
Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey
NASA Astrophysics Data System (ADS)
Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.
2017-12-01
The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.
NASA Astrophysics Data System (ADS)
Jiménez-Bonilla, Alejandro; Balanyá, Juan Carlos; Expósito, Inmaculada; Díaz-Azpiroz, Manuel; Barcos, Leticia
2014-05-01
As a result of progressive shortening and orogenic wedge thickening, marine foreland basins tend to emerge and divide. We have analyzed possible recent tectonic activity within the late evolution stage of the Ronda basin, an intermontane basin located in the external wedge of the Gibraltar Arc, formerly connected with the Betic foreland basin and infilled by marine Upper-Miocene sediments. We analyze (1) the structures responsible for the basinward relief drop along the arc strike and the different topography of their boundaries; (2) qualitative and quantitative geomorphologic indices to asses which structures could present recent activity; and 3) the structures causing the division of the former Betic foreland basin and the isolation of the Ronda basin. Within the deformational history of the Ronda basin, late structures that control high topographic gradients and generate remarkable fault scarps group into three main types: (a) Extensional structures represented by NW-SE striking normal faults, clustered close to the current SW and NE boundaries of the basin. They usually dip towards the basin and their vertical displacement is maximum up to 1,5 km. These structures partially affect the basal unconformity of the Upper Miocene basin infill and are scarcely developed inside the basin infill. (b) Shortening structures developed both in the basin infill and in the outcropping basement near the Northeastern and Southwestern basin boundaries. They are represented by NE-SW directed plurikilometric box-folds and reverse faults, responsible for the alternation of sierras (altitudes 1000-1500 m) and valleys. (c) Strike-slip dominated structural associations where WSW-ENE lateral faults combined with folds and normal and reverse faults defined a NE-SW directed deformation band constituting the NW basin boundary. This band includes some sierras up to 1.100 m. Regarding the relief of the Ronda basin area, the abrupt slopes of the outcropping basement (heights between 500-1500 m) contrast with the relief inside the basin, a relative low-lying relief varying between 400 and 700 m. The drainage network is dendritic, although some 2nd-3rd order streams show a significant deviation to NW-SE , probably controlled by normal faults. The calculated geomorphologic indices (SLk, Vf, Smf) show anomaly zones in the footwall of normal faults, reaching their highest values in the Northeastern basin boundary (SlK > 6, Vf = 0-0.5, Smf = 1-1.15), where, additionally, the hypsometric curves display convex trajectories with HI > 0.5. Anomalous values of geomorphologic indices (SlK > 10, Vf 0-0.75, Smf 1-1.25) together with convex hypsometric curves with HI > 0.5 have also been obtained for shortening structures, such as hanging wall of reverse faults and folds. Structural criteria show that extensional and shortening structures in the Ronda basin are coetaneous and active since the Upper Miocene. Geomorphologic analyses suggest that some of these structures could continue active up to the Quaternary with low-to-medium deformation rates. Our results, together with previous sedimentological data suggest that, from the Messinian on, the Ronda basin became disconnected from the Betic foreland basin as the result of the tectonic uplift of its NW boundary.
Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.
2012-01-01
The Powder River Structural Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of groundwater that is extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and subsurface water and soil chemistry was conducted at one such impoundment, Skewed Reservoir. Hydrologic and geochemical data collected as part of that study are contained herein. Data include chemistry of groundwater obtained from a network of 21 monitoring wells and three suction lysimeters and chemical and physical properties of soil cores including chemistry of water/soil extracts, particle-size analyses, mineralogy, cation-exchange capacity, soil-water content, and total carbon and nitrogen content of soils.
NASA Astrophysics Data System (ADS)
Keating, E.; Cogbill, A. H.; Ferguson, J. F.
2003-12-01
In the past, gravity methods have had limited application for monitoring aquifers, primarily due to the poor drift characteristics of relative gravimeters, which made long-term gravity studies of aquifers prohibitively expensive. Recent developments in portable, very accurate, absolute gravity instruments having essentially zero long-term drift have reawakened interest in using gravity methods for hydrologic monitoring. Such instruments have accuracies of 7 microGals or better and can acquire measurements at the rate of better than one station per hour. Theoretically, temporal changes in gravity can be used to infer storage characteristics and fluxes into and out of the aquifer. The sensitivity of the method to scaling effects, temporal lags between recharge/discharge and changes in storage, and to uncertainties in aquifer structure are poorly understood. In preparation for interpreting a basin-scale, time-lapse gravity data set, we have established a network of gravity stations within the Espanola Basin in northern New Mexico, a semi-arid region which is experiencing rapid population growth and groundwater resource use. We are using an existing basin-scale groundwater flow model to predict changes in mass, given our current level of understanding of inflows, outflows, and aquifer properties. Preliminary model results will be used to examine scaling issues related to the spatial density of the gravity station network and depths to the regional water table. By modeling the gravitational response to water movement in the aquifer, we study the sensitivity of gravity measurements to aquifer storage properties, given other known uncertainties in basin-scale fluxes. Results will be used to evaluate the adequacy of the existing network and to modify its design, if necessary.
NASA Astrophysics Data System (ADS)
Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael
2014-05-01
The North Alpine Foreland Basin is situated in the northern front of the European Alps and extends over parts of France, Switzerland, Germany and Austria. It formed as a wedge shaped depression since the Tertiary in consequence of the Euro - Adriatic continental collision and the Alpine orogeny. The basin is filled with clastic sediments, the Molasse, originating from erosional processes of the Alps and underlain by Mesozoic sedimentary successions and a Paleozoic crystalline crust. For our study we have focused on the German part of the basin. To investigate the deep structure, the isostatic state and the load distribution of this region we have constructed a 3D structural model of the basin and the Alpine area using available depth and thickness maps, regional scale 3D structural models as well as seismic and well data for the sedimentary part. The crust (from the top Paleozoic down to the Moho (Grad et al. 2008)) has been considered as two-parted with a lighter upper crust and a denser lower crust; the partition has been calculated following the approach of isostatic equilibrium of Pratt (1855). By implementing a seismic Lithosphere-Asthenosphere-Boundary (LAB) (Tesauro 2009) the crustal scale model has been extended to the lithospheric-scale. The layer geometry and the assigned bulk densities of this starting model have been constrained by means of 3D gravity modelling (BGI, 2012). Afterwards the 3D load distribution has been calculated using a 3D finite element method. Our results show that the North Alpine Foreland Basin is not isostatically balanced and that the configuration of the crystalline crust strongly controls the gravity field in this area. Furthermore, our results show that the basin area is influenced by varying lateral load differences down to a depth of more than 150 km what allows a first order statement of the required compensating horizontal stress needed to prevent gravitational collapse of the system. BGI (2012). The International Gravimetric Bureau. IAG Geodesist's Handbook, 2012 - Journal of Geodesy, 86(10) Springer Grad, M., Tiira, T. and ESC Working Group (2009). The Moho depth map of 1 the European Plate. Geophysical Journal International 176(1): 279-292. Tesauro, M. (2009). An integrated study of the structure and thermomechanical properties of the European lithosphere. Department of Tectonics Faculty of Earth & Life Sciences. Amsterdam, Vrije Universiteit, Dissertation
Bathymetry and oceanic flow structure at two deep passages crossing the Lomonosov Ridge
NASA Astrophysics Data System (ADS)
Björk, Göran; Jakobsson, Martin; Assmann, Karen; Andersson, Leif G.; Nilsson, Johan; Stranne, Christian; Mayer, Larry
2018-01-01
The Lomonosov Ridge represents a major topographical feature in the Arctic Ocean which has a large effect on the water circulation and the distribution of water properties. This study presents detailed bathymetric survey data along with hydrographic data at two deep passages across the ridge: a southern passage (80-81° N), where the ridge crest meets the Siberian continental slope, and a northern passage around 84.5° N. The southern channel is characterized by smooth and flat bathymetry around 1600-1700 m with a sill depth slightly shallower than 1700 m. A hydrographic section across the channel reveals an eastward flow with Amundsen Basin properties in the southern part and a westward flow of Makarov Basin properties in the northern part. The northern passage includes an approximately 72 km long and 33 km wide trough which forms an intra-basin in the Lomonosov Ridge morphology (the Oden Trough). The eastern side of the Oden Trough is enclosed by a narrow and steep ridge rising 500-600 m above a generally 1600 m deep trough bottom. The deepest passage (the sill) is 1470 m deep and located on this ridge. Hydrographic data show irregular temperature and salinity profiles indicating that water exchange occurs as midwater intrusions bringing water properties from each side of the ridge in well-defined but irregular layers. There is also morphological evidence that some rather energetic flows may occur in the vicinity of the sill. A well expressed deepening near the sill may be the result of seabed erosion by bottom currents.
Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Jia; Juafu Lu; Dongsheng Cai
1998-01-01
The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148more » km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.« less
NASA Astrophysics Data System (ADS)
Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo
2017-12-01
Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.
Shah, A.K.; Daniels, D.L.; Kontny, A.; Brozena, J.
2009-01-01
We use magnetic susceptibility and remanent magnetization measurements of the Eyreville and Cape Charles cores in combination with new and previously collected magnetic field data in order to constrain structural features within the inner basin of the Chesapeake Bay impact structure. The Eyreville core shows the first evidence of several-hundred-meter-thick basement-derived megablocks that have been transported possibly kilometers from their pre-impact location. The magnetic anomaly map of the structure exhibits numerous short-wavelength (<2 km) variations that indicate the presence of magnetic sources within the crater fill. With core magnetic properties and seismic reflection and refraction results as constraints, forward models of the magnetic field show that these sources may represent basementderived megablocks that are a few hundred meters thick or melt bodies that are a few dozen meters thick. Larger-scale magnetic field properties suggest that these bodies overlie deeper, pre-impact basement contacts between materials with different magnetic properties such as gneiss and schist or gneiss and granite. The distribution of the short-wavelength magnetic anomalies in combination with observations of small-scale (1-2 mGal) gravity field variations suggest that basement-derived megablocks are preferentially distributed on the eastern side of the inner crater, not far from the Eyreville core, at depths of around 1-2 km. A scenario where additional basement-derived blocks between 2 and 3 km depth are distributed throughout the inner basin-and are composed of more magnetic materials, such as granite and schist, toward the east over a large-scale magnetic anomaly high and less magnetic materials, such as gneiss, toward the west where the magnetic anomaly is lower-provides a good model fi t to the observed magnetic anomalies in a manner that is consistent with both gravity and seismic-refraction data. ?? 2009 The Geological Society of America.
Evaluation of site effects in Loja basin (southern Ecuador)
NASA Astrophysics Data System (ADS)
Guartán, J.; Navarro, M.; Soto, J.
2013-05-01
Site effect assessment based on subsurface ground conditions is often crucial for estimating the urban seismic hazard. In order to evaluate the site effects in the intra-mountain basin of Loja (southern Ecuador), geological and geomorphological survey and ambient noise measurements were carried out. A classification of shallow geologic materials was performed through a geological cartography and the use of geotechnical data and geophysical surveys. Seven lithological formations have been analyzed, both in composition and thickness of existing materials. The shear-wave velocity structure in the center of the basin, composed by alluvial materials, was evaluated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. VS30 structure was estimated and an average value of 346 m s-1 was obtained. This value agrees with the results obtained from SPT N-value (306-368 m s-1). Short-period ambient noise observations were performed in 72 sites on a 500m × 500m dimension grid. The horizontal-to-vertical spectral ratio (HVSR) method was applied in order to determine a ground predominant period distribution map. This map reveals an irregular distribution of predominant period values, ranged from 0.1 to 1.0 s, according with the heterogeneity of the basin. Lower values of the period are found in the harder formation (Quillollaco formation), while higher values are predominantly obtained in alluvial formation. These results will be used in the evaluation of ground dynamic properties and will be included in seismic microzoning of Loja basin. Keywords: Landform classification, Ambient noise, SPAC method, Rayleigh waves, Shear velocity profile, Ground predominant period. ;
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my; Yusoff, Wan Ismail Wan, E-mail: wanismail-wanyusoff@petronas.com.my
2016-02-01
Geostatistics or statistical approach is based on the studies of temporal and spatial trend, which depend upon spatial relationships to model known information of variable(s) at unsampled locations. The statistical technique known as kriging was used for petrophycial and facies analysis, which help to assume spatial relationship to model the geological continuity between the known data and the unknown to produce a single best guess of the unknown. Kriging is also known as optimal interpolation technique, which facilitate to generate best linear unbiased estimation of each horizon. The idea is to construct a numerical model of the lithofacies and rockmore » properties that honor available data and further integrate with interpreting seismic sections, techtonostratigraphy chart with sea level curve (short term) and regional tectonics of the study area to find the structural and stratigraphic growth history of the NW Bonaparte Basin. By using kriging technique the models were built which help to estimate different parameters like horizons, facies, and porosities in the study area. The variograms were used to determine for identification of spatial relationship between data which help to find the depositional history of the North West (NW) Bonaparte Basin.« less
Mechanics of Formation of Forearc Basins of Indonesia and Alaska
NASA Astrophysics Data System (ADS)
Cassola, T.; Willett, S.; Kopp, H.
2010-12-01
In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between the wedge deformation and forearc basin formation. The aim of this work is to gain insight into the dynamics of the formation of the forearc basin on top of a deforming accretionary wedge, including the mechanism of formation of accommodation space and preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle, thermally-activated viscosity and strain softening. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy in the basin is simulated, because, as noted in earlier studies, underfilled conditions incourage tectonic deformation in the inner wedge. We compare the numerical model to basins along the Sunda-Java Trench and the Alaskan margin. The Sunda-Java Trench shows a variety of structural and basin styles including underfilled and overfilled basins and different wedge geometries along the same trench. We interprete and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available by the IFM-GEOMAR group in Kiel and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR) in Hannover. On the Alaska margin we focus on the Kenai Peninsula, Kodiak Island plateau. This segment of the margin has one of the largest accretionary wedge - forearc basin systems in the world. It also exhibits a double forearc basin system with an interior basin (Cook inlet) and an outer basin, outboard of Kodiak Island, which is a prime candidate for a negative-alpha basin, as described by Fuller et al., (Geology, 2006). A number of studies of the Alaska margin were conducted in the 1990s based out of GEOMAR. One important aspect of these margins is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stability field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.
Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.
2013-01-01
Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.
Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration
NASA Astrophysics Data System (ADS)
McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.
2006-12-01
Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.
Finite temperature properties of clusters by replica exchange metadynamics: the water nonamer.
Zhai, Yingteng; Laio, Alessandro; Tosatti, Erio; Gong, Xin-Gao
2011-03-02
We introduce an approach for the accurate calculation of thermal properties of classical nanoclusters. On the basis of a recently developed enhanced sampling technique, replica exchange metadynamics, the method yields the true free energy of each relevant cluster structure, directly sampling its basin and measuring its occupancy in full equilibrium. All entropy sources, whether vibrational, rotational anharmonic, or especially configurational, the latter often forgotten in many cluster studies, are automatically included. For the present demonstration, we choose the water nonamer (H(2)O)(9), an extremely simple cluster, which nonetheless displays a sufficient complexity and interesting physics in its relevant structure spectrum. Within a standard TIP4P potential description of water, we find that the nonamer second relevant structure possesses a higher configurational entropy than the first, so that the two free energies surprisingly cross for increasing temperature.
Finite Temperature Properties of Clusters by Replica Exchange Metadynamics: The Water Nonamer
NASA Astrophysics Data System (ADS)
Zhai, Yingteng; Laio, Alessandro; Tosatti, Erio; Gong, Xingao
2012-02-01
We introduce an approach for the accurate calculation of thermal properties of classical nanoclusters. Based on a recently developed enhanced sampling technique, replica exchange metadynamics, the method yields the true free energy of each relevant cluster structure, directly sampling its basin and measuring its occupancy in full equilibrium. All entropy sources, whether vibrational, rotational anharmonic and especially configurational -- the latter often forgotten in many cluster studies -- are automatically included. For the present demonstration we choose the water nonamer (H2O)9, an extremely simple cluster which nonetheless displays a sufficient complexity and interesting physics in its relevant structure spectrum. Within a standard TIP4P potential description of water, we find that the nonamer second relevant structure possesses a higher configurational entropy than the first, so that the two free energies surprisingly cross for increasing temperature.
Heino, Jani; Soininen, Janne; Alahuhta, Janne; Lappalainen, Jyrki; Virtanen, Risto
2017-01-01
Metacommunity patterns and underlying processes in aquatic organisms have typically been studied within a drainage basin. We examined variation in the composition of six freshwater organismal groups across various drainage basins in Finland. We first modelled spatial structures within each drainage basin using Moran eigenvector maps. Second, we partitioned variation in community structure among three groups of predictors using constrained ordination: (1) local environmental variables, (2) spatial variables, and (3) dummy variable drainage basin identity. Third, we examined turnover and nestedness components of multiple-site beta diversity, and tested the best fit patterns of our datasets using the "elements of metacommunity structure" analysis. Our results showed that basin identity and local environmental variables were significant predictors of community structure, whereas within-basin spatial effects were typically negligible. In half of the organismal groups (diatoms, bryophytes, zooplankton), basin identity was a slightly better predictor of community structure than local environmental variables, whereas the opposite was true for the remaining three organismal groups (insects, macrophytes, fish). Both pure basin and local environmental fractions were, however, significant after accounting for the effects of the other predictor variable sets. All organismal groups exhibited high levels of beta diversity, which was mostly attributable to the turnover component. Our results showed consistent Clementsian-type metacommunity structures, suggesting that subgroups of species responded similarly to environmental factors or drainage basin limits. We conclude that aquatic communities across large scales are mostly determined by environmental and basin effects, which leads to high beta diversity and prevalence of Clementsian community types.
Yohay Carmel; Curtis H. Flather
2004-01-01
A long line of inquiry on the notion of ecological convergence has compared ecosystem structure and function between areas that are evolutionarily unrelated but under the same climate regime. Much of this literature has focused on quantifying the degree to which animal morphology or plant physiognomy is alike between disjunct areas. An important property of ecosystems...
NASA Astrophysics Data System (ADS)
Souei, Ali; Atawa, Mohamed; Zouaghi, Taher
2018-03-01
The Nadhour-Sisseb-El Alem basin, in the central-eastern part of Tunisia, is characterized by the scarcity of surface and subsurface water resources. Although the aquifer systems of this basin are not well understood, the scarce water resources are subject to a high rate of exploitation leading to a significant drop in the level of the water table. This work presents correlation of gravity data with hydrogeological data in order to improve the knowledge of the deep structures and aquifer systems. Various geophysical filtering techniques (e.g., residual anomaly, upward continuation, horizontal gradient, and Euler deconvolution) applied to the complete Bouguer anomaly, deduce the deep structures and geometry of the basin and highlight gravity lineaments that correspond to the tectonic features. The structural framework of the Nadhour-Sisseb-El Alem hydrogeological basin shows N-S to NNE-SSW and E-W oriented structures that should be related to tectonic deformations. In addition to the faults, previously recognized, new lineaments are highlighted by the present work. They correspond to NE-, NW-, E- and N- trending faults that have controlled structuring and geometry of the basin. 2D gravity forward modeling, based on the interpretation of geophysical, geological and hydrogeological data, led to a better understanding of the basin geometry and spatial distribution of the Campanian-Maastrichtian and Cenozoic potential aquifers. Three hydrogeological sub-basins identified include the Nadhour sub-basin in the north, the El Alem sub-Basin in the South and the Etrabelsia sub-Basin in the East. These sub-basins are marked by a thickening of deposits, are separated by the Sisseb-Fadeloun raised structure of Neogene and Quaternary thinned series. The results allow the determination of limit conditions for the basin hydrodynamic evolution and explain some anomalies on the quantity and quality of the groundwater. They provide a management guide for water resources prospection in Atlassic basins in North Africa.
Morphologic classes of impact basins on Venus
NASA Technical Reports Server (NTRS)
Wood, Charles A.; Tam, Wesley
1993-01-01
An independent survey of 60% of Venus has resulted in the detection of 35 impact basins and associated transitional rings. Contrary to previous studies central peak basins have been identified, as well as peak ring basins. But no unambiguous multi-ring basins have been detected. A new class of crateriform - expanded peak structure - has been noticed, which is transitional in diameter, but apparently not in structure, between central peak and peak ring basins.
Morphotectonic study of the Brahmaputra basin using geoinformatics
NASA Astrophysics Data System (ADS)
Nath Sarma, Jogendra; Acharjee, Shukla; murgante, Beniamino
2013-04-01
The Brahmaputra River basin occupies an area of 580,000 km2 lying in Tibet (China), Bhutan, India and Bangladesh. It is bounded on the north by the Nyen-Chen-Tanghla mountains, on the east by the Salween River basin and Patkari range of hills, on the south by Nepal Himalayas and the Naga Hills and on the west by the Ganga sub-basin. Brahmaputra river originates at an elevation of about 5150 m in south-west Tibet and flows for about 2900 km through Tibet (China), India and Bangladesh to join the Ganga.. The Brahmaputra River basin is investigated to examine the influence of active structures by applying an integrated study on geomorphology, morphotectonics, Digital Elevation Model (DEM) using topographic map, satellite data, SRTM, and seismic data. The indices for morphotectonic analysis, viz. basin elongation ratio (Re) indicated tectonically active, transverse topographic symmetry (T = 0.018-0.664) indicated asymmetric nature, asymmetric factor (AF=33) suggested tilt, valley floor width to valley height ratio (Vf = 0.0013-2.945) indicated active incision and mountain-front sinuosity (Smf = 1.11-1.68) values indicated active tectonics in the area. A great or major earthquake in the modern times, in this region may create havoc with huge loss of life and property due to high population density and rapidly developing infrastructure. Keywords: .Morphotectonic, Brahmaputra river, earthquake
NASA Technical Reports Server (NTRS)
Sharpton, Virgil L.; Burke, Kevin; Hall, Stuart A.; Lee, Scott; Marin, Luis E.; Suarez, Gerardo; Quezada-Muneton, Juan Manuel; Urrutia-Fucugauchi, Jaime
1993-01-01
The K-T-aged Chicxulub Impact Structure is buried beneath the Tertiary carbonate rocks of the Northern Yucatan Platform. Consequently its morphology and structure are poorly understood. Reprocessed Bouguer (onshore) and Free Air (offshore) gravity data over Northern Yucatan reveal that Chicxulub may be a 200-km-diameter multi-ring impact basin with at least three concentric basin rings. The positions of these rings follow the square root of 2 spacing rule derived empirically from analysis of multi-ring basins on other planets indicating that these rings probably correspond to now-buried topographic basin rings. A forward model of the gravity data along a radial transect from the southwest margin of the structure indicates that the Chicxulub gravity signature is compatible with this interpretation. We estimate the basin rim diameter to be 204 +/- 16 km and the central peak ring diameter (D) is 104 +/- 6 km.
Estimate of subsurface formation temperature in the Tarim basin, northwest China
NASA Astrophysics Data System (ADS)
Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan
2015-04-01
Subsurface formation temperature in the Tarim basin, the largest sedimentary basin in China, is significant for its hydrocarbon generation, preservation and geothermal energy potential assessment, but till now is not well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data, drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime, and estimate the formation temperature at specific depths in the range 1000~5000 m in this basin. Results show that the heat flow of the Tarim basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5±7.6 mW/m2; geothermal gradient at the depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7±2.9 °C/km. Formation temperature at the depth of 1000 m is estimated to be between 29 °C and 41°C, with a mean of 35°C; whilst the temperature at 2000 m ranges from 46~71°C with an average of 59°C; 63~100°C is for that at the depth of 3000 m, and the mean is 82°C; the temperature at 4000 m varies from 80 to 130°C, with a mean of 105°C; 97~160°C is for the temperature at 5000 m depth. In addition, the general pattern of the subsurface formation temperatures at different depths is basically similar and is characterized by high temperatures in the uplift areas and low temperatures in the sags. Basement structure and lateral variations in thermal properties account for this pattern of the geo-temperature field in the Tarim basin.
Buursink, Marc L.; Craddock, William H.; Blondes, Madalyn S.; Freeman, Phillip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.
2013-01-01
2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Upper Cambrian to Mississippian sedimentary rocks within the Arkoma Basin study area, and two SAUs in Upper Cambrian to Mississippian sedimentary rocks within the Kansas Basins study area. The Arkoma Basin and Kansas Basins are adjacent with very similar geologic units; although the Kansas Basins area is larger, the Arkoma Basin is more structurally complex. The report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are usually provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information herein was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. The Midcontinent Rift Basin study area was not assessed, because no suitable storage formations meeting our size, depth, reservoir quality, and regional seal guidelines were found. Figures in this report show study area boundaries along with the SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one-square mile and are derived from interpretations of incompletely attributed well data and from a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on the cell maps.
Ruddy, Barbara C.; Stevens, Michael R.; Verdin, Kristine
2010-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the Fourmile Creek fire in Boulder County, Colorado, in 2010. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volumes of debris flows for selected drainage basins. Data for the models include burn severity, rainfall total and intensity for a 25-year-recurrence, 1-hour-duration rainstorm, and topographic and soil property characteristics. Several of the selected drainage basins in Fourmile Creek and Gold Run were identified as having probabilities of debris-flow occurrence greater than 60 percent, and many more with probabilities greater than 45 percent, in response to the 25-year recurrence, 1-hour rainfall. None of the Fourmile Canyon Creek drainage basins selected had probabilities greater than 45 percent. Throughout the Gold Run area and the Fourmile Creek area upstream from Gold Run, the higher probabilities tend to be in the basins with southerly aspects (southeast, south, and southwest slopes). Many basins along the perimeter of the fire area were identified as having low probability of occurrence of debris flow. Volume of debris flows predicted from drainage basins with probabilities of occurrence greater than 60 percent ranged from 1,200 to 9,400 m3. The predicted moderately high probabilities and some of the larger volumes responses predicted for the modeled storm indicate a potential for substantial debris-flow effects to buildings, roads, bridges, culverts, and reservoirs located both within these drainages and immediately downstream from the burned area. However, even small debris flows that affect structures at the basin outlets could cause considerable damage.
The structure and evolution of ancient impact basins on Mars
NASA Technical Reports Server (NTRS)
Schultz, P. H.; Schultz, R. A.; Rogers, J.
1982-01-01
It is pointed out that characteristic styles of degradation and modification of obvious Martian basins make it possible to recognize more subtle expressions. This approach is seen as providing not only additional basins to the existing inventory but also fundamental clues for initial impact basin structure and stratigraphy. It also reveals the long-lasting influence of basin formation on the crust of Mars in spite of extensive erosion and resurfacing. Consideration is given to five clear examples of modified impact basins, and regions around each that have undergone similar processes (fracturing, collapse, channeling) are delineated. These processes among the different basins are then compared, and similar zones of modification are correlated with concentric basin rings. Consideration is then given to the implications of these observations for current models of basin formation and to the role of impact basins in controlling regional tectonics. The results indicate that large multiring impact scars leave a major but sometimes subtle imprint on the geologic structure of stable crustal regions on Mars.
NASA Astrophysics Data System (ADS)
Padowski, J.; Yang, Q.; Brady, M.; Jessup, E.; Yoder, J.
2016-12-01
In 2013, the Washington State Supreme Court ruled against a 2001 amendment that set aside groundwater reservations for development within the Skagit River Basin (Swinomish Indian Tribal Community v. Washington State Department of Ecology). As a consequence, hundreds of properties no longer have a secure, uninterruptible water right and must be fully mitigated to offset their impacts on minimum in-stream flows. To date, no solutions have been amenable to the private, tribal and government parties involved. The objective of this study is to identify implementable, alternative water mitigation strategies for meeting minimum in-stream flow requirements while providing non-interruptible water to 455 property owners without legal water rights in the Skagit Basin. Three strategies of interest to all parties involved were considered: 1) streamflow augmentation from small-gauge municipal pipes, or trucked water deliveries for either 2) direct household use or 3) streamflow augmentation. Each mitigation strategy was assessed under two different demand scenarios and five augmentation points along 19 sub-watershed (HUC12) stream reaches. Results indicate that water piped for streamflow augmentation could provide mitigation at a cost of <10,000 per household for 20 - 60% of the properties in question, but a similar approach could be up to twenty times more expensive for those remaining properties in basins furthest from existing municipal systems. Trucked water costs also increase for upper basin properties, but over a 20-year period are still less expensive for basins where piped water costs would be high (e.g., 100,000 for trucking vs. $200,000 for piped water). This work suggests that coordination with municipal water systems to offset in-stream flow reductions, in combination with strategic mobile water delivery, could provide mitigation solutions within the Skagit Basin that may satisfy concerned parties.
NASA Astrophysics Data System (ADS)
Nader, Fadi H.; Champenois, France; Barbier, Mickaël; Adelinet, Mathilde; Rosenberg, Elisabeth; Houel, Pascal; Delmas, Jocelyne; Swennen, Rudy
2016-11-01
The impact of compaction diagenesis on reservoir properties is addressed by means of observations made on five boreholes with different burial histories of the Early Callovian ;Dalle Nacrée; Formation in the Paris Basin. Petrographic analyses were carried out in order to investigate the rock-texture, pore space type and volume, micro-fabrics, and cement phases. Based on the acquired data, a chronologically ordered sequence of diagenetic events (paragenesis) for each borehole was reconstructed taking the burial history into account. Point counting and a segmentation algorithm (Matlab) were used to quantify porosity, as well as the amounts of grain constituents and cement phases on scanned images of studied thin sections. In addition, four key samples were analyzed by 3D imaging using microfocus X-ray computer tomography. Basin margin grainstones display a different burial diagenesis when compared to basin centre grainstones and wackestones. The former have been affected by considerable cementation (especially by blocky calcite) prior to effective burial, in contrast to the basin centre lithologies where burial and compaction prevailed with relatively less cementation. Fracturing and bed-parallel stylolitization, observed especially in basinal wackestone facies also invoke higher levels of mechanical and chemical compaction than observed in basin marginal equivalents. Compaction fluids may have migrated at the time of burial from the basin centre towards its margins, affecting hence the reservoir properties of similar rock textures and facies and resulting in cross-basin spatial diagenetic heterogeneities.
NASA Astrophysics Data System (ADS)
Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.
2015-12-01
Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.
NASA Astrophysics Data System (ADS)
Dandapat, S.; Chakraborty, A.
2016-12-01
A comprehensive study on the statistics and variability of mesoscale eddies in the North Indian Ocean (NIO) are investigated using satellite altimetry data for the period of 1993-2014. A hybrid algorithm based on the physical and geometrical properties of mesoscale eddies is applied to detect the eddies and track their propagation. The potential eddies with radius larger than 50 km and lifespan longer than 30 days are considered for the analysis. The NIO consists of two unique tropical basins with the high number of eddy generations and activity: the Arabian Sea (AS) and the Bay of Bengal (BOB). It is noticed that the occurrence of cyclonic eddies (CEs) are found to be significant in AS, while the anticyclonic eddies (ACEs) dominate the BOB. In both the oceans eddies mostly propagate westward. The AS eddies showed the higher mean values, propagation speed, mean radius, mean lifetime than BOB eddies. In the AS, it is found that eddies formed on the western side of the basin persist longer and move towards north where as the number of eddies in the eastern coast of the basin is fewer and short lived. In the BOB, two highly eddy productive zones are identified: offshore of Visakhapatnam and the northern part of western BOB. The occurrence of ACEs dominate the offshore of Visakhapatnam, whereas the CEs in the northern part of western BOB. The ACEs are larger but the CEs have longer lifetime and are more energetic in the BOB. Along with the statistical properties, we also examined the eddy temporal variability in seasonal scale and their structural properties from ARGO data in the NIO. The seasonal variations are found to be significant in AS and BOB and in both the oceans significant correlation has been found between the eddy genesis and local wind stress curl. The strong positive wind stress curl during summer favors the formation of more CEs. In general, both ACEs and CEs in the NIO have single-core vertical structure with the core at a depth of about 100-200 dbar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, G.M.
1993-08-01
The Paradox basin has produced a considerable amount of oil and gas from Pennsylvanian and Mississippian reservoirs. Most of the production has been from stratigraphic traps associated with subtle rejuvenated basement structures. Only the Blanding sub-basin and west flank of the salt anticlines (Lisbon Valley to Salt Wash fields) have been explored in sufficient quantity to classify as the mature parts of the basin, and even in these areas, new fields are currently being discovered. The majority of the basin still remains an exploration frontier. Certainly, structural and stratigraphic conditions analogous to those in the proven areas exist in muchmore » of these underexplored parts of the Paradox basin, but the potential for new and different types of hydrocarbon traps should not be overlooked. Structural styles present in the Paradox basin range from high-angle reverse, to normal, to inverted, which records different periods of crustal shortening and extension. To provide a full appreciation of the variety and complexities of structural styles in the Paradox basin and their influence on the orientation and distribution of different stratigraphic mechanisms, comparisons are made in the following areas: the Uncompahgre frontal fault zone, salt anticlines, Cane Creek anticline, Nequoia arch, Blanding basin, and Hogback monocline. To demonstrate the episodic nature of tectonism throughout the entire Phanerozoic Era, potential and proven hydrocarbon trapping styles are illustrated in strata ranging from Devonian to Late Pennsylvanian age. In particular, the Pennsylvanian Paradox evaporites and equivalent shelf carbonates and siliciclastics provide an excellent example of chronostratigraphic and glacioeustatic relationships. Due to the proven prolific nature of these Pennsylvanian reservoirs, the interrelationships of structure to stratigraphy in the Blanding basin and along the Cane Creek anticline will be emphasized.« less
NASA Astrophysics Data System (ADS)
Zappia, A. J.; Vourlitis, G. L.; Pinto-Jr, O. B.
2015-12-01
The Brazilian savanna, locally known as cerrado, is a major ecosystem that covers a vast majority of central Brazil. Little is known about how woody growth within the cerrado is affected by soil properties such as texture and/or nutrient availability. Thus, in this study we assessed the relationship between woody growth and soil properties in the Cuiaba Basin and Pantanal of Mato Grosso, Brazil. We sampled 4-5 vegetation stands in each site that varied in hydrology, soil type, and vegetation composition and structure, and measured diameter at breast height, wood density, and soil nutrient concentration and physical properties every 5-10 m along a 100 m long transect. We hypothesized that as tree diameter at breast height increases, annual tree growth rate will decrease and that woody carbon (C) storage will increase as a function of soil nutrient availability. Our preliminary data support our hypotheses. Tree growth rates declined with tree size in both the Cuiaba Basin and the Pantanal. Rates of woody C storage, both on a per tree basis (kgC tree-1 year-1) and on a per unit ground area basis (kgC m-2 year-1) were significantly positively correlated with soil extractable phosphorus (P), calcium (Ca), and clay content, while only woody C storage on a per tree basis was positively correlated with potassium (K), magnesium (Mg), and cation exchange capacity (CEC). These data suggest that rates of woody C storage in cerrado are nutrient limited, while correspondence between C storage and soil physical properties could indicate both nutrient and water limitations to C storage.
De Souza, Douglas G; Cezar, Henrique M; Rondina, Gustavo G; de Oliveira, Marcelo F; Da Silva, Juarez L F
2016-05-05
We report a basin-hopping Monte Carlo investigation within the embedded-atom method of the structural and energetic properties of bimetallic ZrCu, ZrAl, and CuAl nanoclusters with 55 and 561 atoms. We found that unary Zr55, Zr561, Cu55, Cu561, Al55, and Al561 systems adopt the well known compact icosahedron (ICO) structure. The excess energy is negative for all systems and compositions, which indicates an energetic preference for the mixing of both chemical species. The ICO structure is preserved if a few atoms of the host system are replaced by different species, however, the composition limit in which the ICO structure is preserved depends on both the host and new chemical species. Using several structural analyses, three classes of structures, namely ideal ICO, nearly ICO, and distorted ICO structures, were identified. As the amounts of both chemical species change towards a more balanced composition, configurations far from the ICO structure arise and the dominant structures are nearly spherical, which indicates a strong minimization of the surface energy by decreasing the number of atoms with lower coordination on the surface. The average bond lengths follow Vegard's law almost exactly for ZrCu and ZrAl, however, this is not the case for CuAl. Furthermore, the radial distribution allowed us to identify the presence of an onion-like behavior in the surface of the 561-atom CuAl nanocluster with the Al atoms located in the outermost surface shell, which can be explained by the lower surface energies of the Al surfaces compared with the Cu surfaces. In ZrCu and ZrAl the radial distribution indicates a nearly homogeneous distribution for the chemical species, however, with a slightly higher concentration of Al atoms on the ZrAl surface, which can also be explained by the lower surface energy.
Tectonic framework of Turkish sedimentary basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilmaz, P.O.
1988-08-01
Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very littlemore » in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.« less
Geometry, structure, and concealed lithology of the San Rafael Basin, southeastern Arizona
Bultman, Mark W.
1999-01-01
The contiguous United States has been well explored for exposed conventional mineral deposits. Therefore, it is likely that many economically viable and strategically significant conventional undiscovered mineral deposits will be found in bedrock concealed beneath basin sediments. Mineral resource assessments must incorporate an understanding of the geometry, structure, and concealed lithology of basins in order to be accurate. This report presents an analysis of the basin geometry and structure of the San Rafael basin in southeastern Arizona. In addition, a new methodology for inferring concealed lithology is presented and applied in the San Rafael basin. Gravity data is used to model the geometry of the basin using recent models of sediment density vs. depth developed in the region. This modeling indicates that the basin has a maximum depth of approximately 1.05 km plus or minus 0.10 km. In the southern portion, the basin can be modeled as an asymmetric graben faulted on the western margin. The northern portion of the basin is structurally more complex and may have high angle faults on the western, northern, and eastern margin. Near-ground closely spaced Earth’s total intensity magnetic field data is used to locate concealed faults within the basin. This data is also used to infer lithology concealed by shallow basin sediments. Airborne Earth’s total intensity magnetic field data is used to help infer concealed lithology in deep portions of the basin. The product of integrating all data and interpretations is a map which presents the geometry of the basin, faults and contacts concealed by basin sediments, and an estimate of the bedrock lithology concealed by basin sediment. Based on basin geometry and concealed lithology, the San Rafael basin has a high potential for concealed mineral deposits on its western and northern margin. In particular, a newly discovered magnetic anomaly in the northern portion of the basin can be modeled as a granitic intrusion with highly altered margins and may represent a potential mineral resource target. Based on the permeability and porosity of upper basin fill found in nearby basins, the San Rafael basin may contain an aquifer up to 300 meters thick over a substantial area of the basin.
Statistical self-similarity of width function maxima with implications to floods
Veitzer, S.A.; Gupta, V.K.
2001-01-01
Recently a new theory of random self-similar river networks, called the RSN model, was introduced to explain empirical observations regarding the scaling properties of distributions of various topologic and geometric variables in natural basins. The RSN model predicts that such variables exhibit statistical simple scaling, when indexed by Horton-Strahler order. The average side tributary structure of RSN networks also exhibits Tokunaga-type self-similarity which is widely observed in nature. We examine the scaling structure of distributions of the maximum of the width function for RSNs for nested, complete Strahler basins by performing ensemble simulations. The maximum of the width function exhibits distributional simple scaling, when indexed by Horton-Strahler order, for both RSNs and natural river networks extracted from digital elevation models (DEMs). We also test a powerlaw relationship between Horton ratios for the maximum of the width function and drainage areas. These results represent first steps in formulating a comprehensive physical statistical theory of floods at multiple space-time scales for RSNs as discrete hierarchical branching structures. ?? 2001 Published by Elsevier Science Ltd.
Phelps, Geoffrey A.; Justet, Leigh; Moring, Barry C.; Roberts, Carter W.
2006-01-01
New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.
Geodynamic evolution of the lithosphere of the Sea of Okhotsk region from geophysical data
NASA Astrophysics Data System (ADS)
Verzhbitsky, E. V.; Kononov, M. V.
2006-06-01
The tectonic structure and anomalous distributions of geophysical fields of the Sea of Okhotsk region are considered; the lack of reliable data on the age of the lithosphere beneath basins of various origins in the Sea of Okhotsk is noted. Model calculations based on geological and geophysical data yielded an age of 65 Ma (the Cretaceous-Paleocene boundary) for the Central Okhotsk rise underlain by the continental lithosphere. This estimate agrees with the age (the end of the Cretaceous) derived from seismostratigraphic data. A comparative analysis of theoretical and measured heat fluxes in the Akademii Nauk Rise, underlain by a thinned continental crust, is performed. The analysis points to a higher (by 20%) value of the measured thermal background of the rise, which is consistent with a high negative gradient of gravity anomalies in this area. Calculations yielded an age of 36 Ma (the Early Oligocene) and a lithosphere thickness of 50 km for the South Okhotsk depression, whose seafloor was formed by processes of backarc spreading. The estimated age of the depression is supported by kinematic data on the region; the calculated thickness of the lithosphere coincides with the value estimated from data of magnetotelluric sounding here. This indicates that the formation time (36 Ma) of the South Okhotsk depression was estimated correctly. Numerical modeling performed for the determination of the basement age of rifting basins in the Sea of Okhotsk gave the following estimates: 18 Ma (the Early Miocene) for the Deryugin basin, 12 Ma (the Middle Miocene) for the TINRO basin, and 23 Ma (the Late Oligocene) for the West Kamchatka trough. These estimates agree with the formation time (Oligocene-Quaternary) of the sedimentary cover in rifting basins of the Sea of Okhotsk derived from geological and geophysical data. Model temperature estimates are obtained for lithologic and stratigraphic boundaries of the sedimentary cover in the Deryugin and TINRO basins and the West Kamchatka trough; the temperature analysis indicates that the latter two structures are promising for oil and hydrocarbon gas generation; the West Kamchatka trough possesses better reservoir properties compared to the TINRO and Deryugin basins. The latter is promising for the generation of hydrocarbon gas. Paleogeodynamic reconstructions of the Sea of Okhotsk region evolution are obtained for times of 90, 66, and 36 Ma on the basis of kinematic, geomagnetic, structural, tectonic, geothermal, and other geological and geophysical data.
Parallelization of a Fully-Distributed Hydrologic Model using Sub-basin Partitioning
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Mniszewski, S.; Fasel, P.; Springer, E.; Ivanov, V. Y.; Bras, R. L.
2005-12-01
A primary obstacle towards advances in watershed simulations has been the limited computational capacity available to most models. The growing trend of model complexity, data availability and physical representation has not been matched by adequate developments in computational efficiency. This situation has created a serious bottleneck which limits existing distributed hydrologic models to small domains and short simulations. In this study, we present novel developments in the parallelization of a fully-distributed hydrologic model. Our work is based on the TIN-based Real-time Integrated Basin Simulator (tRIBS), which provides continuous hydrologic simulation using a multiple resolution representation of complex terrain based on a triangulated irregular network (TIN). While the use of TINs reduces computational demand, the sequential version of the model is currently limited over large basins (>10,000 km2) and long simulation periods (>1 year). To address this, a parallel MPI-based version of the tRIBS model has been implemented and tested using high performance computing resources at Los Alamos National Laboratory. Our approach utilizes domain decomposition based on sub-basin partitioning of the watershed. A stream reach graph based on the channel network structure is used to guide the sub-basin partitioning. Individual sub-basins or sub-graphs of sub-basins are assigned to separate processors to carry out internal hydrologic computations (e.g. rainfall-runoff transformation). Routed streamflow from each sub-basin forms the major hydrologic data exchange along the stream reach graph. Individual sub-basins also share subsurface hydrologic fluxes across adjacent boundaries. We demonstrate how the sub-basin partitioning provides computational feasibility and efficiency for a set of test watersheds in northeastern Oklahoma. We compare the performance of the sequential and parallelized versions to highlight the efficiency gained as the number of processors increases. We also discuss how the coupled use of TINs and parallel processing can lead to feasible long-term simulations in regional watersheds while preserving basin properties at high-resolution.
Ponce, David A.
2012-01-01
From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in general, have implications for mineral- and geothermal-resource investigations throughout the Great Basin.
Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.
2006-01-01
The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.
NASA Astrophysics Data System (ADS)
Villalobos, J. I.
2005-12-01
The modeling of basin structures is an important step in the development of plans and policies for ground water management. To facilitate in the analysis of large scale regional structures, gravity data is implemented to examine the overall structural trend of the region. The gravitational attraction of structures in the upper mantle and crust provide vital information about the possible structure and composition of a region. Improved availability of gravity data via internet has promoted extensive construction and interpretation of gravity maps in the analysis of sub-surface structural anomalies. The utilization of gravity data appears to be particularly worthwhile because it is a non-invasive and inexpensive means of addressing the subsurface tectonic framework of large scale regions. In this paper, the author intends to illustrate 1) acquisition of gravity data and its processing; 2) interpretation of gravity data; and 3) sources of uncertainty and errors by using a case study of the Jornada del Muerto basin in South-Central New Mexico where integrated gravity data inferred several faults, sub-basins and thickness variations within the basins structure. The author also explores the integration of gravity method with other geophysical methods to further refine the delineation of basins.
An Annotated Bibliography of Patents Related to Coastal Engineering. Volume I. 1967-1970. Appendix.
1979-11-01
HYDRAULIC MODEL BASIN PILE, STRUCTURE CONNECTION ICE PROTECTION PILE, WOOD 16 -- mi • . ... -- POLLUTANT ABSORPTION SEISMIC ACOUSTIC TRANSMITTER ARRAY...NT SEABED PIPELINE PLACEMENT WIND MEASUREMENT SEABED PROPERTY MEASUREMENT WOOD PRESERVATIVE SEABED SCOUR PROTECTION SEABED SITE SURVEY SEABED SOIL...concrete, wood , or thin steel piling to aid driving. PILE EXTRACTOR - A means of removing a pile from the earth. PILE FOOTING - A means of increasing a
Mesoscale mixing of the Denmark Strait Overflow in the Irminger Basin
NASA Astrophysics Data System (ADS)
Koszalka, Inga M.; Haine, Thomas W. N.; Magaldi, Marcello G.
2017-04-01
The Denmark Strait Overflow (DSO) is a major export route for dense waters from the Nordic Seas forming the lower limb of the Atlantic Meridional Overturning Circulation, an important element of the climate system. Mixing processes along the DSO pathway influence its volume transport and properties contributing to the variability of the deep overturning circulation. They are poorly sampled by observations, however, which hinders development of a proper DSO representation in global circulation models. We employ a high resolution regional ocean model of the Irminger Basin to quantify impact of the mesoscale flows on DSO mixing focusing on geographical localization and the time-modulation of water property changes. The model reproduces the observed bulk warming of the DSO plume 100-200 km downstream of the Denmark Strait sill. It also reveals that mesoscale variability of the overflow ('DSO-eddies', of 20-30 km extent and a time scale of 2-5 day) modulates water property changes and turbulent mixing, diagnosed with the vertical shear of horizontal velocity and the eddy heat flux divergence. The space-time localization of the DSO mixing and warming and the role of coherent mesoscale structures should be explored by turbulence measurements and factored into the coarse circulation models.
Structural imaging of the East Beni Sueif Basin, north eastern Desert, Egypt
NASA Astrophysics Data System (ADS)
Salem, E.; Sehim, A.
2017-12-01
The East Beni Sueif Basin is the only tested hydrocarbon-bearing basin on the eastern side of the Nile in Egypt. The basin is located around 150 km to the south of Cairo. This work introduces the first attempt of seismic interpretation and structural patterns of this basin, for which subsurface published works are lacking. Structural imaging of the area is achieved through interpretation of pre-stack time migration (PSTM) seismic cube and data sets of seven wells. The penetrated sedimentary section is represented by Albian-Middle Eocene sediments. The East Beni Sueif Basin is a type of the whole graben-system and is bounded by two NW-SE bounding faults. These faults had continued activity in an extensional regime associated with fault-propagating folds. The basin is traversed by a N75°E-trending fault system at basement level. This fault system separates the basin into two structural provinces. The Northwestern Province is deeper and shows more subsidence with a predominance of NW-trending longitudinal faults and N60·W oblique faults to the basin trend. The Southeastern Province is shallow and crossed by N14·W-trending faults which are slightly oblique to the basin axis. Albian time had witnessed the main extensional tectonic phase and resulted in major subsidence along basin-bounding faults associated with growth thickening of basal deposits. During Senonian time, the basin experienced a mild phase of transtensional tectonics, which formed negative-flower structures entrapping different folds along the N75°E and N60·W faults. The timing and style of these structures are similar to the Syrian-Arc structures in several Western Desert oil fields. The basin emerged during the Paleocene with scoured and eroded top Cretaceous sediments. Subsidence was resumed during the Early Eocene and resulted in 1500 m-thick carbonate sediments. Lastly, a mild extensional activity possibly occurred during the Oligocene-Miocene time. Despite the possible restricted potentiality of the source rock, the main hydrocarbon accumulation risk is attributed to retention in traps of long-span tectonic history. Reaching of main faults to surface through brittle carbonate cap rocks and limited thickness of the shale in the reservoir section risk hydrocarbon sealing. Buried structures of passive setting during the Tertiary show a minor trapping risk.
Groundwater quality in the Lake Champlain and Susquehanna River basins, New York, 2014
Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.
2016-11-04
In a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, groundwater samples were collected from 6 production wells and 7 domestic wells in the Lake Champlain Basin and from 11 production wells and 9 domestic wells in the Susquehanna River Basin in New York. All samples were collected from June through December 2014 to characterize groundwater quality in these basins. The samples were collected and processed using standard procedures of the U.S. Geological Survey and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds, radionuclides, and indicator bacteria.The Lake Champlain Basin study area covers the 3,050 square miles of the basin in northeastern New York; the remaining part of the basin is in Vermont and Canada. Of the 13 wells sampled in the Lake Champlain Basin, 6 are completed in sand and gravel, and 7 are completed in bedrock. Groundwater in the Lake Champlain Basin was generally of good quality, although properties and concentrations of some constituents— fluoride, iron, manganese, dissolved solids, sodium, radon-222, total coliform bacteria, fecal coliform bacteria, and Escherichia coli bacteria—sometimes equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (5 of 13 samples) was radon-222.The Susquehanna River Basin study area covers the entire 4,522 square miles of the basin in south-central New York; the remaining part of the basin is in Pennsylvania. Of the 20 wells sampled in the Susquehanna River Basin, 11 are completed in sand and gravel, and 9 are completed in bedrock. Groundwater in the Susquehanna River Basin was generally of good quality, although properties and concentrations of some constituents—pH, chloride, sodium, dissolved solids, iron, manganese, aluminum, arsenic, barium, gross-alpha radioactivity, radon-222, methane, total coliform bacteria, and fecal coliform bacteria—sometimes equaled or exceeded primary, secondary, or proposed drinking-water standards. As in the Lake Champlain Basin, the constituent most frequently detected in concentrations exceeding drinking-water standards (13 of 20 samples) was radon-222.
Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China
NASA Astrophysics Data System (ADS)
Wu, Xiaozhi; He, Dengfa; Qi, Xuefeng
2016-04-01
Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows, and oil and gas fields have also been discovered in the Zaysan Basin in adjacent Kazakhstan and in adjacent Junggar, Tuha and Santanghu Basins. Drilling data, geochemical analysis of outcrop data, and the disection of ancient Bulongguoer oil reservoir at the south margin of the Hefeng Basin show there developed two sets of good transitional source rocks, the lower Hujierste Formation in the Middle Devonian (D2h1) and the Hebukehe Formation in the Upper Devonian and Lower Carboniferous (D3-C1h) in this area, which, 10 to 300 m thick, mainly distribute in the shoal water zone along Tacheng-Ertai Late Paleozoic island arc belt. Reservoirs were mainly formed in the Jurassic and then adjusted in two periods, one from the end of the Jurassic to middle Cretaceous and the other in early Paleogene. Those early oil reservoirs might be destroyed in areas such as Bulongguoer with poor preservation conditions, but in an area with good geologic and preserving conditions, oil and gas might accumulate again to form new reservoirs. Therefore, a potential Middle Devonian-Lower Carboniferous petroleum system may exist in Tacheng-Ertai island arc belt, which may become a new domain for exploration, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.
2016-12-01
In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.
NASA Astrophysics Data System (ADS)
Schumann, Andreas; Oppel, Henning
2017-04-01
To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark model setups (lumped and semi-distributed by common approaches) to address the benefits for different time and spatial scales. Moreover, the benefits for calibration effort, model performance in validation periods and process extrapolation are shown.
Numerical explorations of R. M. Goodwin's business cycle model.
Jakimowicz, Aleksander
2010-01-01
Goodwin's model, which was formulated in , still attracts economists' attention. The model possesses numerous interesting properties that have been discovered only recently due to the development of the chaos theory and the complexity theory. The first numerical explorations of the model were conducted in the early s by Strotz, McAnulty and Naines (1953). They discovered the coexistence of attractors that are well-known today, two properties of chaotic systems: the sensitive dependence on the initial conditions and the sensitive dependence on parameters. The occurrence of periodic and chaotic attractors is dependent on the value of parameters in a system. In case of certain parametric values fractal basin boundaries exist which results in enormous system sensitivity to external noise. If periodic attractors are placed in the neighborhood of the fractal basin boundaries, then even a low external noise can move the trajectory into the region in which the basin's structure is tangled. This leads to a kind of movement that resembles a chaotic movement on a strange attractor. In Goodwin's model, apart from typical chaotic behavior, there exists yet another kind of complex movements - transient chaotic behavior that is caused by the occurrence of invariant chaotic sets that are not attracting. Such sets are represented by chaotic saddles. Some of the latest observation methods of trajectories lying on invariant chaotic sets that are not attracting are straddle methods. This article provides examples of the basin boundary straddle trajectory and the saddle straddle trajectory. These cases were studied by Lorenz and Nusse (2002). I supplement the results they acquired with calculations of capacity dimension and correlation dimension.
Population Genetics of Boise Basin Bull Trout (Salvelinus confluentus)
A.R. Whiteley; P. Spruell; F.W. Allendorf
2003-01-01
We analyzed the population genetic structure of bull trout (Salvelinus confluentus) in the Boise River Basin, Idaho. We determined the influence of contemporary (including anthropogenic) and historic factors on genetic structure, taking into accountexisting data on bull trout habitat patches in this basin. We tested three models of the organization of genetic structure...
Winters, William J.; Waite, William F.; Mason, David H.; Kumar, P.
2008-01-01
As part of an international cooperative research program, the U.S. Geological Survey (USGS) and researchers from the National Gas Hydrate Program (NGHP) of India are studying the physical properties of sediment recovered during the NGHP-01 cruise conducted offshore India during 2006. Here we report on index property, acoustic velocity, and triaxial shear test results for samples recovered from the Krishna-Godavari Basin. In addition, we discuss the effects of sample storage temperature, handling, and change in structure of fine-grained sediment. Although complex, sub-vertical planar gas-hydrate structures were observed in the silty clay to clayey silt samples prior to entering the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI), the samples yielded little gas post test. This suggests most, if not all, gas hydrate dissociated during sample transfer. Mechanical properties of hydrate-bearing marine sediment are best measured by avoiding sample depressurization. By contrast, mechanical properties of hydrate-free sediments, that are shipped and stored at atmospheric pressure can be approximated by consolidating core material to the original in situ effective stress.
Gravity, magnetic, and physical property data in the Smoke Creek Desert area, northwest Nevada
Tilden, Janet E.; Ponce, David A.; Glen, Jonathan M.G.; Chuchel, Bruce A.; Tushman, Kira; Duvall, Alison
2006-01-01
The Smoke Creek Desert, located approximately 100 km (60 mi) north of Reno near the California-Nevada border, is a large basin situated along the northernmost parts of the Walker Lane Belt (Stewart, 1988), a physiographic province defined by northwest-striking topographic features and strike-slip faulting. Because geologic framework studies play an important role in understanding the hydrology of the Smoke Creek Desert, a geologic and geophysical effort was begun to help determine basin geometry, infer structural features, and estimate depth to Pre-Cenozoic rocks, or basement. In May and June of 2004, and June of 2005, the U.S. Geological Survey (USGS) collected 587 new gravity stations, more than 160 line-kilometers (100 line-miles) of truck-towed magnetometer data, and 111 rock property samples in the Smoke Creek Desert and vicinity in northwest Nevada, as part of an effort to characterize its hydrogeologic framework. In the Smoke Creek Desert area, gravity highs occur over rocks of the Skedaddle Mountains, Fox Range, Granite Range, and over portions of Tertiary volcanic rocks in the Buffalo Hills. These gravity highs likely reflect basement rocks, either exposed at the surface or buried at shallow depths. The southern Smoke Creek Desert corresponds to a 25-mGal isostatic gravity low, which corresponds with a basin depth of approximately 2 km. Magnetic highs are likely due to granitic, andesitic, and metavolcanic rocks, whereas magnetic lows are probably associated with less magnetic gneiss and metasedimentary rocks in the region. Three distinctive patterns of magnetic anomalies occur throughout the Smoke Creek Desert and Squaw Creek Valley, likely reflecting three different geological and structural settings.
Subsurface structure around Omi basin using borehole database
NASA Astrophysics Data System (ADS)
Kitada, N.; Ito, H.; Takemura, K.; Mitamura, M.
2015-12-01
Kansai Geo-informatics Network (KG-NET) is organized as a new system of management of GI-base in 2005. This organization collects the geotechnical and geological information of borehole data more than 60,000 data. GI-base is the database system of the KG-NET and platform to use these borehole data. Kansai Geo-informatics Research Committee (KG-R) is tried to explain the geotechnical properties and geological environment using borehole database in Kansai area. In 2014, KG-R established the 'Shin-Kansai Jiban Omi plain', and explain the subsurface geology and characteristics of geotechnical properties. In this study we introduce this result and consider the sedimental environment and characteristics in this area. Omi Basin is located in the central part of Shiga Prefecture which includes the largest lake in Japan called Lake Biwa. About 15,000 borehole data are corrected to consider the subsurface properties. The outline of topographical and geological characteristics of the basin is divided into west side and east side. The west side area is typical reverse fault called Biwako-Seigan fault zone along the lakefront. From Biwako-Seigan fault, the Omi basin is tilting down from east to west. Otherwise, the east areas distribute lowland and hilly area comparatively. The sedimentary facies are also complicate and difficult to be generally evaluated. So the discussion has been focused about mainly the eastern and western part of Lake Biwa. The widely dispersed volcanic ash named Aira-Tn (AT) deposited before 26,000-29,000 years ago (Machida and Arai, 2003), is sometimes interbedded the humic layers in the low level ground area. However, because most of the sediments are comprised by thick sand and gravels whose deposit age could not be investigated, it is difficult to widely identify the boundary of strata. Three types of basement rocks are distributed mainly (granite, sediment rock, rhyolite), and characteristics of deposit are difference of each backland basement rock. Therefore, we considered the characteristics of area deposit as each riverine system. Otherwise, lakeside area are distributes many humic layers and sandy beach ridge. The results of each distinctive trend are useful to estimate of seismic properties and zonation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauthier, F.J.; Boudjema, A.; Lounis, R.
1995-08-01
The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less
Verification of the Velocity Structure in Mexico Basin Using the H/V Spectral Ratio of Microtremors
NASA Astrophysics Data System (ADS)
Matsushima, S.; Sanchez-Sesma, F. J.; Nagashima, F.; Kawase, H.
2011-12-01
The authors have been proposing a new theory to calculate the Horizontal-to-Vertical (H/V) spectral ratio of microtremors assuming that the wave field is completely diffuse and have attempted to apply the theory to understand the observed microtremor data. It is anticipated that this new theory can be applied to detect the subsurface velocity structure beneath urban area. Precise information about the subsurface velocity structure is essential for predicting strong ground motion accurately, which is necessary to mitigate seismic disaster. Mexico basin, who witnessed severe damage during the 1985 Michoacán Earthquake (Ms 8.1) several hundreds of kilometers away from the source region, is an interesting location in which the reassessment of soil properties is urgent. Because of subsidence, having improved estimates of properties is mandatory. In order to estimate possible changes in the velocity structure in the Mexico basin, we measured microtremors at strong motion observation sites in Mexico City. At those sites, information about the velocity profiles are available. Using the obtained data, we derive observed H/V spectral ratio and compare it with the theoretical H/V spectral ratio to gauge the goodness of our new theory. First we compared the observed H/V spectral ratios for five stations to see the diverse characteristics of this measurement. Then we compared the observed H/V spectral ratios with the theoretical predictions to confirm our theory. We assumed the velocity model of previous surveys at the strong motions observation sites as an initial model. We were able to closely fit both the peak frequency and amplitude of the observed H/V spectral ratio, by the theoretical H/V spectral ratio calculated by our new method. These results show that we have a good initial model. However, the theoretical estimates need some improvement to perfectly fit the observed H/V spectral ratio. This may be an indication that the initial model needs some adjustments. We explore how to improve the velocity model based on the comparison between observations and theory.
Establishment of Antakya Basin Strong Ground Motion Monitoring System
NASA Astrophysics Data System (ADS)
Durukal, E.; Özel, O.; Bikce, M.; Geneş, M. C.; Kacın, S.; Erdik, M.; Safak, E.; Över, S.
2009-04-01
Turkey is located in one of the most active earthquake zones of the world. The cities located along the North Anatolian Fault (NAF) and the East Anatolian Fault (EAF) are exposed to significant earthquake hazard. The Hatay province near the southern terminus of the EAF has always experienced a significant seismic activity, since it is on the intersection of the northernmost segment of Dead Sea Fault Zone coming from the south, with the Cyprean Arc approaching from south-west. Historical records extending over the last 2000 years indicate that Antakya, founded in the 3rd century B.C., is effected by intensity IX-X earthquakes every 150 years. In the region, the last destructive earthquake occurred in 1872. Destructive earthquakes should be expected in the region in the near future similar to the ones that occurred in the past. The strong response of sedimentary basins to seismic waves was largely responsible for the damage produced by the devastating earthquakes of 1985 Michoacan Earthquake which severely damaged parts of Mexico City, and the 1988 Spitak Earthquake which destroyed most of Leninakan, Armenia. Much of this devastating response was explained by the conversion of seismic body waves to surface waves at the sediment/rock contacts of sedimentary basins. "Antakya Basin Strong Ground Motion Monitoring System" is set up with the aim of monitoring the earthquake response of the Antakya Basin, contributing to our understanding of basin response, contributing to earthquake risk assessment of Antakya, monitoring of regional earthquakes and determining the effects of local and regional earthquakes on the urban environment of Antakya. The soil properties beneath the strong motion stations (S-Wave velocity structure and dominant soil frequency) are determined by array measurements that involve broad-band seismometers. The strong motion monitoring system consists of six instruments installed in small buildings. The stations form a straight line along the short axis of Antakya basin passing through the city center. They are equipped with acceleration sensors, GPS and communication units and operate in continuous recording mode. For on-line data transmission the EDGE mode of available GSM systems are employed. In the array measurements for the determination of soil properties beneath the stations two 4-seismometer sets have been utilized. The system is the first monitoring installment in Turkey dedicated to understanding basin effects. The records obtained will allow for the visualization of the propagation of long-period ground motion in the basin and show the refraction of surface waves at the basin edge. The records will also serve to enhance our capacity to realistically synthesize the strong ground motion in basin-type environments.
Structure of the Espanola Basin, Rio Grande Rift, New Mexico, from SAGE seismic and gravity data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, J.F.; Baldridge, W.S.; Braile, L.W.
1995-04-01
Seismic and gravity data, acquired by the SAGE program over the past twelve years, are used to define the geometry of the Espanola basin and the extent of pre-Tertiary sedimentary rocks. The Paleozoic and Mesozoic units have been thinned and removed during Laramide uplift in an area now obscured by the younger rift basin. The Espanola basin is generally a shallow, asymmetric transitional structure between deeper, better developed basins to the northeast and southwest. The gravity data indicate the presence of three narrow, but deep, structural lows arrayed along the Embudo/Pajarito fault system. These sub-basins seem to be younger thanmore » the faults on the basin margins. This apparent focussing of deformation in the later history of the basin may be a response to changes in regional stress or more local accommodation of the rift extension. Future work is planned to develop seismic data over one of these sub-basins, the Velarde graben, and to better define the gravity map in order to facilitate three-dimensional modeling.« less
NASA Technical Reports Server (NTRS)
Head, J. W.
1974-01-01
The lunar Orientale basin is a 900 km diam circular topographic depression covering an area of over 700,000 sq km on the western limb of the moon. Three major rings surround the central Mare Orientale. Orientale basin structures are considered along with Orientale basin deposits and the sequence of formation of structures and deposits. It is found that the structures and facies are related in time and mode of origin to the formation of a major impact crater approximately 620 km in diam. The study suggests that the Orientale basin configuration is very nearly the same as its geometry at its time of formation. The formation of multiringed basins such as Orientale provides a mechanism for an instantaneous production of tremendous volumes of melted lunar crystal material.
NASA Astrophysics Data System (ADS)
Er-Raïoui, H.; Bouabdelli, M.; Bélayouni, H.; Chellai, H.
2001-05-01
Seismic data analysis of the Qasbat-Tadla Basin allows the deciphering of the main tectonic and sedimentary events that characterised the Hercynian orogen and its role in the basin's structural development. The global tectono-sedimentary framework involves structural evolution of an orogenic foreland basin and was the source of rising geotherms in an epizonal metamorphic environment. The complementary effects of these parameters has led to different source rock maturity levels, ranging from oil producing to graphite domains. Different maturity levels result from three distinct structural domains within the basin, each of which exhibit characteristic geodynamic features (tectonic contraints, rate of subsidence, etc.).
NASA Technical Reports Server (NTRS)
Spencer, F. A.
1980-01-01
Noise control measures at the international airports of Hawaii, New Zealand, Australia, Hong Kong, Japan, and Singapore were studied. Factors in noise control, such as government structure are examined. The increasing power of environmental agencies vis-a-vis aviation departments is noted. The following methods of dealing with aircraft noise are examined by type of control: noise at the source control; noise emmission controls, zoning, building codes, subsidies for relocation, insulation, loss in property values, and for TV, radio and telephone interference; and noise-related landing charges.
Decorrelation distance of snow in the Colorado River Basin
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Chiu, L. S.
1989-01-01
The problem of estimating areal averages from point measurement has been extensively studied by mining engineers and hydrologists. Its application to satellite measurements has recently been introduced. The semivariaogram has been used in many geostatistical applications to estimate spatial structures of observed properties, such as mineral distributions. An examination is made of snow variations in Colorado from daily snow data collected in 11 SNOTEL stations. The associated semivariogram is estimated. The objective is to estimate the spatial structure of the snow field so that the point data can be used for comparison with, and validation for, satellite measurements.
NASA Astrophysics Data System (ADS)
Namiki, N.; Sugita, S.; Matsumoto, K.; Goossens, S.; Ishihara, Y.; Noda, H.; Ssasaki, S.; Iwata, T.; Hanada, H.; Araki, H.
2009-04-01
The gravity field is a fundamental physical quantity for the study of the internal structure and the evolution of planetary bodies. The most significant problem of the previous lunar gravity models, however, is the lack of direct observations of the far side gravity signals [1]. We then developed a satellite-to-satellite Doppler tracking sub-system for SELENE [2]. In this study, we adopt our new gravity field model with nearly full coverage of the lunar far side to discuss dichotomy of the lunar basins. Because all the nearside impact basins are filled with extensive mare basalt deposits, it is difficult to estimate the subsurface structures, such as uplift of the Moho surface, from gravity measurements. In contrast, far-side impact basins have much less or no mare basalt coverage. This may allow us to investigate the internal structure underneath impact basins. Such knowledge will be important in understanding the response of a solid planetary body to large meteoritic impacts and also the thermal state of the Moon during the late heavy bombardment period. There are distinctive differences between the anomalies of the near side principal mascons and the far side basins. As shown previously [1, 3], the near side principal mascons have sharp shoulders with a gravity plateau and a weakly negative gravity anomaly in the surroundings. In contrast, the far side basins are characterized by concentric rings of positive and negative anomalies. The circular gravity highs agree well with the topographic rims of the basins revealed by SELENE topography model STM-359_grid-02 [4]. In our gravity model, Orientale, Mendel-Rydberg, Lorentz, and Humboldtianum show more affinity with the far side basins than the near side principal mascons [5]. Korolev, Mendeleev, Planck, and Lorentz basins have sharp central peaks of which magnitude in free-air anomalies is almost equivalent to the one in Bouguer anomalies. On the other hand, Orientale, Mendel-Rydberg, Humboldtianum, Moscoviense, and Freundlich-Sharonov basins have a broad peak of which magnitude in free-air anomalies is 20 to 60 % smaller than the one in Bouguer anomalies. We call the former basins Type I and the latter Type II. The central gravity high of Type I basins in Bouguer anomalies suggests the existence of excess mass below the center. Because mare fill is absent from Type I basins, the central gravity high is most likely a manifestation of mantle uplift beneath the basin. The peak height of positive Bouguer anomalies of Type II ranges from 400 to 900 mGal in comparison to those in free-air anomalies from 250 to 500 mGal. This difference can be attributed to local compensation at the center of the Type II basins. We propose a brittle deformation resulting from a load of uplifted mantle. Little relation between the class and formation age is found. On the other hand, there are fewer large lunar basins on the far side. It is unlikely that large impacts concentrated on one side of the Moon and smaller impacts on the other side, as crater diameter depends mostly on impacting energy and momentum, not the properties of the target [6]. A plausible hypothesis is that the primary mascon basins on the near side have deformed more after their initial formation. References: [1] A. S. Konopliv et al., Icarus, 150, 1 (2001). [2] T. Iwata et al., JGSJ, 47, 558 (2001). [3] F. G. Lemoine et al., JGR, 102, 16,339, (1997). [4] H. Araki et al., submitted to Science (2009). [5] N. Namiki et al., accepted by Science (2009). [6] H. J. Melosh, Impact Cratering: A Geologic Process (1989).
Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States.
Panno, Samuel V; Askari, Zohreh; Kelly, Walton R; Parris, Thomas M; Hackley, Keith C
2018-01-01
The conservative nature of chloride (Cl - ) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin-wide scale. The creation of Cl - isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin-wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross-formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl - within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects. © 2017, National Ground Water Association.
Sub-tidal Circulation in a deep-silled fjord: Douglas Channel, British Columbia (Canada)
NASA Astrophysics Data System (ADS)
Wan, Di; Hannah, Charles; Foreman, Mike
2016-04-01
Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in Kitimat fjord system that opens to Queen Charlotte Sound and Hecate Strait. The fjord is separated from the open shelf by a broad sill that is about 150 m deep, and there is another sill (200 m) that separates the fjord into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected from three moorings deployed during 2013-2015, and the water property observations collected during six cruises (2014 and 2015). Estuarine flow dominates the circulation above the sill-depth. The deep flows are dominated by a yearly renewal that takes place from early June to September, and this dense water renews both basins in the form of gravity currents at 0.1 - 0.2 m/s with a thickness of 100 m. At other times of the year, the deep flow structures and water properties suggest horizontal and vertical processes and support the re-circulation idea in the inner and the outer basins. The near surface current velocity fluctuations are dominated by the along-channel wind. Overall, the circulation in the meteorological band is a mix of the estuarine flow, direct wind driven flow, and the baroclinic response to changes to the surface pressure gradient caused by the wind driven currents.
NASA Astrophysics Data System (ADS)
Yamashita, M.; Takahashi, N.; Kodaira, S.; No, T.; Takizawa, K.; Miura, S.; Kaiho, Y.; Sato, T.; Kaneda, Y.
2007-12-01
Detailed crustal structure information of a back-arc basin must be obtained to elucidate the mechanism of its opening. Especially, the Shikoku Basin, which occupies the northern part of the Philippine Sea Plate between the Kyushu-Palau Ridge and the Izu-Ogasawara Arc, is an important area to elucidate the evolution of the back-arc basins as a part of the growth process of the Philippine Sea. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection survey using 12,000 cu.in. air gun and streamer with 204 ch hydrophones in the Izu-Ogasawara region since 2004. The total length of survey lines is more than 10,000 km until 2006. We investigate the crustal structure beneath the Shikoku Basin along 10 survey lines, which are across to the strike of the en-echelon seamount chains in the rear arc. From the seismic profiles, some faults and intrusion structures are obtained in the Shikoku Basin. The deformation structure with acoustic basement is widely distributed between the Shikoku Basin and the Izu-Ogasawara arc. Some intrusions structure is identified in the Shikoku Basin are exposed on seafloor. The intrusions structure is assumed to locate in the extended region of the en-echelon arrangement. The strike-slip faults with flower structure cutting whole sediments are located in the arc-backarc transition zone in the northern Shikoku Basin, suggesting that this region is in share stress. On the other hand, these structures indicating the deformation and intrusions are not recognized in the eastern side of the Kyushu-Palau Ridge. The Izu-Ogasawara arc is colliding to the Japan Island arc in the Sagami Bay. In the Nankai Trough, the Philippine Sea plate is subducting to the Japan Island arc. Therefore, the strike-slip and reverse fault would be developed by the compression stress in the eastern side of Philippine Sea plate. If the en-echelon arrangement is developed along these faults, the intrusions structure obtained by our surveys correspond the tip of en-echelon arrangement. We will also discuss the effect with regard to back-arc opening and post volcanism.
NASA Astrophysics Data System (ADS)
Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos
2017-10-01
The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.
NASA Astrophysics Data System (ADS)
Zapata, S.; Sobel, E. R.; Del Papa, C.; Jelinek, A. R.; Muruaga, C.
2017-12-01
The Central Andes in NW of Argentina is part of a long-lived subduction zone, active since the Paleozoic. This region experienced several tectonic cycles; each of which created an unique set of structures and may have reactivated preexisting structures. These inherited structures may exert a first-order control over the different foreland deformational styles observed along the strike in the Central Andes. Our study area is located between 26°S and 28°S on the transition between the broken foreland (Santa Barbara system), which expresses a combination of thin-skin and thick-skin styles, and the Sierras Pampeanas, which is deform in a thick-skin style. The Cumbres Calchaquies range and the associated Choromoro Basin are located in the northern part of the study area, and are the southern expression of the Santa Barbara system. Published thermochronology data suggest that the rocks from the basement experienced Late Cretaceous and Late Miocene exhumation; the associated sedimentary rocks within the Choromoro basin experienced Paleogene and Late Miocene deformational phases. In contrast, the Sierra Aconquija range, located immediately south on the transition to the Sierras Pampeanas (thick skin) foreland basin, exhibit larger amounts of Miocene exhumation and lack of Cretaceous exhumation; the associated sedimentary rocks from the Tucuman basin have not been deformed since the Cretaceous. Our goal is to understand the evolution of the structural blocks and the structures responsible for the along strike changes in foreland basin deformational styles and their relation with inherited structures from previous tectonic cycles. We are obtaining new apatite U-Th/He and fission track data to reconstruct the thermal history of the basement, accompanied by U-Pb geochronology and stratigraphy to constrain the evolution of the associated sedimentary basins. Preliminary results combined with published data suggest that inherited structures within the study area have evolved through different tectonic cycles, controlling the thicknes and the geometry of the sediments within the Mesozoic rift basin, the Miocene amount of exhumation in the basement-cored ranges and the deformation style of the associated foreland basins.
Study of Basin Recession Characteristics and Groundwater Storage Properties
NASA Astrophysics Data System (ADS)
Yen-Bo, Chen; Cheng-Haw, Lee
2017-04-01
Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage
Anderson, M.; Matti, J.; Jachens, R.
2004-01-01
The San Bernardino basin is an area of Quaternary extension between the San Jacinto and San Andreas Fault zones in southern California. New gravity data are combined with aeromagnetic data to produce two- and three-dimensional models of the basin floor. These models are used to identify specific faults that have normal displacements. In addition, aeromagnetic maps of the basin constrain strike-slip offset on many faults. Relocated seismicity, focal mechanisms, and a seismic reflection profile for the basin area support interpretations of the gravity and magnetic anomalies. The shape of the basin revealed by our interpretations is different from past interpretations, broadening its areal extent while confining the deepest parts to an area along the modern San Jacinto fault, west of the city of San Bernardino. Through these geophysical observations and related geologic information, we propose a model for the development of the basin. The San Jacinto fault-related strike-slip displacements started on fault strands in the basin having a stepping geometry thus forming a pull-apart graben, and finally cut through the graben in a simpler, bending geometry. In this model, the San Bernardino strand of the San Andreas Fault has little influence on the formation of the basin. The deep, central part of the basin resembles classic pull-apart structures and our model describes a high level of detail for this structure that can be compared to other pull-apart structures as well as analog and numerical models in order to better understand timing and kinematics of pull-apart basin formation. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Anderson, Megan; Matti, Jonathan; Jachens, Robert
2004-04-01
The San Bernardino basin is an area of Quaternary extension between the San Jacinto and San Andreas Fault zones in southern California. New gravity data are combined with aeromagnetic data to produce two- and three-dimensional models of the basin floor. These models are used to identify specific faults that have normal displacements. In addition, aeromagnetic maps of the basin constrain strike-slip offset on many faults. Relocated seismicity, focal mechanisms, and a seismic reflection profile for the basin area support interpretations of the gravity and magnetic anomalies. The shape of the basin revealed by our interpretations is different from past interpretations, broadening its areal extent while confining the deepest parts to an area along the modern San Jacinto fault, west of the city of San Bernardino. Through these geophysical observations and related geologic information, we propose a model for the development of the basin. The San Jacinto fault-related strike-slip displacements started on fault strands in the basin having a stepping geometry thus forming a pull-apart graben, and finally cut through the graben in a simpler, bending geometry. In this model, the San Bernardino strand of the San Andreas Fault has little influence on the formation of the basin. The deep, central part of the basin resembles classic pull-apart structures and our model describes a high level of detail for this structure that can be compared to other pull-apart structures as well as analog and numerical models in order to better understand timing and kinematics of pull-apart basin formation.
NASA Astrophysics Data System (ADS)
Kelly, M. J.; Bladon, A.; Clarke, S.; Najman, Y.; Copley, A.; Kloppenburg, A.
2015-12-01
The Barmer Basin, situated within the West Indian Rift System, is an intra-cratonic rift basin produced during Gondwana break-up. Despite being a prominent oil and gas province, the structural evolution and context of the rift within northwest India remains poorly understood. Substantial subsurface datasets acquired during hydrocarbon exploration provide an unrivalled tool to investigate the tectonic evolution of the Barmer Basin rift and northwest India during India-Asia collision. Here we present a structural analysis using seismic datasets to investigate Barmer Basin evolution and place findings within the context of northwest India development. Present day rift structural architectures result from superposition of two non-coaxial extensional events; an early mid-Cretaceous rift-oblique event (NW-SE), followed by a main Paleocene rifting phase (NE-SW). Three phases of fault reactivation follow rifting: A transpressive, Late Paleocene inversion along localised E-W and NNE-SSW-trending faults; a widespread Late Paleocene-Early Eocene inversion and Late Miocene-Present Day transpressive strike-slip faulting along NW-SE-trending faults and isolated inversion structures. A major Late Eocene-Miocene unconformity in the basin is also identified, approximately coeval with those identified within the Himalayan foreland basin, suggesting a common cause related to India-Asia collision, and calling into question previous explanations that are not compatible with spatial extension of the unconformity beyond the foreland basin. Although, relatively poorly age constrained, extensional and compressional events within the Barmer Basin can be correlated with regional tectonic processes including the fragmentation of Gondwana, the rapid migration of the Greater Indian continent, to subsequent collision with Asia. New insights into the Barmer Basin development have important implications not only for ongoing hydrocarbon exploration but the temporal evolution of northwest India.
Australian Multiexperimental Assessment of SIR-B (AMAS)
NASA Technical Reports Server (NTRS)
Richards, J. A.; Forster, B. C.; Milne, A. K.; Taylor, G. R.; Trinder, J. C.
1984-01-01
The utility of SIR-B data for analysis of surface properties and subsurface morphology in three arid regions of Australia is investigated. This study area is located in western New South Wales. It contains extensive aeolian and alluvially derived depositional plains and is the site of the University's Arid Zone Research Station; it is well-mapped and surveyed. Radar backscatter is mapped and evaluated against known terrain conditions. Relative components of surface and subsurface return are determined with a view to identifying structural properties of surface and subsurface morphology. The capability of microwave remote sensing in locating likely groundwater sources in the Bancannia Basin, near Fowler's Gap is assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoak, T.E.; Decker, A.D.
Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basinmore » analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.« less
Hot, deep origin of petroleum: deep basin evidence and application
Price, Leigh C.
1978-01-01
Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.
NASA Astrophysics Data System (ADS)
Kwak, Jung Hyun; Lee, Sang Heon; Hwang, Jeomshik; Suh, Young-Sang; Je Park, Hyun; Chang, Kyung-Il; Kim, Kyung-Ryul; Kang, Chang-Keun
2014-07-01
The East/Japan Sea (EJS) is a highly productive marginal sea in the northwest Pacific, consisting of three basins (Ulleung Basin: UB, Yamato Basin: YB, and Japan Basin: JB). To find causes of the reportedly high primary productivity in summer in the EJS, especially in the UB, we measured primary productivity, phytoplankton composition, and other environmental variables. The water column was strongly stratified in the EJS compared with the Western Subarctic Pacific (WSP). Integrated primary productivity was two times higher in the EJS (612 mg C m-2 d-1) than in the WSP (291 mg C m-2 d-1). The vertical distributions of physicochemical and biological factors confirmed that production in the subsurface chlorophyll maximum layer in the study regions was an important factor regulating primary productivity within the water column. While picoplankton (<2.7 µm) dominated in the WSP, JB, and YB, micro/nanoplankton (≥2.7 µm) dominated in the UB. Contribution by picoplankton to total biomass and primary productivity in the UB was significantly lower than in the other regions. CHEMTAX analysis using marker pigments showed that diverse phytoplankton groups inhabited the study regions. Cluster and canonical correspondence analyses showed high correlation between the spatial variation in phytoplankton assemblages with the water mass properties mainly represented by water temperature and nitrate concentration. Overall, our results suggest that the hydrographic structure of water column in the study region is an important controlling factor of the biomass and productivity of phytoplankton as well as their diversity in size and taxonomic groups.
Cretaceous combined structure in eastern Sichuan Basin, China
NASA Astrophysics Data System (ADS)
Wang, P.; Liu, S.
2009-12-01
Eastern Sichuan Basin is confined by two thin-skinned fold-thrust belt, NW-trending Southern Daba Shan (Shan=Mountain) (SDB) in the northeast and NNE- or NE-trending Western XueFeng Shan (WXF) in the southeast, which constitute two convergent salients convex to the inner basin respectively. Although many factors can lead to the formation of fold-thrust belt salients, the eastern Sichuan salients would be attributed to the combined structure (firstly nominated by Chinese geologist, Li Siguang), which means the interaction of two structural belts in the same period. By field surveying and geological map interpreting, we found that WXF deformation began in Late Jurassic along the eastern side of structral belt, where the synclines cored by Upper-Middle Jurassic rock. The initial time of SDB deformation remains poorly determined, however our palaeocurrent data of Lower Cretaceous rock in adjecent foreland basin indicate the provenance from northeast or east. Hence we considered the two fold-thrust belt started interactive in Late Jurassic and mainly combined during Cretaceous. In Early Cretaceous, the front belt of WXF salient arrived near KaiXian where NEE-trending arc-shape folds converged with the NWW-trending arc-shape folds of SDB.The two salients shaped like an westward "open mouth", east of which EW-trending folds of two structural belts juxtaposed. Particularly in the middle belt of WXF (FengJie - WuFeng) the earlier NEE-trending folds were refolded by later NNE-trending folds. We interpret the NEE-trending folds as the front belt of earlier (maybe Late Jurassic) WXF salient. When the two combined fold belts propagated westward together, the original NNE-trending front belt of WXF constrained by the front belt of SDB and formed the curved fold trend lines convex to NNW. Then as WXF deformation continued but SDB gradually terminated, the consequent NNE-trending folds could not be curved and would superpose on the earlier NEE-trending folds.In Late Cretaceous, WXF still propagated westward but without combination with SDB, and formed three NNE-trending parallel anticlines flanking the central Sichuan Basin. These anticlines dominated by steep dips and west-vergent thrust faults, which suggests the eastward back pushing force. We suppose that the pre-existing deep fault obstructed the WXF westward propagation. In addition, thermochronolgy analysis proved that SDB underwent tectonic sequence in Late Cretaceous. Thus the convergent salients broke up with only NNE-trending parallel fold being present in the front belt of WXF. We also use a finite-element model (FEM) to illustrate the maximum horizontal compressive stress (SHmax) under the combined structure in ABAQUSTM software. A 2D plane stress model with realistic mechanical properties for whole Sichuan Basin was built based on the Late Jurassic paleogeographic boundaries. The model consists of 5,400 elements, providing a resolution of 0.1° in both latitude and longitude. In general, FEM analysis result shows the SHmax direction well perpendicular to the arc-shape folds trend lines in eastern Sichuan Basin when pressure loaded on the SDB and WXF boundaries. The SHmax contours reflect two convergent salients incorporating the gradually decreased stress value from the boundaries to inner basin.
Geophysical basin structure of the Cotonou (Dahomey/Benin) basin, West African Gulf of Guinea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babalola, O.O.
1990-05-01
The frontier Cotonou basin (or Dahomey/Benin embayment), situated west of the prolific Niger Delta basin, appears from seismic, gravity, and aeromagnetic interpretation, as a series of grabens and troughs confined on the west and east by the Romanche and the Chain fracture zones, respectively. The Keta trough of the western basin rim was formed by a 2700-m southeasterly downthrow of the Adina fault. This trough is separated by a north-northeasterly fault from the Lome-Anecho gravity high. Eastward, the arcuate Allada-Adjohon trough is abutted on its southern flank by the northwest-trending Nokue-Afowo trough and separated from the northwesterly Ikorodu trough bymore » the 50-km-wide aeromagnetically inferred ro-Otta ridge. The Ikorodu trough is adjoined on the northwest by the Aiyetoro trough and on the southeast by the Yemoja offshore graben trending east northeast as the Seme oil-field structural trend. North of the regional northeasterly axial, gravity positive, structural divide (the continental precursor of the Charcot fracture zone) a series of half-grabens (notably the Aplahoue, Bohicon, and Keiou troughs), normal faulted eastward and downthrown in the west, dominate the landward western rim of the Cotonou basin. Graben-bounding faults control the upper valleys of the basin drainage, converge toward the regional intrabasin structural trend and continue into the Fenyi-koe fault and the Charcot fracture zone. These faults resulted from brittle dextral shear of continental crust oblique to local, preexisting north-northeast structural trends. In the eastern basin rim, preexisting north-northwest structural trends influenced the shearing stress regime to generate small, shallow, structurally bounded, east-northeast- and north-northwest trending grabens.« less
MOLA Topography of Impact Basins in the Northern Hemisphere of Mars
NASA Technical Reports Server (NTRS)
Frey, Herbert; Sakimoto, S. E. H.; Roark, J. H.
1998-01-01
Coverage of the northern hemisphere of Mars by the Mars Orbiter Laser Altimeter (MOLA) during the aerobraking hiatus and the two Science Phasing Operation periods provides improved definition and characterization of large impact basins. Gridded MOLA data show the Utopia Basin has a pronounced bowl-like structure, as opposed to the interior rises suggested by the earlier USGS DEM. The elevation structure is concentric about the basin center as mapped by McGill. In particular, the proposed inner ring closely follows the -4 km contour over much of the southern, western and northwestern sides. Higher topography along portions of the dichotomy boundary aligns with the basin's outer ring. High topography in the polar region also occurs where the outer ring should lie, raising the possibility that perhaps some of the polar topography is due to basin structure as well as ice. Two MOLA passes near Phison Rupes provide evidence for a large "stealth" hole where Viking imagery show little evidence of any major structure. The 2 km deep, 600 km wide depression at 31OW, 3ON is as large as the Cassini impact basin 1000 km to the SW. While Cassini is easily recognized in image data, the "MOLA Hole" is not. If this depression is a deeply eroded and buried impact basin (as perhaps suggested by a decrease in the crater density and somewhat smoother terrain than in adjacent areas), it is not clear why it has managed to maintain its great depth. In Tempe at the dichotomy boundary a 300 km wide impact basin is revealed by pronounced bowl-like topography centered at 87W, 47N, even though only about 1/3 of the basin rim structure is obvious. The basin lies on a sloping boundary zone, with the more buried N rim up to 2 km below the rugged S rim. A similar N-S asymmetry in basin ring structure occurs for the much larger Isidis Basin, where the S rim rises 6 km but the subdued N rim rises barely 2 km above the floor. There is essentially no topographic expression of the main ring in the NE quadrant of Isidis where, if it exists, it lies below Hesperian-age plains.
Vertical hydraulic conductivity measurements in the Denver Basin, Colorado
Barkmann, P.E.
2004-01-01
The Denver Basin is a structural basin on the eastern flank of the Rocky Mountain Front Range, Colorado, containing approximately 3000 ft of sediments that hold a critical groundwater resource supplying many thousands of households with water. Managing this groundwater resource requires understanding how water gets into and moves through water-bearing layers in a complex multiple-layered sedimentary sequence. The Denver Basin aquifer system consists of permeable sandstone interbedded with impermeable shale that has been subdivided into four principle aquifers named, in ascending order, the Laramie-Fox Hills, Arapahoe, Denver, and Dawson aquifers. Although shale can dominate the stratigraphic interval containing the aquifers, there is very little empirical data regarding the hydrogeologic properties of the shale layers that control groundwater flow in the basin. The amount of water that flows vertically within the basin is limited by the vertical hydraulic conductivity through the confining shale layers. Low vertical flow volumes translate to low natural recharge rates and can have a profound negative impact on long-term well yields and the economic viability of utilizing the resource. To date, direct measurements of vertical hydraulic conductivity from cores of fine-grained sediments have been published from only five locations; and the data span a wide range from 1??10-3 to 1??10-11 cm/sec. This range may be attributable, in part, to differences in sample handling and analytical methods; however, it may also reflect subtle differences in the lithologic characteristics of the fine-grained sediments such as grain-size, clay mineralogy, and compaction that relate to position in the basin. These limited data certainly call for the collection of additional data.
Ontology of Earth's nonlinear dynamic complex systems
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2017-04-01
As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.
Seismic Characterization of the Jakarta Basin
NASA Astrophysics Data System (ADS)
Cipta, A.; Saygin, E.; Cummins, P. R.; Masturyono, M.; Rudyanto, A.; Irsyam, M.
2015-12-01
Jakarta, Indonesia, is home to more than 10 million people. Many of these people live in seismically non-resilient structures in an area that historical records suggest is prone to earthquake shaking. The city lies in a sedimentary basin composed of Quaternary alluvium that experiences rapid subsidence (26 cm/year) due to groundwater extraction. Forecasts of how much subsidence may occur in the future are dependent on the thickness of the basin. However, basin geometry and sediment thickness are poorly known. In term of seismic hazard, thick loose sediment can lead to high amplification of seismic waves, of the kind that led to widespread damage in Mexico city during the Michoacan Earthquake of 1985. In order to characterize basin structure, a temporary seismograph deployment was undertaken in Jakarta in Oct 2013- Jan 2014. A total of 96 seismic instrument were deployed throughout Jakarta were deployed throughout Jakarta at 3-5 km spacing. Ambient noise tomography was applied to obtain models of the subsurface velocity structure. Important key, low velocity anomalies at short period (<8s) correspond to the main sedimentary sub-basins thought to be present based on geological interpretations of shallow stratigraphy in the Jakarta Basin. The result shows that at a depth of 300 m, shear-wave velocity in the northern part (600 m/s) of the basin is lower than that in the southern part. The most prominent low velocity structure appears in the northwest of the basin, down to a depth of 800 m, with velocity as low as 1200 m/s. This very low velocity indicates the thickness of sediment and the variability of basin geometry. Waveform computation using SPECFEM2D shows that amplification due to basin geometry occurs at the basin edge and the thick sediment leads to amplification at the basin center. Computation also shows the longer shaking duration occurrs at the basin edge and center of the basin. The nest step will be validating the basin model using earthquake events recorded by the Jakarta array. The Bohol 2013 earthquake is one good candidate event for model validation. This will require using a source model for the Bohol earthquake and a plane wave input to SPECFEM3D.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2016-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2017-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
Geldon, Arthur L.
2003-01-01
The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer system and the overlying Canyonlands aquifer. Composed of the uppermost Paleozoic rocks, the Canyonlands aquifer consists, in ascending order, of the Cutler-Maroon, Weber-De Chelly, and Park City-State Bridge zones. The Paleozoic rocks are underlain by a basal confining unit consisting of Precambrian sedimentary, igneous, and metamorphic rocks and overlain throughout most of the Upper Colorado River Basin by the Chinle-Moenkopi confining unit, which consists of Triassic formations composed mostly of shale. The largest values of porosity, permeability, hydraulic conductivity, transmissivity, and artesian yield are exhibited by the Redwall-Leadville zone of the Madison aquifer and the Weber-De Chelly zone of the Canyonlands aquifer. The former consists almost entirely of Devonian and Mississippian carbonate rocks: the latter consists mostly of Pennsylvanian and Permian quartz sandstone. Unit-averaged porosity in hydrogeologic units composed of Paleozoic rocks ranges from less than 1 to 28 percent. Permeability ranges from less than 0.0001 to 3,460 millidarcies. Unit-averaged hydraulic conductivity ranges from 0.000005 to 200 feet per day. The composite transmissivity of Paleozoic rocks ranges from 0.0005 to 47,000 feet squared per day. Artesian yields to wells and springs (excluding atypical springflows) from these hydrogeologic units range from less than 1 to 10,000 gallons per minute. The permeability and watersupply capabilities of all hydrogeologic units progressively decrease from uplifted areas to structural basins. Recharge to the Paleozoic rocks is provided by direct infiltration of precipitation, leakage from streams, and ground-water inflows from structurally continuous areas west and north of the Upper Colorado River Basin. The total recharge available flom ground-water systems in the basin from direct precipitation and stream leakage is estimated to be 6,600,000 acre-feet per year. However, little of this recharge directly enters the Paleozoic rocks
NASA Astrophysics Data System (ADS)
Elawadi, Eslam; Zaman, Haider; Batayneh, Awni; Mogren, Saad; Laboun, Abdalaziz; Ghrefat, Habes; Zumlot, Taisser
2013-09-01
The Ifal (Midyan) Basin is one of the well defined basins along the Red Sea coast, north-western Saudi Arabia. Location, geometry, thick sedimentary cover and structural framework qualify this basin for groundwater, oil and mineral occurrences. In spite of being studied by two airborne magnetic surveys during 1962 and 1983, structural interpretation of the area from a magnetic perspective, and its uses for hydrogeological and environmental investigations, has not been attempted. This work thus presents interpretation of the aeromagnetic data for basement depth estimation and tectonic framework delineation, which both have a role in controlling groundwater flow and accumulation in the Ifal Basin. A maximum depth of 3.5km is estimated for the basement surface by this study. In addition, several faulted and tilted blocks, perpendicularly dissected by NE-trending faults, are delineated within the structural framework of the study area. It is also observed that the studied basin is bounded by NW- and NE-trending faults. All these multi-directional faults/fracture systems in the Ifal Basin could be considered as conduits for groundwater accumulation, but with a possibility of environmental contamination from the surrounding soils and rock bodies.
NASA Astrophysics Data System (ADS)
Ijjasz-Vasquez, Ede J.; Bras, Rafael L.; Rodriguez-Iturbe, Ignacio
1993-08-01
As pointed by Hack (1957), river basins tend to become longer and narrower as their size increases. This work shows that this property may be partially regarded as the consequence of competition and minimization of energy expenditure in river basins.
Bloyd, R.M.; Daddow, P.B.; Jordon, P.R.; Lowham, H.W.
1986-01-01
The effects of surface coal mining on the surface- and groundwater systems in a 5,400 sq mi area in the Powder River Basin, Wyoming, that includes 20 major coal mines were evaluated using three approaches: A surface water model, a landscape-stability analysis, and a groundwater model. A surface water model was developed for the Belle Fourche River basin. The Hydrological Simulation Program-Fortran model was used to simulate changes in streamflow and changes in dissolved-solids and sulfate concentrations. Simulated streamflows resulting from less than average rainfall were small, changes in flow from premining to during-mining and postmining conditions were less than 2.5%, and changes in mean dissolved-solids and sulfate concentrations ranged from 1 to 7%. A landscape-stability analysis resulted in regression relations to aid in the reconstruction of reclaimed drainage networks. Hypsometric analyses indicate the larger basins are relatively stable, and statistical data from these basins may be used to design the placement of material within a mined basin to approximate natural, stable landscapes in the area. The attempt to define and simulate the groundwater system in the area using a groundwater-flow model was unsuccessful. The steady-state groundwater-flow model could not be calibrated. The modeling effort failed principally because of insufficient quantity and quality of data to define the spatial distribution of aquifer properties; the hydraulic-head distribution within and between aquifers; and the rates of groundwater recharge and discharge, especially for steady-state conditions. (USGS)
NASA Astrophysics Data System (ADS)
Welch, S. C.; Kerkez, B.; Glaser, S. D.; Bales, R. C.; Rice, R.
2011-12-01
We have designed a basin-scale (>2000 km2) instrument cluster, made up of 20 local-scale (1-km footprint) wireless sensor networks (WSNs), to measure patterns of snow depth and snow water equivalent (SWE) across the main snowmelt producing area within the American River basin. Each of the 20 WSNs has on the order of 25 wireless nodes, with over 10 nodes actively sensing snow depth, and thus snow accumulation and melt. When combined with existing snow density measurements and full-basin satellite snowcover data, these measurements are designed to provide dense ground-truth snow properties for research and real-time SWE for water management. The design of this large-scale network is based on rigorous testing of previous, smaller-scale studies, permitting for the development of methods to significantly, and efficiently scale up network operations. Recent advances in WSN technology have resulted in a modularized strategy that permits rapid future network deployment. To select network and sensor locations, various sensor placement approaches were compared, including random placement, placement of WSNs in locations that have captured the historical basin mean, as well as a placement algorithm leveraging the covariance structure of the SWE distribution. We show that that the optimal network locations do not exhibit a uniform grid, but rather follow strategic patterns based on physiographic terrain parameters. Uncertainty estimates are also provided to assess the confidence in the placement approach. To ensure near-optimal coverage of the full basin, we validated each placement approach with a multi-year record of SWE derived from reconstruction of historical satellite measurements.
Compaction of basin sediments as a function of time-temperature history
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmoker, J.W.; Gautier, D.L.
1989-03-01
Processes that affect burial diagenesis are dependent on time-temperature history (thermal maturity). Therefore, the porosity loss of sedimentary rocks during burial may often be better treated as a function of time-temperature history than of depth. Loss of porosity in the subsurface for sandstones, carbonates, and shales can be represented by a power function /phi/ = A(M)/sup B/, where /phi/ is porosity, A and B are constants for a given sedimentary rock population of homogeneous properties, and M is a measure of thermal maturity such as vitrinite reflectance (R/sub 0/) or Lopatin's time-temperature index (TTI). Regression lines of carbonate porosity andmore » of sandstone porosity upon thermal maturity form an envelope whose axis is approximated by /phi/ = 7.5(R/sub 0/)/sup /minus/1.18/ or, equivalently, by /phi/ = 30(TTI)/sup /minus/0.33/. These equations are preliminary generic relations of use for the regional modeling of both carbonate and sandstone compaction in sedimentary basins. The dependence of porosity upon time-temperature history incorporates the hypothesis that porosity-reducing processes operate continuously in sedimentary basins and, consequently, that compaction of basin sediments continues as long as porosity exists. Calculations indicate that subsidence due to loss of porosity through time (with depth held constant) can produce a second-stage passively formed basin in which many hundreds of meters of sediments can accumulate and which conforms with the structure of the original underlying basin. Such sediment accumulation results from the thermal maturation of thick sequences of sedimentary rocks rather than from global sea level change or tectonic subsidence.« less
Identifying three-dimensional nested groundwater flow systems in a Tóthian basin
NASA Astrophysics Data System (ADS)
Wang, Xu-Sheng; Wan, Li; Jiang, Xiao-Wei; Li, Hailong; Zhou, Yangxiao; Wang, Junzhi; Ji, Xiaohui
2017-10-01
Nested groundwater flow systems have been revealed in Tóth's theory as the structural property of basin-scale groundwater circulation but were only well known with two-dimensional (2D) profile models. The method of searching special streamlines across stagnation points for partitioning flow systems, which has been successfully applied in the 2D models, has never been implemented for three-dimensional (3D) Tóthian basins because of the difficulty in solving the dual stream functions. Alternatively, a new method is developed to investigate 3D nested groundwater flow systems without determination of stagnation points. Connective indices are defined to quantify the connection between individual recharge and discharge zones along streamlines. Groundwater circulation cells (GWCCs) are identified according to the distribution of the connective indices and then grouped into local, intermediate and regional flow systems. This method requires existing solution of the flow velocity vector and is implemented via particle tracking technique. It is applied in a hypothetical 3D Tóthian basin with an analytical solution of the flow field and in a real-world basin with a numerical modeling approach. Different spatial patterns of flow systems compared to 2D profile models are found. The outcrops boundaries of GWCCs on water table may significantly deviate from and are not parallel to the nearby water table divides. Topological network is proposed to represent the linked recharge-discharge zones through closed and open GWCCs. Sensitivity analysis indicates that the development of GWCCs depends on the basin geometry, hydraulic parameters and water table shape.
Welder, G.E.
1986-01-01
The San Juan structural basin is an 18,000 sq mi area that contains several extensive aquifers. The basin includes three surface drainage basins and parts of New Mexico, Colorado, Arizona, and Utah. Surface water in the area is fully appropriated, and the steadily increasing demand for groundwater has resulted in water supply concerns. Competition is great between mining and electric power companies, municipalities, and Indian communities for the limited groundwater supplies. This report outlines a 4-year plan for a study of the regional aquifer system in the San Juan structural basin. The purposes of the study are to define and understand the aquifer system; to assess the effects of groundwater use on the aquifers and streams; and to determine the availability and quality of groundwater in the basin. (Author 's abstract)
Dart, R.L.; Swolfs, H.S.
1998-01-01
A new contour map of the basement of the Reelfoot rift constructed from drill hole and seismic reflection data shows the general surface configuration as well as several major and minor structural features. The major features are two asymmetric intrarift basins, bounded by three structural highs, and the rift margins. The basins are oriented normal to the northeast trend of the rift. Two of the highs appear to be ridges of undetermined width that extend across the rift. The third high is an isolated dome or platform located between the basins. The minor features are three linear structures of low relief oriented subparallel to the trend of the rift. Two of these, located within the rift basins, may divide the rift basins into paired subbasins. These mapped features may be the remnants of initial extensional rifting, half graben faulting, and basement subsidence. The rift basins are interpreted as having formed as opposing half graben, and the structural highs are interpreted as having formed as associated accommodation zones. Some of these features appear to be reactivated seismogenic structures within the modem midcontinent compressional stress regime. A detailed knowledge of the geometries of the Reelfoot rift's basement features, therefore, is essential when evaluating their seismic risk potential.
Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dien, P.T.
1994-07-01
The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, whichmore » developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.« less
Structural framework and hydrocarbon potential of Ross Sea, Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, A.K.; Davey, F.J.
The 400 to 1100-m deep continental shelf of the Ross Sea is underlain by three major sedimentary basins (Eastern basin, Central trough, and Victoria Land basin), which contain 5 to 6 km of sedimentary rock of Late Cretaceous(.) and younger age. An addition 6 to 7 km of older sedimentary and volcanic rocks lie within the Victoria Land basin. Eroded basement ridges of early Paleozoic(.) and older rocks similar to those of onshore Victoria Land separate the basins. The three basins formed initially in late Mesozoic time during an early period of rifting between East and West Antarctica. The Easternmore » basin is a 300-km wide, asymmetric basement trough that structurally opens into the Southern Ocean. A seaward-prograding sequence of late Oligocene and younger glacial deposits covers a deeper, layered sequence of Paleogene(.) and older age. The Central trough, a 100-km wide depression, is bounded by basement block faults and is filled with a nearly flat-lying sedimentary section. A prominent positive gravity anomaly, possibly caused by rift-related basement rocks, lies along the axis of the basin. The Victoria Land basin, unlike the other two basins, additionally contains a Paleogene(.) to Holocene rift zone, the Terror Rift. Rocks in the rift, near the axis of the 150-km wide basement half-graben, show extensive shallow faulting and magmatic intrusion of the sedimentary section. The active Terror rift and older basin structures extend at least 300 km along the base of the Transantarctic Mountains. Petroleum hydrocarbons have not been reported in the Ross Sea region, with possible exception of ethane gas found in Deep Sea Drilling Project cores from the Eastern basin. Model studies indicate that hydrocarbons could be generated at depths of 3.5 to 6 km within the sedimentary section. The best structures for hydrocarbon entrapment occur in the Victoria Land basin and associated Terror Rift.« less
Complex history of the Rembrandt basin and scarp system, Mercury
NASA Astrophysics Data System (ADS)
Ferrari, S.; Massironi, M.; Klimczak, C.; Byrne, P. K.; Cremonese, G.; Solomon, S. C.
2012-09-01
During its second and third flybys, the MESSENGER spacecraft [1] imaged the wellpreserved Rembrandt basin in Mercury's southern hemisphere. With a diameter of 715 km, Rembrandt is the second largest impact structure recognized on Mercury after the 1550-km-diameter Caloris basin. Rembrandt is also one of the youngest major basins [2] and formed near the end of the Late Heavy Bombardment (~3.8 Ga). Much of the basin interior has been resurfaced by smooth, high-reflectance units interpreted to be of volcanic origin [3]. These units host sets of contractional and extensional landforms generally oriented in directions radial or concentric to the basin, similar to those observed within the Caloris basin [4-6]; these structures are probably products of multiple episodes of deformation [2,7,8]. Of particular note in the Rembrandt area is a 1,000-km-long reverse fault system [9] that cuts the basin at its western rim and bends eastward toward the north, tapering into the impact material. On the basis of its shape, the structure has previously been characterized as a lobate scarp. Its formation and localization have been attributed to the global contraction of Mercury [2]. From MESSENGER flyby and orbital images, we have identified previously unrecognized kinematic indicators of strike-slip motion along the Rembrandt scarp, together with evidence of interaction between the scarp orientation and the concentric basin-related structural pattern described above. Here we show through cross-cutting relationships and scarp morphology that the development of the Rembrandt scarp was strongly influenced by tectonics related to basin formation and evolution.
NASA Astrophysics Data System (ADS)
Khatun, Salma
2008-07-01
This research consists of two parts. One part deals with an integrated analysis of the structural anomaly associated with the Uinta Mountains, Utah. The other part deals with a study on the effect of Tamarix on soil and water quality. The Uinta Mountains are an anomalous east-west trending range of the Central Rocky Mountains and are located in northeastern Utah and northwestern Colorado. They have long been recognized as a structural anomaly that is surrounded by other Laramide structures that trend N-S or northwest. The study area extends from -112 to -108 degrees longitude and 41.5 to 39 degrees latitude and consists of three major geologic features: The Green River basin, Uinta Mountains, and the Uinta basin. This study investigates the tectonic evolution and the structural development of the Uinta aulacogen. There is a growing interest in exploration for petroleum and other hydrocarbons in the area of this study. Oil companies have been drilling wells in this area since the 1950's. The results of this study will enhance the existing knowledge of this region, and thus will help in the pursuit of hydrocarbons. A highly integrated approach was followed for this investigation. Gravity, magnetic, drill hole, seismic and receiver function data were used in the analysis. Gravity and magnetic data were analyzed using software tools available in the Department of Geological Sciences such as Oasis Montaj and GIS. Filtered gravity maps show that the Uinta Mountains and the surrounding basins and uplifts are deep seated features. These maps also reveal a correlation between the Uinta Mountains and the regional tectonic structures. This correlation helps in understanding how the different tectonic events that this region went through contributed to the different phases of development of the Uinta aulacogen. Four gravity models were generated along four north-south trending profile lines covering the target area from east to west. Interpretations of these models give a comprehensive picture of the structures in the study area. These models show that the Uinta uplift is a single sedimentary block with numerous thrust faults on the northern and southern flanks of the uplift. These models also reveal the fact that the thickness of the crust is quite variable in the study area. This is also supported by the crustal thickness map constructed for this study from seismic and receiver function information. Magnetic maps show that the Proterozoic sedimentary package known as Uinta Mountain Group extends into the Basin and Range and indicates its link with the ancient rift margin in the Western United States. Findings of this research are correlated to earlier studies and placed in a broader context. Finally an analogy is made between the Uinta aulacogen, the Southern Oklahoma aulacogen and the Dniepr-Donets aulacogen in Ukraine. This discussion focuses light on the mechanism that led to the Uinta's development from a failed rift to an uplift. Part two of this research examined the effect of saltcedar (Tamarix sp) on water and soil properties in the Rio Grande River valley in West Texas. Tamarix is a woody phreatophyte (water-loving plant) common in riparian habitats. The presence of Tamarix in a river system raises concerns about its effect on water quality because it can increase the salinity of water and surrounding soil and it reduces stream flow. Geophysical electrical techniques were used to track soil salinity and moisture changes caused by Tamarix, as well as to determine how soil salinity and moisture properties are altered when Tamarix is eradicated from the region. These techniques allowed more rapid in-situ assessment of the soil properties than the conventional method of removing soil and water samples for analysis. This study was focused on the influence of Tamarix on soil properties and hydrology at the subsurface at four sites in the Rio Bosque Wetlands Park, El Paso, Texas Two sites had flourishing Tamarix and two others were areas where the Tamarix have either been killed with herbicides or chopped down but their stumps have been left in place. Two soil properties, namely resistivity and ground conductivity, were monitored at the sites for one year on a bi-monthly basis. Ground penetrating radar was used to investigate near surface soil stratigraphy that influences groundwater flow and soil properties. The target was to determine what role Tamarix plays in the seasonal variation of the electrical properties of the soil. Seasonal variation in resistivity shows that resistivity primarily varies at shallow depth and this variation is more prominent away from the trees. Also this variation was higher at the dead tree site compared to the live tree sites. This suggests the trees act to maintain relatively constant salinity and moisture condition around themselves.
Crustal Structure in the Western Part of Romania from Local Seismic Tomography
NASA Astrophysics Data System (ADS)
Zaharia, Bogdan; Grecu, Bogdan; Popa, Mihaela; Oros, Eugen; Radulian, Mircea
2017-12-01
The inner part of the Carpathians in Romania belongs to the Carpathians-Pannonian system bordered by the Eastern Carpathians to the north and east, Southern Carpathians to the south and Pannonian Basin to the west. It is a complex tectonic region with differential folding mechanisms, post-collisional kinematics, rheology and thermal properties, including within its area the Apuseni Mountains and the Transylvanian Basin. The purpose of this study is to map the 3-D structure of the crust over this region on the basis of local earthquake data. Input data were recorded during the South Carpathian Project (2009-2011), a successful collaboration between the Institute of Geophysics and Tectonics of the University of Leeds and the National Institute for Earth Physics (NIEP), Romania. A temporary array of 32 broadband seismic stations (10 CMG-40T, 8 CMG-3T and 14 CMG-6TD) was installed across the western part of Romania (spaced at 40 to 50 km intervals) during the project. In addition, 25 stations deployed in the eastern Hungary and Serbia was considered. P- and S-wave arrivals are identified for all the selected events (minimum 7 phases per event with reasonable signal/noise ratio). All the events are first relocated using Joint Hypocentre Determination (JHD) technique. Then the well-located events were inverted to determine the crustal structure using LOTOS algorithm. The lateral variations of the crustal properties as resulted from the tomography image are interpreted in correlation with the station corrections estimated by JHD algorithm and with the post-collisional evolution of the Carpathians-Pannonian system.
The Vichada Impact Crater in Northwestern South America and its Potential for Economic Deposits
NASA Astrophysics Data System (ADS)
Hernandez, O.; von Frese, R. R.
2008-05-01
A prominent positive free-air gravity anomaly mapped over a roughly 50-km diameter basin is consistent with a mascon centered on (4o30`N, -69o15`W) in the Vichada Department, Colombia, South America. The inferred large impact crater is nearly one third the size of the Chicxulub crater. It must have formed recently, in the last 30 m.a. because it controls the partially eroded and jungle-covered path of the Vichada River. No antipodal relationship has been detected. Thick sedimentary cover, erosional processes and dense vegetation greatly limit direct geological testing of the inferred impact basin. However, EGM-96 gravity data together with ground gravity and magnetic profiles support the interpretation of the impact crater structure. The impact extensively thinned and disrupted the Precambrian cratonic crust and may be associated with mineral and hydrocarbon deposits. A combined EM and magnetic airborne program is being developed to resolve additional crustal properties of the inferred Vichada impact basin Keywords: Impact crater, economic deposits, free-air gravity anomalies
NASA Astrophysics Data System (ADS)
Debenham, Natalie; King, Rosalind C.; Holford, Simon P.
2018-07-01
Despite the ubiquity of normal faults that have undergone compressional inversion, documentation of the structural history of natural fractures around these structures is limited. In this paper, we investigate the geometries and relative chronologies of natural fractures adjacent to a reverse-reactivated normal fault, the Castle Cove Fault in the Otway Basin, southeast Australia. Local variations in strain resulted in greater deformation within the fault damage zone closer to the fault. Structural mapping within the damage zone reveals a complex tectonic history recording both regional and local perturbations in stress and a total of 11 fracture sets were identified, with three sets geometrically related to the Castle Cove Fault. The remaining fracture sets formed in response to local stresses at Castle Cove. Rifting in the late Cretaceous resulted in normal movement of the Castle Cove Fault and associated rollover folding, and the formation of the largest fracture set. Reverse-reactivation of the fault and associated anticlinal folding occurred during late Miocene to Pliocene compression. Rollover folding may have provided structural traps if seals were not breached by fractures, however anticlinal folding likely post-dated the main episodes of hydrocarbon generation and migration in the region. This study highlights the need to conduct careful reconstruction of the structural histories of fault zones that experienced complex reactivation histories when attempting to define off-fault fluid flow properties.
Stretching factors in Cenozoic multi-rift basins, western Gulf of Thailand
NASA Astrophysics Data System (ADS)
Kaewkor, Chanida; Watkinson, Ian
2017-04-01
The Gulf of Thailand (GoT) is the biggest petroleum producing province in Thailand. It is separated by the north-south trending Ko Kra Ridge into two main parts: the Western Area and Basinal Area. A series of horsts and grabens formed by north-south oriented extensional faults subdivides the GoT into a number of basins. The two major basins, Pattani and North Malay, are located in the Basinal Area that contains the main oil and gas fields. The Western Area comprises several smaller and shallower basins but has nonetheless resulted in commercial successes, including oil fields such as Nang Nuan (Chumphon Basin), Bualuang (Western Basin) and Songkhla (Songkhla Basin). The GoT is one of several unusual Cenozoic basins within Sundaland, the continental core of SE Asia. These basins have previously been characterized by multiple distinct phases of extension and inversion, rapid post-rift subsidence, association with low-angle normal faults; and are set within hot, thin crust similar to the Basin and Range province, but surrounded by active plate boundaries. The extensional faults systems play a major role in petroleum accumulation during syn-rift and post-rift phases in this area. This paper utilises well data and 3D seismic data from the Songkhla and Western basins of the western GoT. Structural balancing and restoration techniques are used to investigate the rate of extension and the effect on tectonostratigraphy. The basins are younger to the north, the Western basin was opened in Upper Oligocene to Lower Miocene. Stretching factors of the Western basin is approximately 1.1-1.2. Songkhla basin is the oldest basin that initial rift started in Eocene. The basin is dominated by major structures; western border fault, compressional structures related reactivated inversion fault, and inter-basinal faults. There are two main phases of tectonic activity; 1) Rifting phase which can be divided into three sub-extensional phase; Eocene, Oligocene, Lower Miocene. 2) Post-rift and subsidence from Middle Miocene to Recent. Stretching factors of Songkhla basin is approximately 1.2-1.4.
NASA Astrophysics Data System (ADS)
Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan
2016-07-01
Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the oil and gas fields discovered in the Tarim Basin are usually associated with relatively high-temperature anomalies, and the upward migration and accumulation of hot geofluids along faults as conduit from below could explain this coincidence. Accordingly, this thermal anomaly could be indicative of hydrocarbon exploration targets in the basin.
Finite Element Modelling of the Indo-Gangetic Basin to Study Site Amplification
NASA Astrophysics Data System (ADS)
Sivasubramonian, J.; Jaya, D.; Raghukanth, S. T. G.; Mai, P. M.
2017-12-01
We have developed a finite-element model of the 3D velocity structure of the Indo-Gangetic basin (IG basin) to quantify site amplifications due to seismic waves emanated from regional earthquakes. Estimating seismic wave amplifications is difficult in case of limited instrumentation, thus motivating us to propose a new simulation-based approach. The input required for the finite-element model include the spatial coordinates and the material properties (density, P-wave and S-wave velocities, Q factor) of the basin. Recent studies in the basin demarcate sediment layers of varying thickness, reaching down to a depth of 6 km and S-wave velocities ranging from 0.4-2.4 km/s (Srinivas et al., 2013). In the present study, our regional model has dimensions 900 x 900 x 80 km in x, y and z directions, discretized into 320 x 320 x 53 hexahedral elements. The top 6 km of the IG basin is divided into 8 different sediment layers with varying material properties. We use kinematic rupture models for the earthquake sources to simulate past as well as hypothetical future events. Two past earthquakes (Mw4.9, Delhi; Mw5.2, Chamoli) and two hypothetical earthquakes (Mw7.1; Mw8.5) are considered in our study. The rupture plane dimensions (L and W) and the slip distribution are estimated using the method of Mai and Beroza (2002). Based on focal-mechanism solutions and the depths of seismicity, we define the strike (580, 3090), the dip (650, 210), the rake (160, 770), and the depth of top edge of fault (5 km, 19 km) for the two large hypothetical earthquakes. Based on these parameters, the Centroid Moment Tensor (CMT) solution of the source is obtained. Ground motions are then simulated by solving the three-dimensional wave equation using the spectral element method (Komatitsch and Tromp, 1999). The key observations from our results are: 1) basin amplification factors for Peak Ground Velocity (PGV) are twice as high as Peak Ground Displacement (PGD) 2) PGV amplifications are as high as a factor of 6 for earthquakes occurring inside the basin, and a factor of 4 for Himalayan earthquakes (to the north of the study region) 3) The simulated shake maps of PGV and PGD show directivity. Based on the above observations, we conclude that it is important to include our model into low-frequency ground-motion estimation for seismic hazard analysis.
NASA Astrophysics Data System (ADS)
Zhu, Guang-You; Ren, Rong; Chen, Fei-Ran; Li, Ting-Ting; Chen, Yong-Quan
2017-12-01
The Proterozoic is demonstrated to be an important period for global petroleum systems. Few exploration breakthroughs, however, have been obtained on the system in the Tarim Basin, NW China. Outcrop, drilling, and seismic data are integrated in this paper to focus on the Neoproterozoic rift basins and related hydrocarbon source rocks in the Tarim Basin. The basin consists of Cryogenian to Ediacaran rifts showing a distribution of N-S differentiation. Compared to the Cryogenian basins, those of the Ediacaran are characterized by deposits in small thickness and wide distribution. Thus, the rifts have a typical dual structure, namely the Cryogenian rifting and Ediacaran depression phases that reveal distinct structural and sedimentary characteristics. The Cryogenian rifting basins are dominated by a series of grabens or half grabens, which have a wedge-shaped rapid filling structure. The basins evolved into Ediacaran depression when the rifting and magmatic activities diminished, and extensive overlapping sedimentation occurred. The distributions of the source rocks are controlled by the Neoproterozoic rifts as follows. The present outcrops lie mostly at the margins of the Cryogenian rifting basins where the rapid deposition dominates and the argillaceous rocks have low total organic carbon (TOC) contents; however, the source rocks with high TOC contents should develop in the center of the basins. The Ediacaran source rocks formed in deep water environment of the stable depressions evolving from the previous rifting basins, and are thus more widespread in the Tarim Basin. The confirmation of the Cryogenian to Ediacaran source rocks would open up a new field for the deep hydrocarbon exploration in the Tarim Basin.
NASA Astrophysics Data System (ADS)
Grevemeyer, Ingo; Ranero, Cesar; Sallares, Valenti; Prada, Manel; Booth-Rea, Guillermo; Gallart, Josep; Zitellini, Nevio
2017-04-01
The Western Mediterranean Sea is a natural laboratory to study the processes of continental extension, rifting and back-arc spreading in a convergent setting caused by rollback of fragmented subducting oceanic slabs during the latest phase of consumption of the Tethys ocean, leading to rapid extension in areas characterized by a constant convergence of the African and European Plates since Cretaceous time. Opening of the Algerian-Balearic Basin was governed by a southward and westward retreating slab 21 to 18 Myr and 18 to15 Myr ago, respectively. Opening of the Tyrrhenian Basin was controlled by the retreating Calabrian slab 6 to 2 Myr ago. Yet, little is known about the structure of the rifted margins, back-arc extension and spreading. Here we present results from three onshore/offshore seismic refraction and wide-angle lines and two offshore lines sampling passive continental margins of southeastern Spain and to the south of the Balearic promontory and the structure of the Tyrrhenian Basin to the north of Sicily. Seismic refraction and wide-angle data were acquired in the Algerian-Balearc Basin during a cruise of the German research vessel Meteor in September of 2006 and in the Tyrrhenian Sea aboard the Spanish research vessel Sarmiento de Gamboa in July of 2015. All profiles sampled both continental crust of the margins surrounding the basins and extend roughly 100 km into the Algerian-Balearic and the Tyrrhenian Basins, yielding constraints on the nature of the crust covering the seafloor in the basins and adjacent margins. Crust in the Algerian-Balearic basin is roughly 5-6 km thick and the seismic velocity structure mimics normal oceanic crust with the exception that lower crustal velocity is <6.8 km/s, clearly slower than lower crust sampled in the Pacific Basin. The seismic Moho in the Algerian-Balearic Basin occurs at 11 km below sea level, reaching >24 km under SE Spain and the Balearic Islands, displaying typical features and structure of continental crust. Offshore Sicily, continental crust reaches 22 km. However, the Tyrrhenian Basin indicates a lithosphere with velocities increasing continuously from 3 km/s to 7.5 km/s, mimicking features attributed to un-roofed and hence serpentinized mantle. Therefore, even though the opening of both basins was controlled by slab rollback, the resulting structures of the basins indicate striking differences. It is interesting to note that the continent/ocean transition zone of the margins did not show any evidence for high velocity lower crustal rocks, in contrast to what has been sampled in Western Pacific arc/back-arc systems.
Langman, Jeff B.; Sprague, Jesse E.; Durall, Roger A.
2012-01-01
The U.S. Geological Survey, in cooperation with the U.S. Forest Service, examined the geologic framework, regional aquifer properties, and spring, creek, and seep properties of the upper San Mateo Creek Basin near Mount Taylor, which contains areas proposed for exploratory drilling and possible uranium mining on U.S. Forest Service land. The geologic structure of the region was formed from uplift of the Zuni Mountains during the Laramide Orogeny and the Neogene volcanism associated with the Mount Taylor Volcanic Field. Within this structural context, numerous aquifers are present in various Paleozoic and Mesozoic sedimentary formations and the Quaternary alluvium. The distribution of the aquifers is spatially variable because of the dip of the formations and erosion that produced the current landscape configuration where older formations have been exhumed closer to the Zuni Mountains. Many of the alluvial deposits and formations that contain groundwater likely are hydraulically connected because of the solid-matrix properties, such as substantive porosity, but shale layers such as those found in the Mancos Formation and Chinle Group likely restrict vertical flow. Existing water-level data indicate topologically downgradient flow in the Quaternary alluvium and indiscernible general flow patterns in the lower aquifers. According to previously published material and the geologic structure of the aquifers, the flow direction in the lower aquifers likely is in the opposite direction compared to the alluvium aquifer. Groundwater within the Chinle Group is known to be confined, which may allow upward migration of water into the Morrison Formation; however, confining layers within the Chinle Group likely retard upward leakage. Groundwater was sodium-bicarbonate/sulfate dominant or mixed cation-mixed anion with some calcium/bicarbonate water in the study area. The presence of the reduction/oxidation-sensitive elements iron and manganese in groundwater indicates reducing conditions at some time or in some location(s) in most aquifers. Frequent detections of zinc in the alluvium aquifer may represent anthropogenic influences such as mining. Along the mesas in the upper San Mateo Creek Basin, springs that form various creeks, including El Rito and San Mateo Creeks, discharge from the basalt-cap layer and the upper Cretaceous sedimentary layers. Streamflow in El Rito and San Mateo Creeks flows down steep gradients near the mesas sustained by groundwater discharges, and this streamflow transitions to shallow groundwater contained within the valley alluvium through infiltration where the subsequent groundwater is restricted from downward migration by the shaly Menefee Formation. This shallow groundwater reemerges at seeps where the land surface has been eroded below the groundwater level. Spring- and creek-water samples contained small amounts of dissolved solutes, and seep water contained substantially larger amounts of dissolved solutes. The pH of water within the creeks was neutral to alkaline, and all locations exhibited well-oxygenated conditions, although typically at substantially less than saturated levels. Changes in the stable-isotope ratios of water between spring and summer samples indicate differences in source-water inputs that likely pertain to seasonal recharge sources. Results of the water-isotope analysis and geochemical modeling indicate little evaporation and chemical weathering at the spring and creek sites but stronger evaporation and chemical weathering by the time the water reaches the seep locations in the center of the upper San Mateo Creek Basin.
Colorado Basin Structure and Rifting, Argentine passive margin
NASA Astrophysics Data System (ADS)
Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando
2010-05-01
The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation partly supports this hypothesis and shows two main directions of faulting: margin-parallel faults (~N30°) and rift-parallel faults (~N125°). A specific distribution of the two fault sets is observed: margin-parallel faults are restrained to the most distal part of the margin. Starting with a 3D structural model of the basin fill based on seismic and well data the deeper structure of the crust beneath the Colorado Basin can be evaluate using isostatic and thermal modelling. Franke, D., et al. (2002), Deep Crustal Structure Of The Argentine Continental Margin From Seismic Wide-Angle And Multichannel Reflection Seismic Data, paper presented at AAPG Hedberg Conference "Hydrocarbon Habitat of Volcanic Rifted Passive Margins", Stavanger, Norway Franke, D., et al. (2006), Crustal structure across the Colorado Basin, offshore Argentina Geophysical Journal International 165, 850-864. Gladczenko, T. P., et al. (1997), South Atlantic volcanic margins Journal of the Geological Society, London 154, 465-470. Hinz, K., et al. (1999), The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during breakup Marine and Petroleum Geology 16(1-25). Hirsch, K. K., et al. (2009), Tectonic subsidence history and thermal evolution of the Orange Basin, Marine and Petroleum Geology, in press, doi:10.1016/j.marpetgeo.2009.1006.1009
NASA Astrophysics Data System (ADS)
Haji, Taoufik; Zouaghi, Taher; Boukadi, Noureddine
2014-08-01
This paper uses seismic data, well data, and surface geologic data to present a detailed description of the Meknassy Basin in the Atlas fold and thrust belt of central Tunisia. These data reveal that the Meknassy Basin is bounded by major faults, along which Triassic evaporites have been intruded. The anticlines and synclines of the basin are delimited by two N-S main faults (the North-South Axis and the Sidi Ali Ben Oun fault) and are subdivided by associated N120° and N45° trending fault-related anticlines. The Meknassy Basin is characterized by brittle structures associated with a deep asymmetric geometry that is organized into depressions and uplifts. Halokinesis of Triassic evaporites began during the Jurassic and continued during the Cretaceous period. During extensional deformation, salt movement controlled the sediment accumulation and the location of pre-compressional structures. During compressional deformation, the remobilization of evaporites accentuated the folded uplifts. A zone of decollement is located within the Triassic evaporites. The coeval strike-slip motion along the bounding master faults suggests that the Meknassy Basin was initiated as a pull-apart basin with intrusion of Triassic evaporites. The lozenge structure of the basin was caused by synchronous movements of the Sidi Ali Ben Oun fault and the North-South Axis (sinistral wrench faults) with movement of NW-SE first-order dextral strike-slip faults. Sediment distribution and structural features indicate that a major tectonic inversion has occurred at least since Late Cretaceous and Cenozoic. The transpressional movements are marked by reverse faults and folds associated with unconformities and with remobilization of Triassic evaporites. The formation of different structural features and the evolution of the Meknassy Basin and its neighboring uplifts have been controlled by conjugate dextral and sinistral strike-slip movements and thrust displacement.
Structure contour map of the greater Green River basin, Wyoming, Colorado, and Utah
Lickus, M.R.; Law, B.E.
1988-01-01
The Greater Green River basin of Wyoming, Colorado, and Utah contains five basins and associated major uplifts (fig. 1). Published structure maps of the region have commonly used the top of the Lower Cretaceous Dakota Sandstone as a structural datum (Petroleum Ownership Map Company (POMCO), 1984; Rocky Mountain Association of Geologists, 1972). However, because relatively few wells in this area penetrate the Dakota, the Dakota structural datum has to be constructed by projecting down from shallower wells. Extrapolating in this manner may produce errors in the map. The primary purpose of this report is to present a more reliable structure contour map of the Greater Green River basin based on datums that are penetrated by many wells. The final map shows the large- to small-scale structures present in the Greater Green River basin. The availability of subsurface control and the map scale determined whether or not a structural feature was included on the map. In general, large structures such as the Moxa arch, Pinedale anticline, and other large folds were placed on the map based solely on the structure contours. In comparison, smaller folds and some faults were placed on the map based on structure contours and other reports (Bader 1987; Bradley 1961; Love and Christiansen, 1985; McDonald, 1975; Roehler, 1979; Wyoming Geological Association Oil and Gas Symposium Committee, 1979). State geologic maps and other reports were used to position basin margin faults (Bryant, 1985; Gries, 1983a, b; Hansen 1986; Hintze, 1980; Love and Christiansen, 1985; Tweto, 1979, 1983). In addition, an interpreted east-west-trending regional seismic line by Garing and Tainter (1985), which shows the basin configuration in cross-section, was helpful in locating buried faults, such as the high-angle reverse or thrust fault along the west flank of the Rock Springs uplift.
Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir
NASA Astrophysics Data System (ADS)
Salazar, Juan Fernando; Villegas, Juan Camilo; María Rendón, Angela; Rodríguez, Estiven; Hoyos, Isabel; Mercado-Bettín, Daniel; Poveda, Germán
2018-03-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir
hypothesis to describe the natural capacity of river basins to regulate river flows through land-atmosphere interactions (mainly precipitation recycling) that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.
What can we learn about impact mechanics from large craters on Venus?
NASA Technical Reports Server (NTRS)
Mckinnon, William B.; Alexopoulos, J. S.
1992-01-01
More than 50 unequivocal peak-ring craters and multiringed impact basins have been identified on Venus from Earth-based Arecibo, Venera 15/16, and Magellan radar images. These ringed craters are relatively pristine, and so serve as an important new dataset that will further understanding of the structural and rheological properties of the venusian surface and of impact mechanics in general. They are also the most direct analogues for craters formed on the Earth in Phanerozoic time. Finite-element simulations of basin collapse and ring formation were undertaken in collaboration with V. J. Hillgren (University of Arizona). These calculations used an axisymmetric version of the viscoelastic finite element code TECTON, modeled structures on the scale of Klenova or Meitner, and demonstrated two major points. First, viscous flow and ring formation are possible on the timescale of crater collapse for the sizes of multiringed basins seen on Venus and heat flows appropriate to the plant. Second, an elastic lithosphere overlying a Newtonian viscous asthenosphere results mainly in uplift beneath the crater. Inward asthenospheric flow mainly occurs at deeper levels. Lithospheric response is dominantly vertical and flexural. Tensional stress maxima occur and ring formation by normal faulting is predicted in some cases, but these predicted rings occur too far out to explain observed ring spacings on Venus (or on the Moon). Overall, these estimates and models suggest that multiringed basin formation is indeed possible at the scales observed on Venus. Furthermore, due to the strong inverse dependence of solid-state viscosity on stress, the absence of Cordilleran-style ring faulting in craters smaller than Meitner or Klenova makes sense. The apparent increase in viscosity of shock-fluidized rock with crater diameter, greater interior temperatures accessed by larger, deeper craters, and decreased non-Newtonian viscosity associated with larger craters may conspire to make the transition with diameter from peak-ring crater to Orientale-type multiringed basin rather abrupt.
NASA Astrophysics Data System (ADS)
Ings, Steven; Albertz, Markus
2014-05-01
Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in autochthonous salt basins and thick packages of pure halite in allochthonous salt sheets.
Comparing The North-east German Basin With The Polish Basin, Influenced By Major Crustal Fractures
NASA Astrophysics Data System (ADS)
Lamarche, J.; Scheck, M.; Otto, V.; Bayer, U.; Lewerenz, B.
The North-East German Basin (NEGB) and the Polish Basin (PB) are two intraplate sedimentary basins in Central Europe, the development of which was controlled by deep crustal structures: the Elbe Fault System and the Teisseyre-Tornquist Zone, re- spectively. 3D structural models performed separately for each basin led to indepen- dent interpretations showing major similarities, but also significant differences. The outlook of the comparison between the NEGB and the PB is to lead to a joined 3D structural model, which allows reconstructing the synthetic geodynamic evolution of the area. The NEGB and PB are NW-SE-oriented. Both were initiated during Late Carboniferous and Lower Permian, when the post-Variscan rifting affected the com- posite Palaeozoic basement of Central Europe. During Triassic to Cretaceous times, both basins evolved due to thermal subsidence and pulses of tectonic subsidence. At the end of Cretaceous, the basins were tectonically inverted. The sedimentary succes- sions of the NEGB and PB are comparable. Particularly, the Zechstein salt induced comparable sedimentary structures and provided a decoupling level between pre- and post-Zechstein rocks during the Late Cretaceous tectonic inversion in both basins. At the crustal scale, both basins are presently limited to the SW by the NW-SE-oriented Elbe Fault System, that correlates with a positive gravity anomaly. Finally, both basins show a N-S differentiation regarding the detailed subsidence history, the structural set- ting and the salt pattern. In spite of the very similar tectonic evolution of the NEGB and the PB, their large-scale geometry and inversion-related structures are different. The NEGB is asymmetric with a shallow northern slope and a steep bounding fault at the SW margin (Elbe Fault System). In the NEGB, the Late Cretaceous tectonic inversion resulted in asymmetric uplift of the SW' border along the Elbe Fault Sys- tem, and in decreasing deformation in the cover towards North. In contrast, the PB is a symmetric basin, that developed above the Teisseyre-Tornquist Zone. The tectonic inversion resulted in a rather symmetric swell, uplifted along the axis of the former basin. The occurrence and rejuvenation of the deep-seated Teisseyre-Tornquist Zone is held responsible for the symmetry of the PB during its development and later inver- sion, whereas the reactivation of the Elbe Fault Zone induced asymmetric deformation in the Mesozoic cover at the SW margin of the NEGB.
NASA Astrophysics Data System (ADS)
Tamay, J.; Galindo-Zaldívar, J.; Ruano, P.; Soto, J.; Lamas, F.; Azañón, J. M.
2016-10-01
The sedimentary basins of Loja, Malacatos-Vilcabamba and Catamayo belong to the Neogene-Quaternary synorogenic intramontane basins of South Ecuador. They were formed during uplift of the Andes since Middle-Late Miocene as a result of the Nazca plate subduction beneath the South American continental margin. This E-W compressional tectonic event allowed for the development of NNE-SSW oriented folds and faults, determining the pattern and thickness of sedimentary infill. New gravity measurements in the sedimentary basins indicate negative Bouguer anomalies reaching up to -292 mGal related to thick continental crust and sedimentary infill. 2D gravity models along profiles orthogonal to N-S elongated basins determine their deep structure. Loja Basin is asymmetrical, with a thickness of sedimentary infill reaching more than 1200 m in the eastern part, which coincides with a zone of most intense compressive deformation. The tectonic structures include N-S, NW-SE and NE-SW oriented folds and associated east-facing reverse faults. The presence of liquefaction structures strongly suggests the occurrence of large earthquakes just after the sedimentation. The basin of Malacatos-Vilcabamba has some folds with N-S orientation. However, both Catamayo and Malacatos-Vilcabamba basins are essentially dominated by N-S to NW-SE normal faults, producing a strong asymmetry in the Catamayo Basin area. The initial stages of compression developed folds, reverse faults and the relief uplift determining the high altitude of the Loja Basin. As a consequence of the crustal thickening and in association with the dismantling of the top of the Andes Cordillera, extensional events favored the development of normal faults that mainly affect the basins of Catamayo and Malacatos-Vilcabamba. Gravity research helps to constrain the geometry of the Neogene-Quaternary sedimentary infill, shedding some light on its relationship with tectonic events and geodynamic processes during intramontane basin development.
Hildenbrand, Thomas G.; Davidson, Jeffrey G.; Ponti, Daniel J.; Langenheim, V.E.
2001-01-01
Gravity data provide insights on the complex tectonic history and structural development of the northern Los Angeles Basin region. The Hollywood basin appears to be a long (> 12 km), narrow (up to 2 km wide) trough lying between the Santa Monica Mountains and the Wilshire arch. In the deepest parts of the Hollywood basin, the modeled average thickness ranges from roughly 250 m if filled with only Quaternary sediments to approximately 600 m if Pliocene sediments are also present. Interpretations of conflicting drill hole data force us to consider both these scenarios. Because of the marked density contrast between the dense Santa Monica Mountains and the low-density sediments in the Los Angeles Basin, the gravity method is particularly useful in mapping the maximum displacement along the Santa Monica-Hollywood-Raymond fault zone. The gravity-defined Santa Monica–Hollywood fault zone deviates, in places, from the mapped active fault and fold scarps located with boreholes and trenching and by geomorphological mapping by Dolan and others (1997). Our models suggest that the Santa Monica–Hollywood fault zone dips northward approximately 63°. Three structural models are considered for the origin of the Hollywood basin: pull-apart basin, flexural basin, and a basin related to a back limb of a major fold. Although our preferred structural model involves flexure, the available geologic and geophysical data do not preclude contributions to the deepening of the basin from one or both of the other two models. Of particular interest is that the distribution of red-tagged buildings and structures damaged by the Northridge earthquake has a strong spatial correlation with the axis of the Hollywood basin defined by the gravity data. Several explanations for this correlation are explored, but two preferred geologic factors for the amplification of ground motion besides local site effects are (1) focussing of energy by a fault along the axis of the Hollywood basin and (2) focussing effects related to differential refraction of seismic rays across the basin.
Mechanical Stability of Fractured Rift Basin Mudstones: from lab to basin scale
NASA Astrophysics Data System (ADS)
Zakharova, N. V.; Goldberg, D.; Collins, D.; Swager, L.; Payne, W. G.
2016-12-01
Understanding petrophysical and mechanical properties of caprock mudstones is essential for ensuring good containment and mechanical formation stability at potential CO2 storage sites. Natural heterogeneity and presence of fractures, however, create challenges for accurate prediction of mudstone behavior under injection conditions and at reservoir scale. In this study, we present a multi-scale geomechanical analysis for Mesozoic mudstones from the Newark Rift basin, integrating petropyshical core and borehole data, in situ stress measurements, and caprock stability modeling. The project funded by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) focuses on the Newark basin as a representative locality for a series of the Mesozoic rift basins in eastern North America considered as potential CO2 storage sites. An extensive core characterization program, which included laboratory CT scans, XRD, SEM, MICP, porosity, permeability, acoustic velocity measurements, and geomechanical testing under a range of confining pressures, revealed large variability and heterogeneity in both petrophysical and mechanical properties. Estimates of unconfined compressive strength for these predominantly lacustrine mudstones range from 5,000 to 50,000 psi, with only a weak correlation to clay content. Thinly bedded intervals exhibit up to 30% strength anisotropy. Mineralized fractures, abundant in most formations, are characterized by compressive strength as low as 10% of matrix strength. Upscaling these observations from core to reservoir scale is challenging. No simple one-to-one correlation between mechanical and petrophyscial properties exists, and therefore, we develop multivariate empirical relationships among these properties. A large suite of geophysical logs, including new measurements of the in situ stress field, is used to extrapolate these relationships to a basin-scale geomechanical model and predict mudstone behavior under injection conditions.
Torak, Lynn J.; Painter, Jaime A.; Peck, Michael F.
2010-01-01
Major streams and tributaries located in the Aucilla-Suwannee-Ochlockonee (ASO) River Basin of south-central Georgia and adjacent parts of Florida drain about 8,000 square miles of a layered sequence of clastic and carbonate sediments and carbonate Coastal Plain sediments consisting of the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Streams either flow directly on late-middle Eocene to Oligocene karst limestone or carve a dendritic drainage pattern into overlying Miocene to Holocene sand, silt, and clay, facilitating water exchange and hydraulic connection with geohydrologic units. Geologic structures operating in the ASO River Basin through time control sedimentation and influence geohydrology and water exchange between geohydrologic units and surface water. More than 300 feet (ft) of clastic sediments overlie the Upper Floridan aquifer in the Gulf Trough-Apalachicola Embayment, a broad area extending from the southwest to the northeast through the center of the basin. These clastic sediments limit hydraulic connection and water exchange between the Upper Floridan aquifer, the surficial aquifer system, and surface water. Accumulation of more than 350 ft of low-permeability sediments in the Southeast Georgia Embayment and Suwannee Strait hydraulically isolates the Upper Floridan aquifer from land-surface hydrologic processes in the Okefenokee Basin physiographic district. Burial of limestone beneath thick clastic overburden in these areas virtually eliminates karst processes, resulting in low aquifer hydraulic conductivity and storage coefficient despite an aquifer thickness of more than 900 ft. Conversely, uplift and faulting associated with regional tectonics and the northern extension of the Peninsular Arch caused thinning and erosion of clastic sediments overlying the Upper Floridan aquifer southeast of the Gulf Trough-Apalachicola Embayment near the Florida-Georgia State line. Limestone dissolution in Brooks and Lowndes Counties, Ga., create karst features that enhance water-transmitting and storage properties of the Upper Floridan aquifer, promoting groundwater recharge and water exchange between the aquifer, land surface, and surface water. Structural control of groundwater flow and hydraulic properties combine with climatic effects and increased hydrologic stress from agricultural pumpage to yield unprecedented groundwater-level decline in the northwestern and central parts of the ASO River Basin. Hydrographs from continuous-record observation wells in these regions document declining groundwater levels, indicating diminished water-resource potential of the Upper Floridan aquifer through time. More than 24 ft of groundwater-level decline occurred along the basin's northwestern boundary with the lower Apalachicola-Chattahoochee-Flint River Basin, lowering hydraulic gradients that provide the potential for groundwater flow into the ASO River Basin and southeastward across the Gulf Trough-Apalachicola Embayment region. Slow-moving groundwater across the trough-embayment region coupled with downward-vertical flow from upper to lower limestone units composing the Upper Floridan aquifer resulted in 40-50 ft of groundwater-level decline since 1969 in southeastern Colquitt County. Multi-year episodes of dry climatic conditions during the 1980s through the early 2000s contributed to seasonal and long-term groundwater-level decline by reducing recharge to the Upper Floridan aquifer and increasing hydrologic stress by agricultural pumpage. Unprecedented and continued groundwater-level decline since 1969 caused 40-50 ft of aquifer dewatering in southeastern Colquitt County that reduced aquifer transmissivity and the ability to supply groundwater to wells, resulting in depletion of the groundwater resource.
NASA Astrophysics Data System (ADS)
García-Pérez, Tiaren; Marquardt, Carlos; Yáñez, Gonzalo; Cembrano, José; Gomila, Rodrigo; Santibañez, Isabel; Maringue, José
2018-06-01
The comprehensive study of intramountain basins located in the Coastal Cordillera of the continental emergent Andean forearc in Northern Chile, enables the better understanding of the nature and evolution of the upper crustal deformation during the Neogene and Quaternary. A case study is the extensive extensional half-graben Alto Hospicio basin. The basin is cut by the Coastal Cliff, which exposes the deformed Neogene basin fill. Also exposed are several structural systems, some of which affect Quaternary surfaces. The results of the integrated geophysical surveys (Electromagnetic Transient and Gravity) allow us to fully constrain the geometry of the Alto Hospicio basin and the lithological relationship between the subsurface geological units. The structural geology analysis assesses the deformation regimes affecting the faults present in the basin and surrounding area. Altogether evidence a change in the deformation regime from an EW extensional deformation during the Miocene-Pliocene to a NS compression in the Quaternary as is presented in this study. We suggest this deformation change is related to a small change in the convergence vector orientation during the Pliocene.
NASA Astrophysics Data System (ADS)
Bhattacharya, R.; Liberty, L. M.; Almeida, R. V.; Hubbard, J.
2016-12-01
We explore the structural and depositional evolution of the Stevenson Basin, Gulf of Alaska from a dense network of 2-D marine seismic profiles that span the Gulf of Alaska continental margin. The grid of 71 seismic profiles was acquired as part of a 1975 Mineral Management Services (MMS) exploration project to assess basin architecture along the Alaska continental shelf. We obtained unmigrated and stacked seismic profiles in TIFF format. We converted the data to SEGY format and migrated each profile. Within the Stevenson Basin, we identify key seismic horizons, including the regional Eocene-Miocene unconformity, that provide insights into its depositional and structural history. Using these observations combined with stacking velocities, sonic logs from wells, and refraction velocities from the Edge profile of Ye et al. (1997), we develop a local 3D velocity model that we use to depth-convert the seismic reflection profiles. By using ties to >2.5 km deep exploration wells, we note the Stevenson Basin is one of many Eocene and younger depocenters that span the forearc between Kodiak and Prince William Sound. Well logs and seismic data suggest basal strata consist of Eocene sediments than are unconformably overlain by Neogene and younger strata. Faults that breach the sea floor suggest active deformation within and at the bounds of this basin, including on new faults that do not follow any pre-existing structural trends. This assessment is consistent with slip models that place tsunamigenic faults that ruptured during the 1964 Great Alaska earthquake in the vicinity of the basin. The catalog of faults, their slip history and the depositional evolution of the Stevenson Basin, all suggest that the basin evolution may be controlled by heterogeneities along the incoming plate.
NASA Astrophysics Data System (ADS)
Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.
2017-12-01
The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.
Bultman, Mark W.; Page, William R.
2016-10-31
The upper Santa Cruz Basin is an important groundwater basin containing the regional aquifer for the city of Nogales, Arizona. This report provides data and interpretations of data aimed at better understanding the bedrock morphology and structure of the upper Santa Cruz Basin study area which encompasses the Rio Rico and Nogales 1:24,000-scale U.S. Geological Survey quadrangles. Data used in this report include the Arizona Aeromagnetic and Gravity Maps and Data referred to here as the 1996 Patagonia Aeromagnetic survey, Bouguer gravity anomaly data, and conductivity-depth transforms (CDTs) from the 1998 Santa Cruz transient electromagnetic survey (whose data are included in appendixes 1 and 2 of this report).Analyses based on magnetic gradients worked well to identify the range-front faults along the Mt. Benedict horst block, the location of possibly fault-controlled canyons to the west of Mt. Benedict, the edges of buried lava flows, and numerous other concealed faults and contacts. Applying the 1996 Patagonia aeromagnetic survey data using the horizontal gradient method produced results that were most closely correlated with the observed geology.The 1996 Patagonia aeromagnetic survey was used to estimate depth to bedrock in the upper Santa Cruz Basin study area. Three different depth estimation methods were applied to the data: Euler deconvolution, horizontal gradient magnitude, and analytic signal. The final depth to bedrock map was produced by choosing the maximum depth from each of the three methods at a given location and combining all maximum depths. In locations of rocks with a known reversed natural remanent magnetic field, gravity based depth estimates from Gettings and Houser (1997) were used.The depth to bedrock map was supported by modeling aeromagnetic anomaly data along six profiles. These cross sectional models demonstrated that by using the depth to bedrock map generated in this study, known and concealed faults, measured and estimated magnetic susceptibilities of rocks found in the study area, and estimated natural remanent magnetic intensities and directions, reasonable geologic models can be built. This indicates that the depth to bedrock map is reason-able and geologically possible.Finally, CDTs derived from the 1998 Santa Cruz Basin transient electromagnetic survey were used to help identify basin structure and some physical properties of the basin fill in the study area. The CDTs also helped to confirm depth to bedrock estimates in the Santa Cruz Basin, in particular a region of elevated bedrock in the area of Potrero Canyon, and a deep basin in the location of the Arizona State Highway 82 microbasin. The CDTs identified many concealed faults in the study area and possibly indicate deep water-saturated clay-rich sediments in the west-central portion of the study area. These sediments grade to more sand-rich saturated sediments to the south with relatively thick, possibly unsaturated, sediments at the surface. Also, the CDTs may indicate deep saturated clay-rich sediments in the Highway 82 microbasin and in the Mount Benedict horst block from Proto Canyon south to the international border.
Shallow crustal structure of eastern-central Trans-Mexican Volcanic Belt.
NASA Astrophysics Data System (ADS)
Campos-Enriquez, J. O.; Ramón, V. M.; Lermo-Samaniego, J.
2015-12-01
Central-eastern Trans-Mexican Volcanic Belt (TMVB) is featured by large basins (i.e., Toluca, Mexico, Puebla-Tlaxcala, Libres-Oriental). It has been supposed that major crustal faults limit these basins. Sierra de Las Cruces range separates the Toluca and Mexico basins. The Sierra Nevada range separates Mexico basin from the Puebla-Tlaxcala basin. Based in gravity and seismic data we inferred the Toluca basin is constituted by the Ixtlahuaca sub-basin, to the north, and the Toluca sub-basin to the south, which are separated by a relative structural high. The Toluca depression is more symmetric and bounded by sub-vertical faults. In particular its eastern master fault controlled the emplacement of Sierra de Las Cruces range. Easternmost Acambay graben constitutes the northern and deepest part of the Ixtlahuaca depression. The Toluca-Ixtlahuaca basin is inside the Taxco-San Miguel de Allende fault system, and limited to the west by the Guerrero terrane which continues beneath the TMVB up to the Acambay graben. Mexico basin basement occupies an intermediate position and featured by a relative structural high to the north-east, as established by previous studies. This relative structural high is limited to the west by the north-south Mixhuca trough, while to the south it is bounded by the east-west Copilco-Xochimilco-Chalco sub-basin. The Puebla-Tlaxcala basin basement is the shallowest of these 3 tectonic depressions. In general, features (i.e., depth) and relationship between these basins, from west to east, are controlled by the regional behavior of the Sierra Madre Oriental fold and thrust belt basement (i.e., Oaxaca Complex?). This study indicates that an active east-west regional fault system limits to the south the TMVB (from the Nevado de Toluca volcano through the Popocatepetl volcano and eastward along southern Puebla-Tlaxcala basin). The Tenango and La Pera fault systems constituting the western part of this regional fault system coincide with northern exposures of the Morelos platform to the west. The eastward extension of this system limits the northern Acatlan Complex exposures. Accordingly, eastern TMVB has been subjected to extension and associated faults are being activated at present. The basins act as independent crustal blocks. The Puebla-Tlaxcala and the Tehuacan basins merge to the east.
Weng, Meng-Hsiung; Ju, Shin-Pon; Chen, Hsin-Tsung; Chen, Hui-Lung; Lu, Jian-Ming; Lin, Ken-Huang; Lin, Jenn-Sen; Hsieh, Jin-Yuan; Yang, Hsi-Wen
2013-02-01
The adsorption and dissociation properties of carbon monoxide (CO) molecule on tungsten W(n) (n = 10-15) nanoparticles have been investigated by density-functional theory (DFT) calculations. The lowest-energy structures for W(n) (n = 10-15) nanoparticles are found by the basin-hopping method and big-bang method with the modified tight-binding many-body potential. We calculated the corresponding adsorption energies, C-O bond lengths and dissociation barriers for adsorption of CO on nanoparticles. The electronic properties of CO on nanoparticles are studied by the analysis of density of state and charge density. The characteristic of CO on W(n) nanoparticles are also compared with that of W bulk.
Crustal Properties Across the Mid-Continent Rift via Transfer Function Analysis
NASA Astrophysics Data System (ADS)
Frederiksen, A. W.; Tyomkin, Y.; Campbell, R.; van der Lee, S.; Zhang, H.
2015-12-01
The Mid-Continent Rift (MCR), a failed Proterozoic rift structure in central North America, is a dominant feature of North American gravity maps. The rift underwent a combination of extension, magmatism, and later compression, and it is difficult to predict how these events affected the overall crustal thickness and bulk composition in the vicinity of the rift axis, though the associated gravity high indicates that large-volume mafic magmatism took place. The Superior Province Rifting Earthscope Experiment (SPREE) project instrumented the MCR with Flexible Array broadband seismographs from 2011 through 2013 in Minnesota and Wisconsin, along two lines crossing the rift axis as well as a line following the axis. We examine teleseismic P-coda data from SPREE and nearby Transportable Array instruments using a new technique: transfer-function analysis. In this approach, possible models of crustal structure are used to generate a predicted transfer function relating the radial and vertical components of the P coda at a particular site. The transfer function then allows generation of a misfit (between the true radial component and a synthetic radial component predicted from the vertical trace) without the need to perform receiver-function deconvolution, thus avoiding the deconvolution problems encountered with receiver functions in sedimentary basins. We use the transfer-function approach to perform a grid search over three crustal properties: crustal thickness, crustal P/S velocity ratio, and the thickness of an overlying sedimentary basin. Results for our SPREE/TA data set indicate that the crust is significantly thickened along the rift axis, with maximum thicknesses approaching 50 km; the crust is thinner (ca. 40 km) outside of the rift zone. The crustal thickness structure is particularly complex beneath southeastern Minnesota, where very strong Moho topography is present, as well as up to 2 km of sediment; further north, the Moho is smoother and the basin is not present. P/S ratio varies along the rift axis, suggesting a higher mafic component (higher ratio) in southern Minnesota. The complexity we see along the MCR is consistent with the results obtained by Zhang et al. (this conference) using receiver function analysis.
Minor, Scott A.
2006-01-01
The geologic, geophysical, and hydrogeologic properties of the La Bajada constriction and Santo Domingo Basin, northern New Mexico, result from tectonic and volcanic processes of the late Tertiary and Quaternary Rio Grande rift. An integrated geologic and geophysical assessment in the La Bajada constriction allows development of a geologic framework that can provide input for regional ground-water flow models. These models then can provide better estimates of future water supplies in a region that largely subsists on aquifers in Rio Grande rift basins. The combination of surface geologic investigations (stratigraphic and structural studies; chapters A, B, C, and E), airborne geophysics (aeromagnetic and time-domain electromagnetic surveys; chapters D and F), ground geophysical measurements (gravity and magnetotelluric surveys; chapters D and F), and data from the few wells in the area (chapter G) provides new constraints on the hydrogeologic framework of this area. Summary results of our investigations are synthesized in chapter G. Through-going aquifers consisting of ancestral Rio Grande axial-river sand and gravel and of coarse western-piedmont gravel form the predominant ground-water pathways through the partly buried structural trough defining the La Bajada constriction between Espa?ola and Santo Domingo Basins. Thick, clay-rich Cretaceous marine shales of low hydraulic conductivity form a pervasive regional confining unit within the Cerrillos uplift on the southeast flank of the constriction. Numerous, dominantly north-northwest-striking, intrabasin faults that project part way across the La Bajada constriction create a matrix of laterally and vertically variable hydrogeologic compartments that locally partition and deflect ground-water flow parallel to faults.
Statistical mechanics explanation for the structure of ocean eddies and currents
NASA Astrophysics Data System (ADS)
Venaille, A.; Bouchet, F.
2010-12-01
The equilibrium statistical mechanics of two dimensional and geostrophic flows predicts the outcome for the large scales of the flow, resulting from the turbulent mixing. This theory has been successfully applied to describe detailed properties of Jupiter's Great Red Spot. We discuss the range of applicability of this theory to ocean dynamics. It is able to reproduce mesoscale structures like ocean rings. It explains, from statistical mechanics, the westward drift of rings at the speed of non dispersive baroclinic waves, and the recently observed (Chelton and col.) slower northward drift of cyclonic eddies and southward drift of anticyclonic eddies. We also uncover relations between strong eastward mid-basin inertial jets, like the Kuroshio extension and the Gulf Stream, and statistical equilibria. We explain under which conditions such strong mid-basin jets can be understood as statistical equilibria. We claim that these results are complementary to the classical Sverdrup-Munk theory: they explain the inertial part basin dynamics, the jets structure and location, using very simple theoretical arguments. References: A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, arxiv ...., submitted to Physics Reports P. BERLOFF, A. M. HOGG, W. DEWAR, The Turbulent Oscillator: A Mechanism of Low- Frequency Variability of the Wind-Driven Ocean Gyres, Journal of Physical Oceanography 37 (2007) 2363-+. D. B. CHELTON, M. G. SCHLAX, R. M. SAMELSON, R. A. de SZOEKE, Global observations of large oceanic eddies, Geo. Res. Lett.34 (2007) 15606-+ b) and c) are snapshots of streamfunction and potential vorticity (red: positive values; blue: negative values) in the upper layer of a three layer quasi-geostrophic model of a mid-latitude ocean basin (from Berloff and co.). a) Streamfunction predicted by statistical mechanics. Even in an out-equilibrium situation like this one, equilibrium statistical mechanics predicts remarkably the overall qualitative flow structure. Observation of westward drift of ocean eddies and of slower northward drift of cyclones and southward drift of anticyclones by Chelton and co. We explain these observations from statistical mechanics.
NASA Astrophysics Data System (ADS)
Rosenthal, Michal; Schattner, Uri; Ben-Avraham, Zvi
2017-04-01
The Kinneret-Bet She'an (KBS) basin complex comprises the Sea of Galilee, Kinarot, and Bet She'an sub-basins. The complex developed at the intersection between two major tectonic boundaries: the Oligo-Miocene Azraq-Sirhan failed rift, that later developed into the southern Galilee basins and Carmel-Gilboa fault system; and the Dead Sea fault (DSF) plate boundary that developed since the Miocene. Despite numerous studies, KBS still remains one of the enigmatic basin complexes. Its structure, stratigraphy and development are vaguely understood - both inside the basin and in correlation with its surroundings. Our study presents a new and comprehensive 3D model for the structure of KBS complex. It is based on all available gravity measurements, adopted from the national gravity database, and new gravity measurements, collected in cooperation with the Geological Survey of Israel and funded by the Ministry of National Infrastructure, Energy and Water Resources. The gravity data were integrated with constraints from boreholes, surface geology, seismic surveys, potential field studies and teleseismic tomography. The dense distribution of gravity data [1] provides suitable coverage for modeling the deep structure in three dimensions. The model details the spatial distribution, depth, thickness and density of the following regional units within the KBS complex and across its surroundings: upper crust, pre-Senonian sediments, Senonian and Cenozoic sediments, Miocene volcanics, Pliocene and Quaternary volcanics. Additional local units include salt, gabbro and pyroclasts. Results indicate that the KBS complex comprises two sub-basins separated by a structural saddle: Kinneret-Kinarot ( 6-7 km deep, 45 km long) and Bet She'an ( 4 km deep, 10 km long) sub-basin. A 500 m thick layer of Miocene volcanics appears across the Bet She'an sub-basin, yet missing from the Kinneret-Kinarot sub-basin. Between the basins Zemah-1 borehole penetrated a salt unit. The model indicates that this unit is a part of a thick (1250 m) dome-shaped, perhaps diapiric, structure. A relatively thin (350 m) salt unit fills the Kinneret-Kinarot sub-basin. Above, a 700 m thick layer of Pliocene volcanics fills the entire KBS complex. These volcanics are uplifted in the Zemah area by 200 m. The Pliocene volcanics dip northward from Zemah towards the center of the Sea of Galilee, and further north the Pliocene volcanics dip southward from Korazim towards the center of the Sea of Galilee. The depth differences exceed 3 km across a distance of 15 km, forming a 11° slope below the younger Quaternary fill of the basin. A low-density, probably pyroclastic, lens is calculated within the uppermost 2 km of the Sea of Galilee fill. Scenarios for the development of the basin are discussed. [1] Rosenthal, M., Segev, A., Rybakov, M., Lyakhovsky, V. and Ben-Avraham, Z. (2015) The deep structure and density distribution of northern Israel and its surroundings. GSI Report No. GSI/12/2015, 33 pages, Jerusalem.
Site-effect estimations for Taipei Basin based on shallow S-wave velocity structures
NASA Astrophysics Data System (ADS)
Chen, Ying-Chi; Huang, Huey-Chu; Wu, Cheng-Feng
2016-03-01
Shallow S-wave velocities have been widely used for earthquake ground-motion site characterization. Thus, the S-wave velocity structures of Taipei Basin, Taiwan were investigated using array records of microtremors at 15 sites (Huang et al., 2015). In this study, seven velocity structures are added to the database describing Taipei Basin. Validity of S-wave velocity structures are first examined using the 1D Haskell method and well-logging data at the Wuku Sewage Disposal Plant (WK) borehole site. Basically, the synthetic results match well with the observed data at different depths. Based on S-wave velocity structures at 22 sites, theoretical transfer functions at five different formations of the sedimentary basin are calculated. According to these results, predominant frequencies for these formations are estimated. If the S-wave velocity of the Tertiary basement is assumed to be 1000 m/s, the predominant frequencies of the Quaternary sediments are between 0.3 Hz (WUK) and 1.4 Hz (LEL) in Taipei Basin while the depths of sediments between 0 m (i.e. at the edge of the basin) and 616 m (i.e. site WUK) gradually increase from southeast to northwest. Our results show good agreement with available geological and geophysical information.
NASA Astrophysics Data System (ADS)
Gülyüz, Erhan; Özkaptan, Murat; Kaymakcı, Nuretdin
2016-04-01
Gondwana- (Tauride Platfrom and Kırşehir Block) and Eurasia (Pontides) - derived continental blocks bound the Haymana basin, in the south and north, respectively. Boundaries between these blocks are signed by İzmir-Ankara-Erzincan and debatable Intra-Tauride Suture zones which are straddled by the Haymana Basin in the region. In this regard, deformation recorded in the upper Cretaceous to middle Eocene deposits of the basin is mainly controlled by the relative movements of these blocks. Therefore, understanding the structural evolution of the Haymana Basin in a spatio-temporal concept is crucial to shed some light on some debatable issues such as ; (1) timing of late stage subduction histories of various branches of Neotethys and subsequent collision events, (2) effects of post-collisional tectonic activity in the Haymana region. Fault kinematic analyses (based on 623 fault-slip data from 73 stations) indicate that the basin was subjected to initially N-S to NNE-SSW extension until middle Paleocene and then N-S- to NNE-SSW- directed continuous compression and coeval E-W to ESE-WNW extension up to middle Miocene. These different deformation phases correspond to the fore-arc (closure) and foreland (collision and further convergence) stages of the basin. Additionally, fold analyses (based on 1017 bedding attitudes) and structural mapping studies show that development of folds and major faults are coeval and they can be explained by principle stress orientations of the second deformation phase. The Haymana basin is, based on the trends of E-W- and WNW-ESE- directed structures at the south-eastern and the north-western parts of the basin, respectively, divided into two structural segments. The balanced cross-sections also indicate ~4% and ~25% shortening at the north-western and south-eastern segments, respectively. The differences in amounts of shortenings are explained by reduce in effectiveness zone of basin-bounding thrust faults towards west. On the other hand, the boundary of the segments is defined as an intra-basinal strike-slip system which is thought to be developed together with late stage activities of the basin bounding thrust (or reverse) faults (Dereköy and İnler faults) in response to the north-westward movement of the northern segment of the Kırşehir block. It is proposed that the Haymana basin was initially evolved under the influences of subduction related extensional setting until middle Paleocene, and latterly foreland settings in front of a south-vergent fold and thrust belt developed during collision and post-collisional convergence until middle Miocene. Additionally, the north-westward movement and indentation of the Kırşehir Block caused structural segmentation and rotation events in the basin.
NASA Astrophysics Data System (ADS)
Olabode, Solomon Ojo
2014-01-01
Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.
Report of the Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins
NASA Technical Reports Server (NTRS)
Lang, H. R. (Editor)
1985-01-01
The Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins, held January 10 to 11, 1985 in Lakewood, Colorado, involved 43 geologists from industry, government, and academia. Disciplines represented ranged from vertebrate paleontology to geophysical modeling of continents. Deliberations focused on geologic problems related to the formation, stratigraphy, structure, and evolution of foreland basins in general, and to the Wind River/Bighorn Basin area of Wyoming in particular. Geological problems in the Wind River/Bighorn basin area that should be studied using state-of-the-art remote sensing methods were identified. These include: (1) establishing the stratigraphic sequence and mapping, correlating, and analyzing lithofacies of basin-filling strata in order to refine the chronology of basin sedimentation, and (2) mapping volcanic units, fracture patterns in basement rocks, and Tertiary-Holocene landforms in searches for surface manifestations of concealed structures in order to refine models of basin tectonics. Conventional geologic, topographic, geophysical, and borehole data should be utilized in these studies. Remote sensing methods developed in the Wind River/Bighorn Basin area should be applied in other basins.
NASA Astrophysics Data System (ADS)
Zhang, Chengcheng; Muirhead, James D.; Wang, Hua; Chen, Si; Liao, Yuantao; Lu, Zongsheng; Wei, Jun
2018-01-01
Development of fan deltas alongside intrabasinal structural highs has been overlooked compared to those forming on basin margins. However, these fan deltas may provide important clues regarding the tectonic and climatic controls on deposition during rift development. This paper documents fan delta deposition alongside an intrabasinal structural high within the Early Cretaceous Xiagou Formation of the Jiuquan Basin, China, using subsurface geological and geophysical data. Deposits observed in drill core support fan delta deposition occurring almost exclusively through subaerial and subaqueous gravity flows. Subsurface mapping reveals a consistent decrease in the areal extent of fan deltas from lowstand to highstand system tracts, suggesting that deposition alongside the structural high is sensitive to lake-level changes. The temporal and spatial distribution of the fan deltas display retrogradational stacking patterns, where fan deltas exhibit a decreasing lateral extent up-sequence until fan delta deposition terminated and was replaced by deposition of fine-grained lacustrine deposits. The retrogradational stacking patterns observed alongside the intrabasinal structural high are not observed in fan deltas along the basin margin in the lower parts of the Xiagou Formation. Subsidence profiles also show differential subsidence across the basin during the earliest stages of this formation, likely resulting from border fault movements. These data suggest that non-uniform stacking patterns in the lower parts of the Xiagou Formation reflect basin-scale tectonic movements as the dominant control on synrift deposition patterns. However, later stages of Xiagou Formation deposition were characterized by uniform subsidence across the basin, and uniform retrogradational stacking patterns for fan deltas alongside the intrabasinal structural high and border fault. These observations suggest that basin-scale tectonic movements played a relatively limited role in controlling sediment deposition, and imply a potential change to regional-scale processes affecting fan delta deposition during later synrift stages. Climate change is favored here as the region-scale control on the uniform retrogradational fan delta stacking patterns. This assertion is supported by pollen assemblages, isotope signatures, and organic geochemical analyses, which collectively suggest a change from a humid to semi-arid environment during later synrift stages. We suggest that variations in stacking patterns between different fan delta systems can provide insights into the basin- and regional-scale processes that control rift basin deposition.
Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.;
2016-01-01
The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 +/- 0.2) × 10(exp 6) cu km of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.
The Messinian evaporites in the Levant Basin: lithology, deformation and its evolution
NASA Astrophysics Data System (ADS)
Feng, Ye; Steinberg, Josh; Reshef, Moshe
2017-04-01
The lithological composition of the Messinian evaporite in the Levant Basin remains controversial and salt deformation mechanisms are still not fully understood, due to the lack of high resolution 3D depth seismic data and well logs that record the entire evaporite sequence. We demonstrate how 3D Pre-stack depth migration (PSDM) and intra-salt tomography can lead to improved salt imaging. Using 3D PSDM seismic data with great coverage and deepwater well log data from recently drilled boreholes, we reveal intra-salt reflective units associated with thin clastic layers and a seismic transparent background consisting of uniform pure halite. Structural maps of all internal reflectors are generated for stratigraphy and attributes analysis. High amplitude fan structures in the lowermost intra-salt reflector are observed, which may indicate the source of the clastic formation during the Messinian Salinity Crisis (MSC). The Messinian evaporite in the Levant Basin comprises six units; the uppermost unit thickens towards the northwest, whereas the other units are uniform in thickness. The top of salt (TS) horizon is relatively horizontal, while all other intra-salt reflectors and base of salt (BS) dip towards the northwest. Different seismic attributes are used for identification of intra-salt deformation patterns. Maximum curvature maps show NW-striking thrust faults on the TS and upper intra-salt units, and dip azimuth maps are used to show different fold orientations between the TS and intra-salt units, which indicate a two-phase deformation mechanism: basin NW tilting as syn-depositional phase and NNE spreading of Plio-Pleistocene overburden as post-depositional phase. RMS amplitude maps are used to identify a channelized system on the TS. An evaporite evolution model during the MSC of the Levant Basin is therefore established based on all the observations. Finally the mechanical properties of the salts will be utilized to explore salt deformation in the Levant Basin. Feng, Y. E., & Reshef, M. (2016). The Eastern Mediterranean Messinian salt-depth imaging and velocity analysis considerations. Petroleum Geoscience, 22(4), 2-19. doi:http://dx.doi.org/10.1144/petgeo2015-088 Feng, Y. E., Yankelzon, A., Steinberg, J., & Reshef, M. (2016). Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Marine Geology, 376, 118-131. doi:http://dx.doi.org/10.1016/j.margeo.2016.04.004
Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.;
2016-01-01
Tracking by the GRAIL spacecraft has yielded a model of the gravitational field of the Orientale basin at 3-5-km horizontal resolution. The diameter of the basin excavation cavity closely matches that of the Inner Depression. A volume of at least (3.4 +/- 0.2) x10(exp 6) cu km of crustal material was removed and redistributed during basin formation; the outer edges of the zone of uplifted mantle slope downward and outward by 20deg-25deg. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be calculated from the observed structure to be between the diameters of the Inner Depression and Inner Rook ring. The model resolves distinctive structures of Orientale's three rings, including their azimuthal variations, and suggests the presence of faults that penetrate the crust. The crustal structure of Orientale provides constraints in the third dimension on models for the formation of multi-ring basins.
Castle, J.W.; Byrnes, A.P.
2005-01-01
Petrophysical properties were determined for six facies in Lower Silurian sandstones of the Appalachian basin: fluvial, estuarine, upper shoreface, lower shoreface, tidal channel, and tidal flat. Fluvial sandstones have the highest permeability for a given porosity and exhibit a wide range of porosity (2-18%) and permeability (0.002-450 md). With a transition-zone thickness of only 1-6 m (3-20 ft), fluvial sandstones with permeability greater than 5 md have irreducible water saturation (Siw) less than 20%, typical of many gas reservoirs. Upper shoreface sandstones exhibit good reservoir properties with high porosity (10-21%), high permeability (3-250 md), and low S iw (<20%). Lower shoreface sandstones, which are finer grained, have lower porosity (4-12%), lower permeability (0.0007-4 md), thicker transition zones (6-180 m [20-600 ft]), and higher S iw. In the tidal-channel, tidal-flat, and estuarine facies, low porosity (average < 6%), low permeability (average < 0.02 md), and small pore throats result in large transition zones (30-200 m; 100-650 ft) and high water saturations. The most favorable reservoir petrophysical properties and the best estimated production from the Lower Silurian sandstones are associated with fluvial and upper shoreface facies of incised-valley fills, which we interpret to have formed predominantly in areas of structural recesses that evolved from promontories along a collisional margin during the Taconic orogeny. Although the total thickness of the sandstone may not be as great in these areas, reservoir quality is better than in adjacent structural salients, which is attributed to higher energy depositional processes and shallower maximum burial depth in the recesses than in the salients. Copyright ??2005. The American Association of Petroleum Geologists. All rights reserved.
Pollastro, Richard M.
1999-01-01
Three Total Petroleum Systems each consisting of one assessment unit have been identified in the Ghaba and Fahud Salt Basin Provinces of north-central Oman. One Total Petroleum System and corresponding assessment unit, the North Oman Huqf/?Q??Haushi(!) Total Petroleum System (201401) and Ghaba- Makarem Combined Structural Assessment Unit (20140101), were identified for the Ghaba Salt Basin Province (2014). In the Fahud Salt Basin Province, however, two overlapping Total Petroleum Systems (TPS) were recognized: (1) the North Oman Huqf?Shu?aiba(!) TPS (201601); Fahud-Huqf Combined Structural Assessment Unit (20160101), and (2) the middle Cretaceous Natih(!) TPS (201602); Natih-Fiqa Structural/Stratigraphic Assessment Unit (20160201). The boundary for each Total Petroleum System also defines the boundary of the corresponding assessment unit and includes all trap styles and hydrocarbon-producing reservoirs within the petroleum system. In both the Ghaba and Fahud Salt Basin Provinces, hydrocarbons were generated from several deeply buried source rocks within the Infracambrian Huqf Supergroup. One general ?North Oman Huqf? type oil is dominant in the Fahud Salt Basin. Oils in the Ghaba Salt Basin are linked to at least two distinct Huqf source-rock units based on oil geochemistry: a general North Oman Huqf-type oil source and a more dominant ?questionable unidentified source? or ?Q?-type Huqf oil source. These two Huqf-sourced oils are commonly found as admixtures in reservoirs throughout northcentral Oman. Hydrocarbons generated from Huqf sources are produced from a variety of reservoir types and ages ranging from Precambrian to Cretaceous in both the Ghaba and Fahud Salt Basin Provinces. Clastic reservoirs of the Gharif and Al Khlata Formations, Haushi Group (middle Carboniferous to Lower Permian), dominate oil production in the Ghaba Salt Basin Province and form the basis for the Huqf/?Q??Haushi(!) TPS. In contrast, the Lower Cretaceous Shu?aiba and middle Cretaceous Natih limestones account for most of the production in the Fahud Salt Basin with about 50 percent of the basin?s production from porous, fractured Shu?aiba limestones in Yibal field, thus the name North Oman Huqf? Shu?aiba(!) TPS. Deep gas is produced mainly from Middle Cambrian to Lower Ordovician clastic reservoirs of the Haima Supergroup. Traps in nearly all hydrocarbon accumulations of these petroleum systems are mainly structural and were formed by one or more 3 mechanisms. These trap-forming mechanisms were mainly periodic halokinesis of the thick Cambrian Ara Salt and consequent folding and faulting from basin loading, rifting, or other major tectonic events, particularly those events forming the Oman Mountains and associated foreland-basin system during the Late Cretaceous and late Tertiary. Many of the future new-field targets will likely be low-relief, subtle structures, as many of the large structures have been drilled. Oman?s recent interest and commitments to liquid natural gas export make deep gas a primary objective in the two North Oman Huqf petroleum systems. New-field exploration of deep gas and exploring deeper targets for gas in existing fields will likely identify a significant gas resource in the next 30 years. Moreover, salt-diapir flank traps in these two North Oman Huqf petroleum systems and salt basin provinces have gone essentially untested and will likely be targeted in the near future. The middle Cretaceous Natih(!) TPS is a small efficient system of the Fahud Salt Basin. Natih source rocks are only mature in the Late Cretaceous/Tertiary foredeep and production is primarily from Natih reservoirs; minor production from the Shu?aiba limestone is documented along fault-dip structures. Most traps are structural and are related to development of the foreland basin and formation of the Oman Mountains. Future targets of the Natih TPS will be less obvious
Stress field modeling of the Carpathian Basin based on compiled tectonic maps
NASA Astrophysics Data System (ADS)
Albert, Gáspár; Ungvári, Zsuzsanna; Szentpéteri, Krisztián
2014-05-01
The estimation of the stress field in the Carpathian Basin is tackled by several authors. Their modeling methods usually based on measurements (borehole-, focal mechanism- and geodesic data) and the result is a possible structural pattern of the region. Our method works indirectly: the analysis is aimed to project a possible 2D stress field over the already mapped/known/compiled lineament pattern. This includes a component-wise interpolation of the tensor-field, which is based on the generated irregular point cloud in the puffer zone of the mapped lineaments. The interpolated values appear on contour and tensor maps, and show the relative stress field of the area. In 2006 Horváth et al. compiled the 'Atlas of the present-day geodynamics of the Pannonian basin'. To test our method we processed the lineaments of the 1:1 500 000 scale 'Map of neotectonic (active) structures' published in this atlas. The geodynamic parameters (i.e. normal, reverse, right- and left lateral strike-slip faults, etc.) of the lines on this map were mostly explained in the legend. We classified the linear elements according to these parameters and created a geo-referenced mapping database. This database contains the polyline sections of the map lineaments as vectors (i.e. line sections), and the directions of the stress field as attributes of these vectors. The directions of the dip-parallel-, strike-parallel- and vertical stress-vectors are calculated from the geodynamical parameters of the line section. Since we created relative stress field properties, the eigenvalues of the vectors were maximized to one. Each point in the point cloud inherits the stress property of the line section, from which it was derived. During the modeling we tried several point-cloud generating- and interpolation methods. The analysis of the interpolated tensor fields revealed that the model was able to reproduce a geodynamic synthesis of the Carpathian Basin, which can be correlated with the synthesis of the Atlas published in 2006. The method was primarily aimed to reconstruct paleo-stress fields. References Horváth, F., Bada, G., Windhoffer, G., Csontos, L., Dombrádi, E., Dövényi, P., Fodor, L., Grenerczy, G., Síkhegyi, F., Szafián, P., Székely, B., Timár, G., Tóth, L., Tóth, T. 2006: Atlas of the present-day geodynamics of the Pannonian basin: Euroconform maps with explanatory text. Magyar Geofizika 47, 133-137.
NASA Astrophysics Data System (ADS)
Najine, Abdessamad; Jaffal, Mohammed; Khammari, Kamal El; Aïfa, Tahar; Khattach, Driss; Himi, Mahjoub; Casas, Albert; Badrane, Said; Aqil, Hicham
2006-08-01
This study is based on the analysis and the interpretation of the gravity data of the Tadla basin. Its purpose is to increase the knowledge of this basin structure. A residual anomaly map was first calculated from the Bouguer anomaly data witch are strongly affected by a regional gradient. The computed map provides information on the ground density variation but it does not bring enough of new elements. Data filtering allows us to emphasize the structures affecting the basin. We chose the horizontal gradient coupled to the upward continuation techniques that permit to highlight news structures and to give information on their dip. The elaborated structural map of the study area constitutes a useful document for rationalizing the future groundwater exploration in the Tadla basin. To cite this article: A. Najine et al., C. R. Geoscience 338 (2006).
NASA Astrophysics Data System (ADS)
Rodríguez, Estiven; Salazar, Juan Fernando; Villegas, Juan Camilo; Mercado-Bettín, Daniel
2018-07-01
Extreme flows are key components of river flow regimes that affect manifold hydrological, geomorphological and ecological processes with societal relevance. One fundamental characteristic of extreme flows in river basins is that they exhibit scaling properties which can be identified through scaling (power) laws. Understanding the physical mechanisms behind such scaling laws is a continuing challenge in hydrology, with potential implications for the prediction of river flow regimes in a changing environment and ungauged basins. After highlighting that the scaling properties are sensitive to environmental change, we develop a physical interpretation of how temporal changes in scaling exponents relate to the capacity of river basins to regulate extreme river flows. Regulation is defined here as the basins' capacity to either dampen high flows or to enhance low flows. Further, we use this framework to infer temporal changes in the regulation capacity of five large basins in tropical South America. Our results indicate that, during the last few decades, the Amazon river basin has been reducing its capacity to enhance low flows, likely as a consequence of pronounced environmental change in its south and south-eastern sub-basins. The proposed framework is widely applicable to different basins, and provides foundations for using scaling laws as empirical tools for inferring temporal changes of hydrological regulation, particularly relevant for identifying and managing hydrological consequences of environmental change.
Sampson, Jay A.
2006-01-01
Introduction: Magnetotelluric data were acquired during October 2001 by the U.S. Geological Survey (USGS) as part of a study to examine the structural nature of basins in the transition zone between the Sierra Nevada Mountains of California and the Basin and Range province of Nevada. Magnetotelluric (MT) geophysical studies assist the mapping of geologic structure and the inference of lithologic packages that are concealed beneath the Earth's surface. The Basin and Range province has a complicated geologic history, which includes extension and compression of the Earth's crust to form the basins and ranges that blanket much of Nevada. The basins and ranges in the vicinity of this study trend northeastward and are bounded by steeply dipping strike slip faults. Interestingly, deep east-west magnetic trends occur in the aeromagnetic data of this study area indicating that the northeast-trending basins and ranges represent only thin-skinned deformation at the surface with an underlying east-west structure. To investigate this issue, MT data were acquired at seven stations in eastern California, 20 km east of Mono Lake. The purpose of this report is to present a two-dimensional apparent resistivity model of the MT data acquired for this study.
O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin
2012-01-01
Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.
O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin
2012-01-01
Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to <0.016 mg L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Dixit, N. C.; Hanks, C. L.
2014-12-01
The Tertiary Nenana basin of Interior Alaska is currently the focus of both new oil exploration and coalbed methane exploitation and is being evaluated as a potential CO2sequestration site. The basin first formed as a Late Paleocene extensional rift with the deposition of oil and gas-prone, coal-bearing non-marine sediments with excellent source potential. Basin inversion during the Early Eocene-Early Oligocene times resulted in folding and erosion of higher stratigraphic levels, forming excellent structural and stratigraphic traps. Initiation of active faulting on its eastern margin in the middle Oligocene caused slow tectonic subsidence that resulted in the deposition of reservoir and seal rocks of the Usibelli Group. Onset of rapid tectonic subsidence in Pliocene that continues to the present-day has provided significant pressure and temperature gradient for the source rocks. Apatite fission-track and vitrinite reflectance data reveals two major paleo-thermal episodes: Late Paleocene to Early Eocene (60 Ma to 54.8 Ma) and Late Miocene to present-day (7 Ma to present). These episodes of maximum paleotemperatures have implications for the evolution of source rock maturity within the basin. In this study, we are also investigating the potential for coalbed methane production from the Late Paleocene coals via injection of CO2. Our preliminary analyses demonstrate that 150 MMSCF of methane could be produced while 33000 tonnes of CO2 per injection well (base case of ~9 years) can be sequestered in the vicinity of existing infrastructure. However, these volumes of sequestered CO2and coal bed methane recovery are estimates and are sensitive to the reservoir's geomechanical and flow properties. Keywords: extensional rift, seismic, subsidence, thermal history, fission track, vitrinite reflectance, coal bed methane, Nenana basin, CO2 sequestration
Peculiarities of high-altitude landscapes formation in the Small Caucasus mountains
NASA Astrophysics Data System (ADS)
Trifonova, Tatiana
2014-05-01
Various mountain systems differ in character of landscapes and soil. Basic problem of present research: conditions and parameters determining the development of various landscapes and soils in mountain areas. Our research object is the area of Armenia where Small Caucasus, a part of Armenian upland is located. The specific character of the area is defined by the whole variety of all mountain structures like fold, block folding mountain ridges, volcanic upland, individual volcanoes, and intermountain depressions. As for the climate, the area belongs to dry subtropics. We have studied the peculiarities of high-altitude landscapes formation and mountain river basins development. We have used remote sensing data and statistic database of climatic parameters in this research. Field observations and landscape pictures analysis of space images allow distinguishing three types of mountain geosystems clearly: volcanic massifs, fold mountainous structures and closed high mountain basins - area of the lakes. The distribution of precipitation according to altitude shows some peculiarities. It has been found that due to this factor the investigated mountain area may be divided into three regions: storage (fold) mountainous area; Ararat volcanic area (southern macro exposure); closed high mountainous basin-area of the lake Sevan. The mountainous nature-climatic vertical landscapes appear to be horizontally oriented and they are more or less equilibrium (stable) geosystems, where the stable functional relationship between the landscape components is formed. Within their limits, definite bioclimatic structure of soil is developed. Along the slopes of fold mountains specific landscape shapes like litho-drainage basins are formed. They are intensively developing like relatively independent vertical geosystems. Mechanism of basin formation is versatile resulting in formation of the polychronous soil mantle structure. Landscapes and soils within the basin are of a different age, since the permanent exogenic processes favor regular rejuvenation of the slope soils. The basin structure determines the soilscape, and morphological elements of the basin are also different. The factors playing the significant part in the formation of soil-mantle composition in the basin can be identified. It is shown that landscapes formation and soil structure in mountains are controlled by two superimposed natural processes, i.e. the formation of vertical zonality and the development of river lithodrainage basins. References Trifonova T.A., 2008. River drainage basin as self-regulated natural geosistem. Izv. Russian of Academy of Sciences, Series on geography, 1: 28-36. Trifonova T.A., 2005. Development of basin approach in pedological and ecological studies. Eurasian Soil Science, 9: 931-937
NASA Astrophysics Data System (ADS)
Hayward, N.
2017-12-01
The structure of the western margin of the North American craton (Laurentia) in the northern Canadian Cordillera and its role in the development of the Neoproterozoic-Early Paleozoic Selwyn Basin are reassessed through 3D inversion of a new compilation of aeromagnetic data and archival Bouguer gravity data. The region's tectonic history is obscured by partial burial beneath Selwyn Basin, and a tectonic overprint that includes terrane accretion, regional plutonism, and strike-slip faults with displacements of 100s and perhaps 1000s of kilometers. Despite the implied complexity, preliminary geological and geophysical based interpretations of the structure of the western margin of Laurentia, have been adopted with few refinements in over two decades. Regionally continuous, NE-trending, crustal lineaments, including the Fort Norman line and Leith Ridge fault, were interpreted as having had long-standing influence on the craton development, its western margin, and overlapping sedimentary basin. New results reveal limited evidence for the regional continuity of the NE-trending lineaments. Instead, models suggest that the structure of the Laurentian margin is characterised by segmentation on numerous shorter structures of varied strike. The western margin of the craton and its structures are bound by a NW-trending structure that connects with the Richardson Trough to the north and may have been active during rifting of the Misty Creek embayment. This boundary also marks the easternmost limit of both granitic intrusions in Selwyn Basin, which gravity models suggest are of greater extent than reflected on geological maps, and SEDEX occurrences. An ENE-trending structure beneath northern Selwyn Basin is interpreted as marking the southern edge of a previously unidentified cratonic promontory, akin to the Liard line that marks a transfer fault that bounds the promontory of the Macdonald Platform, south of Selwyn Basin. The ENE-trending structure is traced from the Tintina fault in the west to near to the Great Bear magmatic zone. The structure's regional continuity also limits the interpretation of a post-Cretaceous structure, inboard of the Tintina fault that could be responsible for 1000's km of dextral strike-slip ascribed to the Baja-BC terrane translation model.
NASA Astrophysics Data System (ADS)
Boukerbout, H.; Abtout, A.; Gibert, D.; Henry, B.; Bouyahiaoui, B.; Derder, M. E. M.
2018-07-01
The Chlef region constitutes a key area to study neotectonics structures and their geodynamical context. Aeromagnetic data analyzed using different processing methods (shaded relief technique, computation of vertical gradient, upward continuation, use of the continuous wavelet transform and ridgelet transform), allow establishing a structural image of emerging and deep structures both onshore and offshore. Magnetic anomalies, over the Mediterranean Sea, the Chlef basin and the Ouarsenis Mounts, are well-correlated with the known geological structures. Long and short wavelength anomalies have been distinguished. The short wavelength anomalies are associated with the volcanic rocks on the coast from Chenoua to El Marsa and with the basement in the Boukadir zone in the sedimentary Chlef basin. The long wavelength anomalies to the South are associated mainly with deep E-W structures, limiting the Chlef basin. To the North, similar structures have been identified in the Mediterranean Sea. The compilation of the identified magnetic features leads to geometrical shape corroborating the structure in blocks of the Chlef basin.
NASA Astrophysics Data System (ADS)
Wang, M.
2017-12-01
The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.
NASA Astrophysics Data System (ADS)
Zheng, M.; Wu, X.
2015-12-01
The basis geological problem is still the bottleneck of the exploration work of the lager Sanjiang basin groups. In general terms, the problems are including the prototype basins and basin forming mechanism of two aspects. In this paper, using the field geological survey and investigation, logging data analysis, seismic data interpretation technical means large Sanjiang basin groups and basin forming mechanism of the prototype are discussed. Main draw the following conclusions: 1. Sanjiang region group-level formation can be completely contrasted. 2. Tension faults, compressive faults, shear structure composition and structure combination of four kinds of compound fracture are mainly developed In the study area. The direction of their distribution can be divided into SN, EW, NNE, NEE, NNW, NWW to other groups of fracture. 3. Large Sanjiang basin has the SN and the EW two main directions of tectonic evolution. Cenozoic basins in Sanjiang region in group formation located the two tectonic domains of ancient Paleo-Asian Ocean and the Pacific Interchange. 4. Large Sanjiang basin has experienced in the late Mesozoic tectonic evolution of two-stage and nine times. The first stage, developmental stage basement, they are ① Since the Mesozoic era and before the Jurassic; ② Early Jurassic period; The second stage, cap stage of development, they are ③ Late Jurassic depression developmental stages of compression; ④ Early Cretaceous rifting stage; ⑤ depression in mid-Early Cretaceous period; ⑥ tensile Early Cretaceous rifting stage; ⑦ inversion of Late Cretaceous tectonic compression stage; ⑧ Paleogene - Neogene; ⑨ After recently Ji Baoquan Sedimentary Ridge. 5. Large Sanjiang basin group is actually a residual basin structure, and Can be divided into left - superimposed (Founder, Tangyuan depression, Hulin Basin), residual - inherited type (Sanjiang basin), residual - reformed (Jixi, Boli, Hegang basin). there are two developed depression and the mechanism of rifting. 6. Sanjiang Basin Suibin Depression, Tangyuan depression, Jixi Cretaceous Tangyuan and Fangzheng rift is the key for further exploration. Yishu graben is a large core of Sanjiang region to find oil, and Paleogene basin is the focus of the external layer system exploration.
Pollastro, R.M.
1999-01-01
Three Total Petroleum Systems each consisting of one assessment unit have been identified in the Ghaba and Fahud Salt Basin Provinces of north-central Oman. One Total Petroleum System and corresponding assessment unit, the North Oman Huqf/`Q'? Haushi(!) Total Petroleum System (201401) and Ghaba-Makarem Combined Structural Assessment Unit (20140101), were identified for the Ghaba Salt Basin Province (2014). In the Fahud Salt Basin Province, however, two overlapping Total Petroleum Systems (TPS) were recognized: 1) the North Oman Huqf ? Shu'aiba(!) TPS (201601); Fahud-Huqf Combined Structural Assessment Unit (20160101), and 2) the Middle Cretaceous Natih(!) TPS (201602); Natih-Fiqa Structural/Stratigraphic Assessment Unit (20160201). The boundary for each Total Petroleum System also defines the boundary of the corresponding assessment unit and includes all trap styles and hydrocarbon producing reservoirs within the petroleum system. In both the Ghaba and Fahud Salt Basin Provinces, hydrocarbons were generated from several deeply-buried source rocks within the Infracambrian Huqf Supergroup. One general `North Oman Huqf' type oil is dominant in the Fahud Salt Basin. Oils in the Ghaba Salt Basin are linked to at least two distinct Huqf source-rock units based on oil geochemistry: a general North Oman Huqf-type oil source and a more dominant `questionable unidentified-source' or `Q'-type Huqf oil source. These two Huqf-sourced oils are commonly found as admixtures in reservoirs throughout north-central Oman. Hydrocarbons generated from Huqf sources are produced from a variety of reservoir types and ages ranging from Precambrian to Cretaceous in both the Ghaba and Fahud Salt Basin Provinces. Clastic reservoirs of the Gharif and Al Khlata Formations, Haushi Group (M. Carboniferous to L. Permian), dominate oil production in the Ghaba Salt Basin Province and form the basis for the Huqf/`Q' ? Haushi(!) TPS. In contrast, the Lower Cretaceous Shu'aiba and Middle Cretaceous Natih limestones account for most of the production in the Fahud Salt Basin with about 50 percent of the basin's production from porous, fractured Shu'aiba limestones in Yibal field, thus the name North Oman Huqf ? Shu'aiba(!) TPS. Deep gas is produced mainly from Middle Cambrian to Lower Ordovician clastic reservoirs of the Haima Supergroup. Traps in nearly all hydrocarbon accumulations of these petroleum systems are mainly structural and were formed by one or more mechanisms. These trap-forming mechanisms were mainly periodic halokinesis of the thick Cambrian Ara Salt and consequent folding and faulting from basin loading, rifting, or other major tectonic events, particularly those events forming the Oman Mountains and associated foreland-basin system during the Late Cretaceous and Late Tertiary. Many of the future new-field targets will likely be low-relief, subtle structures, as many of the large structures have been drilled. Oman's recent interest and commitments to liquid natural gas export make deep gas a primary objective in the two North Oman Huqf petroleum systems. New-field exploration of deep gas and exploring deeper targets for gas in existing fields will likely identify a significant gas resource in the next thirty years. Moreover, salt-diapir flank traps in these two North Oman Huqf petroleum systems and salt basin provinces have gone essentially untested and will likely be targeted in the near-future. The Middle Cretaceous Natih(!) TPS is a small efficient system of the Fahud Salt Basin. Natih source rocks are only mature in the Late Cretaceous/Tertiary foredeep and production is primarily from Natih reservoirs; minor production from the Shu'aiba limestone is documented along fault-dip structures. Most traps are structural and are related to development of the foreland basin and formation of the Oman Mountains. Future targets of the Natih TPS will be less obvious than those of Fahud and Natih fields and likely includ
NASA Astrophysics Data System (ADS)
Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.
2017-08-01
High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.
Intelligent mapping of alluvial aquifer characteristics in the Otago region, New Zealand
NASA Astrophysics Data System (ADS)
Friedel, Michael; Rawlinson, Zara; Westerhoff, Rogier
2015-04-01
We adopt a hybrid approach to map the 3D hydrostratigraphy of an alluvial aquifer using big data collected in the Ettrick basin, Otago New Zealand. First, a subset (1%) of the 18 million regional helicopter frequency-domain electromagnetic (HEM) sounding measurements (300 Hz, Horizontal co-planar; 3300 Hz, vertical co-planar; 8200 Hz, horizontal co-planar; 40 kHz, horizontal co-planar; 137 kHz horizontal coplanar) and their numerically-inverted 1D resistivity (50¬-100 Ω-m) profiles are randomly split. For example, 50% of these data are used for training an unsupervised machine-learning (ML) network, and 50% of these data are used for performance at independent locations. The remaining set of HEM measurements are then presented to the vetted ML network to estimate regional resistivity structure which is compared to previously inverted resistivity. Second, about 50 borehole autocorrelation functions are computed based on cross-component correlations of quantized borehole locations sampled for lithology and HEM sounding data. Third, an unsupervised ML network is trained and performance tested using sparse borehole lithology (fractions of sand, silt, clay, mudstone, schist) and hydraulic properties (storage, hydraulic conductivity), and those HEM sounding data occurring within a radius defined by the maximum borehole autocorrelation distances. Fourth, this ML network is then used together with independent HEM sounding measurements to map the spatial distribution of physical aquifer properties and hydraulic properties across the basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevena, A.S.; Varga, R.J.; Collins, I.D.
Salin basin of central Myanmar is a tertiary fore-arc basin that extends over 10,000 mi{sup 2} and contains 30,000+ ft of siliciclastic rocks. In the western Salin basin, Tertiary deltaic and fluvial formations contain thousands of feet of lithic sandstones that alternate with transgressive shallow marine shales. Facies and paleocurrent studies indicate deposition by north-to-south prograding tidal deltas and associated fluvial systems in a semi-restricted basin. Presence of serpentinite and volcanic clasts in Tertiary sandstones may imply that the basin was bounded to the east by the volcanic arc and to the west by a fore-arc accretionary ridge throughout muchmore » of the Cenozoic. Salin basin is currently defined by a regional north/south-trending syncline with uplifts along the eastern and western margins. Elongate folds along the eastern basin margin verge to the east and lie above the reverse faults that dip west; much of Myanmar's present hydrocarbon production is from these structures. Analogous structures occur along the western margin, but verge to the west and are associated with numerous hydrocarbon seeps and hand-dug wells. These basin-bounding structures are the result of fault-propagation folding. In the western Salin basin, major detachments occur within the shaly Tabyin and Laungshe formations. Fault ramps propagated through steep forelimbs on the western sides of the folds, resulting in highly asymmetric footwall synclines. Stratigraphic and apatite fission track data are consistent with dominantly Plio-Pleistocene uplift, with limited uplift beginning approximately 10 Ma. Paleostress analysis of fault/slickenside data indicates that fold and thrust structures formed during regional east/west compression and are not related in any simple way to regional transpression as suggested by plate kinematics.« less
NASA Astrophysics Data System (ADS)
Wales, David J.
2018-04-01
Recent advances in the potential energy landscapes approach are highlighted, including both theoretical and computational contributions. Treating the high dimensionality of molecular and condensed matter systems of contemporary interest is important for understanding how emergent properties are encoded in the landscape and for calculating these properties while faithfully representing barriers between different morphologies. The pathways characterized in full dimensionality, which are used to construct kinetic transition networks, may prove useful in guiding such calculations. The energy landscape perspective has also produced new procedures for structure prediction and analysis of thermodynamic properties. Basin-hopping global optimization, with alternative acceptance criteria and generalizations to multiple metric spaces, has been used to treat systems ranging from biomolecules to nanoalloy clusters and condensed matter. This review also illustrates how all this methodology, developed in the context of chemical physics, can be transferred to landscapes defined by cost functions associated with machine learning.
Effects of deep basins on structural collapse during large subduction earthquakes
Marafi, Nasser A.; Eberhard, Marc O.; Berman, Jeffrey W.; Wirth, Erin A.; Frankel, Arthur
2017-01-01
Deep sedimentary basins are known to increase the intensity of ground motions, but this effect is implicitly considered in seismic hazard maps used in U.S. building codes. The basin amplification of ground motions from subduction earthquakes is particularly important in the Pacific Northwest, where the hazard at long periods is dominated by such earthquakes. This paper evaluates the effects of basins on spectral accelerations, ground-motion duration, spectral shape, and structural collapse using subduction earthquake recordings from basins in Japan that have similar depths as the Puget Lowland basin. For three of the Japanese basins and the Puget Lowland basin, the spectral accelerations were amplified by a factor of 2 to 4 for periods above 2.0 s. The long-duration subduction earthquakes and the effects of basins on spectral shape combined, lower the spectral accelerations at collapse for a set of building archetypes relative to other ground motions. For the hypothetical case in which these motions represent the entire hazard, the archetypes would need to increase up to 3.3 times its strength to compensate for these effects.
NASA Astrophysics Data System (ADS)
Chabani, Arezki; Mehl, Caroline; Bruel, Dominique; Cojan, Isabelle
2017-04-01
The Valence basin is a 130 km-long and 60 km-wide Tertiary sub-basin situated north to the SE basin of France, in the central part of the European Cenozoic RIft System (ECRIS). That structural key position in a naturally fractured hostrock associated with a favorable thermal regime make that basin a good target for geothermal exploitation in France. The structure and kinematics of the Valence basin is controlled by a several kilometer-scale hercynian fault system that may have a strong influence on fluid flows and thermal anomalies within the basin. This study aimed to constrain the geometry of deposits and the way they fracture regards to the major faults, to determine their diagenetic evolution and to characterize the hydraulic behavior of the major faults. We thus performed a structural model of the basin and analyzed the Montoison borehole. Kriging on data pointed on 348 boreholes from BSS, synthetic boreholes calculated from two seismic lines and isohypses from existing models allowed modeling the geometry of basement and the ceno-mesozoic unconformity. Basement is structured by two pluri-kilometer long fault corridors striking N/S to NE/SW. The central extends laterally on around 1 kilometer and has been identified as a segment of the Cevennes fault. The maximum depth of the basement is around 6000 m and is situated between the two corridors. Interpretations on seismic lines highlight a westward migration of Cenozoic depocenters within time. A structural analysis of the Montoison borehole confirms it is affected by a major fault interpreted as the Cevennes fault. Fault zone cuts across the Keuper and is characterized by an heterometric breccia within marly layers. The entire sedimentary pile recorded 2 sets of fractures: perpendicular and parallel to the borehole axis. Both sets are recrystallized. Nature of recrystallization (quartz, calcite and dolomite) strongly depends on the hostrock. An important thread of barite is located under the fault zone, putting forward the potential role of drain of that fault in the fluid flows across the basin.
Shallow properties of faults in carbonate rocks - The Jandaíra Formation, Potiguar Basin, Brazil
NASA Astrophysics Data System (ADS)
Bezerra, F. H.; Bertotti, G.; Rabelo, J.; Silva, A. T.; Carneiro, M. A.; Cazarin, C. L.; Silva, C. C.; Vieira, M. M.; Bisdom, K.; Moraes, A.
2014-12-01
We studied the development of shallow faults in the Jandaíra Formation, a Turonian-Campanian carbonate platform in the Potiguar Basin, northeastern Brazil. Our main goal was to characterize fault geometry and properties such as porosity and permeability, and associate these results with fluid flow in shallow conditions. We used an integrated multidisciplinary approach, which combined Quickbird satellite and an unmanned aerial vehicle (UAV, drone) imagery, structural and sedimentary-facies mapping, and petrographic and petrophysical analyses. The Jandaíra Formation presents a variety of carbonate facies, which include mudstones to bioclastic, peloidal, intraclastic, and oolitic grainstones. We modeled our remote sensing and structural data using a finite element analysis system for 2D deformation modeling. We applied the magnitudes and directions of the present-day stress field to simulate depths as deep as 500 m. These stress data were derived from borehole breakout data and drilling-induced tensile fractures observed in resistivity image logs. Our results indicate the occurrence of dilation processes along three sets of joints that were reactivated as faults in the upper crust: N-S, NE-, and E-W-striking faults. These faults provided preferential leaching pathways to fresh water percolation, contributing to localized dissolution and increased secondary porosity and permeability. The results also indicate that the tectonic stresses are concentrated in preferred structural zones such as fault intersection and termination, which are sites of increased fracturing and dissolution. Dissolution by fluids increased permeability in carbonate rocks from primary values of 0.0-0.94 mD to as much as 1370.11 mD. This process is mostly Cenozoic.
NASA Astrophysics Data System (ADS)
Accardo, N. J.; Shillington, D. J.; Gaherty, J. B.; Scholz, C. A.; Ebinger, C.; Nyblade, A.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Ferdinand-Wambura, R.
2017-12-01
A long-standing debate surrounds controls on the development and ultimately abandonment of basin bounding border faults. The Malawi Rift in the the Western Branch of the East African Rift System presents an ideal location to investigate normal fault development. The rift is composed of a series of half graben basins bound by large border faults, which cross several terranes and pre-existing features. To delineate rift basin structure, we undertook 3D first arrival tomography across the North and Central basins of the Malawi Rift based on seismic refraction data acquired in Lake Malawi. The resulting 3D velocity model allows for the first-ever mapping of 3D basin structure in the Western Branch of the EAR. We estimate fault displacement profiles along the two border faults and find that each accommodated 7.2 km of throw. Previous modeling studies suggest that given the significant lengths (>140 km) and throws of these faults, they may be nearing their maximum dimensions or may have already been abandoned. While both faults accommodate similar throws, their lengths differ by 40 km, likely due to the influence of both preexisting basement fabric and large-scale preexisting structures crossing the rift. Over 4 km of sediment exists where the border faults overlap in the accommodation zone indicating that these faults likely established their lengths early. Portions of both basins contain packages of sediment with anomalously fast velocities (> 4 km/s), which we interpret to represent sediment packages from prior rifting episodes. In the Central Basin, this preexisting sediment traces along the inferred offshore continuation of the Karoo-aged Ruhuhu Basin that intersects Lake Malawi at the junction between the North and Central basins. This feature may have influenced the length of the border fault bounding the Central Basin. In the North Basin, the preexisting sediment is thicker ( 4 km) and likely represents the offshore continuation of a series of preexisting rift basins that extend from the Malawi Rift north to the Rukwa Rift. The presence of this offshore basin confirms that the corridor between the Rukwa and Malawi Rifts has experienced prolonged periods of extension, likely thinning the lithosphere there, and thus providing a mechanism for focusing of long-lived magmatism at the Rungwe Volcanic Center.
NASA Astrophysics Data System (ADS)
Adatte, T.; John, C. M.; Flemings, P. B.; Behrmann, J.
2005-12-01
In this paper we present the overview and preliminary results of the analysis of clay minerals in two mini basins drilled during IODP Expedition 308. The goal of our project is to explore the vertical and temporal trends in clay mineralogy in the Ursa Basin and the Brazos-Trinity basin #4. The Brazos-Trinity basin was the sink for sands and clays carried by the Brazos and Trinity Rivers, while the Ursa basin was the sink for sediments carried by the Mississippi river. Reconstructing clay minerals (phyllosilicates <2μm in size) accumulations at these locations could thus potentially yield information on changes in the transport and the source of the siliclastic material transported in the course of the Pleistocene by these three rivers. Moreover, because the type of clay formed in soils through weathering processes largely depend on temperature and amount of precipitation, the dataset generated could provide clues on past climate changes. Some of the mechanisms that are hypothesized to play a major role in controlling clay accumulation in the basins investigated are reworking of clays on the American continent (controlled at the time-scale investigated here by changes in precipitation) and turbidity current deposition (controlled mainly by sea-level changes and thus glacio-eustasy). Finally, a major focusing point of Expedition 308 was sediment physical properties in an overpressured basin. Because each clay mineral specie has a specific average grain sizes, physical properties and cation exchange capacity, the clay mineral composition of the sediment investigated here (dominated by clay-sized particles) may partly control how these sediments react to changes in pressure and temperature. Thus, clay mineral data could contribute to our understanding of the physical properties of the sediments in overpressured basins, and collaborations with geotechnical scientist are planned.
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Balling, Niels; Förster, Andrea
2015-12-01
In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities of 0-30 per cent. Petrophysical properties and their well-logging-tool-characteristic readings were assigned to these rock-forming minerals and to pore-filling fluids. Relationships are explored between each thermal property and other petrophysical properties (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) using multivariate statistics. The application of these relations allows computing continuous borehole profiles for each rock thermal property. The uncertainties in the prediction of each property vary depending on the selected well-log combination. Best prediction is in the range of 2-8 per cent for the specific heat capacity, of 5-10 per cent for the thermal conductivity, and of 8-15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is <3 °C. The thermal-conductivity calculation allowed an evaluation of the depth range in which the palaeoclimatic effect on the subsurface temperature field can be observed in the North German Basin. This effect reduces the surface heat-flow density by 25 mW m-2.
Hinaman, Kurt
2005-01-01
The Powder River Basin in Wyoming and Montana is an important source of energy resources for the United States. Coalbed methane gas is contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. This gas is released when water pressure in coalbeds is lowered, usually by pumping ground water. Issues related to disposal and uses of by-product water from coalbed methane production have developed, in part, due to uncertainties in hydrologic properties. One hydrologic property of primary interest is the amount of water contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, conducted a study to describe the hydrogeologic framework and to estimate ground-water volumes in different facies of Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin in Wyoming. A geographic information system was used to compile and utilize hydrogeologic maps, to describe the hydrogeologic framework, and to estimate the volume of ground water in Tertiary and upper Cretaceous hydrogeologic units in the Powder River structural basin in Wyoming. Maps of the altitudes of potentiometric surfaces, altitudes of the tops and bottoms of hydrogeologic units, thicknesses of hydrogeologic units, percent sand of hydrogeologic units, and outcrop boundaries for the following hydrogeologic units were used: Tongue River-Wasatch aquifer, Lebo confining unit, Tullock aquifer, Upper Hell Creek confining unit, and the Fox Hills-Lower Hell Creek aquifer. Literature porosity values of 30 percent for sand and 35 percent for non-sand facies were used to calculate the volume of total ground water in each hydrogeologic unit. Literature specific yield values of 26 percent for sand and 10 percent for non-sand facies, and literature specific storage values of 0.0001 ft-1 (1/foot) for sand facies and 0.00001 ft-1 for non-sand facies, were used to calculate a second volume of ground water for each hydrogeologic unit. Significant figure considerations limited estimates of ground-water volumes to two significant digits. A total ground-water volume of 2.0x1014 ft3 (cubic feet) was calculated using porosity values, and a total ground-water volume of 3.6x1013 ft3 was calculated using specific yield and specific storage values. These results are consistent with retention properties, which would have some of the total water being retained in the sediments. Sensitivity analysis shows that the estimates of ground-water volume are most sensitive to porosity. The estimates also are sensitive to confined thickness and saturated thickness. Better spatial information for hydrogeologic units could help refine the ground-water volume estimates.
Haeussler, Peter J.; Bruhn, Ronald L.; Pratt, Thomas L.
2000-01-01
The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6–7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.
2017-01-01
High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.
Grauch, V. J.; Connell, Sean D.
2013-01-01
Discrepancies among previous models of the geometry of the Albuquerque Basin motivated us to develop a new model using a comprehensive approach. Capitalizing on a natural separation between the densities of mainly Neogene basin fill (Santa Fe Group) and those of older rocks, we developed a three-dimensional (3D) geophysical model of syn-rift basin-fill thickness that incorporates well data, seismic-reflection data, geologic cross sections, and other geophysical data in a constrained gravity inversion. Although the resulting model does not show structures directly, it elucidates important aspects of basin geometry. The main features are three, 3–5-km-deep, interconnected structural depressions, which increase in size, complexity, and segmentation from north to south: the Santo Domingo, Calabacillas, and Belen subbasins. The increase in segmentation and complexity may reflect a transition of the Rio Grande rift from well-defined structural depressions in the north to multiple, segmented basins within a broader region of crustal extension to the south. The modeled geometry of the subbasins and their connections differs from a widely accepted structural model based primarily on seismic-reflection interpretations. Key elements of the previous model are an east-tilted half-graben block on the north separated from a west-tilted half-graben block on the south by a southwest-trending, scissor-like transfer zone. Instead, we find multiple subbasins with predominantly easterly tilts for much of the Albuquerque Basin, a restricted region of westward tilting in the southwestern part of the basin, and a northwesterly trending antiform dividing subbasins in the center of the basin instead of a major scissor-like transfer zone. The overall eastward tilt indicated by the 3D geophysical model generally conforms to stratal tilts observed for the syn-rift succession, implying a prolonged eastward tilting of the basin during Miocene time. An extensive north-south synform in the central part of the Belen subbasin suggests a possible path for the ancestral Rio Grande during late Miocene or early Pliocene time. Variations in rift-fill thickness correspond to pre-rift structures in several places, suggesting that a better understanding of pre-rift history may shed light on debates about structural inheritance within the rift.
Nakano, Miki; Watanabe, Hirofumi; Rothstein, Stuart M; Tanaka, Shigenori
2010-05-27
Polyglutamine (polyQ) diseases are caused by an abnormal expansion of CAG repeats. While their detailed structure remains unclear, polyQ peptides assume beta-sheet structures when they aggregate. To investigate the conformational ensemble of short, monomeric polyQ peptides, which consist of 15 glutamine residues (Q(15)), we performed replica exchange molecular dynamics (REMD) simulations. We found that Q(15) can assume multiple configurations due to all of the residues affecting the formation of side-chain hydrogen bonds. Analysis of the free energy landscape reveals that Q(15) has a basin for random-coil structures and another for alpha-helix or beta-turn structures. To investigate properties of aggregated polyQ peptides, we performed multiple molecular dynamics (MMD) simulations for monomeric and oligomeric Q(15). MMD revealed that the formation of oligomers stabilizes the beta-turn structure by increasing the number of hydrogen bonds between the main chains.
Potential for Remotely Sensed Soil Moisture Data in Hydrologic Modeling
NASA Technical Reports Server (NTRS)
Engman, Edwin T.
1997-01-01
Many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture and portray the spatial heterogeneity of hydrologic processes and properties that one encounters in drainage basins. The hydrologic processes that may be detected include ground water recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential ET, and information about the hydrologic properties of soils and heterogeneity of hydrologic parameters. Microwave remote sensing has the potential to detect these signatures within a basin in the form of volumetric soil moisture measurements in the top few cm. These signatures should provide information on how and where to apply soil physical parameters in distributed and lumped parameter models and how to subdivide drainage basins into hydrologically similar sub-basins.
NASA Astrophysics Data System (ADS)
Yusufoğlu, H.
2013-04-01
The Elbistan Basin in the east-Central Anatolia is an intramontane structural depression in the interior part of the Anatolide-Tauride Platform. The Neogene fill in and around Elbistan Basin develops above the Upper Devonian to lower Tertiary basement and comprises two units separated by an angular unconformity: (1) intensely folded and faulted Miocene shallow marine to terrestrial and lacustrine sediments and (2) nearly flat-lying lignite-bearing lacustrine (lower unit) and fluvial (upper unit) deposits of Plio-Quaternary Ahmetçik Formation. The former is composed of Lower-Middle Miocene Salyan, Middle-upper Middle Miocene Gövdelidağ and Upper Miocene Karamağara formations whereas the latter one is the infill of the basin itself in the present configuration of the Elbistan Basin. The basin is bound by normal faults with a minor strike-slip component. It commenced as an intramontane pull-apart basin and developed as a natural response to Early Pliocene tectonic escape-related strike-slip faulting subsequent to post-collisional intracontinental compressional tectonics during which Miocene sediments were intensely deformed. The Early Pliocene time therefore marks a dramatic changeover in tectonic regime and is interpreted as the beginning of the ongoing last tectonic evolution and deformation style in the region unlike to previous views that it commenced before that time. Consequently, the Elbistan Basin is a unique structural depression that equates the extensional strike-slip regime in east-Central Anatolia throughout the context of the neotectonical framework of Turkey across progressive collision of Arabia with Eurasia. Its Pliocene and younger history differs from and contrasts with that of the surrounding pre-Pliocene basins such as Karamağara Basin, on which it has been structurally superimposed.
77 FR 16558 - Yakima River Basin Conservation Advisory Group Charter Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... on the structure and implementation of the Yakima River Basin Water Conservation Program. The basin... water conservation measures in the Yakima River basin. Improvements in the efficiency of water delivery and use will result in improved streamflows for fish and wildlife and improve the reliability of water...
NASA Astrophysics Data System (ADS)
Misawa, A.; Arai, K.; Fujiwara, T.; Sato, M.; Shin'ichiro, Y.; Hirata, K.; Kanamatsu, T.
2017-12-01
On the forearc slope of the Japan Trench is a typical subsidence region associated with the subduction erosion in the Japan Trench. Arai et al. (2014) reported the existence of the isolated basins with widths of up to several tens of kilometers using the seismic profiles that acquired before the 2011 Tohoku earthquake (Mw 9.0) in the forearc slope. The isolated basin probably formed due to subsidence accompanying the regional activity of normal fault systems in the forearc slope. Arai et al. (2014) suggested that the geological structures of the forearc slope along the Japan Trench are typical of those resulting from subduction erosion and proposed that the episodic subsidence accompanied by normal faulting is the most recent deformation. During the 2011 large earthquake, seafloor on the landward slope of the Japan Trench moved 50 m east-southeast toward trench (Fujiwara et al., 2011). In addition, aftershock activity after the 2011 large earthquake have predominated in the activity of the normal fault system. Therefore, there have a possibility that new isolated basin is formed after the 2011 large earthquake in the forearc slope of the Japan Trench. In order to capture the structural change in the isolated basins, we compared the seismic profiles acquired before (Multi-Channel Seismic (MCS) data acquired with KR07-05 cruise) and after (Single-Channel Seismic (SCS) data acquired with NT15-07 cruise) the 2011 large earthquake. However, the large-scale structural changes are not identified around the isolated basin. In order to capture the small-scale structural change in the shallow part of the isolated basins using high-resolution data, we make an attempt at the marine geological and geophysical survey in the offshore Tohoku region using R/V Shinsei-Maru of JAMSTEC (KS-17-8 cruise) in August 2017. In this cruise, we plan to carry out the following surveys; (1) swath bathymetric survey, (2) high-resolution parametric subbottom profiler (SBP) survey, (3) geomagnetic survey. In this presentation, we will show the latest results about the shallow structure of the isolated basin in the forearc slope.
Mechanical constraints on fault geometries and structural styles in extensional geologic settings
NASA Astrophysics Data System (ADS)
Hughes, A. N.
2017-12-01
The geologic structures that accommodate crustal extension in various tectonic environments, including rifts basins, passive margins, and gravitational collapse systems, exhibit a wide range of geometric styles. While several previous studies have focused on the mechanical controls on crustal-scale rift margin geometry, less attention has been paid to the role of mechanics in the style of the individual structures or groups of structures that deform the brittle upper crust. The main modes of extensional structures that have been observed—including parallel fault arrays, half-grabens, grabens, and core complexes—inherently imply mechanical conditions that favor their formation, but an exhaustive evaluation of the circumstances that favor the creation of each of these primary types has yet to be explored, and thus is the focus of this study. This issue is addressed through the construction of a series of 2D forward mechanical models using the discrete element modeling approach. With the intent of representing the wide range of realistic geologic circumstances in which these structures form, a suite of models were constructed by varying parameters such as rock section thickness and strength properties, detachment zone friction, thickness, and dip, extension rate, and various boundary conditions such as erosion and syntectonic sedimentation. The results of these models were then evaluated in order to identify the combinations of parameters that favor the development of each of the main structural styles. Furthermore, the ability to interrogate the stress and strain fields in the models helps shed light on the specific mechanisms that give rise to these different manifestations of extensional strain. Application of these insights to interpretations of extensional structures in rift basins will help to provide a useful framework for understanding the connection between the observed structural style in a region and the conditions that gave rise to its occurrence.
NASA Astrophysics Data System (ADS)
Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; Stockli, D. F.
2017-12-01
Spatial and temporal variations in pre-Andean deformation, inherited lithospheric discontinuities, and subduction geometry have been documented for the southern Central Andes (27-40°S). However, the influence of inherited crustal structures and changing subduction zone dynamics on along-strike (N-S) and across-strike (E-W) variations in upper-plate deformation and basin evolution remains poorly understood. The La Ramada Basin in the High Andes at 32°S preserves the northernmost succession correlated with the well-studied Neuquen Basin to the south. New maximum depositional ages and provenance information provided by detrital zircon U-Pb geochronology refine the chronostratigraphic and provenance framework of La Ramada Basin deposits and improve reconstructions of structural activity and subsidence mechanisms during polyphase basin evolution. Updated along- and across-strike comparisons with Neuquen and intraplate depocenters provide an unparalleled opportunity to examine long-term fluctuations in stress regime, modes of variable plate coupling, structural reactivation, and basin evolution. Zircon U-Pb age distributions constrain Mesozoic-Cenozoic ages of La Ramada clastic units and identify a previously unrecognized period of Paleogene nonmarine deposition. Late Triassic-Jurassic synrift and post-rift deposits record sediment derivation from the eastern half-graben footwall and western Andean volcanic arc during periods of slab rollback and thermal subsidence. Uplift of the Coastal Cordillera and introduction of Coastal Cordillera sediment at 107 Ma represents the first signature of initial Andean uplift associated with accumulation in the La Ramada Basin. Finally, newly identified Paleogene extensional structures and intra-arc deposits in the western La Ramada Basin are correlated with the extensional Abanico Basin system ( 28°S-44°S) to the west in Chile. Development and inversion of this system of intra-arc depocenters suggests that shortening and uplift in the southern Central Andes was produced by at least two (Late Cretaceous and Neogene) punctuated orogenic episodes.
NASA Astrophysics Data System (ADS)
Melki, Fetheddine; Zouaghi, Taher; Harrab, Salah; Sainz, Antonio Casas; Bédir, Mourad; Zargouni, Fouad
2011-07-01
The Neogene sedimentary basins (Serravallian to Quaternary) of the Tellian tectonic foreland in north-eastern Tunisia formed within the overall NE-SW sinistral strike-slip tectonic framework of the Ras El Korane-Thibar and El Alia-Teboursouk fault systems. From stratigraphic logs, structural cross sections and interpretation of 2D seismic lines and boreholes, the pre-Neogene basement can be interpreted to be structured according to Eocene (NW-SE) compressional and Oligocene extensional phases. This basement comprises structural highs (anticlines and horsts) and subsiding areas (synclines, half-grabens and grabens) formed during the Neogene. The subsiding areas are delineated by faults striking N030E, N-S and N140E, defining (i) narrow, strongly subsiding synclines, (ii) lozenge-shaped basins and (iii) trapezoidal basins. The architecture of their fill results from the sedimentary balance between tectonics and eustatism. Halokinesis and clay diapirism (driven by Triassic and Neogene evaporites and clays) also played an important role in basin evolution, contributing to the formation of domes and diapirs along active faults.
Hydrocarbon provinces and productive trends in Libya and adjacent areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Missallati, A.A.
1988-08-01
According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural reliefmore » and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.« less
Advanced seismic imaging of overdeepened alpine valleys
NASA Astrophysics Data System (ADS)
Burschil, Thomas; Buness, Hermann; Tanner, David; Gabriel, Gerald; Krawczyk, Charlotte M.
2017-04-01
Major European alpine valleys and basins are densely populated areas with infrastructure of international importance. To protect the environment by, e.g., geohazard assessment or groundwater estimation, understanding of the geological structure of these valleys is essential. The shape and deposits of a valley can clarify its genesis and allows a prediction of behaviour in future glaciations. The term "overdeepened" refers to valleys and basins, in which pressurized melt-water under the glacier erodes the valley below the fluvial level. Most overdeepened valleys or basins were thus refilled during the ice melt or remain in the form of lakes. The ICDP-project Drilling Overdeepened Alpine Valleys (DOVE) intends to correlate the sedimentary succession from boreholes between valleys in the entire alpine range. Hereby, seismic exploration is essential to predict the most promising well path and drilling site. In a first step, this DFG-funded project investigates the benefit of multi-component techniques for seismic imaging. At two test sites, the Tannwald Basin and the Lienz Basin, the Leibniz Institute for Applied Geophysics acquired P-wave reflection profiles to gain structural and facies information. Built on the P-wave information, several S-wave reflection profiles were acquired in the pure SH-wave domain as well as 6-C reflection profiles using a horizontal S-wave source in inline and crossline excitation and 3-C receivers. Five P-wave sections reveal the structure of the Tannwald Basin, which is a distal branch basin of the Rhine Glacier. Strong reflections mark the base of the basin, which has a maximum depth of 240 metres. Internal structures and facies vary strongly and spatially, but allow a seismic facies characterization. We distinguish lacustrine, glacio-fluvial, and deltaic deposits, which make up the fill of the Tannwald Basin. Elements of the SH-wave and 6-C seismic imaging correlate with major structures in the P-wave image, but vary in detail. Based on the interpretation, two possible drilling sites are suggested for DOVE that will also prove the seismic interpretation and explain differences in P- and S-wave imaging. First results for the intermountain Lienz Basin are available from four parallel P-wave sections which show the asymmetric basin shape. The sedimentary base is well imaged down to ca. 0.6 km depth, and internal reflectors point to a diverse fill. Here, S-wave imaging produces less distinct sections and requires more sophisticated processing. In summary, P-wave imaging is suitable to map overdeepened structures in the Alps while S-wave imaging can contribute additional information.
Refined modeling of Seattle basin amplification
NASA Astrophysics Data System (ADS)
Vidale, J. E.; Wirth, E. A.; Frankel, A. D.; Baker, B.; Thompson, M.; Han, J.; Nasser, M.; Stephenson, W. J.
2016-12-01
The Seattle Basin has long been recognized to modulate shaking in western Washington earthquakes (e.g., Frankel, 2007 USGS OFR). The amplification of shaking in such deep sedimentary basins is a challenge to estimate and incorporate into mitigation plans. This project aims to (1) study the influence of basin edges on trapping and amplifying seismic waves, and (2) using the latest earthquake data to refine our models of basin structure. To interrogate the influence of basin edges on ground motion, we use the numerical codes SpecFEM3D and Disfd (finite-difference code from Pengcheng Liu), and an update of the basin model of Stephenson et al. (2007), to calculate synthetic ground motions at frequencies up to 1 Hz. The figure below, for example, shows the amplification relative to a simple 1/r amplitude decay for four sources around of the Seattle Basin (red dots), with an EW-striking 45°-dipping thrust mechanism at 10 km depth. We test the difficulty of simulating motions in the presence of slow materials near the basin edge. Running SpecFEM3D with attenuation is about a third as fast as the finite difference code, and cannot represent sub-element structure (e.g., slow surficial materials) in comparable detail to the finer FD grid, but has the advantages of being able to incorporate topography and water. Modeling 1 Hz energy in the presence of shear wave velocities with a floor of 600 m/s, factor of 2 to 3 velocity contrasts, and sharp basin edges is fraught, both in calculating synthetics and estimating real structure. We plan to incorporate interpretations of local recordings including basin-bottom S-to-P conversions, noise-correlation waveforms, and teleseismic-P-wave reverberations to refine the basin model. Our long-term goal is to reassess with greater accuracy and resolution the spatial pattern of hazard across the Seattle Basin, which includes several quite vulnerable neighborhoods.
Paul F. Hessburg; Bradley G. Smith; Craig A. Miller; Scott D. Kreiter; R. Brion Salter
1999-01-01
In the interior Columbia River basin midscale ecological assessment, including portions of the Klamath and Great Basins, we mapped and characterized historical and current vegetation composition and structure of 337 randomly sampled subwatersheds (9500 ha average size) in 43 subbasins (404 000 ha average size). We compared landscape patterns, vegetation structure and...
NASA Astrophysics Data System (ADS)
Mocanu, V. I.; Stephenson, R. A.; Diaconescu, C. C.; Knapp, J. H.; Matenco, L.; Dinu, C.; Harder, S.; Prodehl, C.; Hauser, F.; Raileanu, V.; Cloetingh, S. A.; Leever, K.
2001-12-01
Seismic studies of the outer Carpathian Orogen and its foreland (Focsani Basin) in the vicinity of the Vrancea Zone and Danube Delta (Romania) forms one component of a new multidisciplinary initiative of ISES (Netherlands Centre for Integrated Solid Earth Sciences) called DACIA PLAN ("Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics"). The study area, at the margin of the European craton, constitutes one of the most active seismic zones in Europe, yet has remained a geological and geodynamic enigma within the Alpine-Himalayan orogenic system. Intermediate depth (50-220 km) mantle earthquakes of significant magnitude occur in a geographically restricted area in the south-east Carpathians bend. The adjacent, foreland Focsani Basin appears to exhibit recent extensional deformation in what is otherwise understood to be a zone of convergence. The deep seismic reflection component of DACIA PLAN comprises a ~140-km near-vertical profile across the Vrancea Zone and Focsani Basin. Data acquisition took place in August-September 2001, as part of the integrated refraction/reflection seismic field programme "Vrancea-2001" co-ordinated at Karlsruhe University (cf. Abstract, Part 1), utilising 640 independently deployed recorders provided by UTEP and IRIS/PASSCAL ("Texans"). Station spacing was every 100-m with shots every 1-km. These data are to be integrated with industry seismic as well as planned new medium-high resolution seismic reflection profiling across key neotectonically active structures in the Focsani Basin. Particular goals of DACIA PLAN include: (1) the architecture of the Tertiary/Quaternary basins developed within and adjacent to this zone, including the foreland Focsani Basin; (2) the presence and geometry of structural detachment(s) in relation with foreland basin development, including constraints for balanced cross-sections and geodynamic modelling of basin origin and evolution; (3) the relationship between crustal structures related to basin evolution, especially neotectonic structures, with deep (mantle) structure and seismicity; and, (4) integratration with complementary studies in the Carpathian-Transylvanian region for evaluation and validation of competing geodynamic models for the present-day development and neotectonic character of the Vrancea Zone-Focsani Basin-Danube Delta-Black Sea corridor.
Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.-B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; Mickey, M.B.; Mullen, M.W.; Murchey, B.I.; Ross, C.A.; Stevens, C.H.; Silberling, Norman J.; Wall, J.H.; Willard, D.A.
1998-01-01
Cores from Northwind Ridge, a high-standing continental fragment in the Chukchi borderland of the oceanic Amerasia basin, Arctic Ocean, contain representatives of every Phanerozoic system except the Silurian and Devonian systems. Cambrian and Ordovician shallow-water marine carbonates in Northwind Ridge are similar to basement rocks beneath the Sverdrup basin of the Canadian Arctic Archipelago. Upper Mississippian(?) to Permian shelf carbonate and spicularite and Triassic turbidite and shelf lutite resemble coeval strata in the Sverdrup basin and the western Arctic Alaska basin (Hanna trough). These resemblances indicate that Triassic and older strata in southern Northwind Ridge were attached to both Arctic Canada and Arctic Alaska prior to the rifting that created the Amerasia basin. Late Jurassic marine lutite in Northwind Ridge was structurally isolated from coeval strata in the Sverdrup and Arctic Alaska basins by rift shoulder and grabens, and is interpreted to be a riftogenic deposit. This lutite may be the oldest deposit in the Canada basin. A cape of late Cenomanian or Turonian rhyodacite air-fall ash that lacks terrigenous material shows that Northwind Ridge was structurally isolated from the adjacent continental margins by earliest Late Cretaceous time. Closing Amerasia basin by conjoining seafloor magnetic anomalies beneath the Canada basin or by uniting the pre-Jurassic strata of Northwind Ridge with kindred sections in the Sverdrup basin and Hanna trough yield simular tectonic reconstructions. Together with the orientation and age of rift-marine structures, these data suggest that: 1) prior to opening of the Amerasia basin, both northern Alaska and continental ridges of the Chukchi borderland were part of North America, 2) the extension that created the Amerasia basin formed rift-margin graben beginning in Early Jurassic time and new oceanic crust probably beginning in Late Jurassic or early Neocomian time. Reconstruction of the Amerasia basin on the basis of the stratigraphy of Northwind Ridge and sea-floor magnetic anomalies in the Canada basin accounts in a general way for the major crustal elements of the Americasia basin, including the highstanding ridges of the Chukchi borderland, and supports S.W. Carye's hypothesis that the Amerasia basin is the product of anticlockwise rotational rifting of Arctic Alaska from North America.
Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.
2011-01-01
A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per capita water use for exempt wells. Accuracy of the simulated groundwater-flow system was evaluated by using observational control from water levels in wells, estimates of base flow from streamflow records, and estimates of spring discharge. Major results from the simulations include the importance of variations in recharge rates throughout the study area and recharge along ephemeral and losing stream reaches in alluvial basins. Insights about the groundwater-flow systems in individual basins include the hydrologic influence of geologic structures in some areas and that stream-aquifer interactions along the lower part of the Little Colorado River are an effective control on water level distributions throughout the Little Colorado River Plateau basin. Better information on several aspects of the groundwater flow system are needed to reduce uncertainty of the simulated system. Many areas lack documentation of the response of the groundwater system to changes in withdrawals and recharge. Data needed to define groundwater flow between vertically adjacent water-bearing units is lacking in many areas. Distributions of recharge along losing stream reaches are poorly defined. Extents of aquifers and alluvial lithologies are poorly defined in parts of the Big Chino and Verde Valley sub-basins. Aquifer storage properties are poorly defined throughout most of the study area. Little data exist to define the hydrologic importance of geologic structures such as faults and fractures. Discharge of regional groundwater flow to the Verde River is difficult to identify in the Verde Valley sub-basin because of unknown contributions from deep percolation of excess surface water irrigation.
Exotic chemical arrangements and magnetic moment evolution of NixPt1-x (0 ≤x≤ 1) nanoparticles
NASA Astrophysics Data System (ADS)
Mokkath, Junais Habeeb
2018-06-01
We present a systematic study on the chemical ordering pattern and the magnetic properties of NixPt1-x (0 ⩽ x≤ 1) nanoparticles having a size of 1.5 nm by means of an approach which combines basin hopping structure sampling technique and spin-polarized density functional theory. We found exotic chemical ordering patterns for different Ni/Pt ratios. In addition, we observed a sharp phase transition from non-magnetic to ferromagnetic behaviour around x = 67%. We show that this is a direct consequence of a unique atomic arrangement on the surface in which Ni atoms club together causing the strong Ni-Ni magnetic interaction. The observed magnetic properties are correlated to the electronic density of states.
NASA Astrophysics Data System (ADS)
Picha, Frank; Gibson, Richard I.
1985-07-01
The structural pattern set by late Precambrian rifting and fragmentation of the North American continent is apparent in both sedimentary and tectonic trends in western Utah and eastern Nevada. The late Precambrian cratonic margin (Cordilleran hingeline) displays several prominent structural features, such as the Wasatch and Ancient Ephraim faults, Fillmore arch and northeast-trending lineaments, which were repeatedly reactivated as structural uplifts, ramps, strike-slip faults, and extensional detachments. The renewed activity affected, among others, the geometry of the late Paleozoic Ancestral Rocky Mountain uplifts and basins, the extent of the Jurassic Arapien basin, the sedimentary pattern of the Cretaceous foreland basin, the geometry of the Sevier orogenic belt, and the extent and type of Basin-and-Range extensional tectonics. The rifted cratonic margin has thus remained a major influence on regional structures long after rifting has ceased. *Present address: Everest Geotech, 10101 Southwest Freeway, Houston, Texas 77074
NASA Astrophysics Data System (ADS)
Aisuebeogun, A. O.; Ezekwe, I. C.
2013-09-01
The relationship between process and form has been at the core of research in fluvial geomorphology. Form-process relationships of a natural river basin are strongly influenced by its hydrologic and sedimentologic processes as basin morphometric properties of length, shape, and relief, change in response to various hydrologic stimuli from the environment, but usually in line with well established laws. In the four river basins (Orashi, Otamiri, Sombreiro, New Calabar) examined in this study, however, empirical evidence does not conform neatly with theoretical postulates. Remarkable variations are noted in the morphometric properties of the catchments, when compared with established morphometric laws. The most varied in conformity are the Orashi and New Calabar basins, although the Sombreiro and Otamiri catchments also show some level of variation. Prime explanation for the morphometric and topographic non-conformity is caused by the nature of surficial material and the profoundly shallow relief of much of the study area, especially the alluvial flood and deltaic plains to the south and south-west of the study area.
Structural features and oil-and-gas bearing of the Caribbean region
NASA Astrophysics Data System (ADS)
Zabanbark, A.; Lobkovsky, L. I.
2017-09-01
The structure of the Caribbean region testifies to the extremely unstable condition of the terrestrial crust of this intercontinental and simultaneously interoceanic area. In the recent geological epoch, the Caribbean region is represented by a series of structural elements, the main of which are the Venezuelan and Colombian deep-sea suboceanic depressions, the Nicaraguan Rise, and the Greater and Lesser Antilles bordering the Caribbean Sea in the north and east. There are 63 sedimentary basins in the entire Caribbean region. However, only the Venezuelan and Colombian basins, the Miskito Basin in Nicaragua, and the northern and eastern shelves of the Antilles, Paria Bay, Barbodos-Tobago, and Grenada basins are promising in terms of oil-and-gas bearig. In the Colombian Basin, the southwestern part, located in the rift zone of the Gulf of Uraba, is the most promising. In the Venezuelan Basin, possible oil-and-gas-bearing basins showing little promise are assumed to be in the northern and eastern margins. The main potential of the eastern Caribbean region is attributed to the southern margin, at the shelf zone of which are the Tokuyo-Bonaire, Tuy-Cariaco, Margarita, Paria Bay, Barbados-Tobago, and Grenada oil-and-gas-bearing basins. The rest of the deepwater depressions of the Caribbean Sea show little promise for hydrocarbon research due to the small thickness of the deposits, their flat bedding, and probably a lack of fluid seals.
The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin
NASA Astrophysics Data System (ADS)
Mann, P. J.; Spencer, R. G. M.; Dinga, B. J.; Poulsen, J. R.; Hernes, P. J.; Fiske, G.; Salter, M. E.; Wang, Z. A.; Hoering, K. A.; Six, J.; Holmes, R. M.
2014-04-01
Dissolved organic carbon (DOC) and inorganic carbon (DIC, pCO2), lignin biomarkers, and theoptical properties of dissolved organic matter (DOM) were measured in a gradient of streams and rivers within the Congo Basin, with the aim of examining how vegetation cover and hydrology influences the composition and concentration of fluvial carbon (C). Three sampling campaigns (February 2010, November 2010, and August 2011) spanning 56 sites are compared by subbasin watershed land cover type (savannah, tropical forest, and swamp) and hydrologic regime (high, intermediate, and low). Land cover properties predominately controlled the amount and quality of DOC, chromophoric DOM (CDOM) and lignin phenol concentrations (∑8) exported in streams and rivers throughout the Congo Basin. Higher DIC concentrations and changing DOM composition (lower molecular weight, less aromatic C) during periods of low hydrologic flow indicated shifting rapid overland supply pathways in wet conditions to deeper groundwater inputs during drier periods. Lower DOC concentrations in forest and swamp subbasins were apparent with increasing catchment area, indicating enhanced DOC loss with extended water residence time. Surface water pCO2 in savannah and tropical forest catchments ranged between 2,600 and 11,922 µatm, with swamp regions exhibiting extremely high pCO2 (10,598-15,802 µatm), highlighting their potential as significant pathways for water-air efflux. Our data suggest that the quantity and quality of DOM exported to streams and rivers are largely driven by terrestrial ecosystem structure and that anthropogenic land use or climate change may impact fluvial C composition and reactivity, with ramifications for regional C budgets and future climate scenarios.
Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.
2004-01-01
A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic optimization technique are found to be most effective in determining the optimal value of the tectonic parameters. Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the presence of observation and numerical uncertainties. The algorithm succeeds even when the synthetic data has detailed information only in a limited depth interval and has a different dominant frequency in the synthetic and observed seismograms. The methodology presented here even works when the basin input data contains only 75 per cent of the stratigraphic layering information compared with the actual basin in a limited depth interval.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Patrick; Houseworth, James
2013-11-22
The objective of this report is to build upon previous compilations of shale formations within many of the major sedimentary basins in the US by developing GIS data delineating isopach and structural depth maps for many of these units. These data are being incorporated into the LANL digital GIS database being developed for determining host rock distribution and depth/thickness parameters consistent with repository design. Methods were developed to assess hydrological and geomechanical properties and conditions for shale formations based on sonic velocity measurements.
Detention basin alternative outlet design study.
DOT National Transportation Integrated Search
2016-10-01
This study examines the outlets structures CDOT has historically employed to drain water quality treatment detention basins and flood control basins, presents two new methods of metering the water quality capture volume (WQCV), namely 1) the Elliptic...
Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee
2012-01-01
Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.
Basement control of structure in the Gettysburg rift basin, Pennsylvania and Maryland
NASA Astrophysics Data System (ADS)
Root, Samuel I.
1989-09-01
Jurassic faulting formed the 93 km long Gettysburg basin as an extensional half graben paralleling the basement structural grain. Preserved in the basin are rift-related Carnian to Rhaetian strata that were tilted 20-30° NW into a SE dipping, listric normal fault at the northwest border of the basin. Vertical displacement on the border fault approaches 10 km. The border fault developed parallel to the trend of the terminal Paleozoic Alleghenian South Mountain cleavage of the Blue Ridge basement along 80% of its extent. However, it is only roughly parallel to discordant to dip of the cleavage. Relationship of cleavage and later border faulting may be the result of persistent reactivation of the original Appalachian continental margin. Local complex structures in the half graben are related to reactivation of two subvertical, pre-Mesozoic faults that transect basement structural grain (cleavage) at a large angle. The northern Shippensburg fault was reactivated during basin normal faulting, offsetting the border fault in a right-lateral sense by 3.5 km and forming within the basin a fold and a fault sliver of basement. The southern Carbaugh-Marsh Creek fault was not reactivated, but is the locus of a 20°-30° change of trend of both the basement cleavage and later border fault. However, two large, NW trending, left-lateral wrench faults, antithetic to the Carbaugh-March Creek fault, developed here offsetting the border fault and forming en echelon folds and horst blocks of basement rock within the basin.
NASA Astrophysics Data System (ADS)
Bejaoui, Hamida; Aïfa, Tahar; Melki, Fetheddine; Zargouni, Fouad
2017-10-01
This paper resolves the structural complexity of Cenozoic sedimentary basins in northeastern Tunisia. These basins trend NE-SW to ∼ E-W, and are bordered by old fracture networks. Detailed descriptions of the structural features in outcrop and in subsurface data suggest that the El Alia-Teboursouk Fault zone in the Bizerte area evolved through a series of tectonic events. Cross sections, lithostratigraphic correlations, and interpretation of seismic profiles through the basins show evidence for: (i) a Triassic until Jurassic-Early Cretaceous rifting phase that induced lateral variations of facies and strata thicknesses; (ii) a set of faults oriented NE-SW, NW-SE, N-S, and E-W that guided sediment accumulation in pull-apart basins, which were subject to compressive and transpressive deformation during Eocene (Lutetian-Priabonian), Miocene (Tortonian), and Pliocene-Quaternary; and (iii) NNW-SSE to NS contractional events that occurred during the Late Pliocene. Part of the latest phase has been the formation of different synsedimentary folded structures with significant subsidence inversion. Such events have been responsible for the reactivation of inherited faults, and the intrusion of Triassic evaporites, ensuring the role of a slip layer. The combined effects of the different paleoconstraints and halokinetic movements are at the origin of the evolution of these pull-apart basins. The subsurface data suggest that an important fault displacement occurred during the Mesozoic-Cenozoic. The patterns of sediment accumulation in the different basins reflect a high activity of deep ancient faults.
S-N profile of Receive function image across Qiangtang, Northern Tibet
NASA Astrophysics Data System (ADS)
He, R.; Gao, R.; Deng, G.; Li, W.; Hou, H.; Lu, Z.; Xiong, X.
2010-12-01
Huge thicken Triassic and Jurassic sediments widely outcorp within Qiangtang, tens of oilstones outcorped within Qiangtang showed that Qiangtang have a good advantage in exploring oil and gas. So, the basement beneath Qiangtang and its structures have become the key for us to look for oil and gas accumulations. Within tectonic settings of Qiangtang, the center uplift of Qiangtang (abbr. CUQT) and its developments have become the great barrier to understand the basement and its structures within the basin. Because of complicated structure relief and blueschist and ophiolite outcorps within the CUQT, there was the paradox for lots of geologist to understand how the CUQT developed. One was that it formed under the extension environment. On the contrary, CUQT was ever paleo-Tethys suture zone, because CUQT had the belt of blueschists and ophiolite. So, different opinions to CUQT resulted in the different viewpoints in the basin beneath Qiangtang terrane. Surveying deep structure beneath the CUQT was the key to understand the basement under Qiangtang. In past two years, we have deployed 40 portable broadband seismic stations along E88°to across the whole Qiangtang from Bangong-Nujiang Suture, southern side of Qiangtang terrane, to northern margin of Qiangtang terrane. The temporary network collected a lot of farm waveform data, which is helpful to know about the more finest deep structure beneath the CUQT and its two sides basin. We used P-to-S receiver functions methods to get deep structure image beneath the profile. The preliminary results showed: (1) Within the crust, the velocity structure beneath southern Qiangtang basin is higher than beneath northern Qiangtang basin. (2) Sedimental layer within southern Qiangtang basin is thichen than within northern Qiangtang basin. Combined with other geophysical information, CUQT is an important lithosphere-level boundary fault belts, and southern Qiangtang basin have great difference with northern Qiangtang basin, in velocity structure, basement depth, although during Qiangtang terrane had been strongly reconstructed laterly, especiall in Cenozoic uplift of the Tibetan plateau. The above-mentioned evidences showed that Qiangtang terrance in present-day tectonic study should be divided by CUQT into two parts which includes south Qiangtang terrane in sourthern side and north Qiangtang terrrane in northern side. Because CUQT and Qiangtang terrane were traditionally named, tectonic settings within the Tibetan plateau had to be remarked renewedly . This project was financially supported together by Natural Science Foundations of China (40774051, 40974060), the basic outlay of scientific research work from Ministry of Science and Technology, China in 2009 ( J0915 ), China National Probing Project (SinoProbe-02).
Characteristics and Classification of Least Altered Streamflows in Massachusetts
Armstrong, David S.; Parker, Gene W.; Richards, Todd A.
2008-01-01
Streamflow records from 85 streamflow-gaging stations at which streamflows were considered to be least altered were used to characterize natural streamflows within southern New England. Period-of-record streamflow data were used to determine annual hydrographs of median monthly flows. The shapes and magnitudes of annual hydrographs of median monthly flows, normalized by drainage area, differed among stations in different geographic areas of southern New England. These differences were gradational across southern New England and were attributed to differences in basin and climate characteristics. Period-of-record streamflow data were also used to analyze the statistical properties of daily streamflows at 61 stations across southern New England by using L-moment ratios. An L-moment ratio diagram of L-skewness and L-kurtosis showed a continuous gradation in these properties between stations and indicated differences between base-flow dominated and runoff-dominated rivers. Streamflow records from a concurrent period (1960-2004) for 61 stations were used in a multivariate statistical analysis to develop a hydrologic classification of rivers in southern New England. Missing records from 46 of these stations were extended by using a Maintenance of Variation Extension technique. The concurrent-period streamflows were used in the Indicators of Hydrologic Alteration and Hydrologic Index Tool programs to determine 224 hydrologic indices for the 61 stations. Principal-components analysis (PCA) was used to reduce the number of hydrologic indices to 20 that provided nonredundant information. The PCA also indicated that the major patterns of variability in the dataset are related to differences in flow variability and low-flow magnitude among the stations. Hierarchical cluster analysis was used to classify stations into groups with similar hydrologic properties. The cluster analysis classified rivers in southern New England into two broad groups: (1) base-flow dominated rivers, whose statistical properties indicated less flow variability and high magnitudes of low flow, and (2) runoff-dominated rivers, whose statistical properties indicated greater flow variability and lower magnitudes of low flow. A four-cluster classification further classified the runoff-dominated streams into three groups that varied in gradient, elevation, and differences in winter streamflow conditions: high-gradient runoff-dominated rivers, northern runoff-dominated rivers, and southern runoff-dominated rivers. A nine-cluster division indicated that basin size also becomes a distinguishing factor among basins at finer levels of classification. Smaller basins (less than 10 square miles) were classified into different groups than larger basins. A comparison of station classifications indicated that a classification based on multiple hydrologic indices that represent different aspects of the flow regime did not result in the same classification of stations as a classification based on a single type of statistic such as a monthly median. River basins identified by the cluster analysis as having similar hydrologic properties tended to have similar basin and climate characteristics and to be in close proximity to one another. Stations were not classified in the same cluster on the basis of geographic location alone; as a result, boundaries cannot be drawn between geographic regions with similar streamflow characteristics. Rivers with different basin and climate characteristics were classified in different clusters, even if they were in adjacent basins or upstream and downstream within the same basin.
Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn
2010-01-01
The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.
NASA Astrophysics Data System (ADS)
Tian, Yuntao; Kohn, Barry P.; Qiu, Nansheng; Yuan, Yusong; Hu, Shengbiao; Gleadow, Andrew J. W.; Zhang, Peizhen
2018-02-01
A distinctive NNE trending belt of shortening structures dominates the topography and deformation of the eastern Sichuan Basin, 300 km east of the Tibetan Plateau. Debate continues as to whether the structures resulted from Cenozoic eastward growth of the Tibetan Plateau. A low-temperature thermochronology (AFT and AHe) data set from four deep boreholes and adjacent outcrops intersecting a branch of the shortening structures indicates distinctive differential cooling at 35-28 Ma across the structure, where stratigraphy has been offset vertically by 0.8-1.3 km. This result forms the first quantitative evidence for the existence of a late Eocene-Oligocene phase of shortening in the eastern Sichuan Basin, synchronous with the early phase of eastward growth and extrusion of the Tibetan Plateau. Further, a compilation of regional Cenozoic structures reveals a Miocene retreat of deformation from the foreland basin to the hinterland areas. Such a tectonic reorganization indicates that Eocene to Miocene deformation in the eastern Tibetan Plateau is out-of-sequence and was probably triggered by enhanced erosion in the eastern Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Braeuer, Benjamin; Bauer, Klaus
2015-11-01
The Dead Sea is a prime location to study the structure and development of pull-apart basins. We analyzed tomographic models of Vp, Vs, and Vp/Vs using self-organizing map clustering techniques. The method allows us to identify major lithologies by their petrophysical signatures. Remapping the clusters into the subsurface reveals the distribution of basin sediments, prebasin sedimentary rocks, and crystalline basement. The Dead Sea basin shows an asymmetric structure with thickness variation from 5 km in the west to 13 km in the east. Most importantly, we identified a distinct, well-defined body under the eastern part of the basin down to 18 km depth. Considering its geometry and petrophysical signature, this unit is interpreted as a buried counterpart of the shallow prebasin sediments encountered outside of the basin and not as crystalline basement. The seismicity distribution supports our results, where events are concentrated along boundaries of the basin and the deep prebasin sedimentary body. Our results suggest that the Dead Sea basin is about 4 km deeper than assumed from previous studies.
Lindsey, D.A.
1998-01-01
Laramide structure of the central Sangre de Cristo Mountains (Culebra Range) is interpreted as a system of west-dipping, basement-involved thrusts and reverse faults. The Culebra thrust is the dominant structure in the central part of the range; it dips 30 -55?? west and brings Precambrian metamorphic base-ment rocks over unmetamorphosed Paleozoic rocks. East of the Culebra thrust, thrusts and reverse faults break the basement and overlying cover rocks into north-trending fault blocks; these boundary faults probably dip 40-60?? westward. The orientation of fault slickensides indicates oblique (northeast) slip on the Culebra thrust and dip-slip (ranging from eastward to northward) movement on adjacent faults. In sedimentary cover rocks, east-vergent anticlines overlie and merge with thrusts and reverse faults; these anticlines are interpreted as fault-propagation folds. Minor east-dipping thrusts and reverse faults (backthrusts) occur in both the hanging walls and footwalls of thrusts. The easternmost faults and folds of the Culebra Range form a continuous structural boundary between the Laramide Sangre de Cristo highland and the Raton Basin. Boundary structures consist of west-dipping frontal thrusts flanked on the basinward side by poorly exposed, east-dipping backthrusts. The backthrusts are interpreted to overlie structural wedges that have been emplaced above blind thrusts in the basin margin. West-dipping frontal thrusts and blind thrusts are interpreted to involve basement, but backthrusts are rooted in basin-margin cover rocks. At shallow structural levels where erosion has not exposed a frontal thrust, the structural boundary of the basin is represented by an anticline or monocline. Based on both regional and local stratigraphic evidence, Laramide deformation in the Culebra Range and accompanying synorogenic sedimentation in the western Raton Basin probably took place from latest Cretaceous through early Eocene time. The earliest evidence of uplift and erosion of a highland is the appearance of abundant feldspar in the Late Cretaceous Vermejo Formation. Above the Vermejo, unconformities overlain by conglomerate indicate continued thrusting and erosion of highlands from late Cretaceous (Raton) through Eocene (Cuchara) time. Eocene alluvial-fan conglomerates in the Cuchara Formation may represent erosion of the Culebra thrust block. Deposition in the Raton Basin probably shifted north from New Mexico to southern Colorado from Paleocene to Eocene time as movement on individual thrusts depressed adjacent segments of the basin.
Kellogg, K.S.; Minor, S.A.
2005-01-01
The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar to other Tertiary structural basins in southern California, such those that underlie Cuyama Valley, the Ridge basin, and the east Ventura basin.
NASA Astrophysics Data System (ADS)
Lieske, Mike; Schlurmann, Torsten
2016-04-01
INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common 3D wave analysis method, the Bayesian Directional Spectrum method (BDM). BDM was presented by Hashimoto et al. (1988). Lastly, identification of the wave-current interaction, the results from experiment with simultaneous waves and currents are compared with results for only-currents and only-waves in order to identify and exemplify the significance of nonlinear interaction processes. RESULTS The first results of the wave-current interaction show, as expected, a reduction in the wave height in the direction of flow and an increase in wave heights against the flow with unidirectional monochromatic waves. The superposition of current and orbital velocities cannot be conducted linearly. Furthermore, the results show a current domination for low wave periods and wave domination for larger wave periods. The criterion of a current or wave domination will be presented in the presentation. ACKNOWLEDGEMENT The support of the KFKI research project "Seegangsbelastungen (Seele)" (Contract No. 03KIS107) by the German "Federal Ministry of Education and Research (BMBF)" is gratefully acknowledged.
3D basin structure of the Santa Clara Valley constrained by ambient noise tomography
NASA Astrophysics Data System (ADS)
Cho, H.; Lee, S. J.; Rhie, J.; Kim, S.
2017-12-01
The basin structure is an important factor controls the intensity and duration of ground shaking due to earthquake. Thus it is important to study the basin structure for better understanding seismic hazard and also improving the earthquake preparedness. An active source seismic survey is the most appropriate method to determine the basin structure in detail but its applicability, especially in urban areas, is limited. In this study, we tested the potential of an ambient noise tomography, which can be a cheaper and more easily applicable method compared to a traditional active source survey, to construct the velocity model of the basin. Our testing region is the Santa Clara Valley, which is one of the major urban sedimentary basins in the States. We selected this region because continuous seismic recordings and well defined velocity models are available. Continuous seismic recordings of 6 months from short-period array of Santa Clara Valley Seismic Experiment are cross-correlated with 1 hour time window. And the fast marching method and the subspace method are jointly applied to construct 2-D group velocity maps between 0.2 - 4.0 Hz. Then, shear wave velocity model of the Santa Clara Valley is calculated up to 5 km depth using bayesian inversion technique. Although our model cannot depict the detailed structures, it is roughly comparable with the velocity model of the US Geological Survey, which is constrained by active seismic surveys and field researches. This result indicate that an ambient noise tomography can be a replacement, at least in part, of an active seismic survey to construct the velocity model of the basin.
Structural evolution and petroleum productivity of the Baltic basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulmishek, G.F.
The Baltic basin is an oval depression located in the western part of the Russian craton; it occupies the eastern Baltic Sea and adjacent onshore areas. The basin contains more than 5,000 m of sedimentary rocks ranging from latest Proterozoic to Tertiary in age. These rocks consist of four tectonostratigraphic sequences deposited during major tectonic episodes of basin evolution. Principal unconformities separate the sequences. The basin is underlain by a rift probably filled with Upper Proterozoic rocks. Vendian and Lower Cambrian rocks (Baikalian sequence) form two northeast-trending depressions. The principal stage of the basin development was during deposition of amore » thick Middle Cambrian-Lower Devonian (Caledonian) sequence. This stage was terminated by the most intense deformations in the basin history. The Middle Devonian-Carboniferous (Hercynian) and Permian-Tertiary (Kimmerian-Alpine) tectonic and depositional cycles only slightly modified the basin geometry and left intact the main structural framework of underlying rocks. The petroleum productivity of the basin is related to the Caledonian tectonostratigraphic sequence that contains both source rocks and reservoirs. However, maturation of source rocks, migration of oil, and formation of fields took place mostly during deposition of the Hercynian sequence.« less
Geophysical interpretations west of and within the northwestern part of the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grauch, V.J.; Sawyer, D.A.; Fridrich, C.J.
1997-12-31
This report focuses on interpretation of gravity and new magnetic data west of the Nevada Test Site (NTS) and within the northwestern part of NTS. The interpretations integrate the gravity and magnetic data with other geophysical, geological, and rock property data to put constraints on tectonic and magmatic features not exposed at the surface. West of NTS, where drill hole information is absent, these geophysical data provide the best available information on the subsurface. Interpreted subsurface features include calderas, intrusions, basalt flows and volcanoes, Tertiary basins, structurally high pre-Tertiary rocks, and fault zones. New features revealed by this study includemore » (1) a north-south buried tectonic fault east of Oasis Mountain, which the authors call the Hogback fault; (2) an east striking fault or accommodation zone along the south side of Oasis Valley basin, which they call the Hot Springs fault; (3) a NNE striking structural zone coinciding with the western margins of the caldera complexes; (4) regional magnetic highs that probably represent a thick sequence of Tertiary volcanic rocks; and (5) two probable buried calderas that may be related to the tuffs of Tolicha Peak and of Sleeping Butte, respectively.« less
NASA Astrophysics Data System (ADS)
Kumar, Neeraj; Narayan, Jay Prakash
2018-01-01
This paper presents the site-city interaction (SCI) effects on the response of closely spaced structures under double resonance condition (F_{02{{D}}}^{{S}} = F_{02{{D}}}^{{B}}), where F_{02{{D}}}^{{S}} and F_{02{{D}}}^{{B}} are fundamental frequencies of 2-D structure and 2-D basin, respectively. This paper also presents the development of empirical relations to predict the F_{02{{D}}}^{{B}} of elliptical and trapezoidal basins for both the polarizations of the S wave. Simulated results revealed that F_{02{{D}}}^{{B}} of a 2-D basin very much depends on its geometry, shape ratio and polarization of the incident S wave. The obtained spectral amplification factor (SAF) at F_{02{{D}}}^{{S}} of a standalone structure in a 2-D basin is greater than that in the 1-D case under double resonance condition. A considerable reduction of the fundamental resonance frequency of structures due to the SCI effects is observed for both the polarizations of the S wave. The SAFs at F_{02{{D}}}^{{S}} of closely spaced structures due to SCI effects is larger in the case of SV than SH waves. A splitting of the fundamental-mode frequency bandwidth along with the drastic decrease of SAF due to the SCI effects is obtained. The findings of this paper raise the question concerning the validity of the predicted response of standalone structure based on soil-structure interaction for the design of structures in a 2-D small basin, in an urban environment.
Hydrogeologic framework of the middle San Pedro watershed, southeastern Arizona
Dickinson, Jesse; Kennedy, Jeffrey R.; Pool, D.R.; Cordova, Jeffrey T.; Parker, John T.; Macy, J.P.; Thomas, Blakemore
2010-01-01
Water managers in rural Arizona are under increasing pressure to provide sustainable supplies of water despite rapid population growth and demands for environmental protection. This report describes the results of a study of the hydrogeologic framework of the middle San Pedro watershed. The components of this report include: (1) a description of the geologic setting and depositional history of basin fill sediments that form the primary aquifer system, (2) updated bedrock altitudes underlying basin fill sediments calculated using a subsurface density model of gravity data, (3) delineation of hydrogeologic units in the basin fill using lithologic descriptions in driller's logs and models of airborne electrical resistivity data, (4) a digital three-dimensional (3D) hydrogeologic framework model (HFM) that represents spatial extents and thicknesses of the hydrogeologic units (HGUs), and (5) description of the hydrologic properties of the HGUs. The lithologic interpretations based on geophysical data and unit thickness and extent of the HGUs included in the HFM define potential configurations of hydraulic zones and parameters that can be incorporated in groundwater-flow models. The hydrogeologic framework comprises permeable and impermeable stratigraphic units: (1) bedrock, (2) sedimentary rocks predating basin-and-range deformation, (3) lower basin fill, (4) upper basin fill, and (5) stream alluvium. The bedrock unit includes Proterozoic to Cretaceous crystalline rocks, sedimentary rocks, and limestone that are relatively impermeable and poor aquifers, except for saturated portions of limestone. The pre-basin-and-range sediments underlie the lower basin fill but are relatively impermeable owing to cementation. However, they may be an important water-bearing unit where fractured. Alluvium of the lower basin fill, the main water-bearing unit, was deposited in the structural trough between the uplifted ridges of bedrock and (or) pre-basin-and-range sediments. Alluvium of the upper basin fill may be more permeable than the lower basin fill, but it is generally unsaturated in the study area. The lower basin fill stratigraphic unit was delineated into three HGUs on the basis of lithologic descriptions in driller?s logs and one-dimensional (1D) electrical models of airborne transient electromagnetic (TEM) surveys. The interbedded lower basin fill (ILBF) HGU represents an upper sequence having resistivity values between 5 and 40 ohm-m identified as interbedded sand, gravel, and clay in driller?s logs. Below this upper sequence, fine-grained lower basin fill (FLBF) HGU represents a thick silt and clay sequence having resistivity values between 5 and 20 ohm-m. Within the coarse-grained lower basin fill (CLBF) HGU, which underlies the silt and clay of the FLBF, the resistivity values on logs and 1D models increase to several hundred ohm-m and are highly variable within sand and gravel layers. These sequences match distinct resistivity and lithologic layers identified by geophysical logs in the adjacent Sierra Vista subwatershed, suggesting that these sequences are laterally continuous within both the Benson and Sierra Vista subwatersheds in the Upper San Pedro Basin. A subsurface density model based on gravity data was constructed to identify the top of bedrock and structures that may affect regional groundwater flow. The subsurface density model contains six layers having uniform density values, which are assigned on the basis of geophysical logs. The density values for the layers range between 1.65 g/cm3 for unsaturated sediments near the land surface and 2.67 g/cm3 for bedrock. Major features include three subbasins within the study area, the Huachuca City subbasin, the Tombstone subbasin, and the Benson subbasin, which have no expression in surface topography or lithology. Bedrock altitudes from the subsurface density model defined top altitudes of the bedrock HGU. The HFM includes the following HGUs in ascending stratigr
Lithospheric thermal-rheological structure of the Ordos Basin and its geodynamics
NASA Astrophysics Data System (ADS)
Pan, J.; Huang, F.; He, L.; Wu, Q.
2015-12-01
The study on the destruction of the North China Craton has always been one of the hottest issues in earth sciences.Both mechanism and spatial variation are debated fiercely, still unclear.However, geothermal research on the subject is relatively few. Ordos Basin, located in the west of the North China Craton, is a typical intraplate. Based on two-dimensional thermal modeling along a profile across Ordos Basin from east to west, obtained the lithospheric thermal structure and rheology. Mantle heat flow in different regions of Ordos Basin is from 21.2 to 24.5 mW/m2. In the east mantle heat flow is higher while heat flow in western region is relatively low. But mantle heat flow is smooth and low overall, showing a stable thermal background. Ratio of crustal and mantle heat flow is between 1.51 and 1.84, indicating that thermal contribution from shallow crust is lower than that from the mantle. Rheological characteristics along the profile are almost showed as "jelly sandwich" model and stable continental lithosphere structure,which is represent by a weak crust portion but a strong lithospheric mantle portion in vertical strength profile. Based on above , both thermal structure and lithospheric rheology of Ordos Basin illustrate that tectonic dynamics environment in the west of North China Craton is relatively stable. By the study on lithospheric thermal structure, we focus on the disparity in thickness between the thermal lithosphere and seismic lithosphere.The difference in western Ordos Basin is about 140km, which decreases gradually from Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin.That is to say the difference decreases gradually from the west to the east of North China Craton.The simulation results imply that viscosity of the asthenosphere under North China Craton also decreases gradually from west to east, confirming that dehydration of the Pacific subduction is likely to have great effect on the North China Craton.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin
2017-04-01
Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in such a broken-foreland context offers a unique opportunity to discuss how thick-skinned tectonics impacts stress distribution in the sedimentary cover.
NASA Astrophysics Data System (ADS)
Luque-Ceballos, Jonathan C.; Posada-Borbón, Alvaro; Herrera-Urbina, Ronaldo; Aceves, R.; Juárez-Sánchez, J. Octavio; Posada-Amarillas, Alvaro
2018-03-01
Spectroscopic properties of gas-phase copper sulfide clusters (CuS)n (n = 2-6) are calculated using Density Functional Theory (DFT) and time-dependent (TD) DFT approaches. The energy landscape of the potential energy surface is explored through a basin-hopping DFT methodology. Ground-state and low-lying isomer structures are obtained. The global search was performed at the B3PW91/SDD level of theory. Normal modes are calculated to validate the existence of optimal cluster structures. Energetic properties are obtained for the ground-state and isomer clusters and their relative energies are evaluated for probing isomerization. This is a few tenths of an eV, except for (CuS)2 cluster, which presents energy differences of ∼1 eV. Notable differences in the infrared spectra exist between the ground-state and first isomer structures, even for the (CuS)5 cluster, which has in both configurations a core copper pyramid. TDDFT provides the simulated absorption spectrum, presenting a theoretical description of optical absorption bands in terms of electronic excitations in the UV and visible regions. Results exhibit a significant dependence of the calculated UV/vis spectra on clusters size and shape regarding the ground state structures. Optical absorption is strong in the UV region, and weak or forbidden in the visible region of the spectrum.
NASA Astrophysics Data System (ADS)
Essahlaoui, A.; Sahbi, H.; Bahi, L.; El-Yamine, N.
2001-05-01
A geophysical study, based on 96 electrical resistivity measurements with a line length up to 4 km, was performed in the southern and southwestern parts of the Meknes Plateau, Morocco, which is a part of the Saiss Basin, located between the Rif Range to the north and the Middle Atlas Range to the south. This basin, whose maximum depth is ˜ 1.5 km in the north, is filled with Triassic to Quaternary deposits overlying the Palæozoic basement and includes two main aquifers. The interpretation of the resistivity measurements, calibrated from deep boreholes, made it possible to obtain a new hydrogeological model for the Saiss Basin. The understanding of the basin structure is of primary importance for the water supply of this area, which has been affected by severe droughts in recent years.
NASA Astrophysics Data System (ADS)
Esteban, F. D.; Tassone, A.; Isola, J. I.; Lodolo, E.; Menichetti, M.
2018-04-01
The South American-Scotia plate boundary is a left-lateral fault system which runs roughly E-W for more than 3000 km across the SW Atlantic Ocean and the Tierra del Fuego Island, reaching to the west the southern Chile Trench. Analyses of a large dataset of single- and multi-channel seismic reflection profiles acquired offshore has allowed to map the trace of the plate boundary from Tierra del Fuego to the Malvinas Trough, a tectonic depression located in the eastern part of the fault system, and to reconstruct the shape and geometry of the basins formed along the principal displacement zone of the fault system. Three main Neogene pull-apart basins that range from 70 to 100 km in length, and from 12 to 22 km in width, have been identified along this segment of the plate boundary. These basins have elongated shapes with their major axes parallel to the ENE-WSW direction of the fault zone. The sedimentary architecture and the infill geometry of the basins suggest that they represent mostly strike-slip dominated transtension basins which propagated from E to W. The basins imaged by seismic data show in some cases geometrical and structural features linked to the possible reactivation of previous wedge-top basins and inherited structures pertaining to the external front of the Magallanes fold-and-thrust compression belt, along which the South American-Scotia fault system has been superimposed. It is suggested that the sequence of the elongated basins occur symmetrically to a thorough going strike-slip fault, in a left-stepping geometrical arrangement, in a manner similar to those basins seen in other transcurrent environments.
NASA Astrophysics Data System (ADS)
Zulauf, J.; Zulauf, G.; Zanella, F.
2016-09-01
Dome and basin folds are structures with circular or slightly elongate outcrop patterns, which can form during single- and polyphase deformation in various tectonic settings. We used power-law viscous rock analogues to simulate single-phase dome-and-basin folding of rocks undergoing dislocation creep. The viscosity ratio between a single competent layer and incompetent matrix was 5, and the stress exponent of both materials was 7. The samples underwent layer-parallel shortening under bulk pure constriction. Increasing initial layer thickness resulted in a decrease in the number of domes and basins and an increase in amplitude, A, arc-length, L, wavelength, λ, and layer thickness, Hf. Samples deformed incrementally show progressive development of domes and basins until a strain of eY=Z = -30% is attained. During the dome-and-basin formation the layer thickened permanently, while A, L, and λ increased. A dominant wavelength was not attained. The normalized amplitude (A/λ) increased almost linearly reaching a maximum of 0.12 at eY=Z = -30%. During the last increment of shortening (eY=Z = -30 to -40%) the domes and basins did not further grow, but were overprinted by a second generation of non-cylindrical folds. Most of the geometrical parameters of the previously formed domes and basins behaved stable or decreased during this phase. The normalized arc-length (L/Hf) of domes and basins is significantly higher than that of 2D cylindrical folds. For this reason, the normalized arc length can probably be used to identify domes and basins in the field, even if these structures are not fully exposed in 3D.
Casas, D.; Ercilla, G.; Estrada, F.; Alonso, B.; Baraza, J.; Lee, H.; Kayen, R.; Chiocci, F.
2004-01-01
Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20??), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22?? to 29??. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area. Copyright ?? Taylor & Francis Inc.
NASA Astrophysics Data System (ADS)
Asano, K.; Iwata, T.; Sekiguchi, H.; Somei, K.; Nishimura, T.; Miyakoshi, K.; Aoi, S.; Kunugi, T.
2012-12-01
The Osaka sedimentary basin is filled by the Plio-Pleistocene Osaka group, terrace deposits, and alluvium deposits with thickness of 1 to 2 km over the bedrock, and it is surrounded by active fault systems. The Uemachi active fault system underlies the Osaka urban area. In order to predict the strong ground motions for future events of the Uemachi fault and others, the precise basin velocity structure model is indispensable as well as the detailed source fault model. The velocity structure of the Osaka basin has been extensively investigated by using various techniques such as gravity anomaly measurements, reflection surveys, boring explorations, and microtremor measurements. Based on these surveys and ground motion simulations for observed events, the three-dimensional velocity structure models of the Osaka basin have been developed and improved for decades (e.g., Kagawa et al., 1993; Horikawa et al., 2003; Iwata et al., 2008; Iwaki and Iwata, 2011). Now we are trying to verify the velocity structure model of the Osaka basin and to improve it incorporating new data sets. We have conducted two kinds of observations in the Osaka basin. The first observation is continuous microtremor observation. We have temporarily installed three-component velocity sensors at 15 sites covering the Osaka basin to record microtremors continuously for more than one year. The seismic interferometry technique (e.g. Shapiro and Campillo, 2004) is applied to retrieve interstation Green's function for analyzing the wave propagation characteristics inside the sedimentary basin. Both Rayleigh- and Love-wave type signals are identified in 0.1-0.5 Hz from observed interstation Green's functions. The group velocities of Rayleigh and Love waves propagating between two stations are estimated from them using the multiple filter analysis method, and they are compared with the theoretical group-velocities of the model. For example, estimated Love-wave group velocity along a line inside the basin is as low as 350 m/s in 0.2-0.5 Hz. The second observation is a set of short-time (30~60 min) single-station microtremor observations to obtain H/V spectral ratios at sites. We observed microtremor at 100 strong motion stations of Osaka prefecture government, JMA, K-NET, KiK-net, and other institutes. The peak period of H/V ranges from about 1 to 7 s, and it depends on the bedrock depth at the observation site as previously pointed by Miyakoshi et al. (1997). Though the basin velocity model explains the characteristics of observed H/V spectral ratios at most sites, we found discrepancies between observed and predicted H/V peak periods at north part of Osaka bay area and hill area in southeastern part of the basin. By combining the observed constraints from the group velocities, waveform characteristics of interstation Green's functions, and H/V spectral ratios, we will improve the S-wave velocity structure model inside the Osaka basin.
Structural setting of the Metán Basin (NW Argentina): new insights from 2D seismic profiles
NASA Astrophysics Data System (ADS)
Conti, Alessia; Maffucci, Roberta; Bigi, Sabina; Corrado, Sveva; Giordano, Guido; Viramonte, José G.
2017-04-01
The Metán Basin is located in the sub-Andean foreland, in the southernmost portion of the Santa Barbara system structural province (NW Argentina). The upper crust in this region shows a strong segmentation due to inherited stratigraphic and structural discontinuities, related to a Palaeozoic orogenic event and to a Cretaceous to Paleogene rifting event (Kley et al., 1999; Iaffa et al., 2011). This study seeks to unravel the deep structural setting of the basin, in order to better understand the tectonic evolution of the area. Different seismic sections are analysed, located in the Metán basin and acquired by YPF (Yacimientos Petrolíferos Fiscales, former national oil company of Argentina) in different surveys during the '70s - '80s. Stratigraphic control for the seismic interpretation is provided by petroleum exploratory wells drilled in the basin; they show a stratigraphic succession of syn-rift and post-rift deposits, mainly constituted by a continental succession of red beds, with minor limestone intercalations (Salta Group), overlain by a thick continental foreland basin succession (Orán Group) (Salfity et al., 1981). From a structural point of view, the Metán basin is characterized by a variety of structural trends, with thrust faults and related folds mainly trending N-S, NE-SW and NNE-SSW. Different mechanism can be responsible for the folding of the sedimentary cover; hangingwall anticlines are represented both by high angle thrust faults produced by inversion of Cretaceous extensional faults (Maffucci et al., 2015), and by fault propagation folds formed during the Andean shortening event. The study of the interaction between the older reactivated faults and the newly generated ones could provide new insights to unravel the complex structural setting of the area. References Iaffa D. N., Sàbat, F., Muñoz, J.A., Mon, R., Gutierrez, A.A., 2011. The role of inherited structures in a foreland basin evolution. The Metán Basin in NW Argentina. Journal of Structural Geology, 33, 1816-1828. Kley, J., Monaldi, C. R. & Salfity, J. A., 1999. Along strike segmentation of the Andean foreland: causes and consequences. Tectonophysics, 301, 75-94. Maffucci, R., Bigi, S., Corrado, S., Chiodi, A., Di Paolo, L., Giordano, G., Invernizzi, C., 2015. Quality assessment of reservoirs by means of outcrop data and "discrete fracture network" models: The case history of Rosario de La Frontera (NW Argentina) geothermal system. Tectonophysics, 647, 112-131. Salfity, J.A., Marquillas, R.A., 1981. Las unidades estratigráficas cretácicas del Norte de Argentina. In: Volkheimer, W., Musacchio, E. (Eds.), Cuencas Sedimentarias del Jurásico y Cretácico de América del Sur, 1, 303-317.
Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand
NASA Astrophysics Data System (ADS)
Boonyasatphan, Prat
The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.
NASA Astrophysics Data System (ADS)
Tzanou, E. A.; Vergos, G. S.
2012-04-01
The combined use of Geographic Information Systems and recent high-resolution Digital Elevation Models (DEMs) from Remote Sensing imagery offers a unique opportunity to study the hydrological properties of basin and catchment dynamics and derive the hydrological features of specific regions of various spatial scales. Until recently, the availability of global DEMs was restricted to low-resolution and accuracy models, e.g., ETOPO5, ETOPO2 and GTOPO30, compared to local Digital Terrain Models (DTMs) derived from photogrammetric methods and offered usually in the form of topographic maps of various scales. The advent of the SRTM and ASTER missions, offer some new tools and opportunities in order to use their data within a GIS to study the hydrological properties of basins and consequently validate their performance both amongst each other, as well as in terms of the results derived from a local DTM. The present work focuses on the use of the recent SRTM v2 90 m and ASTER v2 30 m DEMs along with the national 500 m DTM generated by the Hellenic Military Geographic Service (HMGS), within a GIS in order to assess their performance in determining the hydrological properties of basins. To this respect, the ArcHydro extension tool of ArcGIS v9.3 and HEC-GeoRAS v4.3 have been exploited to determine the hydrographic data of the basins under study which are located in Northern Greece. The hydrological characteristics refer to stream geometry, curve number, flooding areas, etc. as well as the topographic characteristics of the basin itself, such as aspect, hillshade, slope e.t.c..
a Matlab Toolbox for Basin Scale Fluid Flow Modeling Applied to Hydrology and Geothermal Energy
NASA Astrophysics Data System (ADS)
Alcanie, M.; Lupi, M.; Carrier, A.
2017-12-01
Recent boosts in the development of geothermal energy were fostered by the latest oil crises and by the need of reducing CO2 emissions generated by the combustion of fossil fuels. Various numerical codes (e.g. FEHM, CSMP++, HYDROTHERM, TOUGH) have thus been implemented for the simulation and quantification of fluid flow in the upper crust. One possible limitation of such codes is the limited accessibility and the complex structure of the simulators. For this reason, we began to develop a Hydrothermal Fluid Flow Matlab library as part of MRST (Matlab Reservoir Simulation Toolbox). MRST is designed for the simulation of oil and gas problems including carbon capture storage. However, a geothermal module is still missing. We selected the Geneva Basin as a natural laboratory because of the large amount of data available in the region. The Geneva Basin has been intensely investigated in the past with exploration wells, active seismic and gravity surveys. In addition, the energy strategy of Switzerland promotes the development of geothermal energy that lead to recent geophysical prospections. Previous and ongoing projects have shown the geothermal potential of the Geneva Basin but a consistent fluid flow model assessing the deep circulation in the region is yet to be defined. The first step of the study was to create the basin-scale static model. We integrated available active seismic, gravity inversions and borehole data to describe the principal geologic and tectonic features of the Geneva Basin. Petrophysical parameters were obtained from available and widespread well logs. This required adapting MRST to standard text format file imports and outline a new methodology for quick static model creation in an open source environment. We implemented several basin-scale fluid flow models to test the effects of petrophysical properties on the circulation dynamics of deep fluids in the Geneva Basin. Preliminary results allow the identification of preferential fluid flow pathways, which are critical information to define geothermal exploitation locations. The next step will be the implementation of the equation of state for pure water, CO2 - H2O and H2O - CH4 fluid mixtures.
NASA Astrophysics Data System (ADS)
Guo, Zhi-Xin; Shi, Yuan-Peng; Yang, Yong-Tai; Jiang, Shuan-Qi; Li, Lin-Bo; Zhao, Zhi-Gang
2018-04-01
A significant transition in tectonic regime from extension to compression occurred throughout East Asia during the mid-Cretaceous and has stimulated much attention. However, the timing and driving mechanisms of the transition remain disputed. The Erlian Basin, a giant late Mesozoic intracontinental petroliferous basin located in the Inner Mongolia, Northeast China, contains important sedimentary and structural records related to the mid-Cretaceous compressional event. The stratigraphical, sedimentological and structural analyses reveal that a NW-SE compressional inversion occurred in the Erlian Basin between the depositions of the Lower Cretaceous Saihan and Upper Cretaceous Erlian formations, causing intense folding of the Saihan Formation and underlying strata, and the northwestward migration of the depocenters of the Erlian Formation. Based on the newly obtained detrital zircon U-Pb data and previously published paleomagnetism- and fossil-based ages, the Saihan and Erlian formations are suggested as latest Aptian-Albian and post-early Cenomanian in age, respectively, implying that the inversion in the Erlian Basin occurred in the early Late Cretaceous (Cenomanian time). Apatite fission-track thermochronological data record an early Late Cretaceous cooling/exhuming event in the basin, corresponding well with the aforementioned sedimentary, structural and chronological analyses. Combining with the tectono-sedimentary evolutions of the neighboring basins of the Erlian Basin, we suggest that the early Late Cretaceous inversional event in the Erlian Basin and the large scale tectonic transition in East Asia shared the common driving mechanism, probably resulting from the Okhotomorsk Block-East Asia collisional event at about 100-89 Ma.
Schenk, Christopher J.; Moore, Thomas E.; Gautier, D.L.
2017-11-15
The Timan-Pechora Basin Province is a triangular area that represents the northeasternmost cratonic block of east European Russia. A 75-year history of petroleum exploration and production in the area there has led to the discovery of more than 16 billion barrels of oil (BBO) and 40 trillion cubic feet of gas (TCFG). Three geologic assessment units (AUs) were defined for assessing the potential for undiscovered oil and gas resources in the province: (1) the Northwest Izhma Depression AU, which includes all potential structures and reservoirs that formed in the northwestern part of the Izhma-Pechora Depression, although this part of the basin contains only sparse source and reservoir rocks and so was not assessed quantitatively; (2) the Main Basin Platform AU, which includes all potential structures and reservoirs that formed in the central part of the basin, where the tectonic and petroleum system evolution was complex; and (3) the Foredeep Basins AU, which includes all potential structures and reservoirs that formed within the thick sedimentary section of the foredeep basins west of the Uralian fold and thrust belt during the Permian and Triassic Uralian orogeny.For the Timan-Pechora Basin Province, the estimated means of undiscovered resources are 3.3 BBO, 17 TCFG, and 0.3 billion barrels of natural-gas liquids (BBNGL). For the AU areas north of the Arctic Circle in the province, the estimated means of undiscovered resources are 1.7 BBO, 9.0 TCFG, and 0.2 BBNGL. These assessment results indicate that exploration in the Timan-Pechora Basin Province is at a mature level.
NASA Astrophysics Data System (ADS)
Pereira, A. A.; Gironas, J. A.; Passalacqua, P.; Mejia, A.; Niemann, J. D.
2017-12-01
Previous work has shown that lithological, tectonic and climatic processes have a major influence in shaping the geomorphology of river networks. Accordingly, quantitative classification methods have been developed to identify and characterize network types (dendritic, parallel, pinnate, rectangular and trellis) based solely on the self-affinity of their planform properties, computed from available Digital Elevation Model (DEM) data. In contrast, this research aim is to include both horizontal and vertical properties to evaluate a quantitative classification method for river networks. We include vertical properties to consider the unique surficial conditions (e.g., large and steep height drops, volcanic activity, and complexity of stream networks) of the Andes Mountains. Furthermore, the goal of the research is also to explain the implications and possible relations between the hydro-geomorphological properties and climatic conditions. The classification method is applied to 42 basins in the southern Andes in Chile, ranging in size from 208 Km2 to 8,000 Km2. The planform metrics include the incremental drainage area, stream course irregularity and junction angles, while the vertical metrics include the hypsometric curve and the slope-area relationship. We introduce new network structures (Brush, Funnel and Low Sinuosity Rectangular), possibly unique to the Andes, that can be quantitatively differentiated from previous networks identified in other geographic regions. Then, this research evaluates the effect that excluding different Strahler order streams has on the horizontal properties and therefore in the classification. We found that climatic conditions are not only linked to horizontal parameters, but also to vertical ones, finding significant correlation between climatic variables (average near-surface temperature and rainfall) and vertical measures (parameters associated with the hypsometric curve and slope-area relation). The proposed classification shows differences among basins previously classified as the same type, which are not noticeable in their horizontal properties and helps reduce misclassifications within the old clusters. Additional hydro-geomorphological metrics are to be considered in the classification method to improve the effectiveness of it.
NASA Astrophysics Data System (ADS)
Genik, G. J.
1992-10-01
This paper overviews the regional framework, tectonic, structural and petroleum aspects of rifts in Niger, Chad and the C.A.R. The data base is from mainly proprietary exploration work consisting of some 50,000 kilometres of seismic profiles, 50 exploration wells, one million square kilometres of aeromagnetics coverage and extensive gravity surveys. There have been 13 oil and two oil and gas discoveries. A five phased tectonic history dating from the Pan African orogeny (750-550 MY B.P.) to the present suggests that the Western Central African Rift System (WCAS) with its component West African Rift Subsystem (WAS) and Central African Subsystem (CAS) formed mainly by the mechanical separation of African crustal blocks during the Early Cretaceous. Among the resulting rift basins in Niger, Chad and the C.A.R., seven are in the WAS—Grein, Kafra, Tenere. Tefidet, Termit, Bongor, and N'Dgel Edgi and three, Doba, Doseo, and Salamat are in the CAS. The WAS basins in Niger and Chad are all extensional and contain more than 14,000 m of continental to marine Early Cretaceous to Recent clastic sediments and minor amounts of volcanics. Medium to light oil (20° API-46° API) and gas have been discovered in the Termit basin in reservoir, source and seal beds of Late Cretaceous and Palaeogene age. The most common structural styles are extensional normal fault blocks and transtensional synthetic and antithetic normal fault blocks. The CAS Doba, Doseo and Salamat are extensional to transtensional rift basins containing up to 7500 m of terrestrial mainly Early Cretaceous clastics. Heavy to light oil (15°-39° API) and gas have been discovered in Doba and Doseo basins. Source rocks are Early Cretaceous lacustrine shales, whereas reservoirs and seals are both Early and Late Cretaceous. Dominant structural styles are extensional and transtensional fault blocks, transpressional anticlines and flower structures. The existence of a total rift basin sediment volume of more than one million cubic kilometres with structured reservoir, source and seal rocks favours the generation, migration and entrapment of additional significant volumes of hydrocarbons in many of these basins.
The effect of cracking on the deflection basin of flexible pavements
NASA Astrophysics Data System (ADS)
Omar, Hadi Mohamed
Because of the rapid development of hardware and software during the past decade, it is now possible to use an analytical-empirical (or mechanistic) method of structural pavement evaluation on a routine basis. One reason for using this approach is the increased need for pavement maintenance and rehabilitation. To make the right choice from many potentially feasible maintenance and rehabilitation measures, the engineer must base his decision on a rational evaluation of the mechanical properties of the materials in the existing pavement structure. One of the parameters in terms of pavement response are the deflections; these are of interest to this particular study. The Falling Weight Deflectometer (FWD) has been developed specifically for the purpose of obtaining deflection measurements in order to determine the in-situ elastic moduli. The profile of the deflection at the surface of the pavement is known as the deflection basin, because it resembles a bowl-shaped depression. The magnitude of the deflections and the basin shape are functions of the number of layers making up the pavement cross section, their thicknesses, and their moduli values. A variety of multi-layered linear elastic pavement models are available for use at this present time. A general-purpose finite-element program called ANSYS developed by Swanson Analysis System is very powerful and is capable of solving a layered system such as the pavement. A finite element model was developed to study the effect of the crack on the predicted deflection bowls. A general-purpose finite-element program was used in this study due to its ability to solve this problem and because of the availability of the program. A hypothetical crack problem was assumed and modeled in different ways. The crack depth, crack width, and distance of the crack from the loading point were among the many parameters that were investigated. Considering the shape of the deflection basin, it is very important to study the effect of the crack on this bowl, when and where the cracks can be ignored, and when they would not play a significant effect. This study also addresses the importance of the field data and how the observed deflection basins compare with the predicted ones especially in aged pavements. This study has concluded that the location of a crack from the loading point is very significant to the deflection basin.
NASA Astrophysics Data System (ADS)
Spelz, R. M.; Ramirez-Zerpa, N. A.; Gonzalez-Fernandez, A.; Yarbuh, I.; Contreras, J.
2017-12-01
The Pacific-North America plate boundary along the Gulf of California is characterized by an array of right-stepping, right-lateral, transform faults connecting a series of pull-apart basins distributed along the gulf axis. Altogether, these structures accommodate an oblique-divergent component of deformation characterizing the modern tectonic regime along the gulf. The northern Pescadero complex, in the southern Gulf of California, is one of the deepest and probably least studied transtensional fault-termination basins in the gulf. The complex is bounded to the north and south by Atl and Farallon transform faults, respectively, and consists of two asymmetric, rhomboidal-shaped, basins with a series of intrabasinal high-angle normal faults and ramps connecting their depocenters. In this study we present preliminary results derived from the processing and analysis of 400 km of seismic reflection profiles, collected in 2006 onboard the R/V Francisco de Ulloa in northern Pescadero, providing new insights into the geology and internal structure of the basin. Northern Pescadero is a deep and narrow basin characterized by a maximum sedimentary infill of 1 km, and depths to the basin floor exceeding 3500 m. Deformation is chiefly accommodated by an array of self-parallel half-graben structures that appear to grow towards the northern flank of the basin. Faults-scarps located farther from the deformation axis appear to be more degraded, suggesting a progressively younger age of the half-grabens near the basin's depocenter. Another important feature revealed in the seismic images is the lack of sediments on top of the crystalline basement that floors the narrow central portion of the basin. In this area the reflectors at the basin's floor show a pronounced increase in amplitude and coherence, indicating the emplacement of magmatic extrusions. Likewise, in those areas with the greater sediment infill, the occurrence of high-amplitude reflectors, located 150 m below the seabed, and measuring several hundred of meters wide, suggests the presence of concordant saucer-shape intrusions (sills). These first order observations suggest that the northern Pescadero basin has evolved to develop a central trough floored by oceanic crust currently emplaced along a short and narrow ( 2.5 km wide) spreading ridge.
Evolution of the Rembrandt impact basin on Mercury.
Watters, Thomas R; Head, James W; Solomon, Sean C; Robinson, Mark S; Chapman, Clark R; Denevi, Brett W; Fassett, Caleb I; Murchie, Scott L; Strom, Robert G
2009-05-01
MESSENGER's second Mercury flyby revealed a ~715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.
The Lunar Crust: Global Structure and Signature of Major Basins
NASA Technical Reports Server (NTRS)
Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Lemoine, Frank G.
1996-01-01
New lunar gravity and topography data from the Clementine Mission provide a global Bouguer anomaly map corrected for the gravitational attraction of mare fill in mascon basins. Most of the gravity signal remaining after corrections for the attraction of topography and mare fill can be attributed to variations in depth to the lunar Moho and therefore crustal thickness. The large range of global crustal thickness (approx. 20-120 km) is indicative of major spatial variations in melting of the lunar exterior and/or significant impact-related redistribution. The 6l-km average crustal thickness, constrained by a depth-to-Moho measured during the Apollo 12 and 14 missions, is preferentially distributed toward the farside, accounting for much of the offset in center-of-figure from the center-of-mass. While the average farside thickness is 12 km greater than the nearside, the distribution is nonuniform, with dramatic thinning beneath the farside, South Pole-Aitken basin. With the global crustal thickness map as a constraint, regional inversions of gravity and topography resolve the crustal structure of major mascon basins to half wavelengths of 150 km. In order to yield crustal thickness maps with the maximum horizontal resolution permitted by the data, the downward continuation of the Bouguer gravity is stabilized by a three- dimensional, minimum-slope and curvature algorithm. Both mare and non-mare basins are characterized by a central upwarped moho that is surrounded by rings of thickened crust lying mainly within the basin rims. The inferred relief at this density interface suggests a deep structural component to the surficial features of multiring lunar impact basins. For large (greater than 300 km diameter) basins, moho relief appears uncorrelated with diameter, but is negatively correlated with basin age. In several cases, it appears that the multiring structures were out of isostatic equilibrium prior to mare emplacement, suggesting that the lithosphere was strong enough to maintain their state of stress to the present.
Insights on the Understanding of the Circum-Caribbean Region from Potential Field Data
NASA Astrophysics Data System (ADS)
Garcia-Reyes, A.; Dyment, J.; Thebault, E.
2017-12-01
During decades, the nature, geometry and evolution of the Caribbean geological provinces and their boundaries have been topic of discussion and controversy. Great strike-slip faulting in the northern boundaries of the plate, and folding and thrusting structures related with Cretaceous magmatism have been used as indicators of the emplacement of the Caribbean plate between the Northamerican and Southamerican plates at least from the Late Cretaceous, which is the most accepted hypothesis. The exotic origin of the Caribbean plate has also been supported by presence of radiolarites, fauna, ages from rocks sampled from drilling and oceanic paleo-currents analyses. The high thickness of the sediments in most of the basins, the absence of drilling wells reaching the acoustic basement and the absence of identifiable patterns of magnetic anomalies constitute the limitations for the interpretation from potential field data. Potential field data allows tracking contrasts in the physical properties between two geological bodies if they are laterally exhibited. Hence its use is suitable to characterise the seafloor fabric but also to better delineate the boundaries between the geological provinces. In this research we are providing an interpretation from vertical gradients of gravity and reprocessed magnetic anomalies over the Caribbean region with the purpose of making a contribution to the understanding of this area. We are also using magnetic anomalies to determine the paleolatitude over those areas where seafloor spreading related anomalies are observed. Our results led us to propose a conceptual model of the origin of the Caribbean plate. Our model relates the Venezuelan basin with the Cretaceous `not-so-quite' magnetic isochrons; it proposes that the Colombian, Venezuelan and Grenada basins have oceanic crustal affinity and it reinterprets the Beata and Aves ridges as reactivated fracture zones - respectively - in which a magmatic event occurred during or after its reactivation. Also, the model proposes at least two magmatic episodes: First, produced along the re-activated fracture zones and a second episode related with the Caribbean LIP. A structural interpretation of the observed features over the Yucatan basin, the Nicaragua rise, the Beata ridge, the Venezuelan basin and the Aves ridge is also provided.
Sweetkind, Donald S.; Fridrich, Christopher J.; Taylor, Emily
2001-01-01
Existing hydrologic models of the Death Valley region typically have defined the Cenozoic basins as those areas that are covered by recent surficial deposits, and have treated the basin-fill deposits that are concealed under alluvium as a single unit with uniform hydrologic properties throughout the region, and with depth. Although this latter generalization was known to be flawed, it evidently was made because available geologic syntheses did not provide the basis for a more detailed characterization. As an initial attempt to address this problem, this report presents a compilation and synthesis of existing and new surface and subsurface data on the lithologic variations between and within the Cenozoic basin fills of this region. The most permeable lithologies in the Cenozoic basin fills are freshwater limestones, unaltered densely welded tuffs, and little-consolidated coarse alluvium. The least permeable lithologies are playa claystones, altered nonwelded tuffs, and tuffaceous and clay-matrix sediments of several types. In all but the youngest of the basin fills, permeability probably decreases strongly with depth owing to a typically increasing abundance of volcanic ash or clay in the matrices of the clastic sediments with increasing age (and therefore with increasing depth in general), and to increasing consolidation and alteration (both hydrothermal and diagenetic) with increasing depth and age. This report concludes with a categorization of the Cenozoic basins of the Death Valley region according to the predominant lithologies in the different basin fills and presents qualitative constraints on the hydrologic properties of these major lithologic categories.
NASA Astrophysics Data System (ADS)
Fosdick, Julie C.; Graham, Stephan A.; Hilley, George E.
2014-12-01
Flexural subsidence in foreland basins is controlled by applied loads—such as topography, water/sediment, and subcrustal forces—and the mechanical properties of the lithosphere. We investigate the controls on subsidence observed within the Upper Cretaceous Magallanes retroarc foreland basin of southern South America to evaluate the impact of lateral variations in flexural rigidity due to Late Jurassic extension. Conventional elastic models cannot explain the observed basin deflection and thick accumulation of deep-water Cenomanian-Turonian basin strata. However, models in which the lithosphere has been previously thinned and deflects under topographic and sedimentary loads successfully reproduce regional subsidence patterns. Results satisfy paleobathymetric observations in the Magallanes Basin and suggest that lithospheric thinning is necessary to produce both long-wavelength and deep subsidence during Late Cretaceous basin evolution. Results indicate that elastic thickness decreases westward from 45-25 km in the distal foreland to 37-15 km beneath the foredeep. These findings are consistent with a westward reduction in crustal thickness associated with the Jurassic extensional history of the Patagonian lithosphere. Our results also show that sediment loading exerts an important control on regional deflection patterns and promotes a wider region of subsidence and reduced forebulge uplift. We propose that lateral variations in mechanical properties and large sediment loads restrict depocenter migration and may cause the foredeep to remain fixed for prolonged periods of time. These findings confirm that loading of thinned lithosphere imposes different mechanical controls on the flexural profile and have potential implications for other retroarc foreland basins characterized by earlier extensional histories.
NASA Astrophysics Data System (ADS)
Sun, Bin; Wang, Liangshu; Dong, Ping; Wu, YongJing; Li, Changbo; Hu, Bo; Wang, Chong
2012-11-01
The Hailar Basin is one of the typical basins among the NE China Basin Groups, which is situated in the east of East Asia Orogene between the Siberia Plate and the North China Plate. Based on the detailed analysis of magnetic, gravity, petrophysical, geothermal and seismological data, we separate the Gravity and Magnetic Anomalies (GMA) into four orders using Wavelet Multi-scale Decomposition (WMD). The apparent depths of causative sources were then assessed by Power Spectrum Analysis (PSA) of each order. Low-order wavelet detail anomalies were used to study the basin's basement structure such as major faults, the basement lithology, uplifts and depressions. High-order ones were used for the inversion of Moho and Curie discontinuities using the Parker method. The results show that the Moho uplifting area of the Hailar Basin is located at the NE part of the basin, the Curie uplifting area is at the NW part, and neither of them is consistent with the basin's sedimentary center. This indicates that the Hailar Basin may differ in basin building pattern from other middle and eastern basins of the basin groups, and the Hailar Basin might be of a passive type. When the Pacific Plate was subducting to NE China, the frontier of the plate lying on the mantle transition zone didn't pass through the Great Khingan Mountains region, so there is not an obvious magma upwelling or lithospheric extension in the Hailar Basin area. Finally, based on the seismological data and results of WMD, a probable 2D crust model is derived from an across-basin profile using the 2D forward modeling of the Bouguer gravity anomaly. The results agree with those from seismic inversion, suggesting WMD is suitable for identifying major crustal density interfaces.
Oil and gas fields in East Coast and Arctic basins of Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneley, R.A.
1984-09-01
The East Coast and Arctic basins of Canada have been under serious hydrocarbon exploration for over 20 years. Although the density of drilling is low, extensive seismic control has outlined a high proportion of the structures in these basins and the stratigraphic framework of the basins is known. From west to east, the basins include the Beaufort basin, the Sverdrup basin of the high Arctic and the adjacent Parry Island foldbelt, the rift basins of Baffin Bay, and the continental-margin basins offshore Labrador, the Grand Banks and the Scotian Shelf. Each of these basins contains oil and gas fields thatmore » typify, to some degree, the pools that may be anticipated in undrilled structures. Surprises, both good and bad, await the explorer. The physical environment of these Canadian basins ranges from severe to almost impossible. As exploration has proceeded, great strides have been made in coping with the physical environment; however, the costs are becoming increasingly onerous, and the appreciation is growing regarding the cost, risk and time that will be involved in developing production from those resources. Even from a national sense of supply security, the vast reserves of oil in the tar sands and in-situ recovery deposits of heavy oil in western Canada will provide a competitive ceiling that will limit future development of frontier basins to those where production costs are not significantly higher than those of the tar sands.« less
Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, Craig B.; Whiteman, Charles D.; Horel, John D.
2003-06-01
The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K)more » developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.« less
Daddow, Pamela B.
1986-01-01
Previous water level maps of shallow aquifers in the Powder River structural basin in Wyoming were based on water levels from wells completed in different stratigraphic intervals within thick sequences of sedimentary rocks. A potentiometric surface using water levels from a single aquifer had never been mapped throughout the basin. The sandstone aquifers in the Fort Union Formation of Paleocene age and the Wasatch Formation of Eocene age are discontinuous and lenticular, and do not extend even short distances. Coal aquifers are more continuous and the Wyodak-Anderson coal bed, in the Fort Union Formation, has been mapped in much of the Powder River structural basin in Wyoming. Water level altitudes in the Wyodak-Anderson coal bed and other stratigraphically equivalent coal beds were mapped to determine if they represent a continuous potentiometric surface in the Powder River structural basin. The potentiometric surface, except in the vicinity of the Wyodak mine east of Gillette, represents a premining condition as it was based on water level measurements made during 1973-84 that were not significantly affected by mining. The map was prepared in cooperation with the U.S. Bureau of Land Management. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara
2009-10-01
We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.
Metabolic principles of river basin organization.
Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea
2011-07-19
The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics.
NATURAL AND HUMAN FACTORS STRUCTURING FISH ASSEMBLAGES IN WEST VIRGINIA WADEABLE STREAMS
We surveyed fishes and environmental variables in 119 stream basins to identify natural and anthropogenic factors structuring fish assemblages. We collected fishes and physico-chemical variables using standardized EPA methods and compiled basin characteristics (e.g., land cover)...
Strong ground motion in the Taipei basin from the 1999 Chi-Chi, Taiwan, earthquake
Fletcher, Joe B.; Wen, K.-L.
2005-01-01
The Taipei basin, located in northwest Taiwan about 160 km from the epicenter of the Chi-Chi earthquake, is a shallow, triangular-shaped basin filled with low-velocity fluvial deposits. There is a strong velocity contrast across the basement interface of about 600 m/sec at a depth of about 600-700 m in the deeper section of the basin, suggesting that ground motion should be amplified at sites in the basin. In this article, the ground-motion recordings are analyzed to determine the effect of the basin both in terms of amplifications expected from a 1D model of the sediments in the basin and in terms of the 3D structure of the basin. Residuals determined for peak acceleration from attenuation curves are more positive (amplified) in the basin (average of 5.3 cm/ sec2 compared to - 24.2 cm/sec2 for those stations outside the basin and between 75 and 110 km from the surface projection of the faulted area, a 40% increase in peak ground acceleration). Residuals for peak velocity are also significantly more positive at stations in the basin (31.8 cm/sec compared to 20.0 cm/sec out). The correlation of peak motion with depth to basement, while minor in peak acceleration, is stronger in the peak velocities. Record sections of ground motion from stations in and around the Taipei basin show that the largest long-period arrival, which is coherent across the region, is strongest on the vertical component and has a period of about 10-12 sec. This phase appears to be a Rayleigh wave, probably associated with rupture at the north end of the Chelungpu fault. Records of strong motion from stations in and near the basin have an additional, higher frequency signal: nearest the deepest point in the basin, the signal is characterized by frequencies of about 0.3 - 0.4 Hz. These frequencies are close to simple predictions using horizontal layers and the velocity structure of the basin. Polarizations of the S wave are mostly coherent across the array, although there are significant differences along the northwest edge that may indicate large strains across that edge of the basin. The length of each record after the main S wave are all longer at basin stations compared to those outside. This increase in duration of ground shaking is probably caused by amplification of ground motion at basin stations, although coda Q (0.67 - 1.30 Hz) is slightly larger inside the basin compared to those at local stations outside the basin. Durations correlate with depth to basement. These motions are in the range that can induce damage in buildings and may have contributed to the structural collapse of multistory buildings in the Taipei basin.
NASA Astrophysics Data System (ADS)
Dooley, T. P.; Monastero, F. C.; McClay, K. R.
2007-12-01
Results of scaled physical models of a releasing bend in the transtensional, dextral strike-slip Coso geothermal system located in the southwest Basin and Range, U.S.A., are instructive for understanding crustal thinning and heat flow in such settings. The basic geometry of the Coso system has been approximated to a 30? dextral releasing stepover. Twenty-four model runs were made representing successive structural iterations that attempted to replicate geologic structures found in the field. The presence of a shallow brittle-ductile transition in the field known from a well-documented seismic-aseismic boundary, was accommodated by inclusion of layers of silicone polymer in the models. A single polymer layer models a conservative brittle-ductile transition in the Coso area at a depth of 6 km. Dual polymer layers impose a local elevation of the brittle-ductile transition to a depth of 4 km. The best match to known geologic structures was achieved with a double layer of silicone polymers with an overlying layer of 100 µm silica sand, a 5° oblique divergent motion across the master strike-slip faults, and a thin-sheet basal rubber décollement. Variation in the relative displacement of the two base plates resulted in some switching in basin symmetry, but the primary structural features remained essentially the same. Although classic, basin-bounding sidewall fault structures found in all pull-apart basin analog models formed in our models, there were also atypical complex intra-basin horst structures that formed where the cross-basin fault zone is situated. These horsts are flanked by deep sedimentary basins that were the locus of maximum crustal thinning accomplished via high-angle extensional and oblique-extensional faults that become progressively more listric with depth as the brittle-ductile transition was approached. Crustal thinning was as much as 50% of the original model depth in dual polymer models. The weak layer at the base of the upper crust appears to focus brittle deformation and facilitate formation of listric normal faults. The implications of these modeling efforts are that: 1) Releasing stepovers that have associated weak upper crust will undergo a more rapid rate of crustal thinning due to the strain focusing effect of this ductile layer; 2) The origin of listric normal faults in these analog models is related to the presence of the weak, ductile layer; and, 3) Due to high dilatency related to major intra-basin extension these stepover structures can be the loci for high heat flow.
Macaya-Sanz, D; Heuertz, M; López-de-Heredia, U; De-Lucas, A I; Hidalgo, E; Maestro, C; Prada, A; Alía, R; González-Martínez, S C
2012-07-01
Recent phylogeographic studies have elucidated the effects of Pleistocene glaciations and of Pre-Pleistocene events on populations from glacial refuge areas. This study investigates those effects in riparian trees (Populus spp.), whose particular features may convey enhanced resistance to climate fluctuations. We analysed the phylogeographic structure of 44 white (Populus alba), 13 black (Populus nigra) and two grey (Populus x canescens) poplar populations in the Iberian Peninsula using plastid DNA microsatellites and sequences. We also assessed fine-scale spatial genetic structure and the extent of clonality in four white and one grey poplar populations using nuclear microsatellites and we determined quantitative genetic differentiation (Q(ST) ) for growth traits in white poplar. Black poplar displayed higher regional diversity and lower differentiation than white poplar, reflecting its higher cold-tolerance. The dependence of white poplar on phreatic water was evidenced by strong differentiation between the Atlantic and Mediterranean drainage basins and among river basins, and by weaker isolation by distance within than among river basins. Our results suggest confinement to the lower river courses during glacial periods and moderate interglacial gene exchange along coastlines. In northern Iberian river basins, white poplar had lower diversity, fewer private haplotypes and larger clonal assemblies than in southern basins, indicating a stronger effect of glaciations in the north. Despite strong genetic structure and frequent asexual propagation in white poplar, some growth traits displayed adaptive divergence between drainage and river basins (Q(ST) >F(ST)), highlighting the remarkable capacity of riparian tree populations to adapt to regional environmental conditions. © 2012 Blackwell Publishing Ltd.
Vitorino, Carla A; Nogueira, Fabrícia; Souza, Issakar L; Araripe, Juliana; Venere, Paulo C
2017-01-01
The arapaima, Arapaima gigas , is a fish whose populations are threatened by both overfishing and the ongoing destruction of its natural habitats. In the Amazon basin, varying levels of population structure have been found in A. gigas , although no data are available on the genetic diversity or structure of the populations found in the Araguaia-Tocantins basin, which has a topographic profile, hydrological regime, and history of fishing quite distinct from those of the Amazon. In this context, microsatellite markers were used to assess the genetic diversity and connectivity of five wild A. gigas populations in the Araguaia-Tocantins basin. The results of the analysis indicated low levels of genetic diversity in comparison with other A. gigas populations, studied in the Amazon basin. The AMOVA revealed that the Arapaima populations of the Araguaia-Tocantins basin are structured significantly. No correlation was found between pairwise F ST values and the geographical distance among populations. The low level of genetic variability and the evidence of restricted gene flow may both be accounted for by overfishing, as well as the other human impacts that these populations have been exposed to over the years. The genetic fragility of these populations demands attention, given that future environmental changes (natural or otherwise) may further reduce these indices and eventually endanger these populations. The results of this study emphasize the need to take the genetic differences among the study populations into account when planning management measures and conservation strategies for the arapaima stocks of the Araguaia-Tocantins basin.
Vitorino, Carla A.; Nogueira, Fabrícia; Souza, Issakar L.; Araripe, Juliana; Venere, Paulo C.
2017-01-01
The arapaima, Arapaima gigas, is a fish whose populations are threatened by both overfishing and the ongoing destruction of its natural habitats. In the Amazon basin, varying levels of population structure have been found in A. gigas, although no data are available on the genetic diversity or structure of the populations found in the Araguaia-Tocantins basin, which has a topographic profile, hydrological regime, and history of fishing quite distinct from those of the Amazon. In this context, microsatellite markers were used to assess the genetic diversity and connectivity of five wild A. gigas populations in the Araguaia-Tocantins basin. The results of the analysis indicated low levels of genetic diversity in comparison with other A. gigas populations, studied in the Amazon basin. The AMOVA revealed that the Arapaima populations of the Araguaia-Tocantins basin are structured significantly. No correlation was found between pairwise FST values and the geographical distance among populations. The low level of genetic variability and the evidence of restricted gene flow may both be accounted for by overfishing, as well as the other human impacts that these populations have been exposed to over the years. The genetic fragility of these populations demands attention, given that future environmental changes (natural or otherwise) may further reduce these indices and eventually endanger these populations. The results of this study emphasize the need to take the genetic differences among the study populations into account when planning management measures and conservation strategies for the arapaima stocks of the Araguaia-Tocantins basin. PMID:29114261
Advanced fitness landscape analysis and the performance of memetic algorithms.
Merz, Peter
2004-01-01
Memetic algorithms (MAs) have demonstrated very effective in combinatorial optimization. This paper offers explanations as to why this is so by investigating the performance of MAs in terms of efficiency and effectiveness. A special class of MAs is used to discuss efficiency and effectiveness for local search and evolutionary meta-search. It is shown that the efficiency of MAs can be increased drastically with the use of domain knowledge. However, effectiveness highly depends on the structure of the problem. As is well-known, identifying this structure is made easier with the notion of fitness landscapes: the local properties of the fitness landscape strongly influence the effectiveness of the local search while the global properties strongly influence the effectiveness of the evolutionary meta-search. This paper also introduces new techniques for analyzing the fitness landscapes of combinatorial problems; these techniques focus on the investigation of random walks in the fitness landscape starting at locally optimal solutions as well as on the escape from the basins of attractions of current local optima. It is shown for NK-landscapes and landscapes of the unconstrained binary quadratic programming problem (BQP) that a random walk to another local optimum can be used to explain the efficiency of recombination in comparison to mutation. Moreover, the paper shows that other aspects like the size of the basins of attractions of local optima are important for the efficiency of MAs and a local search escape analysis is proposed. These simple analysis techniques have several advantages over previously proposed statistical measures and provide valuable insight into the behaviour of MAs on different kinds of landscapes.
NASA Astrophysics Data System (ADS)
Horton, B. K.; Fuentes, F.
2015-12-01
Andean deformation and basin evolution in the Malargüe fold-thrust belt of western Argentina (34-36°S) has been dominated by basement faults influenced by pre-existing Mesozoic rift structures of the hydrocarbon-rich Neuquen basin. However, the basement structures diverge from classic inversion structures, and the associated retroarc basin system shows a complex Mesozoic-Cenozoic history of mixed extension and contraction, along with an enigmatic early Cenozoic stratigraphic hiatus. New results from balanced structural cross sections (supported by industry seismic, well data, and surface maps), U-Pb geochronology, and foreland deposystem analyses provide improved resolution to examine the duration and kinematic evolution of Andean mixed-mode deformation. The basement structures form large anticlines with steep forelimbs and up to >5 km of structural relief. Once the propagating tips of the deeper basement faults reached cover strata, they fed slip to shallow thrust systems that were transported in piggyback fashion by newly formed basement structures, producing complex structural relationships. Detrital zircon U-Pb ages for the 5-7 km-thick basin fill succession reveal shifts in sedimentation pathways and accumulation rates consistent with (1) local basement sources during Early-Middle Jurassic back-arc extension, (2) variable cratonic and magmatic arc sources during Late Jurassic-Cretaceous postrift thermal subsidence, and (3) Andean arc and thrust-belt sources during irregular Late Cretaceous-Cenozoic shortening. Although pulses of flexural subsidence can be attributed to periods of fault reactivation (inversion) and geometrically linked thin-skinned thrusting, fully developed foreland basin conditions were only achieved in Late Cretaceous and Neogene time. Separating these two contractional episodes is an Eocene-lower Miocene (roughly 40-20 Ma) depositional hiatus within the Cenozoic succession, potentially signifying forebulge passage or neutral to extensional conditions during a transient retreating-slab configuration along the southwestern margin of South America.
Asymmetric Distribution of Lunar Impact Basins Caused by Variations in Target Properties
NASA Technical Reports Server (NTRS)
Miljkovic, Katarina; Wieczorek, Mark A.; Collins, Gareth S.; Laneuville, Matthieu; Neumann, Gregory A.; Melosh, H. Jay; Solomon, Sean C.; Phillips, Roger J.; Smith, David E.; Zuber, Maria T.
2014-01-01
Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and upper mantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins up to two times larger than similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner Solar system impact bombardment.
NASA Technical Reports Server (NTRS)
Miljkovic, Katarina; Wieczorek, Mark; Collins, Gareth S.; Laneuville, Matthieu; Neumann, Gregory A.; Melosh, H. Jay; Solomon, Sean C.; Phillips, Roger J.; Smith, David E.; Zuber, Maria T.
2014-01-01
Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and uppermantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins up to two times larger than similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner Solar system impact bombardment
Juckem, Paul F.
2007-01-01
Population growth in the St. Croix River Basin in Minnesota and Wisconsin has intensified concerns of county resource managers and the National Park Service, which is charged with protecting the St. Croix National Scenic Riverway, about the potential for ground-water contamination in the basin. This report describes a previously developed method that was adapted to illustrate potential ground-water-contamination susceptibility in the St. Croix River Basin. The report also gives an estimate of ground-water-residence time and surface-water/ground-water interaction as related to natural attenuation and movement of contaminants in five tributary basins. A ground-water-contamination-susceptibility map was adapted from a state-wide map of Wisconsin to the St. Croix River Basin by use of well-driller construction records and regional maps of aquifer properties in Minnesota and Wisconsin. Measures of various subsurface properties were combined to generate a spatial index of susceptibility. The subjective index method developed for the State of Wisconsin by Schmidt (1987) was not derived from analyses of water-quality data or physical processes. Nonetheless, it was adapted for this report to furnish a seamless map across state boundaries that would be familiar to many resource managers. Following this method, areas most susceptible to contamination appear to have coarse-grained sediments (sands or gravels) and shallow water tables or are underlain by carbonate-bedrock aquifers. The least susceptible areas appear to have fine-grained sediments and deep water tables. If an aquifer becomes contaminated, the ground-water-residence time can affect potential natural attenuation along the ground-water-flow path. Mean basin ground-water-residence times were computed for the Apple, Kettle, Kinnickinnic, Snake and Sunrise River Basins, which are tributary basins to the St. Croix Basin, by use of average aquifer properties of saturated thickness, porosity, and recharge rates. The Apple River Basin had the shortest mean ground-water-residence times (20-120 years), owing largely to the moderate saturated thickness and high recharge rate in the basin. The Kinnickinnic and Sunrise River Basins had the longest mean residence times (60-350 and 70-390 years, respectively) chiefly because of the relatively large saturated thickness of the basins. Owing to limitations of the residence-time calculations, actual ground-water-residence times will vary around the mean values within each basin and may range from days or weeks in karst carbonate aquifers to millennia in deep confined sandstone aquifers. Areas of relatively short residence time (less than the median residence time in each basin) were identified by use of ground-water-flow models for each of the five tributary basins. Results of simulations show that these areas, in which contaminants may have relatively less time for natural attenuation along the short flow paths, generally occur near streams and rivers where ground water discharges to the surface. Finally, the ground-water-flow models were used to simulate ground-water/surface-water interaction in the five tributary basins. Results of simulations show that some lakes and reservoirs leak surface water into the ground-water-flow system on their downgradient side, where the surface-water outflow has been restricted by a dam or a naturally constricted outlet. These locations are noteworthy because contaminated surface waters could potentially enter the ground-water-flow system at these locations.
NASA Astrophysics Data System (ADS)
Lee, Sang-Mook; Kim, Yoon-Mi
2016-04-01
Marginal basins locate between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center (manifested by the presence of distinct seafloor magnetic anomaly patterns) to those with less obvious zones of extension and a broad magmatic emplacement most likely in the lower crust. Such difference in the style of back-arc basin formation may lead to marked difference in crustal structure in terms of its overall thickness and spatial variations. The Ulleung Basin, one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental rifting end-member of back-arc opening. Although a great deal of work has been conducted on the sedimentary sections in the last several decades, the deep crustal sections have not been systematically investigated for long time, and thus the structure and characteristics of the crust remain poorly understood. This study examines the marine gravity anomalies of the Ulleung Basin in order to understand the crustal structure using crucial sediment-thickness information. Our analysis shows that the Moho depth in general varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust is more or less the same (10-12 km), thus by varying only about 10-20% of the total thickness, contrary to the previous impression. The almost-uniformly-thick crust that is thicker than a normal oceanic crust (~ 7 km) is consistent with previous observations using ocean bottom seismometers and recent deep seismic results from the nearby Yamato Basin. Another important finding is that small residual mantle gravity anomaly highs exist in the northern part of the basin. These highs are aligned in the NNE-SSW direction which correspond to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that, though by a small degree, they are a consequence of localized extension and extra crustal thinning at the time of basin formation. Alternative explanation is that they are the result of a small post-rift underplating at the base of the crust. Two important processes appear to have shaped the Ulleung Basin following its formation: post-rifting magmatism which occurred in the north, especially in the northeast sections of the Ulleung Basin, and the deflection of crust in response to preferential sediment loading towards the south. The median high in the basin may be a consequence of the flexural bending. Based on our evidence for almost-uniformly-thick crust, we argue that, unlike many other rift-dominated basins which exhibit large variations in crustal thickness, decompressional melting that took place during basin extension resulted in a widespread magmatic emplacement that not only smoothed but also enhanced the crustal thickness.
Bergamaschi, Brian A.; Kalve, Erica; Guenther, Larry; Mendez, Gregory O.; Belitz, Kenneth
2005-01-01
The ability to rapidly, reliably, and inexpensively characterize sources of dissolved organic material (DOM) in watersheds would allow water management agencies to more quickly identify problems in water sources, and to more efficiently allocate water resources by, for example, permitting real-time identification of high-quality water suitable for ground-water recharge, or poor-quality water in need of mitigation. This study examined the feasibility of using easily measurable intrinsic optical properties' absorbance and fluorescence spectra, as quantitative indicators of DOM sources and, thus, a predictor of water quality. The study focused on the Santa Ana River Basin, in southern California, USA, which comprises an area of dense urban development and an area of intense dairy production. Base flow in the Santa Ana Basin is primarily tertiary treated wastewater discharge. Available hydrologic data indicate that urban and agricultural runoff degrades water quality during storm events by introducing pathogens, nutrients, and other contaminants, including significant amounts of DOM. These conditions provide the basis for evaluating the use of DOM optical properties as a tracer of DOM from different sources. Sample spectra representing four principal DOM sources were identified among all samples collected in 1999 on the basis of basin hydrology, and the distribution of spectral variability within all the sample data. A linear mixing model provided quantitative estimates of relative endmember contribution to sample spectra for monthly, storm, and diurnal samples. The spectral properties of the four sources (endmembers), Pristine Water, Wastewater, Urban Water, and Dairy Water, accounted for 94 percent of the variability in optical properties observed in the study, suggesting that all important DOM sources were represented. The scale and distribution of the residual spectra, that not explained by the endmembers, suggested that the endmember spectra selected did not adequately represent Urban Water base flow. However, model assignments of sources generally agreed well with those expected, based on sampling location and hydrology. The results suggest that with a fuller characterization of the endmember spectra, analysis of optical properties will provide rapid quantitative estimates of the relative contribution of DOM sources in the Santa Ana Basin.
NASA Astrophysics Data System (ADS)
Flechsig, C.; Schuetze, C.; Bussert, R.
2008-12-01
The mofette field of Hartoušov is located in the Cheb Basin, a shallow Neogene intracontinental basin in Central Europe. The north-eastern part of the Cheb Basin is one of the most seismically active regions of Central Europe. Seismic activity in the Cheb Basin has mainly a swarm-like character. The numerous cold CO2 emanations (>99 Vol.% CO2) at the surface of the basin are supposed to be generally connected to the seismic activity and to stem from the upper mantle. The Hartoušov mofette field has been investigated by combining geophysical measurements (geoelectrical resistivity tomography, self potential) with sedimentological studies (grain size, Corg, mineralogy) and soil gas (CO2 flux and CO2 concentration) data. Key question of the research was to evaluate the structural and sedimentological control at a CO2 degassing location. The investigations reveal a positive correlation between areas of high soil gas (CO2) concentration and flux with geophysical anomalies (negative self potential, positive structures of low electrical resistivity) as well as with specific sediment properties (content of pyrite and organic material, occurrence of dispersed pebbles, uplifted clay layer). These features are thought to be directly or indirectly related to the magmatic caused CO2 flow. Soil gas (CO2) measurements indicate areas of high CO2 content to be marked by anomalous vegetation patterns. These anomalies spread out with a linear trend, suggesting a fault control on gas ascent. Places of highest gas flow form small hummocks, with minor depressions on top. Negative geoelectrical self potentials at such locations were interpreted considering as having been caused by a downward movement of the meteoric water balancing the upward CO2 flux. The top of a pre-Quaternary clay-rich unit with a high content of smectite is highest in the location nearest to the mofette showing the most intense CO2 emanation. Most probably the clays form a domal feature below this mofette, as confirmed by the 3-D geoelectric measurements by low electrical resistivities. The driving force behind the updoming of the clays might be the pressure of uprising CO2. Additionally, the more intense swelling of smectite due to higher rates of fluid flow at these locations might also contribute to this phenomenon. Isolated quartz pebbles dispersed in fine-grained sediments could have been transported upward by gas jets bonded to vents during periods or events of intense gas emanation. The model for the sedimentation at the active mofettes has to consider its bonding to deep-seated faults, the presence of sediment deformation structures due to gas pressure, upward transport of sediment particles by gas jets and reducing conditions caused by the magmatic CO2 flux.
Craigg, Steven D.; Dam, W.L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.
1990-01-01
This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), Menefee Formation (Levings and others, 1990), and Cliff House Sandstone (Thorn and others, 1990), in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Point Lookout Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's database, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Point Lookout Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less areally extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the structural basin), 180 miles long, and has an area of about 19,400 square miles. Altitudes in the study area range from about 4,500 feet in San Juan County, Utah, to about 11,000 feet in Cibola County, New Mexico. Annual precipitation in the high mountainous areas along the north and east margins of the basin is as much as 45 inches, whereas annual precipitation in the lower altitude, central basin is generally less than 8 inches. Mean annual precipitation in the study area is about 12 inches.Data obtained from documents published by the U.S. Bureau of the Census, 1980 and 1985, were used to estimate the population of the study area. The population of the study area in 1970 was estimated to be about 134,000. The population rose to about 194,000 in 1980, 212,000 in 1982, 221,000 in 1984, and then fell to about 210,000 in 1985. The economy of the basin is supported by exploration and development of petroleum, natural gas, coal, and uranium resources; urban enterprise, farming "and ranching; tourism; and recreation. The rise and fall in population were related to changes in the economic strength of the mining, petroleum, and natural-gas industries, and support services. Uranium mining and milling activities grew rapidly until the late 1970's when most uranium-mining activity ended in the study area. Likewise, the oil and gas industry prospered until about 1983 and then declined rapidly, also affecting many jobs in support industries.
Thorn, Conde R.; Levings, G.W.; Craigg, S.D.; Dam, W.L.; Kernodle, J.M.
1990-01-01
This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Point Lookout Sandstone (Craigg and others, 1990), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), and Menefee Formation (Levings and others, 1990) in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Cliff House Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Cliff House Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the structural basin), 180 miles long, and has an area of about 19,400 square miles. Altitudes in the study area range from about 4,500 feet in San Juan County, Utah, to about 11,000 feet in Cibola County, New Mexico. Annual precipitation in the high mountainous areas along the north and east margins of the basin is as much as 45 inches, whereas annual precipitation in the lower altitude, central basin is generally less than 8 inches. Mean annual precipitation in the study area is about 12 inches. Data obtained from documents published by the U.S. Bureau of the Census, 1980 and 1985, were used to estimate the population of the study area. The population of the study area in 1970 was estimated to be about 134,000. The population rose to about 194,000 in 1980, 212,000 in 1982, 221,000 in 1984, and then fell to about 210,000 in 1985. The economy of the basin is supported by exploration and development of petroleum, natural gas, coal, and uranium resources; urban enterprise, farming and ranching; tourism; and recreation. The rise and fall in population were related to changes in the economic strength of the mining, petroleum, and natural-gas industries, and support services. Uranium mining and milling activities grew rapidly until the late 1970's when most uranium-mining activity ended in the study area. Likewise, the oil and gas industry prospered until about 1983 and then declined rapidly, also affecting many jobs in support industries.
Aerosol climatology over Mexico City basin: Characterization of their optical properties
NASA Astrophysics Data System (ADS)
Carabali-Sandoval, Giovanni; Valdéz-Barrón, Mauro; Bonifaz-Alfonso, Roberto; Riveros-Rosas, David; Estévez, Héctor
2015-04-01
Climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and size parameters were analyzed using a 15-year (1999-2014) data set from AErosol RObotic NETwork (AERONET) observations over Mexico City basin. Since urban air pollution is one of the biggest problems that face this megacity, many studies addressing these issues have been published. However few studies have examined the climatology of aerosol taking into account their optical properties over long-time period. Pollution problems in Mexico City have been generated by the daily activities of some 21 million people coupled with the vast amount of industry located within the city's metropolitan area. Another contributing factor is the unique geographical setting of the basin encompassing Mexico City. The basin covers approximately 5000 km2 of the Mexican Plateau at an average elevation of 2250 m above sea level (ASL) and is surrounded on three sides by mountains averaging over 3000 m ASL. In this work we present preliminary results of aerosol climatology in Mexico City.
NASA Astrophysics Data System (ADS)
Commendatore, Pasquale; Kubin, Ingrid; Sushko, Iryna
2018-05-01
We consider a three-region developing economy with poor transport infrastructures. Two models are related to different stages of development: in the first all regions are autarkic; in the second two of the regions begin to integrate with the third region still not accessible to trade. The properties of the two models are studied also considering the interplay between industry location and trade patterns. Dynamics of these models are described by two-dimensional piecewise smooth maps, characterized by multistability and complex bifurcation structure of the parameter space. We obtain analytical results related to stability of various fixed points and illustrate several bifurcation structures by means of two-dimensional bifurcation diagrams and basins of coexisting attractors.
Gettings, Mark E.
2002-01-01
High resolution aeromagnetic survey data flown at 250 m above the terrain and 250 m line spacing over the Santa Cruz Valley and the surrounding Tumacacori, Patagonia, and Santa Rita Mountains has been interpreted by correlation of the magnetic anomaly field and various derivative maps with geologic maps. Measurements of in-situ magnetic properties of several of the map units determined whether or not mapped lithologies were responsible for observed anomalies. Correlation of the magnetic anomaly field with mapped geology shows that numerous map units of volcanic and intrusive rocks from Jurassic Middle Tertiary in age are reversely polarized, some of which have not been previously reported. Trends derived from the magnetic anomaly data correlate closely with structures from major tectonic events in the geologic history of the area including Triassic-Jurassic crustal accretion and magmatism, Laramide magmatism and tectonism, northeast-southwest Mid-Tertiary extension, and east-west Basin and Range extension. Application of two textural measures to the magnetic anomaly data, number of peaks and troughs per km (a measure of roughness) and Euclidean length per km (a measure of amplitude), delineated areas of consistent magnetic anomaly texture. These measures were successful at the delineation of areas of consistent magnetic lithology both on the surface and in the subsurface beneath basin fill. Several areas of basement prospective for mineral resources beneath basin fill were identified.
Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.
Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson
1979-01-01
Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.
NASA Astrophysics Data System (ADS)
Shimizu, S.; Masato, N.; Miura, S.; Suetsugu, D.
2017-12-01
Ontong Java Plateau(OJP) in the western Pacific Ocean is one of the largest oceanic plateau in the world. Radioactive ages of drilling samples indicate that the most part of the OJP was emplaced about 122 Ma (Mahoney et al., 1993). Taylor (2006) proposed that the OJP formed as a single large volcanic province together with the Manihiki and Hikurangi plateaus. OJP is surrounding by East Mariana, Pigafetta, Nauru, Ellice, Stewart, and Lyra basins. The East Mariana and Pigafetta basins were formed at the Pacific-Izanagi ridge and the Nauru basin was formed at Pacific-Phoenix ridges (Nakanishi et al., 1992). The tectonic history of the Ellice, Stewart, and Lyra basins is still unknown because of lack of magnetic anomaly lineations. Tectonic setting during the OJP formation is thus a matter of controversy. To expose the tectonic setting of the Ellice, Stewart, and Lyra basins, we conducted the Multi-Channel Seismic (MCS) survey in the basins during the research cruise by R/V Mirai of JAMSTEC in 2014. We present our preliminary results of the MCS survey in the Stewart basin(SB) and Ellice Basin(EB). After the regular data processing, we compared the seismic facies of MCS profile with DSDP Site 288 and ODP Site 1184 to assign ages to seismic reflectors. Our processing exposed several remarkable structures in the basins. The graben structures deformed only the igneous basement in the northwestern and northeastern and southwestern margins of the SB. This suggests the graben structures were formed before sedimentary layer deposited. Taylor (2006) proposed that the basin was formed by the NW-SE rifting during the separation of OJP and Manihiki Plateau around 120 Ma. Neal (1997) proposed that the NE-SW rifting formed the basin around 80 Ma. Our study supports the rifting model proposed by Neal et al. (1997) because the displacement of graben in northeastern and southwestern margins of the SB is larger than that in northwestern of the SB. We found several igneous diapirs in the SB and EB. Several diapirs intrude into Oligocene sediments, implying that the volcanism occurred after the formation of the basins. On the southern edge of SB is the outer rise called Stewart Arch (Phinney et al., 1999). We identified normal faults near the Stewart Arch. Those faults caused by the plate bending owing to the subduction of the Pacific plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini; Paul Aharon; Donald A. Goddard
2006-05-26
The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.« less
NASA Astrophysics Data System (ADS)
Henrys, S. A.; Fraser, D. R. A.; Gorman, A. R.; Pecher, I. A.; Crutchley, G. J.
2016-12-01
The Pegasus Basin on the east coast of New Zealand's North Island in the southern part of the Hikurangi Margin is a frontier petroleum basin that is also expected to contain significant gas hydrate deposits. Extensive faulting in the basin has lead to the development of many interesting and unique focused accumulations of gas hydrates. A 2D seismic dataset acquired in 2009/2010 was reprocessed to examine the gas hydrate systems within the basin. Here, we present one of the more interesting hydrate features in the dataset: a presumed gas chimney within the regional gas hydrate stability zone at the centre of a roughly triangular (in 2D) region of low reflectivity, approximately 8 km wide, that is interpreted to be the result of acoustic blanking. Using automated high density velocity picking, the chimney structure is interpreted to be cored by a 200 m wide low-velocity zone which contains free gas and is flanked by high-velocity bands that are 200-400 m wide. The high-velocity zone is interpreted to correspond to concentrated hydrate deposits within the sedimentary pore spaces. Amplitude vs offset (AVO) and inversion techniques have been applied and the results of this work correspond well to the high-density velocity analyses. The analysis methods all indicate zones of free gas below the Bottom Simulating Reflection (BSR) and within the chimney. Areas of increased hydrate concentrations, including at the base of the gas hydrate stability zone, were also identified. A model for fluid flow and how free gas within the chimney at the centre of the blanking zone is converted to hydrate is discussed. The potential size of the gas hydrate resource present in this feature can be estimated based on the seismic velocities and physical properties determined by inversion.
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.
2010-12-01
Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.
Joint Interpretation of Magnetotelluric and Gravimetric Data from the South American Paraná Basin
NASA Astrophysics Data System (ADS)
Santos, E. B.; Santos, H. B.; Vitorello, I.; Pádua, M. B.
2013-05-01
The Paraná Basin is a large sedimentary basin in central-eastern South America that extends through Brazil, Paraguay, Uruguay and Argentina. Evolved completely over the South American continental crust, this Paleozoic basin is filled with sedimentary and volcanic rocks deposited from the Silurian to the Cretaceous, when a significant basaltic effusion covered almost the entire area of the basin. A series of superposed sedimentary and volcanic rock layers were laid down under the influence of different tectonic settings, probably originated from distant collisional dynamics of continental boards that led to the amalgamation of Gondwanaland. The current boundaries of the basin can be the result of issuing erosional or of tectonic origin, such as the building up of large arches and faults. To evaluate the deep structural architecture of the lithosphere under a sedimentary basin is a great challenge, requiring the integration of different geophysical and geological studies. In this paper, we present the resulting Paraná Basin lithospheric model, obtained from processing and inversion of broadband and long-period magnetotelluric soundings along an E-W profile across the central part of the basin, complemented by a qualitative joint interpretation of gravimetric data, in order to obtain a more precise geoelectric model of the deep structure of the region.
Hydrogeologic Framework of the Salt Basin, New Mexico and Texas
NASA Astrophysics Data System (ADS)
Ritchie, A. B.; Phillips, F. M.
2010-12-01
The Salt Basin is a closed drainage basin located in southeastern New Mexico (Otero, Chaves, and Eddy Counties), and northwestern Texas (Hudspeth, Culberson, Jeff Davis, and Presidio Counties), which can be divided into a northern and a southern system. Since the 1950s, extensive groundwater withdrawals have been associated with agricultural irrigation in the Dell City, Texas region, just south of the New Mexico-Texas border. Currently, there are three major applications over the appropriations of groundwater in the Salt Basin. Despite these factors, relatively little is known about the recharge rates and storage capacity of the basin, and the estimates that do exist are highly variable. The Salt Basin groundwater system was declared by the New Mexico State Engineer during 2002 in an attempt to regulate and control growing interest in the groundwater resources of the basin. In order to help guide long-term management strategies, a conceptual model of groundwater flow in the Salt Basin was developed by reconstructing the tectonic forcings that have affected the basin during its formation, and identifying the depositional environments that formed and the resultant distribution of facies. The tectonic history of the Salt Basin can be divided into four main periods: a) Pennsylvanian-to-Early Permian, b) Mid-to-Late Permian, c) Late Cretaceous, and d) Tertiary-to-Quaternary. Pennsylvanian-to-Permian structural features affected deposition throughout the Permian, resulting in three distinct hydrogeologic facies: basin, shelf-margin, and shelf. Permian shelf facies rocks form the primary aquifer within the northern Salt Basin, although minor aquifers occur in Cretaceous rocks and Tertiary-to-Quaternary alluvium. Subsequent tectonic activity during the Late Cretaceous resulted in the re-activation of many of the earlier structures. Tertiary-to-Quaternary Basin-and-Range extension produced the current physiographic form of the basin.
NASA Astrophysics Data System (ADS)
Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi
2018-02-01
The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.
NASA Astrophysics Data System (ADS)
Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.
2016-12-01
The Southeastern United States is an ideal location to study the interactions between continental collision, extensive but short-lived magmatism, and continental rifting. Continental collision during the Alleghenian Orogeny ( 290 Ma) formed the supercontinent Pangea. Extension leading to the breakup of Pangea began 230 Ma, forming the South Georgia Basin and other rift basins. The extensive Central Atlantic Magmatic Province (CAMP) magmatism was emplaced at 200 Ma, and continental separation occurred afterwards. During these processes, part of the African continent was added to North America. Prior work has raised questions including (1) the location and geometry of the suture zone and implications for the style of collision (thin-skinned versus thick-skinned), (2) the role of pre-existing structures on later rifting, and (3) the distribution of magmatism, and possible relationships between magmatism and rifting. To address these questions, we present preliminary velocity models for the 400-km-long refraction seismic line from the SUwanee Suture and GA Rift basin experiment (SUGAR) Line 2. This line is central to CAMP magmatism, and crosses the South Georgia rift basin and two hypothesized locations for the ancient suture zone. The data were collected in August 2015 by a team of over 40 students and scientists. Fifteen shots spaced at 20-40 km were recorded by 1981 Texans spaced at 250 m. We observe refractions from the basin, crust, and upper mantle, and wide-angle reflections from the base of the sediments, within the crust, and from the Moho. Prominent mid crustal reflections may arise from the top of elevated lower crustal velocities and possible lower crustal layering. The starting velocity model and constraints on the upper sedimentary basin velocity structure are obtained through forward modeling, which show basin sediment thickness increasing to the South. We then invert for smooth 2D velocity structure using first arrivals (FAST) and a layered velocity model using refractions and reflections (RAYINVR) to evaluate the crust and upper mantle velocity structure. Model results will be compared to other geological and geophysical data, including the roughly parallel SUGAR Line 1, to examine along-strike changes in rift structure, suture structure, and evidence of magmatism.
NASA Astrophysics Data System (ADS)
Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat
2017-04-01
Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters. Permeability was measured by air permeameter. Results confirmed that there is a correspondence between the high permeability and the low magnetic susceptibility values of production zones. Importantly also were found relation of the coal envelope type between only shales coal framing or only sandstone coal framing that most likely led to different stress profiles. In addition, we briefly describe potential of other types of unconventional resources in Kazakhstan, such as shale oil, tight gas and shale gas, where this integrated approach could be useful to apply in the future.
NASA Astrophysics Data System (ADS)
Onal, K. Mert; Buyuksarac, Aydin; Aydemir, Attila; Ates, Abdullah
2008-11-01
Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N-S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12-13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, A.D.; Kuuskraa, V.A.; Klawitter, A.L.
Recurrent basement faulting is the primary controlling mechanism for aligning and compartmentalizing upper Cretaceous aged tight gas reservoirs of the San Juan and Piceance Basins. Northwest trending structural lineaments that formed in conjunction with the Uncompahgre Highlands have profoundly influenced sedimentation trends and created boundaries for gas migration; sealing and compartmentalizing sedimentary packages in both basins. Fractures which formed over the structural lineaments provide permeability pathways which allowing gas recovery from otherwise tight gas reservoirs. Structural alignments and associated reservoir compartments have been accurately targeted by integrating advanced remote sensing imagery, high resolution aeromagnetics, seismic interpretation, stratigraphic mapping and dynamicmore » structural modelling. This unifying methodology is a powerful tool for exploration geologists and is also a systematic approach to tight gas resource assessment in frontier basins.« less
NASA Astrophysics Data System (ADS)
Fois, Laura; Montaldo, Nicola
2017-04-01
Soil moisture plays a key role in water and energy exchanges between soil, vegetation and atmosphere. For water resources planning and managementthesoil moistureneeds to be accurately and spatially monitored, specially where the risk of desertification is high, such as Mediterranean basins. In this sense active remote sensors are very attractive for soil moisture monitoring. But Mediterranean basinsaretypicallycharacterized by strong topography and high spatial variability of physiographic properties, and only high spatial resolution sensorsare potentially able to monitor the strong soil moisture spatial variability.In this regard the Envisat ASAR (Advanced Synthetic Aperture Radar) sensor offers the attractive opportunity ofsoil moisture mapping at fine spatial and temporal resolutions(up to 30 m, every 30 days). We test the ASAR sensor for soil moisture estimate in an interesting Sardinian case study, the Mulargia basin withan area of about 70 sq.km. The position of the Sardinia island in the center of the western Mediterranean Sea basin, its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. The Mulargia basin is a typical Mediterranean basinin water-limited conditions, and is an experimental basin from 2003. For soil moisture mapping23 satellite ASAR imagery at single and dual polarization were acquired for the 2003-2004period.Satellite observationsmay bevalidated through spatially distributed soil moisture ground-truth data, collected over the whole basin using the TDR technique and the gravimetric method, in days with available radar images. The results show that ASAR sensor observations can be successfully used for soil moisture mapping at different seasons, both wet and dry, but an accurate calibration with field data is necessary. We detect a strong relationship between the soil moisture spatial variability and the physiographic properties of the basin, such as soil water storage capacity, deep and texture of soils, type and density of vegetation, and topographic parameters. Finally we demonstrate that the high resolution ASAR imagery are an attractive tool for estimating surface soil moisture at basin scale, offering a unique opportunity for monitoring the soil moisture spatial variability in typical Mediterranean basins.
Schall, Megan K.; Bartron, Meredith L.; Wertz, Timothy; Niles, Jonathan M.; Shaw, Cassidy H.; Wagner, Tyler
2017-01-01
The Smallmouth Bass Micropterus dolomieu was introduced into the Susquehanna River basin, Pennsylvania, nearly 150 years ago. Since introduction, it has become an economically and ecologically important species that supports popular recreational fisheries. It is also one of the most abundant top predators in the system. Currently, there is no information on the level of genetic diversity or genetic structuring that may have occurred since introduction. An understanding of genetic diversity is important for the delineation of management units and investigation of gene flow at various management scales. The goals of this research were to investigate population genetic structure of Smallmouth Bass at sites within the Susquehanna River basin and to assess genetic differentiation relative to Smallmouth Bass at an out-of-basin site (Allegheny River, Pennsylvania) located within the species’ native range. During spring 2015, fin clips (n = 1,034) were collected from adults at 11 river sites and 13 tributary sites in the Susquehanna River basin and at one site on the Allegheny River. Fin clips were genotyped at 12 polymorphic microsatellite loci. Based on our results, adults sampled throughout the Susquehanna River basin did not represent separate genetic populations. There were only subtle differences in genetic diversity among sites (mean pairwise genetic differentiation index FST = 0.012), and there was an overall lack of population differentiation (K = 3 admixed populations). The greatest genetic differentiation was observed between fish collected from the out-of-basin site and those from the Susquehanna River basin sites. Knowledge that separate genetic populations of Smallmouth Bass do not exist in the Susquehanna River basin is valuable information for fisheries management in addition to providing baseline genetic data on an introduced sport fish population.
Seismic Velocity and Its Temporal Variations of Hutubi Basin Revealed by Near Surface Trapped Waves
NASA Astrophysics Data System (ADS)
Ji, Z.; Wang, B.; Wang, H.; Wang, Q.; Su, J.
2017-12-01
Sedimentary basins amplify bypassing seismic waves, which may increase the seismic hazard in basin area. The study of basin structure and its temporal variation is of key importance in the assessment and mitigation of seismic hazard in basins. Recent investigations of seismic exploration have shown that basins may host a distinct wave train with strong energy. It is usually named as Trapped Wave or Whispering Gallery (WG) Phase. In this study, we image the velocity structure and monitor its temporal changes of Hutubi basin in Xinjiang, Northwestern China with trapped wave generated from an airgun source. Hutubi basin is located at mid-segment of the North Tianshan Mountain. Hutubi aigun signal transmitting station was constructed in May 2013. It is composed of six longlife airgun manufactured by BOLT. Prominent trapped waves with strong energy and low velocity are observed within 40km from the source. The airgun source radiates repeatable seismic signals for years. The trapped waves have relative low frequency 0.15s-4s and apparent low velocities of 200m/s to 1000m/s. In the temporal-frequency diagram, at least two groups of wave train can be identified. Based on the group velocity dispersion curves, we invert the S-wave velocity profile of Hutubi basin. The velocity structure is further verified with synthetic seismogram. Velocity variations and Rayleigh wave polarization changes are useful barometers of underground stress status. We observed that the consistent seasonal variations in velocity and polarization. According to the simulate results, we suggest that the variations may be related to the changes of groundwater level and the formation and disappearance of frozen soil.
Estimating mountain basin-mean precipitation from streamflow using Bayesian inference
NASA Astrophysics Data System (ADS)
Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.
2015-10-01
Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkin, Joshuah S.; Troia, Matthew J.; Shaw, Dustin C. R.
Stream fish distributions are commonly linked to environmental disturbances affecting terrestrial landscapes. In Great Plains prairie streams, the independent and interactive effects of watershed impoundments and land cover changes remain poorly understood despite their prevalence and assumed contribution to declining stream fish diversity. We used structural equation models and fish community samples from third-order streams in the Kansas River and Arkansas River basins of Kansas, USA to test the simultaneous effects of geographic location, terrestrial landscape alteration, watershed impoundments and local habitat on species richness for stream-associated and impoundment-associated habitat guilds. Watershed impoundment density increased from west to east inmore » both basins, while per cent altered terrestrial landscape (urbanisation + row-crop agriculture) averaged ~50% in the west, declined throughout the Flint Hills ecoregion and increased (Kansas River basin ~80%) or decreased (Arkansas River basin ~30%) to the east. Geographic location had the strongest effect on richness for both guilds across basins, supporting known zoogeography patterns. In addition to location, impoundment species richness was positively correlated with local habitat in both basins; whereas stream-species richness was negatively correlated with landscape alterations (Kansas River basin) or landscape alterations and watershed impoundments (Arkansas River basin). These findings suggest that convergences in the relative proportions of impoundment and stream species (i.e., community structure) in the eastern extent of both basins are related to positive effects of increased habitat opportunities for impoundment species and negative effects caused by landscape alterations (Kansas River basin) or landscape alterations plus watershed impoundments (Arkansas River basin) for stream species.« less
Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh
Michael, H.A.; Voss, C.I.
2009-01-01
Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system. ?? US Government 2009.
NASA Astrophysics Data System (ADS)
McGovern, P. J., Jr.; Kramer, G. Y.; Neumann, G. A.
2017-12-01
In the last decade, new missions to the Moon have returned a flood of new high-resolution imaging, spectroscopy, topography, and gravity data that have triggered major advances in our knowledge of that body's origin, structure, and evolution. One major development is the identification of several large mare provinces (basalt-covered plains) that lack a clear association with the interiors of large impact basins. These include the broad but narrow Mare Frigoris (MF) north of the Imbrium and Serentiatis basins, and Mare Tranquillitatis (MT), which occupies the center of a triangular region delineated by the Crisium, Serenitatis, and Nectaris basins ("CSN Triangle"). MF and the western margin of MT coincide with the proposed volcano-tectonic (rift) boundary structures of the Procellarum region detected in the GRAIL gravity data, but a search for gravitational signals of basins revealed evidence for only one small basin in western MT and none in the remainder of MT or MF. These observations clearly show that the standard paradigm for creating maria, with basaltic melt ascending from an anomalously warm (and presumably impact-heated) mantle region beneath an impact basin to fill the basin, is insufficient to explain the Frigoris and Tranquillitatis mare units (and corresponding intrusives below). Alternative scenarios for mare unit emplacement include 1) volcanism generated from ancient Procellarum-bounding rift (PBR) structures, and 2) stress-enhanced magma ascent potential from central mare unit lithospheric loading in adjacent basins. The PBR scenario can in principle explain the emplacement of MF, but the concentric nature of the geometry of western and central MF with respect to Imbrium and eastern MF with respect to Serenitatis is then rendered coincidental. Some element of outer ring structure inheritance from these basins is suggested by the geometric relationships. The PBR scenario is also relevant to the western margin of Mare Tranquillitatis, where a strong linear gravity anomaly and low elevation point to the role of rifting there, but the majority of MT is at higher elevation, including the broad Cauchy volcanic edifice (a proposed shield volcano) and volcanic centers and plains in northern MT, where high density high-Ti basalts suggest a role for the magma ascent-enhancing stress scenario.
The seismic response of the Los Angeles basin, California
Wald, D.J.; Graves, R.W.
1998-01-01
Using strong-motion data recorded in the Los Angeles region from the 1992 (Mw 7.3) Landers earthquake, we have tested the accuracy of existing three-dimensional (3D) velocity models on the simulation of long-period (???2 sec) ground motions in the Los Angeles basin and surrounding San Fernando and San Gabriel Valleys. First, the overall pattern and degree of long-period excitation of the basins were identified in the observations. Within the Los Angeles basin, the recorded amplitudes are about three to four times larger than at sites outside the basins; amplitudes within the San Fernando and San Gabriel Valleys are nearly a factor of 3 greater than surrounding bedrock sites. Then, using a 3D finite-difference numerical modeling approach, we analyzed how variations in 3D earth structure affect simulated waveforms, amplitudes, and the fit to the observed patterns of amplification. Significant differences exist in the 3D velocity models of southern California that we tested (Magistrale et al., 1996; Graves, 1996a; Hauksson and Haase, 1997). Major differences in the models include the velocity of the assumed background models; the depth of the Los Angeles basin; and the depth, location, and geometry of smaller basins. The largest disparities in the response of the models are seen for the San Fernando Valley and the deepest portion of the Los Angeles basin. These arise in large part from variations in the structure of the basins, particularly the effective depth extent, which is mainly due to alternative assumptions about the nature of the basin sediment fill. The general ground-motion characteristics are matched by the 3D model simulations, validating the use of 3D modeling with geologically based velocity-structure models. However, significant shortcomings exist in the overall patterns of amplification and the duration of the long-period response. The successes and limitations of the models for reproducing the recorded ground motions as discussed provide the basis and direction for necessary improvements to earth structure models, whether geologically or tomographically derived. The differences in the response of the earth models tested also translate to variable success in the ability to successfully model the data and add uncertainty to estimates of the basin response given input "scenario" earthquake source models.
Basin evolution and structural reconstruction of northeastern Morocco and northwestern Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S.
1995-08-01
The high plateau region of Morocco and northwestern Algeria contains a Permo-Triassic rift basin with over 8,000 meters of Paleozoic, Mesozoic and Tertiary sediments. The area exhibits many similarities to the prolific Triassic basins of neighboring Algeria. Previous impediments to exploration in the high plateau area focused on the inability to seismically image sub-salt, pre-Jurassic block faulted structures and the perceived lack of adequate source rocks. This study combined seismic and basin modelling techniques to decipher the pre-salt structures, interpret basin evolution, and access source rock potential. Large structural and stratigraphic features can now be discerned where Permo-Triassic block faultedmore » structures are overlain by thick Triassic-Jurassic mobile evaporate seals and sourced by underlying Paleozoic shales. Contrary to the last published reports, over 20 years ago, oil and gas generation appears to have been continuous in the Carboniferous since 350 ma. Migration directly from the Carboniferous shales to Triassic conglomerates is envisaged with adequate seals provided by the overlying Triassic-Jurassic evaporate sequence. An earlier rapid pulse of oil and gas generation between 300-340 ma from the Silurian source rocks was probably too early to have resulted in hydrocarbon accumulation in the primary Triassic targets but if reservoir is present in the Carboniferous section, then those strata may have been sourced by the Silurian shales.« less
The role of river drainages in shaping the genetic structure of capybara populations.
Byrne, María Soledad; Quintana, Rubén Darío; Bolkovic, María Luisa; Cassini, Marcelo H; Túnez, Juan Ignacio
2015-12-01
The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.
Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions
NASA Astrophysics Data System (ADS)
Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing
2014-03-01
Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.
Amplicon Sequencing Reveals Microbiological Signatures in Spent Nuclear Fuel Storage Basins
Bagwell, Christopher E.; Noble, Peter A.; Milliken, Charles E.; ...
2018-03-09
Water quality is an important determinant for the structural integrity of alloy cladded fuels and assemblies during long-term wet storage. Detailed characterization of a water filled storage basin for spent nuclear reactor fuel was performed following the formation and proliferation of an amorphous white flocculent. White precipitant was sampled throughout the storage basin for chemical and spectroscopic characterization, and environmental DNA was extracted for 454 pyrosequencing of bacterial 16S rRNA gene diversity. Accordingly, spectroscopic analyses indicated the precipitant to be primarily amorphous to crystalline aluminum (oxy) hydroxides with minor associated elemental components including Fe, Si, Ti, and U. High levelsmore » of organic carbon were co-localized with the precipitant relative to bulk dissolved organic concentrations. Bacterial densities were highly variable between sampling locations and with depth within the water filled storage basin; cell numbers ranged from 4 × 10 3to 4 × 104 cells/mL. Bacterial diversity that was physically associated with the aluminum (oxy) hydroxide complexes exceeded an estimated 4,000 OTUs/amplicon library (3% cutoff) and the majority of sequences were aligned to the families Burkholderiaceae (23%), Nitrospiraceae (23%), Hyphomicrobiaceae (17%), and Comamonadaceae (6%). We surmise that episodic changes in the physical and chemical properties of the basin contribute to the polymerization of aluminum (oxy) hydroxides, which in turn can chemisorb nutrients, carbon ligands and bacterial cells from the surrounding bulk aqueous phase. As such, these precipitants should establish favorable microhabitats for bacterial colonization and growth. Comparative analyses of 16S rRNA gene amplicon libraries across a selection of natural and engineered aquatic ecosystems were performed and microbial community and taxonomic signatures unique to the spent nuclear fuel (SNF) storage basin environment were revealed. These insights could spur the development of tractable bio-indicators that are specific of and diagnostic for water quality at discrete locations and finer scales of resolution, marking an important contribution for improved water quality and management of SNF storage facilities.« less
Coking-coal deposits of the western United States
Berryhill, Louise R.; Averitt, Paul
1951-01-01
Geohydrologic systems in the Anadarko basin in the central United States are controlled by topography, climate, geologic structures, and aquifer hydraulic properties, all of which are the result of past geologic and hydrologic processes, including tectonics and diagenesis. From Late Cambrian through Middle Ordovician time, a generally transgressive but cyclic sea covered the area. The first deposits were permeable sand, followed by calcareous mud. During periods of sea transgression, burial diagenesis decreased porosity and permeability. During Pennsylvanian time, rapid sedimentation accompanied rapid subsidence in the Anadarko basin. A geopressure zone probably resulted when sediments with little permeability trapped depositional water in Lower Pennsylvanian sands. Burial diagenesis included compaction and thermal alteration of deeply buried organic material, which released carbon dioxide, water, and hydrocarbons. By Middle Pennsylvanian time, the sea had submerged most of the central United States, including the Ozarks, as tectonic activity reached its maximum. During Late Pennsylvanian and Early Permian time, the Ouachita uplift had been formed and was higher than the Ozarks. Uplift was accompanied by a regional upward tilt toward the Ouachita-Ozarks area; the sea receded westward, depositing large quantities of calcareous mud and clay, and precipitating evaporitic material in the restricted-circulation environment. By the end of Permian time, > 20,000 ft of Pennsylvanian and Permian sediments had been deposited in the Anadarko basin. These thick sediments caused rapid and extreme burial diagensis, including alteration of organic material During Permian time in the Ozarks area, development of the Ozark Plateau aquifer system commenced in the permeable Cambrian-Mississippian rocks near the St. Francois Mountains as the Pennsylvanian confining material was removed. Since Permian time, uplift diagenesis has been more active than burial diagenesis in the Anadarko basin. Synopsis of paleohydrologic interpretation indicates that Cambrian-Mississippian rocks in the Anadarko basin should be relatively impermeable, except for local secondary permeability, because rocks in the basin have undergone little uplift diagenesis. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Kaiser, A. E.; McVerry, G.; Wotherspoon, L.; Bradley, B.; Gerstenberger, M.; Benites, R. A.; Bruce, Z.; Bourguignon, S.; Giallini, S.; Hill, M.
2017-12-01
We present analysis of ground motion and complex amplification characteristics in Wellington during recent earthquake sequences and an overview of the 3D basin characterization and ongoing work to update site parameters for seismic design. Significant damage was observed in central Wellington, New Zealand's capital city, following the 2016 Mw7.8 Kaikōura earthquake. Damage was concentrated in mid-rise structures (5 - 15 storeys) and was clearly exacerbated by the particular characteristics of ground motion and the presence of basin effects. Due to the distance of the source (50 - 60km) from the central city, peak ground accelerations were moderate (up to 0.28g) and well within ultimate limit state (ULS) design levels. However, spectral accelerations within the 1 -2 s period range, exceeded 1 in 500 year design level spectra (ULS) in deeper parts of the basin. Amplification with respect to rock at these locations reached factors of up to 7, and was also observed with factors up to at least three across all central city soil recording sites. The ground motions in Wellington were the strongest recorded in the modern era of instrumentation. While similar amplification was observed during the 2013 Mw 6.6 Cook Strait and Grassmere earthquakes, which struck close to the termination of the Kaikōura earthquake rupture, these sources were not sufficiently large to excite significant long-period motions. However, other M7.2+ sources in the region that dominate the seismic hazard, e.g. Wellington Fault, Hikurangi subduction interface and other large proximal crustal faults, are also potentially capable of exciting significant long-period basin response in Wellington. These observations and the expectation of ongoing heightened seismicity have prompted re-evaluation of the current seismic demand levels. Additional field campaigns have also been undertaken to update geotechnical properties and the 3D basin model, in order to inform ongoing research and seismic design practice.
Amplicon Sequencing Reveals Microbiological Signatures in Spent Nuclear Fuel Storage Basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagwell, Christopher E.; Noble, Peter A.; Milliken, Charles E.
Water quality is an important determinant for the structural integrity of alloy cladded fuels and assemblies during long-term wet storage. Detailed characterization of a water filled storage basin for spent nuclear reactor fuel was performed following the formation and proliferation of an amorphous white flocculent. White precipitant was sampled throughout the storage basin for chemical and spectroscopic characterization, and environmental DNA was extracted for 454 pyrosequencing of bacterial 16S rRNA gene diversity. Accordingly, spectroscopic analyses indicated the precipitant to be primarily amorphous to crystalline aluminum (oxy) hydroxides with minor associated elemental components including Fe, Si, Ti, and U. High levelsmore » of organic carbon were co-localized with the precipitant relative to bulk dissolved organic concentrations. Bacterial densities were highly variable between sampling locations and with depth within the water filled storage basin; cell numbers ranged from 4 × 10 3to 4 × 104 cells/mL. Bacterial diversity that was physically associated with the aluminum (oxy) hydroxide complexes exceeded an estimated 4,000 OTUs/amplicon library (3% cutoff) and the majority of sequences were aligned to the families Burkholderiaceae (23%), Nitrospiraceae (23%), Hyphomicrobiaceae (17%), and Comamonadaceae (6%). We surmise that episodic changes in the physical and chemical properties of the basin contribute to the polymerization of aluminum (oxy) hydroxides, which in turn can chemisorb nutrients, carbon ligands and bacterial cells from the surrounding bulk aqueous phase. As such, these precipitants should establish favorable microhabitats for bacterial colonization and growth. Comparative analyses of 16S rRNA gene amplicon libraries across a selection of natural and engineered aquatic ecosystems were performed and microbial community and taxonomic signatures unique to the spent nuclear fuel (SNF) storage basin environment were revealed. These insights could spur the development of tractable bio-indicators that are specific of and diagnostic for water quality at discrete locations and finer scales of resolution, marking an important contribution for improved water quality and management of SNF storage facilities.« less
Amplicon Sequencing Reveals Microbiological Signatures in Spent Nuclear Fuel Storage Basins.
Bagwell, Christopher E; Noble, Peter A; Milliken, Charles E; Li, Dien; Kaplan, Daniel I
2018-01-01
Water quality is an important determinant for the structural integrity of alloy cladded fuels and assemblies during long-term wet storage. Detailed characterization of a water filled storage basin for spent nuclear reactor fuel was performed following the formation and proliferation of an amorphous white flocculent. White precipitant was sampled throughout the storage basin for chemical and spectroscopic characterization, and environmental DNA was extracted for 454 pyrosequencing of bacterial 16S rRNA gene diversity. Accordingly, spectroscopic analyses indicated the precipitant to be primarily amorphous to crystalline aluminum (oxy) hydroxides with minor associated elemental components including Fe, Si, Ti, and U. High levels of organic carbon were co-localized with the precipitant relative to bulk dissolved organic concentrations. Bacterial densities were highly variable between sampling locations and with depth within the water filled storage basin; cell numbers ranged from 4 × 10 3 to 4 × 10 4 cells/mL. Bacterial diversity that was physically associated with the aluminum (oxy) hydroxide complexes exceeded an estimated 4,000 OTUs/amplicon library (3% cutoff) and the majority of sequences were aligned to the families Burkholderiaceae (23%), Nitrospiraceae (23%), Hyphomicrobiaceae (17%), and Comamonadaceae (6%). We surmise that episodic changes in the physical and chemical properties of the basin contribute to the polymerization of aluminum (oxy) hydroxides, which in turn can chemisorb nutrients, carbon ligands and bacterial cells from the surrounding bulk aqueous phase. As such, these precipitants should establish favorable microhabitats for bacterial colonization and growth. Comparative analyses of 16S rRNA gene amplicon libraries across a selection of natural and engineered aquatic ecosystems were performed and microbial community and taxonomic signatures unique to the spent nuclear fuel (SNF) storage basin environment were revealed. These insights could spur the development of tractable bio-indicators that are specific of and diagnostic for water quality at discrete locations and finer scales of resolution, marking an important contribution for improved water quality and management of SNF storage facilities.
Amplicon Sequencing Reveals Microbiological Signatures in Spent Nuclear Fuel Storage Basins
Bagwell, Christopher E.; Noble, Peter A.; Milliken, Charles E.; Li, Dien; Kaplan, Daniel I.
2018-01-01
Water quality is an important determinant for the structural integrity of alloy cladded fuels and assemblies during long-term wet storage. Detailed characterization of a water filled storage basin for spent nuclear reactor fuel was performed following the formation and proliferation of an amorphous white flocculent. White precipitant was sampled throughout the storage basin for chemical and spectroscopic characterization, and environmental DNA was extracted for 454 pyrosequencing of bacterial 16S rRNA gene diversity. Accordingly, spectroscopic analyses indicated the precipitant to be primarily amorphous to crystalline aluminum (oxy) hydroxides with minor associated elemental components including Fe, Si, Ti, and U. High levels of organic carbon were co-localized with the precipitant relative to bulk dissolved organic concentrations. Bacterial densities were highly variable between sampling locations and with depth within the water filled storage basin; cell numbers ranged from 4 × 103to 4 × 104 cells/mL. Bacterial diversity that was physically associated with the aluminum (oxy) hydroxide complexes exceeded an estimated 4,000 OTUs/amplicon library (3% cutoff) and the majority of sequences were aligned to the families Burkholderiaceae (23%), Nitrospiraceae (23%), Hyphomicrobiaceae (17%), and Comamonadaceae (6%). We surmise that episodic changes in the physical and chemical properties of the basin contribute to the polymerization of aluminum (oxy) hydroxides, which in turn can chemisorb nutrients, carbon ligands and bacterial cells from the surrounding bulk aqueous phase. As such, these precipitants should establish favorable microhabitats for bacterial colonization and growth. Comparative analyses of 16S rRNA gene amplicon libraries across a selection of natural and engineered aquatic ecosystems were performed and microbial community and taxonomic signatures unique to the spent nuclear fuel (SNF) storage basin environment were revealed. These insights could spur the development of tractable bio-indicators that are specific of and diagnostic for water quality at discrete locations and finer scales of resolution, marking an important contribution for improved water quality and management of SNF storage facilities. PMID:29593667
The Hydroclimatic Response of the Whitewater River Basin: Influence of Groundwater Time Scales
NASA Astrophysics Data System (ADS)
Beeson, P. C.; Springer, E. P.; Duffy, C. J.
2003-12-01
A near-surface groundwater model was developed to assess the impact of land use and climate variability on the overall water budget of the Whitewater River Basin. The watershed is located in southeastern Kansas within the ARM-SGP as part of the DOE Water Cycle Pilot Study. The Whitewater River Basin has an area of 1,100 square-kilometers, an elevation range of 380 - 470m (amsl), and an average annual precipitation of 858 millimeters. The approach presented here attempts to examine the importance of groundwater in the water budget and hydroclimatic response at the river basin scale. In order to identify the time scales of groundwater in this system, time series and geospatial analyses were used to identify significant spatial structure and dominant temporal modes in the climate, runoff and groundwater response. In this research, we show that the time scales of groundwater baseflow to the river network are proportional to drainage density and position in the hydrologic landscape. The concept of a hydrologic landscape (Winter, JAWRA, April 2001) defines three zones: recharge (upland), translation (intervening steep slopes), and discharge (lowland), and the hydrologic landscape is useful for standardizing the evaluation of physical properties within any watershed. Singular spectrum analysis was used for a 50-year simulation to determine dominant modes and time scales for the hydrologic landscape units in the Whitewater River Basin. We found that the time scale of groundwater baseflow response increases with increasing drainage density. The sensitivity of this response is important to understand and close the water budget for a river basin through observation network design. The effects of climate forcing, both precipitation and evapotranspiration, can be seen through the hydrologic landscapes and channel networks by changes in the baseflow response time. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36.
NASA Astrophysics Data System (ADS)
Hobbs, Richard
2017-04-01
The interdisciplinary OSCAR project is examining the heat and mass fluxes in the solid Earth and overlying ocean at the Costa Rica mid-ocean Ridge (CRR) in the Panama Basin. The 3500 m deep Panama basin is isolated from the wider Pacific Ocean below 2000 m by the Cocos and Carnegie Ridges except for a deep water channel along the Ecuador trench. This channel supplies cold abyssal water into the Basin at a rate of 0.35 Sv (million cubic metres per second)) at a temperature of 1.75°C. Within the basin the water is heated to 2°C. The energy for this heating is dominated by geothermal effects with a smaller contribution from mainly tidal induced mixing over the ridges. The main geophysical transect for the OSCAR survey links the CRR with the ODP 504B borehole which is drilled 2111 m into 5.9 Ma oceanic crust. Changes in the solid Earth properties from the CRR to 504B are mapped using a combination of seismic 2D- and 3D-refraction and synthetic-aperture reflection, magnetics, gravity, magnetotelluric data, swath bathymetry and heat-flow. Results show that the properties of layer 2 are variable and are more likely a function of changes in magma supply at the ridge rather than the effects of ageing. Of particular note is the abrupt change at 5 Ma. Older crust has a higher velocity and lower topography when compared with younger crust. Also the heat-flow over the older crust is largely through conduction whereas in the younger crust it is largely by advection. The physical oceanography data include conductivity temperature depth (CTD) casts, micro-structure casts, helium and other isotope data, together with seabed and moored temperature, pressure and Doppler current measurements. The inflowing water along the Ecuador trench initially mix with with the warmer water as it enters the basin. Mixing and heating continues as the water circulates into the western part of the basin where it shows no vertical density gradient for over 1000 m and an overall temperature increase of 0.25°C combined with a decrease of 0.01 psu in salinity. Evidence of hydrothermally driven plumes were also detected along the CRR but exact locations of their sources were not found. Our best estimate from the OSCAR data show that the geothermal contribution is over 70% to the abyssal water upwelling. This is the largest contribution yet observed in abyssal basins and is in line with a growing number of studies arguing that geothermal heating plays a significant role in driving the abyssal and global circulation.
Geologic structure of the eastern mare basins. [lunar basalts
NASA Technical Reports Server (NTRS)
Dehon, R. A.; Waskom, J. D.
1976-01-01
The thickness of mare basalts in the eastern maria are estimated and isopachs of the basalts are constructed. Sub-basalt basin floor topography is determined, and correlations of topographic variations of the surface with variations in basalt thickness or basin floor topography are investigated.
NASA Astrophysics Data System (ADS)
Bodego, Arantxa; Agirrezabala, Luis M.
2010-05-01
The Mesozoic Basque-Cantabrian Basin in the western Pyrenees constitutes a peri-cratonic basin originated by rifting related to the Cretaceous opening of the Bay of Biscay. During the mid-Cretaceous the basin experienced important extensional/transtensional tectonics, which controlled the deposition of thick sedimentary successions. Many extensional structures have been documented in the basin but their thin-skinned/thick-skinned character is an unresolved question. In this field-based study, we characterize contemporaneous thin-skinned and thick-skinned deformations that took place during the filling of the mid-Cretaceous Lasarte sub-basin, located in the northeastern margin of the Basque-Cantabrian Basin (western Pyrenees). Most of these extensional structures and associated growth strata are preserved and allow us to characterize and date different deformation phases. Moreover, verticalization and overturning of the successions during Tertiary compression allow mapping the geometry of the extensional structures at depth. The Lasarte sub-basin constitutes a triangular sag bordered by three major basement-involved faults, which trend N, E and NE, respectively. These trends, common in the Variscan fault pattern of Pyrenees, suggest that they are old faults reactivated during the mid-Cretaceous extension. Stratigraphy of the area shows very thin to absent Aptian-Albian (and older) deposits above the upward border blocks, whereas on the downward blocks (sub-basin interior) contemporaneous thick successions were deposited (up to 1500 m). The sub-basin fill is composed of different sedimentary systems (from alluvial to siliciclastic and carbonate platforms) affected by syndepositional extensional faults (and related folds). These faults die out in a southwestward dipping (~4°) detachment layer composed of Triassic evaporites and clays. A NE-SW cross-section of the sub-basin shows NW- to N-trending six planar and two listric extensional faults and associated folds, which define a horst and graben system. Rollovers (unfaulted and faulted), hangingwall synclines and central domes are present in the hangingwalls of both listric and planar faults. Also, a fault-propagation fold, a forced fold and a roller have been interpreted. Synkinematic depositional systems and sediment-filled fissures are parallel to the NW- to N-trending tectonic structures. Based on the trend of tectonic structures, the orientation of sediment-filled fissures and the paleocurrent pattern of growth strata, a thin-skinned NE-SW to E-W extension has been deduced for the interior of the Lasarte sub-basin. Both the coincidence between the directions of extension and dip of the detachment layer and the characteristics of the deformation suggest a thin-skinned gravity-driven extensional tectonics caused by the dip of the detachment layer. Recorded extensional deformation event in the Lasarte sub-basin is contemporaneous with and would have been triggered by the extreme crustal thinning and mantle exhumation processes documented recently in both the Basque-Cantabrian Basin and the Pyrenees.
A magnetic and gravity investigation of the Liberia Basin, West Africa
NASA Astrophysics Data System (ADS)
Morris Cooper, S.; Liu, Tianyou
2011-02-01
Gravity and magnetic analysis provide an opportunity to deduce and understand to a large extent the stratigraphy, structure and shape of the substructure. Euler deconvolution is a useful tool for providing estimates of the localities and depth of magnetic and gravity sources. Wavelet analysis is an interesting tool for filtering and improving geophysical data. The application of these two methods to gravity and magnetic data of the Liberia Basin enable the definition of the geometry and depth of the subsurface geologic structures. The study reveals the basin is sub-divided and the depth to basement of the basin structure ranges from about 5 km at its North West end to 10 km at its broadest section eastward. Magnetic data analysis indicates shallow intrusives ranging from a depth of 0.09 km to 0.42 km with an average depth of 0.25 km along the margin. Other intrusives can be found at average depths of 0.6 km and 1.7 km respectively within the confines of the basin. An analysis of the gravity data indicated deep faults intersecting the transform zone.
Dynamic effects of memory in a cobweb model with competing technologies
NASA Astrophysics Data System (ADS)
Agliari, Anna; Naimzada, Ahmad; Pecora, Nicolò
2017-02-01
We analyze a simple model based on the cobweb demand-supply framework with costly innovators and free imitators and study the endogenous dynamics of price and firms' fractions in a homogeneous good market. The evolutionary selection between technologies depends on a performance measure in which a memory parameter is introduced. The resulting dynamics is then described by a two-dimensional map. In addition to the locally stabilizing effect due to the presence of memory, we show the existence of a double stability threshold which entails for different dynamic scenarios occurring when the memory parameter takes extreme values (i.e. when consideration of the last profit realization prevails or it is too much neglected). The eventuality of different coexisting attractors as well as the structure of the basins of attraction that characterizes the path dependence property of the model with memory is shown. In particular, through global analysis we also illustrate particular bifurcations sequences that may increase the complexity of the related basins of attraction.
Hydrologic properties of coal beds in the Powder River Basin, Montana I. Geophysical log analysis
Morin, R.H.
2005-01-01
As part of a multidisciplinary investigation designed to assess the implications of coal-bed methane development on water resources for the Powder River Basin of southeastern Montana, six wells were drilled through Paleocene-age coal beds along a 31-km east-west transect within the Tongue River drainage basin. Analysis of geophysical logs obtained in these wells provides insight into the hydrostratigraphic characteristics of the coal and interbedded siliciclastic rocks and their possible interaction with the local stress field. Natural gamma and electrical resistivity logs were effective in distinguishing individual coal beds. Full-waveform sonic logs were used to determine elastic properties of the coal and an attendant estimate of aquifer storage is in reasonable agreement with that computed from a pumping test. Inspection of magnetically oriented images of the borehole walls generated from both acoustic and optical televiewers and comparison with coal cores infer a face cleat orientation of approximately N33??E, in close agreement with regional lineament patterns and the northeast trend of the nearby Tongue River. The local tectonic stress field in this physiographic province as inferred from a nearby 1984 earthquake denotes an oblique strike-slip faulting regime with dominant east-west compression and north-south extension. These stress directions are coincident with those of the primary fracture sets identified from the televiewer logs and also with the principle axes of the drawdown ellipse produced from a complementary aquifer test, but oblique to apparent cleat orientation. Consequently, examination of these geophysical logs within the context of local hydrologic characteristics indicates that transverse transmissivity anisotropy in these coals is predominantly controlled by bedding configuration and perhaps a mechanical response to the contemporary stress field rather than solely by cleat structure.
NASA Astrophysics Data System (ADS)
Khayrullina, D. N.; Kurzhanova, A. A.
2018-01-01
This paper deals with the estimate the structure of the chloride ion runoff from the karst (on the example of the Sula river basin) and non-karst (on the example of the Vaga river basin) geosystems of Arkhangelsk oblast. The contribution of the surface component predominates in the structure of the chloride ion runoff.For example, the input of surface ion runoff is 49% (for the Sula river basin), 55% (for the Vaga river basin). In time aspect the highest values of variability of the components of the chloride ion runoff are noted for karst geosystems and vary from 38.5% to 55.4% and from 24.7% to 42.9% - for non-karst geosystems.Finally, there is prevalence of the local factors influence because the atmospheric component decreases while ion runoff increases.
NASA Astrophysics Data System (ADS)
He, Dengfa
2016-04-01
Junggar Basin is located in the central part of the Central Asian Orogenic Belt (CAOB). Its basement nature is a highly controversial scientific topic, involving the basic style and processes of crustal growth. Some researchers considered the basement of the Junggar Basin as a Precambrian continental crust, which is not consistent with the petrological compositions of the adjacent orogenic belts and the crust isotopic compositions revealed by the volcanic rocks in the basin. Others, on the contrary, proposed an oceanic crust basement model that does not match with the crustal thickness and geophysical characteristics of the Junggar area. Additionally, there are several viewponits, such as the duplex basement with the underlying Precambrian crystalline rocks and the overlying pre-Carboniferous folded basement, and the collaged basement by the Precambrian micro-continent block in the central part and the Hercynian accretionary folded belts circling it. Anyway, it is necessary to explain the property of basement rock, its strong inhomogeneous compositions as well as the geophysical features. In this paper, based on the borehole data from more than 300 industry wells drilled into the Carboniferous System, together with the high-resolution gravity and magnetic data (in a scale of 1:50,000), we made a detailed analysis of the basement structure, formation timing and processes and its later evolution on a basis of core geochemical and isotopic analysis. Firstly, we defined the Mahu Pre-Cambrian micro-continental block in the juvenile crust of Junggar Basin according to the Hf isotopic analysis of the Carboniferous volcanic rocks. Secondly, the results of the tectonic setting and basin analysis suggest that the Junggar area incorporates three approximately E-W trending island arc belts (from north to south: Yemaquan- Wulungu-Chingiz, Jiangjunmiao-Luliang-Darbut and Zhongguai-Mosuowan- Baijiahai-Qitai island arcs respectively) and intervened three approximately E-W trending retro-arc or inter-arc basin belts from north to south, such as Santanghu-Suosuoquan-Emin, Wucaiwan-Dongdaohaizi-Mahu (Mahu block sunk as a bathyal basin during this phase) and Fukang-western well Pen1 sag accordingly. Thirdly, the closure of these retro-arc or inter-arc basins migrating gradually toward the south led to the collision and amalgamation between the above-mentioned island arcs during the Carboniferous, constituting the basic framework of the Junggar 'block'. Fourthly, the emplacement of large-scale mantle-derived magmas occurred in the latest Carboniferous to Early Permian. For instance, the well Mahu 5 penetrate the latest Carboniferous basalts with a thickness of over 20 m, and these mantle-derived magmas consolidated the above-mentioned island arc-collaged blocks. Therefore, the Junggar basin basement mainly comprises pre-Carboniferous collaged basement, and its formation is characterized by two-stage growth model, involving the Carboniferous lateral growth of island arcs and the latest Carboniferous to Early Permian vertical crustal growth related to emplacement and underplating of the mantle-derived magmas. In the Middle Permian, the Junggar Basin is dominated by a series of stable intra-continental sag basins from west to east, such as Mahu, Shawan, western Well Pen1, Dongdaohaizi-Wucaiwan-Dajing, Fukang-Jimusaer sag lake-basins and so on. The Middle Permian (e.g., Lower Wu'erhe, Lucaogou, and Pingdiquan Formations) thick source rocks developed in these basins, suggesting that the Junggar Basin had been entered 'intra-cratonic sag' basin evolution stage. Since then, no strong thermal tectonic event could result in crust growth. The present crustal thickness of Junggar Basin is 45-52 km, which was mainly formed before the latest Early Permian. Subsequently, the Junggar Basin experienced a rapid cooling process during the Late Permian to Triassic. These events constrain the formation timing of the Junggar basin basement to be before the latest Early Permian. It is inferred that the crustal thickness of Carboniferous island arc belts and associated back-arc basins is of 30-35 km or less. The latest Carboniferous to Early Permian vertical crust growth should have a thickness of 15-20 km or more. Viewed from the deep seismic refection profile across the basin, the Junggar crust does not contain the large-scale imbricate thrust systems, but shows well-layered property. Thus, the vertical growth rate reached 0.75~1 km/Ma in the latest Carboniferous to Early Permian time, a period approximately of 20Ma. It indicates a very rapid crustal growth style which could be named as the Junggar-type vertical growth of continental crust. Its formation mechanism and geodynamic implications need to be further explored later.
NASA Astrophysics Data System (ADS)
Harding, M. R.; Rowan, C. J.
2013-12-01
The Upper Silurian Salina Group in Pennsylvania's Appalachian basin consists of several hundred feet of highly deformable and mobile salt that was a significant influence on the tectonic and structural development of the Appalachian Mountains during the late Paleozoic. Understanding how halokinesis and décollement thrusting of the Salina Group has contributed to the present-day structure of the Appalachian Basin is of intense current interest due to the energy resource potential of the overlying Marcellus Shale and underlying Utica Shale. Seismic data suggest that halokinesis of the Salina Group in the Appalachian Basin might be strongly influenced by the presence of preexisting faults in the underlying Neoproterozoic basement, which suggests that these structures may have interacted with the Salina Group or its interior during deformation. We examine these apparent interactions in more detail using high-resolution 3D seismic data from the Appalachian Basin of NE Pennsylvania to identify and characterize salt tectonic-related structures developed above and within the Salina Group during orogenesis, verify their geographic association with major basement faults, and document how reactivation of these preexisting faults might have influenced later deformation within and above the salt units. We also present the results of sandbox modelling of thin-skinned thrusting in a salt-analogue décollement. Multiple runs in the presence and absence of preexisting basement structures provide insight into how the modern structures observed in the seismic data initiated and evolved during progressively more intense orogenesis, and better constrain the physical processes that control the structural linkage through the Salina décollement.
NASA Astrophysics Data System (ADS)
Babaahmadi, Abbas; Sliwa, Renate; Esterle, Joan; Rosenbaum, Gideon
2017-12-01
The Duaringa Basin in eastern Australia is a Late Cretaceous?-early Cenozoic sedimentary basin that developed simultaneously with the opening of the Tasman and Coral Seas. The basin occurs on the top of an earlier (Permian-Triassic) fold-thrust belt, but the negative inversion of this fold-thrust belt, and its contribution to the development of the Duaringa Basin, are not well understood. Here, we present geophysical datasets, including recently surveyed 2D seismic reflection lines, aeromagnetic and Bouguer gravity data. These data provide new insights into the structural style in the Duaringa Basin, showing that the NNW-striking, NE-dipping, deep-seated Duaringa Fault is the main boundary fault that controlled sedimentation in the Duaringa Basin. The major activity of the Duaringa Fault is observed in the southern part of the basin, where it has undergone the highest amount of displacement, resulting in the deepest and oldest depocentre. The results reveal that the Duaringa Basin developed in response to the partial negative inversion of the pre-existing Permian-Triassic fold-thrust belt, which has similar orientation to the extensional faults. The Duaringa Fault is the negative inverted part of a single Triassic thrust, known as the Banana Thrust. Furthermore, small syn-depositional normal faults at the base of the basin likely developed due to the reactivation of pre-existing foliations, accommodation faults, and joints associated with Permian-Triassic folds. In contrast to equivalent offshore basins, the Duaringa Basin lacks a complex structural style and thick syn-rift sediments, possibly because of the weakening of extensional stresses away from the developing Tasman Sea.
On neutral metacommunity patterns of river basins at different scales of aggregation
NASA Astrophysics Data System (ADS)
Convertino, Matteo; Muneepeerakul, Rachata; Azaele, Sandro; Bertuzzo, Enrico; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio
2009-08-01
Neutral metacommunity models for spatial biodiversity patterns are implemented on river networks acting as ecological corridors at different resolution. Coarse-graining elevation fields (under the constraint of preserving the basin mean elevation) produce a set of reconfigured drainage networks. The hydrologic assumption made implies uniform runoff production such that each link has the same habitat capacity. Despite the universal scaling properties shown by river basins regardless of size, climate, vegetation, or exposed lithology, we find that species richness at local and regional scales exhibits resolution-dependent behavior. In addition, we investigate species-area relationships and rank-abundance patterns. The slopes of the species-area relationships, which are consistent over coarse-graining resolutions, match those found in real landscapes in the case of long-distance dispersal. The rank-abundance patterns are independent of the resolution over a broad range of dispersal length. Our results confirm that strong interactions occur between network structure and the dispersal of species and that under the assumption of neutral dynamics, these interactions produce resolution-dependent biodiversity patterns that diverge from expectations following from universal geomorphic scaling laws. Both in theoretical and in applied ecology studying how patterns change in resolution is relevant for understanding how ecological dynamics work in fragmented landscape and for sampling and biodiversity management campaigns, especially in consideration of climate change.
River networks as biodiversity hotlines.
Décamps, Henri
2011-05-01
For several years, measures to insure healthy river functions and to protect biodiversity have focused on management at the scale of drainage basins. Indeed, rivers bear witness to the health of their drainage basins, which justifies integrated basin management. However, this vision should not mask two other aspects of the protection of aquatic and riparian biodiversity as well as services provided by rivers. First, although largely depending on the ecological properties of the surrounding terrestrial environment, rivers are ecological systems by themselves, characterized by their linearity: they are organized in connected networks, complex and ever changing, open to the sea. Second, the structure and functions of river networks respond to manipulations of their hydrology, and are particularly vulnerable to climatic variations. Whatever the scale considered, river networks represent "hotlines" for sharing water between ecological and societal systems, as well as for preserving both systems in the face of global change. River hotlines are characterized by spatial as well as temporal legacies: every human impact to a river network may be transmitted far downstream from its point of origin, and may produce effects only after a more or less prolonged latency period. Here, I review some of the current issues of river ecology in light of the linear character of river networks. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Barbosa, M. P.
1983-01-01
Visual and computer aided interpretation of MSS/LANDSAT data identified linear and circular features which represent the ""reflexes'' of the crystalline basement structures in the Cenozoic sediments of the emergent part of the Campos Sedimentary Basin.
1980-09-01
purpose of a Phase I Investigation is to identify expeditiously - those dams which may pose hazards to human life or property. The assessment of the general...calculatec by the Soil Loss Formula (0.1 ton/ac/yr. y±cld). The dosianed heiGht of the structures vill provide st rage for a 50 year sediment...As shown in the above listing the design meet, the c:rr,1 ,ia established in all instances. L B-13 rage -,- n We have discussed with the S. C.S
Aerodynamic properties of agricultural and natural surfaces in northwestern Tarim Basin
USDA-ARS?s Scientific Manuscript database
Friction velocity (u*) and aerodynamic roughness (z0) are important parameters that influence soil erosion, but no attempts have been made to quantify these parameters as affected by different land use types in the northwestern Tarim Basin. Wind velocity profiles were measured and used to determine ...
Stratigraphy and structure of coalbed methane reservoirs in the United States: an overview
Pashin, J.C.
1998-01-01
Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United states is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compression and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United States is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and Cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compressional and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.
NASA Astrophysics Data System (ADS)
Matonti, C.; Guglielmi, Y.; Viseur, S.; Garambois, S.; Marié, L.
2017-05-01
Fracture properties are important in carbonate reservoir characterization, as they are responsible for a large part of the fluid transfer properties at all scales. It is especially true in tight rocks where the matrix transfer properties only slightly contribute to the fluid flow. Open fractures are known to strongly affect seismic velocities, amplitudes and anisotropy. Here, we explore the impact of fracture evolution on the geophysical signature and directional Vp anisotropy of fractured carbonates through diagenesis. For that purpose, we studied a meter-scale, parallelepiped quarry block of limestone using a detailed structural and diagenetic characterization, and numerous Vp measurements. The block is affected by two en-échelon fracture clusters, both being formed in opening mode (mode 1) and cemented, but only one being reactivated in shear. We compared the diagenetic evolution of the fractures, which are almost all 100% filled with successive calcite cements, with the P-wave velocities measured across this meter-scale block of carbonate, which recorded the tectonic and diagenetic changes of a South Provence sedimentary basin. We found that a directional Vp anisotropy magnitude as high as 8-16% correlates with the reactivated fractures' cluster dip angle, which is explained by the complex filling sequence and softer material present inside the fractures that have been reactivated during the basin's tectonic inversion. We show that although a late karstification phase preferentially affected these reactivated fractures, it only amplified the pre-existing anisotropy due to tectonic shear. We conclude that Vp anisotropy measurements may help to identify the fracture sealing/opening processes associated with polyphased tectonic history, the anisotropy being independent of the current stress-state. This case shows that velocity anisotropies induced by fractures resulted here from a cause that is different from how these features have often been interpreted: selective reactivation of sealed fractures clusters rather than direction of currently open ones.
Xiao, Shengchun; Xiao, Honglang; Peng, Xiaomei; Song, Xiang
2015-01-01
Changes in the landscape structure of terminal lakes and wetlands along inland rivers in arid areas are determined by the water balance in the river basins under the impacts of climate change and human activities. Studying the evolution of these landscapes and the mechanisms driving these changes is critical to the sustainable development of river basins. The terminal lakes and wetlands along the lower reaches of the Heihe River, an inland river in arid northwestern China, can be grouped into three types: runoff-recharged, groundwater-recharged, and precipitation-recharged. These water-recharge characteristics determine the degree to which the landscape structure of a terminal lake or wetland is impacted by climate change and human activities. An analysis of seven remote-sensing and hydroclimatic data sets for the Heihe River basin during the last 50 years indicates that hydrological changes in the basin caused by regional human activities were the primary drivers of the observed changes in the spatial and temporal landscape-structure patterns of the terminal lakes and wetlands of the Heihe River. In this warm, dry climatic context, the lakes and wetlands gradually evolved toward and maintained a landscape dominated by saline-alkaline lands and grasslands.
Tectonics of Chukchi Sea Shelf sedimentary basins and its influence on petroleum systems
NASA Astrophysics Data System (ADS)
Agasheva, Mariia; Antonina, Stoupakova; Anna, Suslova; Yury, Karpov
2016-04-01
The Chukchi Sea Shelf placed in the East Arctic offshore of Russia between East Siberian Sea Shelf and North Slope Alaska. The Chukchi margin is considered as high petroleum potential play. The major problem is absence of core material from drilling wells in Russian part of Chukchi Shelf, hence strong complex geological and geophysical analyses such as seismic stratigraphy interpretation should be provided. In addition, similarity to North Slope and Beaufort Basins (North Chukchi) and Hope Basin (South Chukchi) allow to infer the resembling sedimentary succession and petroleum systems. The Chukchi Sea Shelf include North and South Chukchi Basins, which are separated by Wrangel-Herald Arch and characterized by different opening time. The North Chukchi basin is formed as a general part of Canada Basin opened in Early Cretaceous. The South Chukchi Basin is characterized by a transtensional origin of the basin, this deformation related to motion on the Kobuk Fault [1]. Because seismic reflections follow chronostratigraphic correlations, it is possible to achieve stratigraphic interpretation. The main seismic horizons were indicated as: PU, JU, LCU, BU, mBU marking each regional unconformities. Reconstruction of main tectonic events of basin is important for building correct geological model. Since there are no drilling wells in the North and South Chukchi basins, source rocks could not be proven. Referring to the North Chukchi basin, source rocks equivalents of Lower Cretaceous Pebble Shale Formation, Lower Jurassic Kingdak shales and Upper Triassic Shublik Formation (North Slope) is possible exhibited [2]. In the South Chukchi, it is possible that Cretaceous source rocks could be mature for hydrocarbon generation. Erosions and uplifts that could effect on hydrocarbon preservation was substantially in Lower Jurassic and Early Cretaceous periods. Most of the structures may be connected with fault and stratigraphy traps. The structure formed at Wrangel-Herald Arch to North-Chukchi through similar to well-known structure in Norwegian part of Barents Sea - Loppa High. In South Chukchi basin, the seismic wave shows interesting structures akin to diaper fold. Inversion-related anticlines and stratigraphic pinch-outs traps could presence in Cretaceous-Cenozoic cross section. As a result, we gathered and analyzed source rocks and reservoir analogs and gained improved sedimentary models in Eastern Russian Shelfs (Laptev, East Siberian and Chukchi Seas). Appropriate tectonic conditions, proven by well testing source rocks in North Slope and high thickness of basins suggest a success of hydrocarbon exploration in Russian part of Chukchi Sea Shelf. [1] Verzhbitsky V. E., S. D. Sokolov, E. M. Frantzen, A. Little, M. I. Tuchkova, and L.I. Lobkovsky, 2012, The South Chukchi Sedimentary Basin (Chukchi Sea, Russian Arctic): Age, structural pattern,and hydrocarbon potential, in D. Gao, ed., Tectonics and sedimentation: Implications for petroleum systems: AAPG Memoir 100, p.267-290. [2] Peters K. E., Magoon L. B., Bird K. J., Valin Z. C., Keller M. A. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge AAPG Bulletin, V. 90, No. 2 (February 2006), 2006, P. 261-292.
NASA Astrophysics Data System (ADS)
Gogacz, A.; Hall, J.; Cifci, G.; Yasar, D.; Kucuk, M.; Yaltirak, C.; Aksu, A.
2009-05-01
The Antalya Basin is one of a series of basins that sweep along the Cyprus Arc in the forearc region between the (formerly) volcanic Tauride Mountains on Turkey in the north and the subduction zone and associated suture between the African plate and the Aegean-Anatolian microplate in the eastern Mediterranean, south of Cyprus. Miocene contraction occurs widely on southwest verging thrusts. Pliocene-Quaternary structures vary from extension/transtension in the northeast, adjacent to the Turkish coastline, to transpression in the southwest, farther offshore. All these structures are truncated at the northwest end of the Antalya Basin by a broad zone of NNE-SSW-trending transverse structure that appears to represent a prolongation of the extreme easterly transform end of the Hellenic arc. Our mapping suggests that this broad zone links the Hellenic Arc with the Isparta Angle in southern Turkey, which we suggest is an earlier location of the junction of Hellenic and Cyprus Arcs: the junction migrated to the southwest over time, as the Hellenic Arc rolled back. The Turkish coastline turns from parallel to the Antalya Basin structures in the east to a N-S orientation, cutting across the trend of the Antalya Basin. The Antalya Complex and the Bey Dağları Mountains provide a spectacular backdrop to this edge of the offshore basin. Somewhere offshore lies the structural termination of the Antalya Basin. In 2001, we acquired around 400 km of high-resolution multi-channel seismic reflection data across the western end of the Antalya Basin to explore the nature of the termination, which we call the Bey Dağları lineament. We present a selection of the seismic profiles with interpretation of the nature and Neogene history of the lineament. Landward of the N-S-trending coastline, ophiolites of the Antalya Complex are exposed in a series of westerly-verging thrust slivers that extend to the carbonate sequences of the Bey Dağları Mountains. Our seismic data indicate that N-S trending west- and east-verging thrusts define a transpressional continental margin. The shelf is underlain by a prominent angular unconformity between overlying shallow-dipping Pliocene-Quaternary sediments and underlying, easterly- dipping ?Miocene sediments.
Graves, R.W.; Wald, D.J.
2004-01-01
During the MW 7.1 Hector Mine earthquake, peak ground velocities recorded at sites in the central San Bernardino basin region were up to 2 times larger and had significantly longer durations of strong shaking than sites just outside the basin. To better understand the effects of 3D structure on the long-period ground-motion response in this region, we have performed finite-difference simulations for this earthquake. The simulations are numerically accurate for periods of 2 sec and longer and incorporate the detailed spatial and temporal heterogeneity of source rupture, as well as complex 3D basin structure. Here, we analyze three models of the San Bernardino basin: model A (with structural constraints from gravity and seismic reflection data), model F (water well and seismic refraction data), and the Southern California Earthquake Center version 3 model (hydrologic and seismic refraction data). Models A and F are characterized by a gradual increase in sediment thickness toward the south with an abrupt step-up in the basement surface across the San Jacinto fault. The basin structure in the SCEC version 3 model has a nearly uniform sediment thickness of 1 km with little basement topography along the San Jacinto fault. In models A and F, we impose a layered velocity structure within the sediments based on the seismic refraction data and an assumed depth-dependent Vp/Vs ratio. Sediment velocities within the SCEC version 3 model are given by a smoothly varying rule-based function that is calibrated to the seismic refraction measurements. Due to computational limitations, the minimum shear-wave velocity is fixed at 600 m/sec in all of the models. Ground-motion simulations for both models A and F provide a reasonably good match to the amplitude and waveform characteristics of the recorded motions. In these models, surface waves are generated as energy enters the basin through the gradually sloping northern margin. Due to the basement step along the San Jacinto fault, the surface wave energy is confined to the region north of this structure, consistent with the observations. The SCEC version 3 model, lacking the basin geometry complexity present in the other two models, fails to provide a satisfactory match to the characteristics of the observed motions. Our study demonstrates the importance of using detailed and accurate basin geometry for predicting ground motions and also highlights the utility of integrating geological, geophysical, and seismological observations in the development and validation of 3D velocity models.
Brocher, T.M.; Parsons, T.; Blakely, R.J.; Christensen, N.I.; Fisher, M.A.; Wells, R.E.; ten Brink, Uri S.; Pratt, T.L.; Crosson, R.S.; Creager, K.C.; Symons, N.P.; Preston, L.A.; Van Wagoner, T.; Miller, K.C.; Snelson, C.M.; Trehu, A.M.; Langenheim, V.E.; Spence, G.D.; Ramachandran, K.; Hyndman, R.A.; Mosher, D.C.; Zelt, B.C.; Weaver, C.S.
2001-01-01
A new three-dimensional (3-D) model shows seismic velocities beneath the Puget Lowland to a depth of 11 km. The model is based on a tomographic inversion of nearly one million first-arrival travel times recorded during the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS), allowing higher-resolution mapping of subsurface structures than previously possible. The model allows us to refine the subsurface geometry of previously proposed faults (e.g., Seattle, Hood Canal, southern Whidbey Island, and Devils Mountain fault zones) as well as to identify structures (Tacoma, Lofall, and Sequim fault zones) that warrant additional study. The largest and most important of these newly identified structures lies along the northern boundary of the Tacoma basin; we informally refer to this structure here as the Tacoma fault zone. Although tomography cannot provide information on the recency of motion on any structure, Holocene earthquake activity on the Tacoma fault zone is suggested by seismicity along it and paleoseismic evidence for abrupt uplift of tidal marsh deposits to its north. The tomography reveals four large, west to northwest trending low-velocity basins (Tacoma, Seattle, Everett, and Port Townsend) separated by regions of higher velocity ridges that are coincident with fault-bounded uplifts of Eocene Crescent Formation basalt and pre-Tertiary basement. The shapes of the basins and uplifts are similar to those observed in gravity data; gravity anomalies calculated from the 3-D tomography model are in close agreement with the observed anomalies. In velocity cross sections the Tacoma and Seattle basins are asymmetric: the basin floor dips gently toward a steep boundary with the adjacent high-velocity uplift, locally with a velocity "overhang" that suggests a basin vergent thrust fault boundary. Crustal fault zones grow from minor folds into much larger structures along strike. Inferred structural relief across the Tacoma fault zone increases by several kilometers westward along the fault zone to Lynch Cove, where we interpret it as a zone of south vergent faulting overthrusting Tacoma basin. In contrast, structural relief along the Seattle fault zone decreases west of Seattle, which we interpret as evidence that the N-S directed compression is being accommodated by slip transfer between the Seattle and Tacoma fault zones. Together, the Tacoma and Seattle fault zones raise the Seattle uplift, one of a series of east-west trending, pop-up structures underlying Puget Lowland from the Black Hills to the San Juan Islands. Copyright 2001 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Brocher, Thomas M.; Parsons, Tom; Blakely, Richard J.; Christensen, Nikolas I.; Fisher, Michael A.; Wells, Ray E.
2001-01-01
A new three-dimensional (3-D) model shows seismic velocities beneath the Puget Lowland to a depth of 11 km. The model is based on a tomographic inversion of nearly one million first-arrival travel times recorded during the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS), allowing higher-resolution mapping of subsurface structures than previously possible. The model allows us to refine the subsurface geometry of previously proposed faults (e.g., Seattle, Hood Canal, southern Whidbey Island, and Devils Mountain fault zones) as well as to identify structures (Tacoma, Lofall, and Sequim fault zones) that warrant additional study. The largest and most important of these newly identified structures lies along the northern boundary of the Tacoma basin; we informally refer to this structure here as the Tacoma fault zone. Although tomography cannot provide information on the recency of motion on any structure, Holocene earthquake activity on the Tacoma fault zone is suggested by seismicity along it and paleoseismic evidence for abrupt uplift of tidal marsh deposits to its north. The tomography reveals four large, west to northwest trending low-velocity basins (Tacoma, Seattle, Everett, and Port Townsend) separated by regions of higher velocity ridges that are coincident with fault-bounded uplifts of Eocene Crescent Formation basalt and pre-Tertiary basement. The shapes of the basins and uplifts are similar to those observed in gravity data; gravity anomalies calculated from the 3-D tomography model are in close agreement with the observed anomalies. In velocity cross sections the Tacoma and Seattle basins are asymmetric: the basin floor dips gently toward a steep boundary with the adjacent high-velocity uplift, locally with a velocity "overhang" that suggests a basin vergent thrust fault boundary. Crustal fault zones grow from minor folds into much larger structures along strike. Inferred structural relief across the Tacoma fault zone increases by several kilometers westward along the fault zone to Lynch Cove, where we interpret it as a zone of south vergent faulting overthrusting Tacoma basin. In contrast, structural relief along the Seattle fault zone decreases west of Seattle, which we interpret as evidence that the N-S directed compression is being accommodated by slip transfer between the Seattle and Tacoma fault zones. Together, the Tacoma and Seattle fault zones raise the Seattle uplift, one of a series of east-west trending, pop-up structures underlying Puget Lowland from the Black Hills to the San Juan Islands.
NASA Astrophysics Data System (ADS)
Lubberts, Ronald K.; Ben-Avraham, Zvi
2002-02-01
The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.
Comprehensive Analysis of Broadband Seismic Data in Las Vegas Valley
NASA Astrophysics Data System (ADS)
Tkalcic, H.; Rodgers, A.; Snelson, C.; McEwan, D.
2003-12-01
The city of Las Vegas is one of the fastest growing metropolitan areas in the world. Its urban area is located in a relatively broad sedimentary basin in the Basin and Range Province. Acknowledging that Las Vegas of 2003 is drastically different from Las Vegas of a decade ago, our objectives are to understand and predict ground motions and evaluate the effects of possible future earthquakes and nuclear tests at Nevada Test Site (NTS) on buildings in Las Vegas. A model of the basin depth was derived from gravity data in an independent study, while a model of compressional velocity structure of the basin was derived from seismic refraction studies. We are using strong motion accelerometers regional data, as well as newly acquired broadband teleseismic data to evaluate these models, and predict ground motions at the surface. Delay times of about a dozen analyzed teleseismic P-waves show variation of up to 0.5 seconds across relatively short distances (15 km or less), providing some valuable information on basin shape and thickness. Teleseismic P-waves have favorable signal-to-noise for low frequencies (0.1 to 1.0 Hz). This provides complementary site response measurements to those obtained from regional earthquakes and explosions. Our results indicate a clear difference in site response between hard-rock and basin stations, with amplification reaching factor 5 for the basin stations. The measured P and S wave energies for the recorded data also corelate well with the existing basin depth model, providing additional constraint in modeling the basin shape and structure. We use time domain deconvolution receiver functions to constrain the position of basin boundaries and main crustal discontinuities. Finally, we simulate low frequency (f < 1 Hz) theoretical ground motion in Las Vegas Valley by an elastic finite difference code. Preliminary results show that we can predict relative amplification, as well as some of the complexity in the waveforms, even without invoking complex (and computationaly expensive) three-dimensional structural models. This work is in progress.
Dam, William L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.; Craigg, S.D.
1990-01-01
This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) study of the San Juan structural basin that began in October 1984. The purposes of the study (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams, and (3) determine the availability and quality of ground water. Previous reports in this series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Gallup Sandstone (Kernodle and others, 1989), Morrison Formation (Dam and others, 1990), Point Lookout Sandstone (Craigg and others, 1990), Kirtland Shale and Fruitland Formation (Kernodle and others, 1990), Menefee Formation (Levings and others, 1990), Cliff House Sandstone (Thorn and others, 1990), and Ojo Alamo Sandstone (Thorn and others, 1990) in the San Juan structural basin. This report summarizes information on the geology and the occurrence and quality of water in the Pictured Cliffs Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the RASA study or derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN database. Although all data available for the Pictured Cliffs Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin in New Mexico, Colorado, Arizona, and Utah has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic and younger age; therefore, the study area is less extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because these units are the major aquifers in the basin. The study area is about 140 miles wide (about the same as the structural basin), 180 miles long, and has an area of about 19,400 square miles. Altitudes in the study area range from about 4,500 feet in southeastern Utah, to about 11,000 feet in the southeastern part of the basin. The area-weighted mean altitude is about 6,700 feet. Annual precipitation in the high mountainous areas along the north and east margins of the basin is as much as 45 inches, whereas annual precipitation in the lower altitude, central basin is generally less than 8 inches. Mean annual precipitation is about 12 inches. Data obtained from documents published by the U.S. Bureau of the Census (1980 and 1985) were used to calculate the population of the study area. The population in 1970 was calculated to be about 134,000. The population increased to about 194,000 in 1980,212,000 in 1982,221,000 in 1984, and then declined to about 210,000 in 1985. The economy of the basin is supported by exploration and development of natural gas, petroleum, coal, and uranium resources; urban enterprise; farming and ranching tourism, and recreation. The rise and fall in population were related to changes in the economic strength of the minerals, oil, and gas industries, and support services. Uranium-mining and -milling activities underwent rapid growth until the late 1970's when most uranium-mining activity came to an abrupt end. Likewise, the oil and gas industry prospered until about 1983 and then declined rapidly.
NASA Astrophysics Data System (ADS)
Berra, F.; Felletti, F.
2011-04-01
The Lower Permian succession of the Central Southern Alps (Lombardy, Northern Italy) was deposited in fault-controlled continental basins, probably related to transtensional tectonics. We focussed our study on the stratigraphic record of the Lower Permian Orobic Basin, which consists of a 1000 m thick succession of prevailing continental clastics with intercalations of ignimbritic flows and tuffs (Pizzo del Diavolo Formation, PDV) resting on the underlying prevailing pyroclastic flows of the Cabianca Volcanite. The PDV consists of a lower part (composed of conglomerates passing laterally to sandstones and distally to silt and shales), a middle part (pelitic, with carbonates) and an upper part (alternating sandstone, silt and volcanic flows). Syndepositional tectonics during the deposition of the PDV is recorded by facies distribution, thickness changes and by the presence of deformation and liquefaction structures interpreted as seismites. Deformation is recorded by both ductile structures (ball-and-pillow, plastic intrusion, disturbed lamination, convolute stratification and slumps) and brittle structures (sand dykes and autoclastic breccias). Both the sedimentological features and the geodynamic setting of the depositional basin confidently support the interpretation of the described deformation features as related to seismic shocks. The most significant seismically-induced deformation is represented by a slumped horizon (about 4 m thick on average) which can be followed laterally for more than 5 km. The slumped bed consists of playa-lake deposits (alternating pelites and microbial carbonates, associated with mud cracks and vertebrate tracks). The lateral continuity and the evidence of deposition on a very low-angle surface along with the deformation/liquefaction of the sediments suggest that the slump was triggered by a high-magnitude earthquake. The stratigraphic distribution of the seismites allows us to identify time intervals of intense seismic activity, which correspond to rapid and basin-wide changes in the stratigraphical architecture of the depositional basin and/or to the reprise of the volcanic activity. The nature of the structures and their distribution suggest that the magnitude of the earthquakes responsible for the observed structures was likely higher than 5 (in order to produce sediment liquefaction) and probably reached intensity as high as 7 or more. The basin architecture suggests that the foci of these earthquakes were located close to the fault-controlled borders of the basin or within the basin itself.
NASA Astrophysics Data System (ADS)
Kim, Y. M.; Lee, S. M.
2016-12-01
Marginal basins located between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center to those with less obvious zones of extension and a broad magmatic emplacement in the lower crust. The difference in the mode of back-arc opening may lead to a marked difference in crustal structure including its overall thickness and mechanical strength. The Ulleung Basin (UB) in the East Sea/Sea of Japan is considered to represent a continental rifting end-member of back-arc opening. However, compared to nearby Yamato Basin (YB) and Japan Basin (JB) in the NE corner of the sea, its structure and crustal characteristics are less well understood. This study examines the marine gravity anomalies of the UB in order to delineate the variations in crustal structure. Our analysis shows that the Moho depth from the sea surface varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust not including sediment is more or less the same (10-12 km), by varying only about 10-20% of the total thickness, contrary to the previous suggestions. The revelation that the UB has a thick but uniform thickness crust is consistent with previous observations using ocean bottom seismometers and is similar recent findings from the nearby YB. Another important feature is that small residual mantle gravity anomaly highs (40 mGal) exist in the northern part of the basin. These small highs trend in the NNE-SSW direction and thus corresponding to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that they are the result of localized extension and extra crustal thinning at the time of basin formation. Alternatively, the presence of small magmatic underplating at the base of the crust, perhaps similar to high velocity region in the lower crust of YB, was also considered. According to our study, two major processes appear to have significantly affected the overall structure of the UB crust following its opening: post-rifting magmatism which occurred in the north, especially in its northeast sections, and the deflection of crust in response to preferential sediment loading towards the south, producing the median high in the basement in response to the flexural bending.
The Tethys Rifting of the Valencia Trough Basin
NASA Astrophysics Data System (ADS)
Viñas, Marina; Ranero, César R.; Cameselle, Alejandra L.
2017-04-01
The western Mediterranean submarine realm is composed of several basin inferred to be formed by a common geodynamic process: upper plate extension during slab rollback of a retreating subduction zone. Although the time evolution of the geometry of the trenches is debated, all models assume that basins opened sequentially from NW (Gulf of Lions) towards the SE (Ligurian-Provençal and later Tyrrhenian basins) and SW (Valencia Trough and later Algerian-South Balearic and Alboran Basin) as trenches migrated. Basin opening history is key to reconstruct kinematics of slab retreat preferred in each model. However, the deep structure of basins is inadequately known due to the paucity of modern wide-angle and multichannel reflection seismic studies across entire systems, and absence of deep drilling in the deep-water regions of the basins, as a result, much of the opening evolution is inferred from indirect evidence. In the Valencia Trough Basin (VTB), drilling and vintage seismic data provide good knowledge of the shallow geology of the basin. However, crustal-scale information across the entire VTB has been limited to two studies (Figure 1): One in the late 80's (Valsis experiment) with three Expanded Spread Profiles that yielded local 1D velocity/depth models used to constrain 2D gravity modeling, and a few multichannel seismic profiles along the Iberian shelf and across segments of the basin. A second study in the early 90's (ESCI experiment) collected a low-resolution deep-penetration multichannel seismic reflection profile across the basin and a coincident wide-angle seismic line with numerous land stations in Iberia but a handful of widely-spaced Ocean Bottom Seismometers. In the absence of modern detailed crustal structure, the origin and evolution of the VTB is still debated. Industry multichannel seismic reflection profiles cover the SW segment of the VTB. This is a region where the basin sea floor is comparatively shallower and has numerous industry wells reaching deep into the sediment sequence, which provides an unprecedented view of the tectonic structure and distribution of synrift deposits across the entire basin, from the Iberian to the North Balearic margin (Figure 2). Here we first show that the seismic records provide full crustal-scale information. Later we discuss the tectonic and sedimentary structure that supports that crustal stretching and basin formation of the VTB occurred fundamentally during the Mesozoic times by strike-slip tectonics and not during Tertiary times by back-arc extension. We show that the current sea floor morphological configuration giving rise to the so-called Valencia Trough does not represent the changes in crystalline basement thickness related to rifting, but fundamentally a product of sediment dynamics, particularly by the development during post-Messinian times of the Ebro-river delta. Our results are significant to understand Tethyan rifting and need to be considered for plate kinematic reconstructions of the western Mediterranean.
NASA Astrophysics Data System (ADS)
Muksin, Umar; Haberland, Christian; Nukman, Mochamad; Bauer, Klaus; Weber, Michael
2014-12-01
The Tarutung Basin is located at a right step-over in the northern central segment of the dextral strike-slip Sumatran Fault System (SFS). Details of the fault structure along the Tarutung Basin are derived from the relocations of seismicity as well as from focal mechanism and structural geology. The seismicity distribution derived by a 3D inversion for hypocenter relocation is clustered according to a fault-like seismicity distribution. The seismicity is relocated with a double-difference technique (HYPODD) involving the waveform cross-correlations. We used 46,904 and 3191 arrival differences obtained from catalogue data and cross-correlation analysis, respectively. Focal mechanisms of events were analyzed by applying a grid search method (HASH code). Although there is no significant shift of the hypocenters (10.8 m in average) and centroids (167 m in average), the application of the double difference relocation sharpens the earthquake distribution. The earthquake lineation reflects the fault system, the extensional duplex fault system, and the negative flower structure within the Tarutung Basin. The focal mechanisms of events at the edge of the basin are dominantly of strike-slip type representing the dextral strike-slip Sumatran Fault System. The almost north-south striking normal fault events along extensional zones beneath the basin correlate with the maximum principal stress direction which is the direction of the Indo-Australian plate motion. The extensional zones form an en-echelon pattern indicated by the presence of strike-slip faults striking NE-SW to NW-SE events. The detailed characteristics of the fault system derived from the seismological study are also corroborated by structural geology at the surface.
The immature thrust belt of the northern front of the Tianshan
NASA Astrophysics Data System (ADS)
Chen, Ke; Gumiaux, Charles; Augier, Romain; Chen, Yan; Wang, Qingchen
2010-05-01
The modern Tianshan (central Asia), which extends east-west on about 2500 km long with an average of more than 2000 m in altitude, is considered as a direct consequence of the reactivation of a Paleozoic belt due to the India - Asia collision. At first order, the finite structure of this range obviously displays a significant uprising of Paleozoic "basement" rocks - as a crustal-scale ‘pop-up' - surrounded by two Cenozoic foreland basins. In order to characterize the coupling history of this Cenozoic orogeny with its northern foreland basin (Junggar basin), a detailed structural field work has been carried out on the northern piedmont of Tianshan. From Wusu to Urumqi, on about 250 km long, the thrusting of the Paleozoic basement on the Mesozoic or Cenozoic sedimentary series of the basin is remarkably exposed along several river valleys. In contrast, in other sections, the Triassic to Jurassic sedimentary series can be followed from the basin to the range where they unconformably overlie on the Carboniferous basement. These series are only gently folded along the "range front". These features imply that, at regional-scale, the Cenozoic reactivation of the Tianshan has not produced important deformation along its contact with the juxtaposed Junggar basin. The shortening ascribed to the Cenozoic intra-continental collision would either be localized in the range, mostly accommodated by reactivated Paleozoic structures or faults in the basement units, or in the distal parts of the Junggar basin, by folds and faults within the Cenozoic sedimentary series. Alternative hypothesis would be that the Tianshan uplift and the movements associated with along its northern front structures, which are traditionally assigned to its Cenozoic reactivation, might be reduced. Such characteristic significantly differs from other well-known orogenic ranges, such as the Canadian Rocky Mountains, the Appalachians, the Pyrenees which display highly folded foreland basins and thrust belts with rather well developed range front structures. This suggests that the Tianshan intra-continental range is rather "young" and still at a primary stage of its orogenic evolution. In other words, its front may be considered as an immature thrust belt. If considering the available tomographic data across the Tianshan, its actual uplift may probably be produced by an asymmetric intracontinental deformation mechanism, i.e. a deeper subduction of the Tarim plate below the Tianshan (to the south), with respect to the one of Junggar plate to the north of the range. Consequently, the Tianshan range offers an excellent natural laboratory to study the processes of the on-going orogeny-foreland basin coupling, ancient structures reactivation as well as initiation and development of range front structures.
Orphan Basin crustal structure from a dense wide-angle seismic profile - Tomographic inversion
NASA Astrophysics Data System (ADS)
Watremez, Louise; Lau, K. W. Helen; Nedimović, Mladen R.; Louden, Keith E.; Karner, Garry D.
2014-05-01
Orphan Basin is located on the eastern margin of Canada, offshore of Newfoundland and East of Flemish Cap. It is an aborted continental rift formed by multiple episodes of rifting. The crustal structure across the basin has been determined by an earlier refraction study using 15 instruments on a 550 km long line. It shows that the continental crust was extended over an unusually wide region but did not break apart. The crustal structure of the basin thus documents stages in the formation of a magma-poor rifted margin up to crustal breakup. The OBWAVE (Orphan Basin Wide-Angle Velocity Experiment) survey was carried out to image crustal structures across the basin and better understand the processes of formation of this margin. The spacing of the 89 recording stations varies from 3 to 5 km along this 500-km-long line, which was acquired along a pre-existing reflection line. The highest resolution section corresponds to the part of the profile where the crust was expected to be the thinnest. We present the results from a joint tomography inversion of first and Moho reflected arrival times. The high data density allows us to define crustal structures with greater detail than for typical studies and to improve the understanding of the processes leading to the extreme stretching of continental crust. The final model was computed following a detailed parametric study to determine the optimal parameters controlling the ray-tracing and the inversion processes. The final model shows very good resolution. In particular, Monte Carlo standard deviations of crustal velocities and Moho depths are generally < 50 m/s and within 1 km, respectively. In comparison to the velocity models of typical seismic refraction profiles, results from the OBWAVE study show a notable improvement in the resolution of the velocity model and in the level of detail observed using the least a priori information possible. The final model allows us to determine the crustal thinning and variable structures across the basin. In particular, we observe (1) a zone of extreme thinning, where the crust is thinner than 7 km; (2) basement highs and lows highlighting the blocks that accommodate the crustal thinning; (3) a central block that is thicker compared to the rest of the basin; (4) lower crustal thinning that is highly variable, which suggests a ductile deformation in the lower crust and an extensional discrepancy between the upper and lower crust (DDS); and (5) no evidence for upper-mantle serpentinization under the ultra-thinned crust. Furthermore, we show the importance of structural inheritance in rifting of the Avalon crust. Thus, we suggest that Orphan Basin is the result of rifting of a non-homogeneous Avalon terrane where the lower crust is primarily ductile.
Josberger, E.G.; Gloersen, P.; Chang, A.; Rango, A.
1996-01-01
Understanding the passive microwave emissions of a snowpack, as observed by satellite sensors, requires knowledge of the snowpack properties: water equivalent, grain size, density, and stratigraphy. For the snowpack in the Upper Colorado River Basin, measurements of snow depth and water equivalent are routinely available from the U.S. Department of Agriculture, but extremely limited information is available for the other properties. To provide this information, a field program from 1984 to 1995 obtained profiles of snowpack grain size, density, and temperature near the time of maximum snow accumulation, at sites distributed across the basin. A synoptic basin-wide sampling program in 1985 showed that the snowpack exhibits consistent properties across large regions. Typically, the snowpack in the Wyoming region contains large amounts of depth hoar, with grain sizes up to 5 mm, while the snowpack in Colorado and Utah is dominated by rounded snow grains less than 2 mm in diameter. In the Wyoming region, large depth hoar crystals in shallow snowpacks yield the lowest emissivities or coldest brightness temperatures observed across the entire basin. Yearly differences in the average grain sizes result primarily from variations in the relative amount of depth hoar within the snowpack. The average grain size for the Colorado and Utah regions shows much less variation than do the grain sizes from the Wyoming region. Furthermore, the greatest amounts of depth hoar occur in the Wyoming region during 1987 and 1992, years with strong El Nin??o Southern Oscillation, but the Colorado and Utah regions do not show this behavior.
Ni, Xuan; Yang, Rui; Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2010-12-01
Microscopic models based on evolutionary games on spatially extended scales have recently been developed to address the fundamental issue of species coexistence. In this pursuit almost all existing works focus on the relevant dynamical behaviors originated from a single but physically reasonable initial condition. To gain comprehensive and global insights into the dynamics of coexistence, here we explore the basins of coexistence and extinction and investigate how they evolve as a basic parameter of the system is varied. Our model is cyclic competitions among three species as described by the classical rock-paper-scissors game, and we consider both discrete lattice and continuous space, incorporating species mobility and intraspecific competitions. Our results reveal that, for all cases considered, a basin of coexistence always emerges and persists in a substantial part of the parameter space, indicating that coexistence is a robust phenomenon. Factors such as intraspecific competition can, in fact, promote coexistence by facilitating the emergence of the coexistence basin. In addition, we find that the extinction basins can exhibit quite complex structures in terms of the convergence time toward the final state for different initial conditions. We have also developed models based on partial differential equations, which yield basin structures that are in good agreement with those from microscopic stochastic simulations. To understand the origin and emergence of the observed complicated basin structures is challenging at the present due to the extremely high dimensional nature of the underlying dynamical system. © 2010 American Institute of Physics.
Long-lived volcanism within Argyre basin, Mars
NASA Astrophysics Data System (ADS)
Williams, Jean-Pierre; Dohm, James M.; Soare, Richard J.; Flahaut, Jessica; Lopes, Rosaly M. C.; Pathare, Asmin V.; Fairén, Alberto G.; Schulze-Makuch, Dirk; Buczkowski, Debra L.
2017-09-01
The Argyre basin, one of the largest impact structures on Mars with a diameter >1200 km, formed in the Early Noachian ∼3.93 Ga. The basin has collected volatiles and other material through time, and experienced partial infilling with water evident from stratigraphic sequences, crater statistics, topography, and geomorphology. Although volcanism has not been previously associated with the Argyre basin, our study of the northwest portion of the basin floor has revealed landforms suggesting volcanic and tectonic activity occurred including Argyre Mons, a ∼50 km wide volcanic-structure formed ∼3 Ga. Giant polygons with a similar surface age are also identified on terrain adjacent to the base of Argyre Mons, indicating the structure may have formed in a water-rich environment. In addition to Argyre Mons, cones, vents, mounds, dikes, and cavi or hollows, many of which are associated with extensional tectonics, are observed in the region. Multiple features appear to disrupt icy (and largely uncratered) terrain indicating a relatively young, Late Amazonian, formation age for at least some of the volcanic and tectonic features. The discovery of Argyre Mons, along with additional endogenic modification of the basin floor, suggests that the region has experienced episodes of volcanism over a protracted period of time. This has implications for habitability as the basin floor has been a region of elevated heat flow coupled with liquid water, water ice, and accumulation of sediments of diverse provenance with ranging geochemistry, along with magma-water interactions.
Hydrological Simulation of Flood Events At Large Basins Using Distributed Modelling
NASA Astrophysics Data System (ADS)
Vélez, J.; Vélez, I.; Puricelli, M.; Francés, F.
Recent advances in technology allows to the scientist community advance in new pro- cedures in order to reduce the risk associated to flood events. A conceptual distributed model has been implemented to simulate the hydrological processes involved during floods. The model has been named TETIS. The basin is divided into rectangular cells, all of them connected according to the network drainage. The rainfall-runoff process is modelled using four linked tanks at each cell with different outflow relationships at each tank, which represent the ET, direct runoff, interflow and base flow, respectively. The routing along the channel network has been proposed using basin geomorpho- logic characteristics coupled to the cinematic wave procedure. The vertical movement along the cell is proposed using simple relationships based on soil properties as field capacity and the saturated hydraulic conductivities, which were previously obtained using land use, litology, edaphology and basin properties maps. The different vertical proccesses along the cell included are: capillar storage, infiltration, percolation and underground losses. Finally, snowmelting and reservoir routing has been included. TETIS has been implemented in the flood warning system of the Tagus River, with a basin of 59 200 km2. The time discretization of the input data is 15 minutes, and the cell size is 500x500 m. The basic parameter maps were estimated for the entire basin, and a calibration and validation processes were performed using some recorded events in the upper part of the basin. Calibration confirmed the initial parameter estimation. Additionally, the validation in time and space showed the robustness of these types of models
Singh, Shatrughan; D'Sa, Eurico; Swenson, Erick
2010-01-01
Absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) along a 124 km transect in the Barataria Basin, a large estuary located in Louisiana, USA, were investigated during high and low flow periods of the Mississippi River in the spring and winter of 2008-2009. Mean CDOM absorption at 355 nm from the marine to the freshwater end member stations ranged from (3.25 +/- 0.56) to (20.76 +/- 2.43) m(-1) for the three month high flow period whereas it varied from (1.48 +/- 1.08) to (25.45 +/- 7.03) m(-1) for the same stations during low flow period. Corresponding salinity values at these stations indicated the influence of river and shelf exchanges in the lower basin and precipitation and runoff in the upper basin. An inverse relationship of CDOM absorbance and fluorescence with salinity observed in the basin could be a useful indicator of salinity. CDOM fluorescence also varied over a large range showing an approximately 8 to 12-fold increase between the marine and freshwater end members for the two flow seasons. Excitation-emission matrix spectral plots indicated the presence of various fluorescence components with highest being the A-peak, lowest the T-peak, and the C and M-peaks showing similar trends along the transect. During low flow season the A/C ratio were well correlated with station locations indicating increased terrestrial influence towards the upper basin. CDOM absorption and fluorescence at 355 nm were highly correlated and independent of CDOM sources suggesting that fluorescence could be used to characterize CDOM in the basin.
Structure of the Tucson Basin, Arizona from gravity and aeromagnetic data
Rystrom, Victoria Louise
2003-01-01
Interpretation of gravity and high-resolution aeromagnetic data reveal the three-dimensional geometry of the Tuscson Basin, Arizona and the lithology of its basement. Limited drill hole and seismic data indicate that the maximum depth to the crystalline basement is approximately 3600 meters and that the sedimentary sequences in the upper ~2000 m of the basin were deposited during the most recent extensional episode that commenced about 13 Ma. The negative density contrasts between these upper Neogene and Quaternary sedimentary sequences and the adjacent country rock produce a Bouguer residual gravity low, whose steep gradients clearly define the lateral extent of the upper ~2000m of the basin. The aeromagnetic maps show large positive anomalies associated with deeply buried, late Cretaceous-early Tertiary and mid-Tertiary igneous rocks at and below the surface of the basin. These magnetic anomalies provide insight into the older (>13 Ma) and deeper structures of the basin. Simultaneous 2.5-dimensional modeling of both gravity and magnetic anomalies constrained by geologic and seismic data delineates the thickness of the basin and the dips of the buried faults that bound the basin. This geologic-based forward modeling approach to using geophysical data is shown to result in more information about the geologic and tectonic history of the basin as well as more accurate depth to basement determinations than using generalized geophysical inversion techniques.
Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)
NASA Astrophysics Data System (ADS)
Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.
2017-04-01
The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.
Ripple Ring Basins on Ganymede and Callisto
NASA Technical Reports Server (NTRS)
Croft, S. K.
1985-01-01
The unusual morphology of the Valhalla multiple or ripple-ring basin in Callisto was totally unexpected in light of the morphologies of large impact structures on the terrestrial planets. Two other ripple-ring basins (RRB's), Asgard and a smaller structure near the crater Adlinda are also described. Several additional RRB's were found on Callisto, an example of which is shown. A previously unrecognized RRB on Ganymede was also found. An image and geologic sketch map of this RRB are shown. Morphometric and positional data for all known RRB's are given.
1976-01-01
consist of Daguerre Point Dam, which forms a storage basin for debris, and some fifteen miles of training walls de- signed to keep the river within...obtaining up to the date of passage of this act owners of property anywhere in the basin were at liberty to reclaim practically as they pleased, with...Yolo Basin some 21 miles of the east levee had been constructed, and another twenty miles had been planned and approved. When completed, about forty
Hydrocarbon potential of Morocco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achnin, H.; Nairn, A.E.M.
1988-08-01
Morocco lies at the junction of the African and Eurasian plates and carries a record of their movements since the end of the Precambrian. Four structural regions with basins and troughs can be identified: Saharan (Tarfaya-Ayoun and Tindouf basins); Anti-Atlas (Souss and Ouarzazate troughs and Boudnib basin); the Essaouria, Doukkala, Tadla, Missour, High Plateau, and Guercif basins; and Meseta and Rif (Rharb and Pre-Rif basins). The targets in the Tindouf basin are Paleozoic, Cambrian, Ordovician (clastics), Devonian (limestones), and Carboniferous reservoirs sourced primarily by Silurian shales. In the remaining basins, excluding the Rharb, the reservoirs are Triassic detritals, limestones atmore » the base of the Lias and Dogger, Malm detritals, and sandy horizons in the Cretaceous. In addition to the Silurian, potential source rocks include the Carboniferous and Permo-Carboniferous shales and clays; Jurassic shales, marls, and carbonates; and Cretaceous clays. In the Rharb basin, the objectives are sand lenses within the Miocene marls. The maturation level of the organic matter generally corresponds to oil and gas. The traps are stratigraphic (lenses and reefs) and structural (horsts and folds). The seals in the pre-Jurassic rocks are shales and evaporites; in the younger rocks, shales and marl. Hydrocarbon accumulations have been found in Paleozoic, Triassic, Liassic, Malm, and Miocene rocks.« less
The large impact process inferred from the geology of lunar multiring basins
NASA Technical Reports Server (NTRS)
Spudis, Paul D.
1992-01-01
The nature of the impact process has been inferred through the study of the geology of a wide variety of impact crater types and sizes. Some of the largest craters known are the multiring basins found in ancient terrains of the terrestrial planets. Of these features, those found on the Moon possess the most extensive and diverse data coverage, including morphological, geochemical, geophysical, and sample data. The study of the geology of lunar basins over the past 10 years has given us a rudimentary understanding of how these large structures have formed and evolved. The topics covered include basin morphology, basin ejecta, basin excavation, and basin ring formation.
Cocker, Mark D.; Orris, Greta J.; Dunlap, Pamela; Lipin, Bruce R.; Ludington, Steve; Ryan, Robert J.; Słowakiewicz, Mirosław; Spanski, Gregory T.; Wynn, Jeff; Yang, Chao
2017-08-03
Undiscovered potash resources in the Pripyat Basin, Belarus, and Dnieper-Donets Basin, Ukraine, were assessed as part of a global mineral resource assessment led by the U.S. Geological Survey (USGS). The Pripyat Basin (in Belarus) and the Dnieper-Donets Basin (in Ukraine and southern Belarus) host stratabound and halokinetic Upper Devonian (Frasnian and Famennian) and Permian (Cisuralian) potash-bearing salt. The evaporite basins formed in the Donbass-Pripyat Rift, a Neoproterozoic continental rift structure that was reactivated during the Late Devonian and was flooded by seawater. Though the rift was divided, in part by volcanic deposits, into the separate Pripyat and Dnieper-Donets Basins, both basins contain similar potash‑bearing evaporite sequences. An Early Permian (Cisuralian) sag basin formed over the rift structure and was also inundated by seawater resulting in another sequence of evaporite deposition. Halokinetic activity initiated by basement faulting during the Devonian continued at least into the Permian and influenced potash salt deposition and structural evolution of potash-bearing salt in both basins.Within these basins, four areas (permissive tracts) that permit the presence of undiscovered potash deposits were defined by using geological criteria. Three tracts are permissive for stratabound potash-bearing deposits and include Famennian (Upper Devonian) salt in the Pripyat Basin, and Famennian and Cisuralian (lower Permian) salt in the Dnieper-Donets Basin. In addition, a tract was delineated for halokinetic potash-bearing Famennian salt in the Dnieper-Donets Basin.The Pripyat Basin is the third largest source of potash in the world, producing 6.4 million metric tons of potassium chloride (KCl) (the equivalent of about 4.0 million metric tons of potassium oxide or K2O) in 2012. Potash production began in 1963 in the Starobin #1 mine, near the town of Starobin, Belarus, in the northwestern corner of the basin. Potash is currently produced from six potash mines in the Starobin area. Published reserves in the Pripyat Basin area are about 7.3 billion metric tons of potash ore (about 1.3 billion metric tons of K2O) mostly from potash-bearing salt horizons in the Starobin and Petrikov mine areas. The 15,160-square-kilometer area of the Pripyat Basin underlain by Famennian potash-bearing salt contains as many as 60 known potash-bearing salt horizons. Rough estimates of the total mineral endowment associated with stratabound Famennian salt horizons in the Pripyat Basin range from 80 to 200 billion metric tons of potash-bearing salt that could contain 15 to 30 billion metric tons of K2O.Parameters (including the number of economic potash horizons, grades, and depths) for these estimates are not published so the estimates are not easily confirmed. Historically, reserves have been estimated above a depth of 1,200 meters (m) (approximately the depths of conventional underground mining). Additional undiscovered K2O resources could be significantly greater in the remainder of the Fammenian salt depending on the extents and grades of the 60 identified potash horizons above the USGS assessment depth of 3,000 m in the remainder of the tract. Increasing ambient temperatures with increasing depths in the eastern parts of the Pripyat Basin may require a solution mining process which is aided by higher temperatures.No resource or reserve data have been published and little is known about stratabound Famennian and Frasnian salt in the Dnieper-Donets Basin. These Upper Devonian salt units dip to the southeast and extend to depths of 15–19 kilometers (km) or greater. The tract of stratabound Famennian salt that lies above a depth of 3 km, the depth above which potash is technically recoverable by solution mining, underlies an area of about 15,600 square kilometers (km2). If Upper Devonian salt units in the Dnieper-Donets Basin contain potash-bearing strata similar to salt of the same age in the Pripyat Basin, then the stratabound Famennian tract in the Dnieper-Donets Basin could contain significant undiscovered potash resources.The Cisuralian evaporite sequence in the Dnieper-Donets Basin consists of 10 evaporite cycles with the upper 3 cycles containing potash-bearing salt (mainly as sylvite and carnallite) in several subbasins and polyhalite in the sulfate bearing parts of the identified tract. The area of the Cisuralian tract is 62,700 km2. Potash-bearing cycles are as much as 40 m thick. One subbasin is reported to contain 794 million metric tons of “raw or crude” potash-bearing salt which could contain 50 to 150 million metric tons of K2O, depending on the grade. Undiscovered potash resources in the remainder of this permissive tract may be significantly greater. Depths to the Permian salt range from less than 100 to about 1,500 m.Undiscovered resources of halokinetic potash-bearing salt in the Dnieper-Donets Basin were assessed quantitatively for this study by using the standard USGS three-part form of mineral resource assessment (Singer, 2007a; Singer and Menzie, 2010). Delineation of the permissive tract was based on distributions of mapped halokinetic salt structures. This tract contains at least 248 diapiric salt structures with a total area of 7,840 km2 that occupies approximately 8 percent of the basin area. The vertical extent of these salt structures is hundreds of meters to several kilometers. This assessment estimated that a total mean of 11 undiscovered deposits contain an arithmetic mean estimate of about 840 million metric tons of K2O in the halokinetic salt structures of the Dnieper-Donets Basin for which the probabilistic estimate was made.
NASA Astrophysics Data System (ADS)
Xiao, Qibin; Shao, Guihang; Yu, Guo; Cai, Juntao; Wang, Jijun
2016-06-01
The northern Tibetan Plateau is characterized by northwest-southeast trending basin-range systems such as the Kunlun Shan Ranges-Qaidam Basin-Qilian Shan Ranges. The Cenozoic evolution and deformation of the Qaidam Basin and its neighboring ranges are important indications for the northward growth of the Tibetan Plateau. The latest magnetotelluric data were collected along a profile in N16.5°E from the Songpan-Ganzi Block, across the Kunlun Shan Ranges, east section of the Qaidam Basin, and ending in the Qilian Shan Ranges. Both two-dimensional and three-dimensional inversions of the data along the profile were performed and the results provided new evidence for lithospheric structures in the northern Tibetan Plateau. With three-dimensional isotropic inversion codes, we are able to model the Phase Roll Out of Quadrant (PROQ) magnetotelluric data, which exist at low frequencies in a number of continuous sites at the northern Qaidam Basin. Sensitivity studies of the three-dimensional models indicate that the Qaidam Basin with low-resistivity upper crust is the major contributor for the PROQ effect, while a south-north-striking low-resistivity gap intersecting with the Qaidam Basin at its northern part affects the range of the PROQ effect. In the magnetotelluric resistivity models, the Qaidam Basin is not in symmetric structure at upper-crust level, with its depocenter near the Northern Qaidam Fault. At mid-lower crust level, the compositions of both the Kunlun Shan Ranges and the southern Qaidam Basin are of generally high-resistivity, which does not support large-scale lower-crust materials of the Songpan-Ganzi Block flow below the Kunlun Shan Ranges or the Qaidam Basin. Instead, the unsymmetrical Qaidam Basin and the shovel-shape high-resistivity anomalies in crust below the Kunlun Shan Ranges and the southern Qiadam Basin indicate the regional northward push from the Songpan-Ganzi Block. The south-deepening low-resistivity anomalies in the crust of the Qilian Shan Ranges support the existence of an intracrustal detachment, which controls the thrusts in northern Qaidam Basin and the Qilian Shan Ranges. The crustal deformation in northern Tibetan Plateau is consistent with mantle convergence or collision between the Kunlun-Qaidam lithospheric mantle and the Asian lithospheric mantle.
NASA Astrophysics Data System (ADS)
Basilone, Luca; Sulli, Attilio; Gasparo Morticelli, Maurizio
2016-06-01
We illustrate the tectono-sedimentary evolution of a Jurassic-Cretaceous intraplatform basin in a fold and thrust belt present setting (Cala Rossa basin). Detailed stratigraphy and facies analysis of Upper Triassic-Eocene successions outcropping in the Palermo Mts (NW Sicily), integrated with structural analysis, restoration and basin analysis, led to recognize and describe into the intraplatform basin the proximal and distal depositional areas respect to the bordered carbonate platform sectors. Carbonate platform was characterized by a rimmed reef growing with progradational trends towards the basin, as suggested by the several reworked shallow-water materials interlayered into the deep-water succession. More, the occurrence of thick resedimented breccia levels into the deep-water succession suggests the time and the characters of synsedimentary tectonics occurred during the Late Jurassic. The study sections, involved in the building processes of the Sicilian fold and thrust belt, were restored in order to obtain the original width of the Cala Rossa basin, useful to reconstruct the original geometries and opening mechanisms of the basin. Basin analysis allowed reconstructing the subsidence history of three sectors with different paleobathymetry, evidencing the role exerted by tectonics in the evolution of the narrow Cala Rossa basin. In our interpretation, a transtensional dextral Lower Jurassic fault system, WNW-ESE (present-day) oriented, has activated a wedge shaped pull-apart basin. In the frame of the geodynamic evolution of the Southern Tethyan rifted continental margin, the Cala Rossa basin could have been affected by Jurassic transtensional faults related to the lateral westward motion of Africa relative to Europe.
Stratigraphic Signatures of Forearc Basin Formation Mechanisms
NASA Astrophysics Data System (ADS)
Mannu, U.; Ueda, K.; Gerya, T.; Willett, S.; Strasser, M.
2014-12-01
Forearc basins are loci of active sedimentation above the landward portion of accretionary prisms. Although these basins typically remain separated from the frontal prism by a forearc high, their evolution has a significant impact on the structure and deformation of the entire wedge. Formation of forearc basins has been proposed as a consequence of changes in wedge stability due to an increase of slab dip in subduction zones. Another hypothesis attributes this to higher hinterland sedimentation, which causes the rear of the wedge to stabilize and eventually develop a forearc basin. Basin stratigraphic architecture, revealed by high-resolution reflection seismic data and borehole data allows interpretation of structural development of the accretionary prism and associated basins with the goal of determining the underlying driving mechanism(s) of basin formation. In this study we supplement data interpretation with thermo-mechanical numerical models including high-resolution isochronal surface tracking to visualize the developing stratigraphy of basins that develop in subduction zone and wedge dynamic models. We use a dynamic 2D thermo mechanical model incorporating surface processes, strain weakening and sediment subduction. The model is a modification of I2VIS model, which is based on conservative, fully staggered finite differences and a non-diffusive marker- in-cell technique capable of modelling mantle convection. In the model different driving mechanisms for basin formation can be explored. Stratigraphic simulations obtained by isochronal surface tracking are compared to reflection pattern and stratigraphy of seismic and borehole data, respectively. Initial results from a model roughly representing the Nankai Trough Subduction Zone offshore Japan are compared to available seismic and Integrated Ocean Drilling (IODP) data. A calibrated model predicting forearc basin stratigraphy will be used to discern the underlying process of basins formation and wedge dynamics.
The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves
NASA Astrophysics Data System (ADS)
Feng, L.; Ritzwoller, M. H.
2017-12-01
Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.
Structural, energetic, and electronic trends in low-dimensional late-transition-metal systems
NASA Astrophysics Data System (ADS)
Hu, C. H.; Chizallet, C.; Toulhoat, H.; Raybaud, P.
2009-05-01
Using first-principles calculations, we present a comprehensive investigation of the structural trends of low dimensionality late 4d (from Tc to Ag) and 5d (from Re to Au) transition-metal systems including 13-atom clusters. Energetically favorable clusters not being reported previously are discovered by molecular-dynamics simulation based on the simulated annealing method. They allow a better agreement between experiments and theory for their magnetic properties. The structural periodic trend exhibits a nonmonotonic variation of the ratio of square to triangular facets for the two rows, with a maximum for Rh13 and Ir13 . By a comparative analysis of the relevant energetic and electronic properties performed on other metallic systems with reduced dimensionalities such as four-atom planar clusters, one-dimensional (1D) scales, double scales, 1D cylinders, monatomic films, two and seven layer slabs, we highlight that this periodic trend can be generalized. Hence, it appears that 1D-metallic nanocylinders or 1D-double nanoscales (with similar binding energies as TM13 ) also favor square facets for Rh and Ir. We finally propose an interpretation based on the evolution of the width of the valence band and of the Coulombic repulsions of the bonding basins.
NASA Astrophysics Data System (ADS)
Selim, El Sayed Ibrahim
2016-01-01
The Sinai Peninsula is a part of the Sinai sub-plate that located between the southeast Nubian-Arabian shield and the southeastern Mediterranean northward. The main objectives of this investigation are to deduce the main sedimentary basin and its subdivisions, identify the subsurface structural framework that affects the study area and determine the thickness of sedimentary cover of the basement surface. The total intensity magnetic map, Bouguer gravity map and seismic data were used to achieve the study aims. Structural interpretation of the gravity and magnetic data were done by applying advanced processing techniques. These techniques include; Reduce to the pole (RTP), Power spectrum, Tile derivative and Analytical Signal techniques were applied on gravity and magnetic data. Two dimensional gravity and magnetic modeling and interpretation of seismic sections were done to determine the thickness of sedimentary cover of the study area. The integration of our interpretation suggests that, the northern Sinai area consists of elongated troughs that contain many high structural trends. Four major structural trends have been identified, that, reflecting the influence of district regional tectonic movements. These trends are: (1) NE-SW trend; (2) NNW-SSE trend; (3) ENE-WSW trend and (4) WNW-ESE trend. There are also many minor trends, E-W, NW-SE and N-S structural trends. The main sedimentary basin of North Sinai is divided into four sub-basins; (1) Northern Maghara; (2) Northeastern Sinai; (3) Northwestern Sinai and (4) Central Sinai basin. The sedimentary cover ranges between 2 km and 7 km in the northern part of the study area.
Basement involved thrusts from Northwestern Maracaibo Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audemard, F.
1993-02-01
The interpretation of seismic reflection profiles from northwestern Maracaibo Basin, north of the Palmar River, suggests a late Neogene age for all the structures located within the north-northeast trends of anticlinal belts. These folded structures appear to be ramp anticlines generated from basement involved thrusts. Such detachments are intercepted by conjugate systems of low-angle decollements decoupled from the thick shaly intervals of Cretaceous and Eocene age. The resulting configuration of these fault systems are related to a mechanic of deformation referred as [open quotes]fish tail[close quotes]. This structural style favors the superposition of structural traps at different levels. The superposedmore » reservoirs from La Paz, Mara, Sibucara, Mara Oeste, and Ensenada among others constitute superb examples of this style of deformation. Similar anticlinal structures are also observed to the southeast of the Basin in the Ceuta-Tomoporo area.« less
Topal, Savaş; Özkul, Mehmet
2014-01-01
The NW-trending Denizli basin of the SW Turkey is one of the neotectonic grabens in the Aegean extensional province. It is bounded by normal faults on both southern and northern margins. The basin is filled by Neogene and Quaternary terrestrial deposits. Late Miocene- Late Pliocene aged Kolankaya formation crops out along the NW trending Karakova uplift in the Denizli basin. It is a typical fluviolacustrine succession that thickens and coarsens upward, comprising poorly consolidated sand, gravelly sand, siltstone and marl. Various soft-sediment deformation structures occur in the formation, especially in fine- to medium grained sands, silts and marls: load structures, flame structures, clastic dikes (sand and gravely-sand dike), disturbed layers, laminated convolute beds, slumps and synsedimentary faulting. The deformation mechanism and driving force for the soft-sediment deformation are related essentially to gravitational instability, dewatering, liquefaction-liquidization, and brittle deformation. Field data and the wide lateral extent of the structures as well as regional geological data show that most of the deformation is related to seismicity and the structures are interpreted as seismites. The existence of seismites in the Kolankaya Formation is evidence for continuing tectonic activity in the study area during the Neogene and is consistent with the occurrence of the paleoearthquakes of magnitude >5. PMID:25152909
Are calanco landforms similar to river basins?
Caraballo-Arias, N A; Ferro, V
2017-12-15
In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Haijian; Fu, Bihong; Shi, Pilong; Xue, Guoliang; Li, Haibing
2018-05-01
Constraints on the timing and style of the Tibetan Plateau growth help spur new understanding of the tectonic evolution of the northern Tibetan Plateau and its relation to the India-Asia continental collision. In this regard, records of tectonic deformation with accurate ages are urgently needed, especially in regions without relevant studies. The Kumkol basin, located between two major intermontane basins (the Hoh Xil and Qaidam basins), may hold clues to how these major basins evolve during the Cenozoic. However, little has been known about the exact ages of the strata and tectonic deformation of the basin. Herein, detailed paleomagnetic and structural studies are conducted on the southern Baiquanhe section in the central Kumkol basin, northern Tibetan Plateau. The magnetostratigraphic study indicates that the southern Baiquanhe section spans a time interval of 8.2-4.2 Ma. Well-preserved growth strata date to 7.5 Ma, providing evidence for a significant thrust fault-related folding. This thrust-related folding has also been identified in the Tian Shan foreland and in the northern Tibetan Plateau, most likely implying a pulsed basinward deformation during the late Miocene.
Evolution of the properties of Al(n)N(n) clusters with size.
Costales, Aurora; Blanco, M A; Francisco, E; Pandey, Ravindra; Martín Pendás, A
2005-12-29
A global optimization of stoichiometric (AlN)(n) clusters (n = 1-25, 30, 35, ..., 95, 100) has been performed using the basin-hopping (BH) method and describing the interactions with simple and yet realistic interatomic potentials. The results for the smaller isomers agree with those of previous electronic structure calculations, thus validating the present scheme. The lowest-energy isomers found can be classified in three different categories according to their structural motifs: (i) small clusters (n = 2-5), with planar ring structures and 2-fold coordination, (ii) medium clusters (n = 6-40), where a competition between stacked rings and globular-like empty cages exists, and (iii) large clusters (n > 40), large enough to mix different elements of the previous stage. All the atoms in small and medium-sized clusters are in the surface, while large clusters start to display interior atoms. Large clusters display a competition between tetrahedral and octahedral-like features: the former lead to a lower energy interior in the cluster, while the latter allow for surface terminations with a lower energy. All of the properties studied present different regimes according to the above classification. It is of particular interest that the local properties of the interior atoms do converge to the bulk limit. The isomers with n = 6 and 12 are specially stable with respect to the gain or loss of AlN molecules.
NASA Astrophysics Data System (ADS)
Nukman, M.; Moeck, I.
2012-04-01
The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last two million years due to the increase in sea-floor spreading rate of the Indian-Australian plate. The combination of regional clockwise rotation of Sumatra with local clockwise rotation caused by simple shear along the dextral SFS might generate the complex fault pattern which controls fluid flow of thermal water and placement of hot springs. Acknowledgements : Deutscher Akademischer Austausch Dienst, DAAD. German Ministry for Education and Research, BMBF. Badan Geologi - KESDM Bandung, Indonesia.
Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.
2015-11-10
The Lower Hudson River Basin study area covers 5,607 square miles and encompasses the part of the Lower Hudson River Basin that lies within New York plus the parts of the Housatonic, Hackensack, Bronx, and Saugatuck River Basins that are in New York. Twelve of the wells sampled in the Lower Hudson River Basin are completed in sand-and-gravel deposits, and 13 are completed in bedrock. Groundwater in the Lower Hudson River Basin was generally of good quality, although properties and concentrations of some constituents—pH, sodium, chloride, dissolved solids, arsenic, aluminum, iron, manganese, radon-222, total coliform bacteria, fecal coliform bacteria, Escherichia coli bacteria, and heterotrophic plate count—equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (20 of 25 samples) was radon-222.
Sparse Bayesian learning machine for real-time management of reservoir releases
NASA Astrophysics Data System (ADS)
Khalil, Abedalrazq; McKee, Mac; Kemblowski, Mariush; Asefa, Tirusew
2005-11-01
Water scarcity and uncertainties in forecasting future water availabilities present serious problems for basin-scale water management. These problems create a need for intelligent prediction models that learn and adapt to their environment in order to provide water managers with decision-relevant information related to the operation of river systems. This manuscript presents examples of state-of-the-art techniques for forecasting that combine excellent generalization properties and sparse representation within a Bayesian paradigm. The techniques are demonstrated as decision tools to enhance real-time water management. A relevance vector machine, which is a probabilistic model, has been used in an online fashion to provide confident forecasts given knowledge of some state and exogenous conditions. In practical applications, online algorithms should recognize changes in the input space and account for drift in system behavior. Support vectors machines lend themselves particularly well to the detection of drift and hence to the initiation of adaptation in response to a recognized shift in system structure. The resulting model will normally have a structure and parameterization that suits the information content of the available data. The utility and practicality of this proposed approach have been demonstrated with an application in a real case study involving real-time operation of a reservoir in a river basin in southern Utah.
Towards River Rehabilitation as AN Integrated Approach to Flood Management in Asian Cities
NASA Astrophysics Data System (ADS)
Higgitt, David L.
Flood management in Asian cities has conventionally been approached through structural intervention where floods are regarded as a threat requiring control through engineering infrastructure. Such a command and control paradigm represents a marked transition from the way that monsoon flood regimes have been traditionally perceived across Asia. Rapid urbanization and climate change has imposed increasingly difficult flood management challenges as an extension of impermeable surfaces generates rapid runoff and flash flooding, while cities expand into flood-prone areas. Property and communities are placed at enhanced risk. Urbanization reallocates risk as channel and floodplain modification influences flood regimes, while demands for flood protection at certain locations can redistribute risk to other areas. An increasing concern about flood hazard across Asian cities questions whether conventional solutions reliant on structural intervention are sustainable. Such questioning is mirrored by an alternative paradigm of rehabilitation in integrated river basin management — a recognition that restoring and sustaining functional river ecosystems with high biodiversity is one of the greatest challenges facing society. Rehabilitation initiatives demand a new approach to river basin management which encourage interdisciplinary activity, particularly between engineers, hydrologists, geomorphologists and ecologists. The paper sets out some preliminary ideas from a research project investigating the potential for river rehabilitation as a central tenet of flood management, with a particular focus on Asian cities.
Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources
NASA Astrophysics Data System (ADS)
Lacombe, Olivier; Rolland, Yann
2016-11-01
Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Prockter, Louise M.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Solomon, Sean C.; Zuber, Maria T.; Oberst, Juergen; Preusker, Frank;
2012-01-01
Peak-ring basins (large impact craters exhibiting a single interior ring) are important to understanding the processes controlling the morphological transition from craters to large basins on planetary bodies. New image and topography data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft have helped to update the catalogs of peak-ring basins on Mercury and the Moon [1,2] and are enabling improved calculations of the morphometric properties of these basins. We use current orbital altimeter measurements from the Mercury Laser Altimeter (MLA) [3] and the Lunar Orbiter Laser Altimeter (LOLA) [4], as well as stereo-derived topography [5], to calculate the floor depths and peak-ring heights of peak-ring basins on Mercury and the Moon. We present trends in these parameters as functions of rim-crest diameter, which are likely to be related to processes controlling the onset of peak rings in these basins.
Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H
2010-03-01
The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.
NASA Astrophysics Data System (ADS)
Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.
2018-05-01
The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.
River Networks and Human Activities: Global Fractal Analysis Using Nightlight Data
NASA Astrophysics Data System (ADS)
McCurley, K. 4553; Fang, Y.; Ceola, S.; Paik, K.; McGrath, G. S.; Montanari, A.; Rao, P. S.; Jawitz, J. W.
2016-12-01
River networks hold an important historical role in affecting human population distribution. In this study, we link the geomorphological structure of river networks to the pattern of human activities at a global scale. We use nightlights as a valuable proxy for the presence of human settlements and economic activity, and we employ HydroSHEDS as the main data source on river networks. We test the hypotheses that, analogous to Horton's laws, human activities (magnitude of nightlights) also show scaling relationship with stream order, and that the intensity of human activities decrease as the distance from the basin outlet increase. Our results demonstrate that the distribution of human activities shows a fractal structure, with power-law scaling between human activities and stream order. This relationship is robust among global river basins. Human activities are more concentrated in larger order basins, but show large variation in equivalent order basins, with higher population density emergent in the basins connected with high-order rivers. For all global river basins longer than 400km, the average intensity of human activities decrease as the distance to the outlets increases, albeit with signatures of large cities at varied distances. The power spectrum of human width (area) function is found to exhibit power law scaling, with a scaling exponent that indicates enrichment of low frequency variation. The universal fractal structure of human activities may reflect an optimum arrangement for humans in river basins to better utilize the water resources, ecological assets, and geographic advantages. The generalized patterns of human activities could be applied to better understand hydrologic and biogeochemical responses in river basins, and to advance catchment management.
NASA Astrophysics Data System (ADS)
Zhurbas, Nataliya; Kuzmina, Natalia; Lyzhkov, Dmitry; Ostapchuk, Alexey
2017-04-01
In order to give detailed description of the interleaving structure in the Eurasian basin results of observations carried out during NABOS 2008 and Polarstern cruise in 1996 were analyzed. The study was focused on interleaving parameters (structure and vertical scale of intrusions) variability in the upper (150-300 meters) and intermediate (300-700 meters) layers of the ocean. Based on θ,S/θ,σ-diagrams (θ, S and σ are the potential temperature, salinity and potential density, correspondingly) analysis two main results were obtained. First of all it was shown that intrusive layers carried by the mean current along the Eurasian Basin continental margin become deeper relatively isopycnals and thus stimulate ventilation of pycnocline. Second, the area in Eurasian Basin thermocline was found where intrusive layers of large and small scale were absent. This distinctive feature can be explained by intensive mixing between two branches of Atlantic Water, one of which propagates along Eurasian basin continental margin and the other spreads across the basin due to large scale interleaving processes. Among others, one of the possible methods of integral estimation of Atlantic water masses heat and salt contents variations during their expansion along basin continental margin was proposed. Thus it is reasonable to assess variation of square under the θ(S)-diagrams, which illustrate the data obtained from two CTD-stations located on diametrically opposite sides of Eurasian Basin, taking 0.5°C isotherm as a reference value. For verification of the introduced approach the estimates of heat and salt contents variations were made by different methods. Detailed discussion of the results is presented. Work was supported by the Russian Foundation for Basic Research (Grant No 15-05-01479-a).
NASA Astrophysics Data System (ADS)
Watremez, L.; Chen, C.; Prada, M.; Minshull, T. A.; O'Reilly, B.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.
2015-12-01
The Porcupine Basin is a narrow V-shaped failed rifted basin located offshore SW Ireland. It is of Permo-Triassic to Cenozoic age, with the main rifting phase in the Late Jurassic to Early Cretaceous. Porcupine Basin is a key study area to learn about the processes of continental extension and to understand the thermal history of this rifted basin. Previous studies show increasing stretching factors, from less than 1.5 to the North to more than 6 to the South. A ridge feature, the Porcupine Median Ridge, has been identified in the middle of the southernmost part of the basin. During the last three decades, this ridge has been successively interpreted as a volcanic structure, a diapir of partially serpentinized mantle, or a block of continental crust. Its nature still remains debated today. In this study, we use arrival times from refractions and wide-angle reflections in the sedimentary, crustal and mantle layers to image the crustal structure of the thinnest part of the basin, the geometry of the continental thinning from margin to margin, and the Porcupine Median Ridge. The final velocity model is then compared with coincident seismic reflection data. We show that (1) the basin is asymmetric, (2) P-wave velocities in the uppermost mantle are lower than expected for unaltered peridotites, implying upper-mantle serpentinisation, (3) the nature of Porcupine Median Ridge is probably volcanic, and (4) the amount of thinning is greater than shown in previous studies. We discuss the thermal implications of these results for the evolution of this rift system and the processes leading to the formation of failed rifts. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.
NASA Astrophysics Data System (ADS)
Tanikawa, W.; Tadai, O.; Morita, S.; Lin, W.; Yamada, Y.; Sanada, Y.; Moe, K.; Kubo, Y.; Inagaki, F.
2014-12-01
Heat transport properties such as thermal conductivity, heat capacity, and thermal diffusivity are significant parameters that influence on geothermal process in sedimentary basins at depth. We measured the thermal properties of sediment core samples at off-Shimokita basin obtained from the IODP Expedition 337 and Expedition CK06-06 in D/V Chikyu shakedown cruise. Overall, thermal conductivity and thermal diffusivity increased with depth and heat capacity decreased with depth, although the data was highly scattered at the depth of approximately 2000 meters below sea floor, where coal-layers were formed. The increase of thermal conductivity is mainly explained by the porosity reduction of sediment by the consolidation during sedimentation. The highly variation of the thermal conductivity at the same core section is probably caused by the various lithological rocks formed at the same section. Coal shows the lowest thermal conductivity of 0.4 Wm-1K-1, and the calcite cemented sandstone/siltstone shows highest conductivity around 3 Wm-1K-1. The thermal diffusivity and heat capacity are influenced by the porosity and lithological contrast as well. The relationship between thermal conductivity and porosity in this site is well explained by the mixed-law model of Maxwell or geometric mean. One dimensional temperature-depth profile at Site C0020 in Expedition 337 estimated from measured physical properties and radiative heat production data shows regression of thermal gradient with depth. Surface heat flow value was evaluated as 29~30 mWm-2, and the value is consistent with the heat flow data near this site. Our results suggest that increase of thermal conductivity with depth significantly controls on temperature profile at depth of basin. If we assume constant thermal conductivity or constant geothermal gradient, we might overestimate temperature at depth, which might cause big error to predict the heat transport or hydrocarbon formation in deepwater sedimentary basins.
NASA Astrophysics Data System (ADS)
Andresen, Katrine Juul; Heirman, Katrien; Kamla, Elina; Nielsen, Tove; Rønø Clausen, Ole; Jakobsson, Martin; Mix, Alan C.; Andersen, Søren T.; Nørmark, Egon; Piotrowski, Jan A.; Knutz, Paul; Larsen, Nicolaj K.; Hogan, Kelly
2016-04-01
We present some preliminary observations from acquired seismic data from the Northern Nares Strait, NW Greenland. The studied area covers the Hall Basin in front of the Petermann Glacier and extends southward into the Kennedy Channel. It represents an area intensely affected by glacial related processes as well as deep tectonics. The data were acquired during the RV Oden cruise in late summer 2015, and thus represent valuable input to the understanding of the geological development of this scarcely accessed area of the Arctic. The data were acquired in nearly ice-free conditions and consist of >700 km 2D seismic airgun data, supplemented by high-resolution subbottom profiler data and multibeam data. The different acoustic data acquired simultaneously enable us to correlate deeper geological observations (e.g. faults observed on airgun seismics) with shallow depositional architectures (observed on subbottom profiler) and finally correlate the relatively scattered 2D interpretation with the detailed 3D seafloor morphology obtained by the multibeam. The seismic data reveal several provinces of varying seabed substrate geometry. The provinces include A: confined mini-basins; B: larger sedimentary basins; C: larger structural highs and D: "rough-and-faulted" terrain. The data also reveal a number of seismic anomalies, which indicate fluid flow and sediment remobilisation. The mini-basins are 100-600 m wide, in contrast to the larger basins which typically extend over 6-12 km. The mini-basins are characterized by a flat, smooth and continuous seafloor reflection and have an infill dominated by parallel and sub-horizontal reflections onlapping the edges of the basins. The larger basins, where the internal reflection pattern appears more diverse and less parallel, have much greater relief at the seafloor. Vertical disturbance zones typically emerging above minor structures at the floor of the mini-basins are likely related to vertical fluid migration. The zones occasionally continue to the seafloor but more often terminate within the sediments. Scattered amplitude anomalies in conjunction with sag-like depressions are further potential indications of fluid migration within the mini-basins (palaeo-pockmarks?). Slumps and mounded features within the mini-basins and at the larger structural highs indicate syn-depositional sediment remobilisation. A BSR-like reflection, potentially representing the base of gas hydrates, is occasionally observed in the larger sedimentary basins (ca. 15-20 ms TWT b.s.fl.) and at the culmination of the larger structural highs (ca. 40-50 ms TWT b.s.fl.). Cone-shaped to elongated ridges 15-20 m high and 500 m across appear to be linked with deeper structures and might indicate remobilisation of the shallow subsurface sediments potentially linked to fluid escape. Alternatively, they might be of glacial origin. Our preliminary results indicate that the basins are filled with subglacial and glaciofluvial sediments and that small-scale fluid migration and sediment remobilisation represent important processes in generating the depositional architecture in the Northern Nares Strait region. Further analyses are expected to constrain the interpretation of the observed features in detail, especially regarding the origin of the fluids.
NASA Astrophysics Data System (ADS)
Huyghe, D.; Bonnel, C.; Nivière, B.; Messager, G.; Dhont, D.; Fasentieux, B.; Hervouët, Y.; Xavier, J.-P.
2012-04-01
Sedimentary rocks deposited in foreland basins are of primary interest, because they record the interactions between the growth of the orogenic wedge, the isostatic readjustment of the lithosphere, the variations of base-level and earth surface process. The Neuquén basin (32°S - 41°S) is a triangular shape foreland basin located on the eastern flank of the Andes. Its filling began during the late Triassic, first as back arc basin context and as compressive foreland basin since the upper Cretaceous. The structural inheritance is thus important and old basement structures, like the Huincul Ridge, generate significant variations of both deformation and shortening. Its Mesozoic history is well constrained due to its hydrocarbon potential. In comparison, its Cenozoic history remains poorly documented. The modern configuration of this basin results from several successive compressive tectonic phases. The last one is dated from the Miocene (Quechua phase) and has conditioned the segmentation of the foreland basin in several intra-mountainous sub-basins, whose sedimentary filling could reach several hundred meters. In this work, we document the relative chronology of the geological events and the sedimentary processes that have governed the Cenozoic history of the southern part of the Neuquen basin, to discriminate the relative rules of climatic and structural controlling factors on the evolution of the depocentres. Several NNW-SSE oriented intra-mountainous basins exist in this part of the Andes (Collon Cura basin and Catan Lil basin). On the contrary the associated foreland basin (Picun Leufu basin) is relatively underformed and is bounded to the North by the Huincul ridge and the North Patagonian massif to the South. Fifteen sedimentary sections have been studied along the Rio Limay River in the southern border of the basin, from the range to the external part of the foreland. The sedimentation is discontinuous in time and important retrogradations of the depocentres are observed from the outer part of the foreland to the intra-mountainous basins. Tertiary sedimentation begins at the end of the Oligocene until the end of the middle Miocene in the Picun Leufu basin. During the paroxysm of the Quechua tectonic phase, (middle Miocene to Pliocene) the Picun Leufu basin is characterised by a sedimentary hiatus of ~10 Ma that illustrates the closure of the Collon Cura basin and a migration to the internal zone of the range of the depocentres. The filling of the Collon Cura basin is characterised by a continental fining upward sequence of a thickness of several hundred meters. This sedimentation begins with lacustrine and alluvial plain paleoenvironments with some syn-eruptive events (ignimbrites) and ends with continental conglomerates and paleosoils. A first reconnexion with the foreland basin occurs at the beginning of the Pliocene, with the deposition of an alluvial fan. Since the end of the Pliocene another anticline grew in the Picun Leufu basin and controlled the deposition of more recent alluvial fans with the arrival of coarse conglomerates (Pampa Curaco and Bayo Messa Formations). The modern drainage network is established during the Pleistocene in the Collon Cura and Picun Leufu basins, which are since only characterised by the construction of erosional surfaces (terraces) and the apparition of the Rio Limay system on the Miocene and Cretaceous deposits.
Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico
Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.
2011-01-01
This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.
NASA Astrophysics Data System (ADS)
Bulois, Cédric; Shannon, Patrick, M.; Manuel, Pubellier; Nicolas, Chamot-Rooke; Louise, Watremez; Jacques, Deverchère
2017-04-01
Mesozoic faulting has been recognised in several Irish sedimentary basins as part of the northward propagation of the Atlantic rift system. However, the contribution of older structural elements remains poorly constrained. The present study documents the succession of extensional phases in the northern part of the Porcupine Basin sensu largo, offshore west of Ireland, in which structural inheritance and fault reactivation is commonly observed. The correlation of 2D and 3D seismic lines with exploration wells enables the precise definition of four overprinted extensional systems that link to specific tectonic stages identified along the Irish margin. The Porcupine Basin opened through a thickened continental crust that evolved during the Palaeozoic with the Caledonian and Variscan orogenic cycles. Extension initiated during the Carboniferous by reactivation of old structures, resulting in the migration of depocentres bounded by E-W, NE-SW and N-S structural trends. Subsequent episodic rifting occurred during several discrete events. The first rift episode, of Late Triassic to Early Jurassic age, is restricted to the North Porcupine Basin and most likely reactivated E-W structures of Caledonian age. Synrift sediments were generally deposited in a littoral setting that progressively deepened through time. The second episode, much more pronounced, occurred during the Upper Jurassic to lowermost Cretaceous (Neocomian). It resulted in shallow to deep marine deposition controlled by structural directions recognised in Caledonian and Variscan terranes. A third rift phase, evidenced by thick clastic deposition, locally occurred during the Aptian and finally died out with the opening of the Bay of Biscay located to the south of the region. A series of extensional megacycles are recognised from seismic unconformities and faulting geometries. Initial extension strongly followed the structural architecture of the continental crust (i.e. ancient folds, thrusts or orogenic fronts). This is interpreted as an effect of orogenic collapse. It was followed by the rifting phase sensu stricto during which the successive extensional megacycles are internally composed of several rift pulses. The first rift pulses are narrow and controlled by numerous faults with deposition in continental conditions. Subsequent deformation progressively passed to more localised normal faulting during which a major deepening occurs in all the rift basins. This results in progressive marine flooding, possible detachment faults and a widening of the rift systems with basinal interconnection. In a more global view, faults stop when abuting either new oceanic basins (e.g. Bay of Biscay) or transversal lineaments (e.g. Caledonian and Variscan trends). Such an evolution implies asymmetry of the overall region and an oceanward propagation of depocentres. Therefore, extension migrates progressively from the initial deformation core by reactivating pre-existing structures and then stops once boundary conditions change.
NASA Astrophysics Data System (ADS)
Ritzinger, B. T.; Glen, J. M. G.; Athens, N. D.; Denton, K. M.; Bouligand, C.
2015-12-01
Regionally continuous Cenozoic rocks in the Basin and Range that predate the onset of major mid-Miocene extension provide valuable insight into the sequence of faulting and magnitude of extension. An exceptional example of this is Caetano caldera, located in north-central Nevada, that formed during the eruption of the Caetano Tuff at the Eocene-Oligocene transition. The caldera and associated deposits, as well as conformable caldera-filling sedimentary and volcanic units allow for the reconstruction of post Oligocene extensional faulting. Extensive mapping and geochronologic, geochemical and paleomagnetic analyses have been conducted over the last decade to help further constrain the eruptive and extensional history of the Caetano caldera and associated deposits. Gravity and magnetic data, that highlight contrasts in density and magnetic properties (susceptibility and remanence), respectively, are useful for mapping and modeling structural and lithic discontinuities. By combining existing gravity and aeromagnetic data with newly collected high-resolution gravity data, we are performing detailed potential field modeling to better characterize the subsurface within and surrounding the caldera. Modeling is constrained by published geologic map and cross sections and by new rock properties for these units determined from oriented drill core and hand samples collected from outcrops that span all of the major rock units in the study area. These models will enable us to better map the margins of the caldera and more accurately determine subsurface lithic boundaries and complex fault geometries, as well as aid in refining estimates of the magnitude of extension across the caldera. This work highlights the value in combining geologic and geophysical data to build an integrated structural model to help characterize the subsurface and better constrain the extensional tectonic history if this part of the Great Basin.
SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions
NASA Astrophysics Data System (ADS)
Iyer, Karthik; Svensen, Henrik; Schmid, Daniel W.
2018-01-01
Igneous intrusions in sedimentary basins may have a profound effect on the thermal structure and physical properties of the hosting sedimentary rocks. These include mechanical effects such as deformation and uplift of sedimentary layers, generation of overpressure, mineral reactions and porosity evolution, and fracturing and vent formation following devolatilization reactions and the generation of CO2 and CH4. The gas generation and subsequent migration and venting may have contributed to several of the past climatic changes such as the end-Permian event and the Paleocene-Eocene Thermal Maximum. Additionally, the generation and expulsion of hydrocarbons and cracking of pre-existing oil reservoirs around a hot magmatic intrusion are of significant interest to the energy industry. In this paper, we present a user-friendly 1-D finite element method (FEM)-based tool, SILLi, which calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The model is accompanied by three case studies of sills emplaced in two different sedimentary basins, the Karoo Basin in South Africa and the Vøring Basin off the shore of Norway. An additional example includes emplacement of a dyke in a cooling pluton which forgoes sedimentation within a basin. Input data for the model are the present-day well log or sedimentary column with an Excel input file and include rock parameters such as thermal conductivity, total organic carbon (TOC) content, porosity and latent heats. The model accounts for sedimentation and burial based on a rate calculated by the sedimentary layer thickness and age. Erosion of the sedimentary column is also included to account for realistic basin evolution. Multiple sills can be emplaced within the system with varying ages. The emplacement of a sill occurs instantaneously. The model can be applied to volcanic sedimentary basins occurring globally. The model output includes the thermal evolution of the sedimentary column through time and the changes that take place following sill emplacement such as TOC changes, thermal maturity and the amount of organic and carbonate-derived CO2. The TOC and vitrinite results can be readily benchmarked within the tool to present-day values measured within the sedimentary column. This allows the user to determine the conditions required to obtain results that match observables and leads to a better understanding of metamorphic processes in sedimentary basins.
Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard
NASA Astrophysics Data System (ADS)
Crews, L.; Sundfjord, A.; Albretsen, J.; Hattermann, T.
2018-01-01
Mesoscale eddies are known to transport heat and biogeochemical properties from Arctic Ocean boundary currents to basin interiors. Previous hydrographic surveys and model results suggest that eddy formation may be common in the Atlantic Water (AW) inflow area north of Svalbard, but no quantitative eddy survey has yet been done for the region. Here vorticity and water property signatures are used to identify and track AW eddies in an eddy-resolving sea ice-ocean model. The boundary current sheds AW eddies along most of the length of the continental slope considered, from the western Yermak Plateau to 40°E, though eddies forming east of 20°E are likely more important for slope-to-basin transport. Eddy formation seasonality reflects seasonal stability properties of the boundary current in the eastern portion of the study domain, but on and immediately east of the Yermak Plateau enhanced eddy formation during summer merits further investigation. AW eddies tend to be anticyclonic, have radii close to the local deformation radius, and be centered in the halocline. They transport roughly 0.16 Sv of AW and, due to their warm cores, 1.0 TW away from the boundary current. These findings suggest eddies may be important for halocline ventilation in the Eurasian Basin, as has been shown for Pacific Water eddies in the Canadian Basin.
NASA Astrophysics Data System (ADS)
Park, Yongcheol; Kim, Kwang-Hee; Lee, Joohan; Yoo, Hyun Jae; Plasencia L., Milton P.
2012-12-01
Upper-mantle structure between 100 and 300 km depth below the northern Antarctic Peninsula is imaged by modelling P-wave traveltime residuals from teleseismic events recorded on the King Sejong Station (KSJ), the Argentinean/Italian stations (JUBA and ESPZ), an IRIS/GSN Station (PMSA) and the Seismic Experiment in Patagonia and Antarctica (SEPA) broad-band stations. For measuring traveltime residuals, we applied a multichannel cross-correlation method and inverted for upper-mantle structure using VanDecar's method. The new 3-D velocity model reveals a subducted slab with a ˜70° dip angle at 100-300 km depth and a strong low-velocity anomaly confined below the SE flank of the central Bransfield Basin. The low velocity is attributed to a thermal anomaly in the mantle that could be as large as 350-560 K and which is associated with high heat flow and volcanism in the central Bransfield Basin. The low-velocity zone imaged below the SE flank of the central Bransfield Basin does not extend under the northern Bransfield Basin, suggesting that the rifting process in that area likely involves different geodynamic processes.
Watts, R.D.
1982-01-01
A Schlumberger dc resistivity survey of the Gibson Dome-Lockhart Basin area, San Juan County, Utah, has revealed the following electrical characteristics of the area: (1) the area between the northern part of Davis Canyon and Gibson Dome is electrically quite uniform and resistive at the depth of the Pennsylvanian evaporite deposits, (2) there is a deep conductive anomaly at Horsehead Rock, and (3) there are several shallow and deep electrical anomalies in the vicinity of the Lockhart fault system. No adverse indicators were found for nuclear waste repository siting south of Indian Creek, but additional soundings should be made to increase data density and to extend the survey area southward. The Lockhart fault system appears to have triggered salt dissolution or flow outside the limits of Lockhart Basin; further geophysical work and drilling will be required to understand the origin of the Lockhart Basin structure and its present state of activity. This problem is important because geologic processes that lead to enlargement of the Lockhart Basin structure or to development of similar structures would threaten the integrity of a repository in the Gibson Dome area.
USBR Type III and Type IV stilling basin and rock apron associated with stepped chutes
USDA-ARS?s Scientific Manuscript database
Stilling basins are commonly used as energy dissipators for structural chutes. Classical research conducted by scientists of the U. S. Bureau of Reclamation (USBR) led to the development of design criteria for a variety of stilling basin configurations as the outlet works for smooth chutes, but lit...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... structure and is aligned with water management activities during recent flood and drought events in the... operating activities concerned with water management within the Greater Mississippi River Basin. The Greater... require coordination of basin-wide water management activities. b. To serve as a forum for discussion of...
1977-03-31
J\\ "’l \\ UBO \\ NUR UINTA * BASIN ARRAY. UTAH \\ NURMIJARVI, FINLAND »X 1964-1971 ^ • A...Gs N 1 i 1 1 , 1. 50 60 STATION mK UBO UINTA BASIN ARRAY, UTAH 1964-1970 s...appropriate to the Basin and Range geologic province. This comparison indicates that the Colorado Plateau structure is significantly different than
Hydro-meteorological risk reduction and climate change adaptation in the Sava River Basin
NASA Astrophysics Data System (ADS)
Brilly, Mitja; Šraj, Mojca; Kryžanowski, Andrej
2017-04-01
The Sava River Basin covered the teritory of several countries. There were, in past thirty years, several flood hazard events with almost hundred years return period. Parts of the basin suffer by severe droughts also. In the presentation we covered questions of: • Flood hazard in complex hydrology structure • Landslide and flush flood in mountainous regions • Floods on karst polje • Flood risk management in the complex international and hydrological condition. • Impact of man made structures: hydropower storages, inundation ponds, river regulation, alternate streams, levees system, pumping stations, Natura 2000 areas etc. • How to manage droughts in the international river basin The basin is well covered by information and managed by international the SRB Commission (http://savacommission.org/) that could help. We develop study for climate change impact on floods on entire river basin financing by UNECE. There is also study provide climate change impact on the water management provide by World Bank and on which we take part. Recently is out call by world bank for study »Flood risk management plan for the SRB«.
Exploration and development of natural gas, Pattani basin, Gulf of Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, H.M.; Bradley, K.
The geology of the Gulf of Thailand features a series of north-south-trending ridges and linear, fault-bounded basins with a sedimentary section predominantly of upper Tertiary sediments. The Pattani basin, located near the geographic center of the Gulf of Thailand, contains up to 8 km of almost entirely nonmarine fluvial-deltaic sediments. The gas/condensate fields described in this paper are on the west flank of the Pattani basin. Gas reservoirs are thin, randomly distributed sandstone beds occurring between 1200 and 3000 m below sea level. At greater depths, very high temperatures cause a degradation of reservoir properties. The gas fields occur onmore » intensely faulted structures. The high fault density superimposed on the stratigraphic model limits the size of individual gas accumulations. Extensive three-dimensional seismic surveys were essential for delineating and developing these complex fields. An interactive computer system was used to interpret the 23,000 line-km of three-dimensional data. A new era in Thailand began when gas production commenced from Erawan field in August 1981. Baanpot, Satun, and Platong fields came on production between October 1983 and March 1985. In these four fields, 238 development wells have been drilled from 22 platforms. The wells can presently produce 475 MMCFGD, considerably in excess of Thailand's current requirements. The condensate ratios average 40 bbl/mmcf of gas. The commercial limits of each field have yet to be established. The advent of gas production has created a new industry in Thailand, with significant social and economic benefits to the country.« less
Williams, Jackie M.; Rodriguez, Brian D.
2006-01-01
The Santa Fe region is growing rapidly. The Santa Fe Group aquifer in the Espa?ola Basin is the main source of municipal water for the region, and water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region's ground-water resources. An important issue in managing the ground-water resources is a better understanding of the hydrogeology of the Tertiary Santa Fe Group. The Santa Fe Group includes the sedimentary deposits that fill the Rio Grande rift and contain the principal ground-water aquifers. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the Espa?ola Basin in northern New Mexico. Detailed geologic mapping, high-resolution airborne magnetic surveys, electromagnetic surveys, and hydrologic, lithologic, and hydro-geochemical data are being used to better understand the aquifer systems. Magnetotelluric (MT) surveys were completed as part of these studies. The primary purpose of the MT surveys was to map changes in electrical resistivity with depth that are related to differences in various rock types that help control the properties of aquifers in the region. Resistivity modeling of the MT data can be used to investigate buried structures related to the basic geologic framework of the study area. The purpose of this report is to release MT sounding data collected near geophysically logged boreholes in the study area, including the nearby Middle Rio Grande Basin. This MT data can be used in subsequent resistivity modeling. No interpretation of the data is included in this report.
Groundwater Exploration in Baja California, Mexico, Using Audiomagnetotellurics
NASA Astrophysics Data System (ADS)
Antonio, R.; Arroyo, A.; Romo, J.; Vazquez, R.
2007-12-01
Guadalupe Valley, in Ensenada B. C. Mexico, basis of the winery industry of the region, is known by their climatic attributes for vineyard cultivation. In this place, the crop growing depends totally on underground water extracted of an aquifer contained in two separate small basins. In order to estimate the depth to water level, as well as the thickness of one of these basins, we carry out a geophysical survey using audio-magnetotellurics (AMT). We carried out five profiles in a frequency range between 1 Hz and 750 kHz to estimate the electrical conductivity of the ground. We know that this physical property is enhanced by the permeability as well as by the salinity of fluids in the aquifer. In contrast, the crystalline rocks forming the basement of the basin are very bad conductors of electricity. Based on the AMT observations we construct 2-D models of the ground resistivity distribution. Our results show a clear resistivity contrast between sediments and bedrock. The sediments have resistivity values that oscillate from 40 to 100 Ohm-m, associated with lithology and/or permeability changes. Some conductive bodies (5 to 15 Ohms-m) are observed at depths shallower that 150 m, which might be caused by the presence of water with higher salinity, or alternatively, by clay lens. The bottom of the basin has resistivity values larger than 300 Ohm-m typical of the granitic rocks composing the bedrock. The spatial variation of the basement depth suggests the presence a normal fault, in agreement with a graben structure proposed in former studies.
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; ...
2017-09-14
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
Compositional studies of Mare Moscoviense: New perspectives from Chandrayaan-1 VIS-NIR data
NASA Astrophysics Data System (ADS)
Bhatt, Megha; Wöhler, Christian; Dhingra, Deepak; Thangjam, Guneshwar; Rommel, Daniela; Mall, Urs; Bhardwaj, Anil; Grumpe, Arne
2018-03-01
Moscoviense is one of the prominent mare-filled basin on the lunar far side holding key insights about volcanic activity on the far side. Here, we present spectral and elemental maps of mare Moscoviense, using the Moon Mineralogy Mapper (M3) and Infrared Spectrometer-2 (SIR-2) data-sets. The different mare units are mapped based on their spectral properties analyzing both quantitatively (band center, band depth) and qualitatively (Integrated Band Depth composite images), and also using their elemental compositions. We find a total of five distinct spectral units from the basin floor based on the spectral properties. Our analysis suggests that the northern part which was mapped as Iltm unit (Imbrian low Ti, low Fe) by earlier researchers is actually a distinct unit, which is different in composition and age, named as Ivltm unit (Imbrian very low Ti and very low Fe). We obtain the absolute model age of 3.2 Ga with uncertainties of +0.2/ -0.5 Ga for the unit Ivltm. The newly identified basalt unit Ivltm is compositionally intermediate to the units Im and Iltm in FeO and TiO2 abundances. We find a total of five distinct spectral units from the basin floor based on the spectral properties. The units Im (Imbrian very low Ti) from southern and northern regions of the basin floor are spectrally distinct in terms of band center position and corresponding band depths but considered a single unit based on the elemental abundance analysis. The units Ivltm and Im are consistent with a high-Al basalt composition. Our detailed analysis of the entire Moscoviense basin indicates that the concentrations of orthopyroxene, olivine, and Mg-rich spinel, named as OOS rock family are widespread and dominant at the western and southern side of the middle ring of the basin with one isolated area found on the northern side of the peak ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulisano, C.; Minniti, S.; Rossi, G.
1996-08-01
The Jurassic-Cretaceous backarc Neuqun Basin, located in the west central part of Argentina, is currently the most prolific oil basin of the country. The primary objective of this study is to evaluate an Early Cretaceous to Tertiary petroleum system in the northeastern portion of the basin, where oil and gas occurrences (e.g., Puesto Hernandez, Chihuido de la Sierra Negra, El Trapial and Filo Morado oil fields, among others) provide 82 MMBO/yr comprising 67% of the basin oil production and 31% of Argentina. The source rocks are represented by two thick sections of basinal kerogen type I and II organic-rich shales,more » deposited during transgressive peaks (Agrio Formation), with TOC content up to 5.1%. Lowstand sandstones bodies, 10 to 100 m thick, are composed of eolian and fluvial facies with good reservoir conditions (Avil and Troncoso Sandstones). The seals are provided by the organic-rich shales resting sharply upon the Avil Sandstone and a widespread Aptian-Albian evaporitic event (Huitrin Formation) on top of the Troncoso reservoir. Tertiary structural traps (duplex anticlines) are developed in the outer foothills, whereas structural, combined and stratigraphic traps are present in the adjacent stable structural platform. Oil-to-source rock and oil-to-oil correlation by chromatographic and biomarker fingerprints, carbon isotopic composition and the geological evidences support the proposed oil system.« less
NASA Astrophysics Data System (ADS)
Cavinato, Gian Paolo; Carusi, Claudio; Dall'Asta, Massimo; Miccadei, Enrico; Piacentini, Tommaso
2002-04-01
The Fucino Basin was the greatest lake of the central Italy, which was completely drained at the end of 19th century. The basin is an intramontane half-graben filled by Plio-Quaternary alluvial and lacustrine deposits located in the central part of the Apennines chain, which was formed in Upper Pliocene and in Quaternary time by the extensional tectonic activity. The analysis of the geological surface data allows the definition of several stratigraphic units grouped in Lower Units and Upper Units. The Lower Units (Upper Pliocene) are exposed along the northern and north-eastern basin margins. They consist of open to marginal lacustrine deposits, breccia deposits and fluvial deposits. The Upper Units (Lower Pliocene-Holocene) consist of interbedded marginal lacustrine deposits and fluvial deposits; thick coarse-grained fan-delta deposits are interfingered at the foot of the main relief with fluvial-lacustrine deposits. Most of the thickness of the lacustrine sequences (more than 1000-m thick) is buried below the central part of the Fucino Plain. The basin is bounded by E-W, WSW-ENE and NW-SE fault systems: Velino-Magnola Fault (E-W) and Tremonti-Celano-Aielli Fault (WSW-ENE) and S. Potito-Celano Fault (NW-SE) in the north; the Trasacco Fault, the Pescina-Celano Fault and the Serrone Fault (NW-SE) in the south-east. The geometry and kinematic indicators of these faults indicate normal or oblique movements. The study of industrial seismic profiles across the Fucino Basin gives a clear picture of the subsurface basin geometry; the basin shows triangular-shaped basin-fill geometry, with the maximum deposits thickness toward the main east boundary fault zones that dip south-westward (Serrone Fault, Trasacco Fault, Pescina-Celano Fault). On the basis of geological surface data, borehole stratigraphy and seismic data analysis, it is possible to recognize and to correlate sedimentary and seismic facies. The bottom of the basin is well recognized in the seismic lines available from the good and continuous signals of the top of Meso-Cenozoic carbonate rocks. The shape of sedimentary bodies indicates that the filling of the basin was mainly controlled by normal slip along the NW-SE boundary faults. In fact, the continental deposits are frequently in on-lap contact over the carbonate substratum; several disconformable contacts occurred during the sedimentary evolution of the basin. The main faults (with antithetic and synthetic fault planes) displace the whole sedimentary sequence up to the surface indicating a recent faults' activity (1915 Avezzano earthquake, Ms=7.0). The stratigraphic and tectonic setting of the Fucino Basin and neighboring areas indicates that the extensional tectonic events have had an important role in driving the structural-sedimentary evolution of the Plio-Quaternary deposits. The geometry of the depositional bodies, of the fault planes and their relationships indicate that the Fucino Basin was formed as a half-graben type structure during Plio-Quaternary extensional events. Some internal complexities are probably related to the fold-and-thrust structures of the Apenninic orogeny formed in Messinian time, in this area, and to a different activity timing of the E-W and WSW-ENE fault systems and the NW-SE fault systems. We believe, based on the similarity of the surface characteristics, that the structural setting of the Fucino Basin can be extrapolated to the other great intramontane basins in Central Italy (e.g. Rieti, L'Aquila, Sulmona, Sora, Isernia basins).
Aeromagnetic maps of the Uinta and Piceance Basins and vicinity, Utah and Colorado
Grauch, V.J.S.; Plesha, Joseph L.
1989-01-01
In order to understand the evolution of sedimentary basins, it is important to understand their tectonic setting. In a U.S. Geological Survey (USGS) study of the Uinta and Piceance basins in Utah and Colorado, this understanding is approached through characterization of subsurface structure and lithology of a large region encompassing the basins. An important tool for interpreting these subsurface features is aeromagnetic data. Aeromagnetic anomalies represent variations in the strength and direction of the Earth's magnetic field that are produced by rocks containing a significant number of magnetic minerals (commonly magnetite). The shape and magnitude of an anomaly produced by one body of rock are complexly related to the amount of magnetic minerals present, the magnetic properties of those minerals (determined by a number of factors, including the history of the rock), and the shape of the rock body. In the study area, only crystalline basement rocks and volcanic rocks are likely to contain enough magnetic minerals to produce anomalies; sedimentary rocks and metasediments are generally so poor in magnetic minerals that their magnetic effects cannot be detected by the types of surveys presented in this report. Patterns of anomalies on aeromagnetic maps can reveal not only lithologic differences related to magnetite content, but structural features as well, such as faults that have juxtaposed crystalline rocks against sedimentary rocks, and upwarps of crystalline basement underlying sedimentary sequences. Tectonic features of regional extent may not become apparent until a number of aeromagnetic surveys have been compiled and plotted at the same scale. Commonly the compilation involves piecing together data from surveys that were flown at different times and have widely disparate flight specifications and data reduction procedures. The data may be compiled into a composite map, where all the pieces are plotted onto one map without regard to the differences in flight elevation and datum, or they may be compiled into a merged map, where all survey data are analytically reduced to a common flight elevation and datum, and then digitally merged at the survey boundaries. The composite map retains the original resolution of all survey data, but computer methods to enhance or model regional features crossing the survey boundaries cannot be applied. On the other hand, these computer methods can be applied to the merged data, but the resolution of the data may be somewhat diminished. This report presents both composite and merged aeromagnetic maps for a large region that includes the Uinta Basin in Utah and the Piceance basin in Colorado (fig. 1).
NASA Astrophysics Data System (ADS)
Torres López, Sara; José Villalain, Juan; Casas, Antonio; El ouardi, Hmidou; Moussaid, Bennacer; Ruiz-Martínez, Vicente Carlos
2017-04-01
Remagnetization data are used in this work to obtain the palinspastic reconstruction at 100 (Ma) of one of the most studied profiles of the Central High Atlas: the Midelt-Errachidia cross-section (Morocco). Previous studies in the area on syn-rift sedimentary rocks of subsiding basins have revealed that the Mesozoic sediments of this region acquired a pervasive remagnetization at the end of the Early Cretaceous. Fifty-eight sites (470 samples) corresponding to black limestones, marly limestones and marls, Early to Middle Jurassic in age, have been studied. Sites are distributed along a 70 km transect cutting across the basin and perpendicular to the main structures. The magnetic properties of samples are very regular showing very high NRM. Thermal and AF demagnetization showed a single stable paleomagnetic component with unblocking temperatures and coercivities spectra of 300-475°C and 20-100 mT respectively. This characteristic remanent magnetization (ChRM) showed systematically normal polarity suggesting a widespread remagnetization. In spite of the good outcrops and the relatively well-constrained structure of the High Atlas, there are many tectonic problems still unsolved, as the controversial existence of intra-Mesozoic deformation episodes. The restoration of paleomagnetic vectors to the remagnetization acquisition stage (100 Ma) allows to determine the dip of the beds during this period and, thereby, to obtain a reconstruction of structures during that time. This reconstruction accounts for the relative contribution of Mesozoic transpressional/transtrenssional movements vs. Cenozoic compression to the present-day dip. The results obtained indicate that these structures have undergone different degrees of pre-late Cretaceous deformation and were re-activated during the Cenozoic compression to finally acquire their present-day geometry.
Heat flow, deep formation temperature and thermal structure of the Tarim Basin, northwest China
NASA Astrophysics Data System (ADS)
Liu, Shaowen; Lei, Xiao; Feng, Changge; Li, Xianglan
2016-04-01
Geothermal regime of a sedimentary basin not only provides constraint on understanding the basin formation and evolution, but also offers fundamental parameters for hydrocarbon resources assessment. As one of three Precambrian blocks in China, the Tarim craton is also a current hydrocarbon exploration target where the largest sedimentary basin (Tarim Basin) develops with great potential. Although considerable advancement of geothermal regime of this basin has been made during the past decades, nearly all the temperature data in previous studies are from the exploration borehole formation testing temperatures. Recently, we have conducted the steady-state temperature logging in the Tarim basin, and measured abundant rock thermal properties, enabling us to re-visit the thermal regime of this area with more confidence. Our results show that the present-day geothermal gradients for the Tarim Basin vary from 23 K/km to 27 K/km, with a mean of 22 K/km; the values of heat flow range from 40 mW/m2 to 49 mW/m2, with a mean of 43 mW/m2. These new data confirmed that the Tarim Basin has relatively low heat flow and shares similar geothermal regime with other Precambrian cratons in the world. In addition, the new temperatures from the steady-state logs are larger than the bottom hole temperatures (BHT) as 22 degree Celsius, indicating the thermal non-equilibrium for the BHTs used in previous studies. Spatial distribution of the estimated formation temperatures-at-depth of 1~5km within the basin is similar and mainly controlled by crystalline basement pattern. Generally, the temperatures at the depth of 1km range from 29 to 41 degree Celsius, with a mean of 35 degree Celsius; while the temperatures at 3km vary from 63 to 100 degree Celsius, and the mean is 82 degree Celsius; at 5km below the surface, the temperatures fall into a range between 90 and 160 degree Celsius, with a mean of 129 degree Celsius. We further proposed the long-term low geothermal background and large burial depth are the favorable conditions for hydrocarbon generation and preservation. As far as heat budget of the Tarim Basin is concerned, the radiogenic heat from the sedimentary cover accounts only for 20 percent of the surface heat flow (~9 mW/m2), while the mantle heat flow is estimated to be low as 6~15 mW/m2; this indicates the dominant contribution of crustal radiogenic heat to the observed heat flow. Any variations in surface heat flow for the Tarim Basin can be due only to changes in crustal heat production. Thermal contrast between the Tarim Basin and Tibet Plateau, represented by a difference in surface heat flow and deep crustal temperature, is remarkable. This inherited thermal contrast can be traced as far as before the India-Asia collision. Moreover, the lithosphere beneath the Tarim Basin is sufficiently strong to resist the gravitational potential energy difference and tectonic forces from Tibet. The observed thermal and rheological contrast accounts for the differential Cenozoic deformation in the Tarim Basin and adjacent areas.
Joint geophysical investigation of a small scale magnetic anomaly near Gotha, Germany
NASA Astrophysics Data System (ADS)
Queitsch, Matthias; Schiffler, Markus; Goepel, Andreas; Stolz, Ronny; Guenther, Thomas; Malz, Alexander; Meyer, Matthias; Meyer, Hans-Georg; Kukowski, Nina
2014-05-01
In the framework of the multidisciplinary project INFLUINS (INtegrated FLUid Dynamics IN Sedimentary Basins) several airborne surveys using a full tensor magnetic gradiometer (FTMG) system were conducted in and around the Thuringian basin (central Germany). These sensors are based on highly sensitive superconducting quantum interference devices (SQUIDs) with a planar-type gradiometer setup. One of the main goals was to map magnetic anomalies along major fault zones in this sedimentary basin. In most survey areas low signal amplitudes were observed caused by very low magnetization of subsurface rocks. Due to the high lateral resolution of a magnetic gradiometer system and a flight line spacing of only 50m, however, we were able to detect even small magnetic lineaments. Especially close to Gotha a NW-SE striking strong magnetic anomaly with a length of 1.5 km was detected, which cannot be explained by the structure of the Eichenberg-Gotha-Saalfeld (EGS) fault zone and the rock-physical properties (low susceptibilities). Therefore, we hypothesize that the source of the anomaly must be related to an anomalous magnetization in the fault plane. To test this hypothesis, here we focus on the results of the 3D inversion of the airborne magnetic data set and compare them with existing structural geological models. In addition, we conducted several ground based measurements such as electrical resistivity tomography (ERT) and frequency domain electromagnetics (FDEM) to locate the fault. Especially, the geoelectrical measurements were able to image the fault zone. The result of the 2D electrical resistivity tomography shows a lower resistivity in the fault zone. Joint interpretation of airborne magnetics, geoelectrical and geological information let us propose that the source of the magnetization may be a fluid-flow induced impregnation with iron-oxide bearing minerals in the vicinity of the EGS fault plane.
NASA Astrophysics Data System (ADS)
Beiranvand Pour, Amin; Hashim, Mazlan
2016-06-01
Yearly, several landslides ensued during heavy monsoons rainfall in Kelantan river basin, peninsular Malaysia, which are obviously connected to geological structures and topographical features of the region. In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geological structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulated drainage pattern and metamorphic and Quaternary units. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping.
NASA Astrophysics Data System (ADS)
Sarkar, R.; Das, P.; Basu Sarbadhikari, A.
2017-12-01
A 2 km thick layered sequence within the Noachian Terby crater ( 174 km diameter, 28.0°S - 74.0°E), located at the Northern rim of Hellas basin, has been re-classified here into three major categories, i.e. mega-slump, debris flows, and turbidites based on sedimentation process. A wide spectrum of deformation structures, such as large scale isoclinal moderately inclined fold, pinch and swells, disharmonic folds, sediment loading structure, normal faults and thrust duplexes, suggest that amplitude of the syndepositional deformation spanned from hydroplastic to brittle domains. These structures provide ample evidences of sediment remobilization in Terby. The dominance of such mass-flow deposits in different stratigraphic horizons indicates that the basin was reactivated in frequent intervals during the filling process. However, an undeformed thinning-up sequence of beds, well exhibited at the basinal-lows, identified as ponded/confined turbidites, indicates that the basin experienced a stable bathymetric condition at the up-dip areas of the mega-slumps. An overall enrichment of phyllosilicates and scarcity of large boulders at the basin margins indicates that the provenance materials were deposited under stable and low-energy condition before being transported and re-deposited within the crater during the Terby impact. We presume that the inter-crater layered terrain of Hellas acted as a provenance of Terby's mass-transport deposits.
Hyperspace geography: visualizing fitness landscapes beyond 4D.
Wiles, Janet; Tonkes, Bradley
2006-01-01
Human perception is finely tuned to extract structure about the 4D world of time and space as well as properties such as color and texture. Developing intuitions about spatial structure beyond 4D requires exploiting other perceptual and cognitive abilities. One of the most natural ways to explore complex spaces is for a user to actively navigate through them, using local explorations and global summaries to develop intuitions about structure, and then testing the developing ideas by further exploration. This article provides a brief overview of a technique for visualizing surfaces defined over moderate-dimensional binary spaces, by recursively unfolding them onto a 2D hypergraph. We briefly summarize the uses of a freely available Web-based visualization tool, Hyperspace Graph Paper (HSGP), for exploring fitness landscapes and search algorithms in evolutionary computation. HSGP provides a way for a user to actively explore a landscape, from simple tasks such as mapping the neighborhood structure of different points, to seeing global properties such as the size and distribution of basins of attraction or how different search algorithms interact with landscape structure. It has been most useful for exploring recursive and repetitive landscapes, and its strength is that it allows intuitions to be developed through active navigation by the user, and exploits the visual system's ability to detect pattern and texture. The technique is most effective when applied to continuous functions over Boolean variables using 4 to 16 dimensions.
NASA Astrophysics Data System (ADS)
Blanco, J. M.; Mann, P.
2015-12-01
Bathymetric, gravity and magnetic maps show that the east-west trend of the Cretaceous Great Arc of the Caribbean in the Leeward Antilles islands is transected by an en echelon series of obliquely-sheared rift basins that show right-lateral offsets ranging from 20 to 40 km. The basins are 75-100 km in length and 20-30 km in width and are composed of sub-parallel, oblique slip normal faults that define deep, bathymetric channels that bound the larger islands of the Leeward Antilles including Aruba, Curacao and Bonaire. A single basin of similar orientation and structure, the Urumaco basin, is present to the southwest in the Gulf of Venezuela. We mapped structures and sedimentation in the La Vela rift basin using a 3D seismic data volume recorded down to 6 seconds TWT. The basin can be mapped from the Falcon coast where it is correlative with the right-lateral Adicora fault mapped onshore, and its submarine extension. To the southeast of the 3D survey area, previous workers have mapped a 70-km-wide zone of northeast-striking, oblique, right-lateral faults, some with apparent right-lateral offsets of the coastline. On seismic data, the faults vary in dip from 45 to 60 degrees and exhibit maximum vertical offsets of 600 m. The La Vela and other obliquely-opening rifts accommodate right-lateral shear with linkages to intervening, east-west-striking right-lateral faults like the Adicora. The zone of oblique rifts is restricted to the trend of the Great Arc of the Caribbean and may reflect the susceptiblity of this granitic basement to active shearing. The age of onset for the basins known from previous studies on the Leeward Antilles is early Miocene. As most of these faults occur offshore their potential to generate damaging earthquakes in the densely populated Leeward Antilles is not known.
Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genik, G.J.
1993-08-01
This overview of the petroleum geology of rift basins in Niger, Chad, and Central African Republic (CAR) is based on exploration work by Exxon and partners in the years 1969-1991. The work included 50,000 km of modern reflection seismic, 53 exploration wells, 1,000,000 km[sup 2] of aeromagnetic coverage, and about 10,500 km of gravity profiles. The results outline ten Cretaceous and Tertiary rift basins, which constitute a major part of the West and Central African rift system (WCARS). The rift basins derive from a multiphased geologic history dating from the Pan-African (approximately 750-550 Ma) to the Holocene. WCARS in themore » study area is divided into the West African rift subsystem (WAS) and the Central African rift subsystem (WAS) and the Central African rift subsystem (CAS). WAS basins in Niger and Chad are chiefly extensional, and are filled by up to 13,000 m of Lower Cretaceous to Holocene continental and marine clastics. The basins contain five oil (19-43[degrees]API) and two oil and gas accumulations in Upper Cretaceous and Eocene sandstone reservoirs. The hydrocarbons are sourced and sealed by Upper Cretaceous and Eocene marine and lacustrine shales. The most common structural styles and hydrocarbon traps usually are associated with normal fault blocks. CAS rift basins in Chad and CAR are extensional and transtensional, and are filled by up to 7500 m of chiefly Lower Cretaceous continental clastics. The basins contain eight oil (15-39[degrees]API) and one oil and gas discovery in Lower and Upper Cretaceous sandstone reservoirs. The hydrocarbons are sourced by Lower Cretaceous shales and sealed by interbedded lacustrine and flood-plain shales. Structural styles range from simple fault blocks through complex flower structures. The main hydrocarbon traps are in contractional anticlines. Geological conditions favor the discovery of potentially commercial volumes of oil in WCARS basins, of Niger, Chad and CAR. 108 refs., 24 figs., 4 tabs.« less
Ryder, Robert T.; Trippi, Michael H.; Swezey, Christopher S.
2015-12-08
Cross section I‒I ’ contains much information that is useful for evaluating energy resources in the Appalachian basin. Many of the key elements of the Appalachian basin petroleum systems (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and petroleum migration pathways) may be evaluated by burial history, thermal history, and fluid flow models on the basis of what is shown on the cross section. Cross section I‒I’ also provides a stratigraphic and structural framework for the Pennsylvanian coal-bearing section. In addition, geologists and engineers could use cross section I‒I’ as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.
NASA Astrophysics Data System (ADS)
Burgin, Hugo; Amrouch, Khalid; Holford, Simon
2017-04-01
The Otway Basin, Australia, is of particular interest due to its significance as an Australian hydrocarbon producing province and a major global CO2 burial project. Structural data was collected in the form of natural fractures from wellbore image logs and outcrop in addition to calcite twin analyses, within formations from the mid cretaceous from both on and offshore. Evidence for four structural events within the study area have been identified including NE-SW and NW-SE orientated extension, in addition to a NW-SE compressive event. Natural fracture data also reveals a previously "un-detected" NE-SW compression within the Otway Basin. This study presents the first investigation of paleostress environments within the region from micro, meso and macro scale tectonic data in both onshore and offshore in addition to the first quantification of differential paleostresses. This work highlights the importance of a comprehensive understanding of four dimensional stress evolution within the sedimentary basins of Australia's southern margin.
Geology, Murzuk oil development could boost S. W. Libya prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.
1995-03-06
With the recent involvement of Repsol, Total, and OMV in developing the 2 billion bbl oil-in-place Murzuk field complex, an infrastructure will be finally constructed in western Libya which will act as a precursor to more exploration activity and development projects in the Murzuk and Ghadames basins. Murzuk, an intra-cratonic sag basin, is a huge ladle-shaped structural basin covering more than 400,000 sq km and extending beyond the borders of southern Libya. The structure of the area is quite simple. The sub-horizontal or gently dipping strata are faulted and the faults are most frequently parallel to the anticlinal axis. Tectonicmore » movements affected the basin to a greater or lesser degree from early Paleozoic (Caledonian) to post-Eocene (Alpine) times. The paper describes the exploration history; stratigraphy; the Ordovician, Silurian and Devonian, and Carboniferous reservoirs; source rocks; oil gravity and gas content; hydrogeologic constraints; aquifer influence on hydrocarbon accumulation; geologic structures; Murzuk field development; and acreage availability.« less
NASA Astrophysics Data System (ADS)
Braeuer, Benjamin; Haberland, Christian; Bauer, Klaus; Weber, Michael
2014-05-01
The Dead Sea basin is a pull-apart basin at the Dead Sea transform fault, the boundary between the African and the Arabian plates. Though the DSB has been studied for a long time, the available knowledge - based mainly on surface geology, drilling and seismic reflection surveys - gives only a partial picture of its shallow structure. Therefore, within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. Within 18 month of recording 650 events were detected. In addition to an already published tomography study revealing the distribution of P velocities and the Vp/Vs ratios a 2D P-wave attenuation tomography (parameter Qp) was performed. The neural network technique of Self-organizing maps (SOM) is used for the joint interpretation of these three parameters (Vp, Vp/Vs, Qp). The resulting clusters in the petrophysical parameter space are assigned to the main lithological units below the southern part of the Dead Sea basin: (1) The basin sediments characterized by strong attenuation, high vp/vs ratios and low P velocities. (2) The pre-basin sediments characterized by medium to strong attenuation, low Vp/Vs ratios and medium P velocities. (3) The basement characterized by low to moderate attenuation, medium vp/vs ratios and high P velocities. Thus, the asymmetric southern Dead Sea basin is filled with basin sediments down to depth of 7 to 12 km. Below the basin sediments, the pre-basin sediments are extending to a depth between 13 and 18 km.
Petroleum prospectivity of the Canada Basin, Arctic Ocean
Grantz, Arthur; Hart, Patrick E.
2012-01-01
Reconnaissance seismic reflection data indicate that Canada Basin is a >700,000 sq. km. remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed across the northern part of the Amerasia Basin between about 127 and 89-83.5 Ma. Canada Basin was filled by Early Jurassic to Holocene detritus from the Beaufort-Mackenzie Deltaic System, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. The basin contains roughly 5 or 6 million cubic km of sediment. Three fourths or more of this volume generates low amplitude seismic reflections, interpreted to represent hemipelagic deposits, which contain lenses to extensive interbeds of moderate amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits.Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin is correlative with stratigraphic sequences in these areas that contain intervals of hydrocarbon source rocks. In addition, worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas windows. Structural, stratigraphic and combined structural and stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin, and at least one of these contains bright spots. However, deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin. ?? 2011 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Haberland, Christian; Gibert, Luis; Jurado, María José; Stiller, Manfred; Baumann-Wilke, Maria; Scott, Gary; Mertz, Dieter F.
2017-07-01
The Baza basin is a large Neogene intramontane basin in the Bétic Cordillera of southern Spain that formed during the Tortonian (late Miocene). The Bétic Cordillera was produced by NW-SE oblique convergence between the Eurasian and African Plates. Three seismic reflection lines (each 18 km long; vibroseis method) were acquired across the Baza basin to reveal the architecture of the sedimentary infill and faulting during basin formation. We applied rather conventional CDP data processing followed by first arrival P-wave tomography to provide complementary structural information and establish velocity models for the post-stack migration. These images show a highly asymmetric structure for the Basin with sediments thickening westward, reaching a maximum observed thickness of > 2200 m near the governing Baza Fault zone (BFZ). Three major seismic units (including several subunits) on top of the acoustic basement could be identified. We use stratigraphic information from the uplifted block of the BFZ and other outcrops at the basin edges together with available information from neighboring Bétic basins to tentatively correlate the seismic units to the known stratigraphy in the area. Until new drilling or surface outcrop data is not available, this interpretation is preliminary. The seismic units could be associated to Tortonian marine deposits, and latest Miocene to Pleistocene continental fluvio-lacustrine sediments. Individual strands of the BFZ truncate the basin sediments. Strong fault reflections imaged in two lines are the product of the large impedance contrast between sedimentary fill and basement. In the central part of the Basin several basement faults document strong deformation related to the early stages of basin formation. Some of these faults can be traced up to the shallowest imaged depth levels indicating activity until recent times.
NASA Astrophysics Data System (ADS)
Potter, Ross W. K.; Head, James W.; Guo, Dijun; Liu, Jianzhong; Xiao, Long
2018-05-01
The 492 km-diameter Apollo impact basin post-dates, and is located at the inner edge of, the ∼2240 km-diameter South Pole-Aitken (SPA) basin, providing an opportunity to assess the SPA substructure and lateral heterogeneity. Gravity Recovery and Interior Laboratory gravity data suggest an average crustal thickness on the floor of SPA of ∼20 km and within the Apollo basin of ∼5 km, yet remote sensing data reveal no conclusive evidence for the presence of exposed mantle material. We use the iSALE shock physics code to model the formation of the Apollo basin and find that the observational data are best fit by the impact of a 40 km diameter body traveling at 15 km/s into 20-40 km thick crustal material. These results strongly suggest that the Apollo impact occurred on ejecta deposits and collapsed crustal material of the SPA basin and could help place constraints on the location, size and geometry of the SPA transient cavity. The peak ring in the interior of Apollo basin is plausibly interpreted to be composed of inwardly collapsed lower crustal material that experienced peak shock pressures in excess of 35 GPa, consistent with remote sensing observations that suggest shocked plagioclase. Proposed robotic and/or human missions to SPA and Apollo would present an excellent opportunity to test the predictions of this work and address many scientific questions about SPA basin evolution and structure.
Hu, Jin Long; Zhou, Zhi Xiang; Teng, Ming Jun; Luo, Nan
2017-06-18
Taking Lijiang River basin as study area, and based on the remote sensing images of 1973, 1986, 2000 and 2013, the land-use data were extracted, the ecological risk index was constructed, and the characteristics of spatiotemporal variation of ecological risk were analyzed by "3S" technique. The results showed that land use structure of Lijiang River basin was under relatively reasonable state and it was constantly optimizing during 1973-2013. Overall, the ecological risk of Lijiang River basin was maintained at a low level. Lowest and lower ecological risk region was dominant in Lijiang River basin, but the area of highest ecological risk expanded quickly. The spatial distribution of ecological risk was basically stable and showed an obvious ring structure, which gra-dually decreased from the axis of Xingan County Town-Lingchuan County Town-Guilin City-Yangshuo County Town to other regions. Region with lowest ecological risk mainly distributed in natural mountain forest area of the north and mid-eastern parts of Lijiang River basin, and region with highe-st ecological risk concentrated in Guilin City. The ecological risk distribution of Lijiang River basin presented significant slope and altitude differences, and it decreased with increasing slope and altitude. During the study period, the area of low ecological risk converted to high ecological risk gra-dually decreased and vice versa. On the whole, the ecological risk tended to decline rapidly in the Lijiang River basin.
Origin and migration of hydrocarbon gases and carbon dioxide, Bekes Basin, southeastern Hungary
Clayton, J.L.; Spencer, C.W.; Koncz, I.; Szalay, A.
1990-01-01
The Bekes Basin is a sub-basin within the Pannonian Basin, containing about 7000 m of post-Cretaceous sedimentary rocks. Natural gases are produced from reservoirs (Precambrian to Tertiary in age) located on structural highs around the margins of the basin. Gas composition and stable carbon isotopic data indicate that most of the flammable gases were derived from humic kerogen contained in source rocks located in the deep basin. The depth of gas generation and vertical migration distances were estimated using quantitative source rock maturity-carbon isotope relationships for methane compared to known Neogene source rock maturity-depth relationships in the basin. These calculations indicate that as much as 3500 m of vertical migration has occured in some cases. Isotopically heavy (> - 7 > 0) CO2 is the predominant species present in some shallow reservoirs located on basin-margin structural highs and has probably been derived via long-distance vertical and lateral migration from thermal decompositon of carbonate minerals in Mesozoic and older rocks in the deepest parts of the basin. A few shallow reservoirs (< 2000m) contain isotopically light (-50 to -60%0) methane with only minor amounts of C2+ homologs (< 3% v/v). This methane is probably mostly microbial in origin. Above-normal pressures, occuring at depths greater than 1800 m, are believed to be the principal driving force for lateral and vertical gas migration. These pressures are caused in part by active hydrocarbon generation, undercompaction, and thermal decomposition of carbonates.
Li, Q.; Wilcock, W.S.D.; Pratt, T.L.; Snelson, C.M.; Brocher, T.M.
2006-01-01
We used waveform data from the 1999 SHIPS (Seismic Hazard Investigation of Puget Sound) seismic refraction experiment to constrain the attenuation structure of the Seattle basin, Washington State. We inverted the spectral amplitudes of compressional- and shear-wave arrivals for source spectra, site responses, and one- and two-dimensional Q-1 models at frequencies between 1 and 40 Hz for P waves and 1 and 10 Hz for S waves. We also obtained Q-1 models from t* values calculated from the spectral slopes of P waves between 10 and 40 Hz. One-dimensional inversions show that Qp at the surface is 22 at 1 Hz, 130 at 5 Hz, and 390 at 20 Hz. The corresponding values at 18 km depth are 100, 440, and 1900. Qs at the surface is 16 and 160 at 1 Hz and 8 Hz, respectively, increasing to 80 and 500 at 18 km depth. The t* inversion yields a Qp model that is consistent with the amplitude inversions at 20 and 30 Hz. The basin geometry is clearly resolved in the t* inversion, but the amplitude inversions only imaged the basin structure after removing anomalously high-amplitude shots near Seattle. When these shots are removed, we infer that Q-1 values may be ???30% higher in the center of the basin than the one-dimensional models predict. We infer that seismic attenuation in the Seattle basin will significantly reduce ground motions at frequencies at and above 1 Hz, partially countering amplification effects within the basin.
NASA Astrophysics Data System (ADS)
Echarfaoui, Hassan; Hafid, Mohamed; Salem, Abdallah Aı̈t; Abderrahmane, Aı̈t Fora
The review of the seismic reflection and well data from the coastal Abda Basin (western Morocco) shows that its Triassic and Jurassic sequences were deposited in a submeridean sag basin, whose eastern margin is characterised by progressive truncations and pinching out of these sequences against a prominent Palaeozoic high. The uplift of this latter is interpreted as a response to an Upper Triassic-Middle Jurassic local compressional event that controlled Triassic-Jurassic sedimentation within the Abda Basin. The present day 'West Meseta Flexure' is a surface expression of this uplift. To cite this article: H. Echarfaoui et al., C. R. Geoscience 334 (2002) 371-377.
Formation of the Orientale lunar multiring basin.
Johnson, Brandon C; Blair, David M; Collins, Gareth S; Melosh, H Jay; Freed, Andrew M; Taylor, G Jeffrey; Head, James W; Wieczorek, Mark A; Andrews-Hanna, Jeffrey C; Nimmo, Francis; Keane, James T; Miljković, Katarina; Soderblom, Jason M; Zuber, Maria T
2016-10-28
Multiring basins, large impact craters characterized by multiple concentric topographic rings, dominate the stratigraphy, tectonics, and crustal structure of the Moon. Using a hydrocode, we simulated the formation of the Orientale multiring basin, producing a subsurface structure consistent with high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. The simulated impact produced a transient crater, ~390 kilometers in diameter, that was not maintained because of subsequent gravitational collapse. Our simulations indicate that the flow of warm weak material at depth was crucial to the formation of the basin's outer rings, which are large normal faults that formed at different times during the collapse stage. The key parameters controlling ring location and spacing are impactor diameter and lunar thermal gradients. Copyright © 2016, American Association for the Advancement of Science.
Lin, Chen; Ma, Ronghua; Xiong, Junfeng
2018-07-01
The physicochemical properties of surface soil play a key role in the fate of watershed non-point source pollution. Special emphasis is needed to identify soil properties that are sensitive to both particulate P (PP) pollution and dissolved P (DP) pollution, which is essential for watershed environmental management. The Chaohu Lake basin, a typical eutrophic lake in China, was selected as the study site. The spatial features of the Non-point Source (NPS) PP loads and DP loads were calculated simultaneously based on the integration of sediment delivery distributed model (SEDD) and pollution loads (PLOAD) model. Then several critical physicochemical soil properties, especially various soil P compositions, were innovatively introduced to determine the response of the critical soil properties to NPS P pollution. The findings can be summarized: i) the mean PP load value of the different sub-basins was 5.87 kg, and PP pollution is regarded to be the primary NPS P pollution state, while the DP loads increased rapidly under the rapid urbanization process. ii) iron-bound phosphorus (Fe-P) and aluminum-bound phosphorus (Al-P) are the main components of available P and showed the most sensitive responses to NPS PP pollution, and the correlation coefficients were approximately 0.9. Otherwise, the residual phosphorus (Res-P) was selected as a sensitive soil P state that was significantly negatively correlated with the DP loads. iii) The DP and PP concentrations were represented differently when they were correlated with various soil properties, and the clay proportion was strongly negatively related to the PP loads. Meanwhile, there is a non-linear relationship between the DP loads and the critical soil properties, such as Fe and Total Nitrogen (TN) concentrations. Specifically, a strong inhibitory effect of TN concentration on the DP load was apparent in the Nanfei river (NF) and Paihe (PH) river basins where the R 2 reached 0.67, which contrasts with the relatively poor relationship within the other five basins. In addition, the degree of correlation between the Fe and DP loads severely degraded in the basins that were mostly covered by construction land or those that underwent a rapid urbanization process. The findings indicate that land use/cover change (LUCC), especially the distribution of agricultural land and construction land, as well as the soil background information (TN, Fe and Soil organic matters, etc.) can be considered as factors that influence NPS P pollution. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schöpfer, Kateřina; Hinsch, Ralph
2017-04-01
The Vøring and the Faroe-Shetland basins are offshore deep sedimentary basins which are situated on the outer continental margin of the northeast Atlantic Ocean. Both basins are underlain by thinned continental crust whose structure is still debated. In particular the nature of the lower continental crust and the origin of high velocity bodies located at the base of the lower crust are a subject of discussion in recent literature. Regional interpretation of 2D and 3D seismic reflection data, combined with well data, suggest that both basins share several common features: (i) Pre-Cretaceous faults that are distributed across the entire basin width. (ii) Geometries of pre-Jurassic strata reflecting at least two extensional phases. (iii) Three common rift phases, Late Jurassic, Campanian-Maastrichtian and Palaeocene. (iv) Large pre-Cretaceous fault blocks that are buried by several kilometres of Cretaceous and Cenozoic strata. (iii). (v) Latest Cretaceous/Palaeocene inversion. (vi) Occurrence of partial mantle serpentinization during Early Cretaceous times, as proposed by other studies, seems improbable. The detailed analysis of the data, however, revealed significant differences between the two basins: (i) The Faroe-Shetland Basin was a fault-controlled basin during the Late Jurassic but also the Late Cretaceous extensional phase. In contrast, the Vøring Basin is dominated by the late Jurassic rifting and subsequent thermal subsidence. It exhibits only minor Late Cretaceous faults that are localised above intra-basinal and marginal highs. In addition, the Cretaceous strata in the Vøring Basin are folded. (ii) In the Vøring Basin, the locus of Late Cretaceous rifting shifted westwards, affecting mainly the western basin margin, whereas in the Faroe-Shetland Basin Late Cretaceous rifting was localised in the same area as the Late Jurassic phase, hence masking the original Jurassic geometries. (iii) Devono-Carboniferous and Aptian/Albian to Cenomanian rift phases are present in the Faroe-Shetland Basin, but are not recognisable in the Vøring Basin. (iv) Based on seismic data only, a Permian/Triassic rift phase can be suggested for the Vøring Basin, but the evidence for an equivalent rift phase in the Faroe-Shetland Basin is inconclusive. The present study demonstrates that basins developing above a complex mosaic of basement terrains accreted during orogenic phases can exhibit significant differences in their architecture. The origin of these differences may be considered to be a result of inherited pre-existing large-scale structures (e.g. pre-existing fault blocks) and/or a non-uniform crustal thickness prior to rifting.
Chicxulub multiring impact basin - Size and other characteristics derived from gravity analysis
NASA Technical Reports Server (NTRS)
Sharpton, Virgil L.; Burke, Kevin; Camargo-Zanoguera, Antonio; Hall, Stuart A.; Lee, D. S.; Marin, Luis E.; Suarez-Reynoso, Gerardo; Quezada-Muneton, Juan M.; Spudis, Paul D.; Urrutia-Fucugauchi, Jaime
1993-01-01
The buried Chicxulub impact structure in Mexico, which is linked to the Cretaceous-Tertiary (K-T) boundary layer, may be significantly larger than previously suspected. Reprocessed gravity data over Northern Yucatan reveal three major rings and parts of a fourth ring, spaced similarly to those observed at multiring impact basins on other planets. The outer ring, probably corresponding to the basin's topographic rim, is almost 300 kilometers in diameter, indicating that Chicxulub may be one of the largest impact structures produced in the inner solar system since the period of early bombardment ended nearly 4 billion years ago.
NASA Astrophysics Data System (ADS)
Balsamo, Fabrizio; Nogueira, Francisco; Storti, Fabrizio; Bezerra, Francisco H. R.; De Carvalho, Bruno R.; André De Souza, Jorge
2017-04-01
In this contribution we describe the structural architecture and microstructural features of fault zones developed in Cretaceous, poorly lithified sandstones of the Rio do Peixe basin, NE Brazil. The Rio do Peixe basin is an E-W-trending, intracontinental half-graben basin developed along the Precambrian Patos shear zone where it is abutted by the Porto Alegre shear zone. The basin formed during rifting between South America and Africa plates and was reactivated and inverted in a strike-slip setting during the Cenozoic. Sediments filling the basin consist of an heterolithic sequence of alternating sandstones, conglomerates, siltstone and clay-rich layers. These lithologies are generally poorly lithified far from the major fault zones. Deformational structures in the basin mostly consist of deformation band-dominated fault zones. Extensional and strike-slip fault zones, clusters of deformation bands, and single deformation bands are commonly well developed in the proximity of the basin-boundary fault systems. All deformation structures are generally in positive relief with respect to the host rocks. Extensional fault zones locally have growth strata in their hangingwall blocks and have displacement generally <10 m. In map view, they are organized in anastomosed segments with high connectivity. They strike E-W to NE-SW, and typically consist of wide fault cores (< 1 m in width) surrounded by up to few-meter wide damage zones. Fault cores are characterized by distributed deformation without pervasive strain localization in narrow shear bands, in which bedding is transposed into foliation imparted by grain preferred orientation. Microstructural observations show negligible cataclasis and dominant non-destructive particulate flow, suggesting that extensional fault zones developed in soft-sediment conditions in a water-saturated environment. Strike-slip fault zones commonly overprint the extensional ones and have displacement values typically lower than about 2 m. They are arranged in conjugate system consisting of NNW-SSE- and WNW-ESE-trending fault zones with left-lateral and right-lateral kinematics, respectively. Compared to extensional fault zones, strike-slip fault zones have narrow fault cores (few cm thick) and up to 2-3 m-thick damage zones. Microstructural observations indicate that cataclasis with pervasive grain size reduction is the dominant deformation mechanisms within the fault core, thus suggesting that late-stage strike-slip faulting occurred when sandstones were partially lithified by diagenetic processes. Alternatively, the change in deformation mechanisms may indicate faulting at greater depth. Structural and microstructural data suggest that fault zones in the Rio do Peixe basin developed in a progression from "ductile" (sensu Rutter, 1986) to more "brittle" deformation during changes from extensional to strike-slip kinematic fields. Such rheological and stress configuration evolution is expected to impact the petrophysical and permeability structure of fault zones in the study area.
NASA Astrophysics Data System (ADS)
Mondal, Samit; Yadav, Ashok; Chatterjee, Rima
2018-01-01
Rock physical crossplots from different geological setup along eastern continental margin of India (ECMI) represent diversified signatures. To characterize the reservoirs in rock physics domain (velocity/modulus versus porosity) and then connecting the interpretation with geological model has been the objectives of the present study. Petrophysical logs (total porosity and volume of shale) from five wells located at sedimentary basins of ECMI have been analyzed to quantify the types of shale such as: laminated, dispersed and structural in reservoir. Presence of various shale types belonging to different depositional environments is coupled to define distinct rock physical crossplot trends for different geological setup. Wells from three different basins in East Coast of India have been used to capture diversity in depositional environments. Contact model theory has been applied to the crossplot to examine the change in rock velocity with change in reservoir properties like porosity and volume of shale. The depositional and diagenetic trends have been shown in the crossplot to showcase the prime controlling factor which reduces the reservoir porosity. Apart from that, the effect of geological factors like effective stress, sorting, packing, grain size uniformity on reservoir properties have also been focused. The rock physical signatures for distinct depositional environments, effect of crucial geological factors on crossplot trends coupled with established sedimentological models in drilled area are investigated to reduce the uncertainties in reservoir characterization for undrilled potentials.
Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2007-01-01
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.
BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization
NASA Astrophysics Data System (ADS)
Lee, Eun Young; Novotny, Johannes; Wagreich, Michael
2016-06-01
Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.
The Mechanics of Impact Basin Formation: Comparisons between Modeling and Geophysical Observations
NASA Astrophysics Data System (ADS)
Stewart, S. T.
2010-12-01
Impact basins are the largest geologic structures on planetary surfaces. Single or multiple ring-shaped scarps or arcuate chains of massifs typically surround basin-sized craters (e.g., larger than about 300 km diameter on the moon [1]). Impact basins also possess central mass anomalies related to ejection of a portion of the crust (and mantle) and uplift of the mantle. I will discuss insights into the mechanics of impact basin formation derived from numerical simulations and focus on features that may be compared with gravity and topography data. The simulations of basin formation use the method of [2] with an improved rheological model that includes dynamic weakening of faults and more accurate treatment of the mantle solidus. Two-dimensional simulations of vertical impacts onto spherical planets utilize a central gravity field, and three-dimensional simulations of oblique impacts include a self-gravity calculation. During the opening and collapse of the transient crater, localization of strain leads to deformation features that are interpreted as deep faults through the lithosphere. Based on simulations of mantle-excavating impacts onto the moon and Mars with thermal gradients that intersect the solidus in the asthenosphere, the final impact structure has three major features: (i) an inner basin filled with melt and bounded by the folded lithosphere, (ii) a broad shallow terrace of faulted and translated lithosphere with an ejecta deposit, and (iii) the surrounding autochthonous lithosphere with radially thinning ejecta. The folded lithosphere is a complex structure that experiences translation inward and then outward again during collapse of the transient cavity. The uplifted mantle within this structure is overlain by a thin layer of hot crustal material. In addition to asymmetry in the excavated material, 45-degree impact events produce an asymmetric terrace feature. The principal observations for comparison to the calculations are the inferred locations of major ring structures (derived from topography and geologic mapping) and the crustal thickness and mantle topography (derived from gravity and topography) [see also 3]. Preliminary comparisons indicate that the simulations produce the major features in the observations. I will present detailed comparisons between simulations and observations for major basins on the moon, including South Pole-Aitken, for different initial lithospheric thicknesses and thermal gradients. [1] Spudis, P.D. (1993) The Geology of Multi-Ring Impact basins: Cambridge University Press. [2] Senft, L.E. and S.T. Stewart (2009) Earth and Planetary Science Letters 287, 471-482. [3] Lillis, R.J., et al. (2010) AGU Fall Meeting.
NASA Astrophysics Data System (ADS)
Candaux, Zoé; Sosson, Marc; Adamia, Shota; Sadradze, Nino; Alania, Victor; Enukidze, Onise; Chabukiani, Alexandre
2017-04-01
The Greater Caucasus mountain belt is the result of a long live subduction process and collisions of continental microplates (e.g. Dercourt et al., 1986; Barrier and Vrielynck, 2008). The northward subduction of Tethys beneath Eurasian plate initiated a back-arc basin: the Greater Caucasus basin (e.g. Adamia et al., 1981; Zonenshain and Le Pichon, 1986; Roberston et al., 1996; Stephenson and Schellart, 2010 among others). It took place from Middle Jurassic to Late Cretaceous. First compression stage started at the end of Cretaceous in the Lesser Caucasus (e.g. Rolland et al., 2010; Sosson et al. 2010, 2016) and Palaeocene-early Eocene in Crimean Mountains (northwestern continuation of the Greater Caucasus) (Sheremet et al., 2016). In southern Greater Caucasus (Georgian area) the age of deformation during the beginning of the collision is still a subject of debate: Oligocene-Lower Miocene at the frontal part (e.g. Adamia et al. 2010) or Eocene (Mosar et al., 2010). The deformation continues at Miocene, Pliocene and actual time in Kura and Rioni foreland basins (Forte et al., 2010; 2013; Mosar et al., 2010). The different timing is interpreted to be the result of the Taurides-Anatolides-South Armenian microcontinent collision with Eurasia, followed by the collision with Arabia. During the first collision, during Paleocene-Eocene, the so-called Adjara-Trialeti basin opened north of the volcanic arc. One question is if this local extension affect the timing of compression observed in the Greater Caucasus or not. In Georgia, we investigated new structural analyses, and considered unconformities and growth strata at the frontal part of deformations in Kura and Rioni forelands basins (in front of the Greater Caucasus). Our results evidence different tectonic stages and their timing. In Adjara-Trialeti, Kura and south Rioni basins deformation starts at Middle-Late Miocene. In northern Rioni basin Upper Cretaceous-Lower Paleocene compression is evidenced. The structures observed in the Greater Caucasus, forelands basins (Kura and Rioni basins) and in the Adjara-Trialeti belt are different: some are linked to thin-skinned tectonic deformations while some induces deformation at depth (thick-skinned tectonic). These observations outline the role of the inherited structures within the basement. The normal faults due to the previous extensional stages are reactivated as thrust during collision while detachment levels are observed in deposits not involved in the extensional stages. These observations bring out the importance of the chronology of the different tectonic stages to better understand the tectonic frame and geodynamic processes involved from the Early Cretaceous in this area and the role on the resulting structures.
NASA Astrophysics Data System (ADS)
Scheck-Wenderoth, M.; Sippel, J.; Lewerenz, B.
2011-12-01
The present-day temperature distribution of the Beaufort-Mackenzie Basin as observed in boreholes indicates large-scale thermal anomalies which have been related to specific tectonic domains and heat transported by convection along major discontinuities (Chen et al., 2008). We have integrated seismic and well data into a crust-scale 3D structural model of the basin, which we have additionally constrained by 3D gravity modelling. This structural model is composed of seven Mesozoic-Cenozoic tectonostratigraphic units which - as a result of a complex foreland depositional and erosional history - tend to be younger, less compacted, and thus less thermally conductive towards the north. The underlying continental crust comprises a low-density upper part (2720 kg/m3 ) and a moderately dense lower part (2850 kg/m3), and it thins considerably towards the north where it passes over to oceanic crust (2900 kg/m2 ). We use the structural model to calculate the 3D conductive thermal field of the basin based on a Finite-Element method, thereby taking one step further towards a quantification of heat transporting processes in this petroliferous region. For the validation of the modelling results, we make use of public domain temperature data from more than 230 wells reaching depths of up to 5000 m. Thermal conductivities are assigned to the different units according to available data sets including also the observed lithology-dependent relationship between conductivity and porosity in the region. The upper boundary condition for the thermal calculations is provided by the well-known depth distribution of the base of permafrost (0 °C isotherm). Assuming a constant heat flow of 30 mW/m2 at the Moho, we find that the modelled temperatures are widely consistent with the observed temperatures in most parts of the basin. Only where large tectonic discontinuities structure the margins of the basin, the misfits are considerable, thus indicating convective heat transport to be an important process. We discuss the predicted temperature variations with respect to the structure of the basin including stratigraphic and tectonic domains, the inferred depth of the lithosphere-asthenosphere boundary, and the distribution of permafrost. Chen, Z., Osadetz, K.G., Issler, D.R., Grasby, S.E., 2008. Hydrocarbon migration detected by regional temperature field variations, Beaufort-Mackenzie Basin, Canada. AAPG Bulletin, 92(12): 1639-1653.
NASA Astrophysics Data System (ADS)
Jollivet-Castelot, Martin; Gaullier, Virginie; Paquet, Fabien; Chanier, Frank; Thinon, Isabelle; Lasseur, Eric; Averbuch, Olivier
2017-04-01
The Dieppe-Hampshire Basin is a Cenozoic basin crossing the eastern English Channel, between SE of England and the French coast. This basin and its borders developed during the Cenozoic, a period of overall tectonic inversion, in response to the opening of the North Atlantic Ocean and Pyrenean-alpine deformation episodes. Both extensional and subsequent compressional deformations within this area involve the reactivation of older major regional structures, inherited from the Variscan Orogeny. However, the detailed structural development of the Dieppe-Hampshire Basin still remains poorly constrained, as well as the detailed stratigraphic framework of Cenozoic series, notably in terms of seismic stratigraphy and sequence stratigraphy. New very high resolution seismic data, acquired during the oceanographic cruise "TREMOR" (R/V "Côtes de la Manche", 2014, 1800 kilometers of Sparker profiles), and bathymetric data from SHOM and UKHO, have allowed to image the sedimentary filling and tectonic structures of the Dieppe-Hampshire Basin and adjacent areas. The interpretation was first focused on a seismic facies analysis that led to evidence numerous unconformities and seismic units ranging from the Upper Cretaceous to the Bartonian (Late Eocene). The interpretation of the seismic profiles also allowed to map precisely many tectonic features, as faults, folds and monoclinal flexures. Thanks to the new data, we especially imaged the complexity of the deformation within the highest tectonized zones of the region, along the Nord-Baie de Seine Basin and offshore the Boulonnais coast with an unprecedented resolution. The expression of the deformation appears to be very different between the Mesozoic and the Cenozoic series, with prevailing folding affecting the Cenozoic strata whereas the Mesozoic series are predominantly faulted. This deformation pattern illustrates two major structural trends, respectively E-W and NW-SE directed, both syn- to post-Bartonian in age. The first one is consistent in age and orientation with a late Pyrenean or early Alpine deformation phase, while the second one appears to have a different origin, in regards to the overall geodynamic framework. We suggest that the major heterogeneities of crustal blocks underlying the basin played an important role on the development and orientations of these deformations. These preliminary results will be improved soon thanks to a new cruise, "TREMOR 2" (2017), which will be focused on the acquisition of new VHR seismic lines, bathymetric data and coring.
The BOrborema Deep Electromagnetic and Seismic (BODES) Experiment
NASA Astrophysics Data System (ADS)
Nemocon, A. M.; Garcia, X.; Julià, J.
2016-12-01
The Borborema Province of NE Brazil is a large Precambrian domain of the Brazilian shield located in the northeastern most corner of South America. It is bounded by the intracratonic Parnaíba basin to the West and by the mostly Archean São Francisco craton to the South, and its structuration has been related to compressional processes during the Brasiliano-Pan African orogeny (600-550 Ma). In the Mesozoic, extensional stresses related to the opening of the Atlantic ocean left a number of aborted rift basins within the Province. After continental breakup, the evolution of the Province was marked by episodes of uplift, which might have been coeval with episodes of volcanism in the Cenozoic. The most prominent expression of uplift is the Borborema Plateau, an elliptically shaped topographic feature in the eastern Province with maximum elevations of 1200 m. The origin of uplift across the Borborema Plateau has been the focus of a number of multi-disciplinary studies in the past few years, which have imaged the deep structure of the eastern Province with unprecedented detail. The origin of uplift in the western Province, which includes a superb example of basin inversion demonstrated through the 1000 km elevations of the Chapada do Araripe, however, has been seldom investigated. To alleviate this situation, a temporary network of 10 collocated seismic and magnetotelluric stations was deployed in the western Province. The collocated stations were arranged in an approximately NS direction, with an interstation spacing of 70 km and spanning a total length of 600 km. The seismic stations consisted of broadband sensors sampling at 100 Hz and were deployed in January 2015; the MT stations consisted of long-period magnetotelluric systems, sampling at 1 Hz and 4 Hz, and were deployed in April 2015 for a period of 2 weeks. Preliminary results based on P-receiver functions suggest that the crust thickens gradually to the South, from 36 km in the northern end of the profile to 44 km in the southern portion (São Francisco craton), while analysis of MT data suggests an heterogeneous lithosphere with marked lateral changes in electrical properties. Local thinning of the crust is observed under the Araripe basin, and a thickening resistive structure characterizes the lithospheric mantle under the craton.
Along-axis segmentation and isostasy in the Western rift, East Africa
NASA Astrophysics Data System (ADS)
Upcott, N. M.; Mukasa, R. K.; Ebinger, C. J.; Karner, G. D.
1996-02-01
Structural variations along the southern sectors of the Western rift, East Africa, have previously been described, but subsurface structures in the northern sector (Uganda, Zaire) are virtually unknown. Our aims are to investigate the along-axis segmentation of the northern sector, thereby adding to the structural picture of the Western rift, and to study the isostatic compensation of the varying rift morphology along the sector's length. This study describes the first gravity survey to be carried out on the shallow Lake Albert, forward models of these and existing gravity data, and the results from inverse modeling of existing aeromagnetic data designed to delimit border and transfer fault systems. Our tectonic model shows that the northern rift sector is segmented along-axis into five 25 to 65-km-wide, 80 to 100-km-long rift segments, characterized by closed-contour Bouguer anomaly lows, and bounded by steep gravity, aeromagnetic, and topographic/bathymetric gradients. Werner and Euler deconvolution results and gravity anomaly data reveal that some faulted basins are separated by structural highs and cross-rift ramps or faults and suggest sedimentary basin depths of 4-6 km. Forward modeling of structural and free-air gravity profiles across individual basins and flanks using a model that assumes flexural compensation also suggests sediment thicknesses of up to 5.5 km, similar to the estimates from magnetic data. The basin and flank morphology can be explained by 6-9 km of extension of a lithosphere with an effective elastic thickness (Te) of 25 km (equivalent to a flexural rigidity of 1.4 × 1023 N m), similar to results in other Western rift basins. Potential field data and lithospheric strength estimates in the Western rift system show small along-axis variations in lithospheric structure, regardless of the presence or absence of Cenozoic magmatism.
Tectonic evolution and hydrocarbon accumulation in the Yabulai Basin, western China
NASA Astrophysics Data System (ADS)
Zheng, Min; Wu, Xiaozhi
2014-05-01
The Yabulai petroliferous basin is located at the north of Hexi Corridor, western China, striking NEE and covering an area of 1.5×104 km2. It is bounded on the south by Beidashan Mountain to the Chaoshui Basin, on the east by Bayanwulashan Mountain to the Bayanhaote Basin, and on the northwest by Yabulai Mountain to the Yingen-Ejinaqi Basin. It is a Meso-cenozoic compressive depression residual basin. In view of regional geotectonics, the Yabulai basin sits in the middle-southern transition belt of Arershan massif in North China Craton. Driven by Indosinian movement at the late Triassic, two near EW normal faults were developed under the regional extensional stress along the northern fringe of Beidashan Mountain and the southern fringe of Yabulai Mountain front in the Arershan massif, forming the embryonic form of the Yabulai rift lake basin. Since Yanshan period, the Yabulai basin evolved in two major stages: Jurassic rift lake basin and Cretaceous rift lake basin. During early Yanshan period, EW striking Yabulai tensional rift was formed. Its major controlling fault was Beidashan normal fault, and the depocenter was at the south of this basin. During middle Yanshan period, collision orogenesis led to sharp uplift at the north of this basin where the middle-lower Jurassic formations were intensely eroded. During late Yanshan period, the Alashan massif and its northern area covered in an extensional tectonic environment, and EW striking normal faults were generated at the Yabulai Mountain front. Such faults moved violently and subsided quickly to form a new EW striking extensional rift basin with the depocenter at the south of Yabulai Mountain. During Himalayan period, the Alashan massif remained at a SN horizontal compressional tectonic environment; under the compressional and strike slip actions, a NW striking and south dipping thrusting nappe structure was formed in the south of the Yabulai basin, which broke the Beidashan normal fault to provide the echelon fault system and finally present the current structural framework of "east uplift and west depression, south faulted and north overlapping". The Yabulai basin presented as a strike-slip pull-apart basin in Mesozoic and a compressional thrusting depression basin in Cenozoic. Particularly, the Mesozoic tectonic units were distributed at a big included angle with the long axis of the basin, while the Cenozoic tectonic units were developed in a basically consistent direction with the long axis. The sags are segmented. Major subsiding sags are located in the south, where Mesozoic Jurassic-Cretaceous systems are developed, with the thickest sedimentary rocks up to 5300m. Jurassic is the best developed system in this basin. Middle Jurassic provides the principal hydrocarbon-bearing assemblage in this basin, with Xinhe Fm. and Qingtujing Fm. dark mudstone and coal as the source rocks, Xinhe Fm. and Qingtujing Fm. sandstones as the reservoir formation, and Xinhe Fm. mudstones as the cap rocks. However, the early burial and late uplifting damaged the structural framework of the basin, thus leading to the early violent compaction and tightness of Jurassic sandstone reservoir and late hydrocarbon maturity. So, tectonic development period was unmatched to hydrocarbon expulsion period of source rocks. The hydrocarbons generated were mainly accumulated near the source rocks and entrapped in reservoir. Tight oil should be the major exploration target, which has been proved by recent practices.
NASA Astrophysics Data System (ADS)
Godyń, Katarzyna
2016-09-01
As regards the exploitation of hard coal seams, the near-fault zones and faults themselves are considered to be particularly dangerous areas, which is due to a high probability of the occurrence of gasogeodynamic phenomena. Tectonic dislocations running across a seam have a destructive impact on coal. Degradation of the coal structure, particularly visible in the microscale, is reflected in the coal's strength or gas properties. Such "structurally altered" coal is characterized by the presence of numerous fracturings, crushed areas, or dislocations of some of its fragments, and sometimes even the total destruction of the original structure. The present paper provides a detailed analysis and description of near-fault coal obtained from selected seams of the Upper Silesian Coal Basin, completed due to the application of optical methods. Both the type and the degree of changes in the structure of such coal were identified. On this basis, the author attempted to systematize the nomenclature used in relation to selected Upper Silesian hard coal seams, which, in turn, resulted in a proposed classification of the "altered structures" of the near-fault coal.
300 million years of basin evolution - the thermotectonic history of the Ukrainian Donbas Foldbelt
NASA Astrophysics Data System (ADS)
Spiegel, C.; Danisik, M.; Sachsenhofer, R.; Frisch, W.; Privalov, V.
2009-04-01
The Ukrainian-Russian Pripyat-Dniepr-Donets Basin is a large intracratonic rift structure formed during the Late Devonian. It is situated at the southern margin of the Precambrian East European Craton, adjacent to the Hercynian Tethyan belt in the Black Sea area and the Alpine Caucasus orogen. With a sediment thickness of more than 20 km, it is one of the deepest sedimentary basins on earth. The eastern part of the Pripyat-Dniepr-Donets Basin - called Donbas foldbelt - is strongly folded and inverted. Proposed models of basin evolution are often controversial and numerous issues are still a matter of speculation, particularly the erosion history and the timing of basin inversion. Basin inversion may have taken place during the Permian related to the Uralian orogeny, or in response to Alpine tectonics during the Late Cretaceous to Early Tertiary. We investigated the low-temperature thermal history of the Donbas Foldbelt and the adjacent Ukrainian shield by a combination of zircon fission track, apatite fission track and apatite (U-Th)/He thermochronology. Although apatite fission track ages of all sedimentary samples were reset shortly after deposition during the Carboniferous, we took advantage of the fact that samples contained kinetically variable apatites, which are sensitive to different temperatures. By using statistic-based component analysis incorporating physical properties of individual grains we identified several distinct age population, ranging from late Permian (~265 Ma) to the Late Cretaceous (70 Ma). We could thus constrain the thermal history of the Donbas Foldbelt and the adjacent basement during a ~300 Myr long time period. The Precambrian crystalline basement of the Ukrainian shield was affected by a Permo-Triassic thermal event associated with magmatic activity, which also strongly heated the sediments of the Donbas Foldbelt. The basement rocks cooled to near-surface conditions during the Early to Middle Triassic and since then was thermally stable. The basin margins started to cool during the Permo-Triassic whereas the central parts were residing or slowly cooling through the apatite partial annealing zone during the Jurassic and most of the Cretaceous and eventually cooled to near-surface conditions around the Cretaceous-Paleogene boundary. Our data show that Permian erosion was lower and Mesozoic erosion larger than generally assumed. Inversion and pop-up of the Donbas Foldbelt occurred in the Cretaceous and not in the Permian as previously thought. This is indicated by overall Cretaceous apatite fission track ages in the central parts of the basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, A.H.M.S.; Pilger, R.H. Jr.
1988-09-01
Subsurface structures were interpreted from seismic images and well logs in the westernmost Mississippi Salt basin, Madison Parish, Louisiana. Structural and stratigraphic relations indicate that salt structures (Duckport, North Tallulah, South Coleman, Tallulah, and Walnut domes) have evolved through pillow, diapir, and postdiapir stages. Withdrawal synclines associated with each stage of growth occur adjacent to salt domes and are characterized by overthickening of sediments. Synclines associated with Walnut dome are particularly well recognized in the seismic data. Primary withdrawal synclines and present day turtle structure anticlines involve the deepest recorded reflections (possibly Jurassic carbonates) above seismically transparent Paleozoic basement andmore » overlying remnant salt. Similar early (Late Jurassic) salt mobility has recently been documented in North Louisiana and East Texas Salt basins. Secondary withdrawal synclines (Cotton Valley) are exceptionally overthickened and their axes are closer to the dome than the axes of primary synclines. Tertiary synclines are broad and appear to be active at present. North-south seismic sections that cross the approximate northwest boundary of the Mississippi Salt basin display post-middle Cretaceous upwarp (the Monroe Uplift) involving basement. Successively older Lower Cretaceous reflections are truncated to the north beneath an erosional surface. Upwarp apparently continued well into the Cenozoic.« less
Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin
NASA Astrophysics Data System (ADS)
Nogueira, Carlos R.; Marques, Fernando O.
2017-04-01
Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western segment border fault should be a pure thrust; (5) uplift along the northern and central segments may point out to the presence of a salt diapir at depth, aiding vertical movement and local uplift of the structure; (6) geometry of seismic units of the neighboring basins is consistent with halokinesis related to the antiform growth during the Jurassic; (7) sedimentary filling of the neighbouring basins shows relationship to antiform development and growth into a structural high before the Late Miocene Alpine event. These data suggest that: (1) pre-existing basement faults and their reactivation played important role on the development of Montejunto complex tectonic structure; (2) important vertical movements occurred as the result of regional and local (diapir) tectonics; (3) subsidence in neighbouring basins may have promoted maturation, and possible targets with strong potential for hydrocarbon trapping and accumulation may have also developed; (4) diapir tectonics initiated before the Cretaceous; (5) given the topography, and the geometry and inferred kinematics of all segments, it seems that the Montejunto structure formed in a restraining bend controlled by inherited late-Variscan basement faults.
NASA Astrophysics Data System (ADS)
Glen, R. A.
The Palaeozoic history of the western part of the Lachlan Fold Belt in New South Wales was dominated by strike-slip tectonics. In the latest Silurian to late Early Devonian, an area of crust >25,000 km 2 lying west of the Gilmore Suture underwent regional sinistral transtension, leading to the development of intracratonic successor basins, troughs and flanking shelves. The volcaniclastic deep-water Mount Hope Trough and Rast Trough, the siliciclastic Cobar Basin and the volcanic-rich Canbelego-Mineral Hill Belt of the Kopyje Shelf all were initiated around the Siluro-Devonian boundary. They all show clear evidence of having evolved by both active syn-rift processes and passive later post-rift (sag-phase) processes. Active syn-rift faulting is best documented for the Cobar Basin and Mount Hope Trough. In the former case, the synchronous activity on several fault sets suggests that the basin formed by sinistral transtension in response to a direction of maximum extension oriented NE-SW. Structures formed during inversion of the Cobar Basin and Canbelego-Mineral Hill Belt indicate closure under a dextral transpressive strain regime, with a far-field direction of maximum shortening oriented NE-SW. In the Cobar Basin, shortening was partitioned into two structural zones. A high-strain zone in the east was developed into a positive half-flower structure by re-activation of early faults and by formation of short-cut thrusts, some with strike-slip movement, above an inferred steep strike-slip fault. Intense subvertical cleavage, a steep extension lineation and variably plunging folds are also present. A lower-strain zone to the west developed by syn-depositional faults being activated as thrusts soling into a gently dipping detachment. A subvertical cleavage and steep extension lineation are locally present, and variably plunging folds are common. Whereas Siluro-Devonian basin-opening appeared to be synchronous in the western part of the fold belt, the different period of basin inversion in the Cobar region (late Early Devonian and Carboniferous) may reflect different movement histories on the master strike-slip faults in this part of the fold belt, the Gilmore Suture and Kiewa Fault.
Drenth, Benjamin J.; Turner, Kenzie J.; Thompson, Ren A.; Grauch, V. J.; Cosca, Michael A.; Lee, John
2011-01-01
New interpretations of the nature of the Rio Grande rift and pre-existing rocks in the northeast Tusas Mountains region are derived from new and existing gravity and aeromagnetic data. 12-15 mGal amplitude gravity lows are interpreted to mainly reflect large thicknesses of the upper Oligocene to upper Miocene, syn-rift Los Pinos Formation and possibly significant amounts of the Eocene El Rito Formation. The Broke Off Mountain sub basin, named after the location of its greatest inferred depth, is interpreted to be a ~40 km long and ~13 km wide structure elongated in a northwest trend at the western margin of the San Luis Basin. The sub basin is interpreted to contain a maximum combined thickness of 900-2300 m of the Los Pinos Formation and El Rito Formation, with the Los Pinos Formation constituting the majority of the section. Sub basin age is constrained to be older than 21.6 ± 1.4 Ma, the age of a Hinsdale Formation basalt flow that caps the Los Pinos Formation section at Broke Off Mountain. This age constraint and surface geology indicate a pre- and early-rift age. The structural fabric of the northeast Tusas Mountains region is dominated by northwest-trending normal faults, as indicated by geologic mapping and interpretation of aeromagnetic data. Preliminary analysis of the aeromagnetic data suggests that lineaments, possibly reflecting faulting, trend through volcanic rocks as young as Pliocene in age. If correct, these interpretations challenge commonly held beliefs regarding two stages in the structural style of rifting, where early (Oligocene-Miocene) rifting was characterized by broad, shallow basins bounded by northwest-trending faults and later (Miocene-Pliocene) rifting was characterized by deep, narrow basins bounded by north-trending faults. The Broke Off Mountain sub basin is a counter example of a pre- and early-rift, deep and narrow basin. We hypothesize that the Broke Off Mountain sub basin may represent a southward extension of the Monte Vista graben in Colorado, based on similarities in geophysical expression, stratigraphy, and its position at the western portion of the San Luis Basin
New vitrinite reflectance data for the Wind River Basin, Wyoming
Pawlewicz, Mark J.; Finn, Thomas M.
2013-01-01
The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.
Inner Harbor Navigation Canal Basin Velocity Analysis
2014-10-01
ER D C/ CH L TR -1 4- 12 Inner Harbor Navigation Canal Basin Velocity Analysis Co as ta l a nd H yd ra ul ic s La bo ra to ry...Mississippi River Gulf Outlet (MRGO). The structures allow for continued navigation, and the gate structures are designed to remain open during...Water Way (GIWW) just east of the Mississippi River Gulf Outlet (MRGO). The planned structures allow for continued navigation in the IHNC, Bayou
Modelling the transport and accumulation of floating marine debris in the Mediterranean basin.
Mansui, J; Molcard, A; Ourmières, Y
2015-02-15
In the era of plastic and global environmental issues, when large garbage patches have been observed in the main oceanic basins, this work is the first attempt to explore the possibility that similar permanent accumulation structures may exist in the Mediterranean Sea. The questions addressed in this work are: can the general circulation, with its sub-basins scale gyres and mesoscale instabilities, foster the concentration of floating items in some regions? Where are the more likely coastal zones impacted from open ocean sources? Multi-annual simulations of advected surface passive debris depict the Tyrrhenian Sea, the north-western Mediterranean sub-basin and the Gulf of Sirte as possible retention areas. The western Mediterranean coasts present very low coastal impact, while the coastal strip from Tunisia to Syria appears as the favourite destination. No permanent structure able to retain floating items in the long-term were found, as the basin circulation variability brings sufficient anomalies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Harmonic analyses of stream temperatures in the Upper Colorado River Basin
Steele, T.D.
1985-01-01
Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)
Finn, Thomas M.
2007-01-01
The stratigraphic cross sections presented in this report were constructed as part of a project conducted by the U.S. Geological Survey to characterize and evaluate the undiscovered oil and gas resources of the Wind River Basin (WRB) in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic framework and facies relations of Cretaceous and lower Tertiary rocks in this large, intermontane structural and sedimentary basin, which formed in the Rocky Mountain foreland during the Laramide orogeny (Late Cretaceous through early Eocene time). The WRB is nearly 200 miles (mi) long, 70 mi wide, and encompasses about 7,400 square miles (mi2) (fig. 1). The basin is structurally bounded by the Owl Creek and Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and the Wind River Range on the west.
NASA Astrophysics Data System (ADS)
Nigro R A Ramos, L.; Aitken, A.; Occhipinti, S.; Lindsay, M.
2017-12-01
The Bryah and Padbury Basins were developed along the northern margin of the Yilgarn Craton, in the southern portion of the Capricorn Orogen, which represents a Proterozoic tectonic zone that bounds the Yilgarn and Pilbara Cratons in Western Australia. These basins have been previously interpreted as developing in a rift, back-arc, and retro-arc foreland basins. Recent studies suggest that the Bryah Basin was deposited in a rift setting, while the overlying Padbury Basin evolved in a pro-foreland basin during the collision of the Yilgarn Craton and the Pilboyne block (formed by the Pilbara Craton and the Glenburgh Terrane), occurring in the Glenburgh Orogeny (2005-1960 Ma). This study focuses on characterizing the architecture and structural framework of the Bryah and Padbury Basins through analysis of geophysical and geological datasets, in order to better understand the different stages of the basins evolution. Gravity and magnetic data were used to define the main tectonic units and lithological boundaries, and to delineate major discontinuities in the upper and lower crust, as well as anomalies through a combination of map view interpretation and forward modelling. Geological mapping and drill core observations were linked with the geophysical interpretations. Fourteen magnetic domains are distinguished within the basins, while four main domains based on the Bouguer Anomaly are recognized. The highest gravity amplitude is related with an anomaly trending EW/NE-SW, which is coincident with the voluminous mafic rocks of the Bryah Basin, and may indicate the presence of an approximately 5km thick package of higher density mafic rocks. Magnetic depth estimations also indicate deep magnetic sources up to approximately 4,45km. These results can help to elucidate processes that occurred during the precursor rift of the early stages of the Bryah Basin, add information in relation to the basement control on sedimentation, allow the characterization of the varying thickness of the units from the Bryah and Padbury basins, and permit a synthesis describing basin evolution.
Basins of distinct asymptotic states in the cyclically competing mobile five species game
NASA Astrophysics Data System (ADS)
Kim, Beomseok; Park, Junpyo
2017-10-01
We study the dynamics of cyclic competing mobile five species on spatially extended systems originated from asymmetric initial populations and investigate the basins for the three possible asymptotic states, coexistence of all species, existences of only two independent species, and the extinction. Through extensive numerical simulations, we find a prosperous dependence on initial conditions for species biodiversity. In particular, for fixed given equal densities of two relevant species, we find that only five basins for the existence of two independent species exist and they are spirally entangled for high mobility. A basin of coexistence is outbreaking when the mobility parameter is decreased through a critical value and surrounded by the other five basins. For fixed given equal densities of two independent species, however, we find that basin structures are not spirally entangled. Further, final states of two independent species are totally different. For all possible considerations, the extinction state is not witnessed which is verified by the survival probability. To provide the validity of basin structures from lattice simulations, we analyze the system in mean-field manners. Consequently, results on macroscopic levels are matched to direct lattice simulations for high mobility regimes. These findings provide a good insight into the fundamental issue of the biodiversity among many species than previous cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitcho, C.A.; Wong, I.G.; Turcotte, F.T.
1986-08-01
Seismic reflection data purchased from petroleum industry brokers and acquired through group speculative surveys were interpreted for information on the regional subsurface geologic structure and stratigraphy within and surrounding the Davis and Lavender Canyons study area in the Paradox Basin of southeastern Utah. Structures of interest were faults, folds, joints, and collapse structures related to salt dissolution. The seismic reflection data were used to interpret stratigraphy by identifying continuous and discontinuous reflectors on the seismic profiles. Thickening and thinning of strata and possible areas of salt flowage or dissolution could be identified from the seismic data. Identifiable reflectors included themore » tops of the Precambrian and Mississippian, a distinctive interbed close to the middle of the Pennsylvanian Paradox salt formation (probably the interval between Salt Cycles 10 and 13), and near the top of the Paradox salt. Of the 56 faults identified from the seismic reflection interpretation, 33 trend northwest, west-northwest, or west, and most affect only the deeper part of the stratigraphic section. These faults are part of the deep structural system found throughout the Paradox Basin, including the fold and fault belt in the northeast part of the basin. The faults bound basement Precambrian blocks that experienced minor activity during Mississippian and early Pennsylvanian deposition, and showed major displacement during early Paradox salt deposition as the Paradox Basin subsided. Based on the seismic data, most of these faults appear to have an upward terminus between the top of the Mississippian and the salt interbed reflector.« less
Crustal structure of central Lake Baikal: Insights into intracontinental rifting
ten Brink, Uri S.; Taylor, M.H.
2002-01-01
The Cenozoic rift system of Baikal, located in the interior of the largest continental mass on Earth, is thought to represent a potential analog of the early stage of breakup of supercontinents. We present a detailed P wave velocity structure of the crust and sediments beneath the Central Basin, the deepest basin in the Baikal rift system. The structure is characterized by a Moho depth of 39-42.5 km; an 8-km-thick, laterally continuous high-velocity (7.05-7.4 km/s) lower crust, normal upper mantle velocity (8 km/s), a sedimentary section reaching maximum depths of 9 km, and a gradual increase of sediment velocity with depth. We interpret the high-velocity lower crust to be part of the Siberian Platform that was not thinned or altered significantly during rifting. In comparison to published results from the Siberian Platform, Moho under the basin is elevated by <3 km. On the basis of these results we propose that the basin was formed by upper crustal extension, possibly reactivating structures in an ancient fold-and-thrust belt. The extent and location of upper mantle extension are not revealed by our data, and it may be offset from the rift. We believe that the Baikal rift structure is similar in many respects to the Mesozoic Atlantic rift system, the precursor to the formation of the North Atlantic Ocean. We also propose that the Central Baikal rift evolved by episodic fault propagation and basin enlargement, rather than by two-stage rift evolution as is commonly assumed.
NASA Astrophysics Data System (ADS)
Branellec, Matthieu; Nivière, Bertrand; Callot, Jean-Paul; Ringenbach, Jean-Claude
2015-04-01
The Malargüe fold and thrust belt (MFTB) and the San Rafael Block (SRB) are located in the northern termination of the Neuquén basin in Argentina. This basin is a wide inverted intracratonic sag basin with polyphased evolution controlled at large scale by the dynamic of the Pacific subduction. By late Triassic times, narrow rift basins developed and evolved toward a sag basin from middle Jurassic to late Cretaceous. From that time on, compression at the trench resulted in various shortening pulses in the back-arc area. Here we aim to analyze the Andean system at 35°S by comparing the Miocene structuration in the MFTB and the current deformation along the oriental border or the San Rafael Block. The main structuration stage in the MFTB occurred by Miocene times (15 to 10 Ma) producing the principal uplift of the Andean Cordillera. As shown by new structural cross sections, Triassic-early Jurassic rift border faults localized the Miocene compressive tectonics. Deformation is compartmentalized and does not exhibit a classical propagation of homogeneous deformation sequence expected from the critical taper theory. Several intramontane basins in the hangingwall of the main thrusts progressively disconnected from the foreland. In addition, active tectonics has been described in the front of the MFTB attesting for the on-going compression in this area. 100 km farther to the east, The San Rafael Block, is separated from the MFTB by the Rio Grande basin. The SRB is mostly composed of Paleozoic terranes and Triassic rift-related rocks, overlain by late Miocene synorogenic deposits. The SRB is currently uplifted along its oriental border along several active faults. These faults have clear morphologic signatures in Quaternary alluvial terraces and folded Pleistocene lavas. As in the MFTB, the active deformation localization remains localized by structural inheritance. The Andean system is thus evolving as an atypical orogenic wedge partly by frontal accretion at the front of the belt and by migration and localization of strain far from the front leading to crustal block reactivation.
NASA Astrophysics Data System (ADS)
Gernigon, L.; Broenner, M.; Dumais, M. A.; Gradmann, S.; Grønlie, A.; Nasuti, A.; Roberts, D.
2017-12-01
The tectonic evolution of the former `grey zone' between Russia and Norway has so far remained poorly constrained due to a lack of geophysical data. In 2014, we carried out a new aeromagnetic survey (BASAR-14) in the southern part of the new Norwegian offshore territory. Caledonian and Timanian structures, highlighted by the new potential field data, dominate the basement patterns and have exerted a strong influence on the structure and development of the overlying basins and basement highs. Clearly associated with NW-SE-oriented Timanian trends, the Tiddlybanken Basin represents an atypical sag basin that developed at the southern edge of the Fedynsky High. Regional extension and rapid sedimentation initiated the salt tectonics in the Barents Sea in the Early Triassic. Some of the pillows became diapiric during the Early Triassic and rejuvenated during subsequent Jurassic-Tertiary episodes of regional extension and/or compression. At present, quite a few large diapiric salt domes along the Nordkapp and Tiddlybanken basins are relatively shallow, locally reaching the seabed and thus show a clear bathymetric and magnetic signature. Quantitative modelling along 2D seismic transects was also carried out to constrain the structural and basement composition of the study area. The predominant NE-SW Mesozoic trend of the Nordkapp Basin represents a major crustal hinge zone between the Finnmark Platform, poorly affected by major crustal deformation, and the Bjarmeland Platform where Late Palaeozoic rifting controlled the widespread accumulation of salt deposits in Late Carboniferous-Early Permian time. The entire structure and segmentation of the Nordkapp Basin have been influenced by the inherited basement configuration highlighted by the new aeromagnetic data. Both the Nordkapp and the Tiddlybanken basins appear to lie at the edge of a peculiar thick and rigid crustal feature that coincides with a highly magnetic region. The abrupt termination of the eastern Nordkapp Basin at the edge of this magnetic domain suggests the presence of an old and thick Precambrian continental block. This magnetic and tectonic buffer controlled the Late Palaeozoic-Mesozoic rifting and the salt tectonic development of the southeastern Barents Sea.
NASA Astrophysics Data System (ADS)
Bonnel, C.; Huyghe, D.; Nivière, B.; Messager, G.; Dhont, D.; Fasentieux, B.; Hervouët, Y.; Xavier, J.-P.
2012-04-01
Intramontane basins constitute potential good recorders of orogenic systems deformation history through the documentation of their remnant sedimentary filling and observation of syntectonic growth strata. In this work, we focus on the Neuquén basin, located on the eastern flank of the Andes between 32°S and 41°S latitude. It has been structured since the late Triassic, first as back arc basin and as compressive foreland basin since the upper Cretaceous. Most of the sedimentary filling is composed of Mesozoic sediments, which have been importantly studied because of their hydrocarbon potential. On the contrary, Cenozoic tectonic and sedimentologic evolutions remain poorly documented in regard to the Mesozoic. The structural inheritance is very important and strongly influences the deformation and shortening rates from the North to the South of the basin. Thus, the northern part exhibits a classical configuration from the western high Andes, to younger fold and thrust belts and piggy-back basins to the East. On the contrary, no fold and thrust belt exist in the southern part of the basin and the deformation is restricted to the internal domain. Nevertheless, contemporaneous intramontane basins (the Agua Amarga to the North and the Collon Cura basin to the South) existed in these two parts of the basin and seem to have followed a similar evolution despite of a different structural context. To the North, the partial closing of the Agua Amarga basin by the growth of the Chuihuidos anticlines during the Miocene is characterised by the deposition of a fining upward continental sequence of ~250 m thick, from lacustrine environment at the base to alluvial and fluviatile environments in the upper part of the section. In the Collon Cura, the sedimentary filling, due to the rising of the Piedra del Aguila basement massif, reach at maximum 500 m and consist in fluvial tuffaceous material in the lower part to paleosoils and coarse conglomeratic fluvial deposits in the upper part. To the North, excavation of the Agua Amarga basin happened after regressive erosion on the external flank of the Chuihuidos anticlines and generated the deposition of an alluvial fan of 50 km length and maximum thickness of 140 m. Concerning the South, the paleolandscape conditioned the deposition of a very long (~ 20 km) but very narrow (few tens of kilometres) alluvial fan. The excavation is the consequence of the elevation cessation of the Piedra del Aguila basement.
Geologic structure of shallow maria. [topography of lunar maria
NASA Technical Reports Server (NTRS)
Dehon, R. A.; Waskom, J. A.
1975-01-01
Isopach maps and structural contour maps of the eastern mare basins (30 deg N to 30 deg S; 0 deg to 100 deg E), constructed from measurements of partially buried craters, are presented and discussed. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of basalt in the irregular maria is between 200 and 400 m. Correlations between surface topography, basalt thickness, and basin floor structure are apparent in most of the basins that were studied. The mare surface is commonly depressed in regions of thick mare basalts; mare ridges are typically located in regions of pronounced thickness changes; and arcuate mare rilles are confined to thin mare basalts. Most surface structures are attributed to shallow stresses developed within the mare basalts during consolidation and volume reduction.
NASA Astrophysics Data System (ADS)
Head, James; Smith, David; Zuber, Maria; Neumann, Gregory; Fassett, Caleb; Whitten, Jennifer; Garrick-Bethell, Ian
2010-05-01
The 920 km diameter Orientale basin is the youngest and most well-preserved large multi-ringed impact basin on the Moon; it has not been significantly filled with mare basalts, as have other lunar impact basins, and thus the basin interior deposits and ring structures are very well-exposed and provide major insight into the formation and evolution of planetary multi-ringed impact basins. We report here on the acquisition of new altimetry data for the Orientale basin from the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter. Pre-basin structure had a major effect on the formation of Orientale; we have mapped dozens of impact craters underlying both the Orientale ejecta (Hevelius Formation-HF) and the unit between the basin rim (Cordillera ring-CR) and the Outer Rook ring (OR) (known as the Montes Rook Formation-MRF), ranging up in size to the 630 km diameter Mendel-Rydberg basin just to the south of Orientale; this crater-basin topography has influenced the topographic development of the basin rim (CR), sometimes causing the basin rim to lie at a topographically lower level than the inner basin rings (OR and Inner Rook-IR). In contrast to some previous interpretations, the distribution of these features supports the interpretation that the OR ring is the closest approximation to the basin excavation cavity. The total basin interior topography is highly variable and typically ranges ~6-7 km below the surrounding pre-basin surface, with significant variations in different quadrants. The inner basin depression is about 2-4 km deep below the IR plateau. These data aid in the understanding of the transition from peak-ring to multi-ringed basins and permit the quantitative assessment of post-basin-formation thermal response to impact energy input and uplifted isotherms. The Maunder Formation (MF) consists of smooth plains (on the inner basin depression walls and floor) and corrugated deposits (on the IR plateau); also observed are depressions interpreted to be due to local drainage, and cracks related to cooling and solidification. This configuration supports the interpretation that the MF consists of different facies of impact melt. The location of vents, the altimetric distribution, and the slopes of mare basalts of different ages permit an assessment of basin controls on mare basalt emplacement. The inner depression is floored by tilted mare basalt deposits surrounding a central pre-mare high of several hundred meters elevation and deformed by wrinkle ridges with similar topographic heights; these data permit the assessment of basin loading by mare basalts and ongoing basin thermal evolution. LOLA data for the Orientale basin thus provide new insight into models of multi-ring basin formation, important information on their early thermal evolution, and new data on the initial stages of mare basalt flooding of multi-ringed basins.
Paul F. Hessburg; Bradley G. Smith; Scott D. Kreiter; Craig A. Miller; Cecilia H. McNicoll; Michele. Wasienko-Holland
2000-01-01
In the interior Columbia River basin midscale ecological assessment, we mapped and characterized historical and current vegetation composition and structure of 337 randomly sampled subwatersheds (9500 ha average size) in 43 subbasins (404 000 ha average size). We compared landscape patterns, vegetation structure and composition, and landscape vulnerability to wildfires...
Variation in multiring basic structures as a function of impact angle
NASA Technical Reports Server (NTRS)
Wichman, R. W.; Schultz, P. H.
1992-01-01
Previous studies have demonstrated that the impact process in the laboratory varies as a function of impact angle. This variation is attributed to changes in energy partitioning and projectile failure during the impact and, in simple craters, produces a sequence of progressively smaller and more asymmetric crater forms as impact angle decreases from approximately 20 degrees. Variations in impact angle can produce differences in the appearance of multiring impact basins. Comparisons of Orientale to the more oblique impact structure at Crisium also suggests that these differences primarily reflect the degree of cavity collapse. The relative changes in massif ring topography, basin scarp relief, and the distribution of peripheral mare units are consistent with a reduction in degree of cavity collapse with decreasing impact angle. The prominent uprange basin scarps and the restriction of tectonically derived peripheral mare units along uprange ring structures also may indicate an uprange enhancement of failure during cavity collapse. Finally, although basin ring faults appear to be preferred pathways for mare volcanism, fault-controlled peripheral mare volcanism occurs most readily uprange of an oblique impact; elsewhere such volcanism apparently requires superposition of an impact structure on the ring fault.
NASA Astrophysics Data System (ADS)
Gutscher, M. A.; Dellong, D.; Klingelhoefer, F.; Kopp, H.; Graindorge, D.; Margheriti, L.; Moretti, M.
2017-12-01
In the Ionian Sea (Central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust and lithosphere of the subducting plate remain debated and could represent the last remnants of the Neo-Tethys ocean. The rifting mechanism that produced the Ionian basin are also still under discussion with the Malta escarpment representing a possible remnant of this opening. At present, this subduction is still retreating to the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian Basin. In order to accommodate slab roll-back, a major lateral slab tear fault is required. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the Eastern-Sicily margin and the Malta Escarpment by presenting two wide-angle velocity profiles crossing these structures roughly orthogonally. The data used for the forward velocity modeling were acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened in between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.
Late Cenozoic structure and stratigraphy of south-central Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reidel, S.P.; Campbell, N.P.; Fecht, K.R.
1993-09-01
The structural framework of the Columbia Basin began developing before Columbia River Basalt Group (CRBG) volcanism. Prior to 17.5 Ma, the eastern part of the basin was a relatively stable area, with a basement of Paleozoic and older crystalline rock. The western part was an area of subsidence in which large volumes of sediment and volcanic rocks accumulated. Concurrent with eruption of the CRBG, anticlinal ridges of the Yakima Fold Belt (YFB) were growing under north-south compression. Topographic expression of these features was later masked by the large volume of CRBG basalt flowing west from fissures in the eastern Columbiamore » Basin. The folds continued to develop after cessation of volcanism, leading to as much as 1,000 m of structural relief in the past 10 million years. Post-CRBG evolution of the Columbia Basin is recorded principally in folding and faulting in the YFB and sediments deposited in the basins. The accompanying tectonism resulted in lateral migration of major depositional systems into subsiding structural lows. Although known late Cenozoic faults are on anticlinal ridges, earthquake focal mechanisms and contemporary strain measurements indicate most stress release is occurring in the synclinal areas under north-south compression. There is no obvious correlation between focal mechanisms for earthquakes whose foci are in the CRBG and the location of known faults. High in situ stress values help to explain the occurrence of microseismicity in the Columbia Basin but not the pattern. Microseismicity appears to occur in unaltered fresh basalt. Faulted basalt associated with the YFB is highly brecciated and commonly altered to clay. The high stress, abundance of ground water in confined aquifers of the CRBG, and altered basalt in fault zones suggest that the frontal faults on the anticlinal ridges probably have some aseismic deformation. 85 refs.« less
NASA Astrophysics Data System (ADS)
Hoprich, M.; Decker, K.; Grasemann, B.; Sokoutis, D.; Willingshofer, E.
2009-04-01
Former analog modeling on pull-apart basins dealt with different sidestep geometries, the symmetry and ratio between velocities of moving blocks, the ratio between ductile base and model thickness, the ratio between fault stepover and model thickness and their influence on basin evolution. In all these models the pull-apart basin is deformed over an even detachment. The Vienna basin, however, is considered a classical thin-skinned pull-apart with a rather peculiar basement structure. Deformation and basin evolution are believed to be limited to the brittle upper crust above the Alpine-Carpathian floor thrust. The latter is not a planar detachment surface, but has a ramp-shaped topography draping the underlying former passive continental margin. In order to estimate the effects of this special geometry, nine experiments were accomplished and the resulting structures were compared with the Vienna basin. The key parameters for the models (fault and basin geometry, detachment depth and topography) were inferred from a 3D GoCad model of the natural Vienna basin, which was compiled from seismic, wells and geological cross sections. The experiments were scaled 1:100.000 ("Ramberg-scaling" for brittle rheology) and built of quartz sand (300 µm grain size). An average depth of 6 km (6 cm) was calculated for the basal detachment, distances between the bounding strike-slip faults of 40 km (40 cm) and a finite length of the natural basin of 200 km were estimated (initial model length: 100 cm). The following parameters were changed through the experimental process: (1) syntectonic sedimentation; (2) the stepover angle between bounding strike slip faults and basal velocity discontinuity; (3) moving of one or both fault blocks (producing an asymmetrical or symmetrical basin); (4) inclination of the basal detachment surface by 5°; (6) installation of 2 and 3 ramp systems at the detachment; (7) simulation of a ductile detachment through a 0.4 cm thick PDMS layer at the basin floor. The surface of the model was photographed after each deformation increment through the experiment. Pictures of serial cross sections cut through the models in their final state every 4 cm were also taken and interpreted. The formation of en-echelon normal faults with relay ramps is observed in all models. These faults are arranged in an acute angle to the basin borders, according to a Riedel-geometry. In the case of an asymmetric basin they emerge within the non-moving fault block. Substantial differences between the models are the number, the distance and the angle of these Riedel faults, the length of the bounding strike-slip faults and the cross basin symmetry. A flat detachment produces straight fault traces, whereas inclined detachments (or inclined ramps) lead to "bending" of the normal faults, rollover and growth strata thickening towards the faults. Positions and the sizes of depocenters also vary, with depocenters preferably developing above ramp-flat-transitions. Depocenter thicknesses increase with ramp heights. A similar relation apparently exists in the natural Vienna basin, which shows ramp-like structures in the detachment just underneath large faults like the Steinberg normal fault and the associated depocenters. The 3-ramp-model also reveals segmentation of the basin above the lowermost ramp. The evolving structure is comparable to the Wiener Neustadt sub-basin in the southern part of the Vienna basin, which is underlain by a topographical high of the detachment. Cross sections through the ductile model show a strong disintergration into a horst-and-graben basin. The thin silicon putty base influences the overlying strata in a way that the basin - unlike the "dry" sand models - becomes very flat and shallow. The top view shows an irregular basin shape and no rhombohedral geometry, which characterises the Vienna basin. The ductile base also leads to a symmetrical distribution of deformation on both fault blocks, even though only one fault block is moved. The stepover angle, the influence of gravitation in a ramp or inclined system and the strain accomodation by a viscous silicone layer can be summarized as factors controlling the characteristics of the models.
NASA Astrophysics Data System (ADS)
Suzuki, T.; Kawamura, K.; Ogawa, Y.; Flemings, P. B.; Behrmann, J. H.; John, C. M.; Hirano, N.; Abe, N.
2005-12-01
We collected three m-long piston cores of mud during the Kairei cruise (KR04-08 and KR05-10) of Japan Marine Science and Technology Center in 2004 and 2005 from the NW Pacific between Honshu and Shatsky Rise; aside the Fukahori Knoll and Yukawa Knoll. Another set of mud cores, 234.5 m long, was collected during the JOIDES Resolution cruise (IODP Exp308, site U1322) in 2005 from the Ursa Basin located at the eastern levee of the Mississippi Canyon, northeastern Gulf of Mexico of about 1000 m depth. Our study purpose is to know the flow direction by mud particle arrangement by thin section and scanning electron microscope (SEM) and anisotropy of magnetic susceptibility (AMS) data. The data from the NW Pacific indicate weak preferred orientation from SW to NE, suggesting weak bottom current. This is supported by erosional moat to NE direction around the Fukahori Knoll. In the Gulf of Mexico we can know the flow directions of river plumes, turbidity currents, etc., and we can know whether the flows come from the main entry point in the basin or they are derived from the others of the basin. The other basic features of the core sediments are lithology, sedimentary structures, and porosity, together with paleocurrent analysis.
Deep water characteristics and circulation in the South China Sea
NASA Astrophysics Data System (ADS)
Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin
2018-04-01
This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.
NASA Astrophysics Data System (ADS)
Zakharova, Natalia V.
In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable basalt in flow interiors. Other large igneous provinces and ocean floor basalts could accommodate centuries' worth of world's CO2 emissions. Low-volume basaltic flows and fractured intrusives may potentially serve as smaller-scale CO2 storage targets. However, as illustrated by the example of the Palisade sill in the Newark basin, even densely fractured intrusive basalts are often impermeable, and instead may serve as caprock for underlying formations. Hydraulic properties of fractured formations are very site-specific, but observations and theory suggest that the majority of fractures at depth remain closed. Hydraulic tests in the northern Newark basin indicate that fractures introduce strong anisotropy and heterogeneity to the formation properties, and very few of them augment hydraulic conductivity of these fractured formations. Overall, they are unlikely to provide enough storage capacity for safe CO 2 injection at large scales, but can be suitable for small-scale controlled experiments and pilot injection tests. The risk of inducing earthquakes by underground injection has emerged as one of the primary concerns for large-scale carbon sequestration, especially in fractured and moderately permeable formations. Analysis of in situ stress and distribution of fractures in the subsurface are important steps for evaluating the risks of induced seismicity. Preliminary results from the Newark basin suggest that local stress perturbation may potentially create favorable stress conditions for CO2 sequestration by allowing a considerable pore pressure increase without carrying large risks of fault reactivation. Additional in situ stress data are needed, however, to accurately constrain the magnitude of the minimum horizontal stress, and it is recommended that such tests be conducted at all potential CO 2 storage sites.
Dechesne, Marieke; Cole, James Channing; Trexler, James H.; Cashman, Patricia; Peterson, Christopher D
2013-01-01
The Paleogene sedimentary deposits of the Colorado Headwaters Basin provide a detailed proxy record of regional deformation and basin subsidence during the Laramide orogeny in north-central Colorado and southern Wyoming. This field trip presents extensive evidence from sedimentology, stratigraphy, structure, palynology, and isotope geochronology that shows a complex history that is markedly different from other Laramide synorogenic basins in the vicinity.We show that the basin area was deformed by faulting and folding before, during, and after deposition of the Paleogene rocks. Internal unconformities have been identified that further reflect the interaction of deformation, subsidence, and sedimentation. Uplift of Proterozoic basement blocks that make up the surrounding mountain ranges today occurred late in basin history. Evidence is given to reinterpret the Independence Mountain uplift as the result of significant normal faulting (not thrusting), probably in middle Tertiary time.While the Denver and Cheyenne Basins to the east were subsiding and accumulating sediment during Late Cretaceous time, the Colorado Headwaters Basin region was experiencing vertical uplift and erosion. At least 1200 m of the upper part of the marine Upper Cretaceous Pierre Shale was regionally removed, along with Fox Hills Sandstone shoreline deposits of the receding Interior Seaway as well as any Laramie Formation–type continental deposits. Subsidence did not begin in the Colorado Headwaters Basin until after 60.5 Ma, when coarse, chaotic, debris-flow deposits of the Paleocene Windy Gap Volcanic Member of the Middle Park Formation began to accumulate along the southern basin margin. These volcaniclastic conglomerate deposits were derived from local, mafic-alkalic volcanic sources (and transitory deposits in the drainage basin), and were rapidly transported into a deep lake system by sediment gravity currents. The southern part of the basin subsided rapidly (roughly 750–1000 m/m.y.) and the drainage system delivered increasing proportions of arkosic debris from uplifted Proterozoic basement and more intermediate-composition volcanic-porphyry materials from central Colorado sources.Other margins of the Colorado Headwaters Basin subsided at slightly different times. Subsidence was preceded by variable amounts of gentle tilting and localized block-fault uplifts. The north-central part of the basin that was least-eroded in early Paleocene time was structurally inverted and became the locus of greatest subsidence during later Paleocene-Eocene time. Middle Paleocene coal-mires formed in the topographically lowest eastern part of the basin, but the basin center migrated to the western side by Eocene time when coal was deposited in the Coalmont district. In between, persistent lakes of variable depths characterized the central basin area, as evidenced by well-preserved deltaic facies.Fault-fold deformation within the Colorado Headwaters Basin strongly affected the Paleocene fluvial-lacustrine deposits, as reflected in the steep limbs of anticline-syncline pairs within the McCallum fold belt and the steep margins of the Breccia Spoon syncline. Slivers of Proterozoic basement rock were also elevated on steep reverse faults in late Paleocene time along the Delaney Butte–Sheep Mountain–Boettcher Ridge structure. Eocene deposits, by and large, are only gently folded within the Colorado Headwaters Basin and thus reflect a change in deformation history.The Paleogene deposits of the Colorado Headwaters Basin today represent only a fragment of the original extent of the depositional basin. Basal, coarse conglomerate deposits that suggest proximity to an active basin margin are relatively rare and are limited to the southern and northwestern margins of the relict basin. The northeastern margin of the preserved Paleogene section is conspicuously fine-grained, which indicates that any contemporaneous marginal uplift was far removed from the current extent of preserved fluvial-lacustrine sediments. The conspicuous basement uplifts of Proterozoic rock that flank the current relict Paleogene basin deposits are largely post-middle Eocene in age and are not associated with any Laramide synuplift fluvial deposits.The east-west–trending Independence Mountain fault system that truncates the Colorado Headwaters Basin on the north with an uplifted Proterozoic basement block is reinterpreted in this report. Numerous prior analyses had concluded that the fault was a low-angle, south-directed Laramide thrust that overlapped the northern margin of the basin. We conclude instead that the fault is more likely a Neogene normal fault that truncates all prior structure and belongs to a family of sub-parallel west-northwest–trending normal faults that offset upper Oligocene-Miocene fluvial deposits of the Browns Park–North Park Formations.
NASA Astrophysics Data System (ADS)
Mascarenhas, A.
2001-11-01
The entrance to the Gulf of California, the only evaporative basin on the Pacific, is wide (200 km) and deep (>2.5 km), allowing free exchanges of waters with the Pacific Ocean. Although being comparable to the Mediterranean and Red Seas with respect to evaporation rate (0.61 m/year), the gulf differs from these seas because it actually gains heat at an annual rate of 60 W/m^2. These water loss and heat gain result in modification of water properties, creation of unique water masses, and strong exchanges with the Pacific Ocean. Here the results of the analysis of a recent set of observations is discussed from the point of view of exchange of thermohaline properties and the fluxes of heat, salt and volume. The thermohaline structure at the entrance to the Gulf suggested a thermal (saline) gradient toward Sinaloa (Baja California) shelf. This structure is associated to a cyclonic gyre that is not well defined in the upper layer due to the influence of the wind field. The computed heat flux display an annual cycle with maximum outflow (inflow) during November (May). The salt outflow maximum occurs when the Gulf of California Water is most predominant in the entrance (winter and spring). The volume fluxes appear to have a semiannual signal.
Seismic Investigations of an Accommodation zone in the Northern Rio Grande Rift, New Mexico, USA
NASA Astrophysics Data System (ADS)
Baldridge, W. S.; Valdes, J.; Nedorub, O.; Phrampus, B.; Braile, L. W.; Ferguson, J. F.; Benage, M. C.; Litherland, M.
2010-12-01
Seismic reflection and refraction data acquired in the Rio Grande rift near Santa Fe, New Mexico, in 2009 and 2010 by the SAGE (Summer of Applied Geophysical Experience) program imaged the La Bajada fault (LBF) and strata offset across the associated, perpendicular Budagher fault (BF). The LBF is a major basin-bounding normal fault, offset down to the west; the smaller BF is an extensional fault that breaks the hanging wall ramp of the LBF. We chose this area because it is in a structurally complex region of the rift, comprising a small sub-basin and plunging relay ramps, where north-trending, en echelon basin-bounding faults (including the LBF) transfer crustal extension laterally between the larger Española (to north) and Albuquerque rift basins. Our data help determine the precise location and geometry of the poorly exposed LBF, which, near the survey location, offsets the rift margin vertically about 3,000 m. When integrated with industry reflection data and other SAGE seismic, gravity, and magnetotelluric surveys, we are able to map differences in offset and extension laterally (especially southward) along the fault. We interpret only about 200 m of normal offset across the BF. Our continuing work helps define multiple structural elements, partly buried by syn-rift basin-filling sedimentary rocks, of a complex intra-rift accommodation zone. We are also able to discriminate pre-Eocene (Laramide) from post-Miocene (rift) structures. Our data help determine the amount of vertical offset of pre-rift strata across structural elements of the accommodation zone, and depth and geometry of basin fill. A goal is to infer the kinematic development of this margin of the rift, linkages among faults, growth history, and possible pre-rift structural controls. This information will be potentially useful for evaluation of resources, including oil and/or gas in pre-rift strata and ground water in Late Miocene to Holocene rift-filling units.
Seismic shaking scenarios in realistic 3D crustal model of Northern Italy
NASA Astrophysics Data System (ADS)
Molinari, I.; Morelli, A.; Basini, P.; Berbellini, A.
2013-12-01
Simulation of seismic wave propagation in realistic crustal structures is a fundamental tool to evaluate earthquake-generated ground shaking and assess seismic hazard. Current-generation numerical codes, and modern HPC infrastructures, allow for realistic simulations in complex 3D geologic structures. We apply such methodology to the Po Plain in Northern Italy -- a region with relatively rare earthquakes but having large property and industrial exposure, as it became clear during the two M~6 events of May 20-29, 2012. Historical seismicity is well known in this region, with maximum magnitudes estimates reaching M~7, and wave field amplitudes may be significantly amplified by the presence of the very thick sedimentary basin. Our goal is to produce estimates of expected ground shaking in Northern Italy through detailed deterministic simulations of ground motion due to expected earthquakes. We defined a three-dimensional model of the earth's crust using geo-statistical tools to merge the abundant information existing in the form of borehole data and seismic reflection profiles that had been shot in the '70s and the '80s for hydrocarbon exploration. Such information, that has been used by geologists to infer the deep structural setup, had never been merged to build a 3D model to be used for seismological simulations. We implement the model in SPECFEM3D_Cartesian and a hexahedral mesh with elements of ~2km, that allows us to simulate waves with minimum period of ~2 seconds. The model has then been optimized through comparison between simulated and recorded seismograms for the ~20 moderate-magnitude events (Mw > 4.5) that have been instrumentally recorded in the last 15 years. Realistic simulations in the frequency band of most common engineering relevance -- say, ~1 Hz -- at such a large scale would require an extremely detailed structural model, currently not available, and prohibitive computational resources. However, an interest is growing in longer period ground motion -- that impacts on the seismic response of taller structures (Cauzzi and Faccioli, 2008) -- and it is not unusual to consider the wave field up to 20s. In such period range, our Po Plain structural model has shown to be able to reproduce well basin resonance and amplification effects at stations boarding the sedimentary plain. We then simulate seismic shaking scenarios for possible sources tied to devastating historical earthquakes that are known to have occurred in the region --- such as the M~6 event that hit Modena in 1501; and the Verona, M~6.7 in 1117, quake that caused well-documented strong effects in an unusually wide area with radius of hundreds of kilometers. We explore different source geometries and rupture histories for each earthquake. We mainly focus our attention on the synthesis of the prominent surface waves that are highly amplified in deep sedimentary basin structures (e.g., Smerzini et al, 2011; Koketsu and Miyage, 2008). Such simulations hold high relevance because of the large local property exposure, due to extensive industrial and touristic infrastructure. We show that deterministic ground motion calculation can indeed provide information to be actively used to mitigate the effects of desctructive earthquakes on critical infrastructures.
Laursen, J.; Normark, W.R.
2003-01-01
The Valparaiso Basin constitutes a unique and prominent deep-water forearc basin underlying a 40-km by 60-km mid-slope terrace at 2.5-km water depth on the central Chile margin. Seismic-reflection data, collected as part of the CONDOR investigation, image a 3-3.5-km thick sediment succession that fills a smoothly sagged, margin-parallel, elongated trough at the base of the upper slope. In response to underthrusting of the Juan Ferna??ndez Ridge on the Nazca plate, the basin fill is increasingly deformed in the seaward direction above seaward-vergent outer forearc compressional highs. Syn-depositional growth of a large, margin-parallel monoclinal high in conjunction with sagging of the inner trough of the basin created stratal geometries similar to those observed in forearc basins bordered by large accretionary prisms. Margin-parallel compressional ridges diverted turbidity currents along the basin axis and exerted a direct control on sediment depositional processes. As structural depressions became buried, transverse input from point sources on the adjacent upper slope formed complex fan systems with sediment waves characterising the overbank environment, common on many Pleistocene turbidite systems. Mass failure as a result of local topographic inversion formed a prominent mass-flow deposit, and ultimately resulted in canyon formation and hence a new focused point source feeding the basin. The Valparaiso Basin is presently filled to the spill point of the outer forearc highs, causing headward erosion of incipient canyons into the basin fill and allowing bypass of sediment to the Chile Trench. Age estimates that are constrained by subduction-related syn-depositional deformation of the upper 700-800m of the basin fill suggest that glacio-eustatic sea-level lowstands, in conjunction with accelerated denudation rates, within the past 350 ka may have contributed to the increase in simultaneously active point sources along the upper slope as well as an increased complexity of proximal depositional facies.
NASA Astrophysics Data System (ADS)
Head, J. W.; Smith, D. E.; Zuber, M. T.; Neumann, G. A.; Fassett, C.; Mazarico, E.; Torrence, M. H.; Dickson, J.
2009-12-01
The 920 km diameter Orientale basin is the youngest and most well-preserved large multi-ringed impact basin on the Moon; it has not been significantly filled with mare basalts, as have other lunar impact basins, and thus the basin interior deposits and ring structures are very well-exposed and provide major insight into the formation and evolution of planetary multi-ringed impact basins. We report here on the acquisition of new altimetry data for the Orientale basin from the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter. Pre-basin structure had a major effect on the formation of Orientale; we have mapped dozens of impact craters underlying both the Orientale ejecta (Hevelius Formation-HF) and the unit between the basin rim (Cordillera ring-CR) and the Outer Rook ring (OR) (known as the Montes Rook Formation-MRF), ranging up in size to the Mendel-Rydberg basin just to the south of Orientale; this crater-basin topography has influenced the topographic development of the basin rim (CR), sometimes causing the basin rim to lie at a topographically lower level than the inner basin rings (OR and Inner Rook-IR). In contrast to some previous interpretations, the distribution of these features supports the interpretation that the OR ring is the closest approximation to the basin excavation cavity. The total basin interior topography is highly variable and typically ranges ~6-7 km below the surrounding pre-basin surface, with significant variations in different quadrants. The inner basin depression is about 2-4 km deep below the IR plateau and these data permit the quantitative assessment of post-basin-formation thermal response to impact energy input and uplifted isotherms. The Maunder Formation (MF) consists of smooth plains (on the inner basin depression walls and floor) and corrugated deposits (on the IR plateau); this topographic configuration supports the interpretation that the MF consists of different facies of impact melt. The inner depression is floored by tilted mare basalt deposits surrounding a central pre-mare high of several hundred meters elevation and the mare is deformed by wrinkle ridges with similar topographic heights; these data permit the assessment of basin loading by mare basalts and ongoing basin thermal evolution. The depth of the 55 km diameter post-Orientale Maunder crater, located at the edge of the inner depression, is in excess of 3 km; this depth permits the quantitative assessment of the nature of the deeper sub-Orientale material sampled by the crater. New LOLA data show that the pre-Orientale Mendel-Rydberg basin just to the south may be larger, younger, fresher, and more comparable in size to Orientale than previously suspected.
Water resources of the Bighorn basin, northwestern Wyoming
Lowry, Marlin E.; Lowham, H.W.; Lines, Gregory C.
1976-01-01
This 2-sheet map report includes the part of the Bighorn Basin and adjacent mountains in northwestern Wyoming. Water-bearing properties of the geologic units are summarized. The hydrogeologic map illustrates the distribution of wells in the different units and gives basic data on the yields of wells, depth of wells, depth to water, and dissolved solids and conductance of the water. Aquifers capable of yielding more than 1,000 gpm (gallons per minute) underlie the area everywhere, except in the mountains on the periphery of the basin. In 1970, approximately 29,500 of the 40,475 people living in the Bighorn Basin were served by municipal water supplies. The municipal supply for about 6,300 of these people was from ground water. The natural flows of streams in the Bighorn Basin differ greatly due to a wide range in the meteorologic, topographic, and geologic conditions of the basin. The station locations and the average discharge per square mile are shown on the map and give an indication of the geographic variation of basin yields. The maximum instantaneous discharge that has occurred at each station during its period of record is shown. Most of the runoff in the basin is from snowmelt in the mountains. (Woodard-USGS)
Basement Structure and Styles of Active Tectonic Deformation in Central Interior Alaska
NASA Astrophysics Data System (ADS)
Dixit, N.; Hanks, C.
2017-12-01
Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Based on increasing seismological evidence, intraplate seismicity in the region does not appear to be uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Recent seismological and neotectonics data further suggests that these seismic zones operate within a field of predominantly pure shear driven primarily by north-south crustal shortening. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on intraplate earthquakes and the heterogeneous nature of Alaska's continental interior remain poorly understood. We investigated the current crustal architecture and styles of tectonic deformation of the Nenana and Tanana basins using existing geological, geophysical and geochronological datasets. The results of our study demonstrate that the basements of the basins show strong crustal heterogeneity. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. Northeast-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry; it is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of tectonic deformation in central Interior Alaska at present, and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.
NASA Astrophysics Data System (ADS)
Gouiza, Mohamed; Hall, Jeremy; Welford, J. Kim
2017-04-01
The Orphan Basin is located in the deep offshore of the Newfoundland margin, and it is bounded by the continental shelf to the west, the Grand Banks to the south, and the continental blocks of Orphan Knoll and Flemish Cap to the east. The Orphan Basin formed in Mesozoic time during the opening of the North Atlantic Ocean between eastern Canada and western Iberia-Europe. This work, based on well data and regional seismic reflection profiles across the basin, indicates that the continental crust was affected by several extensional episodes between the Jurassic and the Early Cretaceous, separated by events of uplift and erosion. The preserved tectono-stratigraphic sequences in the basin reveal that deformation initiated in the eastern part of the Orphan Basin in the Jurassic and spread towards the west in the Early Cretaceous, resulting in numerous rift structures filled with a Jurassic-Lower Cretaceous syn-rift succession and overlain by thick Upper Cretaceous to Cenozoic post-rift sediments. The seismic data show an extremely thinned crust (4-16 km thick) underneath the eastern and western parts of the Orphan Basin, forming two sub-basins separated by a wide structural high with a relatively thick crust (17 km thick). Quantifying the crustal architecture in the basin highlights the large discrepancy between brittle extension localized in the upper crust and the overall crustal thinning. This suggests that continental deformation in the Orphan Basin involved, in addition to the documented Jurassic and Early Cretaceous rifting, an earlier brittle rift phase which is unidentifiable in seismic data and a depth-dependent thinning of the crust driven by localized lower crust ductile flow.
Regional geologic framework and petroleum occurrences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, E.J.; Jewell, G.A.
1993-02-01
The Falcon Basin developed during the late Eocene as a result of dextral strike slip movement along the Caribbean-South American plate boundary. During the Oligocene and early Miocene as much as 16,000 ft. of sediment, predominantly sandstones and shales, accumulated within the east-west trending pull-apart basin. Localized carbonate buildups were also developing in association with the Paraguana and Dabajuro Platforms. During the middle to late Miocene, uplift of the now emergent Central Falcon Basin Anticlinorium resulted in the northward progradation of delta systems. Sandstones associated with these deltas now make up the producing reservoirs within the basin. The complex presentmore » day structural configuration is the result of continued movement along the Caribbean-South American plate boundary. Landsat imagery and field mapping indicate a basin dominated by northeast trending folds and thrust faults and fracture patterns commonly associated with dextral strike-slip movement. Commercial production is currently limited to the Tiguaje and Cumarebo areas. The former occurs as four small fields ([plus minus]52 MMBO) related to structures developed by dextral movement along the Oca fault. The latter Cumarebo Field ([plus minus]60 MMBO) is a thrusted anticline on the northern flank of the Falcon foldbelt. The tectonic complexity and sandstone-dominated nature of the onshore Falcon Basin severely limit potential field size. Significant, yet currently undeveloped, reserves have also been discovered offshore in the Gulf of La Vela. Fractured granite, carbonates and sandstones associated with tilted fault block structures have tested hydrocarbons in several wells.« less