Sample records for basins hazard analysis

  1. K Basin Hazard Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PECH, S.H.

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  2. Accident analysis and control options in support of the sludge water system safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEY, B.E.

    A hazards analysis was initiated for the SWS in July 2001 (SNF-8626, K Basin Sludge and Water System Preliminary Hazard Analysis) and updated in December 2001 (SNF-10020 Rev. 0, Hazard Evaluation for KE Sludge and Water System - Project A16) based on conceptual design information for the Sludge Retrieval System (SRS) and 60% design information for the cask and container. SNF-10020 was again revised in September 2002 to incorporate new hazards identified from final design information and from a What-if/Checklist evaluation of operational steps. The process hazards, controls, and qualitative consequence and frequency estimates taken from these efforts have beenmore » incorporated into Revision 5 of HNF-3960, K Basins Hazards Analysis. The hazards identification process documented in the above referenced reports utilized standard industrial safety techniques (AIChE 1992, Guidelines for Hazard Evaluation Procedures) to systematically guide several interdisciplinary teams through the system using a pre-established set of process parameters (e.g., flow, temperature, pressure) and guide words (e.g., high, low, more, less). The teams generally included representation from the U.S. Department of Energy (DOE), K Basins Nuclear Safety, T Plant Nuclear Safety, K Basin Industrial Safety, fire protection, project engineering, operations, and facility engineering.« less

  3. Tracking Hazard Analysis Data in a Jungle of Changing Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Robin S.; Young, Jonathan

    2006-05-14

    The biggest fear of the hazard analyst is the loss of data in the middle of the design jungle. When project schedules are demanding and design is changing rapidly it is essential that the hazard analysis data be tracked and kept current in order to provide the required project design, development, and regulatory support. Being able to identify the current information, as well as the past archived information, as the design progresses and to be able to show how the project is designing in safety through modifications based on hazard analysis results is imperative. At the DOE Hanford site inmore » Washington State, Flour Hanford Inc is in the process of the removal and disposition of sludge from the 100 Area K Basins. The K Basins were used to store spent fuel from the operating reactors at the Hanford Site. The sludge is a by-product from the corrosion of the fuel and fuel storage canisters. The sludge removal project has been very dynamic involving the design, procurement and, more recently, the operation of processes at two basins, K East and K West. The project has an ambitious schedule with a large number of changes to design concepts. In order to support the complex K Basins project a technique to track the status of the hazard analysis data was developed. This paper will identify the most important elements of the tracking system and how it was used to assist the project in ensuring that current design data was reflected in a specific version of the hazard analysis and to show how the project was keeping up with the design and ensuring compliance with the requirements to design in safety. While the specifics of the data tracking strategy for the K Basins sludge removal project will be described in the paper, the general concepts of the strategy are applicable to similar projects requiring iteration of hazard analysis and design.« less

  4. A test of various site-effect parameterizations in probabilistic seismic hazard analyses of southern California

    USGS Publications Warehouse

    Field, E.H.; Petersen, M.D.

    2000-01-01

    We evaluate the implications of several attenuation relationships, including three customized for southern California, in terms of accounting for site effects in probabilistic seismic hazard studies. The analysis is carried out at 43 sites along a profile spanning the Los Angeles basin with respect to peak acceleration, and 0.3-, 1.0-, and 3.0-sec response spectral acceleration values that have a 10% chance of being exceeded in 50 years. The variability among currently viable attenuation relationships (espistemic uncertainty) is an approximate factor of 2. Biases between several commonly used attenuation relationships and southern California strong-motion data imply hazard differences that exceed 10%. However, correcting each relationship for the southern California bias does not necessarily bring hazard estimates into better agreement. A detailed subclassification of site types (beyond rock versus soil) is found to be both justified by data and to make important distinctions in terms of hazard levels. A basin depth effect is also shown to be important, implying a difference of up to a factor of 2 in ground motion between the deepest and shallowest parts of the Los Angeles basin. In fact, for peak acceleration, the basin-depth effect is even more influential than the surface site condition. Questions remain, however, whether basin depth is a proxy for some other site attribute such as distance from the basin edge. The reduction in prediction error (sigma) produced by applying detailed site and/or basin-depth corrections does not have an important influence on the hazard. In fact, the sigma reduction is less than epistemic uncertainties on sigma itself. Due to data limitations, it is impossible to determine which attenuation relationship is best. However, our results do indicate which site conditions seem most influential. This information should prove useful to those developing or updating attenuation relationships and to those attempting to make more refined estimates of hazard in the near future.

  5. Appalachian Play Fairway Analysis Seismic Hazards Supporting Data

    DOE Data Explorer

    Frank Horowitz

    2016-07-20

    These are the data used in estimating the seismic hazards (both natural and induced) for candidate direct use geothermal locations in the Appalachian Basin Play Fairway Analysis by Jordan et al. (2015). xMin,yMin -83.1407,36.7461 : xMax,yMax -71.5175,45.1729

  6. Assessment of macroseismic intensity in the Nile basin, Egypt

    NASA Astrophysics Data System (ADS)

    Fergany, Elsayed

    2018-01-01

    This work intends to assess deterministic seismic hazard and risk analysis in terms of the maximum expected intensity map of the Egyptian Nile basin sector. Seismic source zone model of Egypt was delineated based on updated compatible earthquake catalog in 2015, focal mechanisms, and the common tectonic elements. Four effective seismic source zones were identified along the Nile basin. The observed macroseismic intensity data along the basin was used to develop intensity prediction equation defined in terms of moment magnitude. Expected maximum intensity map was proven based on the developed intensity prediction equation, identified effective seismic source zones, and maximum expected magnitude for each zone along the basin. The earthquake hazard and risk analysis was discussed and analyzed in view of the maximum expected moment magnitude and the maximum expected intensity values for each effective source zone. Moderate expected magnitudes are expected to put high risk at Cairo and Aswan regions. The results of this study could be a recommendation for the planners in charge to mitigate the seismic risk at these strategic zones of Egypt.

  7. Environmental Planning in Jonah's Basin: A Simulation Game and Experimental Analysis.

    ERIC Educational Resources Information Center

    Horsley, Doyne

    1982-01-01

    Described is a successfully field tested simulation which will help high school or college level students become familiar with flood hazards. Students assume the roles of members of the Jonah's Basin planning commission and plan solutions to the area's flood problems. (RM)

  8. Linking local vulnerability to climatic hazard damage assessment for integrated river basin management

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Liu, Yi-Chung; Chien, Sung-Ying

    2015-04-01

    1. Background Major portions of areas in Asia are expected to increase exposure and vulnerability to climate change and weather extremes due to rapid urbanization and overdevelopment in hazard-prone areas. To prepare and confront the potential impacts of climate change and related hazard risk, many countries have implemented programs of integrated river basin management. This has led to an impending challenge for the police-makers in many developing countries to build effective mechanism to assess how the vulnerability distributes over river basins, and to understand how the local vulnerability links to climatic (climate-related) hazard damages and risks. However, the related studies have received relatively little attention. This study aims to examine whether geographic localities characterized by high vulnerability experience significantly more damages owing to onset weather extreme events at the river basin level, and to explain what vulnerability factors influence these damages or losses. 2. Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including exposure, biophysical, socioeconomic, land-use and adaptive capacity factors) that could serve as proxies for attributes of local vulnerability. This framework is applied by combining geographical information system (GIS) techniques with multicriteria decision analysis (MCDA) to evaluate and map integrated vulnerability to climatic hazards across river basins. Furthermore, to explain the relationship between vulnerability factors and disaster damages, we develop a disaster damage model (DDM) based on existing disaster impact theory. We then synthesize a Zero-Inflated Poisson regression model with a Tobit regression analysis to identify and examine how the disaster impacts and vulnerability factors connect to typhoon disaster damages and losses. To illustrate the proposed methodology, the study collects data on the vulnerability attributes of the Kaoping, Tsengwen, and Taimali River basins in southern Taiwan, and on the disaster impacts and damages in these river basins due to Typhoon Morakot in 2009. The data was offered by the National Science and Technology Center for Disaster Reduction, Taiwan, as well as collected from the National Land Use Investigation, official census statistics and questionnaire surveys. 3. Results We use an MCDA to create a composite vulnerability index, and this index is incorporated into a GIS analysis to demonstrate the results of integrated vulnerability assessment throughout the river basins. Results of the vulnerability assessment indicate that the most vulnerable areas are almost all situated in the regions of middle and upper reaches of the river basins. Through the examining of DDM, it shows that the vulnerability factors play a critical role in determining disaster damages. Findings also present that the losses and casualties caused by Typhoon Morakot increase with elevation, urban and agricultural developments, proximity to rivers, and decrease with levels of income and adaptive capacity. Finally, we propose the adaptive options for minimizing vulnerability and risk, as well as for integrated river basin governance.

  9. Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin

    NASA Astrophysics Data System (ADS)

    Iribarren Anacona, P.; Norton, K. P.; Mackintosh, A.

    2014-07-01

    Glacier retreat since the Little Ice Age has resulted in the development or expansion of hundreds of glacial lakes in Patagonia. Some of these lakes have produced large (≥106 m3) Glacial Lake Outburst Floods (GLOFs) damaging inhabited areas. GLOF hazard studies in Patagonia have been mainly based on the analysis of short-term series (≤50 years) of flood data and until now no attempt has been made to identify the relative susceptibility of lakes to failure. Power schemes and associated infrastructure are planned for Patagonian basins that have historically been affected by GLOFs, and we now require a thorough understanding of the characteristics of dangerous lakes in order to assist with hazard assessment and planning. In this paper, the conditioning factors of 16 outbursts from moraine dammed lakes in Patagonia were analysed. These data were used to develop a classification scheme designed to assess outburst susceptibility, based on image classification techniques, flow routine algorithms and the Analytical Hierarchy Process. This scheme was applied to the Baker Basin, Chile, where at least 7 moraine-dammed lakes have failed in historic time. We identified 386 moraine-dammed lakes in the Baker Basin of which 28 were classified with high or very high outburst susceptibility. Commonly, lakes with high outburst susceptibility are in contact with glaciers and have moderate (>8°) to steep (>15°) dam outlet slopes, akin to failed lakes in Patagonia. The proposed classification scheme is suitable for first-order GLOF hazard assessments in this region. However, rapidly changing glaciers in Patagonia make detailed analysis and monitoring of hazardous lakes and glaciated areas upstream from inhabited areas or critical infrastructure necessary, in order to better prepare for hazards emerging from an evolving cryosphere.

  10. Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin

    NASA Astrophysics Data System (ADS)

    Iribarren Anacona, P.; Norton, K. P.; Mackintosh, A.

    2014-12-01

    Glacier retreat since the Little Ice Age has resulted in the development or expansion of hundreds of glacial lakes in Patagonia. Some of these lakes have produced large (≥ 106 m3) Glacial Lake Outburst Floods (GLOFs) damaging inhabited areas. GLOF hazard studies in Patagonia have been mainly based on the analysis of short-term series (≤ 50 years) of flood data and until now no attempt has been made to identify the relative susceptibility of lakes to failure. Power schemes and associated infrastructure are planned for Patagonian basins that have historically been affected by GLOFs, and we now require a thorough understanding of the characteristics of dangerous lakes in order to assist with hazard assessment and planning. In this paper, the conditioning factors of 16 outbursts from moraine-dammed lakes in Patagonia were analysed. These data were used to develop a classification scheme designed to assess outburst susceptibility, based on image classification techniques, flow routine algorithms and the Analytical Hierarchy Process. This scheme was applied to the Baker Basin, Chile, where at least seven moraine-dammed lakes have failed in historic time. We identified 386 moraine-dammed lakes in the Baker Basin of which 28 were classified with high or very high outburst susceptibility. Commonly, lakes with high outburst susceptibility are in contact with glaciers and have moderate (> 8°) to steep (> 15°) dam outlet slopes, akin to failed lakes in Patagonia. The proposed classification scheme is suitable for first-order GLOF hazard assessments in this region. However, rapidly changing glaciers in Patagonia make detailed analysis and monitoring of hazardous lakes and glaciated areas upstream from inhabited areas or critical infrastructure necessary, in order to better prepare for hazards emerging from an evolving cryosphere.

  11. Using the analytical hierarchy process to assess the environmental vulnerabilities of basins in Taiwan.

    PubMed

    Chang, Chia-Ling; Chao, Yu-Chi

    2012-05-01

    Every year, Taiwan endures typhoons and earthquakes; these natural hazards often induce landslides and debris flows. Therefore, watershed management strategies must consider the environmental vulnerabilities of local basins. Because many factors affect basin ecosystems, this study applied multiple criteria analysis and the analytical hierarchy process (AHP) to evaluate seven criteria in three phases (geographic phase, hydrologic phase, and societal phase). This study focused on five major basins in Taiwan: the Tan-Shui River Basin, the Ta-Chia River Basin, the Cho-Shui River Basin, the Tseng-Wen River Basin, and the Kao-Ping River Basin. The objectives were a comprehensive examination of the environmental characteristics of these basins and a comprehensive assessment of their environmental vulnerabilities. The results of a survey and AHP analysis showed that landslide area is the most important factor for basin environmental vulnerability. Of all these basins, the Cho-Shui River Basin in central Taiwan has the greatest environmental vulnerability.

  12. Modelling the changing cumulative vulnerability to climate-related hazards for river basin management using a GIS-based multicriteria decision approach

    NASA Astrophysics Data System (ADS)

    Hung, Hung-Chih; Wu, Ju-Yu; Hung, Chih-Hsuan

    2017-04-01

    1. Background Asia-Pacific region is one of the most vulnerable areas of the world to climate-related hazards and extremes due to rapid urbanization and over-development in hazard-prone areas. It is thus increasingly recognized that the management of land use and reduction of hazard risk are inextricably linked. This is especially critical from the perspective of integrated river basin management. A range of studies has targeted existing vulnerability assessments. However, limited attention has been paid to the cumulative effects of multiple vulnerable factors and their dynamics faced by local communities. This study proposes a novel methodology to access the changing cumulative vulnerability to climate-related hazards, and to examine the relationship between the attraction factors relevant to the general process of urbanization and vulnerability variability with a focus on a river basin management unit. 2. Methods and data The methods applied in this study include three steps. First, using Intergovernmental Panel on Climate Change's (IPCC) approach, a Cumulative Vulnerability Assessment Framework (CVAF) is built with a goal to characterize and compare the vulnerability to climate-related hazards within river basin regions based on a composition of multiple indicators. We organize these indicator metrics into three categories: (1) hazard exposure; (2) socioeconomic sensitivity, and (3) adaptive capacity. Second, the CVAF is applied by combining a geographical information system (GIS)-based spatial statistics technique with a multicriteria decision analysis (MCDA) to assess and map the changing cumulative vulnerability, comparing conditions in 1996 and 2006 in Danshui River Basin, Taiwan. Third, to examine the affecting factors of vulnerability changing, we develop a Vulnerability Changing Model (VCM) using four attraction factors to reflect how the process of urban developments leads to vulnerability changing. The factors are transport networks, land uses, production values of industries, and infrastructures. We then conduct a regression analysis to test the VCM. To illustrate the proposed methodology, the data are collected from the National Science and Technology Center for Disaster Reduction, Taiwan as well as the National Land Use Investigation and official census statistics. 3. Results and policy implications Results of CVAF analysis demonstrate heterogeneous patterns of vulnerability in the region, and highlight trends of long-term changes. The vulnerable areas unfold as clustered patterns and spatial analogues across regions, rather than randomly distributed. Highest cumulative vulnerability is concentrated in densely populated and downstream reaches (such as Taipei City) of the Danshui River in both time periods. When examining the VCM, it indicates that upper stream and more remote areas generally show low vulnerability, increases are observed in some areas between 1996 and 2006 due to land use intensification, industrial and infrastructure expansion. These findings suggest that land use planning should consider the socioeconomic progression and infrastructure investment factors that contribute to urban sprawl and address current as well as future urban developments vulnerable to hazard risk transmission. The cumulative vulnerability assessment, mapping methods and modelling presented here can be applied to other climate change and hazard risks to highlight priority areas for further investigation and contribute towards improving river basin management.

  13. Development of Predictive Relationships for Flood Hazard Assessments in Ungaged Basins

    DTIC Science & Technology

    2016-02-01

    Hydrological Analysis (GSSHA) model (Downer and Ogden 2004) was deployed in megascale for ungaged basins of the Philippine Islands . The GSSHA...et al. [1988]). STUDY AREA: Two megascale catchments in the Philippine Islands were considered in this study. No stream gage data exists for either...imagery. The Cagayan River Basin on Luzon Island (Figure 1[a]) is the largest river in the Philippines with a drainage area of 27,280 km2

  14. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    USGS Publications Warehouse

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan

    2007-01-01

    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  15. Water Induced Hazard Mapping in Nepal: A Case Study of East Rapti River Basin

    NASA Astrophysics Data System (ADS)

    Neupane, N.

    2010-12-01

    This paper presents illustration on typical water induced hazard mapping of East Rapti River Basin under the DWIDP, GON. The basin covers an area of 2398 sq km. The methodology includes making of base map of water induced disaster in the basin. Landslide hazard maps were prepared by SINMAP approach. Debris flow hazard maps were prepared by considering geology, slope, and saturation. Flood hazard maps were prepared by using two approaches: HEC-RAS and Satellite Imagery Interpretation. The composite water-induced hazard maps were produced by compiling the hazards rendered by landslide, debris flow, and flood. The monsoon average rainfall in the basin is 1907 mm whereas maximum 24 hours precipitation is 456.8 mm. The peak discharge of the Rapati River in the year of 1993 at station was 1220 cu m/sec. This discharge nearly corresponds to the discharge of 100-year return period. The landslides, floods, and debris flows triggered by the heavy rain of July 1993 claimed 265 lives, affected 148516 people, and damaged 1500 houses in the basin. The field investigation and integrated GIS interpretation showed that the very high and high landslide hazard zones collectively cover 38.38% and debris flow hazard zone constitutes 6.58%. High flood hazard zone occupies 4.28% area of the watershed. Mitigation measures are recommendated according to Integrated Watershed Management Approach under which the non-structural and structural measures are proposed. The non-structural measures includes: disaster management training, formulation of evacuation system (arrangement of information plan about disaster), agriculture management practices, protection of water sources, slope protections and removal of excessive bed load from the river channel. Similarly, structural measures such as dike, spur, rehabilitation of existing preventive measures and river training at some locations are recommendated. The major factors that have contributed to induce high incidences of various types of mass movements and inundation in the basin are rock and soil properties, prolonged and high-intensity rainfall, steep topography and various anthropogenic factors.

  16. Hydrology Analysis and Modelling for Klang River Basin Flood Hazard Map

    NASA Astrophysics Data System (ADS)

    Sidek, L. M.; Rostam, N. E.; Hidayah, B.; Roseli, ZA; Majid, W. H. A. W. A.; Zahari, N. Z.; Salleh, S. H. M.; Ahmad, R. D. R.; Ahmad, M. N.

    2016-03-01

    Flooding, a common environmental hazard worldwide has in recent times, increased as a result of climate change and urbanization with the effects felt more in developing countries. As a result, the explosive of flooding to Tenaga Nasional Berhad (TNB) substation is increased rapidly due to existing substations are located in flood prone area. By understanding the impact of flood to their substation, TNB has provided the non-structure mitigation with the integration of Flood Hazard Map with their substation. Hydrology analysis is the important part in providing runoff as the input for the hydraulic part.

  17. Effects of deep basins on structural collapse during large subduction earthquakes

    USGS Publications Warehouse

    Marafi, Nasser A.; Eberhard, Marc O.; Berman, Jeffrey W.; Wirth, Erin A.; Frankel, Arthur

    2017-01-01

    Deep sedimentary basins are known to increase the intensity of ground motions, but this effect is implicitly considered in seismic hazard maps used in U.S. building codes. The basin amplification of ground motions from subduction earthquakes is particularly important in the Pacific Northwest, where the hazard at long periods is dominated by such earthquakes. This paper evaluates the effects of basins on spectral accelerations, ground-motion duration, spectral shape, and structural collapse using subduction earthquake recordings from basins in Japan that have similar depths as the Puget Lowland basin. For three of the Japanese basins and the Puget Lowland basin, the spectral accelerations were amplified by a factor of 2 to 4 for periods above 2.0 s. The long-duration subduction earthquakes and the effects of basins on spectral shape combined, lower the spectral accelerations at collapse for a set of building archetypes relative to other ground motions. For the hypothetical case in which these motions represent the entire hazard, the archetypes would need to increase up to 3.3 times its strength to compensate for these effects.

  18. Post-fire debris-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.

    2013-01-01

    A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range from a minimal debris flow volume of 10 cubic meters [m3]) to greater than 100,000 m3. Estimated debris-flow volumes increased with basin size and distance downstream. For the 25-year storm, estimated debris-flow volumes were greater than 100,000 m3 for 4 basins and between 50,000 and 100,000 m3 for 10 basins. The debris-flow hazard rankings did not result in the highest hazard ranking of 5, indicating that none of the basins had a high probability of debris-flow occurrence and a high debris-flow volume estimate. The hazard ranking was 4 for one basin using the 10-year-recurrence storm model and for three basins using the 25-year-recurrence storm model. The maps presented herein may be used to prioritize areas where post-wildfire remediation efforts should take place within the 2- to 3-year period of increased erosional vulnerability.

  19. Accident Analyses in Support of the Sludge Water System Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FINFROCK, S.H.

    This document quantifies the potential health effects of the unmitigated hazards identified Hey (2002) for retrieval of sludge from the KE basin. It also identifies potential controls and any supporting mitigative analyses.

  20. Pacific Basin conference on hazardous waste: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This conference was held November 4--8, 1996 in Kuala Lumpur, Malaysia. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on the problems of hazardous waste. Topics of discussion deal with pollution prevention, waste treatment technology, health and ecosystem effects research, analysis and assessment, and regulatory management techniques. Individual papers have been processed separately for inclusion in the appropriate data bases.

  1. Expanding CyberShake Physics-Based Seismic Hazard Calculations to Central California

    NASA Astrophysics Data System (ADS)

    Silva, F.; Callaghan, S.; Maechling, P. J.; Goulet, C. A.; Milner, K. R.; Graves, R. W.; Olsen, K. B.; Jordan, T. H.

    2016-12-01

    As part of its program of earthquake system science, the Southern California Earthquake Center (SCEC) has developed a simulation platform, CyberShake, to perform physics-based probabilistic seismic hazard analysis (PSHA) using 3D deterministic wave propagation simulations. CyberShake performs PSHA by first simulating a tensor-valued wavefield of Strain Green Tensors. CyberShake then takes an earthquake rupture forecast and extends it by varying the hypocenter location and slip distribution, resulting in about 500,000 rupture variations. Seismic reciprocity is used to calculate synthetic seismograms for each rupture variation at each computation site. These seismograms are processed to obtain intensity measures, such as spectral acceleration, which are then combined with probabilities from the earthquake rupture forecast to produce a hazard curve. Hazard curves are calculated at seismic frequencies up to 1 Hz for hundreds of sites in a region and the results interpolated to obtain a hazard map. In developing and verifying CyberShake, we have focused our modeling in the greater Los Angeles region. We are now expanding the hazard calculations into Central California. Using workflow tools running jobs across two large-scale open-science supercomputers, NCSA Blue Waters and OLCF Titan, we calculated 1-Hz PSHA results for over 400 locations in Central California. For each location, we produced hazard curves using both a 3D central California velocity model created via tomographic inversion, and a regionally averaged 1D model. These new results provide low-frequency exceedance probabilities for the rapidly expanding metropolitan areas of Santa Barbara, Bakersfield, and San Luis Obispo, and lend new insights into the effects of directivity-basin coupling associated with basins juxtaposed to major faults such as the San Andreas. Particularly interesting are the basin effects associated with the deep sediments of the southern San Joaquin Valley. We will compare hazard estimates from the 1D and 3D models, summarize the challenges of expanding CyberShake to a new geographic region, and describe our future CyberShake plans.

  2. Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    This progress report covers activities for the period January 1 - March 31, 1995 on project concerning `Hazardous Materials in Aquatic Environments of the Mississippi River Basin.` The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants inmore » aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl.« less

  3. Geological risk assessment for the rapid development area of the Erhai Basin

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Wang, Zhanqi; Jin, Gui; Chen, Dongdong; Wang, Zhan

    For low-slope hilly land development to have more new land space in a watershed, it is particularly important that to coordinate the sharply increasing conflicts between mountainous and urban land utilization in the city. However, development of low-slope hilly land easily induce potential risks of geologic hazards such as landslide and landslip. It may lead to further environmental losses in a watershed. Hence, it is necessary to study potential risks of geo-hazards in low-slope hilly land development in urban area. Based on GIS spatial analysis technique, we select a study area, Dali City in the Erhai Basin located in watershed belt of Jinsha River, Lancang River and Red River in Yunnan Province of China. Through studying some relevant key indexes and parameters for monitoring potential risks of geo-hazards, we establish a composite index model for zoning the area with potential risks of geo-hazards in development of low-slope hilly land in the study area. Our research findings indicate that the potential risks of geo-hazards in eastern Dali City is relatively low while of that on slow hills with gentle slopes in the western area are relatively high. By using a zoning research method, generated maps show geological information of potential risks of geo-hazards on low-slope hilly land which provide important messages for guarding against natural geo-hazards and potential environmental losses in a watershed.

  4. More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2018-05-01

    Flood risks across the Pearl River basin, China, were evaluated using a peak flood flow dataset covering a period of 1951-2014 from 78 stations and historical flood records of the past 1000 years. The generalized extreme value (GEV) model and the kernel estimation method were used to evaluate frequencies and risks of hazardous flood events. Results indicated that (1) no abrupt changes or significant trends could be detected in peak flood flow series at most of the stations, and only 16 out of 78 stations exhibited significant peak flood flow changes with change points around 1990. Peak flood flow in the West River basin increased and significant increasing trends were identified during 1981-2010; decreasing peak flood flow was found in coastal regions and significant trends were observed during 1951-2014 and 1966-2014. (2) The largest three flood events were found to cluster in both space and time. Generally, basin-scale flood hazards can be expected in the West and North River basins. (3) The occurrence rate of floods increased in the middle Pearl River basin but decreased in the lower Pearl River basin. However, hazardous flood events were observed in the middle and lower Pearl River basin, and this is particularly true for the past 100 years. However, precipitation extremes were subject to moderate variations and human activities, such as building of levees, channelization of river systems, and rapid urbanization; these were the factors behind the amplification of floods in the middle and lower Pearl River basin, posing serious challenges for developing measures of mitigation of flood hazards in the lower Pearl River basin, particularly the Pearl River Delta (PRD) region.

  5. Flood hazard studies in Central Texas using orbital and suborbital remote sensing machinery

    NASA Technical Reports Server (NTRS)

    Baker, V. R.; Holz, R. K.; Patton, P. C.

    1975-01-01

    Central Texas is subject to infrequent, unusually intense rainstorms which cause extremely rapid runoff from drainage basins developed on the deeply dissected limestone and marl bedrock of the Edwards Plateau. One approach to flood hazard evaluation in this area is a parametric model relating flood hydrograph characteristics to quantitative geomorphic properties of the drainage basins. The preliminary model uses multiple regression techniques to predict potential peak flood discharge from basin magnitude, drainage density, and ruggedness number. After mapping small catchment networks from remote sensing imagery, input data for the model are generated by network digitization and analysis by a computer assisted routine of watershed analysis. The study evaluated the network resolution capabilities of the following data formats: (1) large-scale (1:24,000) topographic maps, employing Strahler's "method of v's," (2) standard low altitude black and white aerial photography (1:13,000 and 1:20,000 scales), (3) NASA - generated aerial infrared photography at scales ranging from 1:48,000 to 1:123,000, and (4) Skylab Earth Resources Experiment Package S-190A and S-190B sensors (1:750,000 and 1:500,000 respectively).

  6. Hydrologic analysis of the challenges facing water resources and sustainable development of Wadi Feiran basin, southern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayman A.; Diab, Maghawri S.

    2018-04-01

    Wadi Feiran basin is one of the most promising areas in southern Sinai (Egypt) for establishing new communities and for growth in agriculture, tourism, and industry. The present challenges against development include water runoff hazards (flash flooding), the increasing water demand, and water scarcity and contamination. These challenges could be mitigated by efficient use of runoff and rainwater through appropriate management, thereby promoting sustainable development. Strategies include the mitigation of runoff hazards and promoting the natural and artificial recharge of aquifers. This study uses a watershed modeling system, geographic information system, and classification scheme to predict the effects of various mitigation options on the basin's water resources. Rainwater-harvesting techniques could save more than 77% of the basin's runoff (by volume), which could be used for storage and aquifer recharge. A guide map is provided that shows possible locations for the proposed mitigation options in the study basin. Appropriate measures should be undertaken urgently: mitigation of groundwater contamination (including effective sewage effluent management); regular monitoring of the municipal, industrial and agricultural processes that release contaminants; rationalization and regulation of the application of agro-chemicals to farmland; and regular monitoring of contaminants in groundwater. Stringent regulations should be implemented to prevent wastewater disposal to the aquifers in the study area.

  7. Determining the Financial Impact of Flood Hazards in Ungaged Basins

    NASA Astrophysics Data System (ADS)

    Cotterman, K. A.; Gutenson, J. L.; Pradhan, N. R.; Byrd, A.

    2017-12-01

    Many portions of the Earth lack adequate authoritative or in situ data that is of great value in determining natural hazard vulnerability from both anthropogenic and physical perspective. Such locations include the majority of developing nations, which do not possess adequate warning systems and protective infrastructure. The lack of warning and protection from natural hazards make these nations vulnerable to the destructive power of events such as floods. The goal of this research is to demonstrate an initial workflow with which to characterize flood financial hazards with global datasets and crowd-sourced, non-authoritative data in ungagged river basins. This workflow includes the hydrologic and hydraulic response of the watershed to precipitation, characterized by the physics-based modeling application Gridded Surface-Subsurface Hydrologic Analysis (GSSHA) model. In addition, data infrastructure and resources are available to approximate the human impact of flooding. Open source, volunteer geographic information (VGI) data can provide global coverage of elements at risk of flooding. Additional valuation mechanisms can then translate flood exposure into percentage and financial damage to each building. The combinations of these tools allow the authors to remotely assess flood hazards with minimal computational, temporal, and financial overhead. This combination of deterministic and stochastic modeling provides the means to quickly characterize watershed flood vulnerability and will allow emergency responders and planners to better understand the implications of flooding, both spatially and financially. In either a planning, real-time, or forecasting scenario, the system will assist the user in understanding basin flood vulnerability and increasing community resiliency and preparedness.

  8. Emergency assessment of postwildfire debris-flow hazards for the 2011 Motor Fire, Sierra and Stanislaus National Forests, California

    USGS Publications Warehouse

    Cannon, Susan H.; Michael, John A.

    2011-01-01

    This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2011 Motor fire in the Sierra and Stanislaus National Forests, Calif. Statistical-empirical models are used to estimate the probability and volume of debris flows that may be produced from burned drainage basins as a function of different measures of basin burned extent, gradient, and soil physical properties, and in response to a 30-minute-duration, 10-year-recurrence rainstorm. Debris-flow probability and volume estimates are then combined to form a relative hazard ranking for each basin. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two years following the fire.

  9. Geophysics in Mejillones Basin, Chile: Dynamic analysis and associatedseismic hazard

    NASA Astrophysics Data System (ADS)

    Maringue, J. I.; Yanez, G. A.; Lira, E.; Podestá, L., Sr.; Figueroa, R.; Estay, N. P.; Saez, E.

    2016-12-01

    The active margin of South America has a high seismogenic potential. In particular, the Mejillones peninsula, located in northern Chile, represents a site of interest for seismic hazard due to 100-year seismic gap, the potentially large site effects, and the presence of the most important port in the region. We perform a dynamic analysis of the zone from a spatial and petrophysical model of the Mejillones Basin, to understand its behavior under realistic seismic scenarios. Geometry and petrophysics of the basin were obtained from an integrated modeling of geophysics observations (gravity, seismic and electromagnetic data) distributed mainly in Pampa Mejillones whose western edge is limited by Mejillones Fault, oriented north-south. This regional-scale normal fault shows a half-graben geometry which controls the development of the Mejillones basin eastwards. The gravimetric and magnetotelluric methods allow to define the geometry of the basin, through a cover/basement density contrast, and the transition zone from very low-moderate electrical resistivities, respectively. The seismic method complements the petrophysics in terms of the shear wave depth profile. The results show soil's thicknesses up to 700 meters on deeper zone, with steeper slopes to the west and lower slopes to the east, in agreement with the normal-fault-half-graben basin geometry. Along the N-S direction there are not great differences in basin depth, comprising an almost 2D problem. In terms of petrophysics, the sedimentary stratum is characterized by shear velocities between 300-700 m/s, extremely low electrical resistivities, below 1 ohm-m, and densities from 1.4 to 1.8 gr/cc. The numerical simulation of the seismic waves amplification gives values in the order of 0.8g, which implying large surface damages. The results demonstrate a potential risk in Mejillones bay to future events, therefore is very important to generate mitigations policies for infrastructure and human settlements.

  10. The protection of RIVERLIFE by mitigation of flood damages RIVERLIFE

    NASA Astrophysics Data System (ADS)

    Adler, M. J.

    2003-04-01

    The long-term development objective of the RIVERLIFE project is to contribute to sustainable human end economic development in the Timis-Bega river basin area as part of the Danube River Basin (DRB), through reinforcing the capacities of Romanian central and local authorities to develop effective mechanisms and tools for integrated river basin management in the Timis-Bega basin. The overall objective of the project is to assist the country in the EU enlargement and accession process to meet the EU requirements of water related Directives with emphasis on the EU Water Framework Directive (WFD). The specific objective of the project is to support the WFD implementation process at the level of a sub-unit within the limits of the DRB, through the development of a River Basin Management Plan (RBMP). The project will also facilitate the implementation of the Danube River Protection Convention (DRPC) as an essential element in the implementation of the Directive in the transboundary river basins. Expected outcomes in the recipient country consist of (i) responding to a real hazard problem, which affects the quality of life of many citizens, and (ii) improvement in the environmental conditions in the targeted areas. Flooding is one of the major natural hazards to human society and an important influence on social and economic development for Romania causing financially greater losses per annum on average than any other natural hazard. One key concept of the WFD is the coordination, organization and regulation of water management at the level of river basins. Therefore, river basin districts are shaped in such a way as to include not only the surface run-off through streams and rivers to the sea, but the total area of land and sea together with the associated groundwater and coastal waters. The concept allows even for the small river basins directly discharging into the sea to be combined into one river basin district. As a principle, the complex decisions on the use or interventions in the aquatic systems within the river basin district limits should take place in an integrated and co-coordinated approach as part of the RBMP. The process includes all RBMP plan development phases for Timis-Bega basin from planning and analysis phases to the assessment and the identification of respective programs of measures intended to achieve the defined environmental objectives for the respective river basin. The central administrative tool of the WFD is the River Basin Management Plan, around which all other elements are set. The river basin becomes the basic unit for all water planning and management interventions according with the physical and hydrological boundaries, but not necessary with its political and administrative limits.

  11. Postwildfire debris-flow hazard assessment of the area burned by the 2013 West Fork Fire Complex, southwestern Colorado

    USGS Publications Warehouse

    Verdin, Kristine L.; Dupree, Jean A.; Stevens, Michael R.

    2013-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2013 West Fork Fire Complex near South Fork in southwestern Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within and just downstream from the burned area, and to estimate the same for 54 drainage basins of interest within the perimeter of the burned area. Input data for the debris-flow models included topographic variables, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm; (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm; and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm. Estimated debris-flow probabilities at the pour points of the 54 drainage basins of interest ranged from less than 1 to 65 percent in response to the 2-year storm; from 1 to 77 percent in response to the 10-year storm; and from 1 to 83 percent in response to the 25-year storm. Twelve of the 54 drainage basins of interest have a 30-percent probability or greater of producing a debris flow in response to the 25-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 2,400 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages also were predicted to produce substantial debris flows. One of the 54 drainage basins of interest had the highest combined hazard ranking, while 9 other basins had the second highest combined hazard ranking. Of these 10 basins with the 2 highest combined hazard rankings, 7 basins had predicted debris-flow volumes exceeding 100,000 cubic meters, while 3 had predicted probabilities of debris flows exceeding 60 percent. The 10 basins with high combined hazard ranking include 3 tributaries in the headwaters of Trout Creek, four tributaries to the West Fork San Juan River, Hope Creek draining toward a county road on the eastern edge of the burn, Lake Fork draining to U.S. Highway 160, and Leopard Creek on the northern edge of the burn. The probabilities and volumes for the modeled storms indicate a potential for debris-flow impacts on structures, reservoirs, roads, bridges, and culverts located within and immediately downstream from the burned area. U.S. Highway 160, on the eastern edge of the burn area, also is susceptible to impacts from debris flows.

  12. Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2017-07-01

    Identification of high potential risk and susceptible zones for natural hazards of geological origin is one of the most important applications of advanced remote sensing technology. Yearly, several landslides occur during heavy monsoon rainfall in Kelantan River basin, Peninsular Malaysia. Flooding and subsequent landslide occurrences generated significant damage to livestock, agricultural produce, homes and businesses in the Kelantan River basin. In this study, remote sensing data from the recently launched Landsat-8 and Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on board the Advanced Land Observing Satellite-2 (ALOS-2) were used to map geologic structural and topographical features in the Kelantan River basin for identification of high potential risk and susceptible zones for landslides and flooding areas. The data were processed for a comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. The analytical hierarchy process (AHP) approach was used for landslide susceptibility mapping. Several factors such as slope, aspect, soil, lithology, normalized difference vegetation index (NDVI), land cover, distance to drainage, precipitation, distance to fault and distance to the road were extracted from remote sensing satellite data and fieldwork to apply the AHP approach. Directional convolution filters were applied to ALOS-2 data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. The combination of different polarization channels produced image maps that contain important information related to water bodies, wetlands and lithological units. The N-S, NE-SW and NNE-SSW lineament trends and dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan River basin. The analysis of field investigation data indicates that many of flooded areas were associated with high potential risk zones for hydrogeological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topographic regions. Numerous landslide points were located in a rectangular drainage system that is associated with a topographic slope of metamorphic and quaternary rock units. Consequently, structural and topographical geology maps were produced for Kelantan River basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydrogeological hazards. Geohazard mitigation programs could be conducted in the landslide recurrence regions and flooded areas to reduce natural catastrophes leading to loss of life and financial investments in the Kelantan River basin. In this investigation, Landsat-8 and ALOS-2 have proven to successfully provide advanced Earth observation satellite data for disaster monitoring in tropical environments.

  13. Sediment Transportation Induced by Deep-Seated Landslides in a Debris Flow Basin in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Meei Ling; Chen, Te Wei; Chen, Yong Sheng; Sin Jhuang, Han

    2016-04-01

    Typhoon Morakot brought huge amount of rainfall to the southern Taiwan in 2009 and caused severe landslides and debris flow hazard. After Typhoon Morakot, it was found that the volume of sediment transported by the debris flow and its effects on the affected area were much more significant compared to previous case history, which may due to the huge amount of rainfall causing significant deep-seated landslides in the basin. In this study, the effects and tendency of the sediment transportation in a river basin following deep-seated landslides caused by typhoon Morakot were evaluated. We used LiDAR, DEM, and aerial photo to identify characteristics of deep-seated landslides in a debris flow river basin, KSDF079 in Liuoguey District, Kaohsiung City, Taiwan. Eight deep-seated landslides were identified in the basin. To estimate the potential landslide volume associated with the deep-seated landslides, the stability analysis was conducted to locate the critical sliding surface, and the potential landside volume was estimated based on the estimation equation proposed by the International Geotechnical Societies' UNESCO Working Party on World Landslide Inventory (WP/WLI, 1990). The total potential landslide volume of the eight deep-seated landslides in KSDF079 basin was about 28,906,856 m3. Topographic analysis was performed by using DEM before and LiDAR derived DEM after typhoon Morakot to calculate the landslide volume transported. The result of erosion volume and deposition volume lead to a run out volume of 5,832,433 m3. The results appeared to consist well with the field condition and aerial photo. Comparing the potential landslide volume and run out volume of eight deep-seated landslides, it was found that the remaining potential landslide volume was about 80%. Field investigation and topographic analysis of the KSDF079 debris flow revealed that a significant amount of sediment deposition remained in the river channel ranging from the middle to the downstream section of the channel, and the channel has been widen. Such large proportion of landslide volume remained in the basin on deep-seated landslide scars and debris flow river channel would likely to cause further debris transportation in the future events. The stability analysis used in this study provided a feasible method and satisfactory results for estimating sediment volume transportation associated with the deep-seated landslides in the study area. Combination of the stability analysis results and the topographic analysis provided estimation of sediment transportation caused by the deep-seated landslides, and trend variation of further sediment transport of the basin, which could provide vital information for hazard mitigation. Keyword: deep-seated landslide, sediment transport, DEM, LiDAR, stability analysis

  14. Groundwater quality assessment/corrective action feasibility plan: New TNX Seepage Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, R.L.

    1989-12-05

    The New TNX Seepage Basin is located across River Road east of the TNX Area at the Savannah River Site. Currently the basin is out of service and is awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the New TNX Seepage Basin was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater downgradient of the New TNX Seepage Basin had been impacted. Results from the data analysis indicate that the groundwater has been impacted by inorganic constituents with nomore » associated health risks. The impacts resulting from elevated levels of inorganic constituents, such as Mn, Na, and Total PO{sub 4} in the water table, do not pose a threat to human health and the environment.« less

  15. Hazard assessment of selenium to endangered razorback suckers (Xyrauchen texanus)

    USGS Publications Warehouse

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.

    2002-01-01

    A hazard assessment was conducted based on information derived from two reproduction studies conducted with endangered razorback suckers (Xyrauchen texanus) at three sites near Grand Junction, CO, USA. Selenium contamination of the upper and lower Colorado River basin has been documented in water, sediment, and biota in studies by US Department of the Interior agencies and academia. Concern has been raised that this selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The reproduction studies with razorback suckers revealed that adults readily accumulated selenium in various tissues including eggs, and that 4.6 μg/g of selenium in food organisms caused increased mortality of larvae. The selenium hazard assessment protocol resulted in a moderate hazard at the Horsethief site and high hazards at the Adobe Creek and North Pond sites. The selenium hazard assessment was considered conservative because an on-site toxicity test with razorback sucker larvae using 4.6 μg/g selenium in zooplankton caused nearly complete mortality, in spite of the moderate hazard at Horsethief. Using the margin of uncertainty ratio also suggested a high hazard for effects on razorback suckers from selenium exposure. Both assessment approaches suggested that selenium in the upper Colorado River basin adversely affects the reproductive success of razorback suckers.

  16. Hazard assessment of selenium to endangered razorback suckers (Xyrauchen texanus).

    PubMed

    Hamilton, Steven J; Holley, Kathleen M; Buhl, Kevin J

    2002-05-27

    A hazard assessment was conducted based on information derived from two reproduction studies conducted with endangered razorback suckers (Xyrauchen texanus) at three sites near Grand Junction, CO, USA. Selenium contamination of the upper and lower Colorado River basin has been documented in water, sediment, and biota in studies by US Department of the Interior agencies and academia. Concern has been raised that this selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The reproduction studies with razorback suckers revealed that adults readily accumulated selenium in various tissues including eggs, and that 4.6 microg/g of selenium in food organisms caused increased mortality of larvae. The selenium hazard assessment protocol resulted in a moderate hazard at the Horsethief site and high hazards at the Adobe Creek and North Pond sites. The selenium hazard assessment was considered conservative because an on-site toxicity test with razorback sucker larvae using 4.6 microg/g selenium in zooplankton caused nearly complete mortality, in spite of the moderate hazard at Horsethief. Using the margin of uncertainty ratio also suggested a high hazard for effects on razorback suckers from selenium exposure. Both assessment approaches suggested that selenium in the upper Colorado River basin adversely affects the reproductive success of razorback suckers.

  17. A statistical approach to evaluate flood risk at the regional level: an application to Italy

    NASA Astrophysics Data System (ADS)

    Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea

    2016-04-01

    Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate flood risk statistical characterization, the proposed procedure could be applied straightforward outside the national borders, particularly in areas with similar geo-environmental settings.

  18. Rainfall Induced Landslides in Puerto Rico (Invited)

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Kamal, S.; Arnone, E.; Noto, V.; Shanahan, P.; Bras, R. L.

    2009-12-01

    Landslides are a major geologic hazard in the United States, typically triggered by rainfall, earthquakes, volcanoes and human activity. Rainfall-induced landslides are the most common type in the island of Puerto Rico, with one or two large events per year. We performed an island-wide determination of static landslide susceptibility and hazard assessment as well as dynamic modeling of rainfall-induced shallow landslides in a particular hydrologic basin. Based on statistical analysis of past landslides, we determined that reliable prediction of the susceptibility to landslides is strongly dependent on the resolution of the digital elevation model (DEM) employed and the reliability of the rainfall data. A distributed hydrology model capable of simulating landslides, tRIBS-VEGGIE, has been implemented for the first time in a humid tropical environment like Puerto Rico. The Mameyes basin, located in the Luquillo Experimental Forest in Puerto Rico, was selected for modeling based on the availability of soil, vegetation, topographical, meteorological and historic landslide data. .Application of the model yields a temporal and spatial distribution of predicted rainfall-induced landslides, which is used to predict the dynamic susceptibility of the basin to landslides.

  19. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Ammo Fire, San Diego County, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ammo Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  20. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Ranch Fire, Ventura and Los Angeles Counties, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ranch Fire in Ventura and Los Angeles Counties, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  1. Emergency assessment of debris-flow hazards from basins burned by the 2007 Harris Fire, San Diego County, southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    IntroductionThe objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Harris Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  2. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Rice Fire, San Diego County, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Rice Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  3. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Poomacha Fire, San Diego County, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Poomacha Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  4. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Witch Fire, San Diego County, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Witch Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  5. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Slide and Grass Valley Fires, San Bernardino County, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  6. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Buckweed Fire, Los Angeles County, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Buckweed Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  7. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Canyon Fire, Los Angeles County, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Canyon Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  8. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Santiago Fire, Orange County, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Santiago Fire in Orange County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  9. Emergency Assessment of Postfire Debris-Flow Hazards for the 2009 Station Fire, San Gabriel Mountains, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.; Staley, Dennis M.; Worstell, Bruce B.

    2009-01-01

    This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2009 Station fire in Los Angeles County, southern California. Statistical-empirical models developed for postfire debris flows are used to estimate the probability and volume of debris-flow production from 678 drainage basins within the burned area and to generate maps of areas that may be inundated along the San Gabriel mountain front by the estimated volume of material. Debris-flow probabilities and volumes are estimated as combined functions of different measures of basin burned extent, gradient, and material properties in response to both a 3-hour-duration, 1-year-recurrence thunderstorm and to a 12-hour-duration, 2-year recurrence storm. Debris-flow inundation areas are mapped for scenarios where all sediment-retention basins are empty and where the basins are all completely full. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two winters following the fire. Tributary basins that drain into Pacoima Canyon, Big Tujunga Canyon, Arroyo Seco, West Fork of the San Gabriel River, and Devils Canyon were identified as having probabilities of debris-flow occurrence greater than 80 percent, the potential to produce debris flows with volumes greater than 100,000 m3, and the highest Combined Relative Debris-Flow Hazard Ranking in response to both storms. The predicted high probability and large magnitude of the response to such short-recurrence storms indicates the potential for significant debris-flow impacts to any buildings, roads, bridges, culverts, and reservoirs located both within these drainages and downstream from the burned area. These areas will require appropriate debris-flow mitigation and warning efforts. Probabilities of debris-flow occurrence greater than 80 percent, debris-flow volumes between 10,000 and 100,000 m3, and high Combined Relative Debris-Flow Hazard Rankings were estimated in response to both short recurrence-interval (1- and 2-year) storms for all but the smallest basins along the San Gabriel mountain front between Big Tujunga Canyon and Arroyo Seco. The combination of high probabilities and large magnitudes determined for these basins indicates significant debris-flow hazards for neighborhoods along the mountain front. When the capacity of sediment-retention basins is exceeded, debris flows may be deposited in neighborhoods and streets and impact infrastructure between the mountain front and Foothill Boulevard. In addition, debris flows may be deposited in neighborhoods immediately below unprotected basins. Hazards to neighborhoods and structures at risk from these events will require appropriate debris-flow mitigation and warning efforts.

  10. Methods for the Emergency Assessment of Debris-Flow Hazards from Basins Burned by the Fires of 2007, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.

    2007-01-01

    This report describes the approach used to assess potential debris-flow hazards from basins burned by the Buckweed, Santiago, Canyon, Poomacha, Ranch, Harris, Witch, Rice, Ammo, Slide, Grass Valley and Cajon Fires of 2007 in southern California. The assessments will be presented as a series of maps showing a relative ranking of the predicted volume of debris flows that can issue from basin outlets in response to a 3-hour duration rainstorm with a 10-year return period. Potential volumes of debris flows are calculated using a multiple-regression model that describes debris-flow volume at a basin outlet as a function of measures of basin gradient, burn extent, and storm rainfall. This assessment provides critical information for issuing basin-specific warnings, locating and designing mitigation measures, and planning of evacuation timing and routes.

  11. Utility of aeromagnetic studies for mapping of potentially active faults in two forearc basins: Puget Sound, Washington, and Cook Inlet, Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Blakely, R.J.; Haeussler, Peter J.; Wells, R.E.

    2005-01-01

    High-resolution aeromagnetic surveys over forearc basins can detect faults and folds in weakly magnetized sediments, thus providing geologic constraints on tectonic evolution and improved understanding of seismic hazards in convergent-margin settings. Puget Sound, Washington, and Cook Inlet, Alaska, provide two case histories. In each lowland region, shallow-source magnetic anomalies are related to active folds and/or faults. Mapping these structures is critical for understanding seismic hazards that face the urban regions of Seattle, Washington, and Anchorage, Alaska. Similarities in aeromagnetic anomaly patterns and magnetic stratigraphy between the two regions suggest that we can expect the aeromagnetic method to yield useful structural information that may contribute to earth-hazard and energy resource investigations in other forearc basins.

  12. A Summary Report on the NPH Evaluation of 105-L Disassembly Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, J.R.

    2002-04-30

    The L Area Disassembly Basin (LDB) is evaluated for the natural phenomena hazards (NPH) effects due to earthquake, wind, and tornado in accordance with DOE Order 420.1 and DOE-STD-1020. The deterministic analysis is performed for a Performance Category 3 (PC3) level of loads. Savannah River Site (SRS) specific NPH loads and design criteria are obtained from Engineering Standard 01060. It is demonstrated that the demand to capacity (D/C) ratios for primary and significant structural elements are acceptable (equal to or less than 1.0). Thus, 105-L Disassembly Basin building structure is qualified for the PC3 NPH effects in accordance with DOEmore » Order 420.1.« less

  13. Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach

    USGS Publications Warehouse

    Friedel, Michael J.

    2011-01-01

    Few studies attempt to model the range of possible post-fire hydrologic and geomorphic hazards because of the sparseness of data and the coupled, nonlinear, spatial, and temporal relationships among landscape variables. In this study, a type of unsupervised artificial neural network, called a self-organized map (SOM), is trained using data from 540 burned basins in the western United States. The sparsely populated data set includes variables from independent numerical landscape categories (climate, land surface form, geologic texture, and post-fire condition), independent landscape classes (bedrock geology and state), and dependent initiation processes (runoff, landslide, and runoff and landslide combination) and responses (debris flows, floods, and no events). Pattern analysis of the SOM-based component planes is used to identify and interpret relations among the variables. Application of the Davies-Bouldin criteria following k-means clustering of the SOM neurons identified eight conceptual regional models for focusing future research and empirical model development. A split-sample validation on 60 independent basins (not included in the training) indicates that simultaneous predictions of initiation process and response types are at least 78% accurate. As climate shifts from wet to dry conditions, forecasts across the burned landscape reveal a decreasing trend in the total number of debris flow, flood, and runoff events with considerable variability among individual basins. These findings suggest the SOM may be useful in forecasting real-time post-fire hazards, and long-term post-recovery processes and effects of climate change scenarios.

  14. Altitudinal dynamics of glacial lakes under changing climate in the Hindu Kush, Karakoram, and Himalaya ranges

    NASA Astrophysics Data System (ADS)

    Ashraf, Arshad; Naz, Rozina; Iqbal, Muhammad Bilal

    2017-04-01

    The environmental challenges posed by global warming in the Himalayan region include early and rapid melting of snow and glaciers, creation of new lakes, and expansion of old ones posing a high risk of glacial lakes outburst flood (GLOF) hazard for downstream communities. According to various elevation ranges, 3044 lakes were analyzed basinwide in the Hindu Kush-Karakoram-Himalaya (HKH) ranges of Pakistan using multisensor remote sensing data of the 2001-2013 period. An overall increase in glacial lakes was observed at various altitudinal ranges between 2500 and 5500, m out of which noticeable change by number was within the 4000-4500 m range. The analysis carried out by glacial-fed lakes and nonglacial-fed lakes in different river basins indicated variable patterns depending on the geographic location in the HKH region. The correlation analysis of parameters like lake area, expansion rate, and elevation was performed with 617 glacial lakes distributed in various river basins of the three HKH ranges. Lake area (2013) and elevation showed a negative relationship for all basins except Hunza, Shigar, and Shyok. The correlation between the expansion rate of lakes and elevation was on the positive side for Swat, Gilgit, Shigar, and Shingo basins-a situation that may be attributed to the variable altitudinal pattern of temperature and precipitation. In order to explore such diverse patterns of lake behavior and relationship with influential factors in the HKH, detailed studies based on using high resolution image data coupled with in situ information are a prerequisite. Although an increase in lake area observed below 3500 m would be favorable for water resource management, but could be alarming in context of glacial flood hazards that need to be monitored critically on a long-term basis.

  15. Geological Features Mapping Using PALSAR-2 Data in Kelantan River Basin, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Pour, A. B.; Hashim, M.

    2016-09-01

    In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. A ScanSAR and two fine mode dual polarization level 3.1 images cover Kelantan state were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB) colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results derived from ScanSAR image indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units for the Kelantan state using fine mode observation data. The N-S, NE-SW and NNE-SSW lineament trends were identified in the study area using directional filtering. Dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topograghy regions. Numerous landslide points were located in rectangular drainage system that associated with topographic slope of metamorphic and Quaternary rock units. Some large landslides were associated with N-S, NNE-SSW and NE-SW trending fault zones. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydro-geological hazards.

  16. The value of knowing better - Losses from natural hazards

    NASA Astrophysics Data System (ADS)

    Mysiak, J.; Galarraga, I.,; Garrido, A.; Interwies, E.; van Bers, C.; Vandenberghe, V.; Farinosi, F.; Foudi, S.; Görlitz, S.; Hernández-Mora, N.; Gil, M.; Grambow, C.

    2012-04-01

    In a highly emotional speech delivered last year after a series of strikes, Julia Gilbert, the Australian PM, noted that Australia has watched in horror as day after day a new chapter in natural disaster history has been written. And so did the whole world. 2011 went on to become the costliest year in terms of natural hazard losses in the recent history, with the total costs topping 380 billion US dollars. Almost a half of the insured losses were caused by a single event - the Fukushima Dai'ichi nuclear power plant accident triggered by a tsunami that followed an earthquake of MW 6.6 (Richer 9.0) magnitude. The Fukushima disaster has taught a costly lesson, once again: What you least expect, happens. The estimates of losses inflicted by natural hazards are, to put it mildly, incomplete and hardly representative of the ripple effects on regional and global economy, and the wider effects on social fabric, wellbeing and ecosystems that are notoriously difficult to monetise. The knowledge of the full magnitude of losses is not an end in itself. The economics of disasters is an emerging academic field, struggling to uncover the patterns of vulnerability to natural hazards, and provide insights useful for designing effective disaster risk reduction measures and policies. Yet the costly lessons learned are often neglected. In this paper we analyse selected significantly damaging events caused by hydrometeorological and climatologic events (floods and droughts) in four river basins/countries: Ebro/Spain, Po/Italy, Weser/Germany and Scheldt/Flanders-Belgium. Our analysis is focussed on identifying the gaps in reported damage estimates, and conducting additional original research and assessment that contribute to filling those gaps. In the case of drought, all the reference cases except the Ebro refer to the exceptionally hot and dry summer 2003. The drought event examined in the Ebro river basin is the prolonged period of deficient precipitation between 2004 and 2008. The flood reference cases are more uniformly distributed both intra- and interannually. They include Jan-Feb 2003 and Mar-Apr 2007 flood in the Ebro basin, the Oct 2000 flood in Po basin, Jul 2002 flood in Weser basin and Nov 2010 flood in the Scheldt. We have identified significant knowledge gaps in the current accounts of the impacts inflicted by the above disaster strikes. Almost no information is available about intangible, indirect and environmental costs. The structural damage is only partly examined. The existing assessment studies are based either on self-reported losses of the affected subjects and methodologies yielding divergent results about the extent (or even order of magnitude) of the losses suffered. The studies are rarely subjected to a critical analysis and quality check. Uncertainty surrounding the damage estimates is either omitted or reported only as a range of the likely magnitude of the disaster costs. Our analysis offers a systematic review of the damage across the affected sectors and communities. A number of assessment techniques were applied and their, pros and cons discussed. The paper highlights the value of an in-depth assessment of significantly damaging events for a better understanding of vulnerability, that is likely to be amplified as a result of anthropogenic climate change and economic development in the hazard-prone areas.

  17. A Study on the Assessment of Multi-Factors Affecting Urban Floods Using Satellite Image: A Case Study in Nakdong Basin, S. Korea

    NASA Astrophysics Data System (ADS)

    Kwak, Youngjoo; Kondoh, Akihiko

    2010-05-01

    Floods are also related to the changes in social economic conditions and land use. Recently, floods increased due to rapid urbanization and human activity in the lowland. Therefore, integrated management of total basin system is necessary to get the secure society. Typhoon ‘Rusa’ swept through eastern and southern parts of South Korea in the 2002. This pity experience gave us valuable knowledge that could be used to mitigate the future flood hazards. The purpose of this study is to construct the digital maps of the multi-factors related to urban flood concerning geomorphologic characteristics, land cover, and surface wetness. Parameters particularly consider geomorphologic functional unit, geomorphologic parameters derived from DEM (digital elevation model), and land use. The research area is Nakdong River Basin in S. Korea. As a result of preliminary analysis for Pusan area, the vulnerability map and the flood-prone areas can be extracted by applying spatial analysis on GIS (geographic information system).

  18. Long-period amplification in deep alluvial basins and consequences for site-specific probabilistic seismic-hazard: the case of Castelleone in the Po Plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Barani, S.; Mascandola, C.; Massa, M.; Spallarossa, D.

    2017-12-01

    The recent Emilia seismic sequence (Northern Italy) occurred at the end of the first half of 2012 with main shock of Mw6.1 highlighted the importance of studying site effects in the Po Plain, the larger and deeper sedimentary basin in Italy. As has long been known, long-period amplification related to deep sedimentary basins can significantly affect the characteristics of the ground-motion induced by strong earthquakes. It follows that the effects of deep sedimentary deposits on ground shaking require special attention during the definition of the design seismic action. The work presented here analyzes the impact of deep-soil discontinuities on ground-motion amplification, with particular focus on long-period probabilistic seismic-hazard assessment. The study focuses on the site of Castelleone, where a seismic station of the Italian National Seismic Network has been recording since 2009. Our study includes both experimental and numerical site response analyses. Specifically, extensive active and passive geophysical measurements were carried out in order to define a detailed shear-wave velocity (VS) model to be used in the numerical analyses. These latter are needed to assess the site-specific ground-motion hazard. Besides classical seismic refraction profiles and multichannel analysis of surface waves, we analyzed ambient vibration measurements in both single and array configurations. The VS profile was determined via joint inversion of the experimental phase-velocity dispersion curve with the ellipticity curve derived from horizontal-to-vertical spectral ratios. The profile shows two main discontinuities at depths of around 160 and 1350 m, respectively. The probabilistic site-specific hazard was assessed in terms of both spectral acceleration and displacement. A partially non-ergodic approach was adopted. We have found that the spectral acceleration hazard is barely sensitive to long-period (up to 10 s) amplification related to the deeper discontinuity whereas the displacement hazard is strongly affected. Our results show that neglecting the effects of the deeper discontinuity implies an underestimation of the hazard of up to about 49% for a mean return period (MRP) of 475 years and 57% for an MRP of 2475 years, with possible consequences on the design of very tall buildings and large bridges.

  19. Postwildfire debris flows hazard assessment for the area burned by the 2011 Track Fire, northeastern New Mexico and southeastern Colorado

    USGS Publications Warehouse

    Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.

    2011-01-01

    In June 2011, the Track Fire burned 113 square kilometers in Colfax County, northeastern New Mexico, and Las Animas County, southeastern Colorado, including the upper watersheds of Chicorica and Raton Creeks. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from basins burned by the Track Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of post-fire debris flows following the fire. In response to a design storm of 38 millimeters of rain in 30 minutes (10-year recurrence-interval), the probability of debris flow estimated for basins burned by the Track fire ranged between 2 and 97 percent, with probabilities greater than 80 percent identified for the majority of the tributary basins to Raton Creek in Railroad Canyon; six basins that flow into Lake Maloya, including the Segerstrom Creek and Swachheim Creek basins; two tributary basins to Sugarite Canyon, and an unnamed basin on the eastern flank of the burned area. Estimated debris-flow volumes ranged from 30 cubic meters to greater than 100,000 cubic meters. The largest volumes (greater than 100,000 cubic meters) were estimated for Segerstrom Creek and Swachheim Creek basins, which drain into Lake Maloya. The Combined Relative Debris-Flow Hazard Ranking identifies the Segerstrom Creek and Swachheim Creek basins as having the highest probability of producing the largest debris flows. This finding indicates the greatest post-fire debris-flow impacts may be expected to Lake Maloya. In addition, Interstate Highway 25, Raton Creek and the rail line in Railroad Canyon, County road A-27, and State Highway 526 in Sugarite Canyon may also be affected where they cross drainages downstream from recently burned basins. Although this assessment indicates that a rather large debris flow (approximately 42,000 cubic meters) may be generated from the basin above the City of Raton (basin 9) in response to the design storm, the probability of such an event is relatively low (approximately 10 percent). Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into the City of Raton. In addition, even small debris flows may affect structures at or downstream from basin outlets and increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Track Fire.

  20. Late Quaternary sediment-accumulation rates within the inner basins of the California Continental Borderland in support of geologic hazard evaluation

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.W.

    2009-01-01

    An evaluation of the geologic hazards of the inner California Borderland requires determination of the timing for faulting and mass-movement episodes during the Holocene. Our effort focused on basin slopes and turbidite systems on the basin floors for the area between Santa Barbara and San Diego, California. Dating condensed sections on slopes adjacent to fault zones provides better control on fault history where high-resolution, seismic-reflection data can be used to correlate sediment between the core site and the fault zones. This study reports and interprets 147 radiocarbon dates from 43 U.S. Geological Survey piston cores as well as 11 dates from Ocean Drilling Program Site 1015 on the floor of Santa Monica Basin. One hundred nineteen dates from 39 of the piston cores have not previously been published. Core locations were selected for hazard evaluation, but despite the nonuniform distribution of sample locations, the dates obtained for the late Quaternary deposits are useful for documenting changes in sediment-accumulation rates during the past 30 ka. Cores from basins receiving substantial sediment from rivers, i.e., Santa Monica Basin and the Gulf of Santa Catalina, show a decrease in sediment supply during the middle Holocene, but during the late Holocene after sea level had reached the current highstand condition, rates then increased partly in response to an increase in El Ni??o-Southern Oscillation events during the past 3.5 ka. ?? 2009 The Geological Society of America.

  1. Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India.

    PubMed

    Giri, Soma; Singh, Abhay Kumar

    2015-03-01

    Groundwater samples were collected from 30 sampling sites throughout the Subarnarekha River Basin for source apportionment and risk assessment studies. The concentrations of As, Ba, Cd, Cr, Co, Cu, Fe, Mn, Mo, Ni, Se, Sr, V and Zn were determined using inductively coupled plasma-mass spectrometry (ICP-MS). The results demonstrated that concentrations of the metals showed significant spatial variation with some of the metals like As, Mn, Fe, Cu and Se exceeding the drinking water standards at some locations. Principal component analysis (PCA) outcome of four factors that together explained 84.99 % of the variance with >1 initial eigenvalue indicated that both innate and anthropogenic activities are contributing factors as source of metal in groundwater of Subarnarekha River Basin. Risk of metals on human health was then evaluated using hazard quotients (HQ) and cancer risk by ingestion for adult and child, and it was indicated that Mn was the most important pollutant leading to non-carcinogenic concerns. The carcinogenic risk of As for adult and child was within the acceptable cancer risk value of 1 × 10(-4). The largest contributors to chronic risks were Mn, Co and As. Considering the geometric mean concentration of metals, the hazard index (HI) for adult was above unity. Considering all the locations, the HI varied from 0.18 to 11.34 and 0.15 to 9.71 for adult and child, respectively, suggesting that the metals posed hazard by oral intake considering the drinking water pathway.

  2. Hydro-meteorological risk reduction and climate change adaptation in the Sava River Basin

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Šraj, Mojca; Kryžanowski, Andrej

    2017-04-01

    The Sava River Basin covered the teritory of several countries. There were, in past thirty years, several flood hazard events with almost hundred years return period. Parts of the basin suffer by severe droughts also. In the presentation we covered questions of: • Flood hazard in complex hydrology structure • Landslide and flush flood in mountainous regions • Floods on karst polje • Flood risk management in the complex international and hydrological condition. • Impact of man made structures: hydropower storages, inundation ponds, river regulation, alternate streams, levees system, pumping stations, Natura 2000 areas etc. • How to manage droughts in the international river basin The basin is well covered by information and managed by international the SRB Commission (http://savacommission.org/) that could help. We develop study for climate change impact on floods on entire river basin financing by UNECE. There is also study provide climate change impact on the water management provide by World Bank and on which we take part. Recently is out call by world bank for study »Flood risk management plan for the SRB«.

  3. Geomorphic Flood Area (GFA): a QGIS tool for a cost-effective delineation of the floodplains

    NASA Astrophysics Data System (ADS)

    Samela, Caterina; Albano, Raffaele; Sole, Aurelia; Manfreda, Salvatore

    2017-04-01

    The importance of delineating flood hazard and risk areas at a global scale has been highlighted for many years. However, its complete achievement regularly encounters practical difficulties, above all the lack of data and implementation costs. In conditions of scarce data availability (e.g. ungauged basins, large-scale analyses), a fast and cost-effective floodplain delineation can be carried out using geomorphic methods (e.g., Manfreda et al., 2011; 2014). In particular, an automatic DEM-based procedure has been implemented in an open-source QGIS plugin named Geomorphic Flood Area - tool (GFA - tool). This tool performs a linear binary classification based on the recently proposed Geomorphic Flood Index (GFI), which exhibited high classification accuracy and reliability in several test sites located in Europe, United States and Africa (Manfreda et al., 2015; Samela et al., 2016, 2017; Samela, 2016). The GFA - tool is designed to make available to all users the proposed procedure, that includes a number of operations requiring good geomorphic and GIS competences. It allows computing the GFI through terrain analysis, turning it into a binary classifier, and training it on the base of a standard inundation map derived for a portion of the river basin (a minimum of 2% of the river basin's area is suggested) using detailed methods of analysis (e.g. flood hazard maps produced by emergency management agencies or river basin authorities). Finally, GFA - tool allows to extend the classification outside the calibration area to delineate the flood-prone areas across the entire river basin. The full analysis has been implemented in this plugin with a user-friendly interface that should make it easy to all user to apply the approach and produce the desired results. Keywords: flood susceptibility; data scarce environments; geomorphic flood index; linear binary classification; Digital elevation models (DEMs). References Manfreda, S., Di Leo, M., Sole, A., (2011). Detection of Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, 16(10), 781-790. Manfreda, S., Nardi, F., Samela, C., Grimaldi, S., Taramasso, A. C., Roth, G., & Sole, A. (2014). Investigation on the Use of Geomorphic Approaches for the Delineation of Flood Prone Areas, Journal of Hydrology, 517, 863-876. Manfreda, S., Samela, C., Gioia, A., Consoli, G., Iacobellis, V., Giuzio, L., & Sole, A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Natural Hazards, Vol. 79 (2), pp 735-754. Samela, C. (2016), 100-year flood susceptibility maps for the continental U.S. derived with a geomorphic method. University of Basilicata. Dataset. Samela, C., Manfreda, S., Paola, F. D., Giugni, M., Sole, A., & Fiorentino, M. (2016). DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa. Journal of Hydrologic Engineering, 21(2), 1-10. Samela, C., Troy, T.J., Manfreda, S. (2017). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments, Advances in Water Resources (under review).

  4. [Multicriteria evaluation of environmental risk exposure using a geographic information system in Argentina].

    PubMed

    Pietri, Diana De; Dietrich, Patricia; Mayo, Patricia; Carcagno, Alejandro

    2011-10-01

    Develop a spatial model that includes environmental factors posing a health hazard, for application in the Matanza-Riachuelo River Basin (MRB) in Argentina. Multicriteria evaluation procedures were used with geographic information systems to obtain territorial zoning based on the degree of suitability for residence. Variables that characterize the habitability of housing and potential sources of basin pollution were geographically referenced. Health information was taken from the Risk Factor Survey (RFS) to measure the relative risk of living in unsuitable areas (exposed population) compared with suitable areas (unexposed population). Sixty percent of the MRB area is in suitable condition, a situation that affects 40% of residents. The rest of the population lives in unsuitable territory, and 6% live in the basin's most unsuitable conditions. Environmental conditions that are detrimental to health in the unsuitable areas became evident during the interviews through three of the pathologies considered: diarrheal diseases, respiratory diseases, and cancer. A regional analysis that provides valid information to support decisionmaking was obtained. Considering the basin as a unit of analysis allowed the use of a single protocol to undertake comprehensive measurement of the magnitude of risk and, thus, set priorities.

  5. Stream network analysis and geomorphic flood plain mapping from orbital and suborbital remote sensing imagery application to flood hazard studies in central Texas

    NASA Technical Reports Server (NTRS)

    Baker, V. R. (Principal Investigator); Holz, R. K.; Hulke, S. D.; Patton, P. C.; Penteado, M. M.

    1975-01-01

    The author has identified the following significant results. Development of a quantitative hydrogeomorphic approach to flood hazard evaluation was hindered by (1) problems of resolution and definition of the morphometric parameters which have hydrologic significance, and (2) mechanical difficulties in creating the necessary volume of data for meaningful analysis. Measures of network resolution such as drainage density and basin Shreve magnitude indicated that large scale topographic maps offered greater resolution than small scale suborbital imagery and orbital imagery. The disparity in network resolution capabilities between orbital and suborbital imagery formats depends on factors such as rock type, vegetation, and land use. The problem of morphometric data analysis was approached by developing a computer-assisted method for network analysis. The system allows rapid identification of network properties which can then be related to measures of flood response.

  6. The British Geological Survey and the petroleum industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesher, J.A.

    1995-08-01

    The British Geological Survey is the UK`s national centre for earth science information with a parallel remit to operate internationally. The Survey`s work covers the full geoscience spectrum in energy, mineral and groundwater resources and associated implications for land use, geological hazards and environmental impact. Much of the work is conducted in collaboration with industry and academia, including joint funding opportunities. Activities relating directly to hydrocarbons include basin analysis, offshore geoscience mapping, hazard assessment, fracture characterization, biostratigraphy, sedimentology, seismology, geomagnetism and frontier data acquisition techniques, offshore. The BGS poster presentation illustrates the value of the collaborative approach through consortia supportmore » for regional offshore surveys, geotechnical hazard assessments and state-of-the-art R & D into multicomponent seismic imaging techniques, among others.« less

  7. Relative tectonics and debris flow hazards in the Beijing mountain area from DEM-derived geomorphic indices and drainage analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Weiming; Wang, Nan; Zhao, Min; Zhao, Shangmin

    2016-03-01

    The geomorphic setting of the tectonically active area around Beijing is a result of complex interactions involving Yanshan neotectonic movements and processes of erosion and deposition. The Beijing Mountain study area contains the junction of two mountain ranges (the Yanshan Mountains and the Taihang Mountains). Tectonic activity has significantly influenced the drainage system and the geomorphic situation in the area, leading to a high probability of the development of debris flows, which is one of the major abrupt geological disasters in the region. Based on 30-m-resolution ASTER GDEM data, a total of 752 drainage basins were extracted using ArcGIS software. A total of 705 debris flow valleys were visually interpreted from ALOS satellite images and published documents. Seven geomorphic indices were calculated for each basin including the relief amplitude, the hypsometric integral, the stream length gradient, the basin shape indices, the fractal dimension, the asymmetry factor, and the ratio of the valley floor width to the height. These geomorphic indices were divided into five classes and the ratio of the number of the debris flow valleys to the number of the drainage basins for each geomorphic index was computed and analyzed for every class. Average class values of the seven indices were used to derive an index of relative active tectonics (IRAT). The ratio of the number of the debris flow valleys to the number of the drainage basins was computed for every class of IRAT. The degree of probable risk level was then defined from the IRAT classes. Finally, the debris flow hazard was evaluated for each drainage basin based on the combined effect of probable risk level and occurrence frequency of the debris flows. The result showed a good correspondence between IRAT classes and the ratio of the number of the debris flow valleys to the number of the drainage basins. Approximately 65% of the drainage basins with occurred debris flow valleys are at a high risk level, while 43% of the drainage basins without occurred debris flow valleys are at a high risk level. A comparison with results from past studies demonstrated that the accuracy of these findings is greater than 85%, indicating that the basin topography created by rapid tectonic deformations is more favorable for debris flows.

  8. Emergency assessment of post-fire debris-flow hazards for the 2013 Springs Fire, Ventura County, California

    USGS Publications Warehouse

    Staley, Dennis M.

    2014-01-01

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Springs fire in Ventura County, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 9 of the 99 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 28 of the 99 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings, and that residents adhere to any evacuation orders.

  9. Flood Risk in the Danube basin under climate change

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Wortmann, Michel; del Rocio Rivas Lopez, Maria; Liersch, Stefan; Viet Nguyen, Dung; Hardwick, Stephen; Hattermann, Fred

    2017-04-01

    The projected increase in temperature is expected to intensify the hydrological cycle, and thus more intense precipitation is likely to increase hydro-meteorological extremes and flood hazard. However to assess the future dynamics of hazard and impact induced by these changes it is necessary to consider extreme events and to take a spatially differentiated perspective. The Future Danube Model is a multi-hazard and risk model suite for the Danube region which has been developed in the OASIS project. The model comprises modules for estimating potential perils from heavy precipitation, heat-waves, floods, droughts, and damage risk considering hydro-climatic extremes under current and climate change conditions. Web-based open Geographic Information Systems (GIS) technology allows customers to graphically analyze and overlay perils and other spatial information such as population density or assets exposed. The Future Danube Model combines modules for weather generation, hydrological and hydrodynamic processes, and supports risk assessment and adaptation planning support. This contribution analyses changes in flood hazard in the Danube basin and in flood risk for the German part of the Danube basin. As climate change input, different regionalized climate ensemble runs of the newest IPCC generation are used, the so-called Representative Concentration Pathways (RCPs). They are delivered by the CORDEX initiative (Coordinated Downscaling Experiments). The CORDEX data sample is extended using the statistical weather generator (IMAGE) in order to also consider extreme events. Two time slices are considered: near future 2020-2049 and far future 2050-2079. This data provides the input for the hydrological, hydraulic and flood loss model chain. Results for RCP4.5 and RCP8.5 indicate an increase in intensity and frequency of peak discharges and thus in flood hazard for many parts of the Danube basin.

  10. Decision support model for assessing aquifer pollution hazard and prioritizing groundwater resources management in the wet Pampa plain, Argentina.

    PubMed

    Lima, M Lourdes; Romanelli, Asunción; Massone, Héctor E

    2013-06-01

    This paper gives an account of the implementation of a decision support system for assessing aquifer pollution hazard and prioritizing subwatersheds for groundwater resources management in the southeastern Pampa plain of Argentina. The use of this system is demonstrated with an example from Dulce Stream Basin (1,000 km(2) encompassing 27 subwatersheds), which has high level of agricultural activities and extensive available data regarding aquifer geology. In the logic model, aquifer pollution hazard is assessed as a function of two primary topics: groundwater and soil conditions. This logic model shows the state of each evaluated landscape with respect to aquifer pollution hazard based mainly on the parameters of the DRASTIC and GOD models. The decision model allows prioritizing subwatersheds for groundwater resources management according to three main criteria including farming activities, agrochemical application, and irrigation use. Stakeholder participation, through interviews, in combination with expert judgment was used to select and weight each criterion. The resulting subwatershed priority map, by combining the logic and decision models, allowed identifying five subwatersheds in the upper and middle basin as the main aquifer protection areas. The results reasonably fit the natural conditions of the basin, identifying those subwatersheds with shallow water depth, loam-loam silt texture soil media and pasture land cover in the middle basin, and others with intensive agricultural activity, coinciding with the natural recharge area to the aquifer system. Major difficulties and some recommendations of applying this methodology in real-world situations are discussed.

  11. Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin.

    PubMed

    Nixdorf, Erik; Sun, Yuanyuan; Lin, Mao; Kolditz, Olaf

    2017-12-15

    The main objective of this study is to quantify the groundwater contamination risk of Songhua River Basin by applying a novel approach of integrating public datasets, web services and numerical modelling techniques. To our knowledge, this study is the first to establish groundwater risk maps for the entire Songhua River Basin, one of the largest and most contamination-endangered river basins in China. Index-based groundwater risk maps were created with GIS tools at a spatial resolution of 30arc sec by combining the results of groundwater vulnerability and hazard assessment. Groundwater vulnerability was evaluated using the DRASTIC index method based on public datasets at the highest available resolution in combination with numerical groundwater modelling. As a novel approach to overcome data scarcity at large scales, a web mapping service based data query was applied to obtain an inventory for potential hazardous sites within the basin. The groundwater risk assessment demonstrated that <1% of Songhua River Basin is at high or very high contamination risk. These areas were mainly located in the vast plain areas with hotspots particularly in the Changchun metropolitan area. Moreover, groundwater levels and pollution point sources were found to play a significantly larger impact in assessing these areas than originally assumed by the index scheme. Moderate contamination risk was assigned to 27% of the aquifers, predominantly associated with less densely populated agricultural areas. However, the majority of aquifer area in the sparsely populated mountain ranges displayed low groundwater contamination risk. Sensitivity analysis demonstrated that this novel method is valid for regional assessments of groundwater contamination risk. Despite limitations in resolution and input data consistency, the obtained groundwater contamination risk maps will be beneficial for regional and local decision-making processes with regard to groundwater protection measures, particularly if other data availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Assessing floods and droughts in the Mékrou River basin (West Africa): a combined household survey and climatic trends analysis approach

    NASA Astrophysics Data System (ADS)

    Markantonis, Vasileios; Farinosi, Fabio; Dondeynaz, Celine; Ameztoy, Iban; Pastori, Marco; Marletta, Luca; Ali, Abdou; Carmona Moreno, Cesar

    2018-05-01

    The assessment of natural hazards such as floods and droughts is a complex issue that demands integrated approaches and high-quality data. Especially in African developing countries, where information is limited, the assessment of floods and droughts, though an overarching issue that influences economic and social development, is even more challenging. This paper presents an integrated approach to assessing crucial aspects of floods and droughts in the transboundary Mékrou River basin (a portion of the Niger River basin in West Africa), combining climatic trends analysis and the findings of a household survey. The multivariable trend analysis estimates, at the biophysical level, the climate variability and the occurrence of floods and droughts. These results are coupled with an analysis of household survey data that reveals the behaviour and opinions of local residents regarding the observed climate variability and occurrence of flood and drought events, household mitigation measures, and the impacts of floods and droughts. Based on survey data analysis, the paper provides a per-household cost estimation of floods and droughts that occurred over a 2-year period (2014-2015). Furthermore, two econometric models are set up to identify the factors that influence the costs of floods and droughts to impacted households.

  13. Public awareness of landslide hazards: the Barranco de Tirajana, Gran Canaria, Spain

    NASA Astrophysics Data System (ADS)

    Carmen Solana, M.; Kilburn, Christopher R. J.

    2003-08-01

    When engineering methods are not cost-effective in reducing the danger from landslides, it is crucial that vulnerable communities are aware of the hazards they face and know how to respond in an emergency. Such awareness can best be maintained by a public-information programme designed around a population's existing perception of landslides. As a case study to gauge the awareness of landslide hazards, a survey has been conducted among vulnerable communities in the Barranco de Tirajana (BdT) Basin on Gran Canaria, one of the most active zones of slope movement in the Canary Islands. Results from a formal questionnaire, together with anecdotal evidence, suggest that the communities are generally aware that landslides occur in the Basin and can be dangerous, but that they rarely consider slope movements as a potential hazard to themselves. Consequently, the communities are also uncertain about the most effective response during an emergency. Another result is that there is little pressure on local authorities either to prepare contingency plans in case of major destruction by landslides, or to enforce stricter building codes to reduce the persistent damage caused by creep. Having highlighted the weaknesses in hazard perception, the results of the survey have been used to design an awareness programme for the Basin. They may also be used as a basis for similar initiatives elsewhere.

  14. Analysis of flood inundation in ungauged basins based on multi-source remote sensing data.

    PubMed

    Gao, Wei; Shen, Qiu; Zhou, Yuehua; Li, Xin

    2018-02-09

    Floods are among the most expensive natural hazards experienced in many places of the world and can result in heavy losses of life and economic damages. The objective of this study is to analyze flood inundation in ungauged basins by performing near-real-time detection with flood extent and depth based on multi-source remote sensing data. Via spatial distribution analysis of flood extent and depth in a time series, the inundation condition and the characteristics of flood disaster can be reflected. The results show that the multi-source remote sensing data can make up the lack of hydrological data in ungauged basins, which is helpful to reconstruct hydrological sequence; the combination of MODIS (moderate-resolution imaging spectroradiometer) surface reflectance productions and the DFO (Dartmouth Flood Observatory) flood database can achieve the macro-dynamic monitoring of the flood inundation in ungauged basins, and then the differential technique of high-resolution optical and microwave images before and after floods can be used to calculate flood extent to reflect spatial changes of inundation; the monitoring algorithm for the flood depth combining RS and GIS is simple and easy and can quickly calculate the depth with a known flood extent that is obtained from remote sensing images in ungauged basins. Relevant results can provide effective help for the disaster relief work performed by government departments.

  15. Postwildfire preliminary debris flow hazard assessment for the area burned by the 2011 Las Conchas Fire in north-central New Mexico

    USGS Publications Warehouse

    Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.

    2011-01-01

    The Las Conchas Fire during the summer of 2011 was the largest in recorded history for the state of New Mexico, burning 634 square kilometers in the Jemez Mountains of north-central New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 321 basins burned by the Las Conchas Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of debris flows following the fire. In response to a design storm of 28.0 millimeters of rain in 30 minutes (10-year recurrence interval), the probabilities of debris flows estimated for basins burned by the Las Conchas Fire were greater than 80 percent for two-thirds (67 percent) of the modeled basins. Basins with a high (greater than 80 percent) probability of debris-flow occurrence were concentrated in tributaries to Santa Clara and Rio del Oso Canyons in the northeastern part of the burned area; some steep areas in the Valles Caldera National Preserve, Los Alamos, and Guaje Canyons in the east-central part of the burned area; tributaries to Peralta, Colle, Bland, and Cochiti canyons in the southwestern part of the burned area; and tributaries to Frijoles, Alamo, and Capulin Canyons in the southeastern part of the burned area (within Bandelier National Monument). Estimated debris-flow volumes ranged from 400 cubic meters to greater than 72,000 cubic meters. The largest volumes (greater than 40,000 cubic meters) were estimated for basins in Santa Clara, Los Alamos, and Water Canyons, and for two basins at the northeast edge of the burned area tributary to Rio del Oso and Vallecitos Creek. The Combined Relative Debris-Flow Hazard Rankings identify the areas of highest probability of the largest debris flows. Basins with high Combined Relative Debris-Flow Hazard Rankings include upper Santa Clara Canyon in the northern section of the burn scar, and portions of Peralta, Colle, Bland, Cochiti, Capulin, Alamo, and Frijoles Canyons in the southern section of the burn scar. Three basins with high Combined Relative Debris-Flow Hazard Rankings also occur in areas upstream from the city of Los Alamos—the city is home to and surrounded by numerous technical sites for the Los Alamos National Laboratory. Potential debris flows in the burned area could affect the water supply for Santa Clara Pueblo and several recreational lakes, as well as recreational and archeological resources in Bandelier National Monument. Debris flows could damage bridges and culverts along State Highway 501 and other roadways. Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into areas downstream from the modeled basins along the valley floors, where they could affect human life, property, agriculture, and infrastructure in those areas. Additionally, further investigation is needed to assess the potential for debris flows to affect structures at or downstream from basin outlets and to increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Las Conchas Fire.

  16. Postwildfire debris-flow hazard assessment of the area burned by the 2012 Little Bear Fire, south-central New Mexico

    USGS Publications Warehouse

    Tillery, Anne C.; Matherne, Anne Marie

    2013-01-01

    A preliminary hazard assessment was developed of the debris-flow potential from 56 drainage basins burned by the Little Bear Fire in south-central New Mexico in June 2012. The Little Bear Fire burned approximately 179 square kilometers (km2) (44,330 acres), including about 143 km2 (35,300 acres) of National Forest System lands of the Lincoln National Forest. Within the Lincoln National Forest, about 72 km2 (17,664 acres) of the White Mountain Wilderness were burned. The burn area also included about 34 km2 (8,500 acres) of private lands. Burn severity was high or moderate on 53 percent of the burn area. The area burned is at risk of substantial postwildfire erosion, such as that caused by debris flows and flash floods. A postwildfire debris-flow hazard assessment of the area burned by the Little Bear Fire was performed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture Forest Service, Lincoln National Forest. A set of two empirical hazard-assessment models developed by using data from recently burned drainage basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burn area drainage network and for selected drainage basins within the burn area. The models incorporate measures of areal burn extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. Relative hazard rankings of postwildfire debris flows were produced by summing the estimated probability and volume ranking to illustrate those areas with the highest potential occurrence of debris flows with the largest volumes. The probability that a drainage basin could produce debris flows and the volume of a possible debris flow at the basin outlet were estimated for three design storms: (1) a 2-year-recurrence, 30-minute-duration rainfall of 27 millimeters (mm) (a 50 percent chance of occurrence in any given year); (2) a 10-year-recurrence, 30-minute-duration rainfall of 42 mm (a 10 percent chance of occurrence in any given year); and (3) a 25-year-recurrence, 30-minute-duration rainfall of 51 mm (a 4 percent chance of occurrence in any given year). Thirty-nine percent of the 56 drainage basins modeled have a high (greater than 80 percent) probability of debris flows in response to the 2-year design storm; 80 percent of the modeled drainage basins have a high probability of debris flows in response to the 25-year design storm. For debris-flow volume, 7 percent of the modeled drainage basins have an estimated debris-flow volume greater than 100,000 cubic meters (m3) in response to the 2-year design storm; 9 percent of the drainage basins are included in the greater than 100,000 m3 category for both the 10-year and the 25-year design storms. Drainage basins in the greater than 100,000 m3 volume category also received the highest combined hazard ranking. The maps presented herein may be used to prioritize areas where emergency erosion mitigation or other protective measures may be needed prior to rainstorms within these drainage basins, their outlets, or areas downstream from these drainage basins within the 2- to 3-year period of vulnerability. This work is preliminary and is subject to revision. The assessment herein is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.

  17. The Dependency of Probabilistic Tsunami Hazard Assessment on Magnitude Limits of Seismic Sources in the South China Sea and Adjoining Basins

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Yuan, Ye; Xu, Zhiguo; Wang, Zongchen; Wang, Juncheng; Wang, Peitao; Gao, Yi; Hou, Jingming; Shan, Di

    2017-06-01

    The South China Sea (SCS) and its adjacent small basins including Sulu Sea and Celebes Sea are commonly identified as tsunami-prone region by its historical records on seismicity and tsunamis. However, quantification of tsunami hazard in the SCS region remained an intractable issue due to highly complex tectonic setting and multiple seismic sources within and surrounding this area. Probabilistic Tsunami Hazard Assessment (PTHA) is performed in the present study to evaluate tsunami hazard in the SCS region based on a brief review on seismological and tsunami records. 5 regional and local potential tsunami sources are tentatively identified, and earthquake catalogs are generated using Monte Carlo simulation following the Tapered Gutenberg-Richter relationship for each zone. Considering a lack of consensus on magnitude upper bound on each seismic source, as well as its critical role in PTHA, the major concern of the present study is to define the upper and lower limits of tsunami hazard in the SCS region comprehensively by adopting different corner magnitudes that could be derived by multiple principles and approaches, including TGR regression of historical catalog, fault-length scaling, tectonic and seismic moment balance, and repetition of historical largest event. The results show that tsunami hazard in the SCS and adjoining basins is subject to large variations when adopting different corner magnitudes, with the upper bounds 2-6 times of the lower. The probabilistic tsunami hazard maps for specified return periods reveal much higher threat from Cotabato Trench and Sulawesi Trench in the Celebes Sea, whereas tsunami hazard received by the coasts of the SCS and Sulu Sea is relatively moderate, yet non-negligible. By combining empirical method with numerical study of historical tsunami events, the present PTHA results are tentatively validated. The correspondence lends confidence to our study. Considering the proximity of major sources to population-laden cities around the SCS region, the tsunami hazard and risk should be further highlighted in the future.

  18. Investigating impacts of natural and human-induced environmental changes on hydrological processes and flood hazards using a GIS-based hydrological/hydraulic model and remote sensing data

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    Natural and human-induced environmental changes have been altering the earth's surface and hydrological processes, and thus directly contribute to the severity of flood hazards. To understand these changes and their impacts, this research developed a GIS-based hydrological and hydraulic modeling system, which incorporates state-of-the-art remote sensing data to simulate flood under various scenarios. The conceptual framework and technical issues of incorporating multi-scale remote sensing data have been addressed. This research develops an object-oriented hydrological modeling framework. Compared with traditional lumped or cell-based distributed hydrological modeling frameworks, the object-oriented framework allows basic spatial hydrologic units to have various size and irregular shape. This framework is capable of assimilating various GIS and remotely-sensed data with different spatial resolutions. It ensures the computational efficiency, while preserving sufficient spatial details of input data and model outputs. Sensitivity analysis and comparison of high resolution LIDAR DEM with traditional USGS 30m resolution DEM suggests that the use of LIDAR DEMs can greatly reduce uncertainty in calibration of flow parameters in the hydrologic model and hence increase the reliability of modeling results. In addition, subtle topographic features and hydrologic objects like surface depressions and detention basins can be extracted from the high resolution LiDAR DEMs. An innovative algorithm has been developed to efficiently delineate surface depressions and detention basins from LiDAR DEMs. Using a time series of Landsat images, a retrospective analysis of surface imperviousness has been conducted to assess the hydrologic impact of urbanization. The analysis reveals that with rapid urbanization the impervious surface has been increased from 10.1% to 38.4% for the case study area during 1974--2002. As a result, the peak flow for a 100-year flood event has increased by 20% and the floodplain extent has expanded by about 21.6%. The quantitative analysis suggests that the large regional detentions basins have effectively offset the adverse effect of increased impervious surface during the urbanization process. Based on the simulation and scenario analyses of land subsidence and potential climate changes, some planning measures and policy implications have been derived for guiding smart urban growth and sustainable resource development and management to minimize flood hazards.

  19. Potential seismic hazards and tectonics of the upper Cook Inlet basin, Alaska, based on analysis of Pliocene and younger deformation

    USGS Publications Warehouse

    Haeussler, Peter J.; Bruhn, Ronald L.; Pratt, Thomas L.

    2000-01-01

    The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6–7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.

  20. Estimated probability of postwildfire debris flows in the 2012 Whitewater-Baldy Fire burn area, southwestern New Mexico

    USGS Publications Warehouse

    Tillery, Anne C.; Matherne, Anne Marie; Verdin, Kristine L.

    2012-01-01

    In May and June 2012, the Whitewater-Baldy Fire burned approximately 1,200 square kilometers (300,000 acres) of the Gila National Forest, in southwestern New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 128 basins burned by the Whitewater-Baldy Fire. A pair of empirical hazard-assessment models developed by using data from recently burned basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and for selected drainage basins within the burned area. The models incorporate measures of areal burned extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. In response to the 2-year-recurrence, 30-minute-duration rainfall, modeling indicated that four basins have high probabilities of debris-flow occurrence (greater than or equal to 80 percent). For the 10-year-recurrence, 30-minute-duration rainfall, an additional 14 basins are included, and for the 25-year-recurrence, 30-minute-duration rainfall, an additional eight basins, 20 percent of the total, have high probabilities of debris-flow occurrence. In addition, probability analysis along the stream segments can identify specific reaches of greatest concern for debris flows within a basin. Basins with a high probability of debris-flow occurrence were concentrated in the west and central parts of the burned area, including tributaries to Whitewater Creek, Mineral Creek, and Willow Creek. Estimated debris-flow volumes ranged from about 3,000-4,000 cubic meters (m3) to greater than 500,000 m3 for all design storms modeled. Drainage basins with estimated volumes greater than 500,000 m3 included tributaries to Whitewater Creek, Willow Creek, Iron Creek, and West Fork Mogollon Creek. Drainage basins with estimated debris-flow volumes greater than 100,000 m3 for the 25-year-recurrence event, 24 percent of the basins modeled, also include tributaries to Deep Creek, Mineral Creek, Gilita Creek, West Fork Gila River, Mogollon Creek, and Turkey Creek, among others. Basins with the highest combined probability and volume relative hazard rankings for the 25-year-recurrence rainfall include tributaries to Whitewater Creek, Mineral Creek, Willow Creek, West Fork Gila River, West Fork Mogollon Creek, and Turkey Creek. Debris flows from Whitewater, Mineral, and Willow Creeks could affect the southwestern New Mexico communities of Glenwood, Alma, and Willow Creek. The maps presented herein may be used to prioritize areas where emergency erosion mitigation or other protective measures may be necessary within a 2- to 3-year period of vulnerability following the Whitewater-Baldy Fire. This work is preliminary and is subject to revision. It is being provided because of the need for timely "best science" information. The assessment herein is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.

  1. Analysis of Site Effect in the Izmit Basin of Turkey by Wave Propagation Simulation Using the Spectral Element Method: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Firtana Elcomert, K.; Kocaoglu, A. H.

    2013-12-01

    Sedimentary basins generally cause significant ground motion amplification during an earthquake. Along with the resonance controlled by the impedance contrast between the sedimentary cover and bedrock, surface waves generated within the basin make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D and/or 3-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be controlled by the northern branch of the North Anatolian Fault Zone. A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. This work presents some of the preliminary results obtained from 2-D and 3-D seismic wave propagation simulations using the spectral element method, which is based on high order polynomial approximation of the weak formulation of the wave equation. In this study, the numerical simulations were carried out with SPECFEM2D/3D program. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with higher amplitudes on seismograms recorded at the free surface. Furthermore, modeling clearly reveals that observed seismograms include surface waves whose excitation is clearly related with the basin geometry.

  2. Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania

    PubMed Central

    2013-01-01

    Background The objective of this study was to examine the potential environmental risk of tailings resulted after precious and base metal ores processing, stored in seven impoundments located in the Aries river basin, Romania. The tailings were characterized by mineralogical and elemental composition, contamination indices, acid rock drainage generation potential and water leachability of hazardous/priority hazardous metals and ions. Multivariate statistical methods were used for data interpretation. Results Tailings were found to be highly contaminated with several hazardous/priority hazardous metals (As, Cu, Cd, Pb), and pose potential contamination risk for soil, sediments, surface and groundwater. Two out of the seven studied impoundments does not satisfy the criteria required for inert wastes, shows acid rock drainage potential and thus can contaminate the surface and groundwater. Three impoundments were found to be highly contaminated with As, Pb and Cd, two with As and other two with Cu. The tailings impoundments were grouped based on the enrichment factor, geoaccumulation index, contamination factor and contamination degree of 7 hazardous/priority hazardous metals (As, Cd, Cr, Cu, Ni, Pb, Zn) considered typical for the studied tailings. Principal component analysis showed that 47% of the elemental variability was attributable to alkaline silicate rocks, 31% to acidic S-containing minerals, 12% to carbonate minerals and 5% to biogenic elements. Leachability of metals and ions was ascribed in proportion of 61% to silicates, 11% to acidic minerals and 6% to the organic matter. A variability of 18% was attributed to leachability of biogenic elements (Na, K, Cl-, NO3-) with no potential environmental risk. Pattern recognition by agglomerative hierarchical clustering emphasized the grouping of impoundments in agreement with their contamination degree and acid rock drainage generation potential. Conclusions Tailings stored in the studied impoundments were found to be contaminated with some hazardous/ priority hazardous metals, fluoride and sulphate and thus presents different contamination risk for the environment. A long term monitoring program of these tailings impoundments and the expansion of the ecologization measures in the area is required. PMID:23311708

  3. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (lake Caviahue, Argentina)

    NASA Astrophysics Data System (ADS)

    Müller, Anne; Scharf, Burkhard; von Tümpling, Wolf; Pirrung, Michael

    2009-03-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout as well as from river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue Volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  4. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (Lake Caviahue, Argentina)

    NASA Astrophysics Data System (ADS)

    Mueller, A.; Pirrung, M.; Scharf, B.; von Tuempling, W.

    2007-05-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout, river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  5. Probabilistic Risk Analysis of Run-up and Inundation in Hawaii due to Distant Tsunamis

    NASA Astrophysics Data System (ADS)

    Gica, E.; Teng, M. H.; Liu, P. L.

    2004-12-01

    Risk assessment of natural hazards usually includes two aspects, namely, the probability of the natural hazard occurrence and the degree of damage caused by the natural hazard. Our current study is focused on the first aspect, i.e., the development and evaluation of a methodology that can predict the probability of coastal inundation due to distant tsunamis in the Pacific Basin. The calculation of the probability of tsunami inundation could be a simple statistical problem if a sufficiently long record of field data on inundation was available. Unfortunately, such field data are very limited in the Pacific Basin due to the reason that field measurement of inundation requires the physical presence of surveyors on site. In some areas, no field measurements were ever conducted in the past. Fortunately, there are more complete and reliable historical data on earthquakes in the Pacific Basin partly because earthquakes can be measured remotely. There are also numerical simulation models such as the Cornell COMCOT model that can predict tsunami generation by an earthquake, propagation in the open ocean, and inundation onto a coastal land. Our objective is to develop a methodology that can link the probability of earthquakes in the Pacific Basin with the inundation probability in a coastal area. The probabilistic methodology applied here involves the following steps: first, the Pacific Rim is divided into blocks of potential earthquake sources based on the past earthquake record and fault information. Then the COMCOT model is used to predict the inundation at a distant coastal area due to a tsunami generated by an earthquake of a particular magnitude in each source block. This simulation generates a response relationship between the coastal inundation and an earthquake of a particular magnitude and location. Since the earthquake statistics is known for each block, by summing the probability of all earthquakes in the Pacific Rim, the probability of the inundation in a coastal area can be determined through the response relationship. Although the idea of the statistical methodology applied here is not new, this study is the first to apply it to study the probability of inundation caused by earthquake-generated distant tsunamis in the Pacific Basin. As a case study, the methodology is applied to predict the tsunami inundation risk in Hilo Bay in Hawaii. Since relatively more field data on tsunami inundation are available for Hilo Bay, this case study can help to evaluate the applicability of the methodology for predicting tsunami inundation risk in the Pacific Basin. Detailed results will be presented at the AGU meeting.

  6. Emergency assessment of post-fire debris-flow hazards for the 2013 Rim Fire, Stanislaus National Forest and Yosemite National Park, California

    USGS Publications Warehouse

    Staley, Dennis M.

    2013-01-01

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Rim fire in Yosemite National Park and the Stanislaus National Forest, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 28 of the 1,238 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 901 of the 1,238 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.

  7. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference.

    PubMed

    Xiao, Yangfan; Yi, Shanzhen; Tang, Zhongqian

    2017-12-01

    Flood is the most common natural hazard in the world and has caused serious loss of life and property. Assessment of flood prone areas is of great importance for watershed management and reduction of potential loss of life and property. In this study, a framework of multi-criteria analysis (MCA) incorporating geographic information system (GIS), fuzzy analytic hierarchy process (AHP) and spatial ordered weighted averaging (OWA) method was developed for flood hazard assessment. The factors associated with geographical, hydrological and flood-resistant characteristics of the basin were selected as evaluation criteria. The relative importance of the criteria was estimated through fuzzy AHP method. The OWA method was utilized to analyze the effects of different risk attitudes of the decision maker on the assessment result. The spatial ordered weighted averaging method with spatially variable risk preference was implemented in the GIS environment to integrate the criteria. The advantage of the proposed method is that it has considered spatial heterogeneity in assigning risk preference in the decision-making process. The presented methodology has been applied to the area including Hanyang, Caidian and Hannan of Wuhan, China, where flood events occur frequently. The outcome of flood hazard distribution presents a tendency of high risk towards populated and developed areas, especially the northeast part of Hanyang city, which has suffered frequent floods in history. The result indicates where the enhancement projects should be carried out first under the condition of limited resources. Finally, sensitivity of the criteria weights was analyzed to measure the stability of results with respect to the variation of the criteria weights. The flood hazard assessment method presented in this paper is adaptable for hazard assessment of a similar basin, which is of great significance to establish counterplan to mitigate life and property losses. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  9. A Collaborative Effort Between Caribbean States for Tsunami Numerical Modeling: Case Study CaribeWave15

    NASA Astrophysics Data System (ADS)

    Chacón-Barrantes, Silvia; López-Venegas, Alberto; Sánchez-Escobar, Rónald; Luque-Vergara, Néstor

    2018-04-01

    Historical records have shown that tsunami have affected the Caribbean region in the past. However infrequent, recent studies have demonstrated that they pose a latent hazard for countries within this basin. The Hazard Assessment Working Group of the ICG/CARIBE-EWS (Intergovernmental Coordination Group of the Early Warning System for Tsunamis and Other Coastal Threats for the Caribbean Sea and Adjacent Regions) of IOC/UNESCO has a modeling subgroup, which seeks to develop a modeling platform to assess the effects of possible tsunami sources within the basin. The CaribeWave tsunami exercise is carried out annually in the Caribbean region to increase awareness and test tsunami preparedness of countries within the basin. In this study we present results of tsunami inundation using the CaribeWave15 exercise scenario for four selected locations within the Caribbean basin (Colombia, Costa Rica, Panamá and Puerto Rico), performed by tsunami modeling researchers from those selected countries. The purpose of this study was to provide the states with additional results for the exercise. The results obtained here were compared to co-seismic deformation and tsunami heights within the basin (energy plots) provided for the exercise to assess the performance of the decision support tools distributed by PTWC (Pacific Tsunami Warning Center), the tsunami service provider for the Caribbean basin. However, comparison of coastal tsunami heights was not possible, due to inconsistencies between the provided fault parameters and the modeling results within the provided exercise products. Still, the modeling performed here allowed to analyze tsunami characteristics at the mentioned states from sources within the North Panamá Deformed Belt. The occurrence of a tsunami in the Caribbean may affect several countries because a great variety of them share coastal zones in this basin. Therefore, collaborative efforts similar to the one presented in this study, particularly between neighboring countries, are critical to assess tsunami hazard and increase preparedness within the countries.

  10. Fate of high loads of ammonia in a pond and wetland downstream from a hazardous waste disposal site.

    PubMed

    Cutrofello, Michele; Durant, John L

    2007-07-01

    Halls Brook (eastern Massachusetts, USA) is a significant source of total dissolved ammonia (sum of NH(3) and NH(4)(+); (NH(3))(T)) to the Aberjona River, a water body listed for NH(3) impairment on the Clean Water Act section 303(d) list. We hypothesized (1) that (NH(3))(T) in Halls Brook derived from a hazardous waste site via groundwater discharging to a two-basin pond that feeds the brook; and (2) that transport of (NH(3))(T) to the Aberjona River was controlled by lacustrine and wetland processes. To test these hypotheses we measured (NH(3))(T) levels in the brook, the pond, and a wetlands directly downstream of the pond during both dry and wet weather over a ten month period. In addition, we analyzed sediment cores and nitrogen isotopes, and performed mass balance calculations. Groundwater discharge from beneath the hazardous waste site was the major source of (NH(3))(T) (20-67 kg d(-1)) and salinity to the north basin of the pond. The salty bottom waters of the north basin were anoxic on all sampling dates, and exhibited relatively stable (NH(3))(T) concentrations between 200 and 600 mg Nl(-1). These levels were >100-times higher than typical background levels, and 8-24-times above the acute effects level for (NH(3))(T) toxicity. Bottom waters from the north basin continuously spill over into the south basin contributing approximately 50% of the (NH(3))(T) load entering this basin. The remainder comes from Halls Brook, which receives (NH(3))(T) loadings from as yet unknown sources upstream. During storm events up to 50% of the mass of (NH(3))(T) was flushed from the south basin and into the wetlands. The wetlands acted as a (NH(3))(T) sink in dry weather in the growing season and a discharge-dependent (NH(3))(T) source to the Aberjona River during rainstorms.

  11. A Collaborative Effort Between Caribbean States for Tsunami Numerical Modeling: Case Study CaribeWave15

    NASA Astrophysics Data System (ADS)

    Chacón-Barrantes, Silvia; López-Venegas, Alberto; Sánchez-Escobar, Rónald; Luque-Vergara, Néstor

    2017-10-01

    Historical records have shown that tsunami have affected the Caribbean region in the past. However infrequent, recent studies have demonstrated that they pose a latent hazard for countries within this basin. The Hazard Assessment Working Group of the ICG/CARIBE-EWS (Intergovernmental Coordination Group of the Early Warning System for Tsunamis and Other Coastal Threats for the Caribbean Sea and Adjacent Regions) of IOC/UNESCO has a modeling subgroup, which seeks to develop a modeling platform to assess the effects of possible tsunami sources within the basin. The CaribeWave tsunami exercise is carried out annually in the Caribbean region to increase awareness and test tsunami preparedness of countries within the basin. In this study we present results of tsunami inundation using the CaribeWave15 exercise scenario for four selected locations within the Caribbean basin (Colombia, Costa Rica, Panamá and Puerto Rico), performed by tsunami modeling researchers from those selected countries. The purpose of this study was to provide the states with additional results for the exercise. The results obtained here were compared to co-seismic deformation and tsunami heights within the basin (energy plots) provided for the exercise to assess the performance of the decision support tools distributed by PTWC (Pacific Tsunami Warning Center), the tsunami service provider for the Caribbean basin. However, comparison of coastal tsunami heights was not possible, due to inconsistencies between the provided fault parameters and the modeling results within the provided exercise products. Still, the modeling performed here allowed to analyze tsunami characteristics at the mentioned states from sources within the North Panamá Deformed Belt. The occurrence of a tsunami in the Caribbean may affect several countries because a great variety of them share coastal zones in this basin. Therefore, collaborative efforts similar to the one presented in this study, particularly between neighboring countries, are critical to assess tsunami hazard and increase preparedness within the countries.

  12. Seismic amplification within the Seattle Basin, Washington State: Insights from SHIPS seismic tomography experiments

    USGS Publications Warehouse

    Snelson, C.M.; Brocher, T.M.; Miller, K.C.; Pratt, T.L.; Trehu, A.M.

    2007-01-01

    Recent observations indicate that the Seattle sedimentary basin, underlying Seattle and other urban centers in the Puget Lowland, Washington, amplifies long-period (1-5 sec) weak ground motions by factors of 10 or more. We computed east-trending P- and S-wave velocity models across the Seattle basin from Seismic Hazard Investigations of Puget Sound (SHIPS) experiments to better characterize the seismic hazard the basin poses. The 3D tomographic models, which resolve features to a depth of 10 km, for the first time define the P- and S-wave velocity structure of the eastern end of the basin. The basin, which contains sedimentary rocks of Eocene to Holocene, is broadly symmetric in east-west section and reaches a maximum thickness of 6 km along our profile beneath north Seattle. A comparison of our velocity model with coincident amplification curves for weak ground motions produced by the 1999 Chi-Chi earthquake suggests that the distribution of Quaternary deposits and reduced velocity gradients in the upper part of the basement east of Seattle have significance in forecasting variations in seismic-wave amplification across the basin. Specifically, eastward increases in the amplification of 0.2- to 5-Hz energy correlate with locally thicker unconsolidated deposits and a change from Crescent Formation basement to pre-Tertiary Cascadia basement. These models define the extent of the Seattle basin, the Seattle fault, and the geometry of the basement contact, giving insight into the tectonic evolution of the Seattle basin and its influence on ground shaking.

  13. Automated Mapping of Flood Events in the Mississippi River Basin Utilizing NASA Earth Observations

    NASA Technical Reports Server (NTRS)

    Bartkovich, Mercedes; Baldwin-Zook, Helen Blue; Cruz, Dashiell; McVey, Nicholas; Ploetz, Chris; Callaway, Olivia

    2017-01-01

    The Mississippi River Basin is the fourth largest drainage basin in the world, and is susceptible to multi-level flood events caused by heavy precipitation, snow melt, and changes in water table levels. Conducting flood analysis during periods of disaster is a challenging endeavor for NASA's Short-term Prediction Research and Transition Center (SPoRT), Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey's Hazards Data Distribution Systems (USGS HDDS) due to heavily-involved research and lack of manpower. During this project, an automated script was generated that performs high-level flood analysis to relieve the workload for end-users. The script incorporated Landsat 8 Operational Land Imager (OLI) tiles and utilized computer-learning techniques to generate accurate water extent maps. The script referenced the Moderate Resolution Imaging Spectroradiometer (MODIS) land-water mask to isolate areas of flood induced waters. These areas were overlaid onto the National Land Cover Database's (NLCD) land cover data, the Oak Ridge National Laboratory's LandScan data, and Homeland Infrastructure Foundation-Level Data (HIFLD) to determine the classification of areas impacted and the population density affected by flooding. The automated algorithm was initially tested on the September 2016 flood event that occurred in Upper Mississippi River Basin, and was then further tested on multiple flood events within the Mississippi River Basin. This script allows end users to create their own flood probability and impact maps for disaster mitigation and recovery efforts.

  14. Risk assessment of drought disaster in southern China

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Abstract: Drought has become an increasing concern in southern China, but the drought risk has not been adequately studied. This study presents a method for the spatial assessment of drought risk in southern China using a conceptual framework that emphasizes the combined role of hazard, vulnerability, and exposure.A drought hazard map was retrieved with a compound index of meteorological drought method in a GIS environment. Normally, a large variation in the disaster-inducing factor implies a high probability of economic/social losses caused by a drought disaster. The map indicated that areas with a higher risk of drought hazard were mainly distributed in mid-east Yunnan and the basins in eastern Sichuan.The vulnerability indices were based on climate factors as well as land use, geomorphological types, soil properties, and drainage density. The water preserving capability of purple calcareous soil in the basins in Sichuan and mid-east Yunnan, and the lateritic red soil in northeastern Guangdong is relatively weak. The main geomorphological features in Guangxi and Guangdong are hills, which leads to a serious expectation of soil and water losses. Thus, the main areas with a high risk of drought vulnerability are mid-east Yunnan and the basins in eastern Sichuan.The exposure indices were based on population density and agricultural production because population and agriculture experience the main impacts of a drought disaster. Higher exposure indices mean higher economic/social losses due to drought disasters. Areas with high exposure indices were mainly distributed in Guangdong and southern Guangxi.The overall risk was then calculated as the product of the hazard, vulnerability, and exposure. The results indicated a higher risk of drought disaster in the basins in eastern Sichuan,, northeastern Yunnan, and northeastern Guangdong. The main factor influencing the risk of a drought disaster was the hazard, but the vulnerability and exposure also played important roles.

  15. Landslide Hazard Map of The Upper Tiber River Basin, Central Italy

    NASA Astrophysics Data System (ADS)

    Cardinali, M.; Carrara, A.; Guzzetti, F.; Reichenbach, P.

    For the Upper Tiber River basin, which extends over 4000 km2 in Central Italy, a landslide hazard map was derived from a statistical model based on a mix of morpho- logical, lithological, structural and land use data. All these data were obtained from the analysis of different sets of aerial photographs, ranging in scale from 1:33,000 to 1:13,000, systematic field surveys and bibliographical information. Rock types were grouped in 37 units on the basis of the hard vs. soft rock percentage, as as- certained from photo-geological interpretation and field surveys. During the photo- interpretation, the spatial relations between bedding plane attitude and slope aspect were also systematically determined. The landslide inventory map recognised 17,600 slope-failures that cover nearly 12.5% of the basin area. Landslides, which are mainly slide flow slide earth-flow and compound or complex movements, were classified and mapped as shallow or deep seated. A DTM, with a grid resolution of 25x25 m, was derived from digitised contour lines of base topographic maps, 1:25,000.in scale. The basin was then automatically partitioned into nearly 16,000 main slope-units through a specifically-designed software module that, starting from a high quality DTM gen- erates fully connected and complementary drainage and divide networks and a wide spectrum of morphometric parameters. Main slope-units were then subdivided accord- ing to the major rock types cropping out in the basin generating over 28,700 hydro- morphological-lithological terrain-units. Using the presence/absence of landslide in each terrain unit, as the grouping variable, a stepwise discriminant function was ap- plied to the terrain units. of the 50 variables entered into the discriminant function, 15 are lithological, 15 morphological, 11 express the structural setting or bedding plane attitude, 7 refer to land use and the last 2 reflect local climatic conditions. The model proved to be capable of correctly classifying as stable or unstable over 75% of the terrain units.

  16. Relating Stress Drop Variations with Geological Setting for Injection-Induced Seismicity and Its Seismic Hazard Implications

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Viegas, G. F.; Baig, A.

    2017-12-01

    We observe conflicting stress drop estimates of M0 to M4 injection-induced earthquakes in two regions of the Western Canadian Sedimentary Basin. Induced earthquakes in the Horn River Basin show lower stress drops than induced earthquakes in the Duvernay Basin by a factor of 10 to 20. Higher stress drop earthquakes have a significant role in seismic hazard as they generate higher frequency strong ground motions which can potentially cause more damages, making it important to understand its causes. Both earthquake datasets occur below shale reservoirs under hydraulic-fracture stimulation programs. Both treatment programs target the same shale formation (Muskwa in Horn River Basin and Duvernay in Duvernay Basin) at approximately the same depth (3 km). Both reservoirs are located to the edge of the Western Canadian Sedimentary Basin bordering the Rocky Mountains and are under the same tectonic setting, both currently and during the Devonian depositional phase. The major observable difference is the local geology. While the Horn River Basin in northeast British Columbia shows mostly continuous horizontal stratification the Duvernay shale in the Fox Creek region in Alberta drapes over Leduc Formation reefs which cross-cut it as chains of reefs, isolated atolls and isolated pinnacles. Schultz et al. (2017) showed that induced seismicity in the Duvernay Basin region occurs primarily in the margins of the Devonian carbonate reefs (10 to 20 km away) where optimally oriented basement faults exist. The fault system is in part associated with basement tectonism and isostatic compensation mechanisms involved in the reefs diagenesis. We propose that the observed stress drop differences are caused by different regional stress characteristics, with events occurring in more stressed regions having higher stress drops. These areas of higher stress are found at the margins of the denser Leduc reefs formation and may be caused either by load transfer, isostatic compensation mechanisms, and accumulation of strain energy in the underlying fault system. The geological setting in which earthquakes occur may be a more important factor than previously considered in seismic hazard studies.

  17. Characterizing the primary material sources and dominant erosional processes for post-fire debris-flow initiation in a headwater basin using multi-temporal terrestrial laser scanning data

    USGS Publications Warehouse

    Staley, Dennis M.; Waslewicz, Thad A.; Kean, Jason W.

    2014-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce hazardous debris flows. Relative to shallow landslides, the primary sources of material and dominant erosional processes that contribute to post-fire debris-flow initiation are poorly constrained. Improving our understanding of how and where material is eroded from a watershed during a post-fire debris-flow requires (1) precise measurements of topographic change to calculate volumetric measurements of erosion and deposition, and (2) the identification of relevant morphometrically defined process domains to spatially constrain these measurements of erosion and deposition. In this study, we combine the morphometric analysis of a steep, small (0.01 km2) headwater drainage basin with measurements of topographic change using high-resolution (2.5 cm) multi-temporal terrestrial laser scanning data made before and after a post-fire debris flow. The results of the morphometric analysis are used to define four process domains: hillslope-divergent, hillslope-convergent, transitional, and channelized incision. We determine that hillslope-divergent and hillslope-convergent process domains represent the primary sources of material over the period of analysis in the study basin. From these results we conclude that raindrop-impact induced erosion, ravel, surface wash, and rilling are the primary erosional processes contributing to post-fire debris-flow initiation in the small, steep headwater basin. Further work is needed to determine (1) how these results vary with increasing drainage basin size, (2) how these data might scale upward for use with coarser resolution measurements of topography, and (3) how these results change with evolving sediment supply conditions and vegetation recovery.

  18. The morphometric and stratigraphic framework for estimates of debris flow incidence in the North Cascades foothills, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Kovanen, Dori J.; Slaymaker, Olav

    2008-07-01

    Active debris flow fans in the North Cascade Foothills of Washington State constitute a natural hazard of importance to land managers, private property owners and personal security. In the absence of measurements of the sediment fluxes involved in debris flow events, a morphological-evolutionary systems approach, emphasizing stratigraphy, dating, fan morphology and debris flow basin morphometry, was used. Using the stratigraphic framework and 47 radiocarbon dates, frequency of occurrence and relative magnitudes of debris flow events have been estimated for three spatial scales of debris flow systems: the within-fan site scale (84 observations); the fan meso-scale (six observations) and the lumped fan, regional or macro-scale (one fan average and adjacent lake sediments). In order to characterize the morphometric framework, plots of basin area v. fan area, basin area v. fan gradient and the Melton ruggedness number v. fan gradient for the 12 debris flow basins were compared with those documented for semi-arid and paraglacial fans. Basin area to fan area ratios were generally consistent with the estimated level of debris flow activity during the Holocene as reported below. Terrain analysis of three of the most active debris flow basins revealed the variety of modes of slope failure and sediment production in the region. Micro-scale debris flow event systems indicated a range of recurrence intervals for large debris flows from 106-3645 years. The spatial variation of these rates across the fans was generally consistent with previously mapped hazard zones. At the fan meso-scale, the range of recurrence intervals for large debris flows was 273-1566 years and at the regional scale, the estimated recurrence interval of large debris flows was 874 years (with undetermined error bands) during the past 7290 years. Dated lake sediments from the adjacent Lake Whatcom gave recurrence intervals for large sediment producing events ranging from 481-557 years over the past 3900 years and clearly discernible sedimentation events in the lacustrine sediments had a recurrence interval of 67-78 years over that same period.

  19. Slip Potential of Faults in the Fort Worth Basin

    NASA Astrophysics Data System (ADS)

    Hennings, P.; Osmond, J.; Lund Snee, J. E.; Zoback, M. D.

    2017-12-01

    Similar to other areas of the southcentral United States, the Fort Worth Basin of NE Texas has experienced an increase in the rate of seismicity which has been attributed to injection of waste water in deep saline aquifers. To assess the hazard of induced seismicity in the basin we have integrated new data on location and character of previously known and unknown faults, stress state, and pore pressure to produce an assessment of fault slip potential which can be used to investigate prior and ongoing earthquake sequences and for development of mitigation strategies. We have assembled data on faults in the basin from published sources, 2D and 3D seismic data, and interpretations provided from petroleum operators to yield a 3D fault model with 292 faults ranging in strike-length from 116 to 0.4 km. The faults have mostly normal geometries, all cut the disposal intervals, and most are presumed to cut into the underlying crystalline and metamorphic basement. Analysis of outcrops along the SW flank of the basin assist with geometric characterization of the fault systems. The interpretation of stress state comes from integration of wellbore image and sonic data, reservoir stimulation data, and earthquake focal mechanisms. The orientation of SHmax is generally uniform across the basin but stress style changes from being more strike-slip in the NE part of the basin to normal faulting in the SW part. Estimates of pore pressure come from a basin-scale hydrogeologic model as history-matched to injection test data. With these deterministic inputs and appropriate ranges of uncertainty we assess the conditional probability that faults in our 3D model might slip via Mohr-Coulomb reactivation in response to increases in injected-related pore pressure. A key component of the analysis is constraining the uncertainties associated with each of the principal parameters. Many of the faults in the model are interpreted to be critically-stressed within reasonable ranges of uncertainty.

  20. Design Analysis, Basin F Liquid Waste Disposal Facility, Rocky Mountain Arsenal, Commerce City, Colorado, FY81.

    DTIC Science & Technology

    1981-08-01

    City were contacted concern- ing Building and Construction permits. No regulations apply since they do not have jurisdiction over RMA property. It may...Division. Mr. Dale advised that their agency’s regulations applied only to permanent pollution emitting sources. Mr. Plog thought that their "fugitive dust...processing, treat- ment, recovery, and disposal of hazardous waste. "Person" means an individual trust, firm, joint stock company , Federal Agency

  1. Evansville Area Earthquake Hazards Mapping Project (EAEHMP) - Progress Report, 2008

    USGS Publications Warehouse

    Boyd, Oliver S.; Haase, Jennifer L.; Moore, David W.

    2009-01-01

    Maps of surficial geology, deterministic and probabilistic seismic hazard, and liquefaction potential index have been prepared by various members of the Evansville Area Earthquake Hazard Mapping Project for seven quadrangles in the Evansville, Indiana, and Henderson, Kentucky, metropolitan areas. The surficial geologic maps feature 23 types of surficial geologic deposits, artificial fill, and undifferentiated bedrock outcrop and include alluvial and lake deposits of the Ohio River valley. Probabilistic and deterministic seismic hazard and liquefaction hazard mapping is made possible by drawing on a wealth of information including surficial geologic maps, water well logs, and in-situ testing profiles using the cone penetration test, standard penetration test, down-hole shear wave velocity tests, and seismic refraction tests. These data were compiled and collected with contributions from the Indiana Geological Survey, Kentucky Geological Survey, Illinois State Geological Survey, United States Geological Survey, and Purdue University. Hazard map products are in progress and are expected to be completed by the end of 2009, with a public roll out in early 2010. Preliminary results suggest that there is a 2 percent probability that peak ground accelerations of about 0.3 g will be exceeded in much of the study area within 50 years, which is similar to the 2002 USGS National Seismic Hazard Maps for a firm rock site value. Accelerations as high as 0.4-0.5 g may be exceeded along the edge of the Ohio River basin. Most of the region outside of the river basin has a low liquefaction potential index (LPI), where the probability that LPI is greater than 5 (that is, there is a high potential for liquefaction) for a M7.7 New Madrid type event is only 20-30 percent. Within the river basin, most of the region has high LPI, where the probability that LPI is greater than 5 for a New Madrid type event is 80-100 percent.

  2. Geologic hazards in the region of the Hurricane fault

    USGS Publications Warehouse

    Lund, W.R.

    1997-01-01

    Complex geology and variable topography along the 250-kilometer-long Hurricane fault in northwestern Arizona and southwestern Utah combine to create natural conditions that can present a potential danger to life and property. Geologic hazards are of particular concern in southwestern Utah, where the St. George Basin and Interstate-15 corridor north to Cedar City are one of Utah's fastest growing areas. Lying directly west of the Hurricane fault and within the Basin and Range - Colorado Plateau transition zone, this region exhibits geologic characteristics of both physiographic provinces. Long, potentially active, normal-slip faults displace a generally continuous stratigraphic section of mostly east-dipping late Paleozoic to Cretaceous sedimentary rocks unconformably overlain by Tertiary to Holocene sedimentary and igneous rocks and unconsolidated basin-fill deposits. Geologic hazards (exclusive of earthquake hazards) of principal concern in the region include problem soil and rock, landslides, shallow ground water, and flooding. Geologic materials susceptible to volumetric change, collapse, and subsidence in southwestern Utah include; expansive soil and rock, collapse-prone soil, gypsum and gypsiferous soil, soluble carbonate rocks, and soil and rock subject to piping and other ground collapse. Expansive soil and rock are widespread throughout the region. The Petrified Forest Member of the Chinle Formation is especially prone to large volume changes with variations in moisture content. Collapse-prone soils are common in areas of Cedar City underlain by alluvial-fan material derived from the Moenkopi and Chinle Formations in the nearby Hurricane Cliffs. Gypsiferous soil and rock are subject to dissolution which can damage foundations and create sinkholes. The principal formations in the region affected by dissolution of carbonate are the Kaibab and Toroweap Formations; both formations have developed sinkholes where crossed by perennial streams. Soil piping is common in southwestern Utah where it has damaged roads, canal embankments, and water-retention structures. Several unexplained sinkholes near the town of Hurricane possibly are the result of collapse of subsurface volcanic features. Geologic formations associated with slope failures along or near the Hurricane fault include rocks of both Mesozoic and Tertiary age. Numerous landslides are present in these materials along the Hurricane Cliffs, and the Petrified Forest Member of the Chinle Formation is commonly associated with slope failures where it crops out in the St. George Basin. Steep slopes and numerous areas of exposed bedrock make rock fall a hazard in the St. George Basin. Debris flows and debris floods in narrow canyons and on alluvial fans often accompany intense summer cloudburst thunderstorms. Flooded basements and foundation problems associated with shallow ground water are common on benches north of the Santa Clara River in the city of Santa Clara. Stream flooding is the most frequently occurring and destructive geologic hazard in southwestern Utah. Since the 1850s, there have been three major riverine (regional) floods and more than 300 damaging flash floods. Although a variety of flood control measures have been implemented, continued rapid growth in the region is again increasing vulnerability to flood hazards. Site-specific studies to evaluate geologic hazards and identify hazard-reduction measures are recommended prior to construction to reduce the need for costly repair, maintenance, or replacement of improperly placed or protected facilities.

  3. Quantification of Covariance in Tropical Cyclone Activity across Teleconnected Basins

    NASA Astrophysics Data System (ADS)

    Tolwinski-Ward, S. E.; Wang, D.

    2015-12-01

    Rigorous statistical quantification of natural hazard covariance across regions has important implications for risk management, and is also of fundamental scientific interest. We present a multivariate Bayesian Poisson regression model for inferring the covariance in tropical cyclone (TC) counts across multiple ocean basins and across Saffir-Simpson intensity categories. Such covariability results from the influence of large-scale modes of climate variability on local environments that can alternately suppress or enhance TC genesis and intensification, and our model also simultaneously quantifies the covariance of TC counts with various climatic modes in order to deduce the source of inter-basin TC covariability. The model explicitly treats the time-dependent uncertainty in observed maximum sustained wind data, and hence the nominal intensity category of each TC. Differences in annual TC counts as measured by different agencies are also formally addressed. The probabilistic output of the model can be probed for probabilistic answers to such questions as: - Does the relationship between different categories of TCs differ statistically by basin? - Which climatic predictors have significant relationships with TC activity in each basin? - Are the relationships between counts in different basins conditionally independent given the climatic predictors, or are there other factors at play affecting inter-basin covariability? - How can a portfolio of insured property be optimized across space to minimize risk? Although we present results of our model applied to TCs, the framework is generalizable to covariance estimation between multivariate counts of natural hazards across regions and/or across peril types.

  4. Determination of Destress Blasting Effectiveness Using Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Wojtecki, Łukasz; Mendecki, Maciej J.; Zuberek, Wacaław M.

    2017-12-01

    Underground mining of coal seams in the Upper Silesian Coal Basin is currently performed under difficult geological and mining conditions. The mining depth, dislocations (faults and folds) and mining remnants are responsible for rockburst hazard in the highest degree. This hazard can be minimized by using active rockburst prevention, where destress blastings play an important role. Destress blastings in coal seams aim to destress the local stress concentrations. These blastings are usually performed from the longwall face to decrease the stress level ahead of the longwall. An accurate estimation of active rockburst prevention effectiveness is important during mining under disadvantageous geological and mining conditions, which affect the risk of rockburst. Seismic source parameters characterize the focus of tremor, which may be useful in estimating the destress blasting effects. Investigated destress blastings were performed in coal seam no. 507 during its longwall mining in one of the coal mines in the Upper Silesian Coal Basin under difficult geological and mining conditions. The seismic source parameters of the provoked tremors were calculated. The presented preliminary investigations enable a rapid estimation of the destress blasting effectiveness using seismic source parameters, but further analysis in other geological and mining conditions with other blasting parameters is required.

  5. Seismic Velocity and Its Temporal Variations of Hutubi Basin Revealed by Near Surface Trapped Waves

    NASA Astrophysics Data System (ADS)

    Ji, Z.; Wang, B.; Wang, H.; Wang, Q.; Su, J.

    2017-12-01

    Sedimentary basins amplify bypassing seismic waves, which may increase the seismic hazard in basin area. The study of basin structure and its temporal variation is of key importance in the assessment and mitigation of seismic hazard in basins. Recent investigations of seismic exploration have shown that basins may host a distinct wave train with strong energy. It is usually named as Trapped Wave or Whispering Gallery (WG) Phase. In this study, we image the velocity structure and monitor its temporal changes of Hutubi basin in Xinjiang, Northwestern China with trapped wave generated from an airgun source. Hutubi basin is located at mid-segment of the North Tianshan Mountain. Hutubi aigun signal transmitting station was constructed in May 2013. It is composed of six longlife airgun manufactured by BOLT. Prominent trapped waves with strong energy and low velocity are observed within 40km from the source. The airgun source radiates repeatable seismic signals for years. The trapped waves have relative low frequency 0.15s-4s and apparent low velocities of 200m/s to 1000m/s. In the temporal-frequency diagram, at least two groups of wave train can be identified. Based on the group velocity dispersion curves, we invert the S-wave velocity profile of Hutubi basin. The velocity structure is further verified with synthetic seismogram. Velocity variations and Rayleigh wave polarization changes are useful barometers of underground stress status. We observed that the consistent seasonal variations in velocity and polarization. According to the simulate results, we suggest that the variations may be related to the changes of groundwater level and the formation and disappearance of frozen soil.

  6. The case of Sarno River (Southern Italy): effects of geomorphology on the environmental impacts.

    PubMed

    De Pippo, Tommaso; Donadio, Carlo; Guida, Marco; Petrosino, Carmela

    2006-05-01

    Analysis of the morphological, geological and environmental characteristics of the Sarno River basin has shown the present degraded condition of the area. Over the past thirty years, the supply of untreated effluent of domestic, agricultural and industrial origin has ensured the presence of high concentrations of pollutants, including heavy metals. The geological context of the catchment area has played a major part in determining the current ecological conditions and public health problems: while human activity has modified the landscape, the natural order has indirectly contributed to increasing the environmental impact. The health situation is precarious as the basin's inhabitants feed on agricultural and animal products, and use polluted water directly or indirectly. The hazard of contracting degenerative illnesses of the digestive or respiratory apparatus, bacterial infections or some neoplasia has gradually increased, especially in the last five years. Moreover, polluted basin waters flowing into the Bay of Naples increase sea water contamination, thereby damaging tourism, public health and degrading the local littoral quality. The overview presented shows how the environmental state of the Sarno River basin gives considerable cause for concern. The basin's complex geomorphologic setting has a direct bearing on local environmental and health conditions. The analysis of the available data demonstrates how the physical aspects of the area are closely linked to the diffusion and concentration of the pollutants, and how the latter ones have a large influence on the hygienic-sanitary conditions of the local population. Specific interventions need to be undertaken to monitor and improve the chemical, physical and microbiological conditions of water and sediments, especially in light of the geomorphological vulnerability of the river basin.

  7. Site Effect Analysis in the Izmit Basin of Turkey: Preliminary Results from the Wave Propagation Simulation using the Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Firtana Elcomert, Karolin; Kocaoglu, Argun

    2014-05-01

    Sedimentary basins affect the propagation characteristics of the seismic waves and cause significant ground motion amplification during an earthquake. While the impedance contrast between the sedimentary layer and bedrock predominantly controls the resonance frequencies and their amplitudes (seismic amplification), surface waves generated within the basin, make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be a pull-apart basin controlled by the northern branch of the North Anatolian Fault Zone (Şengör et al. 2005). A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. Using a spectral element code, SPECFEM2D (Komatitsch et al. 1998), this work presents some of the preliminary results of the 2-D seismic wave propagation simulations for the Izmit basin. The spectral-element method allows accurate and efficient simulation of seismic wave propagation due to its advantages over the other numerical modeling techniques by means of representation of the wavefield and the computational mesh. The preliminary results of this study suggest that seismic wave propagation simulations give some insight into the site amplification phenomena in the Izmit basin. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with higher amplitudes on seismograms recorded at the free surface. Furthermore, modeling reveals that observed seismograms include surface waves whose excitation is clearly related to the basin geometry.

  8. CyberShake Physics-Based PSHA in Central California

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Goulet, C. A.; Milner, K. R.; Graves, R. W.; Olsen, K. B.; Jordan, T. H.

    2017-12-01

    The Southern California Earthquake Center (SCEC) has developed a simulation platform, CyberShake, which performs physics-based probabilistic seismic hazard analyis (PSHA) using 3D deterministic wave propagation simulations. CyberShake performs PSHA by simulating a wavefield of Strain Green Tensors. An earthquake rupture forecast (ERF) is then extended by varying hypocenters and slips on finite faults, generating about 500,000 events per site of interest. Seismic reciprocity is used to calculate synthetic seismograms, which are processed to obtain intensity measures (IMs) such as RotD100. These are combined with ERF probabilities to produce hazard curves. PSHA results from hundreds of locations across a region are interpolated to produce a hazard map. CyberShake simulations with SCEC 3D Community Velocity Models have shown how the site and path effects vary with differences in upper crustal structure, and they are particularly informative about epistemic uncertainties in basin effects, which are not well parameterized by depths to iso-velocity surfaces, common inputs to GMPEs. In 2017, SCEC performed CyberShake Study 17.3, expanding into Central California for the first time. Seismic hazard calculations were performed at 1 Hz at 438 sites, using both a 3D tomographically-derived central California velocity model and a regionally averaged 1D model. Our simulation volumes extended outside of Central California, so we included other SCEC velocity models and developed a smoothing algorithm to minimize reflection and refraction effects along interfaces. CyberShake Study 17.3 ran for 31 days on NCSA's Blue Waters and ORNL's Titan supercomputers, burning 21.6 million core-hours and producing 285 million two-component seismograms and 43 billion IMs. These results demonstrate that CyberShake can be successfully expanded into new regions, and lend insights into the effects of directivity-basin coupling associated with basins near major faults such as the San Andreas. In particular, we observe in the 3D results that basin amplification for sites in the southern San Joaquin Valley is less than for sites in smaller basins such as around Ventura. We will present CyberShake hazard estimates from the 1D and 3D models, compare results to those from previous CyberShake studies and GMPEs, and describe our future plans.

  9. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environmentsmore » of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.« less

  10. Hazardous waste in the Asian Pacific region.

    PubMed

    Prasad, Rajendra; Khwaja, Mahmood A

    2011-01-01

    The production and disposal of hazardous waste remains a substantial problem in the Asian Pacific region. Remediation of waste disposal sites, including landfill sites, is attracting considerable research attention within the region. A recognition of the need for community engagement in this process is also growing. This article reviews the work presented in the Hazardous Waste sessions at the Pacific Basin Consortium for Environment and Health held in November 2009 in Perth.

  11. Flood hazard mapping of Palembang City by using 2D model

    NASA Astrophysics Data System (ADS)

    Farid, Mohammad; Marlina, Ayu; Kusuma, Muhammad Syahril Badri

    2017-11-01

    Palembang as the capital city of South Sumatera Province is one of the metropolitan cities in Indonesia that flooded almost every year. Flood in the city is highly related to Musi River Basin. Based on Indonesia National Agency of Disaster Management (BNPB), the level of flood hazard is high. Many natural factors caused flood in the city such as high intensity of rainfall, inadequate drainage capacity, and also backwater flow due to spring tide. Furthermore, anthropogenic factors such as population increase, land cover/use change, and garbage problem make flood problem become worse. The objective of this study is to develop flood hazard map of Palembang City by using two dimensional model. HEC-RAS 5.0 is used as modelling tool which is verified with field observation data. There are 21 sub catchments of Musi River Basin in the flood simulation. The level of flood hazard refers to Head Regulation of BNPB number 2 in 2012 regarding general guideline of disaster risk assessment. The result for 25 year return per iod of flood shows that with 112.47 km2 area of inundation, 14 sub catchments are categorized in high hazard level. It is expected that the hazard map can be used for risk assessment.

  12. Subsurface structure of the East Bay Plain ground-water basin: San Francisco Bay to the Hayward fault, Alameda County, California

    USGS Publications Warehouse

    Catchings, R.D.; Borchers, J.W.; Goldman, M.R.; Gandhok, G.; Ponce, D.A.; Steedman, C.E.

    2006-01-01

    The area of California between the San Francisco Bay, San Pablo Bay, Santa Clara Valley, and the Diablo Ranges (East Bay Hills), commonly referred to as the 'East Bay', contains the East Bay Plain and Niles Cone ground-water basins. The area has a population of 1.46 million (2003 US Census), largely distributed among several cities, including Alameda, Berkeley, Fremont, Hayward, Newark, Oakland, San Leandro, San Lorenzo, and Union City. Major known tectonic structures in the East Bay area include the Hayward Fault and the Diablo Range to the east and a relatively deep sedimentary basin known as the San Leandro Basin beneath the eastern part of the bay. Known active faults, such as the Hayward, Calaveras, and San Andreas pose significant earthquake hazards to the region, and these and related faults also affect ground-water flow in the San Francisco Bay area. Because most of the valley comprising the San Francisco Bay area is covered by Holocene alluvium or water at the surface, our knowledge of the existence and locations of such faults, their potential hazards, and their effects on ground-water flow within the alluvial basins is incomplete. To better understand the subsurface stratigraphy and structures and their effects on ground-water and earthquake hazards, the U.S. Geological Survey (USGS), in cooperation with the East Bay Municipal Utility District (EBMUD), acquired a series of high-resolution seismic reflection and refraction profiles across the East Bay Plain near San Leandro in June 2002. In this report, we present results of the seismic imaging investigations, with emphasis on ground water.

  13. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997-1999

    USGS Publications Warehouse

    May, T.W.; Walther, M.J.; Petty, J.D.; Fairchild, J.F.; Lucero, J.; Delvaux, M.; Manring, J.; Armbruster, M.; Hartman, D.

    2001-01-01

    The Republican River Basin of Colorado,Nebraska, and Kansas lies in a valley which contains PierreShale as part of its geological substrata. Selenium is anindigenous constituent in the shale and is readily leached intosurrounding groundwater. The Basin is heavily irrigated throughthe pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water,sediment, benthic invertebrates, and/or fish were collected from46 sites in the Basin and were analyzed for selenium to determinethe potential for food-chain bioaccumulation, dietary toxicity,and reproductive effects of selenium in biota. Resultingselenium concentrations were compared to published guidelines orbiological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 μg L-1, which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3–5 μg L-1, constituting a moderate hazard. Selenium concentrations in sedimentindicated little to no hazard for selenium accumulation fromsediments into the benthic food chain. Ninety-five percent ofbenthic invertebrates collected exhibited selenium concentrationsexceeding 3 μg g-1, a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 μg g-1selenium, indicating a high potential for toxicity andreproductive effects. However, examination of weight profilesof various species of collected individual fish suggestedsuccessful recruitment in spite of selenium concentrations thatexceeded published biological effects thresholds for health andreproductive success. This finding suggested that universalapplication of published guidelines for selenium may beinappropriate or at least may need refinement for systems similarto the Republican River Basin. Additional research is needed todetermine the true impact of selenium on fish and wildliferesources in the Basin.

  14. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997-1999.

    PubMed

    May, T W; Walther, M J; Petty, J D; Fairchild, J F; Lucero, J; Delvaux, M; Manring, J; Armbruster, M; Hartman, D

    2001-11-01

    The Republican River Basin of Colorado, Nebraska, and Kansas lies in a valley which contains Pierre Shale as part of its geological substrata. Selenium is an indigenous constituent in the shale and is readily leached into surrounding groundwater. The Basin is heavily irrigated through the pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water, sediment, benthic invertebrates, and/or fish were collected from 46 sites in the Basin and were analyzed for selenium to determine the potential for food-chain bioaccumulation, dietary toxicity, and reproductive effects of selenium in biota. Resulting selenium concentrations were compared to published guidelines or biological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 microg L(-1), which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3-5 microg L(-1), constituting a moderate hazard. Selenium concentrations in sediment indicated little to no hazard for selenium accumulation from sediments into the benthic food chain. Ninety-five percent of benthic invertebrates collected exhibited selenium concentrations exceeding 3 microg g(-1), a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 microg g(-1) selenium, indicating a high potential for toxicity and reproductive effects. However, examination of weight profiles of various species of collected individual fish suggested successful recruitment in spite of selenium concentrations that exceeded published biological effects thresholds for health and reproductive success. This finding suggested that universal application of published guidelines for selenium may be inappropriate or at least may need refinement for systems similar to the Republican River Basin. Additional research is needed to determine the true impact of selenium on fish and wildlife resources in the Basin.

  15. Landslide Hazard Zonation and Risk Assessment of Ramganga Basin in Garhwal Himalaya

    NASA Astrophysics Data System (ADS)

    Wasini Pandey, Bindhy; Roy, Nikhil

    2016-04-01

    The Himalaya being unique in its physiographic, tectonic and climatic characteristics coupled with many natural and man-made factors is inherently prone to landslides. These landslides lead to mass loss of property and lives every year in Himalayas. Hence, Landslide Hazard Zonation is important to take quick and safe mitigation measures and make strategic planning for future development. The present study tries to explore the causes of landslides in Ramganga Basin in Garhwal Himalaya, which has an established history and inherent susceptibility to massive landslides has been chosen for landslide hazard zonation and risk assessment. The satellite imageries of LANDSAT, IRS P6, ASTER along with Survey of India (SOI) topographical sheets formed the basis for deriving baseline information on various parameters like slope, aspect, relative relief, drainage density, geology/lithology and land use/land cover. The weighted parametric method will be used to determine the degree of susceptibility to landslides. Finally, a risk map will be prepared from the landslide probability values, which will be classified into no risk, very low to moderate, high, and very high to severe landslide hazard risk zones. Keywords: Landslides, Hazard Zonation, Risk Assessment

  16. Pedestrian flow-path modeling to support tsunami-evacuation planning

    NASA Astrophysics Data System (ADS)

    Wood, N. J.; Jones, J. M.; Schmidtlein, M.

    2015-12-01

    Near-field tsunami hazards are credible threats to many coastal communities throughout the world. Along the U.S. Pacific Northwest coast, low-lying areas could be inundated by a series of catastrophic tsunamis potentially arriving in a matter of minutes following a Cascadia subduction zone (CSZ) earthquake. We developed a geospatial-modeling method for characterizing pedestrian-evacuation flow paths and evacuation basins to support evacuation and relief planning efforts for coastal communities in this region. We demonstrate this approach using the coastal communities of Aberdeen, Hoquiam, and Cosmopolis in southwestern Grays Harbor County, Washington (USA), where previous research suggests approximately 20,500 people (99% of the residents in tsunami-hazard zones) will likely have enough time to evacuate before tsunami-wave arrival. Geospatial, anisotropic, path distance models were developed to map the most efficient pedestrian paths to higher ground from locations within the tsunami-hazard zone. This information was then used to identify evacuation basins, outlining neighborhoods sharing a common evacuation pathway to safety. We then estimated the number of people traveling along designated evacuation pathways and arriving at pre-determined safe assembly areas, helping determine shelter demand and relief support (e.g., for elderly individuals or tourists). Finally, we assessed which paths may become inaccessible due to earthquake-induced ground failures, a factor which may impact an individual's success in reaching safe ground. The presentation will include a discussion of the implications of our analysis for developing more comprehensive coastal community tsunami-evacuation planning strategies worldwide.

  17. Hazardous waste management in the Pacific basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used tomore » address them so that new program activities can be designed more efficiently.« less

  18. GIS and remote sensing techniques for the assessment of land use changes impact on flood hydrology: the case study of Yialias Basin in Cyprus

    NASA Astrophysics Data System (ADS)

    Alexakis, D. D.; Gryllakis, M. G.; Koutroulis, A. G.; Agapiou, A.; Themistocleous, K.; Tsanis, I. K.; Michaelides, S.; Pashiardis, S.; Demetriou, C.; Aristeidou, K.; Retalis, A.; Tymvios, F.; Hadjimitsis, D. G.

    2013-09-01

    Flooding is one of the most common natural disasters worldwide, leading to economic losses and loss of human lives. This paper highlights the hydrological effects of multi-temporal land use changes in flood hazard within the Yialias catchment area, located in central Cyprus. Calibrated hydrological and hydraulic models were used to describe the hydrological processes and internal basin dynamics of the three major sub-basins, in order to study the diachronic effects of land use changes. For the implementation of the hydrological model, land use, soil and hydrometeorological data were incorporated. The climatic and stream flow data were derived from rain and flow gauge stations located in the wider area of the watershed basin. In addition, the land use and soil data were extracted after the application of object oriented nearest neighbor algorithms of ASTER satellite images. Subsequently, the CA-Markov chain analysis was implemented to predict the 2020 Land use/Land cover (LULC) map and incorporate it to the hydrological impact assessment. The results denoted the increase of runoff in the catchment area due to the recorded extensive urban sprawl phenomenon of the last decade.

  19. Multisource Data-Based Integrated Agricultural Drought Monitoring in the Huai River Basin, China

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Zhang, Qiang; Wen, Qingzhi; Singh, Vijay P.; Shi, Peijun

    2017-10-01

    Drought monitoring is critical for early warning of drought hazard. This study attempted to develop an integrated remote sensing drought monitoring index (IRSDI), based on meteorological data for 2003-2013 from 40 meteorological stations and soil moisture data from 16 observatory stations, as well as Moderate Resolution Imaging Spectroradiometer data using a linear trend detection method, and standardized precipitation evapotranspiration index. The objective was to investigate drought conditions across the Huai River basin in both space and time. Results indicate that (1) the proposed IRSDI monitors and describes drought conditions across the Huai River basin reasonably well in both space and time; (2) frequency of drought and severe drought are observed during April-May and July-September. The northeastern and eastern parts of Huai River basin are dominated by frequent droughts and intensified drought events. These regions are dominated by dry croplands, grasslands, and highly dense population and are hence more sensitive to drought hazards; (3) intensified droughts are detected during almost all months except January, August, October, and December. Besides, significant intensification of droughts is discerned mainly in eastern and western Huai River basin. The duration and regions dominated by intensified drought events would be a challenge for water resources management in view of agricultural and other activities in these regions in a changing climate.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmsen, S.C.

    The telemetered southern Great Basin seismic network (SGBSN) is operated for the Department of Energy`s Yucca Mountain Project (YMP). The US Geological Survey, Branch of Earthquake and Landslide Hazards, maintained this network until September 30, 1992, at which time all operational and analysis responsibilities were transferred to the University of Nevada at Reno Seismological Laboratory (UNRSL). This report contains preliminary earthquake and chemical explosion hypocenter listings and preliminary earthquake focal mechanism solutions for USGS/SGBSN data for the period January 1, 1992 through September 30, 1992, 15:00 UTC.

  1. Cache la Poudre River Basin, Larimer - Weld Counties, Colorado. Volume 1. Flood Hazard, Dam Safety and Flood Warning.

    DTIC Science & Technology

    1981-10-01

    elevations. Alpine grasses and brush and barren or snow-covered areas occur above the timberline . Most of - the basin’s rangelands and almost all of the...Sportsman Lodge , Kini- kinik, Arrowhead Lodge , Glen Echo, Rustic, Indian Meadows, Mishawaka, and Poudre Park. Plates 5 through 11 show the distribution

  2. Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S.

    USGS Publications Warehouse

    Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.

    2008-01-01

    Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in that it includes a measure of burn severity and an estimate of modeling errors. The application of this model, in conjunction with models for the probability of debris flows, will enable more complete and rapid assessments of debris flow hazards following wildfire.

  3. Vulnerability assessment and risk perception: the case of the Arieş River Middle Basin

    NASA Astrophysics Data System (ADS)

    Ozunu, Al.; Botezan, C.

    2012-04-01

    Vulnerability assessment is influenced by a number of factors, including risk perception. This paper investigates the vulnerability of people living in the middle basin of the Aries river region, a former mining area, to natural and technologic hazards. The mining industry lead to significant environmental changes, which combined with the social problems caused by its decline (high unemployment rate, low income and old age) raised the level of the vulnerability in the area. This case study is unique, as it includes an evaluation of risk perception and its influence on the social vulnerability and resilience of local communities to disasters. Key words: vulnerability assessment, natural hazards, social vulnerability, risk perception

  4. Values of Flood Hazard Mapping for Disaster Risk Assessment and Communication

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Takara, K. T.

    2015-12-01

    Flood plains provide tremendous benefits for human settlements. Since olden days people have lived with floods and attempted to control them if necessary. Modern engineering works such as building embankment have enabled people to live even in flood prone areas, and over time population and economic assets have concentrated in these areas. In developing countries also, rapid land use change alters exposure and vulnerability to floods and consequently increases disaster risk. Flood hazard mapping is an essential step for any counter measures. It has various objectives including raising awareness of residents, finding effective evacuation routes and estimating potential damages through flood risk mapping. Depending on the objectives and data availability, there are also many possible approaches for hazard mapping including simulation basis, community basis and remote sensing basis. In addition to traditional paper-based hazard maps, Information and Communication Technology (ICT) promotes more interactive hazard mapping such as movable hazard map to demonstrate scenario simulations for risk communications and real-time hazard mapping for effective disaster responses and safe evacuations. This presentation first summarizes recent advancement of flood hazard mapping by focusing on Japanese experiences and other examples from Asian countries. Then it introduces a flood simulation tool suitable for hazard mapping at the river basin scale even in data limited regions. In the past few years, the tool has been practiced by local officers responsible for disaster management in Asian countries. Through the training activities of hazard mapping and risk assessment, we conduct comparative analysis to identify similarity and uniqueness of estimated economic damages depending on topographic and land use conditions.

  5. PSHAe (Probabilistic Seismic Hazard enhanced): the case of Istanbul.

    NASA Astrophysics Data System (ADS)

    Stupazzini, Marco; Allmann, Alexander; Infantino, Maria; Kaeser, Martin; Mazzieri, Ilario; Paolucci, Roberto; Smerzini, Chiara

    2016-04-01

    The Probabilistic Seismic Hazard Analysis (PSHA) only relying on GMPEs tends to be insufficiently constrained at short distances and data only partially account for the rupture process, seismic wave propagation and three-dimensional (3D) complex configurations. Given a large and representative set of numerical results from 3D scenarios, analysing the resulting database from a statistical point of view and implementing the results as a generalized attenuation function (GAF) into the classical PSHA might be an appealing way to deal with this problem (Villani et al., 2014). Nonetheless, the limited amount of computational resources or time available tend to pose substantial constrains in a broad application of the previous method and, furthermore, the method is only partially suitable for taking into account the spatial correlation of ground motion as modelled by each forward physics-based simulation (PBS). Given that, we envision a streamlined and alternative implementation of the previous approach, aiming at selecting a limited number of scenarios wisely chosen and associating them a probability of occurrence. The experience gathered in the past year regarding 3D modelling of seismic wave propagation in complex alluvial basin (Pilz et al., 2011, Guidotti et al., 2011, Smerzini and Villani, 2012) allowed us to enhance the choice of simulated scenarios in order to explore the variability of ground motion, preserving the full spatial correlation necessary for risk modelling, on one hand and on the other the simulated losses for a given location and a given building stock. 3D numerical modelling of scenarios occurring the North Anatolian Fault in the proximity of Istanbul are carried out through the spectral element code SPEED (http://speed.mox.polimi.it). The results are introduced in a PSHA, exploiting the capabilities of the proposed methodology against a traditional approach based on GMPE. References Guidotti R, M Stupazzini, C Smerzini, R Paolucci, P Ramieri, "Numerical Study on the Role of Basin Geometry and Kinematic Seismic Source in 3D Ground Motion Simulation of the 22 February 2011 M-W 6.2 Christchurch Earthquake", SRL 11/2011; 82(6):767-782. DOI:10.1785/gssrl.82.6.767 Pilz M,Parolai S, Stupazzini M, Paolucci P and Zschau J, "Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code", GJI 11/2011, 187(2):929-945. DOI: 10.1111/j.1365-246X.2011.05183.x Smerzini C and Villani M, "Broadband Numerical Simulations in Complex Near-Field Geological Configurations: The Case of the 2009 Mw 6.3 L'Aquila Earthquake", BSSA 12/2012; 102(6):2436-2451. DOI:10.1785/0120120002 Villani M, Faccioli E, Ordaz M, Stupazzini M, "High-Resolution Seismic Hazard Analysis in a Complex Geological Configuration: The Case of the Sulmona Basin in Central Italy", Earthquake Spectra, 11/2014; 30(4):1801-1824. DOI: 10.1193/112911EQS288M

  6. Holistic Overview of the Contribution of Tectonic, Geomorphic, and Geologic Factors to the Seismic Hazard of the Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Banda, S.; Chang, A.; Sanquini, A.; Hilley, G. E.

    2013-12-01

    Nepal has been a seismically active region since the mid-Eocene collision of the Indian and Eurasian plates. It can be divided into four major tectonostratigraphic units. The Lesser Himalayan Zone, where Kathmandu Valley is located, is bounded to the south by the Main Boundary Thrust (MBT) and to the north by the Main Central Thrust (MCT). These faults, and the Main Frontal Thrust (MFT) traverse the NW-SE length of Nepal and sole into the Main Himalayan Thrust (MHT). Slip along these structures during the Plio-Quaternary has ponded sediment in the interior of the orogen, producing the nearly circular Kathmandu Basin, which hosts a series of radially converging rivers that exit the basin to the south. The sediment that is ponded within the basin consists of alluvial, lacustrine and debris flow deposits that are ~500 m thick. The faults in the vicinity of the Kathmandu Valley currently serve as potential earthquake sources. Sources that might plausibly be generated by these faults are constrained by structural, paleoseismic, and geodetic observations. The continued collision between India and Tibet is reflected in a convergence rate of about 20 mm/yr, as measured by Global Positioning System (GPS) geodetic networks. Strain accumulates on the MHT, and is released during large earthquakes. The epicenter of the 1934 (M8.2) earthquake, about 175 km to the east of Kathmandu, resulted in MMI VIII- IX shaking intensity in the Kathmandu Valley. Seismic waves generated from faults in proximity to Kathmandu may be amplified or attenuated at particular locations due to specific site responses that reflect the geologic framework of the Kathmandu Valley. The ponded sediments within the Kathmandu Basin may contribute to basin effects, trapping seismic waves and prolonging ground motion, as well as increasing the amplitude of the waves as they travel from crystalline outer rocks into the soft lake-bed sediments. A hazard analysis suggests that a M8.0 earthquake originating in the currently seismically-locked area to the west of Kathmandu would produce MMI VIII intensity in Kathmandu Valley, and a M5.8 earthquake on an active fault in the valley itself would result in MMI IX intensity close to the fault, and MMI VII - VIII elsewhere in the valley. The government of Nepal initiated a seismic hazard analysis and scenario-based estimation of the impact of a major earthquake in Kathmandu Valley in support of the development of a National Building Code. Earthquake awareness, preparation and mitigation initiatives have been undertaken, including implementation of the School Earthquake Safety Program, a preparedness and risk mitigation program for raising awareness and strengthening vulnerable buildings. The effectiveness of this program has been well-demonstrated, and it is a candidate for acceleration of adoption.

  7. Exploration of resilience assessments for natural hazards

    NASA Astrophysics Data System (ADS)

    Lo Jacomo, Anna; Han, Dawei; Champneys, Alan

    2017-04-01

    The occurrence of extreme events due to natural hazards is difficult to predict. Extreme events are stochastic in nature, there is a lack of long term data on their occurrence, and there are still gaps in our understanding of their physical processes. This difficulty in prediction will be exacerbated by climate change and human activities. Yet traditional risk assessments measure risk as the probability of occurrence of a hazard, multiplied by the consequences of the hazard occurring, which ignores the recovery process. In light of the increasing concerns on disaster risks and the related system recovery, resilience assessments are being used as an approach which complements and builds on traditional risk assessments and management. In mechanical terms, resilience refers to the amount of energy per unit volume that a material can absorb while maintaining its ability to return to its original shape. Resilience was first applied in the fields of psychology and ecology, and more recently has been used in areas such as social sciences, economics, and engineering. A common metaphor for understanding resilience is the stability landscape. The landscape consists of a surface of interconnected basins, where each basin represents different states of a system, which is a point on the stability landscape. The resilience of the system is its capacity and tendency to remain within a particular basin. This depends on the topology of the landscape, on the system's current position, and on its reaction to different shocks and stresses. In practical terms, resilience assessments have been conducted for various purposes in different sectors. These assessments vary in their required inputs, the methodologies applied, and the output they produce. Some measures used for resilience assessments are hazard independent. These focus on the intrinsic capabilities of a system, for example the insurance coverage of a community, or the buffer capacity of a water storage reservoir. Other measures of resilience are hazard dependent, and require hazard information. In those cases, the type of hazard information required varies from long term information such as the general probability of occurrence of a particular hazard, to short term information such as the observed damage following a specific earthquake occurrence. The required information also varies from national scale, such as census data, to local scale, such as stakeholder perceptions of a threat. This is shown through examples of resilience assessments, along with a discussion of their ability to inform decision making.

  8. An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method

    NASA Astrophysics Data System (ADS)

    Tün, M.; Pekkan, E.; Özel, O.; Guney, Y.

    2016-10-01

    Amplification can occur in a graben as a result of strong earthquake-induced ground motion. Thus, in seismic hazard and seismic site response studies, it is of the utmost importance to determine the geometry of the bedrock depth. The main objectives of this study were to determine the bedrock depth and map the depth-to-bedrock ratio for use in land use planning in regard to the mitigation of earthquake hazards in the Eskişehir Basin. The fundamental resonance frequencies (fr) of 318 investigation sites in the Eskişehir Basin were determined through case studies, and the 2-D S-wave velocity structure down to the bedrock depth was explored. Single-station microtremor data were collected from the 318 sites, as well as microtremor array data from nine sites, seismic reflection data from six sites, deep-drilling log data from three sites and shallow drilling log data from ten sites in the Eskişehir Graben. The fundamental resonance frequencies of the Eskişehir Basin sites were obtained from the microtremor data using the horizontal-to vertical (H/V) spectral ratio (HVSR) method. The phase velocities of the Rayleigh waves were estimated from the microtremor data using the spatial autocorrelation (SPAC) method. The fundamental resonance frequency range at the deepest point of the Eskişehir Basin was found to be 0.23-0.35 Hz. Based on the microtremor array measurements and the 2-D S-wave velocity profiles obtained using the SPAC method, a bedrock level with an average velocity of 1300 m s-1 was accepted as the bedrock depth limit in the region. The log data from a deep borehole and a seismic reflection cross-section of the basement rocks of the Eskişehir Basin were obtained and permitted a comparison of bedrock levels. Tests carried out using a multichannel walk-away technique permitted a seismic reflection cross-section to be obtained up to a depth of 1500-2000 m using an explosive energy source. The relationship between the fundamental resonance frequency in the Eskişehir Basin and the results of deep drilling, shallow drilling, shear wave velocity measurement and sedimentary cover depth measurement obtained from the seismic reflection section was expressed in the form of a nonlinear regression equation. An empirical relationship between fr, the thickness of sediments and the bedrock depth is suggested for use in future microzonation studies of sites in the region. The results revealed a maximum basin depth of 1000 m, located in the northeast of the Eskişehir Basin, and the SPAC and HVSR results indicated that within the study area the basin is characterized by a thin local sedimentary cover with low shear wave velocity overlying stiff materials, resulting in a sharp velocity contrast. The thicknesses of the old Quaternary and Tertiary fluvial sediments within the basin serve as the primary data sources in seismic hazard and seismic site response studies, and these results add to the body of available seismic hazard data contributing to a seismic microzonation of the Eskişehir Graben in advance of the severe earthquakes expected in the Anatolian Region.

  9. Fault Imaging with High-Resolution Seismic Reflection for Earthquake Hazard and Geothermal Resource Assessment in Reno, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frary, Roxanna

    2012-05-05

    The Truckee Meadows basin is situated adjacent to the Sierra Nevada microplate, on the western boundary of the Walker Lane. Being in the transition zone between a range-front normal fault on the west and northwest-striking right-lateral strike slip faults to the east, there is no absence of faulting in this basin. The Reno- Sparks metropolitan area is located in this basin, and with a signi cant population living here, it is important to know where these faults are. High-resolution seismic reflection surveys are used for the imaging of these faults along the Truckee River, across which only one fault wasmore » previously mapped, and in southern Reno near and along Manzanita Lane, where a swarm of short faults has been mapped. The reflection profiles constrain the geometries of these faults, and suggest additional faults not seen before. Used in conjunction with depth to bedrock calculations and gravity measurements, the seismic reflection surveys provide de nitive locations of faults, as well as their orientations. O sets on these faults indicate how active they are, and this in turn has implications for seismic hazard in the area. In addition to seismic hazard, the faults imaged here tell us something about the conduits for geothermal fluid resources in Reno.« less

  10. Hydrometeorological hazards basin "El Salado", with detailed analysis of the micro "El Zarco" and "Tamarindos" in the municipality of Puerto Vallarta, Jalisco

    NASA Astrophysics Data System (ADS)

    Núñez Gutiérrez, M.

    2013-05-01

    In recent years, there has been a change in regard to the hazard of flooding in the basin environment "Salting" specifically in watersheds of streams "El Zarco" and "Tamarind", located in the area of Township north of Puerto Vallara, Jalisco, lately it has become precipitation, of a cyclonic convective having with it, but short-lived intensive storms, and coupled with the growth of the metropolitan area of Puerto Vallarta, which has clogged up the drainage outlet sea water stored on site until it disappears evapotranspiration. Hydrometeorological analysis is performed based on the triangulation method where hydrometric records are used, by the weather station of "The Desembocada" of Puerto Vallarta, which is the only one authorized by the CNA, however the main source that handles official values of the weather stations in the Mexican Republic, is the database ERIC III (Rapid Information Extractor climatological version III), and in their weather stations precipitation data and temperature average, minimum and maximum monthly are available. This is combined with probabilistic methods, based on the exploration of the probability distribution function (FDP) with the method of small distributions where methods are used Pearson's chi-square, Student t, Fisher F, for smaller data less than 30 years and the functions of discrete or continuous probability to estimate rainfall intensity also used digital terrain models with sufficient mapping for elevations, precipitation, temperature (SIG).;

  11. A coupled hydrological-hydraulic flood inundation model calibrated using post-event measurements and integrated uncertainty analysis in a poorly gauged Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Colin, Francois

    2017-04-01

    Developing flood inundation maps of defined exceedance probabilities is required to provide information on the flood hazard and the associated risk. A methodology has been developed to model flood inundation in poorly gauged basins, where reliable information on the hydrological characteristics of floods are uncertain and partially captured by the traditional rain-gauge networks. Flood inundation is performed through coupling a hydrological rainfall-runoff (RR) model (HEC-HMS) with a hydraulic model (HEC-RAS). The RR model is calibrated against the January 2013 flood event in the Awali River basin, Lebanon (300 km2), whose flood peak discharge was estimated by post-event measurements. The resulting flows of the RR model are defined as boundary conditions of the hydraulic model, which is run to generate the corresponding water surface profiles and calibrated against 20 post-event surveyed cross sections after the January-2013 flood event. An uncertainty analysis is performed to assess the results of the models. Consequently, the coupled flood inundation model is simulated with design storms and flood inundation maps are generated of defined exceedance probabilities. The peak discharges estimated by the simulated RR model were in close agreement with the results from different empirical and statistical methods. This methodology can be extended to other poorly gauged basins facing common stage-gauge failure or characterized by floods with a stage exceeding the gauge measurement level, or higher than that defined by the rating curve.

  12. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, December 30, 1992--December 29, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potentialmore » impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy`s programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993.« less

  13. Assessment of Volatile Organic Compound and Hazardous Air Pollutant Emissions from Oil and Natural Gas Well Pads using Mobile Remote and On-site Direct Measurements

    EPA Science Inventory

    Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...

  14. Floodplain Modeling in the Kansas River Basin Using Hydrologic Engineering Center (HEC) Models: Impacts of Urbanization and Wetlands for Mitigation

    EPA Science Inventory

    Flooding is a major natural hazard which every year impacts different regions across the world. Between 2000 and 2008, various types of natural hazards, mainly floods have affected the largest number of people worldwide, averaging 99 million people per year (WDR, 2010). In the U...

  15. Quaternary geology and geologic hazards of the West Desert Hazardous Industry Area, Tooele County, Utah

    USGS Publications Warehouse

    Solomon, Barry J.; Black, Bill D.; ,

    1990-01-01

    The study of Quaternary geology provides information to evaluate geologic conditions and identify geologic constraints on construction in the West Desert Hazardous Industry Area (WDHIA). The WDHIA includes portions of the Great Salt Lake Desert to the west, underlain by several thousand feet of sediments capped by saline mudflats, and Ripple Valley to the east, separated from the Desert by the Grayback Hills and underlain by several hundred feet of sediments in the Cedar Mountains piedmont zone. Quaternary surficial units include marginal, shore-zone, and deep-water lacustrine sediments deposited in Pleistocene Lake Bonneville; eolian deposits; and alluvial sediments. The level of Lake Bonneville underwent major oscillations resulting in the creation of four basin-wide shorelines, three of which are recognized in the WDHIA. Geologic hazards in the WDHIA include the possible contamination of ground water in basin-fill aquifers, debris flows and flash floods in the piedmont zone, and earthquakes and related hazards. Numerous factors contribute to unsafe foundation conditions. Silty and sandy sediments may be subject to liquefaction or hydrocompaction, clayey sediments and mud flats of the Great Salt Lake Desert may be subject to shrinking or swelling, and gypsiferous dunes and salt flats are subject to subsidence due to dissolution.

  16. Comparison between flood prone areas' geomorphic features in the Abruzzo region

    NASA Astrophysics Data System (ADS)

    Orlando, D.; Giglioni, M.; Magnaldi, S.

    2017-07-01

    Flood risk maps are one of the main non-structural measures for risk mitigation, but, as the risk knowledge degree is directly proportional to the community interest and financial capability, many sites are devoid of flood inundation areas studies. Recently many authors have investigated the capability of flood prone areas individuation with geomorphological DIGITAL ELEVATION MODEL(DEM) based approaches. These approaches highlight the role of geomorphic features derived from DEM, in this case slope, curvature, elevation, and topographic wetness index, to preliminary inundated areas' identification, without using hydraulic simulations. The present studies aim to analyze the geomorphic features of different hazard levels that lie under the identified inundated areas that have been carried out by the Abruzzo Region Basin Authority. The Aterno-Pescara and Foro river basins have been investigated. The results show that the characteristics of the flooded areas can be clearly distinguished from those of the entire basin,however, the difficultly of geomorphic features in individuatingthe areas of different hazard classifications is obvious.

  17. Integration of rainfall/runoff and geomorphological analyses flood hazard in small catchments: case studies from the southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Palumbo, Manuela; Ascione, Alessandra; Santangelo, Nicoletta; Santo, Antonio

    2017-04-01

    We present the first results of an analysis of flood hazard in ungauged mountain catchments that are associated with intensely urbanized alluvial fans. Assessment of hydrological hazard has been based on the integration of rainfall/runoff modelling of drainage basins with geomorphological analysis and mapping. Some small and steep, ungauged mountain catchments located in various areas of the southern Apennines, in southern Italy, have been chosen as test sites. In the last centuries, the selected basins have been subject to heavy and intense precipitation events, which have caused flash floods with serious damages in the correlated alluvial fan areas. Available spatial information (regional technical maps, DEMs, land use maps, geological/lithological maps, orthophotos) and an automated GIS-based procedure (ArcGis tools and ArcHydro tools) have been used to extract morphological, hydrological and hydraulic parameters. Such parameters have been used to run the HEC (Hydrologic Engineering Center of the US Army Corps of Engineers) software (GeoHMS, GeoRAS, HMS and RAS) based on rainfall-runoff models, which have allowed the hydrological and hydraulic simulations. As the floods occurred in the studied catchments have been debris flows dominated, the solid load simulation has been also performed. In order to validate the simulations, we have compared results of the modelling with the effects produced by past floods. Such effects have been quantified through estimations of both the sediment volumes within each catchment that have the potential to be mobilised (pre-event) during a sediment transfer event, and the volume of sediments delivered by the debris flows at basins' outlets (post-event). The post-event sediment volume has been quantified through post-event surveys and Lidar data. Evaluation of the pre-event sediment volumes in single catchments has been based on mapping of sediment storages that may constitute source zones of bed load transport and debris flows. For such an approach has been used a methodology that consists of the application of a process-based geomorphological mapping, based on data derived from GIS analysis using high-resolution DEMs, field measurements and aerial photograph interpretations. Our integrated approach, which allows quantification of the flow rate and a semi-quantitative assessment of sediment that can be mobilized during hydro-meteorological events, is applied for the first time to torrential catchmenmts of the southern Apennines and may significantly contribute to previsional studies aimed at risk mitigation in the study region.

  18. A global distributed basin morphometric dataset

    NASA Astrophysics Data System (ADS)

    Shen, Xinyi; Anagnostou, Emmanouil N.; Mei, Yiwen; Hong, Yang

    2017-01-01

    Basin morphometry is vital information for relating storms to hydrologic hazards, such as landslides and floods. In this paper we present the first comprehensive global dataset of distributed basin morphometry at 30 arc seconds resolution. The dataset includes nine prime morphometric variables; in addition we present formulas for generating twenty-one additional morphometric variables based on combination of the prime variables. The dataset can aid different applications including studies of land-atmosphere interaction, and modelling of floods and droughts for sustainable water management. The validity of the dataset has been consolidated by successfully repeating the Hack's law.

  19. Application of PALSAR-2 Remote Sensing Data for Landslide Hazard Mapping in Kelantan River Basin, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Yearly, several landslides ensued during heavy monsoons rainfall in Kelantan river basin, peninsular Malaysia, which are obviously connected to geological structures and topographical features of the region. In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geological structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulated drainage pattern and metamorphic and Quaternary units. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping.

  20. Flood hazards in the Seattle-Tacoma urban complex and adjacent areas, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.; Nassar, E.G.

    1975-01-01

    Floods are natural hazards that have complicated man's land-use planning for as long as we have had a history. Although flood hzards are a continuing danger, the year-to-year threat cannot be accurately predicted. Also, on any one stream, the time since the last destructive flood might be so long that most people now living near the stream have not experienced such a flood. Because of the unpredictability and common infrequency of disastrous flooding, or out of ignorance about the danger, or perhaps because of an urge to gamble, man tends to focus his attention on only the advantages of the flood-prone areas, rather than the risk due to the occasional major flood. The purposes of this report are to: (1) briefly describe flood hazards in this region, including some that may be unique to the Puget Sound basin, (2) indicate the parts of the area for which flood-hazard data are available, and (3) list the main sources of hydrologic information that is useful for flood-hazard analysis in conjuction with long-range planning. This map-type report is one of a series being prepared by the U.S. Geological Survey to present basic environmental information and interpretations to assist land-use planning in the Puget Sound region.

  1. A Multihazard Regional Level Impact Assessment for South Asia

    NASA Astrophysics Data System (ADS)

    Amarnath, Giriraj; Alahacoon, Niranga; Aggarwal, Pramod; Smakhtin, Vladimir

    2016-04-01

    To prioritize climate adaptation strategies, there is a need for quantitative and systematic regional-level assessments which are comparable across multiple climatic hazard regimes. Assessing which countries in a region are most vulnerable to climate change requires analysis of multiple climatic hazards including: droughts, floods, extreme temperature as well as rainfall and sea-level rise. These five climatic hazards, along with population densities were modelled using GIS which enabled a summary of associated human exposure and agriculture losses. A combined index based on hazard, exposure and adaptive capacity is introduced to identify areas of extreme risks. The analysis results in population climate hazard exposure defined as the relative likelihood that a person in a given location was exposed to a given climate-hazard event in a given period of time. The study presents a detailed and coherent approach to fine-scale climate hazard mapping and identification of risks areas for the regions of South Asia that, for the first time, combines the following unique features: (a) methodological consistency across different climate-related hazards, (b) assessment of total exposure on population and agricultural losses, (c) regional-level spatial coverage, and (d) development of customized tools using ArcGIS toolbox that allow assessment of changes in exposure over time and easy replacement of existing datasets with a newly released or superior datasets. The resulting maps enable comparison of the most vulnerable regions in South Asia to climate-related hazards and is among the most urgent of policy needs. Subnational areas (regions/districts/provinces) most vulnerable to climate change impacts in South Asia are documented. The approach involves overlaying climate hazard maps, sensitivity maps, and adaptive capacity maps following the vulnerability assessment framework of the United Nations' Intergovernmental Panel on Climate Change (IPCC). The study used data on the spatial distribution of various climate-related hazards in 1,398 subnational areas of Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka. An analysis of country-level population exposure showed that approximately 750 million people are affected from combined climate-hazards. Of the affected population 72% are in India, followed by 12% each from Bangladesh and Pakistan. Due in part to the economic importance of agriculture, it was found to be most vulnerable and exposed to climate extremes. An analysis of individual hazards indicates that floods and droughts) are the dominant hazards impacting agricultural areas followed by extreme rainfall, extreme temperature and sea-level rise. Based on this vulnerability assessment, all the regions of Bangladesh and the Indian States in Andhra Pradesh, Bihar, Maharashtra, Karnataka and Orissa; Ampara, Puttalam, Trincomalee, Mannar and Batticaloa in Sri Lanka; Sind and Baluchistan in Pakistan; Central and East Nepal; and the transboundary river basins of Indus, Ganges and Brahmaputra are among the most vulnerable regions in South Asia.

  2. WHO collaboration in hazardous waste management in the Western Pacific Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Hisashi

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects ofmore » WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.« less

  3. Comparative analysis of meteorological and hydrological drought in the Pearl River basin during the period 1960-2012

    NASA Astrophysics Data System (ADS)

    Xu, K.; Wu, C.; Hu, B.; Niu, J.

    2017-12-01

    Drought is one of the major natural hazards that can have devastating impacts on the regional environment, agriculture, and water resources. Previous studies have conducted the assessment of historic changes in meteorological drought over various regional scales but rarely considered hydrological drought due to limited hydrological observations. Here, we use a long-term (1960-2012) gridded hydro-meteorological data to present a comparative analysis of meteorological and hydrological drought in the Pearl River basin in southern China using the standardized precipitation index (SPI) and the standardized runoff index (SRI). The variation in SPI and SRI at four different timescales (1-, 3-, 6-, and 12-month) is investigated using the Mann-Kendall (M-K) method and continuous wavelet transform (CWT). The results indicate that the correlation between SPI and SRI is strong over the Pearl River basin and tends to be stronger at the longer timescale. Meanwhile, the periodic oscillation pattern of SPI becomes more consistent with that of SRI with the increased timescale. The SPI can be used as a substitute for SRI to represent the hydrological drought at the long-term scale. Overall there is a noticeably wetting trend mainly in the eastern parts and a significant drying trend mainly in the western regions and the downstream area of the Pearl River basin. The variability of meteorological drought is significant mainly in the eastern and western regions, while the variability of hydrological drought tends to be larger mainly in the western region. CWT analysis indicates a period of 0.75-7 years in both meteorological and hydrological droughts during the period 1960-2012 in the study region.

  4. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    USGS Publications Warehouse

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  5. Yearly report, Yucca Mountain project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, J.N.

    1992-09-30

    We proposed to (1) Develop our data logging and analysis equipment and techniques for analyzing seismic data from the Southern Great Basin Seismic Network (SGBSN), (2) Investigate the SGBSN data for evidence of seismicity patterns, depth distribution patterns, and correlations with geologic features (3) Repair and maintain our three broad band downhole digital seismograph stations at Nelson, nevada, Troy Canyon, Nevada, and Deep Springs, California (4) Install, operate, and log data from a super sensitive microearthquake array at Yucca Mountain (5) Analyze data from micro-earthquakes relative to seismic hazard at Yucca Mountain.

  6. Site Transfer Functions of Three-Component Ground Motion in Western Turkey

    NASA Astrophysics Data System (ADS)

    Ozgur Kurtulmus, Tevfik; Akyol, Nihal; Camyildiz, Murat; Gungor, Talip

    2015-04-01

    Because of high seismicity accommodating crustal deformation and deep graben structures, on which have, urbanized and industrialized large cities in western Turkey, the importance of site-specific seismic hazard assessments becomes more crucial. Characterizing source, site and path effects is important for both assessing the seismic hazard in a specific region and generation of the building codes/or renewing previous ones. In this study, we evaluated three-component recordings for micro- and moderate-size earthquakes with local magnitudes ranging between 2.0 and 5.6. This dataset is used for site transfer function estimations, utilizing two different spectral ratio approaches 'Standard Spectral Ratio-(SSR)' and 'Horizontal to Vertical Spectral Ratio-(HVSR)' and a 'Generalized Inversion Technique-(GIT)' to highlight site-specific seismic hazard potential of deep basin structures of the region. Obtained transfer functions revealed that the sites located near the basin edges are characterized by broader HVSR curves. Broad HVSR peaks could be attributed to the complexity of wave propagation related to significant 2D/3D velocity variations at the sediment-bedrock interface near the basin edges. Comparison of HVSR and SSR estimates for the sites located on the grabens showed that SSR estimates give larger values at lower frequencies which could be attributed to lateral variations in regional velocity and attenuation values caused by basin geometry and edge effects. However, large amplitude values of vertical component GIT site transfer functions were observed at varying frequency ranges for some of the stations. These results imply that vertical component of ground motion is not amplification free. Contamination of HVSR site transfer function estimates at different frequency bands could be related to complexities in the wave field caused by deep or shallow heterogeneities in the region such as differences in the basin geometries, fracturing and fluid saturation along different propagation paths. The results also show that, even if the site is located on a horst, the presence of weathered zones near the surface could cause moderate frequency dependent site effects.

  7. Environmental contaminants in fish and their associated risk to piscivorous wildlife in the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Hinck, J.E.; Schmitt, C.J.; Echols, K.R.; May, T.W.; Orazio, C.E.; Tillitt, D.E.

    2006-01-01

    Organochlorine chemical residues and elemental contaminants were measured in northern pike (Esox lucius), longnose sucker (Catostomus catostomus), and burbot (Lota lota) from 10 sites in the Yukon River Basin (YRB) during 2002. Contaminant concentrations were compared to historical YRB data and to toxicity thresholds for fish and piscivorous wildlife from the scientific literature. A risk analysis was conducted to screen for potential hazards to piscivorous wildlife for contaminants that exceeded literature-based toxicity thresholds. Concentrations of total DDT (sum of p,p???-homologs; 1.09-13.6 ng/g), total chlordane (0.67-7.5 ng/g), dieldrin (<0.16-0.6 ng/g), toxaphene (<11-34 ng/g), total PCBs (<20-87 ng/g), TCDD-EQ (???1.7 pg/g), arsenic (0.03-1.95 ??g/g), cadmium (<0.02-0.12 ??g/g), copper (0.41-1.49 ??g/g), and lead (<0.21-0.27 ??g/g) did not exceed toxicity thresholds for growth and reproduction in YRB fish. Concentrations of mercury (0.08-0.65 ??g/g), selenium (0.23-0.85 ??g/g), and zinc (11-56 ??g/g) exceeded toxicity thresholds in one or more samples and were included in the risk analysis for piscivorous wildlife. No effect hazard concentrations (NEHCs) and low effect hazard concentrations (LEHCs), derived from literature-based toxicity reference values and avian and mammalian life history parameters, were calculated for mercury, selenium, and zinc. Mercury concentrations in YRB fish exceeded the NEHCs for all bird and small mammal models, which indicated that mercury concentrations in fish may represent a risk to piscivorous wildlife throughout the YRB. Low risk to piscivorous wildlife was associated with selenium and zinc concentrations in YRB fish. Selenium and zinc concentrations exceeded the NEHCs and LEHCs for only the small bird model. These results indicate that mercury should continue to be monitored and assessed in Alaskan fish and wildlife. ?? 2006 Springer Science+Business Media, Inc.

  8. Update of the tectonic model for the Pannonian basin: a contribution to the seismic hazard reassessment of the Paks NPP (Hungary)

    NASA Astrophysics Data System (ADS)

    Horváth, Ferenc; Tóth, Tamás; Wórum, Géza; Koroknai, Balázs; Kádi, Zoltán; Kovács, Gábor; Balázs, Attila; Visnovitz, Ferenc

    2015-04-01

    The planned construction of two new units at the site of the Paks NPP requires a comprehensive site investigation including complete reassessment of the seismic hazard according to the Hungarian as well as international standards. Following the regulations of the Specific Safety Guide no. 9 (IAEA 2010), the approved Hungarian Geological Investigation Program (HGIP) includes integrated geological-geophysical studies at different scales. The regional study aims at to elaborate a new synthesis of all published data for the whole Pannonian basin. This task is nearly completed and the main outcomes have already been published (Horváth et al. 2015). The near regional study is in progress and addresses the construction of a new tectonic model for the circular area with 50 km radius around the NPP using a wealth of unpublished oil company seismic and borehole data. The site vicinity study has also been started with a core activity of 300 km² 3D seismic data acquisition, processing and interpretation assisted by a series of additional geophysical surveys, new drillings and geological mapping. This lecture will present a few important results of the near regional study, which sheds new light on the intricate tectonic evolution of the Mid-Hungarian Fault Zone (MHFZ), which is a strongly deformed belt between the Alcapa and Tisza-Dacia megatectonic units. The nuclear power plant is located at the margin of the Tisza unit near to the southern edge of the MHFZ. Reassessment of seismic hazard at the site of the NPP requires better understanding of the Miocene to Recent tectonic evolution of this region in the central part of the Pannonian basin. Early to Middle Miocene was a period of rifting with formation of 1 to 3 km deep half-grabens filled with terrestrial to marine deposits and large amount of rift-related volcanic material. Graben fill became strongly deformed as a consequence of juxtaposition of the two megatectonic units leading to strong compression and development of large scale transfer faults due to differential movements. The beginning of Late Miocene saw an event of basin inversion resulting in uplift and remarkable erosion of the synrift strata. Pliocene through Quaternary has been a period of gradual change in the regional stress field and formation of a series of basin-scale sinistral strike-slip faults usually by reactivation of half-graben bounding normal faults. A most important subject of the HGIP for seismic hazard assessment of the Paks NPP is to determine the timing and amount of displacement of this fault system, as well as its potential capability in the vicinity of the site. References: IAEA (2010): Seismic hazard in site evaluation for nuclear installations. International Atomic Energy Agency Safety Standards, SSG-9, Vienna, p. 60. Horváth, F. et al (2015): Evolution of the Pannonian basin and its geothermal resources. Geothermics, 53, 328-352.

  9. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought

    NASA Astrophysics Data System (ADS)

    Pervez, M. S.; Henebry, G. M.

    2014-02-01

    We evaluated the spatial and temporal responses of precipitation in the basins as modulated by the El Niño Southern Oscillation (ENSO) and Indian Ocean (IO) dipole modes using observed precipitation records at 43 stations across the Ganges and Brahmaputra basins from 1982 to 2010. Daily observed precipitation records were extracted from Global Surface Summary of the Day dataset and spatial and monthly anomalies were computed. The anomalies were averaged for the years influenced by climate modes combinations. Occurrences of El Niño alone significantly reduced (60% and 88% of baseline in the Ganges and Brahmaputra basins, respectively) precipitation during the monsoon months in the northwestern and central Ganges basin and across the Brahmaputra basin. In contrast, co-occurrence of La Niña and a positive IO dipole mode significantly enhanced (135% and 160% of baseline, respectively) precipitation across both basins. During the co-occurrence of neutral phases in both climate modes (occurring 13 out of 28 yr), precipitation remained below average to average in the agriculturally extensive areas of Haryana, Uttar Pradesh, Bihar, eastern Nepal, and the Rajshahi district in Bangladesh in the Ganges basin and northern Bangladesh, Meghalaya, Assam, and Arunachal Pradesh in the Brahmaputra basin. This pattern implies that a regular water deficit is likely in these areas with implications for the agriculture sector due to its reliance on consistent rainfall for successful production. Major flooding and drought occurred as a consequence of the interactive effects of the ENSO and IO dipole modes, with the sole exception of extreme precipitation and flooding during El Niño events. This observational analysis will facilitate well informed decision making in minimizing natural hazard risks and climate impacts on agriculture, and supports development of strategies ensuring optimized use of water resources in best management practice under changing climate.

  10. 2017 One‐year seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes

    USGS Publications Warehouse

    Petersen, Mark D.; Mueller, Charles; Moschetti, Morgan P.; Hoover, Susan M.; Shumway, Allison; McNamara, Daniel E.; Williams, Robert; Llenos, Andrea L.; Ellsworth, William L.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.

    2017-01-01

    We produce a one‐year 2017 seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes that updates the 2016 one‐year forecast; this map is intended to provide information to the public and to facilitate the development of induced seismicity forecasting models, methods, and data. The 2017 hazard model applies the same methodology and input logic tree as the 2016 forecast, but with an updated earthquake catalog. We also evaluate the 2016 seismic‐hazard forecast to improve future assessments. The 2016 forecast indicated high seismic hazard (greater than 1% probability of potentially damaging ground shaking in one year) in five focus areas: Oklahoma–Kansas, the Raton basin (Colorado/New Mexico border), north Texas, north Arkansas, and the New Madrid Seismic Zone. During 2016, several damaging induced earthquakes occurred in Oklahoma within the highest hazard region of the 2016 forecast; all of the 21 moment magnitude (M) ≥4 and 3 M≥5 earthquakes occurred within the highest hazard area in the 2016 forecast. Outside the Oklahoma–Kansas focus area, two earthquakes with M≥4 occurred near Trinidad, Colorado (in the Raton basin focus area), but no earthquakes with M≥2.7 were observed in the north Texas or north Arkansas focus areas. Several observations of damaging ground‐shaking levels were also recorded in the highest hazard region of Oklahoma. The 2017 forecasted seismic rates are lower in regions of induced activity due to lower rates of earthquakes in 2016 compared with 2015, which may be related to decreased wastewater injection caused by regulatory actions or by a decrease in unconventional oil and gas production. Nevertheless, the 2017 forecasted hazard is still significantly elevated in Oklahoma compared to the hazard calculated from seismicity before 2009.

  11. Natural Hazards In Mexico City

    NASA Astrophysics Data System (ADS)

    Torres-Vera, M.

    2001-12-01

    Around the world more than 300 natural disasters occur each year, taking about 250,000 lives and directly affecting more than 200 million people. Natural hazards are complex and vary greatly in their frequency, speed of onset, duration and area affected. They are distinguished from extreme natural events, which are much more common and widespread, by their potential impacts on human societies. A natural disaster is the occurrence of a natural hazard on a large scale, involving great damage and, particularly in developing countries, great loss of life. The Basin of Mexico, whose central and southwestern parts are occupied by the urban area of Mexico City at the average altitude of 2,240 m above the sea level, is located on the southern edge of the Southern Plateau Central, on a segment of the Trans-Mexican Neovolcanic Belt that developed during Pliocene-Holocene times. The Basin of Mexico is a closed basin, which was created with the closing of the former Valley of Mexico because of basaltic-andesitic volcanism that formed the Sierra de Chichinautzin south of the city. The south-flowing drainage was obstructed and prompted the development of a lake that became gradually filled with sediments during the last 700,000 years. The lake fill accumulated unconformably over a terrain of severely dissected topography, which varies notably in thickness laterally. The major part of the urban area of Mexico City is built over these lake deposits, whereas the rest is built over alluvial material that forms the transition zone between the lake deposits and what constitutes the basement for the basin fill. In the present study, the effect of rain, fire and earthquakes onto Mexico City is evaluated. Rain risk was calculated using the most dangerous flood paths. The fire risk zones were determined by defining the vegetation areas with greater probability to catch fires. Earthquake hazards were determined by characterization of the zones that are vulnerable to damages produced by earthquakes. This information was used to generate maps, which delimited zones that may suffer damage by rain, fire or earthquake. The convolution of the obtained maps produces a map of the city, where the areas with higher probability to suffer a hazard are defined. These results can be used to propose land use planning to avoid the growth of urban areas in high-risk zones.

  12. Finding balance between fire hazard reduction and erosion control in the Lake Tahoe Basin, California–Nevada

    Treesearch

    Nicolas M. Harrison; Andrew P. Stubblefield; J. Morgan Varner; Eric E. Knapp

    2016-01-01

    The 2007 Angora Fire served as a stark reminder of the need for fuel reduction treatments in the Lake Tahoe Basin, California–Nevada, USA. Concerns exist, however, that the corresponding removal of forest floor fuels could increase erosion rates, negatively affecting the clarity of Lake Tahoe. To quantify trade-offs between fuel reduction and erosion, we conducted...

  13. Rapid Expansion of Glacial Lakes Caused by Climate and Glacier Retreat in the Central Himalayas

    NASA Astrophysics Data System (ADS)

    Wang, W.

    2016-12-01

    Glacial lake outburst floods are among the most serious natural hazards in the Himalayas. Such floods are of high scientific and political importance because they exert trans-boundary impacts on bordering countries. The preparation of an updated inventory of glacial lakes and the analysis of their evolution are an important first step in assessment of hazards from glacial lake outbursts. Here, we report the spatiotemporal developments of the glacial lakes in the Poiqu River basin, a trans-boundary basin in the Central Himalayas, from 1976 to 2010 based on multi-temporal Landsat images. Studied glacial lakes are classified as glacierfed lakes and non-glacier-fed lakes according to their hydrologic connection to glacial watersheds. A total of 119 glacial lakes larger than 0.01 km2 with an overall surface area of 20.22 km2 (±10.8%) were mapped in 2010, with glacier-fed lakes being predominant in both number (69, 58.0%) and area (16.22 km2, 80.2%). We found that lakes connected to glacial watersheds (glacier-fed lakes) significantly expanded (122.1%) from 1976 to 2010, whereas lakes not connected to glacial watersheds (non-glacier-fed lakes) remained stable (+2.8%) during the same period. This contrast can be attributed to the impact of glaciers. Retreating glaciers not only supply meltwater to lakes but also leave space for them to expand. Compared with other regions of the Hindu Kush Himalayas (HKH), the lake area per glacier area in the Poiqu River basin was the highest. This observation might be attributed to the different climate regimes and glacier status along the HKH. The results presented in this study confirm the significant role of glacier retreat on the evolution of glacial lakes.

  14. Tulane/Xavier University hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, January 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-02

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The Hazardous Materials in Aquatic Environments of the Mississippi River Basin project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environmentsmore » of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Summaries which describe objectives, goals, and accomplishments are included on ten collaborative cluster projects, two education projects, and six initiation projects. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  15. Drought Analysis of the Haihe River Basin Based on GRACE Terrestrial Water Storage

    PubMed Central

    Wang, Jianhua; Jiang, Dong; Huang, Yaohuan; Wang, Hao

    2014-01-01

    The Haihe river basin (HRB) in the North China has been experiencing prolonged, severe droughts in recent years that are accompanied by precipitation deficits and vegetation wilting. This paper analyzed the water deficits related to spatiotemporal variability of three variables of the gravity recovery and climate experiment (GRACE) derived terrestrial water storage (TWS) data, precipitation, and EVI in the HRB from January 2003 to January 2013. The corresponding drought indices of TWS anomaly index (TWSI), precipitation anomaly index (PAI), and vegetation anomaly index (AVI) were also compared for drought analysis. Our observations showed that the GRACE-TWS was more suitable for detecting prolonged and severe droughts in the HRB because it can represent loss of deep soil water and ground water. The multiyear droughts, of which the HRB has sustained for more than 5 years, began in mid-2007. Extreme drought events were detected in four periods at the end of 2007, the end of 2009, the end of 2010, and in the middle of 2012. Spatial analysis of drought risk from the end of 2011 to the beginning of 2012 showed that human activities played an important role in the extent of drought hazards in the HRB. PMID:25202732

  16. Drought analysis of the Haihe river basin based on GRACE terrestrial water storage.

    PubMed

    Wang, Jianhua; Jiang, Dong; Huang, Yaohuan; Wang, Hao

    2014-01-01

    The Haihe river basin (HRB) in the North China has been experiencing prolonged, severe droughts in recent years that are accompanied by precipitation deficits and vegetation wilting. This paper analyzed the water deficits related to spatiotemporal variability of three variables of the gravity recovery and climate experiment (GRACE) derived terrestrial water storage (TWS) data, precipitation, and EVI in the HRB from January 2003 to January 2013. The corresponding drought indices of TWS anomaly index (TWSI), precipitation anomaly index (PAI), and vegetation anomaly index (AVI) were also compared for drought analysis. Our observations showed that the GRACE-TWS was more suitable for detecting prolonged and severe droughts in the HRB because it can represent loss of deep soil water and ground water. The multiyear droughts, of which the HRB has sustained for more than 5 years, began in mid-2007. Extreme drought events were detected in four periods at the end of 2007, the end of 2009, the end of 2010, and in the middle of 2012. Spatial analysis of drought risk from the end of 2011 to the beginning of 2012 showed that human activities played an important role in the extent of drought hazards in the HRB.

  17. Ganga water pollution: A potential health threat to inhabitants of Ganga basin.

    PubMed

    Dwivedi, Sanjay; Mishra, Seema; Tripathi, Rudra Deo

    2018-05-18

    The water quality of Ganga, the largest river in Indian sub-continent and life line to hundreds of million people, has severely deteriorated. Studies have indicated the presence of high level of carcinogenic elements in Ganga water. We performed extensive review of sources and level of organic, inorganic pollution and microbial contamination in Ganga water to evaluate changes in the level of various pollutants in the recent decade in comparison to the past and potential health risk for the population through consumption of toxicant tainted fishes in Ganga basin. A systematic search through databases, specific websites and reports of pollution regulatory agencies was conducted. The state wise level of contamination was tabulated along the Ganga river. We have discussed the major sources of various pollutants with particular focus on metal/metalloid and pesticide residues. Bioaccumulation of toxicants in fishes of Ganga water and potential health hazards to humans through consumption of tainted fishes was evaluated. The level of pesticides in Ganga water registered a drastic reduction in the last decade (i.e. after the establishment of National Ganga River Basin Authority (NGRBA) in 2009), still the levels of some organochlorines are beyond the permissible limits for drinking water. Conversely the inorganic pollutants, particularly carcinogenic elements have increased several folds. Microbial contamination has also significantly increased. Hazard quotient and hazard index indicated significant health risk due to metal/metalloid exposure through consumption of tainted fishes from Ganga. Target cancer risk assessment showed high carcinogenic risk from As, Cr, Ni and Pb as well as residues of DDT and HCHs. Current data analysis showed that Ganga water quality is deteriorating day by day and at several places even in upper stretch of Ganga the water is not suitable for domestic uses. Although there is positive impact of ban on persistent pesticides with decreasing trend of pesticide residues in Ganga water, the increasing trend of trace and toxic elements is alarming and the prolong exposure to polluted Ganga water and/or consumption of Ganga water fishes may cause serious illness including cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds

    NASA Astrophysics Data System (ADS)

    England, John F.; Julien, Pierre Y.; Velleux, Mark L.

    2014-03-01

    Traditionally, deterministic flood procedures such as the Probable Maximum Flood have been used for critical infrastructure design. Some Federal agencies now use hydrologic risk analysis to assess potential impacts of extreme events on existing structures such as large dams. Extreme flood hazard estimates and distributions are needed for these efforts, with very low annual exceedance probabilities (⩽10-4) (return periods >10,000 years). An integrated data-modeling hydrologic hazard framework for physically-based extreme flood hazard estimation is presented. Key elements include: (1) a physically-based runoff model (TREX) coupled with a stochastic storm transposition technique; (2) hydrometeorological information from radar and an extreme storm catalog; and (3) streamflow and paleoflood data for independently testing and refining runoff model predictions at internal locations. This new approach requires full integration of collaborative work in hydrometeorology, flood hydrology and paleoflood hydrology. An application on the 12,000 km2 Arkansas River watershed in Colorado demonstrates that the size and location of extreme storms are critical factors in the analysis of basin-average rainfall frequency and flood peak distributions. Runoff model results are substantially improved by the availability and use of paleoflood nonexceedance data spanning the past 1000 years at critical watershed locations.

  19. Water and growth: An econometric analysis of climate and policy impacts

    NASA Astrophysics Data System (ADS)

    Khan, Hassaan Furqan; Morzuch, Bernard J.; Brown, Casey M.

    2017-06-01

    Water-related hazards such as floods, droughts, and disease cause damage to an economy through the destruction of physical capital including property and infrastructure, the loss of human capital, and the interruption of economic activities, like trade and education. The question for policy makers is whether the impacts of water-related risk accrue to manifest as a drag on economic growth at a scale suggesting policy intervention. In this study, the average drag on economic growth from water-related hazards faced by society at a global level is estimated. We use panel regressions with various specifications to investigate the relationship between economic growth and hydroclimatic variables at the country-river basin level. In doing so, we make use of surface water runoff variables never used before. The analysis of the climate variables shows that water availability and water hazards have significant effects on economic growth, providing further evidence beyond earlier studies finding that precipitation extremes were at least as important or likely more important than temperature effects. We then incorporate a broad set of variables representing the areas of infrastructure, institutions, and information to identify the characteristics of a region that determine its vulnerability to water-related risks. The results identify water scarcity, governance, and agricultural intensity as the most relevant measures affecting vulnerabilities to climate variability effects.

  20. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns appear to correlate with variations in the distribution of aftershocks from the 2009 and 2014 Karonga earthquakes and in background seismicity beneath the lake, providing new constraints on length-displacement scaling for predictive models and earthquake hazards.

  1. Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China.

    PubMed

    Chen, Xichao; Luo, Qian; Wang, Donghong; Gao, Jijun; Wei, Zi; Wang, Zijian; Zhou, Huaidong; Mazumder, Asit

    2015-11-01

    Owing to the growing public awareness on the safety and aesthetics in water sources, more attention has been given to the adverse effects of volatile organic compounds (VOCs) on aquatic organisms and human beings. In this study, 77 target VOCs (including 54 common VOCs, 13 carbonyl compounds, and 10 taste and odor compounds) were detected in typical drinking water sources from 5 major river basins (the Yangtze, the Huaihe, the Yellow, the Haihe and the Liaohe River basins) and their occurrences were characterized. The ecological, human health, and olfactory assessments were performed to assess the major hazards in source water. The investigation showed that there existed potential ecological risks (1.30 × 10 ≤ RQtotals ≤ 8.99 × 10) but little human health risks (6.84 × 10(-7) ≤ RQtotals ≤ 4.24 × 10(-4)) by VOCs, while that odor problems occurred extensively. The priority contaminants in drinking water sources of China were also listed based on the present assessment criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Emergency assessments of postfire debris-flow hazards for the 2009 La Brea, Jesusita, Guiberson, Morris, Sheep, Oak Glen, Pendleton, and Cottonwood fires in southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.

    2010-01-01

    This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2009 La Brea and Jesusita fires in Santa Barbara County, the Guiberson fire in Ventura County, the Morris fire in Los Angeles County, the Sheep, Oak Glen, and Pendleton fires in San Bernardino County, and the Cottonwood fire in Riverside County, southern California. Statistical-empirical models developed to analyze postfire debris flows are used to estimate the probability and volume of debris-flows produced from drainage basins within each of the burned areas. Debris-flow probabilities and volumes are estimated as functions of different measures of basin burned extent, gradient, and material properties in response to both a 3-hour-duration, 2-year-recurrence thunderstorm and to a widespread, 12-hour-duration, 2-year-recurrence winter storm. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two winters following the fire.

  3. Accumulated sediments in a detention basin: chemical and microbial hazard assessment linked to hydrological processes.

    PubMed

    Sébastian, C; Barraud, S; Ribun, S; Zoropogui, A; Blaha, D; Becouze-Lareure, C; Kouyi, G Lipeme; Cournoyer, B

    2014-04-01

    Accumulated sediments in a 32,000-m(3) detention basin linked to a separate stormwater system were characterized in order to infer their health hazards. A sampling scheme of 15 points was defined according to the hydrological behaviour of the basin. Physical parameters (particle size and volatile organic matter content) were in the range of those previously reported for stormwater sediments. Chemical analyses on hydrocarbons, PAHs, PCBs and heavy metals showed high pollutant concentrations. Microbiological analyses of these points highlighted the presence of faecal indicator bacteria (Escherichia coli and intestinal enterococci) and actinomycetes of the genus Nocardia. These are indicative of the presence of human pathogens. E. coli and enterococcal numbers in the sediments were higher at the proximity of the low-flow gutter receiving waters from the catchment. These bacteria appeared to persist over time among urban sediments. Samples highly contaminated by hydrocarbons were also shown to be heavily contaminated by these bacteria. These results demonstrated for the first time the presence of Nocardial actinomycetes in such an urban context with concentrations as high as 11,400 cfu g(-1).

  4. Assessment of trace elements in terminal tap water of Hunan Province, South China, and the potential health risks.

    PubMed

    Li, Mansha; Du, Yong; Chen, Lv; Liu, Lulu; Duan, Yanying

    2018-05-02

    A total of 116 terminal tap water (TTW) samples from Xiangjiang, Zijiang, Yuanjiang, and Lishui river basins of Hunan province were collected and concentrations of As, Cd, Cr, Pb, Mn, Zn, Fe, Al, and Cu were determined using inductively coupled plasma mass spectrometry. The results showed that 10% of the water samples exceeded the limit level of Cd established by World Health Organization (WHO) of 0.003 mg L -1 . Three percent of the samples had Fe level and 1% had As level above the WHO limits of 0.3 and 0.01 mg L -1 , respectively. Multivariate statistic approach (cluster analysis and principal component analysis) results revealed that anthropogenic activities and pipeline corrosion were major sources of TTW contamination in Hunan province. The individual and total hazard quotient values estimated by deterministic and probabilistic approaches were both less than 1. However, the mean cancer risk values of Cd were 2.2 × 10 -4 and 1.4 × 10 -4 for Xiangjiang and Yuanjiang river basin, respectively, both greater than 10 -4 . The 95th percentile value of cancer risk for Cr was slightly greater than 10 -4 in Xiangjiang river basins. Long-term exposure to Cd and Cr through tap water consumption poses moderate carcinogenic health risks to the local residents.

  5. Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard.

    PubMed

    Liu, Rui; Chen, Yun; Wu, Jianping; Gao, Lei; Barrett, Damian; Xu, Tingbao; Li, Xiaojuan; Li, Linyi; Huang, Chang; Yu, Jia

    2017-04-01

    Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net-water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics-based entropy method. The weighted indices were input into the WNB-based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image-based sampling and validation, cell-by-cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood-related environmental hazard studies. © 2016 Society for Risk Analysis.

  6. Accounting for rainfall spatial variability in the prediction of flash floods

    NASA Astrophysics Data System (ADS)

    Saharia, Manabendra; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Hong, Yang; Vergara, Humberto; Flamig, Zachary L.

    2017-04-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 15,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. The database has been subjected to rigorous quality control by accounting for radar beam height and percentage snow in basins. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  7. Rossitsa River Basin: Flood Hazard and Risk Identification

    NASA Astrophysics Data System (ADS)

    Mavrova-Guirguinova, Maria; Pencheva, Denislava

    2017-04-01

    The process of Flood Risk Management Planning and adaptation of measures for flood risk reduction as the Early Warning provoke the necessity of surveys involving Identification aspects. This project presents risk identification combining two lines of analysis: (1) Creation a mathematical model of rainfall-runoff processes in a watershed based on limited number of observed input and output variables; (2) Procedures for determination of critical thresholds - discharges/water levels corresponding to certain consequences. The pilot region is Rossitsa river basin, Sevlievo, Bulgaria. The first line of analysis follows next steps: (a) Creation and calibration of Unit Hydrograph Models based on limited number of observed data for discharge and precipitation; The survey at the selected region has 22 observations for excess rainfall and discharge. (b) The relations of UHM coefficients from the input parameters have been determined statistically, excluding the ANN model of the run-off coefficient as a function of 3 parameters (amount of precipitation two days before, soil condition, intensity of the rainfall) where a feedforward neural network is used. (c) Additional simulations with UHM aiming at generation of synthetic data for rainfall-runoff events, which extend the range of observed data; (d) Training, validation and testing a generalized regional ANN Model for discharge forecasting with 4 input parameters, where the training data set consists of synthetic data, validation and testing data sets consists of observations. A function between consequences and discharges has been reached in the second line of analysis concerning critical hazard levels determination. Unsteady simulations with the hydraulic model using three typical hydrographs for determination of the existing time for reaction from one to upper critical threshold are made. Correction of the critical thresholds aiming at providing necessary time for reaction between the thresholds and probability analysis of the finally determined critical thresholds are made. The result of the described method is a Catalogue for off-line flood hazard and risk identification. It can be used as interactive computer system, based on simulations of the ANN "Catalogue". Flood risk identification of the future rainfall event is made in a multi-dimensional space for each kind of soil conditions (dry, average wet and wet condition) and observed amount of precipitation two days before. Rainfall-runoff scenarios in case of intensive rainfall or sustained rainfall (more than 6 hours) are taken into account. Critical thresholds and hazard zones needed of specific operative activities (rescue and recovery) corresponded to each of the regulated flood protection levels (unite, municipality, regional or national) are presented. The Catalogue gives the opportunity for flood hazard scenarios extraction. Regarding that, the Catalogue is useful on the prevention stage of flood protection planning (emergency operations, measures and resources for their implementation planning) and creation of scenarios for training the Emergency Plans. Concerning application for Early Warning, it gives approximate forecast for flood hazard. The Catalogue supplies the necessary time for reaction of about 24 hours. Thus, Early Warning is possible to the responsible authorities, all parts if the Unified Rescue System, members of suitable Headquarters for disaster protection (on municipality, region or national level).

  8. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volumemore » of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand filter is then backwashed into the STSC. The STSC and STS cask are then inerted and transported to T Plant.« less

  9. Report for explosion and earthquake data acquired in the 1999 Seismic Hazards Investigation of Puget Sound (SHIPS), Washington

    USGS Publications Warehouse

    Brocher, Thomas M.; Pratt, Thomas L.; Miller, Kate C.; Tréhu, Anne M.; Snelson, Catherine M.; Weaver, Craig S.; Creager, Ken C.; Crosson, Robert S.; ten Brink, Uri S.; Alvarez, Marcos G.; Harder, Steven H.; Asudeh, Isa

    2000-01-01

    This report describes the acquisition, processing, and quality of seismic reflection and refraction data obtained in the Seattle basin, central Puget Lowland, western Washington, in September 1999 during the Seismic Hazards Investigation of Puget Sound (SHIPS). As a sequel to the 1998 SHIPS air gun experiment (also known as 'Wet SHIPS'), the 1999 experiment, nicknamed 'Dry SHIPS,' acquired a 112-km-long east-west trending multichannel seismic reflection and refraction line in the Seattle basin. One thousand and eight seismographs were deployed at a nominal spacing of 100 meters, and 29 shot points were detonated at approximately 4 km intervals along the seismic line. The wide-angle seismic profile was designed to (1) determine the E-W geometry of Seattle basin, (2) measure the seismic velocities within the basin, and (3) define the basement structure underlying the Seattle basin. In this report, we describe the acquisition of these data, discuss the processing and merging of the data into common shot gathers, and illustrate the acquired profiles. We also describe the format and content of the archival tapes containing the SEGY-formatted, common-shot gathers. Data quality is variable, but useful data were acquired from all 29 shot points fired along the Dry SHIPS seismic line. The data show pronounced travel time delays associated with the low velocity sedimentary rocks filling the Seattle basin. Thirty-five REFTEK stations, deployed at 4 km intervals along the Dry SHIPS line, recorded 26 regional earthquakes and blasts and 17 teleseismic events, including the main shock and several aftershocks of the Mw=7.6 Chi-Chi (Taiwan) earthquake of 9/20/1999. The teleseismic recordings of the Chi-Chi (Taiwan) mainshock provide useful signals down to 10 second periods. They document a significant (factor between 5 and 10) focusing of compressional- and shear-wave energy by the Seattle basin at periods between 1 and 2 seconds relative to 'bedrock' sites east and west of the basin. Signal durations in the Seattle basin were also substantially increased relative to 'bedrock' sites in the Olympic peninsula and Cascade foothills.

  10. Seawater intrusion risk analysis under climate change conditions for the Gaza Strip aquifer (Palestine)

    NASA Astrophysics Data System (ADS)

    Dentoni, Marta; Deidda, Roberto; Paniconi, Claudio; Marrocu, Marino; Lecca, Giuditta

    2014-05-01

    Seawater intrusion (SWI) has become a major threat to coastal freshwater resources, particularly in the Mediterranean basin, where this problem is exacerbated by the lack of appropriate groundwater resources management and with serious potential impacts from projected climate changes. A proper analysis and risk assessment that includes climate scenarios is essential for the design of water management measures to mitigate the environmental and socio-economic impacts of SWI. In this study a methodology for SWI risk analysis in coastal aquifers is developed and applied to the Gaza Strip coastal aquifer in Palestine. The method is based on the origin-pathway-target model, evaluating the final value of SWI risk by applying the overlay principle to the hazard map (representing the origin of SWI), the vulnerability map (representing the pathway of groundwater flow) and the elements map (representing the target of SWI). Results indicate the important role of groundwater simulation in SWI risk assessment and illustrate how mitigation measures can be developed according to predefined criteria to arrive at quantifiable expected benefits. Keywords: Climate change, coastal aquifer, seawater intrusion, risk analysis, simulation/optimization model. Acknowledgements. The study is partially funded by the project "Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB)", FP7-ENV-2009-1, GA 244151.

  11. Modelling of Rainfall Induced Landslides in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Arnone, E.; Sivandran, G.; Noto, L. V.; Bras, R. L.

    2010-12-01

    We performed an island-wide determination of static landslide susceptibility and hazard assessment as well as dynamic modeling of rainfall-induced shallow landslides in a particular hydrologic basin. Based on statistical analysis of past landslides, we determined that reliable prediction of the susceptibility to landslides is strongly dependent on the resolution of the digital elevation model (DEM) employed and the reliability of the rainfall data. A distributed hydrology model, Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator with VEGetation Generator for Interactive Evolution (tRIBS-VEGGIE), tRIBS-VEGGIE, has been implemented for the first time in a humid tropical environment like Puerto Rico and validated against in-situ measurements. A slope-failure module has been added to tRIBS-VEGGIE’s framework, after analyzing several failure criterions to identify the most suitable for our application; the module is used to predict the location and timing of landsliding events. The Mameyes basin, located in the Luquillo Experimental Forest in Puerto Rico, was selected for modeling based on the availability of soil, vegetation, topographical, meteorological and historic landslide data. Application of the model yields a temporal and spatial distribution of predicted rainfall-induced landslides.

  12. GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: the case study of Yialias basin in Cyprus

    NASA Astrophysics Data System (ADS)

    Alexakis, D. D.; Grillakis, M. G.; Koutroulis, A. G.; Agapiou, A.; Themistocleous, K.; Tsanis, I. K.; Michaelides, S.; Pashiardis, S.; Demetriou, C.; Aristeidou, K.; Retalis, A.; Tymvios, F.; Hadjimitsis, D. G.

    2014-02-01

    Floods are one of the most common natural disasters worldwide, leading to economic losses and loss of human lives. This paper highlights the hydrological effects of multi-temporal land use changes in flood hazard within the Yialias catchment area, located in central Cyprus. A calibrated hydrological model was firstly developed to describe the hydrological processes and internal basin dynamics of the three major subbasins, in order to study the diachronic effects of land use changes. For the implementation of the hydrological model, land use, soil and hydrometeorological data were incorporated. The climatic and stream flow data were derived from rain and flow gauge stations located in the wider area of the watershed basin. In addition, the land use and soil data were extracted after the application of object-oriented nearest neighbor algorithms of ASTER satellite images. Subsequently, the cellular automata (CA)-Markov chain analysis was implemented to predict the 2020 land use/land cover (LULC) map and incorporate it to the hydrological impact assessment. The results denoted the increase of runoff in the catchment area due to the recorded extensive urban sprawl phenomenon of the last decade.

  13. Geospatial assessment of ecological functions and flood-related risks on floodplains along major rivers in the Puget Sound Basin, Washington

    USGS Publications Warehouse

    Konrad, Christopher P.

    2015-01-01

    Ecological functions and flood-related risks were assessed for floodplains along the 17 major rivers flowing into Puget Sound Basin, Washington. The assessment addresses five ecological functions, five components of flood-related risks at two spatial resolutions—fine and coarse. The fine-resolution assessment compiled spatial attributes of floodplains from existing, publically available sources and integrated the attributes into 10-meter rasters for each function, hazard, or exposure. The raster values generally represent different types of floodplains with regard to each function, hazard, or exposure rather than the degree of function, hazard, or exposure. The coarse-resolution assessment tabulates attributes from the fine-resolution assessment for larger floodplain units, which are floodplains associated with 0.1 to 21-kilometer long segments of major rivers. The coarse-resolution assessment also derives indices that can be used to compare function or risk among different floodplain units and to develop normative (based on observed distributions) standards. The products of the assessment are available online as geospatial datasets (Konrad, 2015; http://dx.doi.org/10.5066/F7DR2SJC).

  14. Study of Site Response in the Seattle and Tacoma Basins, Washington, Using Spectral Ratio Methods

    NASA Astrophysics Data System (ADS)

    Keshvardoost, R.; Wolf, L. W.

    2014-12-01

    Sedimentary basins are known to have a pronounced influence on earthquake-generated ground motions, affecting both predominant frequencies and wave amplification. These site characteristics are important elements in estimating ground shaking and seismic hazard. In this study, we use three-component broadband and strong motion seismic data from three recent earthquakes to determine site response characteristics in the Seattle and Tacoma basins, Washington. Resonant frequencies and relative amplification of ground motions were determined using Fourier spectral ratios of velocity and acceleration records from the 2012 Mw 6.1 Vancouver Island earthquake, the 2012 Mw 7.8 Queen Charlotte Island earthquake, and the 2014 Mw 6.6 Vancouver Island earthquake. Recordings from sites within and adjacent to the Seattle and Tacoma basins were selected for the study based on their signal to noise ratios. Both the Standard Spectral Ratio (SSR) and the Horizontal-to-Vertical Spectral Ratio (HVSR) methods were used in the analysis, and results from each were compared to examine their agreement and their relation to local geology. Although 57% of the sites (27 out of 48) exhibited consistent results between the two methods, other sites varied considerably. In addition, we use data from the Seattle Liquefaction Array (SLA) to evaluate the site response at 4 different depths. Results indicate that resonant frequencies remain the same at different depths but amplification decreases significantly over the top 50 m.

  15. How sensitive is earthquake ground motion to source parameters? Insights from a numerical study in the Mygdonian basin

    NASA Astrophysics Data System (ADS)

    Chaljub, Emmanuel; Maufroy, Emeline; deMartin, Florent; Hollender, Fabrice; Guyonnet-Benaize, Cédric; Manakou, Maria; Savvaidis, Alexandros; Kiratzi, Anastasia; Roumelioti, Zaferia; Theodoulidis, Nikos

    2014-05-01

    Understanding the origin of the variability of earthquake ground motion is critical for seismic hazard assessment. Here we present the results of a numerical analysis of the sensitivity of earthquake ground motion to seismic source parameters, focusing on the Mygdonian basin near Thessaloniki (Greece). We use an extended model of the basin (65 km [EW] x 50 km [NS]) which has been elaborated during the Euroseistest Verification and Validation Project. The numerical simulations are performed with two independent codes, both implementing the Spectral Element Method. They rely on a robust, semi-automated, mesh design strategy together with a simple homogenization procedure to define a smooth velocity model of the basin. Our simulations are accurate up to 4 Hz, and include the effects of surface topography and of intrinsic attenuation. Two kinds of simulations are performed: (1) direct simulations of the surface ground motion for real regional events having various back azimuth with respect to the center of the basin; (2) reciprocity-based calculations where the ground motion due to 980 different seismic sources is computed at a few stations in the basin. In the reciprocity-based calculations, we consider epicentral distances varying from 2.5 km to 40 km, source depths from 1 km to 15 km and we span the range of possible back-azimuths with a 10 degree bin. We will present some results showing (1) the sensitivity of ground motion parameters to the location and focal mechanism of the seismic sources; and (2) the variability of the amplification caused by site effects, as measured by standard spectral ratios, to the source characteristics

  16. Integrate urban‐scale seismic hazard analyses with the U.S. National Seismic Hazard Model

    USGS Publications Warehouse

    Moschetti, Morgan P.; Luco, Nicolas; Frankel, Arthur; Petersen, Mark D.; Aagaard, Brad T.; Baltay, Annemarie S.; Blanpied, Michael; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.; Graves, Robert; Hartzell, Stephen; Rezaeian, Sanaz; Stephenson, William J.; Wald, David J.; Williams, Robert A.; Withers, Kyle

    2018-01-01

    For more than 20 yrs, damage patterns and instrumental recordings have highlighted the influence of the local 3D geologic structure on earthquake ground motions (e.g., M">M 6.7 Northridge, California, Gao et al., 1996; M">M 6.9 Kobe, Japan, Kawase, 1996; M">M 6.8 Nisqually, Washington, Frankel, Carver, and Williams, 2002). Although this and other local‐scale features are critical to improving seismic hazard forecasts, historically they have not been explicitly incorporated into the U.S. National Seismic Hazard Model (NSHM, national model and maps), primarily because the necessary basin maps and methodologies were not available at the national scale. Instead,...

  17. Conveying Flood Hazard Risk Through Spatial Modeling: A Case Study for Hurricane Sandy-Affected Communities in Northern New Jersey.

    PubMed

    Artigas, Francisco; Bosits, Stephanie; Kojak, Saleh; Elefante, Dominador; Pechmann, Ildiko

    2016-10-01

    The accurate forecast from Hurricane Sandy sea surge was the result of integrating the most sophisticated environmental monitoring technology available. This stands in contrast to the limited information and technology that exists at the community level to translate these forecasts into flood hazard levels on the ground at scales that are meaningful to property owners. Appropriately scaled maps with high levels of certainty can be effectively used to convey exposure to flood hazard at the community level. This paper explores the most basic analysis and data required to generate a relatively accurate flood hazard map to convey inundation risk due to sea surge. A Boolean overlay analysis of four input layers: elevation and slope derived from LiDAR data and distances from streams and catch basins derived from aerial photography and field reconnaissance were used to create a spatial model that explained 55 % of the extent and depth of the flood during Hurricane Sandy. When a ponding layer was added to the previous model to account for depressions that would fill and spill over to nearby areas, the new model explained almost 70 % of the extent and depth of the flood. The study concludes that fairly accurate maps can be created with readily available information and that it is possible to infer a great deal about risk of inundation at the property level, from flood hazard maps. The study goes on to conclude that local communities are encouraged to prepare for disasters, but in reality because of the existing Federal emergency management framework there is very little incentive to do so.

  18. Conveying Flood Hazard Risk Through Spatial Modeling: A Case Study for Hurricane Sandy-Affected Communities in Northern New Jersey

    NASA Astrophysics Data System (ADS)

    Artigas, Francisco; Bosits, Stephanie; Kojak, Saleh; Elefante, Dominador; Pechmann, Ildiko

    2016-10-01

    The accurate forecast from Hurricane Sandy sea surge was the result of integrating the most sophisticated environmental monitoring technology available. This stands in contrast to the limited information and technology that exists at the community level to translate these forecasts into flood hazard levels on the ground at scales that are meaningful to property owners. Appropriately scaled maps with high levels of certainty can be effectively used to convey exposure to flood hazard at the community level. This paper explores the most basic analysis and data required to generate a relatively accurate flood hazard map to convey inundation risk due to sea surge. A Boolean overlay analysis of four input layers: elevation and slope derived from LiDAR data and distances from streams and catch basins derived from aerial photography and field reconnaissance were used to create a spatial model that explained 55 % of the extent and depth of the flood during Hurricane Sandy. When a ponding layer was added to the previous model to account for depressions that would fill and spill over to nearby areas, the new model explained almost 70 % of the extent and depth of the flood. The study concludes that fairly accurate maps can be created with readily available information and that it is possible to infer a great deal about risk of inundation at the property level, from flood hazard maps. The study goes on to conclude that local communities are encouraged to prepare for disasters, but in reality because of the existing Federal emergency management framework there is very little incentive to do so.

  19. A GIS-based generic real-time risk assessment framework and decision tools for chemical spills in the river basin.

    PubMed

    Jiang, Jiping; Wang, Peng; Lung, Wu-seng; Guo, Liang; Li, Mei

    2012-08-15

    This paper presents a generic framework and decision tools of real-time risk assessment on Emergency Environmental Decision Support System for response to chemical spills in river basin. The generic "4-step-3-model" framework is able to delineate the warning area and the impact on vulnerable receptors considering four types of hazards referring to functional area, societal impact, and human health and ecology system. Decision tools including the stand-alone system and software components were implemented on GIS platform. A detailed case study on the Songhua River nitrobenzene spill illustrated the goodness of the framework and tool Spill first responders and decision makers of catchment management will benefit from the rich, visual and dynamic hazard information output from the software. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Geographic relations of landslide distribution and assessment of landslide hazards in the Blanco, Cibuco, and Coamo basins, Puerto Rico

    USGS Publications Warehouse

    Larsen, M.C.; Torres-Sanchez, A. J.

    1996-01-01

    Landslide occurrence is common in mountainous areas of Puerto Rico where mean annual rainfall and the frequency of intense storms are high and hillslopes are steep. Each year, landslides cause extensive damage to property and occasionally result in loss of life. Landslide maps developed from 1:20,000 scale aerial photographs in combination with a computerized geographic information system were used to evaluate the landslide potential in the Blanco, Cibuco, and Coamo Basins of Puerto Rico. These basins, ranging in surface area from 276 to 350 square kilometers, are described in this report. The basins represent a broad range of the climatologic, geographic, and geologic conditions that occur in Puerto Rico. In addition, a variety of landslide types were documented. Rainfall-triggered debris flows, shallow soil slips, and slumps were most abundant. The most important temporal control on landslide occurrence in Puerto Rico is storm rainfall. Forty-one storms triggered widespread landsliding about 1 to 2 times per year during the last three decades. These storms were frequently of 1 to 2 days duration in which, on average, several hundred millimeters of rainfall triggered tens to hundreds of landslides in the central mountains. Most of these storms were tropical disturbances that occurred during the hurricane season of June through November. Land use and the topographic characteristics of hillslope angle, elevation, and aspect are the most important spatial controls governing landslide frequency. Hillslopes in the study area that have been anthropogenically modified, exceed 12 degrees in gradient and about 350 meters in elevation, and face the east-northeast are most prone to landsliding. Bedrock geology and soil order seem less important in the determination of landslide frequency, at least when considered at a generalized level. A rainfall accumulation-duration relation for the triggering of numerous landslides throughout the central mountains, and a set of simplified matrices representing geographic conditions in the three river basins were developed and are described in this report. These two elements provide a basis for the estimation of the temporal and spatial controls on landslide occurrence in Puerto Rico. Finally, this approach is an example of a relatively inexpensive technique for landslide hazard analysis that may be applicable to other settings.

  1. Assessing the Impacts of Flooding Caused by Extreme Rainfall Events Through a Combined Geospatial and Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Santillan, J. R.; Amora, A. M.; Makinano-Santillan, M.; Marqueso, J. T.; Cutamora, L. C.; Serviano, J. L.; Makinano, R. M.

    2016-06-01

    In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the local government units and the concerned communities within Tago River Basin as an aid in determining in an advance manner all those infrastructures (buildings, roads and bridges) and land-cover that can be affected by different extreme rainfall event flood scenarios.

  2. Pics d'accélération du mouvement sismique observés lors du séisme de Chichi à Taiwan : application à l'estimation de l'aléa sismiqueAnalysis of peak ground accelerations during the Chichi earthquake, Taiwan: application to seismic hazard evaluation

    NASA Astrophysics Data System (ADS)

    Chang, Tsui-Yu; Cotton, Fabrice; Angelier, Jacques; Shin, Tzay-Chyn

    2001-07-01

    Attenuation laws are widely used in order to estimate the peak ground acceleration that may occur at a given locality during an earthquake, for hazard evaluation purposes. However, these simplified laws should be regarded acceptable only in the first approximation, because numerous significant parameters at the local and regional scales are often ignored. We examined the relationship between distance and peak acceleration based on examples from the dense accelerometric network of Taiwan, specifically for the Chichi destructive earthquake. We thus observed significant discrepancies between the predicted and observed accelerations, resulting from (1) near-field saturation, (2) amplification in sedimentary basins, and (3) hanging wall effect. We mapped the residual accelerations (difference between observed and predicted peak ground accelerations). This highlights the role of the regional structure, independently revealed by the geological analysis, as a significant factor that controls the transmission of the seismic accelerations.

  3. Tsunami hazard assessment in the southern Colombian Pacific basin and a proposal to regenerate a previous barrier island as protection

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Restrepo, J. C.; Gonzalez, M.

    2014-05-01

    In this study, the tsunami hazard posed to 120 000 inhabitants of Tumaco (Colombia) is assessed, and an evaluation and analysis of regenerating the previous El Guano Island for tsunami protection is conducted. El Guano Island was a sandy barrier island in front of the city of Tumaco until its disappearance during the tsunami of 1979; the island is believed to have played a protective role, substantially reducing the scale of the disaster. The analysis is conducted by identifying seismotectonic parameters and focal mechanisms of tsunami generation in the area, determining seven potential generation sources, applying a numerical model for tsunami generation and propagation, and evaluating the effect of tsunamis on Tumaco. The results show that in the current situation, this area is vulnerable to impact and flooding by tsunamis originating nearby. El Guano Island was found to markedly reduce flood levels and the energy flux of tsunami waves in Tumaco during the 1979 tsunami. By reducing the risk of flooding due to tsunamis, the regeneration and morphological modification of El Guano Island would help to protect Tumaco.

  4. Tsunami hazard assessment in the southern Colombian Pacific Basin and a proposal to regenerate a previous barrier island as protection

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Restrepo, J. C.; Gonzalez, M.

    2013-04-01

    In this study, the tsunami hazard posed to 120 000 inhabitants of Tumaco (Colombia) is assessed, and an evaluation and analysis of regenerating the previous El Guano Island for tsunami protection is conducted. El Guano Island was a sandy barrier island in front of the city of Tumaco until its disappearance during the tsunami of 1979; the island is believed to have played a protective role, substantially reducing the scale of the disaster. The analysis is conducted by identifying seismotectonic parameters and focal mechanisms of tsunami generation in the area, determining seven potential generation sources, applying a numerical model for tsunami generation and propagation, and evaluating the effect of tsunamis on Tumaco. The results show that in the current situation, this area is vulnerable to impact and flooding by tsunamis originating nearby. El Guano Island was found to markedly reduce flood levels and the energy flux of tsunami waves in Tumaco during the 1979 tsunami. To reduce the risk of flooding due to tsunamis, the regeneration and morphological modification of El Guano Island would help to protect Tumaco.

  5. Intensity attenuation in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Győri, Erzsébet; Gráczer, Zoltán; Szanyi, Gyöngyvér

    2015-04-01

    Ground motion prediction equations play a key role in seismic hazard assessment. Earthquake hazard has to be expressed in macroseismic intensities in case of seismic risk estimations where a direct relation to the damage associated with ground shaking is needed. It can be also necessary for shake map generation where the map is used for prompt notification to the public, disaster management officers and insurance companies. Although only few instrumental strong motion data are recorded in the Pannonian Basin, there are numerous historical reports of past earthquakes since the 1763 Komárom earthquake. Knowing the intensity attenuation and comparing them with relations of other areas - where instrumental strong motion data also exist - can help us to choose from the existing instrumental ground motion prediction equations. The aim of this work is to determine an intensity attenuation formula for the inner part of the Pannonian Basin, which can be further used to find an adaptable ground motion prediction equation for the area. The crust below the Pannonian Basin is thin and warm and it is overlain by thick sediments. Thus the attenuation of seismic waves here is different from the attenuation in the Alp-Carpathian mountain belt. Therefore we have collected intensity data only from the inner part of the Pannonian Basin and defined the boundaries of the studied area by the crust thickness of 30 km (Windhoffer et al., 2005). 90 earthquakes from 1763 until 2014 have sufficient number of macroseismic data. Magnitude of the events varies from 3.0 to 6.6. We have used individual intensity points to eliminate the subjectivity of drawing isoseismals, the number of available intensity data is more than 3000. Careful quality control has been made on the dataset. The different types of magnitudes of the used earthquake catalogue have been converted to local and momentum magnitudes using relations determined for the Pannonian Basin. We applied the attenuation formula by Sorensen et al. (2009) using a least-squares regression method. This expression is comparable with the common type of strong-motion attenuation equations (e.g., Joyner and Boore, 1993). Joyner, W. B. and Boore, D. M. (1993). Methods for regression analysis of strong-motion data. BSSA, 83(2), 469-487. Sørensen, M. B., Stromeyer, D., Grünthal, G. (2009). Attenuation of macroseismic intensity: a new relation for the Marmara Sea region, northwest Turkey. BSSA, 99(2A), 538-553. Windhoffer, G., Dombrádi, E., Horváth, F., Székely, B., Bada, G., Szafián, P., Dövényi, P., Tóth, L., Grenerczy, Gy. and G. Timár (2005) Geodynamic Atlas of the Pannonian Basin and the Surrounding Orogens. 7th Workshop on Alpine Geological Studies, Abstract Book, p. 109.

  6. Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards

    NASA Astrophysics Data System (ADS)

    Simonneau, A.; Chapron, E.; Vannière, B.; Wirth, S. B.; Gilli, A.; Di Giovanni, C.; Anselmetti, F. S.; Desmet, M.; Magny, M.

    2013-03-01

    High-resolution seismic profiles and sediment cores from Lake Ledro combined with soil and riverbed samples from the lake's catchment area are used to assess the recurrence of natural hazards (earthquakes and flood events) in the southern Italian Alps during the Holocene. Two well-developed deltas and a flat central basin are identified on seismic profiles in Lake Ledro. Lake sediments have been finely laminated in the basin since 9000 cal. yr BP and frequently interrupted by two types of sedimentary events (SEs): light-coloured massive layers and dark-coloured graded beds. Optical analysis (quantitative organic petrography) of the organic matter present in soil, riverbed and lacustrine samples together with lake sediment bulk density and grain-size analysis illustrate that light-coloured layers consist of a mixture of lacustrine sediments and mainly contain algal particles similar to the ones observed in background sediments. Light-coloured layers thicker than 1.5 cm in the main basin of Lake Ledro are synchronous to numerous coeval mass-wasting deposits remoulding the slopes of the basin. They are interpreted as subaquatic mass-movements triggered by historical and pre-historical regional earthquakes dated to AD 2005, AD 1891, AD 1045 and 1260, 2545, 2595, 3350, 3815, 4740, 7190, 9185 and 11 495 cal. yr BP. Dark-coloured SEs develop high-amplitude reflections in front of the deltas and in the deep central basin. These beds are mainly made of terrestrial organic matter (soils and lignocellulosic debris) and are interpreted as resulting from intense hyperpycnal flood event. Mapping and quantifying the amount of soil material accumulated in the Holocene hyperpycnal flood deposits of the sequence allow estimating that the equivalent soil thickness eroded over the catchment area reached up to 5 mm during the largest Holocene flood events. Such significant soil erosion is interpreted as resulting from the combination of heavy rainfall and snowmelt. The recurrence of flash flood events during the Holocene was, however, not high enough to affect pedogenesis processes and highlight several wet regional periods during the Holocene. The Holocene period is divided into four phases of environmental evolution. Over the first half of the Holocene, a progressive stabilization of the soils present through the catchment of Lake Ledro was associated with a progressive reforestation of the area and only interrupted during the wet 8.2 event when the soil destabilization was particularly important. Lower soil erosion was recorded during the mid-Holocene climatic optimum (8000-4200 cal. yr BP) and associated with higher algal production. Between 4200 and 3100 cal. yr BP, both wetter climate and human activities within the drainage basin drastically increased soil erosion rates. Finally, from 3100 cal. yr BP to the present-day, data suggest increasing and changing human land use.

  7. Multidisciplinary distinction of mass-movement and flood-induced deposits in lacustrine environments: implications for Holocene palaeohydrology and natural hazards (Lake Ledro, Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Simonneau, A.; Chapron, E.; Vannière, B.; Wirth, S. B.; Gilli, A.; Di Giovanni, C.; Anselmetti, F. S.; Desmet, M.; Magny, M.

    2012-08-01

    High-resolution seismic profiles and sediment cores from Lake Ledro combined with soil and river-bed samples from the lake's catchment area are used to assess the recurrence of natural hazards (earthquakes and flood events) in the southern Italian Alps during the Holocene. Two well-developed deltas and a flat central basin are identified on seismic profiles in Lake Ledro. Lake sediments are finely laminated in the basin since 9000 cal. yr BP and frequently interrupted by two types of sedimentary events: light-coloured massive layers and dark-coloured graded beds. Optical analysis (quantitative organic petrography) of the organic matter occurring in soils, river beds and lacustrine samples together with lake-sediment bulk density and grain-size analysis illustrate that light-coloured layers consist of a mixture of lacustrine sediments and mainly contain algal particles similar to the ones observed in background sediments. Light-coloured layers thicker than 1.5 cm in the main basin of Lake Ledro are dense and synchronous to numerous coeval mass-wasting deposits remoulding the slopes of the basin. They are interpreted as subaquatic mass movements triggered by historical and pre-historical regional earthquakes dated to 2005 AD, 1891 AD, 1045 AD and 1260, 2545, 2595, 3350, 3815, 4740, 7190, 9185 and 11495 cal. yr BP. Dark-coloured sedimentary event are dense and develop high-amplitude reflections in front of the deltas and in the deep central basin. These beds are mainly made of terrestrial organic matter (soils and ligno-cellulosic debris) and are interpreted as resulting from intense hyperpycnal flood events. Mapping and quantifying the amount of soil material accumulated in the Holocene hyperpycnal flood deposits of the sequence and applying the De Ploey erosion model allow estimating that the equivalent soil thickness eroded over the catchment area reached up to 4 mm during the largest Holocene flood events. Such significant soil erosion is interpreted as resulting from the combination of heavy rainfall and snowmelt. The recurrence of flash-flood events during the Holocene was however not high enough to affect pedogenesis processes and highlight several wet regional periods during the Holocene. The Holocene period is divided into four phases of environmental evolution. Over the first half of the Holocene, a progressive stabilization of the soils present through the catchment of Lake Ledro was associated with a progressive reforestation of the area and only interrupted during the wetter 8.2 event when the soil destabilization was particularly important. Lower soil erosion was recorded during the Mid-Holocene climatic optimum (8000-4200 cal. yr BP) and associated with higher algal production. Between 4200 and 3100 cal. yr BP, both wetter climate and human activities within the drainage basin drastically increased soil erosion rates. Finally, from 3100 cal. yr BP to the present-day, results suggest increasing and changing human land-use.

  8. A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    NASA Astrophysics Data System (ADS)

    Fontiela, J. F.; Borges, J.; Ouyed, M.; Bezzeghoud, M.; Idres, M.; Caldeira, B.; Boughacha, M. S.; Carvalho, J.; Samai, S.; Aissa, S.; Benfadda, A.; Chimouni, R.; Yalaoui, R.; Dias, R.

    2017-12-01

    The Mitidja Basin (MB) is located in N Algeria and it is filled by quaternary sediments with a length of 100 km on the EW direction and around 20 km width. The S and N limites comprise the Boumerdes-Larbaa-Blida, and the Thenia-Sahel active fault system, respectively. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of ˜4 mm/year. In the basin occurred earthquakes that caused severe damage and losses such as the ones of Algiers (1365, Io=X; 1716, Io=X) and the Bourmedes earthquake (Mw 6.9; May 2003) that affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The earthquake generated a max uplift of 0.8m along the coast and a horizontal max. slip of 0.24m.Recent studies show that the Boumerdes earthquake overloaded the adjacent faults system with a stress increase between 0.4 and 1.5 bar. The stress change recommends a detailed study of mentioned faults system due to the increase of the seismic hazard. The high seismogenic potential of the fault system bordering the MB, increases the vulnerability of densely populated areas of Algiers and the amplification effect caused by the basin are the motivation of this project that will focus on the evaluation of the seismic hazard of the region. To achieve seismic hazard assessment on the MB, through realistic predictions of strong ground motion, caused by moderate and large earthquakes, it is important 1) develop a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data acquired on wells, refraction velocities and seismic noise data, and determination of the attenuation laws based on instrumental records; 2) evaluate the seismic potential and parameters of the main active faults of the MB; 3) develop numerical methods (deterministic and stochastic) to simulate strong ground motions produced by extended seismic sources. To acquire seismic noise were used broadband stations on a regular basis of 2.5km by 5.0 km (in lat and long, respectively), recording at least 60 minutes in each node. We acquired seismic noise on 150 points inside and at the edges of the basin. Through the Horizontal/Vertical Spectral Ratio we identify frequencies lower than 1Hz which are related with the transition of the quaternary sediments to the underlying rock.

  9. Synoptic climatological analysis of persistent cold air pools over the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Szabóné André, Karolina; Bartholy, Judit; Pongrácz, Rita

    2016-04-01

    A persistent cold air pool (PCAP) is a winter-time, anticyclone-related weather event over a relatively large basin. During this time the air is colder near the surface than aloft. This inversion near the surface can last even for weeks. As the cold air cools down, relative humidity increases and fog forms. The entire life cycle of a PCAP depends on the large scale circulation pattern. PCAP usually appears when an anticyclone builds up after a cold front passed over the examined basin, and it is usually destructed by a coming strong cold front of another midlatitude cyclone. Moreover, the intensity of the anticyclone affects the intensity of the PCAP. PCAP may result in different hazards for the population: (1) Temperature inversion in the surface layers together with weak wind may lead to severe air pollution causing health problems for many people, especially, elderly and children. (2) The fog and/or smog during chilly weather conditions often results in freezing rain. Both fog and freezing rain can distract transportation and electricity supply. Unfortunately, the numerical weather prediction models have difficulties to predict PCAP formation and destruction. One of the reasons is that PCAP is not defined objectively with a simple formula, which could be easily applied to the numerical output data. However, according to some recommendations from the synoptic literature, the shallow convective potential energy (SCPE) can be used to mathematically describe PCAP. In this study, we used the ERA-Interim reanalysis datasets to examine this very specific weather event (i.e., PCAP) over the Carpathian Basin. The connection between the mean sea level pressure and some PCAP measures (e.g., SCPE, energy deficit, etc.) is evaluated. For instance, we used logistic regression to identify PCAP periods over the Carpathian Basin. Then, further statistical analysis includes the evaluation of the length and intensity of these PCAP periods.

  10. Threshold determination and hazard evaluation of the disaster about drought/flood sudden alternation in Huaihe River basin, China

    NASA Astrophysics Data System (ADS)

    Ji, Zhonghui; Li, Ning; Wu, Xianhua

    2017-08-01

    Based on the related impact factors of precipitation anomaly referred in previous research, eight atmospheric circulation indicators in pre-winter and spring picked out by correlation analysis as the independent variables and the hazard levels of drought/flood sudden alternation index (DFSAI) as the dependent variables were used to construct the nonlinear and nonparametric classification and regression tree (CART) for the threshold determination and hazard evaluation on bimonthly and monthly scales in Huaihe River basin. Results show that the spring indicators about Arctic oscillation index (AOI_S), Asia polar vortex area index (APVAI_S), and Asian meridional circulation index (AMCI_S) were extracted as the three main impact factors, which were proved to be suitable for the hazard levels assessment of the drought/flood sudden alternation (DFSA) disaster based on bimonthly scale. On monthly scale, AOI_S, northern hemisphere polar vortex intensity index in pre-winter (NHPVII_PW), and AMCI_S are the three primary variables in hazard level prediction of DFSA in May and June; NHPVII_PW, AMCI_PW, and AMCI_S are for that in June and July; NHPVII_PW and EASMI are for that in July and August. The type of the disaster (flood to drought/drought to flood/no DFSA) and hazard level under different conditions also can be obtained from each model. The hazard level and type were expressed by the integer from - 3 to 3, which change from the high level of disaster that flood to drought (level - 3) to the high level of the reverse type (level 3). The middle number 0 represents no DFSA. The high levels of the two sides decrease progressively to the neutralization (level 0). When AOI_S less than - 0.355, the disaster of the quick turn from drought to flood is more apt to happen (level 1) on bimonthly scale; when AOI_S less than - 1.32, the same type disaster may occur (level 2) in May and June on monthly scale. When NHPVII_PW less than 341.5, the disaster of the quick turn from flood to drought will occur (level - 1) in June and July on monthly scale. By this analogy, different hazard types and levels all can be judged from the optimal models. The corresponding data from 2011 to 2015 were selected to verify the final models through the comparison between the predicted and actual levels, and the models of M1 (bimonthly scale), M2, and M3 (monthly scale) were proved to be acceptable by the prediction accuracy rate (compared the predicted with the observed levels, 73%, 11/15). The proposed CART method in this research is a new try for the short-term climate prediction.

  11. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.

  12. H-Area Seepage Basins groundwater monitoring report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    During fourth quarter 1992, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with South Carolina Hazardous Waste Management Regulations, R61-79.265, Subpart F. Samples were collected from 130 wells that monitor the three separate hydrostratigraphic units that make up the uppermost aquifer beneath the HASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B Post-Closure Care Permit Application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control in December 1990. Historically, as well as currently, tritium, nitrate, total alpha-emittingmore » radium, gross alpha, and mercury have been the primary constituents observed above final Primary Drinking Water Standards (PDWS) in groundwater at the HASB. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during first and fourth quarter 1992. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988.« less

  13. H-Area Seepage Basins groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    During fourth quarter 1992, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with South Carolina Hazardous Waste Management Regulations, R61-79.265, Subpart F. Samples were collected from 130 wells that monitor the three separate hydrostratigraphic units that make up the uppermost aquifer beneath the HASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B Post-Closure Care Permit Application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control in December 1990. Historically, as well as currently, tritium, nitrate, total alpha-emittingmore » radium, gross alpha, and mercury have been the primary constituents observed above final Primary Drinking Water Standards (PDWS) in groundwater at the HASB. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during first and fourth quarter 1992. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988.« less

  14. Accounting for Rainfall Spatial Variability in Prediction of Flash Floods

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2016-12-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  15. Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review

    NASA Astrophysics Data System (ADS)

    Cemen, I.

    2017-12-01

    The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions of sedimentary basins associated with dip-slip and strike-slip faults; g) seismic hazards; and i) economic significance of extensional basins.

  16. Geophysical setting of the 2000 ML 5.2 Yountville, California, earthquake: Implications for seismic Hazard in Napa Valley, California

    USGS Publications Warehouse

    Langenheim, V.E.; Graymer, R.W.; Jachens, R.C.

    2006-01-01

    The epicenter of the 2000 ML 5.2 Yountville earthquake was located 5 km west of the surface trace of the West Napa fault, as defined by Helley and Herd (1977). On the basis of the re-examination of geologic data and the analysis of potential field data, the earthquake occurred on a strand of the West Napa fault, the main basin-bounding fault along the west side of Napa Valley. Linear aeromagnetic anomalies and a prominent gravity gradient extend the length of the fault to the latitude of Calistoga, suggesting that this fault may be capable of larger-magnitude earthquakes. Gravity data indicate an ???2-km-deep basin centered on the town of Napa, where damage was concentrated during the Yountville earthquake. It most likely played a minor role in enhancing shaking during this event but may lead to enhanced shaking caused by wave trapping during a larger-magnitude earthquake.

  17. CSIR Contribution to Defining Adaptive Capacity in the Context of Environmental Change

    DTIC Science & Technology

    2015-06-30

    of Environmental Change 5a. CONTRACT NUMBER W911NF-14-1-0113 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...Change page 4 The metrics were used to identify areas of vulnerability within the Mississippi River basin and Nile River basin region. The IPCC ...The opportunities for improving the communities’ adaptive capacity (in accordance with the IPCC framework) relate to the reduction of the hazard

  18. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Eisses, A.; Kell, A. M.; Kent, G.; Driscoll, N. W.; Karlin, R. E.; Baskin, R. L.; Louie, J. N.; Smith, K. D.; Pullammanappallil, S.

    2011-12-01

    Preliminary slip rates measured across the East Pyramid Lake fault, or the Lake Range fault, help provide new estimates of extension across the Pyramid Lake basin. Multiple stratigraphic horizons spanning 48 ka were tracked throughout the lake, with layer offsets measured across all significant faults in the basin. A chronstratigraphic framework acquired from four sediment cores allows slip rates of the Lake Range and other faults to be calculated accurately. This region of the northern Walker Lake, strategically placed between the right-lateral strike-slip faults of Honey and Eagle Lakes to the north, and the normal fault bounded basins to the southwest (e.g., Tahoe, Carson), is critical in understanding the underlying structural complexity that is not only necessary for geothermal exploration, but also earthquake hazard assessment due to the proximity of the Reno-Sparks metropolitan area. In addition, our seismic CHIRP imaging with submeter resolution allows the construction of the first fault map of Pyramid Lake. The Lake Range fault can be obviously traced west of Anahoe Island extending north along the east end of the lake in numerous CHIRP lines. Initial drafts of the fault map reveal active transtension through a series of numerous, small, northwest striking, oblique-slip faults in the north end of the lake. A previously field mapped northwest striking fault near Sutcliff can be extended into the west end of Pyramid Lake. This fault map, along with the calculated slip rate of the Lake Range, and potentially multiple other faults, gives a clearer picture into understanding the geothermal potential, tectonic regime and earthquake hazards in the Pyramid Lake basin and the northern Walker Lane. These new results have also been merged with seismicity maps, along with focal mechanisms for the larger events to begin to extend our fault map in depth.

  19. Risk assessment of oil spills along the Mediterranean coast: A sensitivity analysis of the choice of hazard quantification.

    PubMed

    Al Shami, A; Harik, G; Alameddine, I; Bruschi, D; Garcia, D Astiaso; El-Fadel, M

    2017-01-01

    Oil pollution in the Mediterranean represents a serious threat to the coastal environment. Quantifying the risks associated with a potential spill is often based on results generated from oil spill models. In this study, MEDSLIK-II, an EU funded and endorsed oil spill model, is used to assess potential oil spill scenarios at four pilot areas located along the northern, eastern, and southern Mediterranean shoreline, providing a wide range of spill conditions and coastal geomorphological characteristics. Oil spill risk assessment at the four pilot areas was quantified as a function of three oil pollution metrics that include the susceptibility of oiling per beach segment, the average volume of oiling expected in the event of beaching, and the average oil beaching time. The results show that while the three pollution metrics tend to agree in their hazard characterization when the shoreline morphology is simple, considerable differences in the quantification of the associated hazard is possible under complex coastal morphologies. These differences proved to greatly alter the evaluation of environmental risks. An integrative hazard index is proposed that encompasses the three simulated pollution metrics. The index promises to shed light on oil spill hazards that can be universally applied across the Mediterranean basin by integrating it with the unified oil spill risk assessment tool developed by the Regional Marine Pollution Emergency Response Centre for the Mediterranean (REMPEC). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Application of ERTS-A imagery to fracture related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The most important result to date is the demonstration of the special value of repetitive ERTS-1 multiband coverage for detecting previously unknown fracture lineaments despite the presence of a deep glacial overburden. The Illinois Basin is largely covered with glacial drift and few rock outcrops are present. A contribution to the geological understanding of Illinois and Indiana has been made. Analysis of ERTS-1 imagery has provided useful information to the State of Indiana concerning the surface mined lands. The contrast between healthy vegetation and bare ground as imaged by Band 7 is sharp and substantial detail can be obtained concerning the extent of disturbed lands, associated water bodies, large haul roads, and extent of mined lands revegetation. Preliminary results of analysis suggest a reasonable correlation between image-detected fractures and mine roof fall accidents for a few areas investigated. ERTS-1 applications to surface mining operations appear probable, but further investigations are required. The likelihood of applying ERTS-1 derived fracture data to improve coal mine safety in the entire Illinois Basin is suggested from studies conducted in Indiana.

  1. The MITMOTION Project - A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    NASA Astrophysics Data System (ADS)

    Borges, José; Ouyed, Merzouk; Bezzeghoud, Mourad; Idres, Mouloud; Caldeira, Bento; Boughacha, Mohamed; Carvalho, João; Samai, Saddek; Fontiela, João; Aissa, Saoussen; Benfadda, Amar; Chimouni, Redouane; Yalaoui, Rafik; Dias, Rui

    2017-04-01

    The Mitidja Basin (MB) is located in northern Algeria and is filled by quaternary sediments with a length of about 100 km on the EW direction and approximately 20 km width. This basin is limited to the south by the Boumerdes - Larbaa - Blida active fault system and to the north by the Thenia - Sahel fault system. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of 4 mm/year. This basin is associated with important seismic events that affected northern Algeria since the historical period until the present. The available earthquake catalogues reported numerous destructive earthquakes that struke different regions, such as Algiers (1365, Io= X; 1716, Io = X). Recently, on May 2003 the Bourmedes earthquake (Mw = 6.9) affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The epicenter was located offshore and generated a maximum uplift of 0.8 m along the coast with a horizontal maximum slip of 0.24 m. Recent studies show that the Boumerdes earthquake overloaded the system of adjacent faults with a stress increase between 0.4 and 1.5 bar. This induced an increase of the seismic hazard potential of the region and recommends a more detailed study of this fault system. The high seismogenic potential of the fault system bordering the MB, the exposure to danger of the most densely populated region of Algiers and the amplification effect caused by the basin are the motivation for this project proposal that will focus on the evaluation of the seismic hazard of the region. The general purpose of the project is to improve the seismic hazard assessment on the MB producing realistic predictions of strong ground motion caused by moderate and large earthquakes. To achieve this objective, it is important to make an effort in 3 directions: 1) the development of a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data acquired on wells, refraction velocities and seismic noise data, and determination of the attenuation laws (GMPEs) for the basin based on instrumental records; 2) the evaluation of seismic potential and parameters of the main active faults on the MB area; 3) the development of numerical methods (deterministic and stochastic) in order to simulate strong ground motions produced by extended seismic sources. At the end, we expect to have a complete description of the seismic motion field in terms of pick ground velocity and acceleration (PGV and PGA) and time series of strong ground broadband motion in a large spectral range (f<10 Hz). This work is partially supported by COMPETE 2020 program (POCI-01-0145-FEDER-007690 project), bilateral project (PT-DZ/0003/2015)

  2. Assessing glacial lake outburst flood risk

    NASA Astrophysics Data System (ADS)

    Kougkoulos, Ioannis; Cook, Simon; Jomelli, Vincent; Clarke, Leon; Symeonakis, Elias

    2017-04-01

    Glaciers across the world are thinning and receding in response to atmospheric warming. Glaciers tend to erode subglacial basins and deposit eroded materials around their margins as lateral-frontal terminal moraines. Recession into these basins and behind impounding moraines causes meltwater to pond as proglacial and supraglacial lakes. Consequently, there has been a general trend of increasing number and size of these lakes associated with glacier melting in many mountainous regions around the globe, in the last 30 years. Glacial lake outburst floods (GLOFs) then may occur where the glacial lake dam (ice, rock, moraine, or combination thereof) is breached, or overtopped, and thousands of people have lost their lives to such events in the last few decades, especially in the Andes and in the Himalaya. Given the ongoing and arguably increasing risk posed to downstream communities, and infrastructure, there has been a proliferation of GLOF studies, with many seeking to estimate GLOF hazard or risk in specific regions, or to identify 'potentially dangerous glacial lakes'. Given the increased scientific interest in GLOFs, it is timely to evaluate critically the ways in which GLOF risk has been assessed previously, and whether there are improvements that can be made to the ways in which risk assessment is achieved. We argue that, whilst existing GLOF hazard and risk assessments have been extremely valuable they often suffer from a number of key shortcomings that can be addressed by using different techniques as multi-criteria decision analysis and hydraulic modelling borrowed from disciplines like engineering, remote sensing and operations research.

  3. Estimation of debris flow critical rainfall thresholds by a physically-based model

    NASA Astrophysics Data System (ADS)

    Papa, M. N.; Medina, V.; Ciervo, F.; Bateman, A.

    2012-11-01

    Real time assessment of debris flow hazard is fundamental for setting up warning systems that can mitigate its risk. A convenient method to assess the possible occurrence of a debris flow is the comparison of measured and forecasted rainfall with rainfall threshold curves (RTC). Empirical derivation of the RTC from the analysis of rainfall characteristics of past events is not possible when the database of observed debris flows is poor or when the environment changes with time. For landslides triggered debris flows, the above limitations may be overcome through the methodology here presented, based on the derivation of RTC from a physically based model. The critical RTC are derived from mathematical and numerical simulations based on the infinite-slope stability model in which land instability is governed by the increase in groundwater pressure due to rainfall. The effect of rainfall infiltration on landside occurrence is modelled trough a reduced form of the Richards equation. The simulations are performed in a virtual basin, representative of the studied basin, taking into account the uncertainties linked with the definition of the characteristics of the soil. A large number of calculations are performed combining different values of the rainfall characteristics (intensity and duration of event rainfall and intensity of antecedent rainfall). For each combination of rainfall characteristics, the percentage of the basin that is unstable is computed. The obtained database is opportunely elaborated to derive RTC curves. The methodology is implemented and tested on a small basin of the Amalfi Coast (South Italy).

  4. San Mateo Creek Basin Preliminary Assessment

    EPA Pesticide Factsheets

    The objective of this Preliminary Assessment is to evaluate the site using the Hazard Ranking System and the Superfund Chemical Data Matrix to determine if a threat to human health and the environment exists such that further action is warranted.

  5. San Mateo Creek Basin Phase I Site Investigation

    EPA Pesticide Factsheets

    The objective of the SI is to evaluate the Site using the Hazard Ranking System and the Superfund Chemical Data Matrix to determine if a threat to human health and the environment exists such that further action is warranted.

  6. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China.

    PubMed

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-12-02

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the "source-pathway-target" in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  7. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    PubMed Central

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-01-01

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method. PMID:26633450

  8. A zonation map for volcaniclastic-flow hazard in the area surrounding the Neapolitan volcanoes (Campania Region, Italy)

    NASA Astrophysics Data System (ADS)

    Bisson, M.; Sulpizio, R.; Zanchetta, G.; Demi, F.; Tarquini, S.

    2009-04-01

    The triggering of destructive volcaniclastic flows is a one of the most recurrent and dangerous natural phenomena that can occur in volcanic areas. They can originate not only during or shortly after an eruption (syn-eruptive) but also during a volcanic quiescence (inter-eruptive), when heavy rains remobilize the loose pyroclastic deposits. One of most important example of inter-eruptive volcaniclastic flow hazard is represented by the Apennine relieves that border the southern Campanian Plain. These steep relieves are covered by variable thickness (from few cm to some m) of volcaniclastic material dispersed by the explosive activity of Somma-Vesuvius and Campi Flegrei volcanoes, located few km to the west. The most recent, large dangerous event is certainly that occurred on May 5, 1998, which caused the death of more than 150 people and considerable damage in the villages at the feet of the Apennine relieves. However, this tragic event was only the last of a number of volcaniclastic flow generation that affected the area in historical and pre-historical times. Historical accounts testify for several previous disastrous episodes, like the 40 volcaniclastic-flow events recorded in the southern Campanian Plain relieves during the last 200 years. These events claimed the life of 40 people in AD 1640, 43 people in AD 1764, 120 people in AD 1823, 120 people in AD 1841, 170 people in AD 1910, 30 people in AD 1924, and 30 people in AD 1954. These disasters clearly indicate that a volcanic hazard mitigation strategy urges for the area. With the aim to contribute to the improvement of volcaniclastic flow hazard and risk mitigation in the study area, we produced a zonation map that identifies the drainage basins potentially more prone to disruption. This map has been obtained combining few morphological characteristics (concavity and basin shape factor) and mean slope distribution of the drainage basins, derived from a digital elevation model with resolution of 10 m. The analysed parameters allowed the classification of 1069 drainage basins, which have been grouped into four different classes of disruption proneness: low, medium, high and very high. The map was organised in a GIS environment which allows a rapid query of the different information stored in the linked data base.

  9. Viscoelastic flow in the lower crust after the 1992 landers, california, earthquake

    PubMed

    Deng; Gurnis; Kanamori; Hauksson

    1998-11-27

    Space geodesy showed that broad-scale postseismic deformation occurred after the 1992 Landers earthquake. Three-dimensional modeling shows that afterslip can only explain one horizontal component of the postseismic deformation, whereas viscoelastic flow can explain the horizontal and near-vertical displacements. The viscosity of a weak, about 10-km-thick layer, in the lower crust beneath the rupture zone that controls the rebound is about 10(18) pascal seconds. The viscoelastic behavior of the lower crust may help to explain the extensional structures observed in the Basin and Range province and it may be used for the analysis of earthquake hazard.

  10. Recent ground fissures in the Hetao basin, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    He, Zhongtai; Ma, Baoqi; Long, Jianyu; Zhang, Hao; Liang, Kuan; Jiang, Dawei

    2017-10-01

    Ground fissures are a geological hazard with complex formation mechanisms. Increasing amounts of human activity have created more ground fissures, which can destroy buildings and threaten human security. Some ground fissures indicate potentially devastating earthquakes, so we must pay attention to these hazards. This paper documents recently discovered ground fissures in the Hetao basin. These ground fissures are located along the frontal margins of the terraces of the Sertengshan piedmont fault. These fissures are 600-1600 m long, 5-50 cm wide, and at most 1 m deep. These ground fissures emerged after 2010 and ruptured newly constructed roads and field ridges. The deep geodynamic mechanisms within this extensional environment, which is dominated by NE-SW principal compressive shear, involve N-S tensile stress, which has produced continuous subsidence in the Hetao basin and continuous activity along the Sertengshan piedmont fault since the late Quaternary. Trenches across the ground fissures reveal that the fissures are the latest manifestation of the activity of preexisting faults and are the result of creep-slip movement along the faults. The groundwater level in the Hetao basin has been dropping since the 1960s because of overexploitation, resulting in subsidence. When the tensile stress exceeds the ultimate tensile strength of the strata, the strata rupture along preexisting faults, producing ground fissures. Thus, the Sertengshan piedmont fault planes are the structural foundation of the ground fissures, and groundwater extraction induces the development of ground fissures.

  11. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Solomon River Basin

    USGS Publications Warehouse

    May, T.W.; Fairchild, J.F.; Petty, J.D.; Walther, M.J.; Lucero, J.; Delvaux, M.; Manring, J.; Armbruster, M.

    2008-01-01

    The Solomon River Basin is located in north-central Kansas in an area underlain by marine geologic shales. Selenium is an indigenous constituent of these shales and is readily leached into the surrounding groundwater. Portions of the Basin are irrigated primarily through the pumping of selenium-contaminated groundwater from wells onto fields in agricultural production. Water, sediment, macroinvertebrates, and fish were collected from various sites in the Basin in 1998 and analyzed for selenium. Selenium concentrations were analyzed spatially and temporally and compared to reported selenium toxic effect thresholds for specific ecosystem components: water, sediments, food-chain organisms, and wholebody fish. A selenium aquatic hazard assessment for the Basin was determined based on protocol established by Lemly. Throughout the Basin, water, macroinvertebrate, and whole fish samples exceeded levels suspected of causing reproductive impairment in fish. Population structures of several fish species implied that successful reproduction was occurring; however, the influence of immigration of fish from low-selenium habitats could not be discounted. Site-specific fish reproduction studies are needed to determine the true impact of selenium on fishery resources in the Basin. ?? Springer Science+Business Media B.V. 2007.

  12. Multi-Scale Simulations of Past and Future Projections of Hydrology in Lake Tahoe Basin, California-Nevada (Invited)

    NASA Astrophysics Data System (ADS)

    Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.

    2013-12-01

    Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be available during more frequent droughts. Simulated floods for the region indicate issues related to drainage in the developed areas around Lake Tahoe, and necessary dam releases that create downstream flood risks.

  13. Application of seismic interpretation in the development of Jerneh Field, Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Z.

    1994-07-01

    Development of the Jerneh gas field has been significantly aided by the use of 3-D and site survey seismic interpretations. The two aspects that have been of particular importance are identification of sea-floor and near-surface safety hazards for safe platform installation/development drilling and mapping of reservoirs/hydrocarbons within gas-productive sands of the Miocene groups B, D, and E. Choice of platform location as well as casing design require detailed analysis of sea-floor and near-surface safety hazards. At Jerneh, sea-floor pockmarks near-surface high amplitudes, distributary channels, and minor faults were recognized as potential operational safety hazards. The integration of conventional 3-D andmore » site survey seismic data enabled comprehensive understanding of the occurrence and distribution of potential hazards to platform installation and development well drilling. Three-dimensional seismic interpretation has been instrumental not only in the field structural definition but also in recognition of reservoir trends and hydrocarbon distribution. Additional gas reservoirs were identified by their DHI characteristics and subsequently confirmed by development wells. The innovative use of seismic attribute mapping techniques has been very important in defining both fluid and reservoir distribution in groups B and D. Integration of 3-D seismic data and well-log interpretations has helped in optimal field development, including the planning of well locations and drilling sequence.« less

  14. Integrated Geo Hazard Management System in Cloud Computing Technology

    NASA Astrophysics Data System (ADS)

    Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.

    2016-11-01

    Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    F.V. Perry

    Basaltic volcanism poses a potential hazard to the proposed Yucca Mountain nuclear waste repository because multiple episodes of basaltic volcanism have occurred in the Yucca Mountain region (YMR) in the past 11 Ma. Intervals between eruptive episodes average about 1 Ma. Three episodes have occurred in the Quaternary at approximately 1.1 Ma (5 volcanoes), 350 ka (2 volcanoes), and 80 ka (1 volcano). Because Yucca Mountain lies within the Basin and Range Province, a significant portion of the pre-Quaternary volcanic history of the YMR may be buried in alluvial-filled basins. An exceptionally high-resolution aeromagnetic survey and subsequent drilling program sponsoredmore » by the U.S. Department of Energy (DOE) began in 2004 and is gathering data that will enhance understanding of the temporal and spatial patterns of Pliocene and Miocene volcanism in the region (Figure 1). DOE has convened a ten-member expert panel of earth scientists that will use the information gathered to update probabilistic volcanic hazard estimates originally obtained by expert elicitation in 1996. Yucca Mountain is a series of north-trending ridges of eastward-tilted fault blocks that are bounded by north to northeast-trending normal faults. Topographic basins filled with up to 500 m of alluvium surround it to the east, south and west. In the past several decades, nearly 50 holes have been drilled in these basins, mainly for Yucca Mountain Project Site Characterization and the Nye County Early Warning Drilling Program. Several of these drill holes have penetrated relatively deeply buried (300-400 m) Miocene basalt; a Pliocene basalt dated at 3.8 Ma was encountered at a relatively shallow depth (100 m) in the northern Amargosa Desert (Anomaly B in Figure 1). The current drilling program is the first to specifically target and characterize buried basalt. Based on the new aeromagnetic survey and previous air and ground magnetic surveys (Connor et al. 2000; O'Leary et al. 2002), at least eight drill holes are planned with the goal of sampling each geographic subpopulation of magnetic anomalies in the region (Figure 1). This will result in a more complete characterization of the location, age, volume and composition of buried basaltic features for the purpose of updating the volcanic hazard assessment. Smith and Keenan (2005) suggested that volcanic hazard estimates might be 1-2 orders of magnitude higher than estimated by the DOE expert elicitation in 1996, based on (1) a proposed relationship between recurrence rates in the YMR and the Reveille-Lunar Crater volcanic field to the north, and (2) the implication that a number of so-far-undiscovered buried volcanoes would have a significant impact on hazard estimates. This article presents the new aeromagnetic data and an interpretation of the data that suggests magnetic anomalies nearest the proposed repository site represent buried Miocene basalt that will likely have only a minor impact on the volcanic hazard.« less

  16. Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffry M.

    2015-01-01

    We evaluated the spatial and seasonal responses of precipitation in the Ganges and Brahmaputra basins as modulated by the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) modes using Global Precipitation Climatology Centre (GPCC) full data reanalysis of monthly global land-surface precipitation data from 1901 to 2010 with a spatial resolution of 0.5° × 0.5°. The GPCC monthly total precipitation climatology targeting the period 1951–2000 was used to compute gridded monthly anomalies for the entire time period. The gridded monthly anomalies were averaged for the years influenced by combinations of climate modes. Occurrences of El Niño alone significantly reduce (88% of the long-term average (LTA)) precipitation during the monsoon months in the western and southeastern Ganges Basin. In contrast, occurrences of La Niña and co-occurrences of La Niña and negative IOD events significantly enhance (110 and 109% of LTA in the Ganges and Brahmaputra Basin, respectively) precipitation across both basins. When El Niño co-occurs with positive IOD events, the impacts of El Niño on the basins' precipitation diminishes. When there is no active ENSO or IOD events (occurring in 41 out of 110 years), precipitation remains below average (95% of LTA) in the agriculturally intensive areas of Haryana, Uttar Pradesh, Rajasthan, Madhya Pradesh, and Western Nepal in the Ganges Basin, whereas precipitation remains average to above average (104% of LTA) across the Brahmaputra Basin. This pattern implies that a regular water deficit is likely, especially in the Ganges Basin, with implications for the agriculture sector due to its reliance on consistent rainfall for successful production. Historically, major droughts occurred during El Niño and co-occurrences of El Niño and positive IOD events, while major flooding occurred during La Niña and co-occurrences of La Niña and negative IOD events in the basins. This observational analysis will facilitate well-informed decision making in minimizing natural hazard risks and climate impacts on agriculture, and supports development of strategies ensuring optimized use of water resources in best management practice under a changing climate.

  17. Regionally coherent, downstream propagating trends of river bed incision and aggradation in glaciated basins of western Washington, USA

    NASA Astrophysics Data System (ADS)

    Anderson, S. W.; Konrad, C. P.

    2016-12-01

    Understanding the connections between climate and river bed morphology is relevant both for interpreting the geologic record and understanding modern channel change. Here, we use changing stage-discharge relations at USGS stream-gage sites in western Washington State to infer local bed-elevation changes over the past 50 to 90 years. A network of gages in a large, unregulated basin with active glaciation show decadal periods of aggradation and incision that are strongly correlated when lagged. Best-fit lag times indicate the downstream propagation of single coherent signal at a slope-dependent velocity of 1-4 km/yr. This same pattern of change is observed at the outlets of regional rivers with glaciated headwaters but is absent in unglaciated river systems. Sites high in glaciated river systems also show coherency across basins, suggesting that the similarity in the downstream trends across glaciated basins is the result of the downstream propagation of a regionally coherent headwater signal. Incisional trends emanating from headwaters between 1950 and 1980 match a period when regional glaciers were stable or advancing, but assigning causation is complicated by hydroclimatic trends with similar temporal patterns. The recent trend is aggradational, though current bed elevations are generally similar to those prior to 1950, and are consistent with regional data indicating that sediment production in glaciated basins from 1950 to 1980 was anomalously low relative to conditions over the past several hundred years. Regionally, our results suggest the possibility of forecasting periods of aggradation and increased flood hazards several years to decades in advance in populated downstream settings. More broadly, the methods used in this analysis involve simple calculations on publically available data and provide a low-cost means of assessing local channel change wherever USGS stream-gages have been operated.

  18. Mean and modal ϵ in the deaggregation of probabilistic ground motion

    USGS Publications Warehouse

    Harmsen, Stephen C.

    2001-01-01

    Mean and modal ϵ exhibit a wide variation geographically for any specified PE. Modal ϵ for the 2% in 50 yr PE exceeds 2 near the most active western California faults, is less than –1 near some less active faults of the western United States (principally in the Basin and Range), and may be less than 0 in areal fault zones of the central and eastern United States (CEUS). This geographic variation is useful for comparing probabilistic ground motions with ground motions from scenario earthquakes on dominating faults, often used in seismic-resistant provisions of building codes. An interactive seismic-hazard deaggregation menu item has been added to the USGS probabilistic seismic-hazard analysis Web site, http://geohazards.cr.usgs.gov/eq/, allowing visitors to compute mean and modal distance, magnitude, and ϵ corresponding to ground motions having mean return times from 250 to 5000 yr for any site in the United States.

  19. San Mateo Creek Basin Phase II Site Inspection

    EPA Pesticide Factsheets

    The objective of the SI is to evaluate the site using the Hazard Ranking System and the Superfund Chemical Data Matrix (SCDM) to determine if a threat to human health and the environment exists such that further action is warranted.

  20. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    NASA Astrophysics Data System (ADS)

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.

    2010-05-01

    With increasing awareness of oceanic geohazards, submarine landslides are gaining wide attention because of their catastrophic impacts on both offshore infrastructures (e.g. pipelines, cables and platforms) and coastal areas (e.g. landslide-induced tsunamis). They also are of great interest because they can be directly related to primary trigger mechanisms including earthquakes, rapid sedimentation, gas release, glacial and tidal loading, wave action, or clathrate dissociation, many of which represent potential geohazards themselves. In active tectonic environments, for instance, subaquatic landslide deposits can be used to make inferences regarding the hazard derived from seismic activity. Enormous scientific and economic efforts are thus being undertaken to better determine and quantify causes and effects of natural hazards related to subaquatic landslides. In order to achieve this fundamental goal, the detailed study of past events, the assessment of their recurrence intervals and the quantitative reconstruction of magnitudes and intensities of both causal and subsequent processes and impacts are key requirements. Here we present data and results from a study using fjord-type Lake Lucerne in central Switzerland as a "model ocean" to test a new concept for the assessment of regional seismic and tsunami hazard by basin-wide mapping of critical slope stability conditions for subaquatic landslide initiation. Previously acquired high-resolution bathymetry and reflection seismic data as well as sedimentological and in situ geotechnical data, provide a comprehensive data base to investigate subaquatic landslides and related geohazards. Available data are implemented into a basin-wide slope model. In a Geographic Information System (GIS)-framework, a pseudo-static limit equilibrium infinite slope stability equation is solved for each model point representing reconstructed slope conditions at different times in the past, during which earthquake-triggered landslides occurred. Comparison of reconstructed critical stability conditions with the known distribution of landslide deposits reveals minimum and maximum threshold conditions for slopes that failed or remained stable, respectively. The resulting correlations reveal good agreements and suggest that the slope stability model generally succeeds in reproducing past events. The basin-wide mapping of subaquatic slope failure susceptibility through time thus can also be considered as a promising paleoseismologic tool that allows quantification of past earthquake ground shaking intensities. Furthermore, it can be used to assess the present-day slope failure susceptibility allowing for identification of location and estimation of size of future, potentially tsunamigenic subaquatic landslides. The new approach presented in our comprehensive lake study and resulting conceptual ideas can be vital to improve our understanding of larger marine slope instabilities and related seismic and oceanic geohazards along formerly glaciated ocean margins and closed basins worldwide.

  1. Assessment of volatile organic compound and hazardous air pollutant emissions from oil and natural gas well pads using mobile remote and on-site direct measurements.

    PubMed

    Brantley, Halley L; Thoma, Eben D; Eisele, Adam P

    2015-09-01

    Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) from oil and natural gas production were investigated using direct measurements of component-level emissions on pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-level emissions in the Barnett, DJ, and Pinedale basins. Results from the 2011 DJ on-site study indicate that emissions from condensate storage tanks are highly variable and can be an important source of VOCs and HAPs, even when control measures are present. Comparison of the measured condensate tank emissions with potentially emitted concentrations modeled using E&P TANKS (American Petroleum Institute [API] Publication 4697) suggested that some of the tanks were likely effectively controlled (emissions less than 95% of potential), whereas others were not. Results also indicate that the use of a commercial high-volume sampler (HVS) without corresponding canister measurements may result in severe underestimates of emissions from condensate tanks. Instantaneous VOC and HAP emissions measured on-site on controlled systems in the DJ Basin were significantly higher than VOC and HAP emission results from the study conducted by Eastern Research Group (ERG) for the City of Fort Worth (2011) using the same method in the Barnett on pads with low or no condensate production. The measured VOC emissions were either lower or not significantly different from the results of studies of uncontrolled emissions from condensate tanks measured by routing all emissions through a single port monitored by a flow measurement device for 24 hr. VOC and HAP concentrations measured remotely using the U.S. Environmental Protection Agency (EPA) Other Test Method (OTM) 33A in the DJ Basin were not significantly different from the on-site measurements, although significant differences between basins were observed. VOC and HAP emissions from upstream production operations are important due to their potential impact on regional ozone levels and proximate populations. This study provides information on the sources and variability of VOC and HAP emissions from production pads as well as a comparison between different measurement techniques and laboratory analysis protocols. On-site and remote measurements of VOC and HAP emissions from oil and gas production pads indicate that measurable emissions can occur despite the presence of control measures, often as a result of leaking thief hatch seals on condensate tanks. Furthermore, results from the remote measurement method OTM 33A indicate that it can be used effectively as an inspection technique for identifying oil and gas well pads with large fugitive emissions.

  2. 2016 one-year seismic hazard forecast for the Central and Eastern United States from induced and natural earthquakes

    USGS Publications Warehouse

    Petersen, Mark D.; Mueller, Charles S.; Moschetti, Morgan P.; Hoover, Susan M.; Llenos, Andrea L.; Ellsworth, William L.; Michael, Andrew J.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.

    2016-03-28

    The U.S. Geological Survey (USGS) has produced a 1-year seismic hazard forecast for 2016 for the Central and Eastern United States (CEUS) that includes contributions from both induced and natural earthquakes. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties in earthquake occurrence and diversity of opinion in the science community. Ground shaking seismic hazard for 1-percent probability of exceedance in 1 year reaches 0.6 g (as a fraction of standard gravity [g]) in northern Oklahoma and southern Kansas, and about 0.2 g in the Raton Basin of Colorado and New Mexico, in central Arkansas, and in north-central Texas near Dallas. Near some areas of active induced earthquakes, hazard is higher than in the 2014 USGS National Seismic Hazard Model (NHSM) by more than a factor of 3; the 2014 NHSM did not consider induced earthquakes. In some areas, previously observed induced earthquakes have stopped, so the seismic hazard reverts back to the 2014 NSHM. Increased seismic activity, whether defined as induced or natural, produces high hazard. Conversion of ground shaking to seismic intensity indicates that some places in Oklahoma, Kansas, Colorado, New Mexico, Texas, and Arkansas may experience damage if the induced seismicity continues unabated. The chance of having Modified Mercalli Intensity (MMI) VI or greater (damaging earthquake shaking) is 5–12 percent per year in north-central Oklahoma and southern Kansas, similar to the chance of damage caused by natural earthquakes at sites in parts of California.

  3. Overcoming complexities for consistent, continental-scale flood mapping

    NASA Astrophysics Data System (ADS)

    Smith, Helen; Zaidman, Maxine; Davison, Charlotte

    2013-04-01

    The EU Floods Directive requires all member states to produce flood hazard maps by 2013. Although flood mapping practices are well developed in Europe, there are huge variations in the scale and resolution of the maps between individual countries. Since extreme flood events are rarely confined to a single country, this is problematic, particularly for the re/insurance industry whose exposures often extend beyond country boundaries. Here, we discuss the challenges of large-scale hydrological and hydraulic modelling, using our experience of developing a 12-country model and set of maps, to illustrate how consistent, high-resolution river flood maps across Europe can be produced. The main challenges addressed include: data acquisition; manipulating the vast quantities of high-resolution data; and computational resources. Our starting point was to develop robust flood-frequency models that are suitable for estimating peak flows for a range of design flood return periods. We used the index flood approach, based on a statistical analysis of historic river flow data pooled on the basis of catchment characteristics. Historical flow data were therefore sourced for each country and collated into a large pan-European database. After a lengthy validation these data were collated into 21 separate analysis zones or regions, grouping smaller river basins according to their physical and climatic characteristics. The very large continental scale basins were each modelled separately on account of their size (e.g. Danube, Elbe, Drava and Rhine). Our methodology allows the design flood hydrograph to be predicted at any point on the river network for a range of return periods. Using JFlow+, JBA's proprietary 2D hydraulic hydrodynamic model, the calculated out-of-bank flows for all watercourses with an upstream drainage area exceeding 50km2 were routed across two different Digital Terrain Models in order to map the extent and depth of floodplain inundation. This generated modelling for a total river length of approximately 250,000km. Such a large-scale, high-resolution modelling exercise is extremely demanding on computational resources and would have been unfeasible without the use of Graphics Processing Units on a network of standard specification gaming computers. Our GPU grid is the world's largest flood-dedicated computer grid. The European river basins were split out into approximately 100 separate hydraulic models and managed individually, although care was taken to ensure flow continuity was maintained between models. The flood hazard maps from the modelling were pieced together using GIS techniques, to provide flood depth and extent information across Europe to a consistent scale and standard. After discussing the methodological challenges, we shall present our flood hazard maps and, from extensive validation work, compare these against historical flow records and observed flood extents.

  4. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.

    PubMed

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad

    2014-12-01

    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.

  5. The role of complex site and basin response in Wellington city, New Zealand, during the 2016 Mw 7.8 Kaikōura earthquake and other recent earthquake sequences.

    NASA Astrophysics Data System (ADS)

    Kaiser, A. E.; McVerry, G.; Wotherspoon, L.; Bradley, B.; Gerstenberger, M.; Benites, R. A.; Bruce, Z.; Bourguignon, S.; Giallini, S.; Hill, M.

    2017-12-01

    We present analysis of ground motion and complex amplification characteristics in Wellington during recent earthquake sequences and an overview of the 3D basin characterization and ongoing work to update site parameters for seismic design. Significant damage was observed in central Wellington, New Zealand's capital city, following the 2016 Mw7.8 Kaikōura earthquake. Damage was concentrated in mid-rise structures (5 - 15 storeys) and was clearly exacerbated by the particular characteristics of ground motion and the presence of basin effects. Due to the distance of the source (50 - 60km) from the central city, peak ground accelerations were moderate (up to 0.28g) and well within ultimate limit state (ULS) design levels. However, spectral accelerations within the 1 -2 s period range, exceeded 1 in 500 year design level spectra (ULS) in deeper parts of the basin. Amplification with respect to rock at these locations reached factors of up to 7, and was also observed with factors up to at least three across all central city soil recording sites. The ground motions in Wellington were the strongest recorded in the modern era of instrumentation. While similar amplification was observed during the 2013 Mw 6.6 Cook Strait and Grassmere earthquakes, which struck close to the termination of the Kaikōura earthquake rupture, these sources were not sufficiently large to excite significant long-period motions. However, other M7.2+ sources in the region that dominate the seismic hazard, e.g. Wellington Fault, Hikurangi subduction interface and other large proximal crustal faults, are also potentially capable of exciting significant long-period basin response in Wellington. These observations and the expectation of ongoing heightened seismicity have prompted re-evaluation of the current seismic demand levels. Additional field campaigns have also been undertaken to update geotechnical properties and the 3D basin model, in order to inform ongoing research and seismic design practice.

  6. Present changes in water soil erosion hazard and the response to suspended sediment load in the Czech landscape

    NASA Astrophysics Data System (ADS)

    Kliment, Zdenek; Langhammer, Jakub; Kadlec, Jiří; Vyslouzilová, Barbora

    2014-05-01

    A noticeable change in water soil erosion hazard and an increase of extreme meteorological effects at the same time have marked the Czech landscape in the last twenty years. Formerly cultivated areas have been grassed or forested in mountain and sub mountain regions. Crop management has also been substantially changed. Longer and more frequently dry periods, more intensive local rainfalls and more gentle winter periods we can observe in the present climate development. The aim of this contribution is to demonstrate the importance and spatial relationship between changes in water soil erosion hazard by way of example of model river basins in different areas of the Czech Republic. The field research, remote sensing data, GIS and model approaches (MEFEM- multicriteria erosion factors evaluation model, USLE, RUSLE, WaTEM/SEDEM, AnnAGNPS and SWAT) were used for erosion hazard assessment. The findings were comparing with the balance, regime and trends of suspended load. Research in the model Blšanka River basin, based on our fifteen-year monitoring of suspended load, can be considered as basic (Kliment et al. 2008, Langhammer et al. 2013). KLIMENT, Z., KADLEC, J., LANGHAMMER, J., 2008. Evaluation of suspended load changes using AnnAGNPS and SWAT semi-empirical models. Catena, 73(3): 286-299. LANGHAMMER, J., MATOUŠKOVÁ, M., KLIMENT, Z., 2013. Assessment of spatial and temporal changes of ecological status of streams in Czechia: a geographical approach. Geografie, 118(4): 309-333

  7. Flood hazards studies in the Mississippi River basin using remote sensing

    NASA Technical Reports Server (NTRS)

    Rango, A.; Anderson, A. T.

    1974-01-01

    The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicated that ERTS-1 is extremely useful as a regional tool for flood mamagement. Quantitative estimates of area flooded were made in St. Charles County, Missouri and Arkansas. Flood hazard mapping was conducted in three study areas along the Mississippi River using pre-flood ERTS-1 imagery enlarged to 1:250,000 and 1:100,000 scale. Initial results indicate that ERTS-1 digital mapping of flood prone areas can be performed at 1:62,500 which is comparable to some conventional flood hazard map scales.

  8. Measuring the past 20 years of urban-rural land growth in flood-prone areas in the developed Taihu Lake watershed, China

    NASA Astrophysics Data System (ADS)

    Su, Weizhong

    2017-03-01

    There is growing interest in using the urban landscape for stormwater management studies, where land patterns and processes can be important controls for the sustainability of urban development and planning. This paper proposes an original index of Major Hazard Oriented Level (MHOL) and investigates the structure distribution, driving factors, and controlling suggestions of urban-rural land growth in flood-prone areas in the Taihu Lake watershed, China. The MHOL of incremental urban-rural land increased from M 31.51 during the years 1985-1995 to M 38.37 during the years 1995-2010 (M for medium structure distribution, and the number for high-hazard value). The index shows that urban-rural land was distributed uniformly in flood hazard levels and tended to move rapidly to high-hazard areas, where 72.68% of incremental urban-rural land was aggregated maximally in new urban districts along the Huning traffic line and the Yangtze River. Thus, the current accelerating growth of new urban districts could account for the ampliative exposure to high-hazard areas. New districts are driven by the powerful link between land financial benefits and political achievements for local governments and the past unsustainable process of "single objective" oriented planning. The correlation categorical analysis of the current development intensity and carrying capacity of hydrological ecosystems for sub-basins was used to determine four types of development areas and provide decision makers with indications on the future watershed-scale subdivision of Major Function Oriented Zoning implemented by the Chinese government.

  9. Flood risk management in the Souss watershed

    NASA Astrophysics Data System (ADS)

    Bouaakkaz, Brahim; El Abidine El Morjani, Zine; Bouchaou, Lhoussaine; Elhimri, Hamza

    2018-05-01

    Flooding is the most devasting natural hazards that causes more damage throughout the world. In 2016, for the fourth year in a row, it was the most costly natural disaster, in terms of global economic losses: 62 billion, according to a Benfield's 2016 annual report on climate and natural disasters [1]. The semi-arid to arid Souss watershed is vulnerable to floods, whose the intensity is becoming increasingly alarming and this area does not escape to the effects of this extreme event.. Indeed, the susceptibility of this region to this type of hazard is accentuated by its rapid evolution in terms of demography, uncontrolled land use, anthropogenic actions (uncontrolled urbanization, encroachment of the hydraulic public domain, overgrazing, clearing and deforestation).), and physical behavior of the environment (higher slope, impermeable rocks, etc.). It is in this context, that we have developed a strategic plan of action to manage this risk in the Souss basin in order to reduce the human, economic and environmental losses, after the modeling of the flood hazard in the study area, using georeferenced information systems (GIS), satellite remote sensing space and multi-criteria analysis techniques, as well as the history of major floods. This study, which generated the high resolution 30m flood hazard spatial distribution map of with accuracy of 85%, represents a decision tool to identify and prioririze area with high probability of hazard occurrence. It can also serve as a basis for urban evacuation plans for anticipating and preventing flood risk in the region, in order to ovoid any dramatic disaster.

  10. Implementing Extreme Value Analysis in a Geospatial Workflow for Storm Surge Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Catelli, J.; Nong, S.

    2014-12-01

    Gridded data of 100-yr (1%) and 500-yr (0.2%) storm surge flood elevations for the United States, Gulf of Mexico, and East Coast are critical to understanding this natural hazard. Storm surge heights were calculated across the study area utilizing SLOSH (Sea, Lake, and Overland Surges from Hurricanes) model data for thousands of synthetic US landfalling hurricanes. Based on the results derived from SLOSH, a series of interpolations were performed using spatial analysis in a geographic information system (GIS) at both the SLOSH basin and the synthetic event levels. The result was a single grid of maximum flood elevations for each synthetic event. This project addresses the need to utilize extreme value theory in a geospatial environment to analyze coincident cells across multiple synthetic events. The results are 100-yr (1%) and 500-yr (0.2%) values for each grid cell in the study area. This talk details a geospatial approach to move raster data to SciPy's NumPy Array structure using the Python programming language. The data are then connected through a Python library to an outside statistical package like R to fit cell values to extreme value theory distributions and return values for specified recurrence intervals. While this is not a new process, the value behind this work is the ability to keep this process in a single geospatial environment and be able to easily replicate this process for other natural hazard applications and extreme event modeling.

  11. Redistribution of radioactive mine wastes by slushflows and other processes in small mountain river basin in Russian Subarctics

    NASA Astrophysics Data System (ADS)

    Garankina, Ekaterina; Belyaev, Vladimir; Ivanov, Maxim; Romanenko, Fedor; Gurinov, Artem; Tulyakov, Egor; Kuzmenkova, Natalia

    2017-04-01

    The Khibiny Mountains located in central part of the Kola Peninsula (Northern European Russia) are characterized by harsh climatic conditions and frequent occurrence of hazardous or even catastrophic processes. Most widespread of those are snow avalanches taking place every year and slushflows with average recurrence interval of about 10 years. The latter represent specific type of hyperconcentrated gravitational flow of oversaturated mixture of snow and water (20 to 70%) with relatively low sediment concentration (up to 10-15%). Most often slushflows form during spring snowmelt in small mountainous basins (in most cases up to 3-6 km2) with thick snowpacks or snow dams caused by avalanches in stream channels. Typically observed volumes vary in a range of 20000-40000 m3, while rare catastrophic events can reach 200000-500000 m3. Kinetic energy of frontal wave that can be up to several meters high and concentrates most of the largest debris is most likely lower than that of typical debris flow of similar size, mainly because of much lower slushflow density (900-1200 kg m-3). Nevertheless, rare occasional measurements of front wave velocity gave dramatic values of 20-25 m s-1 maximum. Such characteristics combined with unpredictable rapid formation make slushflows definitely hazardous processes that can cause serious damage to industrial and residential infrastructure as well as injuries or causalities to people. For example, the Khibiny Mountains have at least 200 locations where formation of slushflows was detected at least ones over the last 50 years. Widespread constructions and communications associated with intensive exploration of mineral resources as well as growing interest to the area as touristic attraction for skiing and other wintertime activities make the Khibiny Mountains an area of serious geomorphic hazards associated with slushflows. In this particular study, we considered the Hackman basin where heavy debris flows occur at least ones per several decades. One of the unique features of that basin is that there was radioactive ore mine active in late 1930s on one of the steep valley sides. The mine was active only for several years as the production of radioactive minerals appeared to be much lower than expected. However, mine wastes are still remaining there as scree slopes on right valley side in its middle reach under several mine entrances. Colluvial material on these screes is highly enriched by several natural radionuclides including members of the 232Th decay chain. We have made an attempt to use this feature for fingerprinting sediment redistribution along the valley by slushflows and fluvial processes. Results of gamma-spectrometric analysis of finer sediment fractions from different geomorphic settings within the Hackman basin have shown that there is a systematic non-uniform spatial distribution of 232Th decay chain natural radionuclides closely related to its geological background and geomorphological structure. It proves that natural lithogenic radionuclide content in clastic sediments can be used for fingerprinting of slushflows debris sources and sinks and, possibly for distinguishing between in situ slushflow deposits and those partly reworked by later fluvial activities.

  12. Assessment of Debris Flow Potential Hazardous Zones Using Numerical Models in the Mountain Foothills of Santiago, Chile

    NASA Astrophysics Data System (ADS)

    Celis, C.; Sepulveda, S. A.; Castruccio, A.; Lara, M.

    2017-12-01

    Debris and mudflows are some of the main geological hazards in the mountain foothills of Central Chile. The risk of flows triggered in the basins of ravines that drain the Andean frontal range into the capital city, Santiago, increases with time due to accelerated urban expansion. Susceptibility assessments were made by several authors to detect the main active ravines in the area. Macul and San Ramon ravines have a high to medium debris flow susceptibility, whereas Lo Cañas, Apoquindo and Las Vizcachas ravines have a medium to low debris flow susceptibility. This study emphasizes in delimiting the potential hazardous zones using the numerical simulation program RAMMS-Debris Flows with the Voellmy model approach, and the debris-flow model LAHARZ. This is carried out by back-calculating the frictional parameters in the depositional zone with a known event as the debris and mudflows in Macul and San Ramon ravines, on May 3rd, 1993, for the RAMMS approach. In the same scenario, we calibrate the coefficients to match conditions of the mountain foothills of Santiago for the LAHARZ model. We use the information obtained for every main ravine in the study area, mainly for the similarity in slopes and material transported. Simulations were made for the worst-case scenario, caused by the combination of intense rainfall storms, a high 0°C isotherm level and material availability in the basins where the flows are triggered. The results show that the runout distances are well simulated, therefore a debris-flow hazard map could be developed with these models. Correlation issues concerning the run-up, deposit thickness and transversal areas are reported. Hence, the models do not represent entirely the complexity of the phenomenon, but they are a reliable approximation for preliminary hazard maps.

  13. Collaborative GIS for flood susceptibility mapping: An example from Mekong river basin of Viet Nam

    NASA Astrophysics Data System (ADS)

    Thanh, B.

    2016-12-01

    Flooding is one of the most dangerous natural disasters in Vietnam. Floods have caused serious damages to people and made adverse impact on social economic development across the country, especially in lower river basin where there is high risk of flooding as consequences of the climate change and social activities. This paper presents a collaborative platform of a combination of an interactive web-GIS framework and a multi-criteria evaluation (MCE) tool. MCE is carried out in server side through web interface, in which parameters used for evaluation are groups into three major categories, including (1) climatic factor: precipitation, typhoon frequency, temperature, humidity (2) physiographic data: DEM, topographic wetness index, NDVI, stream power index, soil texture, distance to river (3) social factor: NDBI, land use pattern. Web-based GIS is based on open-source technology that includes an information page, a page for MCE tool that users can interactively alter parameters in flood susceptible mapping, and a discussion page. The system is designed for local participation in prediction of the flood risk magnitude under impacts of natural processes and human intervention. The proposed flood susceptibility assessment prototype was implemented in the Mekong river basin, Viet Nam. Index images were calculated using Landsat data, and other were collected from authorized agencies. This study shows the potential to combine web-GIS and spatial analysis tool to flood hazard risk assessment. The combination can be a supportive solution that potentially assists the interaction between stakeholders in information exchange and in disaster management, thus provides for better analysis, control and decision-making.

  14. Ethnography of a parasite: A quantitative ethnographic observation of forest malaria in the Amazon basin.

    PubMed

    Feged-Rivadeneira, Alejandro; Evans, Sian

    2018-05-01

    Malaria in the Amazon basin is persistently more prevalent among low density populations (1-4 people/[Formula: see text]). Describing malaria transmission in small populations, such as ethnic minorities in the Amazon basin, living in reserves in groups that amount to 110-450 individuals, is fundamental for the implementation of adequate interventions. Here, we examine malaria transmission in a context of high prevalence in a small population of Nükak ethnicity (ethnic group [Formula: see text] individuals, study group, [Formula: see text] individuals) living in the peri-urban area of a city with [Formula: see text] inhabitants in the Amazon basin. Using methods from behavioral ecology, we conducted a quantitative ethnography and collected data to inform of individual behavioral profiles. Individual malarial infection reports were available from the local public health offices, so each behavioral profile was associated with an epidemic profile for the past 5 years. Our research shows that, in-line with current opinion, malaria among the Nükak is not associated with an occupational hazard risk and follows a holoendemic pattern, where children are most susceptible to the parasite. Parasite loads of malarial infection among the Nükak persist at much higher rates than in any other neighboring ethnicity, which indicates an association between high incidence rates and endemicity. We hypothesize that malarial infection in the forest follows a pattern where the parasite persists in pockets of holoendemicity, and occupational hazard risk for individuals outside those pockets is associated with behaviors that take place in the proximity of the pockets of endemicity.

  15. Application of PALSAR-2 remote sensing data for structural geology and topographic mapping in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Natural hazards of geological origin are one of major problem during heavy monsoons rainfall in Kelantan state, peninsular Malaysia. Several landslides occur in this region are obviously connected to geological and topographical features, every year. Satellite synthetic aperture radar (SAR) data are particularly applicable for detection of geological structural and topographical features in tropical conditions. In this study, Phased Array type L-band Synthetic Aperture Radar (PALSAR-2), remote sensing data were used to identify high potential risk and susceptible zones for landslide in the Kelantan river basin. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulate drainage pattern and metamorphic and Quaternary units. Consequently, geologic structural map were produced for Kelantan river basin using recent PALSAR-2 data, which could be broadly applicable for landslide hazard assessment and delineation of high potential risk and susceptible areas. Landslide mitigation programmes could be conducted in the landslide recurrence regions for reducing catastrophes leading to economic losses and death.

  16. Revision to flood hazard evaluation for the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.; Werth, D.

    Requirements for the Natural Phenomena Hazard (NPH) mitigation for new and existing Department of Energy (DOE) facilities are outlined in DOE Order 420.1. This report examines the hazards posed by potential flooding and represents an update to two previous reports. The facility-specific probabilistic flood hazard curve is defined as the water elevation for each annual probability of precipitation occurrence (or inversely, the return period in years). New design hyetographs for both 6-hr and 24-hr precipitation distributions were used in conjunction with hydrological models of various basins within the Savannah River Site (SRS). For numerous locations of interest, peak flow dischargemore » and flood water elevation were determined. In all cases, the probability of flooding of these facilities for a 100,000 year precipitation event is negligible.« less

  17. Integrated Risk Index of Chemical Aquatic Pollution (IRICAP): case studies in Iberian rivers.

    PubMed

    Fàbrega, Francesc; Marquès, Montse; Ginebreda, Antoni; Kuzmanovic, Maja; Barceló, Damià; Schuhmacher, Marta; Domingo, José L; Nadal, Martí

    2013-12-15

    The hazard of chemical compounds can be prioritized according to their PBT (persistence, bioaccumulation, toxicity) properties by using Self-Organizing Maps (SOM). The objective of the present study was to develop an Integrated Risk Index of Chemical Aquatic Pollution (IRICAP), useful to evaluate the risk associated to the exposure of chemical mixtures contained in river waters. Four Spanish river basins were considered as case-studies: Llobregat, Ebro, Jucar and Guadalquivir. A SOM-based hazard index (HI) was estimated for 205 organic compounds. IRICAP was calculated as the product of the HI by the concentration of each pollutant, and the results of all substances were aggregated. Finally, Pareto distribution was applied to the ranked lists of compounds in each site to prioritize those chemicals with the most significant incidence on the IRICAP. According to the HI outcomes, perfluoroalkyl substances, as well as specific illicit drugs and UV filters, were among the most hazardous compounds. Xylazine was identified as one of the chemicals with the highest contribution to the total IRICAP value in the different river basins, together with other pharmaceutical products such as loratadine and azaperol. These organic compounds should be proposed as target chemicals in the implementation of monitoring programs by regulatory organizations. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Variable modes of rifting in the eastern Basin and Range, USA from on-fault geological evidence

    NASA Astrophysics Data System (ADS)

    Stahl, T.; Niemi, N. A.

    2017-12-01

    Continental rifts are often divided along their axes into magmatic (or magma-assisted) and amagmatic (or magma-poor) segments. Less is known about magmatic versus non-magmatic extension across `wide' continental rift margins like the Basin and Range province of the USA. Paleoseismic trench investigations, Quaternary geochronology (10Be and 3He exposure-age, luminescence, and 40Ar/39Ar dating), and high-resolution topographic surveys (terrestrial laser scanning and UAV photogrammetry) were used to assess the timing and spatial variability of faulting at the Basin and Range-Colorado Plateau transition zone in central Utah. Results show that while the majority of strain is accommodated by a single, range- and province-bounding fault (the Wasatch fault zone, WFZ, slip rate of c. 3-4 mm yr-1), a transition to magma-assisted rifting occurs near the WFZ southern termination marked by a diffuse zone of faults associated with Pliocene to Holocene volcanism. Paleoseismic analysis of faults within and adjacent to this zone reveal recent (<18 ka) surface-ruptures on these faults. A single event displacement of 10-15 m for the Tabernacle fault at c. 15-18 ka (3He exposure-age) and large fault displacement gradients imply that slip was coeval with lava emplacement and that the faults in this region are linked, at least in part, to dike injection in the uppermost crust rather than slip at seismogenic depths. These results have implications for the controversial nature of regional seismic hazard and the structural evolution of the eastern Basin and Range.

  19. Application of EREP imagery to fracture-related mine safety hazards in coal mining and mining-environmental problems in Indiana. [Indiana and Illinois

    NASA Technical Reports Server (NTRS)

    Wier, C. E. (Principal Investigator); Powell, R. L.; Amato, R. V.; Russell, O. R.; Martin, K. R.

    1975-01-01

    The author has identified the following significant results. This investigation evaluated the applicability of a variety of sensor types, formats, and resolution capabilities to the study of both fuel and nonfuel mined lands. The image reinforcement provided by stereo viewing of the EREP images proved useful for identifying lineaments and for mined lands mapping. Skylab S190B color and color infrared transparencies were the most useful EREP imagery. New information on lineament and fracture patterns in the bedrock of Indiana and Illinois extracted from analysis of the Skylab imagery has contributed to furthering the geological understanding of this portion of the Illinois basin.

  20. Physically-based quantitative analysis of soil erosion induced by heavy rainfall on steep slopes

    NASA Astrophysics Data System (ADS)

    Della Sala, Maria; Cuomo, Sabatino; Novità, Antonio

    2014-05-01

    Heavy rainstorms cause either shallow landslides or soil superficial erosion in steep hillslopes covered by coarse unsaturated soils (Cascini et al., 2013), even over large areas (Cuomo and Della Sala, 2013a). The triggering stage of both phenomena is related to ground infiltration, runoff and overland flow (Cuomo and Della Sala, 2013), which are key processes to be investigated. In addition, the mobilization of solid particles deserves a proper physical-based modeling whether a quantitative estimation of solid particles discharge at the outlet of mountain basin is required. In this work, the approaches for soil superficial erosion analysis are firstly reviewed; then, a relevant case study of two medium-sized mountain basins, affected by flow-like phenomena with huge consequences (Cascini et al., 2009) is presented, which motivates a parametric numerical analysis with a physically-based model carried out for a wide class of soil properties and rainfall scenarios (Cuomo et al., 2013b). The achieved results outline that the peak discharge of water and solid particles driven by overland flow depends on rainfall intensity while volumetric solid concentration within the washout is related to the morphometric features of the whole mountain basin. Furthermore, soil suction is outlined as a key factor for the spatial-temporal evolution of infiltration and runoff in the basin, also affecting the discharge of water and solid particles at the outlet of the basin. Based on these insights, selected cases are analyzed aimed to provide a wide class of possible slope erosion scenarios. It is shown that, provided the same amount of cumulated rainfall, the sequence of high and low intensity rainfall events strongly affects the time-discharge at the outlet of the basin without significant variations of the maximum volumetric solid concentration. References Cascini, L., Cuomo, S., Ferlisi, S., Sorbino, G. (2009). Detection of mechanisms for destructive landslides in Campania region-southern Italy. Proc. of the first Italian Workshop on Landslides, 8-10 June 2009 Naples, Italy, vol 1. Studio Editoriale Doppiavoce, Naples, pp 43-51. Cascini, L., Sorbino, G., Cuomo, S., Ferlisi, S. (2013). Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy). Landslides, 1-14, DOI: 10.1007/s10346-013-0395-3. Cuomo S., Della Sala M. (2013a). Spatially distributed analysis of shallow landslides and soil erosion induced by rainfall. (submitted to Natural Hazards). Cuomo, S., Della Sala, M. (2013b). Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits. Engineering Geology. 162, 118-127. Cuomo, S., Della Sala, M., Novità A. (2013). Physically-based modeling of soil erosion induced by rainfall on steep slopes. (submitted to Geomorphology).

  1. Extreme events in the sedimentary record of maar Lake Pavin: Implications for natural hazards assessment in the French Massif Central

    NASA Astrophysics Data System (ADS)

    Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel

    2016-06-01

    A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.

  2. Stream profile analysis using a step backwater model for selected reaches in the Chippewa Creek basin in Medina, Wayne, and Summit Counties, Ohio

    USGS Publications Warehouse

    Straub, David E.; Ebner, Andrew D.

    2011-01-01

    The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.

  3. Women's Health at Work Program: musculoskeletal pain experienced by women of Chinese background working on market gardens in the Sydney Basin.

    PubMed

    Innes, Ev; Crowther, Amber; Fonti, Fiona; Quayle, Leonie

    2010-01-01

    OBJECTIVE/PARTICIPANTS: This report describes a project undertaken by three final (4th) year occupational therapy undergraduate students from the University of Sydney, Australia, in their final fieldwork placement. The project involved women from a Chinese background who worked on market gardens across the Sydney Basin. Its purpose was to identify musculoskeletal risks in the work environment and work practices of a selected group of seven Cantonese-speaking women working on market gardens in the Western Sydney region. The approaches used in the project reflected a risk management approach, and involved background research, initial interviews, task analysis, hazard identification, risk assessment, data analysis, identification of key issues, and developing recommendations, in collaboration with participants and consultation with professionals. The key issues identified as contributing factors to musculoskeletal pain and injuries were: (1) work practices (long work hours, repetitive work); (2) biomechanical factors (repetitive and sustained work postures, poor manual handling practices) and limited training; (3) ergonomics of the equipment used; (4) fatigue. Two priority areas for intervention were identified: (1) pain management, and (2) preventative strategies (improving both the work environment and work practices). Recommendations were made in collaboration with the women, and in consultation with health professionals.

  4. The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ritzwoller, M. H.

    2017-12-01

    Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.

  5. 18 CFR 415.31 - Prohibited uses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE..., radioactive materials, petroleum products or hazardous material which, if flooded, would pollute the waters of...

  6. 18 CFR 415.50 - General conditions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false General conditions. 415.50 Section 415.50 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... having the same or similar effect on the flood hazard as this regulation, the Commission may condition...

  7. 18 CFR 415.30 - Regulations generally.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Regulations generally... ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Standards § 415.30 Regulations generally. The uses of land within a flood hazard area shall be subject to regulation within one of the following...

  8. Synergies between geomorphic hazard and risk and sediment cascade research fields: exploiting geomorphic processes' susceptibility analyses to derive potential sediment sources in the Oltet, river catchment, southern Romania

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta-Cristina

    2015-04-01

    Identifying sediment sources and sediment availability represents a major problem and one of the first concerns in the field of sediment cascade. This paper addresses the on-site effects associated with sediment transfer, investigating the degree to which studies pertaining to the field of geomorphic hazard and risk research could be exploited in sediment budget estimations. More precisely, the paper investigates whether results obtained in assessing susceptibility to various geomorphic processes (landslides, soil erosion, gully erosion) could be transferred to the study of sediment sources within a basin. The study area is a medium-sized catchment (> 2400 km2) in southern Romania encompassing four different geomorphic units (mountains, hills, piedmont and plain). The region is highly affected by a wide range of geomorphic processes which supply sediments to the drainage network. The presence of a reservoir at the river outlet emphasizes the importance of estimating sediment budgets. The susceptibility analyses are conducted separately for each type of the considered processes in a top-down framework, i.e. at two different scales, using scale-adapted methods and validation techniques in each case, as widely-recognized in the hazard and risk research literature. The analyses start at a regional scale, which has in view the entire catchment, using readily available data on conditioning factors. In a second step, the suceptibility analyses are carried out at a medium scale for selected hotspot-compartments of the catchment. In order to appraise the extent to which susceptibility results are relevant in interpreting sediment sources at catchment scale, scale-induced differences are analysed in the case of each process. Based on the amount of uncertainty revealed by each regional-scale analysis in comparison to the medium-scale ones, decisions are made on whether the first are acceptable to the aim of identifying potential sediment source areas or if they should be refined using more precise methods and input data. The three final basin-wide susceptibility maps are eventually coverted, on a threshold basis, to maps showing the potential areas of sediment production by landslides, soil erosion and gully erosion respectively. These are then combined into one single map of potential sediment sources. The susceptibility assessments indicate that the basin compartments most prone to landslides and soil erosion correspond to the Subcarpathian hills, while the one most threatened by gully erosion corresponds to the piedmont relief. The final map of potential sediment sources shows that approximately 34% of the study catchment is occupied by areas potentially generating sediment through landslides and gully erosion, extending over most of the high piedmont and Subcarpathian hills. The results prove that there is an important link between the two research fields, i.e. geomorphic hazard and risk and sediment cascade, by allowing the transfer of knowledge from geomorphic processes' susceptibility analyses to the estimation of potential sediment sources within catchments. The synergy between the two fields raises further challenges to be tackled in future (e.g. how to derive sediment transfer rates from quantitative hazard estimates).

  9. Delineation of a Re-establishing Drainage Network Using SPOT and Landsat Images

    NASA Astrophysics Data System (ADS)

    Bailey, J. E.; Self, S.; Mouginis-Mark, P. J.

    2008-12-01

    The 1991 eruption of Mt. Pinatubo, The Philippines, provided a unique opportunity to study the effects on the landscape of a large eruption in part because it took place after the advent of regular satellite-based observations. The eruption formed one large (>100km2) ignimbrite sheet, with over 70% of the total deposit deposited in three primary drainage basins to the west of the volcano. High-resolution (20 m/pixel) satellite images, showing the western drainage basins and surrounding region both before and after the eruption were used to observe the re-establishment and evolution of drainage networks on the newly emplaced ignimbrite sheet. Changes in the drainage networks were delineated from a time series of SPOT (Satellite Pour l'Observation de la Terre) and Landsat multi-spectral satellite images. The analysis of which was supplemented by ground- based observations. The satellite images showed that the blue prints for the new drainage systems were established early (within days of the eruption) and at a large-scale followed the pre-eruption pattern. However, the images also illustrated the ephemeral nature of many channels due to the influence of secondary pyroclastic flows, lahar- dammed lake breakouts, stream piracy and shifts due to erosion. Characteristics of the defined drainage networks were used to infer the relative influence on the lahar hazard within each drainage basin.

  10. A history of flooding in the Red River Basin

    USGS Publications Warehouse

    Ryberg, Karen R.; Macek-Rowland, Kathleen M.; Banse, Tara A.; Wiche, Gregg J.; Martin, Cathy R.

    2007-01-01

    The U.S. Geological Survey (USGS), one of the principal Federal agencies responsible for the collection and interpretation of water-resources data, works with other Federal, State, local, tribal, and academic entities to ensure that accurate and timely data are available for making decisions regarding public welfare and property during natural disasters and to increase public awareness of the hazards that occur with such disasters. The Red River of the North Basin has a history of flooding and this poster is designed to increase public awareness of that history and of the factors that contribute to flooding.

  11. On the measure of large woody debris in an alpine catchment

    NASA Astrophysics Data System (ADS)

    D'Agostino, V.; Bertoldi, G.; Rigon, E.

    2012-04-01

    The management of large woody debris (LWD) in Alpine torrents is a complex and ambiguous task. On one side the presence of LWD contributes to in-channel and floodplain morphological processes and plays an important role in landscape ecology and biodiversity. On the other side LWD increases considerably flood hazards when some river cross-sections result critical for the human interface (e.g. culverts, bridges, artificial channels). Only few studies provide quantitative data of LWD volumes in Alpine torrents. Research is needed both at basin scale processes (LWD recruiting from hillslopes) and at channel scale processes (feeding from river bank, storage/transport/deposition of LWD along the river bed). Our study proposes an integrate field survey methodology to assess the overall LWD amount which can be entrained by a flood. This knowledge is mandatory for the scientific research, for the implementation of LWD transport models, and for a complete hazard management in mountain basins. The study site is the high-relief basin of the Cordevole torrent (Belluno Province, Central Alps, Italy) whose outlet is located at the Saviner village (basin area of 109 square kilometers). In the November 1966 an extreme flood event occurred and some torrent reaches were heavily congested by LWD enhancing the overall damages due to long-duration overflows. Currently, the LWD recruitment seems to be strictly correlated with bank erosion and hillslope instability and the conditions of forest stand suggest LWD hazard is still high. Previous studies on sub-catchments of the Cordevole torrent have also shown an inverse relation between the drainage area and the LWD storage in the river-bed. Present contribution analyzes and quantifies the presence of LWD in the main valley channel of the Cordevole basin. A new sampling methodology was applied to integrate surveys of riparian vegetation and LWD storage. Data inventory confirms the previous relationship between LWD volumes and drainage area and indicates the floating as primary origin of LWD presence in the river bed. The total amount of LWD at the basin outlet resulted 1300 cubic meters corresponding to about 12 cubic meters per square kilometer of drainage area. Additional data about in-channel dynamics and threshold discharges to move LWD are in progress. These will be obtained through an innovative monitoring approach based on active transponders (RFID, Radio Frequency Identification). 70 transponder have been inserted in selected LWD samples and 70 transponders will be inserted in standardized artificial LWD to carry out experiments during the snowmelt season. A fixed antenna is located at the outlet section on a check-dam together with a video-camera and a hydrometer. The overall arrangement of the LWD monitoring system under test is then presented.

  12. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    USGS Publications Warehouse

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic conditions in ocean passages.

  13. Geographic deaggregation of seismic hazard in the United States

    USGS Publications Warehouse

    Harmsen, S.; Frankel, A.

    2001-01-01

    The seismic hazard calculations for the 1996 national seismic hazard maps have been geographically deaggregated to assist in the understanding of the relative contributions of sources. These deaggregations are exhibited as maps with vertical bars whose heights are proportional to the contribution that each geographical cell makes to the ground-motion exceedance hazard. Bar colors correspond to average source magnitudes. We also extend the deaggregation analysis reported in Harmsen et al. (1999) to the western conterminous United States. In contrast to the central and eastern United States (CEUS); the influence of specific faults or characteristic events can be clearly identified. Geographic deaggregation for 0.2-sec and 1.0-sec pseudo spectral acceleration (SA) is performed for 10% probability of exceedance (PE) in 50 yr (475-yr mean return period) and 2% PE in 50 yr (2475-yr mean return period) for four western U.S. cities, Los Angeles, Salt Lake City, San Francisco, and Seattle, and for three central and eastern U.S. cities, Atlanta, Boston, and Saint Louis. In general, as the PE is lowered, the sources of hazard closer to the site dominate. Larger, more distant earthquakes contribute more significantly to hazard for 1.0-sec SA than for 0.2-sec SA. Additional maps of geographically deaggregated seismic hazard are available on the Internet for 120 cities in the conterminous United States (http://geohazards. cr.usgs.gov/eq/) for 1-sec SA and for 0.2-sec SA with a 2% PE in 50 yr. Examination of these maps of hazard contributions enables the investigator to determine the distance and azimuth to predominant sources, and their magnitudes. This information can be used to generate scenario earthquakes and corresponding time histories for seismic design and retrofit. Where fault density is lower than deaggregation cell dimensions, we can identify specific faults that contribute significantly to the seismic hazard at a given site. Detailed fault information enables investigators to include rupture information such as source directivity, radiation pattern, and basin-edge effects into their scenario earthquakes used in engineering analyses.

  14. Precipitation thresholds for triggering floods in Corgo hydrographic basin (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2016-04-01

    The precipitation is a major cause of natural hazards and is therefore related to the flood events (Borga et al., 2011; Gaál et al., 2014; Wilhelmi & Morss, 2013). The severity of a precipitation event and their potential damage is dependent on the total amount of rain but also on the intensity and duration event (Gaál et al., 2014). In this work, it was established thresholds based on critical combinations: amount / duration of flood events with daily rainfall data for Corgo hydrographic basin, in northern Portugal. In Corgo basin are recorded 31 floods events between 1865 and 2011 (Santos et al., 2015; Zêzere et al., 2014). We determined the minimum, maximum and pre-warning thresholds that define the boundaries so that an event may occur. Additionally, we applied these thresholds to different flood events occurred in the past in the study basin. The results show that the ratio between the flood events and precipitation events that occur above the minimum threshold has relatively low probability of a flood happen. These results may be related to the reduced number of floods events (only those that caused damage reported by the media and produced some type of damage). The maximum threshold is not useful for floods forecasting, since the majority of true positives are below this limit. The retrospective analysis of the thresholds defined suggests that the minimum and pre warning thresholds are well adjusted. The application of rainfall thresholds contribute to minimize possible situations of pre-crisis or immediate crisis, reducing the consequences and the resources involved in emergency response of flood events. References Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J. D. (2011). Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science & Policy, 14(7), 834-844. doi: 10.1016/j.envsci.2011.05.017 Gaál, L., Molnar, P., & Szolgay, J. (2014). Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland. Hydrol. Earth Syst. Sci., 18(5), 1561-1573. doi: 10.5194/hess-18-1561-2014 Santos, M., Santos, J. A., & Fragoso, M. (2015). Historical damaging flood records for 1871-2011 in Northern Portugal and underlying atmospheric forcings. Journal of Hydrology, 530, 591-603. doi: 10.1016/j.jhydrol.2015.10.011 Wilhelmi, O. V., & Morss, R. E. (2013). Integrated analysis of societal vulnerability in an extreme precipitation event: A Fort Collins case study. Environmental Science & Policy, 26, 49-62. doi: 10.1016/j.envsci.2012.07.005 Zêzere, J. L., Pereira, S., Tavares, A. O., Bateira, C., Trigo, R. M., Quaresma, I., Santos, P. P., Santos, M., & Verde, J. (2014). DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal. Nat. Hazards, 1-30. doi: 10.1007/s11069-013-1018-y

  15. A probabilistic approach for shallow rainfall-triggered landslide modeling at basin scale. A case study in the Luquillo Forest, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Arnone, E.; Noto, L. V.; Bras, R. L.

    2013-12-01

    Slope stability depends on geotechnical and hydrological factors that exhibit wide natural spatial variability, yet sufficient measurements of the related parameters are rarely available over entire study areas. The uncertainty associated with the inability to fully characterize hydrologic behavior has an impact on any attempt to model landslide hazards. This work suggests a way to systematically account for this uncertainty in coupled distributed hydrological-stability models for shallow landslide hazard assessment. A probabilistic approach for the prediction of rainfall-triggered landslide occurrence at basin scale was implemented in an existing distributed eco-hydrological and landslide model, tRIBS-VEGGIE -landslide (Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator - VEGetation Generator for Interactive Evolution). More precisely, we upgraded tRIBS-VEGGIE- landslide to assess the likelihood of shallow landslides by accounting for uncertainty related to geotechnical and hydrological factors that directly affect slope stability. Natural variability of geotechnical soil characteristics was considered by randomizing soil cohesion and friction angle. Hydrological uncertainty related to the estimation of matric suction was taken into account by considering soil retention parameters as correlated random variables. The probability of failure is estimated through an assumed theoretical Factor of Safety (FS) distribution, conditioned on soil moisture content. At each cell, the temporally variant FS statistics are approximated by the First Order Second Moment (FOSM) method, as a function of parameters statistical properties. The model was applied on the Rio Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico, where previous landslide analyses have been carried out. At each time step, model outputs include the probability of landslide occurrence across the basin, and the most probable depth of failure at each soil column. The use of the proposed probabilistic approach for shallow landslide prediction is able to reveal and quantify landslide risk at slopes assessed as stable by simpler deterministic methods.

  16. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin

    USGS Publications Warehouse

    Parsons, T.; Ji, C.; Kirby, E.

    2008-01-01

    On 12 May 2008, the devastating magnitude 7.9 (Wenchuan) earthquake struck the eastern edge of the Tibetan plateau, collapsing buildings and killing thousands in major cities aligned along the western Sichuan basin in China. After such a large-magnitude earthquake, rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. The mainshock of the 12 May earthquake ruptured with as much as 9 m of slip along the boundary between the Longmen Shan and Sichuan basin, and demonstrated the complex strike-slip and thrust motion that characterizes the region. The Sichuan basin and surroundings are also crossed by other active strike-slip and thrust faults. Here we present calculations of the coseismic stress changes that resulted from the 12 May event using models of those faults, and show that many indicate significant stress increases. Rapid mapping of such stress changes can help to locate fault sections with relatively higher odds of producing large aftershocks. ??2008 Macmillan Publishers Limited. All rights reserved.

  17. Site specific seismic hazard analysis and determination of response spectra of Kolkata for maximum considered earthquake

    NASA Astrophysics Data System (ADS)

    Shiuly, Amit; Sahu, R. B.; Mandal, Saroj

    2017-06-01

    This paper presents site specific seismic hazard analysis of Kolkata city, former capital of India and present capital of state West Bengal, situated on the world’s largest delta island, Bengal basin. For this purpose, peak ground acceleration (PGA) for a maximum considered earthquake (MCE) at bedrock level has been estimated using an artificial neural network (ANN) based attenuation relationship developed on the basis of synthetic ground motion data for the region. Using the PGA corresponding to the MCE, a spectrum compatible acceleration time history at bedrock level has been generated by using a wavelet based computer program, WAVEGEN. This spectrum compatible time history at bedrock level has been converted to the same at surface level using SHAKE2000 for 144 borehole locations in the study region. Using the predicted values of PGA and PGV at the surface, corresponding contours for the region have been drawn. For the MCE, the PGA at bedrock level of Kolkata city has been obtained as 0.184 g, while that at the surface level varies from 0.22 g to 0.37 g. Finally, Kolkata has been subdivided into eight seismic subzones, and for each subzone a response spectrum equation has been derived using polynomial regression analysis. This will be very helpful for structural and geotechnical engineers to design safe and economical earthquake resistant structures.

  18. Implications from palaeoseismological investigations at the Markgrafneusiedl Fault (Vienna Basin, Austria) for seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Hintersberger, Esther; Decker, Kurt; Lomax, Johanna; Lüthgens, Christopher

    2018-02-01

    Intraplate regions characterized by low rates of seismicity are challenging for seismic hazard assessment, mainly for two reasons. Firstly, evaluation of historic earthquake catalogues may not reveal all active faults that contribute to regional seismic hazard. Secondly, slip rate determination is limited by sparse geomorphic preservation of slowly moving faults. In the Vienna Basin (Austria), moderate historical seismicity (Imax, obs / Mmax, obs = 8/5.2) concentrates along the left-lateral strike-slip Vienna Basin Transfer Fault (VBTF). In contrast, several normal faults branching out from the VBTF show neither historical nor instrumental earthquake records, although geomorphological data indicate Quaternary displacement along those faults. Here, located about 15 km outside of Vienna, the Austrian capital, we present a palaeoseismological dataset of three trenches that cross one of these splay faults, the Markgrafneusiedl Fault (MF), in order to evaluate its seismic potential. Comparing the observations of the different trenches, we found evidence for five to six surface-breaking earthquakes during the last 120 kyr, with the youngest event occurring at around 14 ka. The derived surface displacements lead to magnitude estimates ranging between 6.2 ± 0.5 and 6.8 ± 0.4. Data can be interpreted by two possible slip models, with slip model 1 showing more regular recurrence intervals of about 20-25 kyr between the earthquakes with M ≥ 6.5 and slip model 2 indicating that such earthquakes cluster in two time intervals in the last 120 kyr. Direct correlation between trenches favours slip model 2 as the more plausible option. Trench observations also show that structural and sedimentological records of strong earthquakes with small surface offset have only low preservation potential. Therefore, the earthquake frequency for magnitudes between 6 and 6.5 cannot be constrained by the trenching records. Vertical slip rates of 0.02-0.05 mm a-1 derived from the trenches compare well to geomorphically derived slip rates of 0.02-0.09 mm a-1. Magnitude estimates from fault dimensions suggest that the largest earthquakes observed in the trenches activated the entire fault surface of the MF including the basal detachment that links the normal fault with the VBTF. The most important implications of these palaeoseismological results for seismic hazard assessment are as follows. (1) The MF is an active seismic source, capable of rupturing the surface despite the lack of historical earthquakes. (2) The MF is kinematically and geologically equivalent to a number of other splay faults of the VBTF. It is reasonable to assume that these faults are potential sources of large earthquakes as well. The frequency of strong earthquakes near Vienna is therefore expected to be significantly higher than the earthquake frequency reconstructed for the MF alone. (3) Although rare events, the potential for earthquake magnitudes equal or greater than M = 7.0 in the Vienna Basin should be considered in seismic hazard studies.

  19. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the Padua Fire of 2003, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.

    2004-01-01

    Results of a present preliminary assessment of the probability of debris-flow activity and estimates of peak discharges that can potentially be generated by debris flows issuing from basins burned by the Padua Fire of October 2003 in southern California in response to 25-year, 10-year, and 2-year recurrence, 1-hour duration rain storms are presented. The resulting probability maps are based on the application of a logistic multiple-regression model (Cannon and others, 2004) that describes the percent chance of debris-flow production from an individual basin as a function of burned extent, soil properties, basin gradients, and storm rainfall. The resulting peak discharge maps are based on application of a multiple-regression model (Cannon and others, 2004) that can be used to estimate debris-flow peak discharge at a basin outlet as a function of basin gradient, burn extent, and storm rainfall. Probabilities of debris-flow occurrence for the Padua Fire range between 0 and 99% and estimates of debris-flow peak discharges range between 1211 and 6,096 ft3/s (34 to 173 m3/s). These maps are intended to identify those basins that are most prone to the largest debris-flow events and provide information for the preliminary design of mitigation measures and for the planning of evacuation timing and routes.

  20. Active tectonics of the Imperial Valley, southern California: fault damage zones, complex basins and buried faults

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.; Han, L.

    2016-12-01

    Ongoing oblique slip at the Pacific-North America plate boundary in the Salton Trough produced the Imperial Valley. Deformation in this seismically active area is distributed across a complex network of exposed and buried faults resulting in a largely unmapped seismic hazard beneath the growing population centers of El Centro, Calexico and Mexicali. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project (SSIP) to construct a P-wave velocity profile to 15 km depth, and a 3-D velocity model down to 8 km depth including the Brawley Geothermal area. We obtained detailed images of a complex wedge-shaped basin at the southern end of the San Andreas Fault system. Two deep subbasins (VP <5.65 km/s) are located in the western part of the larger Imperial Valley basin, where seismicity trends and active faults play a significant role in shaping the basin edge. Our 3-D VP model reveals previously unrecognized NE-striking cross faults that are interacting with the dominant NW-striking faults to control deformation. New findings in our profile include localized regions of low VP (thickening of a 5.65-5.85 km/s layer) near faults or seismicity lineaments interpreted as possibly faulting-related. Our 3-D model and basement map reveal velocity highs associated with the geothermal areas in the eastern valley. The improved seismic velocity model from this study, and the identification of important unmapped faults or buried interfaces will help refine the seismic hazard for parts of Imperial County, California.

  1. Explosion and/or fire risk assessment methodology: a common approach, structured for underground coalmine environments / Metoda szacowania ryzyka wybuchu i pożarów: podejście ogólne, dostosowane do środowiska kopalni podziemnej

    NASA Astrophysics Data System (ADS)

    Cioca, Ionel-Lucian; Moraru, Roland Iosif

    2012-10-01

    In order to meet statutory requirements concerning the workers health and safety, it is necessary for mine managers within Valea Jiului coal basin in Romania to address the potential for underground fires and explosions and their impact on the workforce and the mine ventilation systems. Highlighting the need for a unified and systematic approach of the specific risks, the authors are developing a general framework for fire/explosion risk assessment in gassy mines, based on the quantification of the likelihood of occurrence and gravity of the consequences of such undesired events and employing Root-Cause analysis method. It is emphasized that even a small fire should be regarded as being a major hazard from the point of view of explosion initiation, should a combustible atmosphere arise. The developed methodology, for the assessment of underground fire and explosion risks, is based on the known underground explosion hazards, fire engineering principles and fire test criteria for potentially combustible materials employed in mines.

  2. Local amplification of seismic waves from the Denali earthquake and damaging seiches in Lake Union, Seattle, Washington

    USGS Publications Warehouse

    Barberopoulou, A.; Qamar, A.; Pratt, T.L.; Creager, K.C.; Steele, W.P.

    2004-01-01

    The Mw7.9 Denali, Alaska earthquake of 3 November, 2002, caused minor damage to at least 20 houseboats in Seattle, Washington by initiating water waves in Lake Union. These water waves were likely initiated during the large amplitude seismic surface waves from this earthquake. Maps of spectral amplification recorded during the Denali earthquake on the Pacific Northwest Seismic Network (PNSN) strong-motion instruments show substantially increased shear and surface wave amplitudes coincident with the Seattle sedimentary basin. Because Lake Union is situated on the Seattle basin, the size of the water waves may have been increased by local amplification of the seismic waves by the basin. Complete hazard assessments require understanding the causes of these water waves during future earthquakes. Copyright 2004 by the American Geophysical Union.

  3. Subduction processes related to the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Zabarinskaya, Ludmila P.; Sergeyeva, Nataliya

    2017-04-01

    It is obviously important to study a role of subduction processes in tectonic activity within the continental margins. They are marked by earthquakes, volcanic eruptions, tsunami and other natural disasters hazardous to the people,plants and animals that inhabit such regions. The northwest part of the Sea of Okhotsk including the northern part of Sakhalin Island and the Deryugin Basin is the area of the recent intensive tectonic movements. The geological and geophysical data have made it possible to construct the geodynamic model of a deep structure of a lithosphere for this region. This geodynamic model has confirmed the existence of the ophiolite complex in the region under consideration. It located between the North Sakhalin sedimentary basin and the Deryugin basin. The Deryugin basin was formed on the side of an ancient deep trench after subducting the Okhotsk Sea Plate under Sakhalin in the Late Cretaceous-Paleogene. The North Sakhalin Basin with oil and gas resources was formed on the side of back-arc basin at that time. Approximately in the Miocene period the subduction process, apparently, has stopped. The remains of the subduction zone in the form of ophiolite complex have been identified according to geological and geophysical data. On a surface the subduction zone is shown as deep faults stretched along Sakhalin.

  4. An ecological risk assessment of heavy metal contamination in the surface sediments of Bosten Lake, northwest China.

    PubMed

    Mamat, Zulpiya; Haximu, Sadiguli; Zhang, Zhao Yong; Aji, Rouzi

    2016-04-01

    Bosten Lake, a typical rump lake in an oasis in northwest China, was chosen to evaluate the distribution, sources, pollution status, and potential ecological risk of heavy metals. Sediment samples were collected from the lake, and results showed that the values of the eight heavy metals all fell within the Second Soil National Standard, while the average and maximum values of the metals were higher than the background values of the study. Multivariate statistical analysis showed that sediment concentrations of Cd, Pb, Hg, and Zn were mainly influenced by man sources. In comparison, Cu, Ni, Cr, and As were primarily natural in origin. Enrichment factor analysis (EF) and the geo-accumulation index evaluation method (I geo) showed that Cd, Hg, and Pb fell under low and partial serious pollution levels, while Zn, As, Cr, Ni, and Cu mainly were characterized under no pollution and low pollution levels. The potential ecological hazards index (RI) showed that among the eight heavy metals, Pb, Hg, and Cd posed the highest potential ecological risk, with potential ecological hazards indices (RI) of 29.06, 27.71, and 21.54 %, respectively. These findings demonstrated that recent economic development in the area of the basin has led to heavy metal accumulation in the surface sediments of the lake.

  5. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    NASA Astrophysics Data System (ADS)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  6. Comments on potential geologic and seismic hazards affecting coastal Ventura County, California

    USGS Publications Warehouse

    Ross, Stephanie L.; Boore, David M.; Fisher, Michael A.; Frankel, Arthur D.; Geist, Eric L.; Hudnut, Kenneth W.; Kayen, Robert E.; Lee, Homa J.; Normark, William R.; Wong, Florence L.

    2004-01-01

    This report examines the regional seismic and geologic hazards that could affect proposed liquefied natural gas (LNG) facilities in coastal Ventura County, California. Faults throughout this area are thought to be capable of producing earthquakes of magnitude 6.5 to 7.5, which could produce surface fault offsets of as much as 15 feet. Many of these faults are sufficiently well understood to be included in the current generation of the National Seismic Hazard Maps; others may become candidates for inclusion in future revisions as research proceeds. Strong shaking is the primary hazard that causes damage from earthquakes and this area is zoned with a high level of shaking hazard. The estimated probability of a magnitude 6.5 or larger earthquake (comparable in size to the 2003 San Simeon quake) occurring in the next 30 years within 30 miles of Platform Grace is 50-60%; for Cabrillo Port, the estimate is a 35% likelihood. Combining these probabilities of earthquake occurrence with relationships that give expected ground motions yields the estimated seismic-shaking hazard. In parts of the project area, the estimated shaking hazard is as high as along the San Andreas Fault. The combination of long-period basin waves and LNG installations with large long-period resonances potentially increases this hazard.

  7. Refined modeling of Seattle basin amplification

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.; Wirth, E. A.; Frankel, A. D.; Baker, B.; Thompson, M.; Han, J.; Nasser, M.; Stephenson, W. J.

    2016-12-01

    The Seattle Basin has long been recognized to modulate shaking in western Washington earthquakes (e.g., Frankel, 2007 USGS OFR). The amplification of shaking in such deep sedimentary basins is a challenge to estimate and incorporate into mitigation plans. This project aims to (1) study the influence of basin edges on trapping and amplifying seismic waves, and (2) using the latest earthquake data to refine our models of basin structure. To interrogate the influence of basin edges on ground motion, we use the numerical codes SpecFEM3D and Disfd (finite-difference code from Pengcheng Liu), and an update of the basin model of Stephenson et al. (2007), to calculate synthetic ground motions at frequencies up to 1 Hz. The figure below, for example, shows the amplification relative to a simple 1/r amplitude decay for four sources around of the Seattle Basin (red dots), with an EW-striking 45°-dipping thrust mechanism at 10 km depth. We test the difficulty of simulating motions in the presence of slow materials near the basin edge. Running SpecFEM3D with attenuation is about a third as fast as the finite difference code, and cannot represent sub-element structure (e.g., slow surficial materials) in comparable detail to the finer FD grid, but has the advantages of being able to incorporate topography and water. Modeling 1 Hz energy in the presence of shear wave velocities with a floor of 600 m/s, factor of 2 to 3 velocity contrasts, and sharp basin edges is fraught, both in calculating synthetics and estimating real structure. We plan to incorporate interpretations of local recordings including basin-bottom S-to-P conversions, noise-correlation waveforms, and teleseismic-P-wave reverberations to refine the basin model. Our long-term goal is to reassess with greater accuracy and resolution the spatial pattern of hazard across the Seattle Basin, which includes several quite vulnerable neighborhoods.

  8. Joint inversion of high resolution S-wave velocity structure underneath North China Basin

    NASA Astrophysics Data System (ADS)

    Yang, C.; Li, G.; Niu, F.

    2017-12-01

    North China basin is one of earthquake prone areas in China. Many devastating earthquakes occurred in the last century and before, such as the 1937 M7.0 Heze Earthquake in Shandong province, the 1966 M7.2 Xingtai Earthquake and 1976 Tangshan Earthquake in Hebei province. Knowing the structure of the sediment cover is of great importance to predict strong ground motion caused by earthquakes. Unconsolidated sediments are loose materials, ranging from clay to sand to gravel. Earthquakes can liquefy unconsolidated sediments, thus knowing the distribution and thickness of the unconsolidated sediments has significant implication in seismic hazard analysis of the area. Quantitative estimates of the amount of extension of the North China basin is important to understand the thinning and evolution of the eastern North China craton and the underlying mechanism. In principle, the amount of lithospheric stretching can be estimated from sediment and crustal thickness. Therefore an accurate estimate of the sediment and crustal thickness of the area is also important in understanding regional tectonics. In this study, we jointly invert the Rayleigh wave phase-velocity dispersion and Z/H ratio data to construct a 3-D S-wave velocity model beneath North China area. We use 4-year ambient noise data recorded from 249 temporary stations, and 139 earthquake events to extract Rayleigh wave Z/H ratios. The Z/H ratios obtained from ambient noise data and earthquake data show a good agreement within the overlapped periods. The phase velocity dispersion curve was estimated from the same ambient noise data. The preliminary result shows a relatively low Z/H ratio and low velocity anomaly at the shallow part of sediment basins.

  9. Influence of hydrodynamic features in the transport and fate of hazard contaminants within touristic ports. Case study: Torre a Mare (Italy).

    PubMed

    Mali, Matilda; Malcangio, Daniela; Dell' Anna, Maria Michela; Damiani, Leonardo; Mastrorilli, Piero

    2018-01-01

    The environmental quality of Torre a Mare port (Italy) was assessed evaluating on one side, the chemical concentration of nine metals and metalloids within bottom sediments and on the other one, by exploring the impact of hydrodynamic conditions in contaminant's transport within the most polluted basins. The investigated port was selected as case study because it resulted much more polluted than it was expected based on the touristic port activities and related stressors loading on it. In order to determine the origin and fate of contaminants in the port basin, 2D numerical simulations were carried out by MIKE21 software. The hydrodynamic module (HD) based on a rectangular grid was initially used to characterize the flow field into two domains that cover the inner and offshore harbor area. Then, advection-dispersion (AD) and water quality (WQ) modules were coupled in order to simulate the simultaneous processes of transport and dispersion of hypothetical pollutant sources. The dissolved/suspended sediment particulates (DSS) were selected as contaminant tracers. The comparative analysis between simulation responses and the real metal contaminant distribution showed high agreement, suggesting that contaminants mainly come from outside port and tend to accumulate in the inner basin. In fact, hydrodynamic circulations cause inflowing streams toward the harbor entrance and the particular port morphology hampers the exit of fine sediments from the inner basin, enhancing thus the accumulation of sediment-associated contaminants within the port area. The study confirms that the quality of touristic port areas strongly depends on both pollution sources located within and outside the port domain and it is controlled mainly by the hydrodynamic-driven processes.

  10. What controls landward vergence of the accretionary prism offshore northern Sumatra?

    NASA Astrophysics Data System (ADS)

    Frederik, M. C. G.; Gulick, S. P. S.; Austin, J. A., Jr.; Bangs, N. L.; Udrekh, U.

    2014-12-01

    The accretionary prism offshore northern Sumatra consists of steep outer slopes (5-12°), and a plateau ~100-120 km wide comprised of anticlinal folds of 2-16 km wavelength seaward of a steep slope adjacent to the Aceh (forearc) Basin. Our study area, 1-7°N and 92-97°E, covers the entire forearc from northwest of Aceh to west of Simeulue Island. Five 2D MCS seismic profiles transecting the prism from the Sunda Trench to the Aceh Basin, along with multibeam data, have been used to investigate wedge morphology and structure. Analysis of fold vergence along the profiles and areal classification of the predominant vergence reveal three structural zones: 1) predominantly landward-vergent folds near the Sunda Trench, 2) predominantly seaward-vergent folds near the Aceh Basin, and 3) mixed vergent folds between those two zones. Extensive landward vergence is uncommon in accretionary prisms worldwide. One explanation is the existence of a backstop with a seaward dipping edge, such that overlying younger sediments accreted to the prism form landward-vergent folds. We propose a backstop geometry that extends from under the Aceh Basin to under the mixed vergence zone, based on the observed structural zones and published velocity models of this margin. The backstop may consist either of older accreted sediment or the granitic Sunda Block. With the existence of a strong inner wedge acting as a backstop, together with suspected indurated sediments forming the landward vergence zone, rupture during major subduction zone earthquakes nucleating under the forearc basin or central plateau high can propagate farther seaward toward the Sunda Trench and displace greater volumes of water than a more landward rupture, yielding more hazardous tsunami. Using bathymetric data of before and after the 2004 earthquake, we are now testing the hypothesis that maximum slip occurs near the trench. These results will be presented.

  11. Climatic and socio-economic fire drivers in the Mediterranean basin at a century scale: Analysis and modelling based on historical fire statistics and dynamic global vegetation models (DGVMs)

    NASA Astrophysics Data System (ADS)

    Mouillot, F.; Koutsias, N.; Conedera, M.; Pezzatti, B.; Madoui, A.; Belhadj Kheder, C.

    2017-12-01

    Wildfire is the main disturbance affecting Mediterranean ecosystems, with implications on biogeochemical cycles, biosphere/atmosphere interactions, air quality, biodiversity, and socio-ecosystems sustainability. The fire/climate relationship is time-scale dependent and may additionally vary according to concurrent changes climatic, environmental (e.g. land use), and fire management processes (e.g. fire prevention and control strategies). To date, however, most studies focus on a decadal scale only, being fire statistics ore remote sensing data usually available for a few decades only. Long-term fire data may allow for a better caption of the slow-varying human and climate constrains and for testing the consistency of the fire/climate relationship on the mid-time to better apprehend global change effects on fire risks. Dynamic Global Vegetation Models (DGVMs) associated with process-based fire models have been recently developed to capture both the direct role of climate on fire hazard and the indirect role of changes in vegetation and human population, to simulate biosphere/atmosphere interactions including fire emissions. Their ability to accurately reproduce observed fire patterns is still under investigation regarding seasonality, extreme events or temporal trend to identify potential misrepresentations of processes. We used a unique long-term fire reconstruction (from 1880 to 2016) of yearly burned area along a North/South and East/West environmental gradient across the Mediterranean Basin (southern Switzerland, Greece, Algeria, Tunisia) to capture the climatic and socio economic drivers of extreme fire years by linking yearly burned area with selected climate indices derived from historical climate databases and socio-economic variables. We additionally compared the actual historical reconstructed fire history with the yearly burned area simulated by a panel of DGVMS (FIREMIP initiative) driven by daily CRU climate data at 0.5° resolution across the Mediterranean basin. We will present and discuss the key processes driving interannual fire hazard along the 20th century, and analysed how DGVMs capture this interannual variability.

  12. "Climate change impact on water resources - a challenge for IWRM". BRAHMATWINN - Twinning European and South Asian River Basins to enhance capacity and implement adaptive management approaches

    NASA Astrophysics Data System (ADS)

    Bartosch, A.; Pechstädt, J.; Müller Schmied, H.; Flügel, W.-A.

    2009-04-01

    BRAHMATWINN addresses climate change impact of the hydrology of two macro-scale river basins having headwaters in alpine mountain massifs. The project will elaborate on the consequential vulnerability of present IWRM and river basin management that have been persistent in these basins during the past decades and will develop tested approaches and technologies for adaptive IWRM and resilience. The overall objective of BRAHMATWINN is to enhance and improve capacity to carry out a harmonized integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs in respect to impacts from likely climate change, and to transfer professional IWRM expertise, approaches and tools based on case studies carried out in twinning European and Asian river basins, the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB). Sustainable IWRM in river basins of such kind face common problems: (i) floods e.g. during spring melt or heavy storms and droughts during summer; (ii) competing water demands for agriculture, hydropower, rural, urban and industrial development, and the environment; (iii) pollution from point as well as diffuse sources; and (iv) socio-economic and legal issues related to water allocation. Besides those common topics both basins also differ in other issues requiring the adaptation of the IWRM tools; these are for example climate conditions, the density of monitoring network, political framework and trans-boundary conflicts. An IWRM has to consider all water-related issues like the securing of water supply for the population in sufficient quantity and quality, the protection of the ecological function of water bodies and it has to consider the probability of natural hazards like floods and droughts. Furthermore the resource water should be threatened in a way that the needs of future generations can be satisfied. Sustainable development is one of the main characteristics of an IWRM. An analysis of present IWRM practices and strategies in the basins and test sites, as well as an analysis of water administration, related organizations and water laws was conducted in the frame of the project to evaluate the status of water management in the regions and develop approaches to enhance the situation and to transfer professional IWRM expertise. For investigating the actual status of the system and its development in the past a thorough system analysis was conducted as the fundament for further activities. With the knowledge of the historical development of climate conditions, runoff regime, glacier development and similar basin-related information it is possible to extrapolate the system response for future developments. One approach of the system analysis is the delineation of hydrological response units (HRUs). "Hydrological response units are distributed, heterogeneously structured entities having a common climate, land use and underlying pedo-topo-geological associations controlling their hydrological dynamics" (FLÜGEL 1995, Hydrological Processes, Vol.9, 423-436). HRUs can be used as model entities to simulate the hydrology of the basin using a distributive hydrological modeling system. The hydrologic modeling is the next logical step after the HRU delineation. The novel hydrological model JAMS/J2000g, developed at the Friedrich-Schiller-University of Jena, was used for this purpose. For managing data (time series, GIS-data and documents) within the BRAHMATWINN project, a River Basin Information System (RBIS) was developed. In addition, RBIS provides the technical basis of a decision support system. For this challenge, the frontend offers different analysis functions. The structure of the web application RBIS consists of several components. One element is responsible for application administration tasks, e.g. the access management. Another component was constructed as a variable number of application modules plus a shared management for metadata, following the ISO 19115 standard, including specific extensions for each application module. Available modules are RBISts for the management of time series data, RBISdoc for the management of documents and RBISmap for the management and visualization of GIS data. BRAHMATWINN will considerably enhance the state-of-the-art in alpine mountain IWRM, mitigation of likely climate change scenarios and aspects of trans-boundary conflict management. By providing an innovative IWRMS toolset comprising the hydrological model, the presented web based information system, and a decision support component the outcomes of the project will be applicable for other river basins of this kind world wide.

  13. Volume IV: restoration of stressed sites and processes.

    Treesearch

    Richard L. Everett

    1994-01-01

    Portions of forest ecosystems in eastern Oregon and Washington are in poor health, are not meeting societies expectations, and have elevated hazard for fire, insects, and disease. Diversity in stream habitats and associated fisheries has declined over the last several decades in several drainage basins, requiring conservation and restoration efforts in key watersheds....

  14. Seismic Characterization of the Jakarta Basin

    NASA Astrophysics Data System (ADS)

    Cipta, A.; Saygin, E.; Cummins, P. R.; Masturyono, M.; Rudyanto, A.; Irsyam, M.

    2015-12-01

    Jakarta, Indonesia, is home to more than 10 million people. Many of these people live in seismically non-resilient structures in an area that historical records suggest is prone to earthquake shaking. The city lies in a sedimentary basin composed of Quaternary alluvium that experiences rapid subsidence (26 cm/year) due to groundwater extraction. Forecasts of how much subsidence may occur in the future are dependent on the thickness of the basin. However, basin geometry and sediment thickness are poorly known. In term of seismic hazard, thick loose sediment can lead to high amplification of seismic waves, of the kind that led to widespread damage in Mexico city during the Michoacan Earthquake of 1985. In order to characterize basin structure, a temporary seismograph deployment was undertaken in Jakarta in Oct 2013- Jan 2014. A total of 96 seismic instrument were deployed throughout Jakarta were deployed throughout Jakarta at 3-5 km spacing. Ambient noise tomography was applied to obtain models of the subsurface velocity structure. Important key, low velocity anomalies at short period (<8s) correspond to the main sedimentary sub-basins thought to be present based on geological interpretations of shallow stratigraphy in the Jakarta Basin. The result shows that at a depth of 300 m, shear-wave velocity in the northern part (600 m/s) of the basin is lower than that in the southern part. The most prominent low velocity structure appears in the northwest of the basin, down to a depth of 800 m, with velocity as low as 1200 m/s. This very low velocity indicates the thickness of sediment and the variability of basin geometry. Waveform computation using SPECFEM2D shows that amplification due to basin geometry occurs at the basin edge and the thick sediment leads to amplification at the basin center. Computation also shows the longer shaking duration occurrs at the basin edge and center of the basin. The nest step will be validating the basin model using earthquake events recorded by the Jakarta array. The Bohol 2013 earthquake is one good candidate event for model validation. This will require using a source model for the Bohol earthquake and a plane wave input to SPECFEM3D.

  15. Lessons learnt from past Flash Floods and Debris Flow events to propose future strategies on risk management

    NASA Astrophysics Data System (ADS)

    Cabello, Angels; Velasco, Marc; Escaler, Isabel

    2010-05-01

    Floods, including flash floods and debris flow events, are one of the most important hazards in Europe regarding both economic and life loss. Moreover, changes in precipitation patterns and intensity are very likely to increase due to the observed and predicted global warming, rising the risk in areas that are already vulnerable to floods. Therefore, it is very important to carry out new strategies to improve flood protection, but it is also crucial to take into account historical data to identify high risk areas. The main objective of this paper is to show a comparative analysis of the flood risk management information compiled in four test-bed basins (Llobregat, Guadalhorce, Gardon d'Anduze and Linth basins) from three different European countries (Spain, France and Switzerland) and to identify which are the lessons learnt from their past experiences in order to propose future strategies on risk management. This work is part of the EU 7th FP project IMPRINTS which aims at reducing loss of life and economic damage through the improvement of the preparedness and the operational risk management of flash flood and debris flow (FF & DF) events. The methodology followed includes the following steps: o Specific survey on the effectivity of the implemented emergency plans and risk management procedures sent to the test-bed basin authorities that participate in the project o Analysis of the answers from the questionnaire and further research on their methodologies for risk evaluation o Compilation of available follow-up studies carried out after major flood events in the four test-bed basins analyzed o Collection of the lessons learnt through a comparative analysis of the previous information o Recommendations for future strategies on risk management based on lessons learnt and management gaps detected through the process As the Floods Directive (FD) already states, the flood risks associated to FF & DF events should be assessed through the elaboration of Flood Risk Management Plans (FRMP) with tailored solutions for each basin, evaluating their flood mitigation potential, promoting environmental objectives and increasing the efficiency of the already adopted measures. The FRMP should focus on prevention (and protection), preparedness and response, and these have been the three main risk management phases of a flood crisis that have been assessed when extracting the lessons learnt from past events. Lessons learnt concerning dissemination through the three previously mentioned phases and also related to education initiatives have also been included. A common response to most of the events described in this paper was to upgrade the meteorological and hydrological forecasting systems, making the forecasting lead-time as large as possible. Another common recommendation from the test-beds was the need to implement and accomplish the land use regulations. All the basins also detected that structural measures are necessary to increase the population's protection level, but replacing the traditional safety mentality by a risk culture based on a comprehensive analysis of the flood risk. The four basins studied have also highlighted the importance of collecting information when FF & DF events occur and creating historic databases that will provide extremely useful information in the future.

  16. The 24th January 2016 Hawassa earthquake: Implications for seismic hazard in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Wilks, Matthew; Ayele, Atalay; Kendall, J.-Michael; Wookey, James

    2017-01-01

    Earthquakes of low to intermediate magnitudes are a commonly observed feature of continental rifting and particularly in regions of Quaternary to Recent volcanism such as in the Main Ethiopian Rift (MER). Although the seismic hazard is estimated to be less in the Hawassa region of the MER than further north and south, a significant earthquake occurred on the 24th January 2016 in the Hawassa caldera basin and close to the Corbetti volcanic complex. The event was felt up to 100 km away and caused structural damage and public anxiety in the city of Hawassa itself. In this paper we first refine the earthquake's location using data from global network and Ethiopian network stations. The resulting location is at 7.0404°N, 38.3478°E and at 4.55 km depth, which suggests that the event occurred on structures associated with the caldera collapse of the Hawassa caldera in the early Pleistocene and not through volcano-tectonic processes at Corbetti. We calculate local and moment magnitudes, which are magnitude scales more appropriate at regional hypocentral distances than (mb) at four stations. This is done using a local scale (attenuation term) previously determined for the MER and spectral analysis for ML and MW respectively and gives magnitude estimates of 4.68 and 4.29. The event indicates predominantly normal slip on a N-S striking fault structure, which suggests that slip continues to occur on Wonji faults that have exploited weaknesses inherited from the preceding caldera collapse. These results and two previous earthquakes in the Hawassa caldera of M > 5 highlight that earthquakes continue to pose a risk to structures within the caldera basin. With this in mind, it is suggested that enhanced monitoring and public outreach should be considered.

  17. Airborne LiDAR analysis and geochronology of faulted glacial moraines in the Tahoe-Sierra frontal fault zone reveal substantial seismic hazards in the Lake Tahoe region, California-Nevada USA

    USGS Publications Warehouse

    Howle, James F.; Bawden, Gerald W.; Schweickert, Richard A.; Finkel, Robert C.; Hunter, Lewis E.; Rose, Ronn S.; von Twistern, Brent

    2012-01-01

    We integrated high-resolution bare-earth airborne light detection and ranging (LiDAR) imagery with field observations and modern geochronology to characterize the Tahoe-Sierra frontal fault zone, which forms the neotectonic boundary between the Sierra Nevada and the Basin and Range Province west of Lake Tahoe. The LiDAR imagery clearly delineates active normal faults that have displaced late Pleistocene glacial moraines and Holocene alluvium along 30 km of linear, right-stepping range front of the Tahoe-Sierra frontal fault zone. Herein, we illustrate and describe the tectonic geomorphology of faulted lateral moraines. We have developed new, three-dimensional modeling techniques that utilize the high-resolution LiDAR data to determine tectonic displacements of moraine crests and alluvium. The statistically robust displacement models combined with new ages of the displaced Tioga (20.8 ± 1.4 ka) and Tahoe (69.2 ± 4.8 ka; 73.2 ± 8.7 ka) moraines are used to estimate the minimum vertical separation rate at 17 sites along the Tahoe-Sierra frontal fault zone. Near the northern end of the study area, the minimum vertical separation rate is 1.5 ± 0.4 mm/yr, which represents a two- to threefold increase in estimates of seismic moment for the Lake Tahoe basin. From this study, we conclude that potential earthquake moment magnitudes (Mw) range from 6.3 ± 0.25 to 6.9 ± 0.25. A close spatial association of landslides and active faults suggests that landslides have been seismically triggered. Our study underscores that the Tahoe-Sierra frontal fault zone poses substantial seismic and landslide hazards.

  18. Land use/cover changes, extreme events and ecohydrological responses in the Himalayan region

    NASA Astrophysics Data System (ADS)

    Singh, R. B.

    1998-10-01

    Land use describes human activities on the earth, and forms a major element of the terrestrial ecosystem modified by humans in the Himalayan region, where developmental activities are increasing rapidly to support the tourism infrastructure. The unprecedented growth in population is putting extremely high pressure on the limited land available for cultivation. Land use and agricultural practices have undergone drastic changes since the mid-1960s through the introduction of development programmes and the application of various newly developed techniques in agrosciences. An analysis of the land use as it has occurred over the last 70 years suggests that it and property rights in the Upper Beas Basin are complex and dynamic. For example, people are giving importance to orchards because of their high profitability. Thus, some agricultural land has been encroached on by orchards. In addition, wastelands are now being used by people for orchards, agriculture and residential and commercial building. Since the Upper Beas River Basin is mountainous, it is fragile and prone to processes like soil erosion, slope instability, landslides and floods. Risks from natural hazards are increasing. However, the state of ecohydrological responses highlight that human-induced ecological changes can be largely proved at the microwatershed level. The findings are not extended to the Himalayan scale. There is also an uncertain correlation between anthropogenic activities (deforestation) in the mountains and hazards in the plains such as floods. Owing to a lack of basic research, there is little effective information which cannot be used for long-term effective monitoring of ecological and hydrological responses to global change. Such an uncertain situation calls for integrated watershed management and development using geographical information systems (GISs).

  19. Mesh versus bathtub - effects of flood models on exposure analysis in Switzerland

    NASA Astrophysics Data System (ADS)

    Röthlisberger, Veronika; Zischg, Andreas; Keiler, Margreth

    2016-04-01

    In Switzerland, mainly two types of maps that indicate potential flood zones are available for flood exposure analyses: 1) Aquaprotect, a nationwide overview provided by the Federal Office for the Environment and 2) communal flood hazard maps available from the 26 cantons. The model used to produce Aquaprotect can be described as a bathtub approach or linear superposition method with three main parameters, namely the horizontal and vertical distance of a point to water features and the size of the river sub-basin. Whereas the determination of flood zones in Aquaprotect is based on a uniform, nationwide model, the communal flood hazard maps are less homogenous, as they have been elaborated either at communal or cantonal levels. Yet their basic content (i.e. indication of potential flood zones for three recurrence periods, with differentiation of at least three inundation depths) is described in national directives and the vast majority of communal flood hazard maps are based on 2D inundation simulations using meshes. Apart from the methodical differences between Aquaprotect and the communal flood hazard maps (and among different communal flood hazard maps), all of these maps include a layer with a similar recurrence period (i.e. Aquaprotect 250 years, flood hazard maps 300 years) beyond the intended protection level of installed structural systems. In our study, we compare the resulting exposure by overlaying the two types of flood maps with a complete, harmonized, and nationwide dataset of building polygons. We assess the different exposure at the national level, and also consider differences among the 26 cantons and the six biogeographically unique regions, respectively. It was observed that while the nationwide exposure rates for both types of flood maps are similar, the differences within certain cantons and biogeographical regions are remarkable. We conclude that flood maps based on bathtub models are appropriate for assessments at national levels, while maps based on 2D simulations are preferable at sub-national levels.

  20. Exposure and vulnerability assessment of buildings extracted from lidar derived datasets in Bucao River floodplains, Zambales, Philippines

    NASA Astrophysics Data System (ADS)

    Paz-Alberto, Annie Melinda; Ramos, Gloria N.; Espiritu, Jo Adrianne; Mapanao, Kathrina M.; Lao, Ranilo B.

    2017-09-01

    The Philippines has a geographic and geological setting that make it prone to various hazards including weather and climate-related. It is usually strongly affected by monsoon and typhoon occurrences that cause floods due to torrential rains that causes great risks in man's life and properties, resulting in a significant national loss. Strategies for disaster prevention to protect human lives, properties and social infrastructure is therefore necessary. Different important parameters in disaster risk management such as earth observations, Light Detection and Ranging and Geographic Information System were integrated and utilized in this study. This study dealt with mapping and assessment of buildings that might possibly be exposed and vulnerable to flooding based on the simulated flood maps at different rainfall scenarios in Bucao River Basin. The assessment was done through GIS overlay analysis of the CLSU PHIL-LiDAR 1 Project outputs, the 3D building GIS database and flood hazard maps. Results of this study were series of maps with statistics at different rainfall scenarios. From 23,097 building features extracted, 10,118 buildings, 4,258 buildings and 7,433 buildings were the identified highest number of buildings exposed to flooding and a total of 2,427 buildings, 3,914 buildings and 7,204 buildings from the exposed were identified that had high vulnerabilities in terms of height at low, medium and high hazards of 100 year return period, respectively. Through these maps, it is easier to disseminate information that is more realistic to the residents about the hazardous areas and to help them act on warning and evacuating measures.

  1. Assessment of groundwater and soil quality for agricultural purposes in Kopruoren basin, Kutahya, Turkey

    NASA Astrophysics Data System (ADS)

    Arslan, Sebnem

    2017-07-01

    This research evaluated the irrigation water and agricultural soil quality in the Kopruoren Basin by using hierarchical cluster analysis. Physico-chemical properties and major ion chemistry of 19 groundwater samples were used to determine the irrigation water quality indices. The results revealed out that the groundwaters are in general suitable for irrigation and have low sodium hazard, although they are very hard in nature due to the dominant presence of Ca+2, Mg+2 and HCO3- ions. Water samples contain arsenic in concentrations below the recommended guidelines for irrigation (59.7 ± 14.7 μg/l), however, arsenic concentrations in 89% of the 9 soil samples exceed the maximum allowable concentrations set for agricultural soils (81 ± 24.3 mg/kg). Nickel element, albeit not present in high concentrations in water samples, is enriched in all of the agricultural soil samples (390 ± 118.2 mg/kg). Hierarchical cluster analysis studies conducted to identify the sources of chemical constituents in water and soil samples elicited that the chemistry of the soils in the study area are highly impacted by the soil parent material and both geogenic and anthropogenic pollution sources are responsible for the metal contents of the soil samples. On the other hand, water chemistry in the area is affected by water-rock interactions, anthropogenic and agricultural pollution.

  2. Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2015-01-01

    New hydrological insights for the region: Basin average annual ET was found to be sensitive to changes in CO2 concentration and temperature, while total water yield, streamflow, and groundwater recharge were sensitive to changes in precipitation. The basin hydrological components were predicted to increase with seasonal variability in response to climate and land use change scenarios. Strong increasing trends were predicted for total water yield, streamflow, and groundwater recharge, indicating exacerbation of flooding potential during August–October, but strong decreasing trends were predicted, indicating exacerbation of drought potential during May–July of the 21st century. The model has potential to facilitate strategic decision making through scenario generation integrating climate change adaptation and hazard mitigation policies to ensure optimized allocation of water resources under a variable and changing climate.

  3. Accessing the capability of TRMM 3B42 V7 to simulate streamflow during extreme rain events: Case study for a Himalayan River Basin

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh; Lakshmi, Venkat

    2018-03-01

    The paper examines the quality of Tropical Rainfall Monitoring Mission (TRMM) 3B42 V7 precipitation product to simulate the streamflow using Soil Water Assessment Tool (SWAT) model for various rainfall intensities over the Himalayan region. The SWAT model has been set up for Gandak River Basin with 41 sub-basins and 420 HRUs. Five stream gauge locations are used to simulate the streamflow for a time span of 10 years (2000-2010). Daily streamflow for the simulation period is collected from Central Water Commission (CWC), India and Department of Hydrology and Meteorology (DHM), Nepal. The simulation results are found good in terms of Nash-Sutcliffe efficiency (NSE) {>}0.65, coefficient of determination (R2) {>}0.67 and Percentage Bias (PBIAS){<}15%, at each stream gauge sites. Thereafter, we have calculated the PBIAS and RMSE-observations standard deviation ratio (RSR) statistics between TRMM simulated and observed streamflow for various rainfall intensity classes, viz., light ({<}7.5 mm/d), moderate (7.5 to 35.4 mm/d), heavy (35.5 to 124.4 mm/d) and extremely heavy ({>}124.4 mm/d). The PBIAS and RSR show that TRMM simulated streamflow is suitable for moderate to heavy rainfall intensities. However, it does not perform well for light- and extremely-heavy rainfall intensities. The finding of the present work is useful for the problems related to water resources management, irrigation planning and hazard analysis over the Himalayan regions.

  4. Analysis and mapping of post-fire hydrologic hazards for the 2002 Hayman, Coal Seam, and Missionary Ridge wildfires, Colorado

    USGS Publications Warehouse

    Elliott, J.G.; Smith, M.E.; Friedel, M.J.; Stevens, M.R.; Bossong, C.R.; Litke, D.W.; Parker, R.S.; Costello, C.; Wagner, J.; Char, S.J.; Bauer, M.A.; Wilds, S.R.

    2005-01-01

    Wildfires caused extreme changes in the hydrologic, hydraulic, and geomorphologic characteristics of many Colorado drainage basins in the summer of 2002. Detailed assessments were made of the short-term effects of three wildfires on burned and adjacent unburned parts of drainage basins. These were the Hayman, Coal Seam, and Missionary Ridge wildfires. Longer term runoff characteristics that reflect post-fire drainage basin recovery expected to develop over a period of several years also were analyzed for two affected stream reaches: the South Platte River between Deckers and Trumbull, and Mitchell Creek in Glenwood Springs. The 10-, 50-, 100-, and 500-year flood-plain boundaries and water-surface profiles were computed in a detailed hydraulic study of the Deckers-to-Trumbull reach. The Hayman wildfire burned approximately 138,000 acres (216 square miles) in granitic terrain near Denver, and the predominant potential hazard in this area is flooding by sediment-laden water along the large tributaries to and the main stem of the South Platte River. The Coal Seam wildfire burned approximately 12,200 acres (19.1 square miles) near Glenwood Springs, and the Missionary Ridge wildfire burned approximately 70,500 acres (110 square miles) near Durango, both in areas underlain by marine shales where the predominant potential hazard is debris-flow inundation of low-lying areas. Hydrographs and peak discharges for pre-burn and post-burn scenarios were computed for each drainage basin and tributary subbasin by using rainfall-runoff models because streamflow data for most tributary subbasins were not available. An objective rainfall-runoff model calibration method based on nonlinear regression and referred to as the ?objective calibration method? was developed and applied to rainfall-runoff models for three burned areas. The HEC-1 rainfall-runoff model was used to simulate the pre-burn rainfall-runoff processes in response to the 100-year storm, and HEC-HMS was used for runoff hydrograph generation. Post-burn rainfall-runoff parameters were determined by adjusting the runoff-curve numbers on the basis of a weighting procedure derived from the U.S. Soil Conservation Service (now the National Resources Conservation Service) equation for precipitation excess and the effect of burn severity. This weighting procedure was determined to be more appropriate than simple area weighting because of the potentially marked effect of even small burned areas on the runoff hydrograph in individual drainage basins. Computed water-peak discharges from HEC-HMS models were increased volumetrically to account for increased sediment concentrations that are expected as a result of accelerated erosion after burning. Peak discharge estimates for potential floods in the South Platte River were increased by a factor that assumed a volumetric sediment concentration (Cv) of 20 percent. Flood hydrographs for the South Platte River and Mitchell Creek were routed down main-stem channels using watershed-routing algorithms included in the HEC-HMS rainfall-runoff model. In areas subject to debris flows in the Coal Seam and Missionary Ridge burned areas, debris-flow discharges were simulated by 100-year rainfall events, and the inflow hydrographs at tributary mouths were simulated by using the objective calibration method. Sediment concentrations (Cv) used in debris-flow simulations were varied through the event, and were initial Cv 20 percent, mean Cv approximately 31 percent, maximum Cv 48 percent, Cv 43 percent at the time of the water hydrograph peak, and Cv 20 percent for the duration of the event. The FLO-2D flood- and debris-flow routing model was used to delineate the area of unconfined debris-flow inundation on selected alluvial fan and valley floor areas. A method was developed to objectively determine the post-fire recovery period for the Hayman and Coal Seam burned areas using runoff-curve numbers (RCN) for all drainage basins for a 50-year period. A

  5. Assessment of oxidative stress markers and concentrations of selected elements in the leaves of Cassia occidentalis growing wild on a coal fly ash basin.

    PubMed

    Love, Amit; Banerjee, B D; Babu, C R

    2013-08-01

    Assessment of oxidative stress levels and tissue concentrations of elements in plants growing wild on fly ash basins is critical for realistic hazard identification of fly ash disposal areas. Hitherto, levels of oxidative stress markers in plants growing wild on fly ash basins have not been adequately investigated. We report here concentrations of selected metal and metalloid elements and levels of oxidative stress markers in leaves of Cassia occidentalis growing wild on a fly ash basin (Badarpur Thermal Power Station site) and a reference site (Garhi Mandu Van site). Plants growing on the fly ash basin had significantly high foliar concentration of As, Ni, Pb and Se and low foliar concentration of Mn and Fe compared to the plants growing on the reference site. The plants inhabiting the fly ash basin showed signs of oxidative stress and had elevated levels of lipid peroxidation, electrolyte leakage from cells and low levels of chlorophyll a and total carotenoids compared to plants growing at the reference site. The levels of both protein thiols and nonprotein thiols were elevated in plants growing on the fly ash basin compared to plants growing on the reference site. However, no differences were observed in the levels of cysteine, reduced glutathione and oxidized glutathione in plants growing at both the sites. Our study suggests that: (1) fly ash triggers oxidative stress responses in plants growing wild on fly ash basin, and (2) elevated levels of protein thiols and nonprotein thiols may have a role in protecting the plants from environmental stress.

  6. Environmental geology for land use and regional planning in the Bandung Basin, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Suhari, S.; Siebenhüner, M.

    The demand on land and natural resources in the Greater Bandung area increases rapidly with increasing population and economic growth. Land use changes and over-exploitation of natural resources have significantly caused negative environmental impacts. In the period 1989-1993, an Indonesian-German technical cooperation project between the Directorate of Environmental Geology (Indonesia) and the Federal Institute for Geosciences and Natural Resources (Germany) has been conducting a study to improve the conservation and management of the natural resources for regional planning in the Bandung Basin. The Bandung Basin consists of a plain which is surrounded by a mountainous chain. The mountainous area is mostly dominated by Quaternary volcanic products such as lava, breccia, agglomerate, lahar, tuff, and andesite intrusions. The plain comprises thick alluvial deposits of river and lacustrine origin. Tertiary sediments only cover the western part of the basin. The Quaternary volcanic products do not only produce fertile agricultural soils but also are the important source of various construction materials and act as groundwater recharge. From the environmental geology point of view, the physical development,of the Greater Bandung area faces various constraints. These include conflict among urban development, agricultural land, groundwater protection, extraction of mineral resources, and potential waste disposal sites. In addition, some areas are restricted for development due to: (a) their poor foundation characteristics; (b) location in flood prone areas; and (c) geological hazards such as landslides and lahar flows. Operation of many existing and abandoned waste disposal dumping facilities in geologically unfavorable areas has contaminated both the groundwater and surface water. Improper exploitation technique in many quarries and pits has also endangered the environment, such as destabilization of slope, increasing danger of landslides and erosion, and increasing turbidity and sedimentation. The project has produced a series of easy-to-read geo-information maps at the scale of 1:100,000. The maps delineate the important geological resources and hazards. These include groundwater resources, industrial minerals and rocks, potential areas for waste disposal sites, and areas subject to geological hazards. The resulting recommendations for an environmentally sound management of these geological resources are being promoted to the decision-making level of the governmental administration concerned with regional planning.

  7. Effects of variability in probable maximum precipitation patterns on flood losses

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Felder, Guido; Weingartner, Rolf; Quinn, Niall; Coxon, Gemma; Neal, Jeffrey; Freer, Jim; Bates, Paul

    2018-05-01

    The assessment of the impacts of extreme floods is important for dealing with residual risk, particularly for critical infrastructure management and for insurance purposes. Thus, modelling of the probable maximum flood (PMF) from probable maximum precipitation (PMP) by coupling hydrological and hydraulic models has gained interest in recent years. Herein, we examine whether variability in precipitation patterns exceeds or is below selected uncertainty factors in flood loss estimation and if the flood losses within a river basin are related to the probable maximum discharge at the basin outlet. We developed a model experiment with an ensemble of probable maximum precipitation scenarios created by Monte Carlo simulations. For each rainfall pattern, we computed the flood losses with a model chain and benchmarked the effects of variability in rainfall distribution with other model uncertainties. The results show that flood losses vary considerably within the river basin and depend on the timing and superimposition of the flood peaks from the basin's sub-catchments. In addition to the flood hazard component, the other components of flood risk, exposure, and vulnerability contribute remarkably to the overall variability. This leads to the conclusion that the estimation of the probable maximum expectable flood losses in a river basin should not be based exclusively on the PMF. Consequently, the basin-specific sensitivities to different precipitation patterns and the spatial organization of the settlements within the river basin need to be considered in the analyses of probable maximum flood losses.

  8. Direct and indirect evidence for earthquakes; an example from the Lake Tahoe Basin, California-Nevada

    NASA Astrophysics Data System (ADS)

    Maloney, J. M.; Noble, P. J.; Driscoll, N. W.; Kent, G.; Schmauder, G. C.

    2012-12-01

    High-resolution seismic CHIRP data can image direct evidence of earthquakes (i.e., offset strata) beneath lakes and the ocean. Nevertheless, direct evidence often is not imaged due to conditions such as gas in the sediments, or steep basement topography. In these cases, indirect evidence for earthquakes (i.e., debris flows) may provide insight into the paleoseismic record. The four sub-basins of the tectonically active Lake Tahoe Basin provide an ideal opportunity to image direct evidence for earthquake deformation and compare it to indirect earthquake proxies. We present results from high-resolution seismic CHIRP surveys in Emerald Bay, Fallen Leaf Lake, and Cascade Lake to constrain the recurrence interval on the West Tahoe Dollar Point Fault (WTDPF), which was previously identified as potentially the most hazardous fault in the Lake Tahoe Basin. Recently collected CHIRP profiles beneath Fallen Leaf Lake image slide deposits that appear synchronous with slides in other sub-basins. The temporal correlation of slides between multiple basins suggests triggering by events on the WTDPF. If correct, we postulate a recurrence interval for the WTDPF of ~3-4 k.y., indicating that the WTDPF is near its seismic recurrence cycle. In addition, CHIRP data beneath Cascade Lake image strands of the WTDPF that offset the lakefloor as much as ~7 m. The Cascade Lake data combined with onshore LiDAR allowed us to map the geometry of the WTDPF continuously across the southern Lake Tahoe Basin and yielded an improved geohazard assessment.

  9. Efficacy, fate, and potential effects on salmonids of mosquito larvicides in catch basins in Seattle, Washington

    USGS Publications Warehouse

    Sternberg, Morgan; Grue, Christian; Conquest, Loveday; Grassley, James; King, Kerensa

    2012-01-01

    We investigated the efficacy, fate, and potential for direct effects on salmonids of 4 common mosquito larvicides (Mosquito Dunks® and Bits® (AI: Bacillis thuringiensis var. israelensis, [Bti]), VectoLex® WSP (AI: Bacillus sphaericus [Bs], VectoLex CG [AI: Bs], and Altosid® Briquets [AI: s-methoprene]) in Seattle, WA, during 3 summers. During efficacy trials in 2006, all treatments resulted in a rapid reduction in number of mosquito pupae (Mosquito Dunks and Bits and VectoLex WSP) or emergence success (Altosid Briquets). VectoLex CG was chosen for city-wide application in 2007 and 2008. The average counts of pupae within round-top basins remained significantly below the control average for 11 wk in 2007, whereas efficacy in grated-top basins was short-lived. In 2008 the average counts of pupae within grated-top basins remained significantly below the control average for 10 wk. Altosid XR was also effective in reducing adult emergence within grated basins in 2008. In 2007 and 2008, frequent precipitation events made the evaluation of efficacy difficult due to reductions in pupae across control and treated basins. Four separate analyses of VectoLex products revealed that the product was a combination of Bs and Bti. Both Bs and Bti were detected in 3 urban creeks connected to treated basins in 2007 and 2008. Laboratory toxicity test results suggest that concentrations of Bs and Bti detected in each of the watersheds pose little direct hazard to juvenile salmonids.

  10. Foundations of the participatory approach in the Mekong River basin management.

    PubMed

    Budryte, Paulina; Heldt, Sonja; Denecke, Martin

    2018-05-01

    Integrated Water Resource Management (IWRM) was acknowledged as a leading concept in the water management for the last two decades by academia, political decision-makers and experts. It strongly promotes holistic management and participatory approaches. The flexibility and adaptability of IWRM concept are especially important for large, transboundary river basins - e.g. the Mekong river basin - where natural processes and hazards, as well as, human-made "disasters" are demanding for a comprehensive approach. In the Mekong river basin, the development and especially the enforcement of one common strategy has always been a struggle. The past holds some unsuccessful experiences. In 2016 Mekong River Commission published IWRM-based Basin Development Strategy 2016-2020 and The Mekong River Commission Strategic Plan 2016-2020. They should be the main guiding document for the Mekong river development in the near future. This study analyzes how the concept of public participation resembles the original IWRM participatory approach in these documents. Therefore, IWRM criteria for public participation in international literature and official documents from the Mekong river basin are compared. As there is often a difference between "de jure" and "de facto" implementation of public participation in management concepts, the perception of local stakeholders was assessed in addition. The results of social survey give an insight if local people are aware of Mekong river basin development and present their dominant attitudes about the issue. The findings enable recommendations how to mitigate obstacles in the implementation of common development strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Probability and volume of potential postwildfire debris flows in the 2010 Fourmile burn area, Boulder County, Colorado

    USGS Publications Warehouse

    Ruddy, Barbara C.; Stevens, Michael R.; Verdin, Kristine

    2010-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the Fourmile Creek fire in Boulder County, Colorado, in 2010. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volumes of debris flows for selected drainage basins. Data for the models include burn severity, rainfall total and intensity for a 25-year-recurrence, 1-hour-duration rainstorm, and topographic and soil property characteristics. Several of the selected drainage basins in Fourmile Creek and Gold Run were identified as having probabilities of debris-flow occurrence greater than 60 percent, and many more with probabilities greater than 45 percent, in response to the 25-year recurrence, 1-hour rainfall. None of the Fourmile Canyon Creek drainage basins selected had probabilities greater than 45 percent. Throughout the Gold Run area and the Fourmile Creek area upstream from Gold Run, the higher probabilities tend to be in the basins with southerly aspects (southeast, south, and southwest slopes). Many basins along the perimeter of the fire area were identified as having low probability of occurrence of debris flow. Volume of debris flows predicted from drainage basins with probabilities of occurrence greater than 60 percent ranged from 1,200 to 9,400 m3. The predicted moderately high probabilities and some of the larger volumes responses predicted for the modeled storm indicate a potential for substantial debris-flow effects to buildings, roads, bridges, culverts, and reservoirs located both within these drainages and immediately downstream from the burned area. However, even small debris flows that affect structures at the basin outlets could cause considerable damage.

  12. Ambient Noise Tomography at Regional and Local Scales in Southern California using Rayleigh Wave Phase Dispersion and Ellipticity

    NASA Astrophysics Data System (ADS)

    Berg, E.; Lin, F. C.; Qiu, H.; Wang, Y.; Allam, A. A.; Clayton, R. W.; Ben-Zion, Y.

    2017-12-01

    Rayleigh waves extracted from cross-correlations of ambient seismic noise have proven useful in imaging the shallow subsurface velocity structure. In contrast to phase velocities, which are sensitive to slightly deeper structure, Rayleigh wave ellipticity (H/V ratios) constrains the uppermost crust. We conduct Rayleigh wave ellipticity and phase dispersion measurements in Southern California between 6 and 18 second periods, computed from multi-component ambient noise cross-correlations using 315 stations across the region in 2015. Because of the complimentary sensitivity of phase velocity and H/V, this method enables simple and accurate resolution of near-surface geological features from the surface to 20km depth. We compare the observed H/V ratios and phase velocities to predictions generated from the current regional models (SCEC UCVM), finding strong correspondence where the near-surface structure is well-resolved by the models. This includes high H/V ratios in the LA Basin, Santa Barbara Basin and Salton Trough; and low ratios in the San Gabriel, San Jacinto and southern Sierra Nevada mountains. Disagreements in regions such as the Western Transverse Ranges, Salton Trough, San Jacinto and Elsinore fault zones motivate further work to improve the community models. A new updated 3D isotropic model of the area is derived via a joint inversion of Rayleigh phase dispersions and H/V ratios. Additionally, we examine azimuthal dependence of the H/V ratio to ascertain anisotropy patterns for each station. Clear 180º periodicity is observed for many stations suggesting strong shallow anisotropy across the region including up to 20% along the San Andreas fault, 15% along the San Jacinto Fault and 25% in the LA Basin. To better resolve basin structures, we apply similar techniques to three dense linear geophone arrays in the San Gabriel and San Bernardino basins. The three arrays are composed by 50-125 three-component 5Hz geophones deployed for one month each with 15-25km apertures to image basin structure, important for seismic hazard analysis and ground motion predictions. Clear Rayleigh and Love wave signals are extracted. We determine Love wave dispersion and Rayleigh wave H/V and phase dispersion measurements. The preliminary basin models from inverting surface wave measurements will be presented.

  13. Study of Seismic Hazards in the Center of the State of Veracruz, MÉXICO.

    NASA Astrophysics Data System (ADS)

    Torres Morales, G. F.; Leonardo Suárez, M.; Dávalos Sotelo, R.; Mora González, I.; Castillo Aguilar, S.

    2015-12-01

    Preliminary results obtained from the project "Microzonation of geological and hydrometeorological hazards for conurbations of Orizaba, Veracruz, and major sites located in the lower sub-basins: The Antigua and Jamapa" are presented. These project was supported by the Joint Funds CONACyT-Veracruz state government. It was developed a probabilistic seismic hazard assessment (henceforth PSHA) in the central area of Veracruz State, mainly in a region bounded by the watersheds of the rivers Jamapa and Antigua, whit the aim to evaluate the geological and hydrometeorological hazards in this region. The project pays most attention to extreme weather phenomena, floods and earthquakes, in order to calculate the risk induced by previous for landslides and rock falls. In addition, as part of the study, the PSHA was developed considered the site effect in the urban zones of the cities Xalapa and Orizaba; the site effects were incorporated by a standard format proposed in studies of microzonation and its application in computer systems, which allows to optimize and condense microzonation studies in a city. The results obtained from the PSHA are presented through to seismic hazard maps (hazard footprints), exceedance rate curves and uniform hazard spectrum for different spectral ordinates, between 0.01 and 5.0 seconds, associated to selected return periods: 72, 225, 475 and 2475 years.

  14. Global and local scale flood discharge simulations in the Rhine River basin for flood risk reduction benchmarking in the Flagship Project

    NASA Astrophysics Data System (ADS)

    Gädeke, Anne; Gusyev, Maksym; Magome, Jun; Sugiura, Ai; Cullmann, Johannes; Takeuchi, Kuniyoshi

    2015-04-01

    The global flood risk assessment is prerequisite to set global measurable targets of post-Hyogo Framework for Action (HFA) that mobilize international cooperation and national coordination towards disaster risk reduction (DRR) and requires the establishment of a uniform flood risk assessment methodology on various scales. To address these issues, the International Flood Initiative (IFI) has initiated a Flagship Project, which was launched in year 2013, to support flood risk reduction benchmarking at global, national and local levels. In the Flagship Project road map, it is planned to identify the original risk (1), to identify the reduced risk (2), and to facilitate the risk reduction actions (3). In order to achieve this goal at global, regional and local scales, international research collaboration is absolutely necessary involving domestic and international institutes, academia and research networks such as UNESCO International Centres. The joint collaboration by ICHARM and BfG was the first attempt that produced the first step (1a) results on the flood discharge estimates with inundation maps under way. As a result of this collaboration, we demonstrate the outcomes of the first step of the IFI Flagship Project to identify flood hazard in the Rhine river basin on the global and local scale. In our assessment, we utilized a distributed hydrological Block-wise TOP (BTOP) model on 20-km and 0.5-km scales with local precipitation and temperature input data between 1980 and 2004. We utilized existing 20-km BTOP model, which is applied globally, and constructed the local scale 0.5-km BTOP model for the Rhine River basin. For the BTOP model results, both calibrated 20-km and 0.5-km BTOP models had similar statistical performance and represented observed flood river discharges, epecially for 1993 and 1995 floods. From 20-km and 0.5-km BTOP simulation, the flood discharges of the selected return period were estimated using flood frequency analysis and were comparable to the the river gauging station data at the German part of the Rhine river basin. This is an important finding that both 0.5-km and 20-km BTOP models produce similar flood peak discharges although the 0.5-km BTOP model results indicate the importance of scale in the local flood hazard assessment. In summary, we highlight that this study serves as a demonstrative example of institutional collaboration and is stepping stone for the next step implementation of the IFI Flagship Project.

  15. Atmospheric Fragmentation of the Gold Basin Meteoroid as Constrained from Cosmogenic Nuclides

    NASA Technical Reports Server (NTRS)

    Welten, K. C.; Hillegonds, D. J.; Jull, A. J. T.; Kring, D. A.

    2005-01-01

    Since the discovery of the Gold Basin L4 chondrite shower almost ten years ago in the northwestern corner of Arizona, many thousands of L-chondrite specimens have been recovered from an area of approx.22 km long and approx.10 km wide. Concentrations of cosmogenic 14C and 10Be in a number of these samples indicated a terrestrial age of approx.15,000 years and a large pre-atmospheric size [1]. Additional measurements of cosmogenic Be-10, Al-26, Cl-36, and Ca-41 in the metal and stone fractions of fifteen Gold Basin samples constrained the pre-atmospheric radius to 3-5 m [2]. This implies that Gold Basin is by far the largest stone meteorite in the present meteorite collection, providing us with an opportunity to study the fragmentation process of a large chondritic object during atmospheric entry. Knowledge about the fragmentation process provides information about the mechanical strength of large meteoroids, which is important for the evaluation of future hazards of small asteroid impacts on Earth and possible defensive scenarios to avoid those impacts.

  16. The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China.

    PubMed

    Di, Hui; Liu, Xingpeng; Zhang, Jiquan; Tong, Zhijun; Ji, Meichen

    2018-03-15

    Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks.

  17. Potential impact of climate change to the future streamflow of Yellow River Basin based on CMIP5 data

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Zheng, Weifei; Ren, Liliang; Zhang, Mengru; Wang, Yuqian; Liu, Yi; Yuan, Fei; Jiang, Shanhu

    2018-02-01

    The Yellow River Basin (YRB) is the largest river basin in northern China, which has suffering water scarcity and drought hazard for many years. Therefore, assessments the potential impacts of climate change on the future streamflow in this basin is very important for local policy and planning on food security. In this study, based on the observations of 101 meteorological stations in YRB, equidistant CDF matching (EDCDFm) statistical downscaling approach was applied to eight climate models under two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5). Variable infiltration capacity (VIC) model with 0.25° × 0.25° spatial resolution was developed based on downscaled fields for simulating streamflow in the future period over YRB. The results show that with the global warming trend, the annual streamflow will reduced about 10 % during the period of 2021-2050, compared to the base period of 1961-1990 in YRB. There should be suitable water resources planning to meet the demands of growing populations and future climate changing in this region.

  18. Seismic interaction between a building network and a sedimentary basin

    NASA Astrophysics Data System (ADS)

    Kham, M.; Semblat, J. F.; Bard, P. Y.; Gueguen, P.

    2003-04-01

    The classical procedure to assess the seismic risk for a superficial structure consists in distinguishing firstly the characterization of the seismic hazard and secondly the analysis of the structure vulnerability. But, as far as the entire urban area is concerned by the seismic risk, a network of superficial structures may influence the free-field motion. In this way, convergent observations were made during the 1985 Mexico earthquake where the large increase in duration may not be completely explained only by site effects. This phenomenon involving the interaction between a city and the sedimentary basin is called Site-City Interaction (SCI) and was firstly underlined by Gueguen [1] in Volvi european test site. Under seismic excitation, the energy radiated by the city back into the soil seems to be mainly controlled by the eigenfrequency ratio fB/fs between the buildings and the soil as well as the urban density. Nevertheless, the key parameters supporting or controlling the SCI effect mainly remain unknown. This point is all the more obvious since present studies on the issue suffer a lack of experimental data characterizing the "urban free field". In the present work, we aim to quantify the specific role of some parameters characterizing the city on seismic hazard modification, such as the urban density, the resonance frequency of the buildings in the city, its homogeneity level (one or several types of different buildings) or the periodicity (or not) of the buildings distribution. To this purpose, a boundary element model is considered which comprises alluvial layers over a rigid elastic basement and superficial buildings. Impedance contrast is taken to 5 in order to support the trapping of the incident energy inside the superficial layers. The whole system is then submitted to a Ricker signal which frequency is successively adjusted to the city and the soil fundamental frequencies. The case of Nice city (France) over a two dimensional basin is then considered for the assessment of SCI in a real configuration when compared to free-field amplification [2]. Parametric study of the solutions, both in time and frequency, inside and outside the city underlines the "efficiency" of the SCI effect, since a wave train diffracted outward from the city can be observed. The link between this radiated energy and the energy accumulated inside the city is firstly discussed to understand afterwards the role of the urban parameters controlling this accumulation. Owing to these results, further investigations allow a deeper insight and a better understanding of the Site-City Interaction (SCI) phenomena investing a real two dimensional basin in the centre of Nice (France). Blibliography [1] P. Guéguen, P-Y. Bard & C.S. Oliveira : Experimental and Numerical Analysis of Soil Motions caused by Free Vibrations of a Building Model. Bulletin of the Seismological Society of America, vol.90, nr 6, 2000. [2] J-F. Semblat, A-M. Duval, P. Dangla. Numerical Analysis of Seismic Wave Amplification in Nice (France) and comparisons with experiments. Soil Dynamics & Earthquake Engineering, 2000.

  19. Regional danger assessment of Debris flow and its engineering mitigation practice in Sichuan-Tibet highway

    NASA Astrophysics Data System (ADS)

    Su, Pengcheng; Sun, Zhengchao; li, Yong

    2017-04-01

    Luding-Kangding highway cross the eastern edge of Qinghai-Tibet Plateau where belong to the most deep canyon area of plateau and mountains in western Sichuan with high mountain and steep slope. This area belongs to the intersection among Xianshuihe, Longmenshan and Anninghe fault zones which are best known in Sichuan province. In the region, seismic intensity is with high frequency and strength, new tectonic movement is strong, rock is cracked, there are much loose solid materials. Debris flow disaster is well developed under the multiple effects of the earthquake, strong rainfall and human activity which poses a great threat to the local people's life and property security. So this paper chooses Kangding and LuDing as the study area to do the debris flow hazard assessment through the in-depth analysis of development characteristics and formation mechanism of debris flow. Which can provide important evidence for local disaster assessment and early warning forecast. It also has the important scientific significance and practical value to safeguard the people's life and property safety and the security implementation of the national major project. In this article, occurrence mechanism of debris flow disasters in the study area is explored, factor of evaluation with high impact to debris flow hazards is identified, the database of initial evaluation factors is made by the evaluation unit of basin. The factors with high impact to hazards occurrence are selected by using the stepwise regression method of logistic regression model, at the same time the factors with low impact are eliminated, then the hazard evaluation factor system of debris flow is determined in the study area. Then every factors of evaluation factor system are quantified, and the weights of all evaluation factors are determined by using the analysis of stepwise regression. The debris flows hazard assessment and regionalization of all the whole study area are achieved eventually after establishing the hazard assessment model. In this paper, regional debris flows hazard assessment method with strong universality and reliable evaluation result is presented. The whole study area is divided into 1674 units by automatically extracting and artificial identification, and then 11 factors are selected as the initial assessment factors of debris flow hazard assessment in the study area. The factors of the evaluation index system are quantified using the method of standardized watershed unit amount ratio. The relationship between debris flow occurrence and each evaluation factor is simulated using logistic regression model. The weights of evaluation factors are determined, and the model of debris flows hazard assessment is established in the study area. Danger assessment result of debris flow was applied in line optimization and engineering disaster reduction of Sichuan-Tibet highway (section of Luding-Kangding).

  20. Seismic hazard in the Istanbul metropolitan area: A preliminary re-evaluation

    USGS Publications Warehouse

    Kalkan, E.; Gulkan, Polat; Ozturk, N.Y.; Celebi, M.

    2008-01-01

    In 1999, two destructive earthquakes (M7.4 Kocaeli and M7.2 Duzce) occurred in the north west of Turkey and resulted in major stress-drops on the western segment of the North Anatolian Fault system where it continues under the Marmara Sea. These undersea fault segments were recently explored using bathymetric and reflection surveys. These recent findings helped to reshape the seismotectonic environment of the Marmara basin, which is a perplexing tectonic domain. Based on collected new information, seismic hazard of the Marmara region, particularly Istanbul Metropolitan Area and its vicinity, were re-examined using a probabilistic approach. Two seismic source and alternate recurrence models combined with various indigenous and foreign attenuation relationships were adapted within a logic tree formulation to quantify and project the regional exposure on a set of hazard maps. The hazard maps show the peak horizontal ground acceleration and spectral acceleration at 1.0 s. These acceleration levels were computed for 2 and 10 % probabilities of transcendence in 50 years.

  1. Characterizing the deformation of reservoirs using interferometry, gravity, and seismic analyses

    NASA Astrophysics Data System (ADS)

    Schiek, Cara Gina

    In this dissertation, I characterize how reservoirs deform using surface and subsurface techniques. The surface technique I employ is radar interferometry, also known as InSAR (Interferometric Synthetic Aperture Radar). The subsurface analyses I explore include gravity modeling and seismic techniques consisting of determining earthquake locations from a small-temporary seismic network of six seismometers. These techniques were used in two different projects to determine how reservoirs deform in the subsurface and how this deformation relates to its remotely sensed surface deformation. The first project uses InSAR to determine land subsidence in the Mimbres basin near Deming, NM. The land subsidence measurements are visually compared to gravity models in order to determine the influence of near surface faults on the subsidence and the physical properties of the aquifers in these basins. Elastic storage coefficients were calculated for the Mimbres basin to aid in determining the stress regime of the aquifers. In the Mimbres basin, I determine that it is experiencing elastic deformation at differing compaction rates. The west side of the Mimbres basin is deforming faster, 17 mm/yr, while the east side of the basin is compacting at a rate of 11 mm/yr. The second project focuses on San Miguel volcano, El Salvador. Here, I integrate InSAR with earthquake locations using surface deformation forward modeling to investigate the explosive volcanism in this region. This investigation determined the areas around the volcano that are undergoing deformation, and that could lead to volcanic hazards such as slope failure from a fractured volcano interior. I use the earthquake epicenters with field data to define the subsurface geometry of the deformation source, which I forward model to produce synthetic interferograms. Residuals between the synthetic and observed interferograms demonstrate that the observed deformation is a direct result of the seismic activity along the San Miguel Fracture Zone. Based on the large number of earthquakes concentrated in this region and the fracturing suggested by the earthquake location results, I conclude that the southwestern slope of San Miguel is the most susceptible to volcanic hazards such as landsliding and flank lava flows. Together these projects explore the dynamics of reservoir systems, both hydrologic and magmatic. They show the utility of geodetic remote sensing to constrain the relative importance of various, complex, subsurface processes, including faulting, fluid migration, and compaction.

  2. Upper crustal structure in Puget Lowland, Washington: Results from the 1998 Seismic Hazards Investigation in Puget Sound

    USGS Publications Warehouse

    Brocher, T.M.; Parsons, T.; Blakely, R.J.; Christensen, N.I.; Fisher, M.A.; Wells, R.E.; ten Brink, Uri S.; Pratt, T.L.; Crosson, R.S.; Creager, K.C.; Symons, N.P.; Preston, L.A.; Van Wagoner, T.; Miller, K.C.; Snelson, C.M.; Trehu, A.M.; Langenheim, V.E.; Spence, G.D.; Ramachandran, K.; Hyndman, R.A.; Mosher, D.C.; Zelt, B.C.; Weaver, C.S.

    2001-01-01

    A new three-dimensional (3-D) model shows seismic velocities beneath the Puget Lowland to a depth of 11 km. The model is based on a tomographic inversion of nearly one million first-arrival travel times recorded during the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS), allowing higher-resolution mapping of subsurface structures than previously possible. The model allows us to refine the subsurface geometry of previously proposed faults (e.g., Seattle, Hood Canal, southern Whidbey Island, and Devils Mountain fault zones) as well as to identify structures (Tacoma, Lofall, and Sequim fault zones) that warrant additional study. The largest and most important of these newly identified structures lies along the northern boundary of the Tacoma basin; we informally refer to this structure here as the Tacoma fault zone. Although tomography cannot provide information on the recency of motion on any structure, Holocene earthquake activity on the Tacoma fault zone is suggested by seismicity along it and paleoseismic evidence for abrupt uplift of tidal marsh deposits to its north. The tomography reveals four large, west to northwest trending low-velocity basins (Tacoma, Seattle, Everett, and Port Townsend) separated by regions of higher velocity ridges that are coincident with fault-bounded uplifts of Eocene Crescent Formation basalt and pre-Tertiary basement. The shapes of the basins and uplifts are similar to those observed in gravity data; gravity anomalies calculated from the 3-D tomography model are in close agreement with the observed anomalies. In velocity cross sections the Tacoma and Seattle basins are asymmetric: the basin floor dips gently toward a steep boundary with the adjacent high-velocity uplift, locally with a velocity "overhang" that suggests a basin vergent thrust fault boundary. Crustal fault zones grow from minor folds into much larger structures along strike. Inferred structural relief across the Tacoma fault zone increases by several kilometers westward along the fault zone to Lynch Cove, where we interpret it as a zone of south vergent faulting overthrusting Tacoma basin. In contrast, structural relief along the Seattle fault zone decreases west of Seattle, which we interpret as evidence that the N-S directed compression is being accommodated by slip transfer between the Seattle and Tacoma fault zones. Together, the Tacoma and Seattle fault zones raise the Seattle uplift, one of a series of east-west trending, pop-up structures underlying Puget Lowland from the Black Hills to the San Juan Islands. Copyright 2001 by the American Geophysical Union.

  3. Upper crustal structure in Puget Lowland, Washington: Results from the 1998 Seismic Hazards Investigation in Puget Sound

    NASA Astrophysics Data System (ADS)

    Brocher, Thomas M.; Parsons, Tom; Blakely, Richard J.; Christensen, Nikolas I.; Fisher, Michael A.; Wells, Ray E.

    2001-01-01

    A new three-dimensional (3-D) model shows seismic velocities beneath the Puget Lowland to a depth of 11 km. The model is based on a tomographic inversion of nearly one million first-arrival travel times recorded during the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS), allowing higher-resolution mapping of subsurface structures than previously possible. The model allows us to refine the subsurface geometry of previously proposed faults (e.g., Seattle, Hood Canal, southern Whidbey Island, and Devils Mountain fault zones) as well as to identify structures (Tacoma, Lofall, and Sequim fault zones) that warrant additional study. The largest and most important of these newly identified structures lies along the northern boundary of the Tacoma basin; we informally refer to this structure here as the Tacoma fault zone. Although tomography cannot provide information on the recency of motion on any structure, Holocene earthquake activity on the Tacoma fault zone is suggested by seismicity along it and paleoseismic evidence for abrupt uplift of tidal marsh deposits to its north. The tomography reveals four large, west to northwest trending low-velocity basins (Tacoma, Seattle, Everett, and Port Townsend) separated by regions of higher velocity ridges that are coincident with fault-bounded uplifts of Eocene Crescent Formation basalt and pre-Tertiary basement. The shapes of the basins and uplifts are similar to those observed in gravity data; gravity anomalies calculated from the 3-D tomography model are in close agreement with the observed anomalies. In velocity cross sections the Tacoma and Seattle basins are asymmetric: the basin floor dips gently toward a steep boundary with the adjacent high-velocity uplift, locally with a velocity "overhang" that suggests a basin vergent thrust fault boundary. Crustal fault zones grow from minor folds into much larger structures along strike. Inferred structural relief across the Tacoma fault zone increases by several kilometers westward along the fault zone to Lynch Cove, where we interpret it as a zone of south vergent faulting overthrusting Tacoma basin. In contrast, structural relief along the Seattle fault zone decreases west of Seattle, which we interpret as evidence that the N-S directed compression is being accommodated by slip transfer between the Seattle and Tacoma fault zones. Together, the Tacoma and Seattle fault zones raise the Seattle uplift, one of a series of east-west trending, pop-up structures underlying Puget Lowland from the Black Hills to the San Juan Islands.

  4. Considering potential seismic sources in earthquake hazard assessment for Northern Iran

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh, Gholamreza; Sazjini, Mohammad; Shahaky, Mohsen; Tajrishi, Fatemeh Zahedi; Khanmohammadi, Leila

    2014-07-01

    Located on the Alpine-Himalayan earthquake belt, Iran is one of the seismically active regions of the world. Northern Iran, south of Caspian Basin, a hazardous subduction zone, is a densely populated and developing area of the country. Historical and instrumental documented seismicity indicates the occurrence of severe earthquakes leading to many deaths and large losses in the region. With growth of seismological and tectonic data, updated seismic hazard assessment is a worthwhile issue in emergency management programs and long-term developing plans in urban and rural areas of this region. In the present study, being armed with up-to-date information required for seismic hazard assessment including geological data and active tectonic setting for thorough investigation of the active and potential seismogenic sources, and historical and instrumental events for compiling the earthquake catalogue, probabilistic seismic hazard assessment is carried out for the region using three recent ground motion prediction equations. The logic tree method is utilized to capture epistemic uncertainty of the seismic hazard assessment in delineation of the seismic sources and selection of attenuation relations. The results are compared to a recent practice in code-prescribed seismic hazard of the region and are discussed in detail to explore their variation in each branch of logic tree approach. Also, seismic hazard maps of peak ground acceleration in rock site for 475- and 2,475-year return periods are provided for the region.

  5. New insights into North America-Pacific Plate boundary deformation from Lake Tahoe, Salton Sea and southern Baja California

    NASA Astrophysics Data System (ADS)

    Brothers, Daniel Stephen

    Five studies along the Pacific-North America (PA-NA) plate boundary offer new insights into continental margin processes, the development of the PA-NA tectonic margin and regional earthquake hazards. This research is based on the collection and analysis of several new marine geophysical and geological datasets. Two studies used seismic CHIRP surveys and sediment coring in Fallen Leaf Lake (FLL) and Lake Tahoe to constrain tectonic and geomorphic processes in the lakes, but also the slip-rate and earthquake history along the West Tahoe-Dollar Point Fault. CHIRP profiles image vertically offset and folded strata that record deformation associated with the most recent event (MRE). Radiocarbon dating of organic material extracted from piston cores constrain the age of the MRE to be between 4.1--4.5 k.y. B.P. Offset of Tioga aged glacial deposits yield a slip rate of 0.4--0.8 mm/yr. An ancillary study in FLL determined that submerged, in situ pine trees that date to between 900-1250 AD are related to a medieval megadrought in the Lake Tahoe Basin. The timing and severity of this event match medieval megadroughts observed in the western United States and in Europe. CHIRP profiles acquired in the Salton Sea, California provide new insights into the processes that control pull-apart basin development and earthquake hazards along the southernmost San Andreas Fault. Differential subsidence (>10 mm/yr) in the southern sea suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline. In contrast to previous models, the rapid subsidence and fault architecture observed in the southern part of the sea are consistent with experimental models for pull-apart basins. Geophysical surveys imaged more than 15 ˜N15°E oriented faults, some of which have produced up to 10 events in the last 2-3 kyr. Potentially 2 of the last 5 events on the southern San Andreas Fault (SAF) were synchronous with rupture on offshore faults, but it appears that ruptures on three offshore faults are synchronous with Colorado River diversions into the basin. The final study was used coincident wide-angle seismic refraction and multichannel seismic reflection surveys that spanned the width of the of the southern Baja California (BC) Peninsula. The data provide insight into the spatial and temporal evolution of the BC microplate capture by the Pacific Plate. Seismic reflection profiles constrain the upper crustal structure and deformation history along fault zone on the western Baja margin and in the Gulf of California. Stratal divergence in two transtensional basins along the Magdalena Shelf records the onset of extension across the Tosco-Abreojos and Santa Margarita faults. We define an upper bound of 12 Ma on the age of the pre-rift sediments and an age of ˜8 Ma for the onset of extension. Tomographic imaging reveals a very heterogeneous upper crust and a narrow, high velocity zone that extends ˜40 km east of the paleotrench and is interpreted to be remnant oceanic crust.

  6. Finite Element Modelling of the Indo-Gangetic Basin to Study Site Amplification

    NASA Astrophysics Data System (ADS)

    Sivasubramonian, J.; Jaya, D.; Raghukanth, S. T. G.; Mai, P. M.

    2017-12-01

    We have developed a finite-element model of the 3D velocity structure of the Indo-Gangetic basin (IG basin) to quantify site amplifications due to seismic waves emanated from regional earthquakes. Estimating seismic wave amplifications is difficult in case of limited instrumentation, thus motivating us to propose a new simulation-based approach. The input required for the finite-element model include the spatial coordinates and the material properties (density, P-wave and S-wave velocities, Q factor) of the basin. Recent studies in the basin demarcate sediment layers of varying thickness, reaching down to a depth of 6 km and S-wave velocities ranging from 0.4-2.4 km/s (Srinivas et al., 2013). In the present study, our regional model has dimensions 900 x 900 x 80 km in x, y and z directions, discretized into 320 x 320 x 53 hexahedral elements. The top 6 km of the IG basin is divided into 8 different sediment layers with varying material properties. We use kinematic rupture models for the earthquake sources to simulate past as well as hypothetical future events. Two past earthquakes (Mw4.9, Delhi; Mw5.2, Chamoli) and two hypothetical earthquakes (Mw7.1; Mw8.5) are considered in our study. The rupture plane dimensions (L and W) and the slip distribution are estimated using the method of Mai and Beroza (2002). Based on focal-mechanism solutions and the depths of seismicity, we define the strike (580, 3090), the dip (650, 210), the rake (160, 770), and the depth of top edge of fault (5 km, 19 km) for the two large hypothetical earthquakes. Based on these parameters, the Centroid Moment Tensor (CMT) solution of the source is obtained. Ground motions are then simulated by solving the three-dimensional wave equation using the spectral element method (Komatitsch and Tromp, 1999). The key observations from our results are: 1) basin amplification factors for Peak Ground Velocity (PGV) are twice as high as Peak Ground Displacement (PGD) 2) PGV amplifications are as high as a factor of 6 for earthquakes occurring inside the basin, and a factor of 4 for Himalayan earthquakes (to the north of the study region) 3) The simulated shake maps of PGV and PGD show directivity. Based on the above observations, we conclude that it is important to include our model into low-frequency ground-motion estimation for seismic hazard analysis.

  7. Spatiotemporal hazard mapping of a flood event "migration" in a transboundary river basin as an operational tool in flood risk management

    NASA Astrophysics Data System (ADS)

    Perrou, Theodora; Papastergios, Asterios; Parcharidis, Issaak; Chini, Marco

    2017-10-01

    Flood disaster is one of the heaviest disasters in the world. It is necessary to monitor and evaluate the flood disaster in order to mitigate the consequences. As floods do not recognize borders, transboundary flood risk management is imperative in shared river basins. Disaster management is highly dependent on early information and requires data from the whole river basin. Based on the hypothesis that the flood events over the same area with same magnitude have almost identical evolution, it is crucial to develop a repository database of historical flood events. This tool, in the case of extended transboundary river basins, could constitute an operational warning system for the downstream area. The utility of SAR images for flood mapping, was demonstrated by previous studies but the SAR systems in orbit were not characterized by high operational capacity. Copernicus system will fill this gap in operational service for risk management, especially during emergency phase. The operational capabilities have been significantly improved by newly available satellite constellation, such as the Sentinel-1A AB mission, which is able to provide systematic acquisitions with a very high temporal resolution in a wide swath coverage. The present study deals with the monitoring of a transboundary flood event in Evros basin. The objective of the study is to create the "migration story" of the flooded areas on the basis of the evolution in time for the event occurred from October 2014 till May 2015. Flood hazard maps will be created, using SAR-based semi-automatic algorithms and then through the synthesis of the related maps in a GIS-system, a spatiotemporal thematic map of the event will be produced. The thematic map combined with TanDEM-X DEM, 12m/pixel spatial resolution, will define the non- affected areas which is a very useful information for the emergency planning and emergency response phases. The Sentinels meet the main requirements to be an effective and suitable operational tool in transboundary flood risk management.

  8. Site response, shallow shear-wave velocity, and wave propagation at the San Jose, California, dense seismic array

    USGS Publications Warehouse

    Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.

    2003-01-01

    Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are compared. These spectra show surface waves generated/ scattered at the edges of the Santa Clara Valley and possibly within the valley at the western edge of the Evergreen basin.

  9. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  10. A high-resolution land-use map; Nogales, Sonora, Mexico

    USGS Publications Warehouse

    Norman, Laura M.; Villarreal, Miguel L.; Wallace, Cynthia S.A.; Gil Anaya, Claudia Z.; Diaz Arcos, Israel; Gray, Floyd

    2010-01-01

    The cities of Nogales, Sonora, and Nogales, Arizona, are located in the Ambos Nogales Watershed, a topographically irregular bowl-shaped area with a northward gradient. Throughout history, residents in both cities have been affected by flooding. Currently, the primary method for regulating this runoff is to build a series of detention basins in Nogales, Sonora. Additionally, the municipality also is considering land-use planning to help mitigate flooding. This paper describes the production of a 10-meter resolution land-use map, derived from 2008 aerial photos of the Nogales, Sonora Watershed for modeling impacts of the detention basin construction and in support of an ?Early Warning Hazard System? for the region.

  11. Use of a stochastic approach for description of water balance and runoff production dynamics

    NASA Astrophysics Data System (ADS)

    Gioia, A.; Manfreda, S.; Iacobellis, V.; Fiorentino, M.

    2009-04-01

    The present study exploits an analytical model (Manfreda, NHESS [2008]) for the description of the probability density function of soil water balance and runoff generation over a set of river basins belonging to Southern Italy. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance; the watershed heterogeneity is described exploiting the conceptual lumped watershed Xinanjiang model (widely used in China) that uses a parabolic curve for the distribution of the soil water storage capacity (Zhao et al. [1980]). The model, characterized by parameters that depend on soil, vegetation and basin morphology, allowed to derive the probability density function of the relative saturation and the surface runoff of a basin accounting for the spatial heterogeneity in soil water storage. Its application on some river basins belonging to regions of Southern Italy, gives interesting insights for the investigation of the role played by the dynamical interaction between climate, soil, and vegetation in soil moisture and runoff production dynamics. Manfreda, S., Runoff Generation Dynamics within a Humid River Basin, Natural Hazard and Earth System Sciences, 8, 1349-1357, 2008. Zhao, R. -J., Zhang, Y. L., and Fang, L. R.: The Xinanjiang model, Hydrological Forecasting Proceedings Oxford Symposium, IAHS Pub. 129, 351-356, 1980.

  12. Eastern boundary of the Siletz terrane in the Puget Lowland from gravity and magnetic modeling with implications for seismic hazard analysis

    NASA Astrophysics Data System (ADS)

    Anderson, M. L.; Blakely, R. J.; Wells, R. E.; Dragovich, J.

    2011-12-01

    The forearc of the Cascadia subduction zone in coastal Oregon and Washington is largely composed of a 15-30 km-thick stack of basalt flows comprising the Crescent Formation (WA) and Siletz River Volcanics (OR), and collectively termed the Siletz terrane. We are developing 3-D structural maps of the Puget Lowland to distinguish older and currently active structures for seismic hazard analysis. The boundaries of the Siletz terrane in particular may strongly influence crustal rheology and neotectonic structures of the region. Careful analysis of the areal extent of this terrane will also facilitate more accurate interpretation of seismic data and gravity anomalies, which will help define the extent and shape of overlying basins. Absence of extensive outcrop in the Lowland and a widespread veneer of Quaternary deposits require extensive subsurface geophysical studies to establish Lowland-wide crustal structure. Previous studies have used active seismic surveys and interpretation of existing industry seismic data, with several studies using gravity and magnetic data or passive-source tomography support. However, steeply dipping boundaries in the mid-crust are difficult targets for seismic study. We need to independently discriminate between potential models established by seismic data using gravity and magnetic datasets. In the Puget Lowland the Siletz is a region of high seismic wave speed, density, and magnetic susceptibility, and therefore its mid-crustal boundaries are good targets for definition by gravity and magnetic data. We present interpretations of gravity and magnetic anomalies for the Puget Lowland region that together establish the most likely position and structure of the Crescent Formation boundary in the mid-upper crust. Well-constrained physical properties of Crescent basalts inform our aeromagnetic map interpretation and give us baseline values for constructing three two-dimensional models by simultaneous forward modeling of aeromagnetic and isostatic gravity anomalies for the Lowland. Based on this work, the likely position of the eastern boundary of the Siletz terrane is east of the Puget Sound and west of the foothills of the Cascade arc, extending in a north-trending line through Lake Washington and merging to the north with the Southern Whidbey Island fault zone. Our preferred location agrees with suggested locations from past study of seismic data targeted at the Seattle basin, but we extend that location through the entire Puget Lowland by analysis of magnetic potential calculated from aeromagnetic data. We also find that the boundary is sharp and most likely dips west, suggesting a reverse-fault juxtaposition of Crescent rocks against Western Melange belt lithologies. The Crescent itself contains steeply dipping packages of basalt of contrasting magnetic character, indicating significant deformation within the Crescent formation under the Seattle uplift. Finally, the boundary location implies that the eastern third of the Seattle basin is shallower than previously estimated from gravity data.

  13. A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Studies were conducted in key field areas in the Sierra Nevada, the Basin Range Province and the Colorado Plateau to evaluate the origins and significance of geologic and structural anomalies expressed in the ERTS-1 data. The investigation included development of image enhancement and analysis techniques and comparison of remote sensing data available over the test site. The ERTS-1 MSS imagery has proven to be an effective tool for studying the interrelationsships between Cenozoic tectonic patterns and the distributions of Cenozoic plutonism and volcanism, seismic activity, geologic hazards, and known mineral, geothermal and ground water resources. Recommendations are made for applications of ERTS-1 data to natural and resource exploration and management.

  14. Comments on Potential Geologic and Seismic Hazards Affecting Proposed Liquefied Natural Gas Site in Santa Monica Bay, California

    USGS Publications Warehouse

    Ross, Stephanie L.; Lee, Homa J.; Parsons, Tom E.; Beyer, Larry A.; Boore, David M.; Conrad, James E.; Edwards, Brian D.; Fisher, Michael A.; Frankel, Arthur D.; Geist, Eric L.; Hudnut, Kenneth W.; Hough, Susan E.; Kayen, Robert E.; Lorenson, T.D.; Luco, Nicolas; McCrory, Patricia A.; McGann, Mary; Nathenson, Manuel; Nolan, Michael; Petersen, Mark D.; Ponti, Daniel J.; Powell, Charles L.; Ryan, Holly F.; Tinsley, John C.; Wills, Chris J.; Wong, Florence L.; Xu, Jingping

    2008-01-01

    In a letter to the U.S. Geological Survey (USGS) dated March 25, 2008, Representative Jane Harman (California 36th district) requested advice on geologic hazards that should be considered in the review of a proposed liquefied natural gas (LNG) facility off the California coast in Santa Monica Bay. In 2004, the USGS responded to a similar request from Representative Lois Capps, regarding two proposed LNG facilities offshore Ventura County, Calif., with a report summarizing potential geologic and seismic hazards (Ross and others, 2004). The proposed LNG Deepwater Port (DWP) facility includes single point moorings (SPMs) and 35 miles of underwater pipelines. The DWP submersible buoys, manifolds, and risers would be situated on the floor of the southern Santa Monica Basin, in 3,000 feet of water, about 23 miles offshore of the Palos Verdes Peninsula. Twin 24-inch diameter pipelines would extend northeastward from the buoys across the basin floor, up the basin slope and across the continental shelf, skirting north around the Santa Monica submarine canyon. Figure 1 provides locations of the project and geologic features. Acronyms are defined in table 1. This facility is being proposed in a region of known geologic hazards that arise from both the potential for strong earthquakes and geologic processes related to sediment transport and accumulation in the offshore environment. The probability of a damaging earthquake (considered here as magnitude 6.5 or greater) in the next 30 years within about 30 miles (50 km) of the proposed pipeline ranges from 16% at the pipeline's offshore end to 48% where it nears land (Petersen, 2008). Earthquakes of this magnitude are capable of producing strong shaking, surface fault offsets, liquefaction phenomena, landslides, underwater turbidity currents and debris flow avalanches, and tsunamis. As part of the DWP license application for the Woodside Natural Gas proposal in Santa Monica Bay (known as the OceanWay Secure Energy Project), Fugro West, Inc., had already prepared a document discussing geologic hazards in the area, titled 'Exhibit B Topic Report 6 - Geological Resources' (Fugro West, Inc., 2007); hereafter, this will be called the 'Geological Resources document'. The USGS agreed to evaluate the information in the Geological Resources document regarding (1) proximity of active faults to the proposed project, (2) potential magnitude of seismic events from nearby faults, (3) thoroughness of the assessment of earthquake hazards in general, (4) potential hazards from ground rupture and strong shaking, (5) potential hazards from tsunamis, and (6) other geologic hazards including landslides and debris flows. Because two new earthquake probability reports were scheduled to be released in mid-April, 2008, by the USGS and the California Geological Survey (CGS), the USGS suggested a 6-month review period to enable a thorough incorporation of this new information. Twenty-seven scientists from the USGS and the CGS reviewed various sections of the Geological Resources document. This report outlines our major conclusions. The appendix is a longer list of comments by these reviewers, grouped by section of the Geological Resources document. Before discussing our reviews, we first provide a brief overview of geologic hazards in the proposed site area. This report is a snapshot in time and any future work in the area will need to take into account ongoing research efforts. For example, USGS scientists collected seismic reflection data in the spring of 2008 to study the structure and seismic potential of several faults in the area. Their interpretations (Conrad and others, 2008a and 2008b) are too preliminary to be included in this report, but their final results, along with other researchers' studies in the project area, should be considered in any future work on the Deepwater Port project.

  15. Radioactive Air Emissions Notice of Construction for the 105-KW Basin integrated water treatment system filter vessel sparging vent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamberg, L.D.

    1998-02-23

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storagemore » basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.« less

  16. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the Piru, Simi, and Verdale Fires of 2003, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.

    2003-01-01

    These maps present preliminary assessments of the probability of debris-flow activity and estimates of peak discharges that can potentially be generated by debris-flows issuing from basins burned by the Piru, Simi and Verdale Fires of October 2003 in southern California in response to the 25-year, 10-year, and 2-year 1-hour rain storms. The probability maps are based on the application of a logistic multiple regression model that describes the percent chance of debris-flow production from an individual basin as a function of burned extent, soil properties, basin gradients and storm rainfall. The peak discharge maps are based on application of a multiple-regression model that can be used to estimate debris-flow peak discharge at a basin outlet as a function of basin gradient, burn extent, and storm rainfall. Probabilities of debris-flow occurrence for the Piru Fire range between 2 and 94% and estimates of debris flow peak discharges range between 1,200 and 6,640 ft3/s (34 to 188 m3/s). Basins burned by the Simi Fire show probabilities for debris-flow occurrence between 1 and 98%, and peak discharge estimates between 1,130 and 6,180 ft3/s (32 and 175 m3/s). The probabilities for debris-flow activity calculated for the Verdale Fire range from negligible values to 13%. Peak discharges were not estimated for this fire because of these low probabilities. These maps are intended to identify those basins that are most prone to the largest debris-flow events and provide information for the preliminary design of mitigation measures and for the planning of evacuation timing and routes.

  17. Hydro-Geological Hazard Temporal Evolution during the last seven decades in the Solofrana River Basin—Southern Italy

    NASA Astrophysics Data System (ADS)

    Longobardi, Antonia; Diodato, Nazzareno; Mobilia, Mirka

    2017-04-01

    Extremes precipitation events are frequently associated to natural disasters falling within the broad spectrum of multiple damaging hydrological events (MDHEs), defined as the simultaneously triggering of different types of phenomena, such as landslides and floods. The power of the rainfall (duration, magnitude, intensity), named storm erosivity, is an important environmental indicator of multiple damaging hydrological phenomena. At the global scale, research interest is actually devoted to the investigation of non-stationary features of extreme events, and consequently of MDHEs, which appear to be increasing in frequency and severity. The Mediterranean basin appears among the most vulnerable regions with an expected increase in occurring damages of about 100% by the end of the century. A high concentration of high magnitude and short duration rainfall events are, in fact, responsible for the largest rainfall erosivity and erosivity density values within Europe. The aim of the reported work is to investigate the relationship between the temporal evolution of severe geomorphological events and combined precipitation indices as a tool to improve understanding the hydro-geological hazard at the catchment scale. The case study is the Solofrana river basin, Southern Italy, which has been seriously and consistently in time affected by natural disasters. Data for about 45 MDH events, spanning on a decadal scale 1951-2014, have been collected and analyzed for this purpose. A preliminary monthly scale analysis of event occurrences highlights a pronounced seasonal characterization of the phenomenon, as about 60% of the total number of reported events take place during the period from September to November. Following, a statistical analysis clearly indicates a significant increase in the frequency of occurrences of MDHEs during the last decades. Such an increase appears to be related to non-stationary features of an average catchment scale rainfall-runoff erosivity index, which combines maximum monthly, maximum daily, and a proxy of maximum hourly precipitation data. The main findings of the reported study relate to the fact that climate evolving tendencies do not appear significant in most of the cases and that MDHEs occurred within the studied catchment also for rainfall events of very moderate intensity and/or severity. The illustrated results seems to indicate that climate variability has not assumed the main role in the large number of damaging event, and that the relative increase hazardous hydro-geological events in the last decade, is instead most likely caused by incorrect urban planning policies.

  18. Water-use analysis program for the Neshaminy Creek basin, Bucks and Montgomery counties, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    1996-01-01

    A water-use analysis computer program was developed for the Neshaminy Creek Basin to assist in managing and allocating water resources in the basin. The program was developed for IBM-compatible personal computers. Basin analysis and the methodologies developed for the Neshaminy Creek Basin can be transferred to other watersheds. The development and structure of the water-use analysis program is documented in this report. The report also serves as a user's guide. The program uses common relational database-management software that allows for water use-data input, editing, updating and output and can be used to generate a watershed water-use analysis report. The watershed-analysis report lists summations of public-supply well withdrawals; a combination of industrial, commercial, institutional, and ground-water irrigation well withdrawals; spray irrigation systems; a combination of public, industrial, and private surface-water withdrawals; wastewater-tratement-facility dishcarges; estimates of aggregate domestic ground-water withdrawals on an areal basin or subbasin basis; imports and exports of wastewater across basin or subbasin divides; imports and exports of public water supplies across basin or subbasin divides; estimates of evaporative loss and consumptive loss from produce incorporation; industrial septic-system discharges to ground water; and ground-water well-permit allocations.

  19. NASA Hazard Analysis Process

    NASA Technical Reports Server (NTRS)

    Deckert, George

    2010-01-01

    This viewgraph presentation reviews The NASA Hazard Analysis process. The contents include: 1) Significant Incidents and Close Calls in Human Spaceflight; 2) Subsystem Safety Engineering Through the Project Life Cycle; 3) The Risk Informed Design Process; 4) Types of NASA Hazard Analysis; 5) Preliminary Hazard Analysis (PHA); 6) Hazard Analysis Process; 7) Identify Hazardous Conditions; 8) Consider All Interfaces; 9) Work a Preliminary Hazard List; 10) NASA Generic Hazards List; and 11) Final Thoughts

  20. Seismic attenuation structure of the Seattle Basin, Washington State from explosive-source refraction data

    USGS Publications Warehouse

    Li, Q.; Wilcock, W.S.D.; Pratt, T.L.; Snelson, C.M.; Brocher, T.M.

    2006-01-01

    We used waveform data from the 1999 SHIPS (Seismic Hazard Investigation of Puget Sound) seismic refraction experiment to constrain the attenuation structure of the Seattle basin, Washington State. We inverted the spectral amplitudes of compressional- and shear-wave arrivals for source spectra, site responses, and one- and two-dimensional Q-1 models at frequencies between 1 and 40 Hz for P waves and 1 and 10 Hz for S waves. We also obtained Q-1 models from t* values calculated from the spectral slopes of P waves between 10 and 40 Hz. One-dimensional inversions show that Qp at the surface is 22 at 1 Hz, 130 at 5 Hz, and 390 at 20 Hz. The corresponding values at 18 km depth are 100, 440, and 1900. Qs at the surface is 16 and 160 at 1 Hz and 8 Hz, respectively, increasing to 80 and 500 at 18 km depth. The t* inversion yields a Qp model that is consistent with the amplitude inversions at 20 and 30 Hz. The basin geometry is clearly resolved in the t* inversion, but the amplitude inversions only imaged the basin structure after removing anomalously high-amplitude shots near Seattle. When these shots are removed, we infer that Q-1 values may be ???30% higher in the center of the basin than the one-dimensional models predict. We infer that seismic attenuation in the Seattle basin will significantly reduce ground motions at frequencies at and above 1 Hz, partially countering amplification effects within the basin.

  1. A survey of vegetation and wildland fire hazards on the Nevada Test Site

    Treesearch

    Dennis J. Hansen; W. Kent Ostler

    2008-01-01

    In the springs of 2004, 2005, and 2006, surveys were conducted on the Nevada Test Site (NTS) to characterize vegetation resources and climatic components of the environment that contribute to wildland fires. The NTS includes both Great Basin Desert and Mojave Desert ecosystems and a transitional zone between these two deserts. The field surveys assessed 211 sites along...

  2. Combining chemometric tools for assessing hazard sources and factors acting simultaneously in contaminated areas. Case study: "Mar Piccolo" Taranto (South Italy).

    PubMed

    Mali, Matilda; Dell'Anna, Maria Michela; Notarnicola, Michele; Damiani, Leonardo; Mastrorilli, Piero

    2017-10-01

    Almost all marine coastal ecosystems possess complex structural and dynamic characteristics, which are influenced by anthropogenic causes and natural processes as well. Revealing the impact of sources and factors controlling the spatial distributions of contaminants within highly polluted areas is a fundamental propaedeutic step of their quality evaluation. Combination of different pattern recognition techniques, applied to one of the most polluted Mediterranean coastal basin, resulted in a more reliable hazard assessment. PCA/CA and factorial ANOVA were exploited as complementary techniques for apprehending the impact of multi-sources and multi-factors acting simultaneously and leading to similarities or differences in the spatial contamination pattern. The combination of PCA/CA and factorial ANOVA allowed, on one hand to determine the main processes and factors controlling the contamination trend within different layers and different basins, and, on the other hand, to ascertain possible synergistic effects. This approach showed the significance of a spatially representative overview given by the combination of PCA-CA/ANOVA in inferring the historical anthropogenic sources loading on the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Rockburst of parameters causing mining disasters in Mines of Upper Silesian Coal Basin

    NASA Astrophysics Data System (ADS)

    Patyńska, Renata; Mirek, Adam; Burtan, Zbigniew; Pilecka, Elżbieta

    2018-04-01

    In the years 2001-2015, 42 rockbursts were recorded in Polish coal mines. For the past 15 years the scale of the phenomena has been similar and ranges from 1 to 5 rockbursts per year. However, the number of recorded high energy seismic tremors of 108 and 109J (E) energy that has occurred in recent years, 2 to 5, is alarming. According to the data, 27 of tremors of E > 108 J energy that occurred between 2001 and 2015 caused 3 rockbursts. Confronting these data with seismic activity from 1989-2000, it should be noted that only 2 events out of 99 rockbursts caused tremors with energies of E>108 J. Against the background of the scale of seismic and rockburst hazards, the geological and mining conditions of the Upper Silesian Coal Basin (USCB) have been analysed, detailing the structural units in which the rockbursts occurred. On this basis, the author characterised factors that impacts on the mining excavations resulting in rockbursts that caused damage on a larger scale. These rockbursts had the characteristics of mining catastrophes and weak earthquakes not recorded in mining statistics of natural hazards of USCB so far.

  4. Observed changes and future trends in vulnerability to natural hazards for mountain communities

    NASA Astrophysics Data System (ADS)

    Puissant, A.; Gazo, A.; Débonnaire, N.; Moravek, A.; Aguejdad, R.; -P., Malet J.; B., Martin

    2015-04-01

    Since 50 years, mountain areas are affected by important landcover and landuse changes characterized by the decrease of pastoral activities, reforestation or urbanization with the development of tourism activities and infrastructures. These natural and anthropogenic transformations have an impact on the socio-economic activities but also on the exposure of the communities to natural hazards. In the context of the ANR Project SAMCO which aims at enhancing the overall resilience of societies on the impacts of mountain risks, the objective of this research was to analyse landcover/use changes and to model future changes to assess the impacts of such change and to analyse trajectory of the vulnerability of mountain communities. For this research, an experiment is performed for two mountain areas of the French Alps (Barcelonnette Basin, Vars Basin). Changes in landcover and landuse are characterized over the period 1956-2010 for the two communities at two spatial scales (catchment, municipality). Four scenarios of landcover and landuse development (based on the Prelude European Project) are proposed for the period 2050 and 2100. Based on these scenarios, the evolution of vulnerability is estimated by using the Potential Damage Index method proposed by Puissant et al. (2013).

  5. Emergency assessment of post-fire debris-flow hazards for the 2013 Mountain fire, southern California

    USGS Publications Warehouse

    Staley, Dennis M.; Gartner, Joseph E.; Smoczyk, Greg M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. We use empirical models to predict the probability and magnitude of debris flow occurrence in response to a 10-year rainstorm for the 2013 Mountain fire near Palm Springs, California. Overall, the models predict a relatively high probability (60–100 percent) of debris flow for six of the drainage basins in the burn area in response to a 10-year recurrence interval design storm. Volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 8 of the 14 basins identified as having potential debris-flow volumes greater than 100,000 cubic meters. These results suggest there is a high likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service–issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.

  6. Natural fracture systems studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.; Warpinski, N.R.

    The objectives of this program are (1) to develop a basinal-analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteristics of natural fracture systems for use in completion, stimulation, and production operations. Natural-fracture basinal analysis begins with studies of fractures in outcrop, core and logs in order to determine the type of fracturing and the relationship of the fractures to the lithologic environment. Of particular interest are the regional fracture systems that are pervasive in western US tight sand basins. A Methodology for applying this analysis is being developed, with the goal of providing amore » structure for rationally characterizing natural fracture systems basin-wide. Such basin-wide characterizations can then be expanded and supplemented locally, at sites where production may be favorable. Initial application of this analysis is to the Piceance basin where there is a wealth of data from the Multiwell Experiment (MWX), DOE cooperative wells, and other basin studies conducted by Sandia, CER Corporation, and the USGS (Lorenz and Finley, 1989, Lorenz et aI., 1989, and Spencer and Keighin, 1984). Such a basinal approach has been capable of explaining the fracture characteristics found throughout the southern part of the Piceance basin and along the Grand Hogback.« less

  7. Quantifying Late Quaternary Deformation along the Santa Ynez River, Santa Maria Basin, California

    NASA Astrophysics Data System (ADS)

    Slatten, C. L.; Onderdonk, N.

    2017-12-01

    The fault bounded Santa Maria Basin, located on the Central Coast of California, is positioned in an area of convergence between the rotating Western Transverse Ranges and the non-rotated Southern Coast Ranges. The Santa Ynez River Fault (SYRF) is an east-west trending fault that parallels the Santa Ynez River west of Lake Cachuma, California and defines the southern structural boundary of the Santa Maria Basin. However, the rate and style of Late Quaternary deformation and uplift in this region and the potential for seismic hazard along the fault is lacking. Fluvial terraces are key geomorphological components of fluvial systems that can be used to provide insights into regional and local uplift and deformation. The Santa Ynez River delineates the northern edge of the Santa Ynez Mountains and flows west through the Santa Ynez Valley to its mouth at the Pacific Ocean. The Santa Ynez River Field Area is a 10 km stretch of the Santa Ynez River just west of Lake Cachuma where terraces are well developed and the SYRF cuts through terraces and the active river (Figure 1). If there has been Quaternary movement of the SYRF we expect to find deformation in these areas. An initial survey of the area identified five terrace levels ranging from 8 m to 135 m above modern river level. The fluvial terraces are being mapped as separate units, surveyed for deformation with GPS based transects, and sampled for optically stimulated luminescence (OSL) dating. These combined methods will allow us to document the geomorphic characteristics and landform evolution of the lower Santa Ynez River, evaluate the possibility of Late Quaternary activity of the SYRF, and determine the rate of Late Quaternary regional uplift along the western Santa Ynez River in the Santa Maria Basin providing a possible basis for augmentation of the seismic hazards for Santa Barbara County.

  8. F-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    Groundwater at the F-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental Control (SCDHEC) Groundwater Protection Standard (GWPS). Historically and currently, gross alpha, nitrates, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceed the GWPS in the groundwater during the second half of 1995, notably cadmium, lead, radium-226, radium-228, strontium-90, and total alpha-emitting radium. The elevated constituents were found primarily in the water table (aquifer zone IIB{sub 2}), however, several other aquifermore » unit monitoring wells contained elevated levels of constituents. Water-level maps indicate that the groundwater flow rates and directions at the F-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.« less

  9. Technical Report - FINAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current buildingmore » standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities« less

  10. Deadly heat waves projected in the densely populated agricultural regions of South Asia.

    PubMed

    Im, Eun-Soon; Pal, Jeremy S; Eltahir, Elfatih A B

    2017-08-01

    The risk associated with any climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The most intense hazard from extreme future heat waves is concentrated around densely populated agricultural regions of the Ganges and Indus river basins. Climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability.

  11. Landslide susceptibility mapping by combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process in Dozain basin

    NASA Astrophysics Data System (ADS)

    Tazik, E.; Jahantab, Z.; Bakhtiari, M.; Rezaei, A.; Kazem Alavipanah, S.

    2014-10-01

    Landslides are among the most important natural hazards that lead to modification of the environment. Therefore, studying of this phenomenon is so important in many areas. Because of the climate conditions, geologic, and geomorphologic characteristics of the region, the purpose of this study was landslide hazard assessment using Fuzzy Logic, frequency ratio and Analytical Hierarchy Process method in Dozein basin, Iran. At first, landslides occurred in Dozein basin were identified using aerial photos and field studies. The influenced landslide parameters that were used in this study including slope, aspect, elevation, lithology, precipitation, land cover, distance from fault, distance from road and distance from river were obtained from different sources and maps. Using these factors and the identified landslide, the fuzzy membership values were calculated by frequency ratio. Then to account for the importance of each of the factors in the landslide susceptibility, weights of each factor were determined based on questionnaire and AHP method. Finally, fuzzy map of each factor was multiplied to its weight that obtained using AHP method. At the end, for computing prediction accuracy, the produced map was verified by comparing to existing landslide locations. These results indicate that the combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process method are relatively good estimators of landslide susceptibility in the study area. According to landslide susceptibility map about 51% of the occurred landslide fall into the high and very high susceptibility zones of the landslide susceptibility map, but approximately 26 % of them indeed located in the low and very low susceptibility zones.

  12. Analyzing the occurrence of debris flows and floods in a small watershed two years after a wildfire, San Gabriel Mountains, California

    NASA Astrophysics Data System (ADS)

    Leeper, R. J.; Barth, N. C.; Gray, A. B.

    2016-12-01

    The frontal range of the San Gabriel Mountains immediately abuts the Los Angeles basin for approximately 110 km. Along this wildland-urban interface and throughout the mountain range multiple overlapping natural hazards can occur, the most frequent of which are postfire debris flows and floods triggered by intense rainfall events. Recent studies in southern California of burned basins with steep slopes show that the timing of postfire debris flows and floods during the first winter following a wildfire is closely tied to high-intensity rainfall events. Here, we explore short-term (seasonal/annual) controls on sediment production and flux after the 2014 Colby Fire, which burned 8 km2 of the southern San Gabriel front directly above the city of Glendora, CA. To understand how sediment flux changes as a basin recovers following a wildfire, we installed and monitored a dense network of rain gages and pressure transducers within the Englewild watershed ( 1 km2) during the second winter following the Colby Fire. Site visits were made following each rainstorm to download pressure transducer and rainfall data and analyze the geomorphic response within the channel network. Preliminary results indicate that rainfall intensity-duration thresholds (5-min) previously identified as postfire debris flow triggers were exceeded multiple times throughout the winter. However, we only one documented one debris flow. Understanding changes in the rainfall intensity thresholds relative to debris flow timing and occurrence with system rebound after wildfire is important to help reduce risk and increase hazard resilience.

  13. Oil Shale in the Piceance Basin: An Analysis of Land Use Issues,

    DTIC Science & Technology

    1983-07-01

    basins -the Piceance, Uinta , Green River, and Washakie. The locations of these basins are shown on the map of the Green River Formation in Fig. 3...commercial interest. Deposits of low grade shale in the other basins are thin and scattered. Only the rich (30 gpt) deposits in the Uinta Basin are of...r n~p I S 806 OIL SHALE, IN lilE PICCANCE BASIN : AN ANALYSIS of LAND USE ISSUESIUI RAND CORP SANtA MONICA CA lJN IASIFID 0 RUBENSON El AL. JUL 83

  14. Relation of waterfowl poisoning to sediment lead concentrations in the Coeur d'Alene River Basin

    USGS Publications Warehouse

    Beyer, W.N.; Audet, D.J.; Heinz, G.H.; Hoffman, D.J.; Day, D.

    2000-01-01

    For many years, waterfowl have been poisoned by lead after ingesting contaminated sediment in the Coeur d'Alene River Basin, in Idaho. Results of studies on waterfowl experimentally fed this sediment were combined with results from field studies conducted in the Basin to relate sediment lead concentration to injury to waterfowl. The first step in the model estimated exposure as the relation of sediment lead concentration to blood lead concentration in mute swans (Cygnus olor), ingesting 22% sediment in a rice diet. That rate corresponded to the 90th percentile of sediment ingestion estimated from analyses of feces of tundra swans (Olor columbianus) in the Basin. Then, with additional laboratory studies on Canada geese (Branta canadensis) and mallards (Anas platyrhynchos) fed the sediment, we developed the general relation of blood lead to injury in waterfowl. Injury was quantified by blood lead concentrations, ALAD (-aminolevulinic acid dehydratase) activity, protoporphyrin concentrations, hemoglobin concentrations, hepatic lead concentrations, and the prevalence of renal nuclear inclusion bodies. Putting the exposure and injury relations together provided a powerful tool for assessing hazards to wildlife in the Basin. The no effect concentration of sediment lead was estimated as 24 mg/kg and the lowest effect level as 530 mg/kg. By combining our exposure equation with data on blood lead concentrations measured in moribund tundra swans in the Basin, we estimated that some mortality would occur at a sediment lead concentration as low as 1800 mg/kg.

  15. Cruise report for A1-98-SC southern California Earthquake Hazards Project

    USGS Publications Warehouse

    Normark, William R.; Bohannon, Robert G.; Sliter, Ray; Dunhill, Gita; Scholl, David W.; Laursen, Jane; Reid, Jane A.; Holton, David

    1999-01-01

    The focus of the Southern California Earthquake Hazards project, within the Western Region Coastal and Marine Geology team (WRCMG), is to identify the landslide and earthquake hazards and related ground-deformation processes that can potentially impact the social and economic well-being of the inhabitants of the Southern California coastal region, the most populated urban corridor along the U.S. Pacific margin. The primary objective is to help mitigate the earthquake hazards for the Southern California region by improving our understanding of how deformation is distributed (spatially and temporally) in the offshore with respect to the onshore region. To meet this overall objective, we are investigating the distribution, character, and relative intensity of active (i.e., primarily Holocene) deformation within the basins and along the shelf adjacent to the most highly populated areas (see Fig. 1). In addition, the project will examine the Pliocene-Pleistocene record of how this deformation has shifted in space and time. The results of this study should improve our knowledge of shifting deformation for both the long-term (105 to several 106 yr) and short-term (<50 ky) time frames and enable us to identify actively deforming structures that may constitute current significant seismic hazards.

  16. Tsunami Hazard Assessment: Source regions of concern to U.S. interests derived from NOAA Tsunami Forecast Model Development

    NASA Astrophysics Data System (ADS)

    Eble, M. C.; uslu, B. U.; Wright, L.

    2013-12-01

    Synthetic tsunamis generated from source regions around the Pacific Basin are analyzed in terms of their relative impact on United States coastal locations.. The region of tsunami origin is as important as the expected magnitude and the predicted inundation for understanding tsunami hazard. The NOAA Center for Tsunami Research has developed high-resolution tsunami models capable of predicting tsunami arrival time and amplitude of waves at each location. These models have been used to conduct tsunami hazard assessments to assess maximum impact and tsunami inundation for use by local communities in education and evacuation map development. Hazard assessment studies conducted for Los Angeles, San Francisco, Crescent City, Hilo, and Apra Harbor are combined with results of tsunami forecast model development at each of seventy-five locations. Complete hazard assessment, identifies every possible tsunami variation from a pre-computed propagation database. Study results indicate that the Eastern Aleutian Islands and Alaska are the most likely regions to produce the largest impact on the West Coast of the United States, while the East Philippines and Mariana trench regions impact Apra Harbor, Guam. Hawaii appears to be impacted equally from South America, Alaska and the Kuril Islands.

  17. Enhancing sediment flux control and natural hazard risk mitigation through a structured conceptual planning approach

    NASA Astrophysics Data System (ADS)

    Simoni, S.; Vignoli, G.; Mazzorana, B.

    2017-08-01

    Sediment fluxes from mountain rivers contribute to shape the geomorphologic features of lowland rivers and to establish the physical basis for an optimal set of ecosystem functions and related services to people. Through significant public funding, the hydro-morphological regimes of mountain rivers in the European Alps have been progressively altered over the last century, with the aim to provide a safe dwelling space, to boost transport, mobility and to support economic growth. We claim that the underlying planning weaknesses contribute to determine these inefficient resource allocations, since flood risk is still high and the ecosystem services are far from being optimal. Hence, with the overall aim to enhance sediment flux control and hazard risk mitigation in such heavily modified alpine streams, we propose a structured design workflow which guides the planner through system analysis and synthesis. As a first step the proposed workflow sets the relevant planning goals and assesses the protection structure functionality. Then a methodology is proposed to achieve the goals. This methodology consists in characterising the hydrologic basin of interest and the sediment availability and determining the sediment connectivity to channels. The focus is set on the detailed analysis of existing river cross sections where the sediment continuity is interrupted (e.g. slit and check dams). By retaining relevant sediment volumes these structures prevent the reactivation of hydro-morphological and associated ecological functionalities. Since their actual performance can be unsatisfying with respect to flood risk mitigation (e.g. mainly old structures), we introduce specific efficiency indicators as a support for the conceptual design stage to quantify effects related to sediment flux control and risk management. The proposed planning approach is then applied to the Gadria system (stream, slit dam, retention basin and culvert), located in South Tyrol, Italy. This case study shows that design excellence is needed to re-establish the sediment continuity, while keeping flood risk below acceptable levels. Moreover, the detailed hydraulic analyses highlight that the slit dam is oversized and it could be redesigned to improve sediment continuity and to reduce maintenance costs.

  18. Natural hazard management high education: laboratory of hydrologic and hydraulic risk management and applied geomorphology

    NASA Astrophysics Data System (ADS)

    Giosa, L.; Margiotta, M. R.; Sdao, F.; Sole, A.; Albano, R.; Cappa, G.; Giammatteo, C.; Pagliuca, R.; Piccolo, G.; Statuto, D.

    2009-04-01

    The Environmental Engineering Faculty of University of Basilicata have higher-level course for students in the field of natural hazard. The curriculum provides expertise in the field of prediction, prevention and management of earthquake risk, hydrologic-hydraulic risk, and geomorphological risk. These skills will contribute to the training of specialists, as well as having a thorough knowledge of the genesis and the phenomenology of natural risks, know how to interpret, evaluate and monitor the dynamic of environment and of territory. In addition to basic training in the fields of mathematics and physics, the course of study provides specific lessons relating to seismic and structural dynamics of land, environmental and computational hydraulics, hydrology and applied hydrogeology. In particular in this course there are organized two connected examination arguments: Laboratory of hydrologic and hydraulic risk management and Applied geomorphology. These course foresee the development and resolution of natural hazard problems through the study of a real natural disaster. In the last year, the work project has regarded the collapse of two decantation basins of fluorspar, extracted from some mines in Stava Valley, 19 July 1985, northern Italy. During the development of the course, data and event information has been collected, a guided tour to the places of the disaster has been organized, and finally the application of mathematical models to simulate the disaster and analysis of the results has been carried out. The student work has been presented in a public workshop.

  19. Mitigating flood exposure: Reducing disaster risk and trauma signature.

    PubMed

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city's worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods . We applied the "trauma signature analysis" (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results . Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion . In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation.

  20. Earthquake Rate Models for Evolving Induced Seismicity Hazard in the Central and Eastern US

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Ellsworth, W. L.; Michael, A. J.

    2015-12-01

    Injection-induced earthquake rates can vary rapidly in space and time, which presents significant challenges to traditional probabilistic seismic hazard assessment methodologies that are based on a time-independent model of mainshock occurrence. To help society cope with rapidly evolving seismicity, the USGS is developing one-year hazard models for areas of induced seismicity in the central and eastern US to forecast the shaking due to all earthquakes, including aftershocks which are generally omitted from hazards assessments (Petersen et al., 2015). However, the spatial and temporal variability of the earthquake rates make them difficult to forecast even on time-scales as short as one year. An initial approach is to use the previous year's seismicity rate to forecast the next year's seismicity rate. However, in places such as northern Oklahoma the rates vary so rapidly over time that a simple linear extrapolation does not accurately forecast the future, even when the variability in the rates is modeled with simulations based on an Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988) to account for earthquake clustering. Instead of relying on a fixed time period for rate estimation, we explore another way to determine when the earthquake rate should be updated. This approach could also objectively identify new areas where the induced seismicity hazard model should be applied. We will estimate the background seismicity rate by optimizing a single set of ETAS aftershock triggering parameters across the most active induced seismicity zones -- Oklahoma, Guy-Greenbrier, the Raton Basin, and the Azle-Dallas-Fort Worth area -- with individual background rate parameters in each zone. The full seismicity rate, with uncertainties, can then be estimated using ETAS simulations and changes in rate can be detected by applying change point analysis in ETAS transformed time with methods already developed for Poisson processes.

  1. Low frequency amplification in deep alluvial basins: an example in the Po Plain (Northern Italy) and consequences for site specific SHA

    NASA Astrophysics Data System (ADS)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Lovati, Sara; Santulin, Marco

    2016-04-01

    This work deals with the problem of long period seismic site amplification that potentially might involve large and deep alluvial basins in case of strong earthquakes. In particular, it is here presented a case study in the Po Plain (Northern Italy), one of the most extended and deep sedimentary basin worldwide. Even if the studied area shows a low annul seismicity rate with rare strong events (Mw>6.0) and it is characterized by low to medium seismic hazard conditions, the seismic risk is significant for the high density of civil and strategic infrastructures (i.e. high degree of exposition) and the unfavourable geological conditions. The aim of this work is to provide general considerations about the seismic site response of the Po Plain, with particular attention on deep discontinuities (i.e. geological bedrock), in terms of potential low frequency amplification and their incidence on the PSHA. The current results were obtained through active and passive geophysical investigations performed near Castelleone, a site where a seismic station, which is part of the INGV (National Institute for Geophysics and Volcanology) Seismic National Network, is installed from 2009. In particular, the active analyses consisted in a MASW and a refraction survey, whereas the passive ones consisted in seismic ambient noise acquisitions with single stations and arrays of increasing aperture. The results in terms of noise HVSR indicate two main peaks, the first around 0.17 Hz and the second, as already stated in the recent literature, around 0.7 Hz. In order to correlate the amplified frequencies with the geological discontinuities, the array acquisitions were processed to obtain a shear waves velocity profile, computed with a joint inversion, considering the experimental dispersion curves and the HVSR results. The obtained velocity profile shows two main discontinuities: the shallower at ~165 m of depth, which can be correlated to the seismic bedrock (i.e. Vs > 800 m/) and the deeper at ~1350 m of depth, properly associable to the geological bedrock, considering the transition between the pliocenic loose sediments and the miocenic marls observable from the available stratigraphy. Numerical 1D analyses, computed to obtain the theoretical Transfer Function at the site, support the correlation between the experimental amplification peak around 0.17 Hz and the hypothesized geological bedrock. In terms of site specific SHA, the UHS expressed in displacement (MRP: 475 years) shows a significant increase if the seismic input is located at the geological bedrock (~1350 m) instead of the seismic bedrock (~165 m). Even if this increase is not relevant for the studied site, since the seismic hazard is low, it could be significant in other part of the Po Plain, where the seismic hazard is medium-high. According to the HVSR results, obtained for other available Po Plain broadband stations, the considerations of this work could represent a warning for future seismic hazard investigations in other areas of the basin.

  2. Seismic‐hazard forecast for 2016 including induced and natural earthquakes in the central and eastern United States

    USGS Publications Warehouse

    Petersen, Mark D.; Mueller, Charles; Moschetti, Morgan P.; Hoover, Susan M.; Llenos, Andrea L.; Ellsworth, William L.; Michael, Andrew J.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.

    2016-01-01

    The U.S. Geological Survey (USGS) has produced a one‐year (2016) probabilistic seismic‐hazard assessment for the central and eastern United States (CEUS) that includes contributions from both induced and natural earthquakes that are constructed with probabilistic methods using alternative data and inputs. This hazard assessment builds on our 2016 final model (Petersen et al., 2016) by adding sensitivity studies, illustrating hazard in new ways, incorporating new population data, and discussing potential improvements. The model considers short‐term seismic activity rates (primarily 2014–2015) and assumes that the activity rates will remain stationary over short time intervals. The final model considers different ways of categorizing induced and natural earthquakes by incorporating two equally weighted earthquake rate submodels that are composed of alternative earthquake inputs for catalog duration, smoothing parameters, maximum magnitudes, and ground‐motion models. These alternatives represent uncertainties on how we calculate earthquake occurrence and the diversity of opinion within the science community. In this article, we also test sensitivity to the minimum moment magnitude between M 4 and M 4.7 and the choice of applying a declustered catalog with b=1.0 rather than the full catalog with b=1.3. We incorporate two earthquake rate submodels: in the informed submodel we classify earthquakes as induced or natural, and in the adaptive submodel we do not differentiate. The alternative submodel hazard maps both depict high hazard and these are combined in the final model. Results depict several ground‐shaking measures as well as intensity and include maps showing a high‐hazard level (1% probability of exceedance in 1 year or greater). Ground motions reach 0.6g horizontal peak ground acceleration (PGA) in north‐central Oklahoma and southern Kansas, and about 0.2g PGA in the Raton basin of Colorado and New Mexico, in central Arkansas, and in north‐central Texas near Dallas–Fort Worth. The chance of having levels of ground motions corresponding to modified Mercalli intensity (MMI) VI or greater earthquake shaking is 2%–12% per year in north‐central Oklahoma and southern Kansas and New Madrid similar to the chance of damage at sites in high‐hazard portions of California caused by natural earthquakes. Hazard is also significant in the Raton basin of Colorado/New Mexico; north‐central Arkansas; Dallas–Fort Worth, Texas; and in a few other areas. Hazard probabilities are much lower (by about half or more) for exceeding MMI VII or VIII. Hazard is 3‐ to 10‐fold higher near some areas of active‐induced earthquakes than in the 2014 USGS National Seismic Hazard Model (NSHM), which did not consider induced earthquakes. This study in conjunction with the LandScan TM Database (2013) indicates that about 8 million people live in areas of active injection wells that have a greater than 1% chance of experiencing damaging ground shaking (MMI≥VI) in 2016. The final model has high uncertainty, and engineers, regulators, and industry should use these assessments cautiously to make informed decisions on mitigating the potential effects of induced and natural earthquakes.

  3. 1957 Gobi-Altay, Mongolia, earthquake as a prototype for southern California's most devastating earthquake

    USGS Publications Warehouse

    Bayarsayhan, C.; Bayasgalan, A.; Enhtuvshin, B.; Hudnut, K.W.; Kurushin, R.A.; Molnar, P.; Olziybat, M.

    1996-01-01

    The 1957 Gobi-Altay earthquake was associated with both strike-slip and thrust faulting, processes similar to those along the San Andreas fault and the faults bounding the San Gabriel Mountains just north of Los Angeles, California. Clearly, a major rupture either on the San Andreas fault north of Los Angeles or on the thrust faults bounding the Los Angeles basin poses a serious hazard to inhabitants of that area. By analogy with the Gobi-Altay earthquake, we suggest that simultaneous rupturing of both the San Andreas fault and the thrust faults nearer Los Angeles is a real possibility that amplifies the hazard posed by ruptures on either fault system separately.

  4. The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China

    PubMed Central

    Di, Hui; Liu, Xingpeng; Tong, Zhijun; Ji, Meichen

    2018-01-01

    Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks. PMID:29543706

  5. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization

    NASA Astrophysics Data System (ADS)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2016-06-01

    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  6. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins

    USGS Publications Warehouse

    Pierson, Thomas C.; Major, Jon J.

    2014-01-01

    Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.

  7. Landslides and Volcanoes: Fingerprinting Erosional Processes on a tropical island, Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Tomenchok, K.; Hill, M.; Jimerson, C.; Talbot-Wendlandt, , H.; Schmidt, A.; Frey, H. M.

    2017-12-01

    With 9 active volcanic centers, frequent tropical storms, and widespread landslides, the topography of Dominica is rugged and dynamic. This study aims to fingerprint sediment source dynamics in this relatively unstudied region with fallout radionuclides, clay mineralogy, and acid-extractable grain coating concentration measured in detrital sediments. We also aim to measure basin average erosion rates and determine river incision rates into the underlying ignimbrites. Baseline data on the effects of volcanoes, landslides, land use, and topography in setting erosional dynamics will be established. We sampled outlets of 20 large (>10 km2) rivers as well as 11 points in the Roseau River watershed for a network analysis. Block and ash flows and ignimbrites underlie 89% of the study area. Steep topography (mean slope = 19.6˚) and high levels of rainfall (mean annual rainfall = 1981.41 mm) are consistent throughout the 89% forested island. 934 landslides affect 13% of the study area. We hypothesize that basin average parameters and landslide frequency will correlate with erosion rates and fallout radionuclide activities. In addition, we used topographic data and published ignimbrite ages to calculate river incision rates that ranged from 0.448 - 113.9 mm/yr in the north and 0.86 - 44 mm/yr in the south. Basin average erosion rates will be compared to incision rates to quantify differences between basin wide erosional and river incision processes. We will fingerprint sediment sources with 7Be, 210Pbex, and 137Cs, concentration of grain coatings, and clay mineralogy. We hypothesize that watersheds with erosion from stabilizing landslide scars will have high 7Be, low 210Pbex and 137Cs, low concentrations of grain coatings, and less weathered clays. Watersheds with river bank/scarp erosion or active landslides will have little 7Be, 210Pbex, and 137Cs, less weathered clays, and low concentrations of grain coatings. Watersheds with widespread surface erosion will have high activities, weathered clays, and high concentrations of grain coatings. We will correlate basin average statistics with measured fingerprints to provide a better understanding of sediment source dynamics in an understudied region of the world. With the potential for future landslides, further information will advance hazard mitigation in Dominica.

  8. 21 CFR 120.7 - Hazard analysis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Hazard analysis. 120.7 Section 120.7 Food and... hazards. The written hazard analysis shall consist of at least the following: (1) Identification of food..., including food hazards that can occur before, during, and after harvest. The hazard analysis shall be...

  9. 21 CFR 120.7 - Hazard analysis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Hazard analysis. 120.7 Section 120.7 Food and... hazards. The written hazard analysis shall consist of at least the following: (1) Identification of food..., including food hazards that can occur before, during, and after harvest. The hazard analysis shall be...

  10. 21 CFR 120.7 - Hazard analysis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hazard analysis. 120.7 Section 120.7 Food and... hazards. The written hazard analysis shall consist of at least the following: (1) Identification of food..., including food hazards that can occur before, during, and after harvest. The hazard analysis shall be...

  11. 21 CFR 120.7 - Hazard analysis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Hazard analysis. 120.7 Section 120.7 Food and... hazards. The written hazard analysis shall consist of at least the following: (1) Identification of food..., including food hazards that can occur before, during, and after harvest. The hazard analysis shall be...

  12. Estimation of sediments in urban drainage areas and relation analysis between sediments and inundation risk using GIS.

    PubMed

    Moojong, Park; Hwandon, Jun; Minchul, Shin

    2008-01-01

    Sediments entering the sewer in urban areas reduce the conveyance in sewer pipes, which increases inundation risk. To estimate sediment yields, individual landuse areas in each sub-basin should be obtained. However, because of the complex nature of an urban area, this is almost impossible to obtain manually. Thus, a methodology to obtain individual landuse areas for each sub-basin has been suggested for estimating sediment yields. Using GIS, an urban area is divided into sub-basins with respect to the sewer layout, with the area of individual landuse estimated for each sub-basin. The sediment yield per unit area for each sub-basin is then calculated. The suggested method was applied to the GunJa basin in Seoul. For a relation analysis between sediments and inundation risk, sub-basins were ordered by the sediment yields per unit area and compared with historical inundation areas. From this analysis, sub-basins with higher order were found to match the historical inundation areas. Copyright IWA Publishing 2008.

  13. New version of 1 km global river flood hazard maps for the next generation of Aqueduct Global Flood Analyzer

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; van Beek, Rens; Winsemius, Hessel; Ward, Philip; Bierkens, Marc

    2017-04-01

    The Aqueduct Global Flood Analyzer, launched in 2015, is an open-access and free-of-charge web-based interactive platform which assesses and visualises current and future projections of river flood impacts across the globe. One of the key components in the Analyzer is a set of river flood inundation hazard maps derived from the global hydrological model simulation of PCR-GLOBWB. For the current version of the Analyzer, accessible on http://floods.wri.org/#/, the early generation of PCR-GLOBWB 1.0 was used and simulated at 30 arc-minute ( 50 km at the equator) resolution. In this presentation, we will show the new version of these hazard maps. This new version is based on the latest version of PCR-GLOBWB 2.0 (https://github.com/UU-Hydro/PCR-GLOBWB_model, Sutanudjaja et al., 2016, doi:10.5281/zenodo.60764) simulated at 5 arc-minute ( 10 km at the equator) resolution. The model simulates daily hydrological and water resource fluxes and storages, including the simulation of overbank volume that ends up on the floodplain (if flooding occurs). The simulation was performed for the present day situation (from 1960) and future climate projections (until 2099) using the climate forcing created in the ISI-MIP project. From the simulated flood inundation volume time series, we then extract annual maxima for each cell, and fit these maxima to a Gumbel extreme value distribution. This allows us to derive flood volume maps of any hazard magnitude (ranging from 2-year to 1000-year flood events) and for any time period (e.g. 1960-1999, 2010-2049, 2030-2069, and 2060-2099). The derived flood volumes (at 5 arc-minute resolution) are then spread over the high resolution terrain model using an updated GLOFRIS downscaling module (Winsemius et al., 2013, doi:10.5194/hess-17-1871-2013). The updated version performs a volume spreading sequentially from more upstream basins to downstream basins, hence enabling a better inclusion of smaller streams, and takes into account spreading of water over diverging deltaic regions. This results in a set of high resolution hazard maps of flood inundation depth at 30 arc-second ( 1 km at the equator) resolution. Together with many other updates and new features, the resulting flood hazard maps will be used in the next generation of the Aqueduct Global Flood Analyzer.

  14. Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Hubbard, B. E.; Hooper, D. M.; Mars, J. C.

    2015-12-01

    High resolution satellite imagery, field spectral measurements using a portable ASD spectrometer, and 2013 hyperspectral AVIRIS imagery were used to evaluate the age of the Martinez Mountain Landslide (MML) near the Salton Sea, in order to determine the relative ages of adjacent alluvial fan surfaces and the potential for additional landslides, debris flows, and floods. The Salton Sea (SS) occupies a pluvial lake basin, with ancient shorelines ranging from 81 meters to 113 meters above the modern lake level. The highest shoreline overlaps the toe of the 0.24 - 0.38 km3 MML deposit derived from hydrothermally altered granites exposed near the summit of Martinez Mountain. The MML was originally believed to be of early Holocene age. However, AVIRIS mineral maps show abundant desert varnish on the top and toe of the landslide. Desert varnish can provide a means of relative dating of alluvial fan (AF) or landslide surfaces, as it accumulates at determinable rates over time. Based on the 1) highest levels of desert varnish accumulation mapped within the basin, 2) abundant evaporite playa minerals on top of the toe of the landslide, and 3) the highest shoreline of the ancestral lake overtopping the toe of the landslide with gastropod and bivalve shells, we conclude that the MML predates the oldest alluvial fan terraces and lake sediments exposed in the Coachella and Imperial valleys and must be older than early Holocene (i.e. Late Pleistocene?). Thus, the MML landslide has the potential to be used as a spectral endmember for desert varnish thickness and thus proxy for age discrimination of active AF washes versus desert pavements. Given the older age of the MML landslide and low water levels in the modern SS, the risk from future rockslides of this size and related seiches is rather low. However, catastrophic floods and debris flows do occur along the most active AF channels; and the aftermath of such flows can be identified spectrally by montmorillonite crusts forming in recently flooded channels, as well as coarse-grained hyper-concentrated flow deposits that leave sorted (dark) heavy mineral concentrate behind. These observations, as well as supporting spectroscopic and change detection studies, will allow us to evaluate such hazards in this and similar inter-montane pluvial basins around the world.

  15. Effects of temperature on flood forecasting: analysis of an operative case study in Alpine basins

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Salandin, A.; Rabuffetti, D.; Montani, A.; Borgonovo, E.; Mancini, M.

    2013-04-01

    In recent years the interest in the forecast and prevention of natural hazards related to hydro-meteorological events has increased the challenge for numerical weather modelling, in particular for limited area models, to improve the quantitative precipitation forecasts (QPF) for hydrological purposes. After the encouraging results obtained in the MAP D-PHASE Project, we decided to devote further analyses to show recent improvements in the operational use of hydro-meteorological chains, and above all to better investigate the key role played by temperature during snowy precipitation. In this study we present a reanalysis simulation of one meteorological event, which occurred in November 2008 in the Piedmont Region. The attention is focused on the key role of air temperature, which is a crucial feature in determining the partitioning of precipitation in solid and liquid phase, influencing the quantitative discharge forecast (QDF) into the Alpine region. This is linked to the basin ipsographic curve and therefore by the total contributing area related to the snow line of the event. In order to assess hydrological predictions affected by meteorological forcing, a sensitivity analysis of the model output was carried out to evaluate different simulation scenarios, considering the forecast effects which can radically modify the discharge forecast. Results show how in real-time systems hydrological forecasters have to consider also the temperature uncertainty in forecasts in order to better understand the snow dynamics and its effect on runoff during a meteorological warning with a crucial snow line over the basin. The hydrological ensemble forecasts are based on the 16 members of the meteorological ensemble system COSMO-LEPS (developed by ARPA-SIMC) based on the non-hydrostatic model COSMO, while the hydrological model used to generate the runoff simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano.

  16. A Probabilistic Typhoon Risk Model for Vietnam

    NASA Astrophysics Data System (ADS)

    Haseemkunju, A.; Smith, D. F.; Brolley, J. M.

    2017-12-01

    Annually, the coastal Provinces of low-lying Mekong River delta region in the southwest to the Red River Delta region in Northern Vietnam is exposed to severe wind and flood risk from landfalling typhoons. On average, about two to three tropical cyclones with a maximum sustained wind speed of >=34 knots make landfall along the Vietnam coast. Recently, Typhoon Wutip (2013) crossed Central Vietnam as a category 2 typhoon causing significant damage to properties. As tropical cyclone risk is expected to increase with increase in exposure and population growth along the coastal Provinces of Vietnam, insurance/reinsurance, and capital markets need a comprehensive probabilistic model to assess typhoon risk in Vietnam. In 2017, CoreLogic has expanded the geographical coverage of its basin-wide Western North Pacific probabilistic typhoon risk model to estimate the economic and insured losses from landfalling and by-passing tropical cyclones in Vietnam. The updated model is based on 71 years (1945-2015) of typhoon best-track data and 10,000 years of a basin-wide simulated stochastic tracks covering eight countries including Vietnam. The model is capable of estimating damage from wind, storm surge and rainfall flooding using vulnerability models, which relate typhoon hazard to building damageability. The hazard and loss models are validated against past historical typhoons affecting Vietnam. Notable typhoons causing significant damage in Vietnam are Lola (1993), Frankie (1996), Xangsane (2006), and Ketsana (2009). The central and northern coastal provinces of Vietnam are more vulnerable to wind and flood hazard, while typhoon risk in the southern provinces are relatively low.

  17. National Dam Safety Program. Lowell Pierce Dam (MO 11009), Missouri - Nemaha - Nodaway Basin, Atchison County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-05-01

    determine if the dam poses hazards to human life or property. DD FM 1473 EDTION OF I NOV 65 IS OWOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE...area at about elevation 938 feet which would be about one- third of tie way up from the toe, as normally expected. Seepage from the right -7- abutment

  18. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly progress report, July 1, 1995--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    This report is the quarterly progress report for July through September 1995 for work done by Tulane and Xavier Universities under DOE contract number DE-FG01-93-EW53023. Accomplishments for various tasks including administrative activities, collaborative cluster projects, education projects, initiation projects, coordinated instrumentation facility, and an investigators` retreat are detailed in the report.

  19. Historical and current forest landscapes of eastern Oregon and Washington Part I: Vegetation pattern and insect and disease hazards.

    Treesearch

    J.F. Lehmkuhl; P.F. Hessburg; R.L. Everett; M.H. Huff; R.D. Ottmar

    1994-01-01

    We analyzed historical and current vegetation composition and structure in 49 sample watersheds, primarily on National Forests, within six river basins in eastern Oregon and Washington. Vegetation patterns were mapped from aerial photographs taken from 1932 to 1959, and from 1985 to 1992. We described vegetation attributes, landscape patterns, the range of historical...

  20. Canister Storage Building (CSB) Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POWERS, T.B.

    2000-03-16

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safetymore » analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.« less

  1. Automated basin delineation from digital terrain data

    NASA Technical Reports Server (NTRS)

    Marks, D.; Dozier, J.; Frew, J.

    1983-01-01

    While digital terrain grids are now in wide use, accurate delineation of drainage basins from these data is difficult to efficiently automate. A recursive order N solution to this problem is presented. The algorithm is fast because no point in the basin is checked more than once, and no points outside the basin are considered. Two applications for terrain analysis and one for remote sensing are given to illustrate the method, on a basin with high relief in the Sierra Nevada. This technique for automated basin delineation will enhance the utility of digital terrain analysis for hydrologic modeling and remote sensing.

  2. Volcano and earthquake hazards in the Crater Lake region, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Mastin, Larry G.; Scott, Kevin M.; Nathenson, Manuel

    1997-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. This report describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The main conclusions are summarized below.

  3. Interconnected ponds operation for flood hazard distribution

    NASA Astrophysics Data System (ADS)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  4. Seafloor terrain analysis and geomorphology of the greater Los Angeles Margin and San Pedro Basin, Southern California

    USGS Publications Warehouse

    Dartnell, P.; Gardner, J.V.

    2009-01-01

    The seafloor off greater Los Angeles, California, has been extensively studied for the past century. Terrain analysis of recently compiled multibeam bathymetry reveals the detailed seafloor morphology along the Los Angeles Margin and San Pedro Basin. The terrain analysis uses the multibeam bathymetry to calculate two seafloor indices, a seafloor slope, and a Topographic Position Index. The derived grids along with depth are analyzed in a hierarchical, decision-tree classification to delineate six seafloor provinces-high-relief shelf, low-relief shelf, steep-basin slope, gentle-basin slope, gullies and canyons, and basins. Rock outcrops protrude in places above the generally smooth continental shelf. Gullies incise the steep-basin slopes, and some submarine canyons extend from the coastline to the basin floor. San Pedro Basin is separated from the Santa Monica Basin to the north by a ridge consisting of the Redondo Knoll and the Redondo Submarine Canyon delta. An 865-m-deep sill separates the two basins. Water depths of San Pedro Basin are ??100 m deeper than those in the San Diego Trough to the south, and three passes breach a ridge that separates the San Pedro Basin from the San Diego Trough. Information gained from this study can be used as base maps for such future studies as tectonic reconstructions, identifying sedimentary processes, tracking pollution transport, and defining benthic habitats. ?? 2009 The Geological Society of America.

  5. A geographic information system tool to solve regression equations and estimate flow-frequency characteristics of Vermont Streams

    USGS Publications Warehouse

    Olson, Scott A.; Tasker, Gary D.; Johnston, Craig M.

    2003-01-01

    Estimates of the magnitude and frequency of streamflow are needed to safely and economically design bridges, culverts, and other structures in or near streams. These estimates also are used for managing floodplains, identifying flood-hazard areas, and establishing flood-insurance rates, but may be required at ungaged sites where no observed flood data are available for streamflow-frequency analysis. This report describes equations for estimating flow-frequency characteristics at ungaged, unregulated streams in Vermont. In the past, regression equations developed to estimate streamflow statistics required users to spend hours manually measuring basin characteristics for the stream site of interest. This report also describes the accompanying customized geographic information system (GIS) tool that automates the measurement of basin characteristics and calculation of corresponding flow statistics. The tool includes software that computes the accuracy of the results and adjustments for expected probability and for streamflow data of a nearby stream-gaging station that is either upstream or downstream and within 50 percent of the drainage area of the site where the flow-frequency characteristics are being estimated. The custom GIS can be linked to the National Flood Frequency program, adding the ability to plot peak-flow-frequency curves and synthetic hydrographs and to compute adjustments for urbanization.

  6. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  7. Estimating soil hydrological response by combining precipitation-runoff modeling and hydro-functional soil homogeneous units

    NASA Astrophysics Data System (ADS)

    Aroca-Jimenez, Estefania; Bodoque, Jose Maria; Diez-Herrero, Andres

    2015-04-01

    Flash floods constitute one of the natural hazards better able to generate risk, particularly with regard to Society. The complexity of this process and its dependence on various factors related to the characteristics of the basin and rainfall make flash floods are difficult to characterize in terms of their hydrological response.To do this, it is essential a proper analysis of the so called 'initial abstractions'. Among all of these processes, infiltration plays a crucial role in explaining the occurrence of floods in mountainous basins.For its characterization the Green-Ampt model , which depends on the characteristics of rainfall and physical properties of soil has been used in this work.This is a method enabling to simulate floods in mountainous basins where hydrological response is sub-daily. However, it has the disadvantage that it is based on physical properties of soil which have a high spatial variability. To address this difficulty soil mapping units have been delineated according to the geomorphological landforms and elements. They represent hydro-functional mapping units that are theoretically homogeneous from the perspective of the pedostructure parameters of the pedon. So the soil texture of each homogeneous group of landform units was studied by granulometric analyses using standarized sieves and Sedigraph devices. In addition, uncertainty associated with the parameterization of the Green-Ampt method has been estimated by implementing a Monte Carlo approach, which required assignment of the proper distribution function to each parameter.The suitability of this method was contrasted by calibrating and validating a hydrological model, in which the generation of runoff hydrograph has been simulated using the SCS unit hydrograph (HEC-GeoHMS software), while flood wave routing has been characterized using the Muskingum-Cunge method. Calibration and validation of the model was from the use of an automatic routine based on the employ of the search algorithm known as univariate gradient, while the objective function to be used was the percentage of error in the flow-peak of the hydrograph. The methodology proposed here was implemented in the torrential Venero Claro basin, which is a tributary of the Alberche river on its right bank, located in the Sierra del Valle (eastern foothills of the Sierra de Gredos, Spanish Central System). Currently this basin has an active network of six rainfall gauges, one stream gauging, three complete weather stations and one weather X-band radar. This hydrologic instrumentation makes this basin, with its 15 km², is one of the most densely instrumented basins from a hydrological and meteorological point of view in Spain.

  8. Long term seismic observation using ocean bottom seismographs in Marmara Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Pinar, A.; Kalafat, D.; Yamamoto, Y.; Citak, S.; Comoglu, M.; Çok, Ö.; Ogutcu, Z.; Suvarikli, M.; Tunc, S.; Gurbuz, C.; Ozel, N.; Kaneda, Y.

    2015-12-01

    The North Anatolian Fault crosses the Marmara Sea with a direction of E-W. There are many large earthquakes repeatedly along the fault with a linkage each other. Due to recent large eastern Aegean earthquake with M6, the Marmara Sea is the "blank zone". Japan and Turkey have a SATREPS collaborative study to clarify the structural characters, construct fault models, simulate the strong motion and tsunami, evaluate these risks with hazard maps and educate disaster prevention for local governments and residents. Our activity is one of the most basic studies, and the objectives are to clarify hypocenter locations, monitor the move, and construct fault models referring seismic/magnetotelluric structures, geodetic nature and trenching works. The target area is from western Marmara Sea to the off Istanbul area along the north Anatolian Fault. We deployed ten Ocean Bottom Seismographs (OBSs) between the Tekirdag Basin and the Central Basin in September, 2014. Then, we added five Japanese OBSs and deployed them at the western end of the Marmara Sea and the eastern Central Basin to extend observed area in March, 2015. The OBS has a three-component velocity sensor with a natural frequency of 4.5 Hz and a hydrophone. Japanese team have clarified seismicity around Japan using the OBS. The magnitude of the detected events is 1.0-1.5. We retrieved all 15 OBSs in July, 2015 and deployed them again on the same locations after data copy and battery maintenance. We started OBS data analysis combined with land stations data. Now we detect events automatically using these data and succeeded detection of over one thousand around the north Anatolian Fault. The tentative results show heterogeneous seismicity. The western and central basins have relative high seismicity and the seismogenic zone becomes thicker rather than previous estimation. Then we will evaluate hypocenter locations with high resolution and discuss the shape of faults in each segment and their linkage.

  9. Sinkhole risk analysis from the point of view of a public building insurance, the case of Vaud County (Switzerland)

    NASA Astrophysics Data System (ADS)

    Nicolet, P.; Choffet, M.; Jaboyedoff, M.; Lauraux, B.; Lance, J.-. L.; Champod, E.

    2012-04-01

    Natural hazards are being mapped in the Vaud County and sinkhole hazard is part of this process. An preliminary hazard map has already been made based on the sinkholes occurrences and on several other parameters such as rocks types, proximity of major faults and closed basins. The detailed hazard map essentially based on the occurrence of sinkholes is in process. This map will influence the landuse planning. Presently, the public building insurance is covering the damage costs due to all natural hazards that are being mapped except sinkholes. For the sake of consistency and due to political pressure, the insurance company wants to integrate this phenomenon in its insurance coverage. This study aims to assess the potential damage costs to buildings induced by this decision. Karstic process is active in two regions in the County. The first one, namely the Folded Jura, is composed of Jurassic and Cretaceous Carbonate rocks. The second one, the Prealpine region, is composed of both Carbonate and evaporitic rocks. Even if the cavities in carbonate rocks can cause difficulties during the buildings construction, the karst development in these rocks is relatively slow and, as a result, the expected damage costs to buildings is relatively low. In contrast, the evaporitic rocks are likely to cause significant subsidence or sudden collapses at human scale and thus damage the buildings. Therefore, our study is focused on the region where this rock type occurs. It results that many buildings, i.e. more than 10'000, are concerned according to the preliminary hazard map. However some of these buildings are in zones with very low potential. Based on estimated frequencies of collapsing events and subsidence rates, the potential damage cost is estimated. Furthermore, the number of potential claims is also considered in order to know the expected additional work for the insurance company. Careful attention is also given to the potential development of building zones. In addition, the project gives guidelines for the insurance company, focusing on structural measures reducing buildings vulnerability.

  10. Landslide-generated tsunamis in a perialpine lake: Historical events and numerical models

    NASA Astrophysics Data System (ADS)

    Hilbe, Michael; Anselmetti, Flavio S.

    2014-05-01

    Many of the perialpine lakes in Central Europe - the large, glacier-carved basins formed during the Pleistocene glaciations of the Alps - have proven to be environments prone to subaquatic landsliding. Among these, Lake Lucerne (Switzerland) has a particularly well-established record of subaquatic landslides and related tsunamis. Its sedimentary archive documents numerous landslides over the entire Holocene, which have either been triggered by earthquakes, or which occurred apparently spontaneously, possibly due to rapid sediment accumulation on delta slopes. Due to their controlled boundary conditions and the possibility to be investigated on a complete basinal scale, such lacustrine tsunamis may be used as textbook analogons for their marine counterparts. Two events in the 17th century illustrate these processes and their consequences: In AD 1601, an earthquake (Mw ~ 5.9) led to widespread failure of the sediment drape covering the lateral slopes in several basins. The resulting landslides generated tsunami waves that reached a runup of several metres, as reported in historical accounts. The waves caused widespread damage as well as loss of lives in communities along the shores. In AD 1687, the apparently spontaneous collapse of a river delta in the lake led to similar waves that damaged nearby villages. Based on detailed information on topography, bathymetry and the geometry of the landslide deposits, numerical simulations combining two-dimensional, depth-averaged models for landslide propagation, as well as for tsunami generation, propagation and inundation, are able to reproduce most of the reported tsunami effects for these events. Calculated maximum runup of the waves is 6 to >10 m in the directly affected lake basins, but significantly less in neighbouring basins. Flat alluvial plains adjacent to the most heavily affected areas are inundated over distances of several hundred metres. Taken as scenarios for possible future events, these past events suggest that tsunami hazard in these lake should not be neglected, although they are infrequent and the effects are naturally limited to the immediate surroundings of the affected basins. The shores of Lake Lucerne, as well as of many other perialpine lakes, are nowadays densely inhabited and host considerable infrastructure, so that events similar to those reported may have serious consequences. Identification and mapping of possible subaquatic landslide source areas, the inclusion of geotechnical data on potentially mobile sediments, as well as numerical modelling of tsunamis are thus important components of a proper hazard assessment for these lakes.

  11. Monitoring of perfluoroalkyl substances in the Ebro and Guadalquivir River basins (Spain)

    NASA Astrophysics Data System (ADS)

    Lorenzo, Maria; Campo, Julian; Andreu, Vicente; Pico, Yolanda; Farre, Marinella; Barcelo, Damia

    2015-04-01

    Relevant concentrations of a broad range of pollutants have been found in Spanish Mediterranean River basins, as consequence of anthropogenic pressures and overexploitation (Campo et al., 2014). In this study, the occurrence and sources of 21 perfluoroalkyl substances (PFASs) were determined in water and sediment of the Ebro and Guadalquivir River basins (Spain). PFASs are persistent, bio-accumulative and toxic, which make them a hazard to human health and wildlife. The Ebro and Guadalquivir Rivers are the two most important rivers of Spain. They are representative examples of Mediterranean rivers heavily managed, and previous researches have reported their high pesticide contamination (Masiá et al., 2013). Analytes were extracted by solid phase extraction (SPE) and determined by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS). In water samples, from 21 analytes screened, 11 were found in Ebro samples and 9 in Guadalquivir ones. In both basins, the most frequents were PFBA, PFPeA, PFHxS and PFOS. Maximum concentration was detected for PFBA, with 251.3 ng L-1 in Ebro and 742.9 ng L-1 in Guadalquivir. Regarding the sediment samples, 8 PFASs were detected in those coming from Ebro basin and 9 in those from Guadalquivir. The PFASs most frequently detected were PFBA, PFPeA, PFOS and PFBS. Maximum concentration in Ebro samples was detected for PFOA, with 32.4 ng g-1 dw, and in Guadalquivir samples for PFBA with 63.8 ng g-1 dw. Ubiquity of these compounds in the environment was proved with high PFAS concentration values detected in upper parts of the rivers. Results confirm that most of the PFASs are only partially eliminated during the secondary treatment suggesting that they can be a focal point of contamination to the rivers where they can bio-accumulate and produce adverse effects on wildlife and humans. Acknowledgment The Spanish Ministry of Economy and Competitiveness has supported this work through the projects SCARCE-CSD2009-00065, CGL2011-29703-C02-01 and CGL2011-29703-C02-02 References Campo, J., Pérez, F., Masiá, A., Picó, Y., Farré, M., Barceló, D., 2014. Perfluoroalkyl substance contamination of the Llobregat River ecosystem (Mediterranean area, NE Spain). Science of the Total Environment DOI: 10.1016/j.scitotenv.2014.05.094. Masiá, A., Campo J., Vázquez-Roig, P., Blasco, C., Picó Y., 2013. Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain). J. Hazard. Mater. 263P, 95-104.

  12. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affectingmore » the public.« less

  13. Ergonomics, safety, and resilience in the helicopter offshore transportation system of Campos Basin.

    PubMed

    Gomes, José Orlando; Huber, Gilbert J; Borges, Marcos R S; de Carvalho, Paulo Victor R

    2015-01-01

    Air transportation of personnel to offshore oil platforms is one of the major hazards of this kind of endeavor. Pilot performance is a key factor in the safety of the transportation system. This study seeks to identify the ergonomic factors present in pilots' activities that may in some way compromise or enhance their performance, the constraints and affordances which they are subject to; and where possible to link these to their associated risk factors. Methodology adopted in this project studies work in its context. It is a merging of Activity Analysis (Guerin et al. 2001) of European tradition with Cognitive Task Analysis (CTA - www.ctaresource.com) articulated with the recent approaches to cognitive systems engineering developed by Professors David Woods and Erik Hollnagel. Fifty-five hours of field interviews provided the input for analysis. Sixteen ergonomic constraints were identified, some cognitive, some physical, all considered relevant by the research subjects and expert advisers. Although the safety record of the personnel transportation system studied is considered acceptable, there is low hanging fruit to be picked which can help improve the system's safety.

  14. 3D basin structure of the Santa Clara Valley constrained by ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Cho, H.; Lee, S. J.; Rhie, J.; Kim, S.

    2017-12-01

    The basin structure is an important factor controls the intensity and duration of ground shaking due to earthquake. Thus it is important to study the basin structure for better understanding seismic hazard and also improving the earthquake preparedness. An active source seismic survey is the most appropriate method to determine the basin structure in detail but its applicability, especially in urban areas, is limited. In this study, we tested the potential of an ambient noise tomography, which can be a cheaper and more easily applicable method compared to a traditional active source survey, to construct the velocity model of the basin. Our testing region is the Santa Clara Valley, which is one of the major urban sedimentary basins in the States. We selected this region because continuous seismic recordings and well defined velocity models are available. Continuous seismic recordings of 6 months from short-period array of Santa Clara Valley Seismic Experiment are cross-correlated with 1 hour time window. And the fast marching method and the subspace method are jointly applied to construct 2-D group velocity maps between 0.2 - 4.0 Hz. Then, shear wave velocity model of the Santa Clara Valley is calculated up to 5 km depth using bayesian inversion technique. Although our model cannot depict the detailed structures, it is roughly comparable with the velocity model of the US Geological Survey, which is constrained by active seismic surveys and field researches. This result indicate that an ambient noise tomography can be a replacement, at least in part, of an active seismic survey to construct the velocity model of the basin.

  15. Integrating facies and structural analyses with subsidence history in a Jurassic-Cretaceous intraplatform basin: Outcome for paleogeography of the Panormide Southern Tethyan margin (NW Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio; Gasparo Morticelli, Maurizio

    2016-06-01

    We illustrate the tectono-sedimentary evolution of a Jurassic-Cretaceous intraplatform basin in a fold and thrust belt present setting (Cala Rossa basin). Detailed stratigraphy and facies analysis of Upper Triassic-Eocene successions outcropping in the Palermo Mts (NW Sicily), integrated with structural analysis, restoration and basin analysis, led to recognize and describe into the intraplatform basin the proximal and distal depositional areas respect to the bordered carbonate platform sectors. Carbonate platform was characterized by a rimmed reef growing with progradational trends towards the basin, as suggested by the several reworked shallow-water materials interlayered into the deep-water succession. More, the occurrence of thick resedimented breccia levels into the deep-water succession suggests the time and the characters of synsedimentary tectonics occurred during the Late Jurassic. The study sections, involved in the building processes of the Sicilian fold and thrust belt, were restored in order to obtain the original width of the Cala Rossa basin, useful to reconstruct the original geometries and opening mechanisms of the basin. Basin analysis allowed reconstructing the subsidence history of three sectors with different paleobathymetry, evidencing the role exerted by tectonics in the evolution of the narrow Cala Rossa basin. In our interpretation, a transtensional dextral Lower Jurassic fault system, WNW-ESE (present-day) oriented, has activated a wedge shaped pull-apart basin. In the frame of the geodynamic evolution of the Southern Tethyan rifted continental margin, the Cala Rossa basin could have been affected by Jurassic transtensional faults related to the lateral westward motion of Africa relative to Europe.

  16. Hazard Map in Huaraz-Peru due to a Glacial Lake Outburst Flood from Palcacocha Lake

    NASA Astrophysics Data System (ADS)

    Somos-Valenzuela, M. A.; Chisolm, R. E.; McKinney, D. C.; Rivas, D.

    2013-12-01

    Palcacocha lake is located in the Ancash Region in the Cordillera Blanca at an elevation of 4,567 m in the Quilcay sub-basin, province of Huaraz, Peru. The lake drains into the Quebrada Cojup, which subsequently drains into the Quilcay River. The Quilcay River passes through the City of Huaraz emptying its water into the Santa River, which is the primary river of the basin. This location has a special interest since the city of Huaraz, which is located at the bottom of the Quilcay sub-basin, was devastated by a glacial lake outburst flood (GLOF) released from Lake Palcacocha on December 13, 1941. In that event, many lost their lives. In recent years Palcacocha has grown to the point where the lake is once again dangerous. Ice/rock avalanches from the steep surrounding slopes can now directly reach the lake. A process chain of debris flow and hyper-concentrated flow from Lake Palcacocha could easily reach the city of Huaraz with the current lake volume. Local authorities and people living in Huaraz are concerned about the threat posed by Lake Palcacocha, and consequently they have requested technical support in order to investigate the impacts that a GLOF could have in the city of Huaraz. To assess the hazard for the city of Huaraz a holistic approach is used that considers a chain of processes that could interact in a GLOF event from Lake Palcacocha. We assume that an avalanche from Palcaraju glacier, located directly above the lake, could be a GLOF trigger, followed by the formation of waves in the lake that can overtop the damming moraine starting an erosive process. The wave and avalanche simulations are described in another work, and here we use those results to simulate the propagation of the inundation downstream using FLO-2D, a model that allows us to include debris flow. GLOF hydrographs are generated using a dam break module in Mike 11. Empirical equations are used to calculate the hydrograph peaks and calibrate the inundation model. In order to quantify the hazard we implement a combination of criteria from different countries (Switzerland, Austria and the U.S.), these criteria consider that the level of flooding hazard in an urban area is a function of the maximum velocity and inundation depth. We have found that 30,000 people, approximately one third of the city of Huaraz, could be affected by a GLOF from Lake Palcacocha.

  17. INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.J. Garrett

    2005-02-17

    The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology formore » this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.« less

  18. Integrated Analysis on Gravity and Magnetic Fields of the Hailar Basin, NE China: Implications for Basement Structure and Deep Tectonics

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Wang, Liangshu; Dong, Ping; Wu, YongJing; Li, Changbo; Hu, Bo; Wang, Chong

    2012-11-01

    The Hailar Basin is one of the typical basins among the NE China Basin Groups, which is situated in the east of East Asia Orogene between the Siberia Plate and the North China Plate. Based on the detailed analysis of magnetic, gravity, petrophysical, geothermal and seismological data, we separate the Gravity and Magnetic Anomalies (GMA) into four orders using Wavelet Multi-scale Decomposition (WMD). The apparent depths of causative sources were then assessed by Power Spectrum Analysis (PSA) of each order. Low-order wavelet detail anomalies were used to study the basin's basement structure such as major faults, the basement lithology, uplifts and depressions. High-order ones were used for the inversion of Moho and Curie discontinuities using the Parker method. The results show that the Moho uplifting area of the Hailar Basin is located at the NE part of the basin, the Curie uplifting area is at the NW part, and neither of them is consistent with the basin's sedimentary center. This indicates that the Hailar Basin may differ in basin building pattern from other middle and eastern basins of the basin groups, and the Hailar Basin might be of a passive type. When the Pacific Plate was subducting to NE China, the frontier of the plate lying on the mantle transition zone didn't pass through the Great Khingan Mountains region, so there is not an obvious magma upwelling or lithospheric extension in the Hailar Basin area. Finally, based on the seismological data and results of WMD, a probable 2D crust model is derived from an across-basin profile using the 2D forward modeling of the Bouguer gravity anomaly. The results agree with those from seismic inversion, suggesting WMD is suitable for identifying major crustal density interfaces.

  19. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data

    NASA Astrophysics Data System (ADS)

    Rai, Praveen Kumar; Chandel, Rajeev Singh; Mishra, Varun Narayan; Singh, Prafull

    2018-03-01

    Satellite based remote sensing technology has proven to be an effectual tool in analysis of drainage networks, study of surface morphological features and their correlation with groundwater management prospect at basin level. The present study highlights the effectiveness and advantage of remote sensing and GIS-based analysis for quantitative and qualitative assessment of flood plain region of lower Kosi river basin based on morphometric analysis. In this study, ASTER DEM is used to extract the vital hydrological parameters of lower Kosi river basin in ARC GIS software. Morphometric parameters, e.g., stream order, stream length, bifurcation ratio, drainage density, drainage frequency, drainage texture, form factor, circularity ratio, elongation ratio, etc., have been calculated for the Kosi basin and their hydrological inferences were discussed. Most of the morphometric parameters such as bifurcation ratio, drainage density, drainage frequency, drainage texture concluded that basin has good prospect for water management program for various purposes and also generated data base that can provide scientific information for site selection of water-harvesting structures and flood management activities in the basin. Land use land cover (LULC) of the basin were also prepared from Landsat data of 2005, 2010 and 2015 to assess the change in dynamic of the basin and these layers are very noteworthy for further watershed prioritization.

  20. Modelling uncertainties and possible future trends of precipitation and temperature for 10 sub-basins in Columbia River Basin (CRB)

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, A.; Rana, A.; Qin, Y.; Moradkhani, H.

    2014-12-01

    Trends and changes in future climatic parameters, such as, precipitation and temperature have been a central part of climate change studies. In the present work, we have analyzed the seasonal and yearly trends and uncertainties of prediction in all the 10 sub-basins of Columbia River Basin (CRB) for future time period of 2010-2099. The work is carried out using 2 different sets of statistically downscaled Global Climate Model (GCMs) projection datasets i.e. Bias correction and statistical downscaling (BCSD) generated at Portland State University and The Multivariate Adaptive Constructed Analogs (MACA) generated at University of Idaho. The analysis is done for with 10 GCM downscaled products each from CMIP5 daily dataset totaling to 40 different downscaled products for robust analysis. Summer, winter and yearly trend analysis is performed for all the 10 sub-basins using linear regression (significance tested by student t test) and Mann Kendall test (0.05 percent significance level), for precipitation (P), temperature maximum (Tmax) and temperature minimum (Tmin). Thereafter, all the parameters are modelled for uncertainty, across all models, in all the 10 sub-basins and across the CRB for future scenario periods. Results have indicated in varied degree of trends for all the sub-basins, mostly pointing towards a significant increase in all three climatic parameters, for all the seasons and yearly considerations. Uncertainty analysis have reveled very high change in all the parameters across models and sub-basins under consideration. Basin wide uncertainty analysis is performed to corroborate results from smaller, sub-basin scale. Similar trends and uncertainties are reported on the larger scale as well. Interestingly, both trends and uncertainties are higher during winter period than during summer, contributing to large part of the yearly change.

  1. Hazard Analysis Guidelines for Transit Projects

    DOT National Transportation Integrated Search

    2000-01-01

    These hazard analysis guidelines discuss safety critical systems and subsystems, types of hazard analyses, when hazard analyses should be performed, and the hazard analysis philosophy. These guidelines are published by FTA to assist the transit indus...

  2. Cooperation on Climate Services in the Binational Rio Grande/Bravo Basin

    NASA Astrophysics Data System (ADS)

    Garfin, G. M.; Shafer, M. A.; Brown, D. P.

    2013-12-01

    The Rio Grande/Bravo River Basin (RGB) of the United States and México is exposed to tornadoes, severe storms, hurricanes, winter storms, wildfire, and drought. The combination of these weather and climate-related hazards has resulted in impacts, such as wildfire, crop loss, water supply reduction, and flooding, with exceedingly high economic costs ($13 billion in 2011). In order to contribute to increased binational information flow and knowledge exchange in the region, we have developed a prototype quarterly bilingual RGB Climate Outlook, in PDF, supplemented by Twitter messages and Facebook posts. The goal of the project is to improve coordination between institutions in the U.S. and Mexico, increase awareness about climate variations, their impacts and costs to society, and build capacity for enhanced hazard preparedness. The RGB Outlook features a synthesis of climate products, impact data and analysis, is expressed in user-friendly language, and relies substantially on visual communication in contrast to text. The RGB Outlook is co-produced with colleagues in the U.S. and Mexico, in conjunction with the North American Climate Services Partnership (NACSP) and NOAA's regional climate services program. NACSP is a tri-national initiative to develop and deliver drought-based climate services in order to assist water resource managers, agricultural interests, and other constituents as they prepare for future drought events and build capacity to respond to other climate extremes. The RGB Climate Outlook builds on lessons learned from the Climate Assessment for the Southwest (CLIMAS) Southwest Climate Outlook (PDF, html), La Niña Drought Tracker (PDF, html), the Southern Climate Impacts Policy Program (SCIPP) Managing Drought in the Southern Plains webinar series, the Border Climate Summary (PDF), and Transborder Climate newsletter (PDF) and webinar series. The latter two have been the only regularly occurring bilingual climate information products in the U.S.-Mexico border region. Prior research shows that these products: contribute to increased understanding of climate phenomena, information, and forecasts, are shared with partners in social networks, and inform decisions. The project team has initiated a pre-dissemination product survey, in order to probe the primary audience of resource managers, hazard planners, and agricultural water users about their needs for information, format, and communication preferences. We will report on the survey results, as well as challenges in binational communication and cooperation.

  3. Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India.

    PubMed

    Rao, N Subba; Rao, P Surya; Reddy, G Venktram; Nagamani, M; Vidyasagar, G; Satyanarayana, N L V V

    2012-08-01

    Study on chemical characteristics of groundwater and impacts of groundwater quality on human health, plant growth, and industrial sector is essential to control and improve the water quality in every part of the country. The area of the Varaha River Basin is chosen for the present study, where the Precambrian Eastern Ghats underlain the Recent sediments. Groundwater quality is of mostly brackish and very hard, caused by the sources of geogenic, anthropogenic, and marine origin. The resulting groundwater is characterized by Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-) > [Formula: see text], Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-) > [Formula: see text] > [Formula: see text], Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-), and Na(+) > Mg(2+) > Ca(2+) : Cl(-) > [Formula: see text] > [Formula: see text] facies, following the topographical and water flow-path conditions. The genetic geochemical evolution of groundwater ([Formula: see text] and Cl(-)-[Formula: see text] types under major group of [Formula: see text]) and the hydrogeochemical signatures (Na(+)/Cl(-), >1 and [Formula: see text]/Cl(-), <1) indicate that the groundwater is of originally fresh quality, but is subsequently modified to brackish by the influences of anthropogenic and marine sources, which also supported by the statistical analysis. The concentrations of total dissolved solids (TDS), TH, Mg(2+), Na(+), K(+), [Formula: see text], Cl(-), [Formula: see text], and F(-) are above the recommended limits prescribed for drinking water in many locations. The quality of groundwater is of mostly moderate in comparison with the salinity hazard versus sodium hazard, the total salt concentration versus percent sodium, the residual sodium carbonate, and the magnesium hazard, but is of mostly suitable with respect to the permeability index for irrigation. The higher concentrations of TDS, TH, [Formula: see text], Cl(-), and [Formula: see text] in the groundwater cause the undesirable effects of incrustation and corrosion in many locations. Appropriate management measures are, therefore, suggested to improve the groundwater quality.

  4. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at themore » universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.« less

  5. 14 CFR 437.29 - Hazard analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard analysis...

  6. 14 CFR 437.29 - Hazard analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard analysis...

  7. Subsidence Induced Faulting Hazard Zonation Using Persistent Scatterer Interferometry and Horizontal Gradient Mapping in Mexican Urban Areas

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Cigna, F.; Osmanoglu, B.; Dixon, T.; Wdowinski, S.

    2011-12-01

    Subsidence and faulting have affected Mexico city for more than a century and the process is becoming widespread throughout larger urban areas in central Mexico. This process causes substantial damages to the urban infrastructure and housing structures and will certainly become a major factor to be considered when planning urban development, land use zoning and hazard mitigation strategies in the next decades. Subsidence is usually associated with aggressive groundwater extraction rates and a general decrease of aquifer static level that promotes soil consolidation, deformation and ultimately, surface faulting. However, local stratigraphic and structural conditions also play an important role in the development and extension of faults. In all studied cases stratigraphy of the uppermost sediment strata and the structure of the underlying volcanic rocks impose a much different subsidence pattern which is most suitable for imaging through satellite geodetic techniques. We present examples from several cities in central Mexico: a) Mexico-Chalco. Very high rates of subsidence, up to 370 mm/yr are observed within this lacustrine environment surrounded by Pliocene-Quaternary volcanic structures. b) Aguascalientes where rates up to 90 mm/yr in the past decade are observed, is controlled by a stair stepped N-S trending graben that induces nucleation of faults along the edges of contrasting sediment package thicknesses. c) Morelia presents subsidence rates as high as 80 mm/yr. Differential deformation is observed across major basin-bounding E-W trending faults and with higher subsidence rates on their hanging walls, where the thickest sequences of compressible Quaternary sediments crop out. Our subsidence and faulting study in urban areas of central Mexico is based on a horizontal gradient analysis using displacement maps from Persistent Scatterer InSAR that allows definition of areas with high vulnerability to surface faulting. Correlation of the surface subsidence pattern through satellite geodesy and surface faults show that the principal factor for defining these hazardous areas is best determined not by solely using the subsidence magnitude rates but rather by using a combined magnitude and horizontal subsidence gradient analysis. This approach is used as the basis for the generation of subsidence-induced surface faulting hazard maps for the studied urban areas.

  8. Changes and future trends in landslide risk mapping for mountain communities: application to the Vars catchment and Barcelonnette basin (French Alps)

    NASA Astrophysics Data System (ADS)

    Puissant, Anne; Wernert, Pauline; Débonnaire, Nicolas; Malet, Jean-Philippe; Bernardie, Séverine; Thomas, Loic

    2017-04-01

    Landslide risk assessment has become a major research subject within the last decades. In the context of the French-funded ANR Project SAMCO which aims at enhancing the overall resilience of societies on the impacts of mountain risks, we developed a procedure to quantify changes in landslide risk at catchment scales. First, we investigate landslide susceptibility, the spatial component of the hazard, through a weight of evidence probabilistic model. This latter is based on the knowledge of past and current landslides in order to simulate their spatial locations in relation to environmental controlling factors. Second, we studied potential consequences using a semi-quantitative region-scale indicator-based method, called method of the Potential Damage Index (PDI). It allows estimating the possible damages related to landslides by combining weighted indicators reflecting the exposure of the element at risk for structural, functional and socio-economic stakes. Finally, we provide landslide risk maps by combining both susceptibility and potential consequence maps resulting from the two previous steps. The risk maps are produced for the present time and for the future (e.g. period 2050 and 2100) taking into account four scenarios of future landcover and landuse development (based on the Prelude European Project) that are consistent with the likely evolution of mountain communities. Results allow identifying the geographical areas that are likely to be exposed to landslide risk in the future. The results are integrated on a web-based demonstrator, enabling the comparison between various scenarios, and could thus be used as decision-support tools for local stakeholders. The method and the demonstrator will be presented through the analysis of landslide risk in two catchments of the French Alps: the Vars catchment and the Barcelonnette basin, both characterized by a different exposure to landslide hazards.

  9. Long Term Monitoring of Ground Motions in Upper Silesia Coal Basin (USCB) Using Satellite Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Graniczny, Marek; Przylucka, Maria; Kowalski, Zbigniew

    2016-08-01

    Subsidence hazard and risk within the USCB are usually connected with the deep coal mining. In such cases, the surface becomes pitted with numerous collapse cavities or basins which depth may even reach tens of meters. The subsidence is particularly dangerous because of causing severe damage to gas and water pipelines, electric cables, and to sewage disposal systems. The PGI has performed various analysis of InSAR data in this area, including all three SAR bands (X, C and L) processed by DInSAR, PSInSAR and SqueeSAR techniques. These analyses of both conventional and advanced DInSAR approaches have proven to be effective to detect the extent and the magnitude of mining subsidence impact on urban areas. In this study an analysis of two series of subsequent differential interferograms obtained in the DInSAR technique are presented. SAR scenes are covering two periods and were acquired by two different satellites: ALOS-P ALSAR data from 22/02/2007- 27/05/2008 and TerraSAR-X data from 05/07/2011-21/06/2012. The analysis included determination of the direction and development of subsidence movement in relation to the mining front and statistic comparison between range and value of maximum subsidence detected for each mining area. Detailed studies were performed for Bobrek-Centrum mining area. They included comparison of mining fronts and location of the extracted coal seams with the observed subsidence on ALOS-P ALSAR InSAR interferograms. The data can help in estimation not only the range of the subsidence events, but also its value, direction of changes and character of the motion.

  10. GC23G-1310: Investigation Into the Effects of Climate Variability and Land Cover Change on the Hydrologic System of the Lower Mekong Basin

    NASA Technical Reports Server (NTRS)

    Markert, Kel N.; Griffin, Robert; Limaye, Ashutosh S.; McNider, Richard T.; Anderson, Eric R.

    2016-01-01

    The Lower Mekong Basin (LMB) is an economically and ecologically important region that experiences hydrologic hazards such as floods and droughts, which can directly affect human well-being and limit economic growth and development. To effectively develop long-term plans for addressing hydrologic hazards, the regional hydrological response to climate variability and land cover change needs to be evaluated. This research aims to investigate how climate variability, specifically variations in the precipitation regime, and land cover change will affect hydrologic parameters both spatially and temporally within the LMB. The research goal is achieved by (1) modeling land cover change for a baseline land cover change scenario as well as changes in land cover with increases in forest or agriculture and (2) using projected climate variables and modeled land cover data as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to simulate the changes to the hydrologic system. The VIC model outputs were analyzed against historic values to understand the relative contribution of climate variability and land cover to change, where these changes occur, and to what degree these changes affect the hydrology. This study found that the LMB hydrologic system is more sensitive to climate variability than land cover change. On average, climate variability was found to increase discharge and evapotranspiration (ET) while decreasing water storage. The change in land cover show that increasing forest area will slightly decrease discharge and increase ET while increasing agriculture area increases discharge and decreases ET. These findings will help the LMB by supporting individual country policy to plan for future hydrologic changes as well as policy for the basin as a whole.

  11. Earthquake recordings from the 2002 Seattle Seismic Hazard Investigation of Puget Sound (SHIPS), Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.; Meagher, Karen L.; Brocher, Thomas M.; Yelin, Thomas; Norris, Robert; Hultgrien, Lynn; Barnett, Elizabeth; Weaver, Craig S.

    2003-01-01

    This report describes seismic data obtained during the fourth Seismic Hazard Investigation of Puget Sound (SHIPS) experiment, termed Seattle SHIPS . The experiment was designed to study the influence of the Seattle sedimentary basin on ground shaking during earthquakes. To accomplish this, we deployed seismometers over the basin to record local earthquakes, quarry blasts, and teleseisms during the period of January 26 to May 27, 2002. We plan to analyze the recordings to compute spectral amplitudes at each site, to determine the variability of ground motions over the basin. During the Seattle SHIPS experiment, seismometers were deployed at 87 sites in a 110-km-long east-west line, three north-south lines, and a grid throughout the Seattle urban area (Figure 1). At each of these sites, an L-22, 2-Hz velocity transducer was installed and connected to a REF TEK Digital Acquisition System (DAS), both provided by the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL) of the Incorporated Research Institutes for Seismology (IRIS). The instruments were installed on January 26 and 27, and were retrieved gradually between April 18 and May 27. All instruments continuously sampled all three components of motion (velocity) at a sample rate of 50 samples/sec. To ensure accurate computations of amplitude, we calibrated the geophones in situ to obtain the instrument responses. In this report, we discuss the acquisition of these data, we describe the processing and merging of these data into 1-hour long traces and into windowed events, we discuss the geophone calibration process and its results, and we display some of the earthquake recordings.

  12. Near surface velocity and Q S structure of the Quaternary sediment in Bohai basin, China

    NASA Astrophysics Data System (ADS)

    Chong, Jiajun; Ni, Sidao

    2009-10-01

    Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation ( Q P and Q S) of the surficial Quaternary sediment has not been studied at natural seismic frequency (1-10 Hz), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and attenuation of the surficial structure (0-500 m). We found that there are two pulses well separated with simple waveforms on borehole seismic records from the 2006 M W4.9 Wen’an earthquake sequence. Then we performed waveform modeling with generalized ray theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average ν P and ν S of the top 300 m in this region are about 1.8 km/s and 0.42 km/s, leading to high ν P/ ν S ratio of 4.3. We also modeled surface reflected wave with propagating matrix method to constrain Q S and the near surface velocity structure. Our modeling indicates that Q S is at least 30, or probably up to 100, much larger than the typically assumed extremely low Q (˜10), but consistent with Q S modeling in Mississippi embayment. Also, the velocity gradient just beneath the free surface (0-50 m) is very large and velocity increases gradually at larger depth. Our modeling demonstrates the importance of borehole seismic records in resolving shallow velocity and attenuation structure, and hence may help in earthquake hazard simulation.

  13. Lunar mission safety and rescue: Hazards analysis and safety requirements

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of the hazards analysis which was concerned only with hazards to personnel and not with loss of equipment or property. Hazards characterization includes the definition of a hazard, the hazard levels, and the hazard groups. The analysis methodology is described in detail. The methodology was used to prepare the top level functional flow diagrams, to perform the first level hazards assessment, and to develop a list of conditions and situations requiring individual hazard studies. The 39 individual hazard study results are presented in total.

  14. Tide gauge observations of the Indian Ocean tsunami, December 26, 2004

    NASA Astrophysics Data System (ADS)

    Merrifield, M. A.; Firing, Y. L.; Aarup, T.; Agricole, W.; Brundrit, G.; Chang-Seng, D.; Farre, R.; Kilonsky, B.; Knight, W.; Kong, L.; Magori, C.; Manurung, P.; McCreery, C.; Mitchell, W.; Pillay, S.; Schindele, F.; Shillington, F.; Testut, L.; Wijeratne, E. M. S.; Caldwell, P.; Jardin, J.; Nakahara, S.; Porter, F.-Y.; Turetsky, N.

    2005-05-01

    The magnitude 9.0 earthquake centered off the west coast of northern Sumatra (3.307°N, 95.947°E) on December 26, 2004 at 00:59 UTC (United States Geological Survey (USGS) (2005), USGS Earthquake Hazards Program-Latest Earthquakes, Earthquake Hazards Program, http://earthquake.usgs.gov/eqinthenews/2004/usslav/, 2005) generated a series of tsunami waves that devastated coastal areas throughout the Indian Ocean. Tide gauges operated on behalf of national and international organizations recorded the wave form at a number of island and continental locations. This report summarizes the tide gauge observations of the tsunami in the Indian Ocean (available as of January 2005) and provides a recommendation for the use of the basin-wide tide gauge network for future warnings.

  15. Forecasting Winter Storms in the Sierra: A Social Science Perspective in Keeping the Public Safe without Negatively Impacting the Local Tourism Industry

    NASA Astrophysics Data System (ADS)

    Milne, R.; Wallmann, J.; Myrick, D. T.

    2010-12-01

    The National Weather Service Office in Reno is responsible for issuing Blizzard Warnings, Winter Storm Warnings, and Winter Weather Advisories for the Sierra, including the Lake Tahoe Basin and heavily traveled routes such as Interstate 80, Highway 395 and Highway 50. These forecast products prepare motorists for harsh travel conditions as well as those venturing into the backcountry, which are essential to the NWS mission of saving lives and property. During the winter season, millions of people from around the world visit the numerous world class ski resorts in the Sierra and the Lake Tahoe Basin, which is vital to the local economy. This situation creates a challenging decision for the forecasters to provide appropriate wording in winter statements to keep the public safe, without significantly impacting the local tourism-based economy. Numerous text and graphical products, including online weather briefings, are utilized by NWS Reno to highlight hazards in ensuring the public, businesses, and other government agencies are prepared for winter storms and take appropriate safety measures. The effectiveness of these product types will be explored, with past snowstorms used as examples to show how forecasters determine which type of text or graphical product is most appropriate to convey the hazardous weather threats.

  16. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... processor shall have and implement a written HACCP plan whenever a hazard analysis reveals one or more food...

  17. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... processor shall have and implement a written HACCP plan whenever a hazard analysis reveals one or more food...

  18. Identifying Critical Ephemeral Streams and Reducing Impacts Associated with Utility-Scale Solar Energy Development in the Southwest United States

    NASA Astrophysics Data System (ADS)

    O'Connor, B. L.; Carr, A.; Patton, T.; Hamada, Y.

    2011-12-01

    The Bureau of Land Management (BLM) and the Department of Energy are preparing a joint programmatic environmental impact statement (PEIS) assessing the potential impacts of utility-scale solar energy development on BLM-administered lands in six southwestern states. One of the alternatives considered in the PEIS involves development within identified solar energy zones (SEZs) that individually cover approximately 10 to 1,000 km2, located primarily in desert valleys of the Basin and Range physiographic region. Land-disturbing activities in these alluvium-filled valleys have the potential to adversely affect ephemeral streams with respect to their hydrologic, geomorphic, and ecologic functions. Regulation and management of ephemeral streams typically falls under the spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. The PEIS analysis attempts to identify critical ephemeral streams by evaluating the integral functions of flood conveyance, sediment transport, groundwater recharge, and supporting ecological habitats. The initial approach to classifying critical ephemeral streams involved identifying large, erosional features using available flood hazards mapping, historical peak discharges, and aerial photographs. This approach identified ephemeral features not suitable for development (based primarily on the likelihood of damaging floods and debris flows) to address flood conveyance and sediment transport functions of ephemeral streams. Groundwater recharge and the maintenance of riparian vegetation and wildlife habitats are other functions of ephemeral streams. These functions are typically associated with headwater reaches rather than large-scale erosional features. Recognizing that integral functions of ephemeral streams occur over a range of spatial scales and are driven by varying climatic-hydrologic events, the PEIS analysis assesses ephemeral streams according to their position in the basin, stream order, and the recurrence intervals of runoff events in the basin. A key constraint on this approach is the lack of high-resolution hydrologic, geomorphic, and ecological data for ephemeral streams in remote desert basins of the southwest United States. Consultation with stakeholders and management agencies is an additional component to assist with our analysis where data limitations exist. Results from these analyses identify critical ephemeral stream reaches to be avoided during development activities based on a mix of quantitative and qualitative measures. Long-term monitoring of these systems is needed to assess the avoidance criteria and to help advance development of the tools needed to help manage and protect the integral functions of ephemeral stream networks in arid environments.

  19. Social vulnerability in the flood-prone anthropogenic landscape of Northern Italy

    NASA Astrophysics Data System (ADS)

    Roder, Giulia; Sofia, Giulia; Wu, Zhifeng; Tarolli, Paolo

    2017-04-01

    The practices for reducing the impacts of floods are becoming more and more advanced, centred to the communities and reached out to vulnerable populations. Vulnerable individuals are characterised by different social and economic attributes that can alter their capacity to cope with disaster events. The Social Vulnerability Index (Cutter et al. 2003) provides an empirical basis to compare social variances in different spatial scenarios and environmental threats. This methodology has been readjusted to the flood-prone anthropogenic landscape of Northern Italy adapted to the societal and historical construction of this area. In fact, the fifteen census variables used have been contextualised by examining the economic crisis, the modification of the labour force, the gendered life expectancy, the immigration among much more. At a general consideration, the unstable economic status, the population growth, age, and ethnicity are the major social attributes affecting the residents of the floodplain. The cluster analysis performed by the calculation of univariate LISA ratifies the spatial distribution of the index (Moran's I of 0.39 showing a positive correlation) finding the main high-high clusters in the Western and the outlet of the Po River basin. This basin includes one-third of the Italian population and this anthropogenic footprint has consistently modified the basin natural and geological environment (Carminati and Martinelli 2002) to the point that the hydraulic system will be dramatically altered in the future (Dankers and Feyen 2008). The spatial identification and the inclusion of vulnerable people into the risk management planning process have been widely discussed in the Sendai Framework for Disaster Risk Reduction. For this reason, we analysed the flood risk resulting from the combination of high vulnerable areas with the highest flood hazard scenario. The hazard map, finalised in May 2015, has been provided by ISPRA Institute with a three-class flood probability distribution. Within the floodplain, it has been found that only 22 municipalities are located in a high-risk location: Lombardia (10; 12.5 %), Piemonte (9; 2.7 %) and Veneto (3; 10.7 %) region. These regions are the most economically competitive regions within the North of Italy with elevated levels of human-landscape interactions. Low scores of susceptibility coupled with high flood exposure areas (i.e. the Polesine region) need to be taken into account in flood reduction policies. For this reason, smallest areas can be used as macro-scale analysis with a municipality-scale subdivision to examine the societal characteristics of the community and their locations. This would benefit practitioners and managers to produce rapid flood emergency evaluations and focused land plans. Undeniably, social vulnerability and risk maps are only a part of the efforts needed to reduce the risk posed by environmental hazards. In fact, there is the need of a multi-stakeholder participation at all levels, from managers to politicians to plan, finance and finalise those actions aiming at empowering the most vulnerable people that live in flood-prone regions. Also, there is a need to stimulate researchers to contribute qualitatively to quantitative researches as documented by the EU Flood Directive 2007/60/EC. References: Carminati, E., and G. Martinelli, 2002: Subsidence rates in the Po Plain, northern Italy: The relative impact of natural and anthropogenic causation. Eng. Geol., 66, 241-255, doi:10.1016/S0013-7952(02)00031-5. Cutter, S., B. Boruff, and W. Shirley, 2003: Social vulnerability to environmental hazards. Soc. Sci. Q., 84, 242-261, doi:10.1111/1540-6237.8402002. Dankers, R., and L. Feyen, 2008: Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. J. Geophys. Res. Atmos., 113, 1-17, doi:10.1029/2007JD009719. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), 2015: Geoportale ISPRA Ambiente. Accesso alla cartografia. http://geoportale.isprambiente.it. (Italian) The European Parliament and the Council of the European Union. Directive 2007/60/EC of the European Parliament and the Council of 23 October 2007 on the assessment and management of flood risks. Off. J. Eur. Union 2007, L288-27

  20. Active faults newly identified in Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    The Bellingham Basin, which lies north of Seattle and south of Vancouver around the border between the United States and Canada in the northern part of the Cascadia subduction zone, is important for understanding the regional tectonic setting and current high rates of crustal deformation in the Pacific Northwest. Using a variety of new data, Kelsey et al. identified several active faults in the Bellingham Basin that had not been previously known. These faults lie more than 60 kilometers farther north of the previously recognized northern limit of active faulting in the area. The authors note that the newly recognized faults could produce earthquakes with magnitudes between 6 and 6.5 and thus should be considered in hazard assessments for the region. (Journal of Geophysical Reserch-Solid Earth, doi:10.1029/2011JB008816, 2012)

  1. Neogene deformation of thrust-top Rzeszów Basin (Outer Carpathians, Poland)

    NASA Astrophysics Data System (ADS)

    Uroda, Joanna

    2015-04-01

    The Rzeszów Basin is a 220 km2 basin located in the frontal part of Polish Outer Carpathians fold-and-thrust belt. Its sedimentary succession consist of ca. 600 m- thick Miocene evaporates, litoral and marine sediments. This basin developed between Babica-Kąkolówka anticline and frontal thrust of Carpathian Orogen. Rzeszów thrust-top basin is a part of Carpathian foreland basin system- wedge-top depozone. The sediments of wedge -top depozone were syntectonic deformed, what is valuable tool to understand kinematic history of the orogen. Analysis of field and 3D seismic reflection data showed the internal structure of the basin. Seismic data reveal the presence of fault-bend-folds in the basement of Rzeszów basin. The architecture of the basin - the presence of fault-releated folds - suggest that the sediments were deformed in last compressing phase of Carpathian Orogen deformation. Evolution of Rzeszów Basin is compared with Bonini et.al. (1999) model of thrust-top basin whose development is controlled by the kinematics of two competing thrust anticlines. Analysis of seismic and well data in Rzeszów basin suggest that growth sediments are thicker in south part of the basin. During the thrusting the passive rotation of the internal thrust had taken place, what influence the basin fill architecture and depocentre migration opposite to thrust propagation. Acknowledgments This study was supported by grant No 2012/07/N/ST10/03221 of the Polish National Centre of Science "Tectonic activity of the Skole Nappe based on analysis of changes in the vertical profile and depocentre migration of Neogene sediments in Rzeszów-Strzyżów area (Outer Carpathians)". Seismic data by courtesy of the Polish Gas and Oil Company. References Bonini M., Moratti G., Sani F., 1999, Evolution and depocentre migration in thrust-top basins: inferences from the Messinian Velona Basin (Northern Apennines, Italy), Tectonophysics 304, 95-108.

  2. Land susceptibility to soil erosion in Orashi Catchment, Nnewi South, Anambra State, Nigeria

    NASA Astrophysics Data System (ADS)

    Odunuga, Shakirudeen; Ajijola, Abiodun; Igwetu, Nkechi; Adegun, Olubunmi

    2018-02-01

    Soil erosion is one of the most critical environmental hazards that causes land degradation and water quality challenges. Specifically, this phenomenon has been linked, among other problems, to river sedimentation, groundwater pollution and flooding. This paper assesses the susceptibility of Orashi River Basin (ORB) to soil erosion for the purpose of erosion control measures. Located in the South Eastern part of Nigeria, the ORB which covers approximately 413.61 km2 is currently experiencing one of the fastest population growth rate in the region. Analysis of the soil erosion susceptibility of the basin was based on four factors including; rainfall, Land use/Land cover change (LULC), slope and soil erodibility factor (k). The rainfall was assumed to be a constant and independent variable, slope and soil types were categorised into ten (10) classes each while the landuse was categorised into five classes. Weight was assigned to the classes based on the degree of susceptibility to erosion. An overlay of the four variables in a GIS environment was used to produce the basin susceptibility to soil erosion. This was based on the weight index of each factors. The LULC analysis revealed that built-up land use increased from 26.49 km2 (6.4 %) in year 1980 to 79.24 km2 (19.16 %) in 2015 at an average growth rate of 1.51 km2 per annum while the light forest decreased from 336.41 km2 (81.33 %) in 1980 to 280.82 km2 (67.89 %) in 2015 at an average rate 1.59 km2 per annum. The light forest was adjudged to have the highest land cover soil erosion susceptibility. The steepest slope ranges between 70 and 82° (14.34 % of the total land area) and was adjudged to have the highest soil susceptibility to erosion. The total area covered of the loamy soil is 112.37 km2 (27.07 %) with erodibility of 0.7. In all, the overlay of all the variables revealed that 106.66 km2 (25.70 %) and 164.80 km2 (39.7 %) of the basin has a high and very high susceptibility to soil erosion. The over 50 % high susceptibility of catchment has serious negative implications on the surface water in terms of water quality and downstream siltation with great consequences on biodiversity and ecosystem services including domestic and industrial usage.

  3. Global mapping of nonseismic sea level oscillations at tsunami timescales.

    PubMed

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-18

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (<2 h) may substantially contribute to global sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.

  4. Flood risk assessment of land pollution hotspots

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Arrighi, Chiara; Iannelli, Renato

    2017-04-01

    Among the risks caused by extreme events, the potential spread of pollutants stored in land hotspots due to floods is an aspect that has been rarely examined with a risk-based approach. In this contribution, an attempt to estimate pollution risks related to flood events of land pollution hotspots was carried out. Flood risk has been defined as the combination of river flood hazard, hotspots exposure and vulnerability to contamination of the area, i.e. the expected severity of the environmental impacts. The assessment was performed on a geographical basis, using geo-referenced open data, available from databases of land management institutions, authorities and agencies. The list of land pollution hotspots included landfills and other waste handling facilities (e.g., temporary storage, treatment and recycling sites), municipal wastewater treatment plants, liquid waste treatment facilities and contaminated sites. The assessment was carried out by combining geo-referenced data of pollution hotspots with flood hazard maps. We derived maps of land pollution risk based on geographical and geological properties and source characteristics available from environmental authorities. These included information about soil particle size, soil hydraulic conductivity, terrain slope, type of stored pollutants, the type of facility, capacity, size of the area, land use, etc. The analysis was carried out at catchment scale. The case study of the Arno river basin in Tuscany (central Italy) is presented.

  5. Global mapping of nonseismic sea level oscillations at tsunami timescales

    PubMed Central

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-01

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (<2 h) may substantially contribute to global sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates. PMID:28098195

  6. Deadly heat waves projected in the densely populated agricultural regions of South Asia

    PubMed Central

    Im, Eun-Soon; Pal, Jeremy S.; Eltahir, Elfatih A. B.

    2017-01-01

    The risk associated with any climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The most intense hazard from extreme future heat waves is concentrated around densely populated agricultural regions of the Ganges and Indus river basins. Climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability. PMID:28782036

  7. Bioassessment of the Effluents Discharged from Two Export Oriented Industrial Zones Located in Kelani River Basin, Sri Lanka Using Erythrocytic Responses of the Fish, Nile Tilapia (Oreochromis niloticus).

    PubMed

    Hemachandra, C K; Pathiratne, A

    2017-10-01

    Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.

  8. Lunar impact basins: New data for the nearside northern high latitudes and eastern limb from the second Galileo flyby

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Belton, M.; Greeley, R.; Pieters, C.; Fischer, E.; Sunshine, J.; Klaasen, K.; Mcewen, A.; Becker, T.; Neukum, G.

    1993-01-01

    During the December 1992 Galileo Earth/Moon encounter the northern half of the nearside, the eastern limb, and parts of the western farside of the Moon were illuminated and in view, a geometry that was complementary to the first lunar encounter in December, 1990, which obtained images of the western limb and eastern farside. The Galileo Solid State Imaging System (SSI) obtained multispectral images for these regions during the second encounter and color ratio composite images were compiled using combinations of band ratios chosen on the basis of telescopic spectra and laboratory spectra of lunar samples. Ratios of images taken at 0.41 and 0.76 micron are sensitive to changes in the slope in the visible portion of the spectrum, and ratios of 0.99 and 0.76 micron relate to the strength of near-infrared absorptions due to iron-rich mafic minerals (0.76/0.99 ratio) such as olivine and pyroxene. Results of the analyses of the compositional diversity of the crust, maria, and Copernican craters are presented elsewhere. Primary objectives for lunar basin analysis for the second encounter include analysis of: the north polar region and the Humboldtianum basin; the characteristics of the Imbrium basin along its northern border and the symmetry of associated deposits; the origin of light plains north of Mare Frigoris and associated with several other basins; the nature and significance of pre-basin substrate; the utilization of the stereo capability to assess subtle basis structure; the identification of previously unrecognized ancient basins; basin deposits and structure for limb and farside basins; and assessment of evidence for proposed ancient basins. These data and results will be applied to addressing general problems of evaluation of the nature and origin of basin deposits, investigation of mode of ejecta emplacement and ejecta mixing, analysis of the origin of light plains deposits, analysis of basin deposit symmetry/asymmetry, investigation of basin depth of excavation and crustal stratigraphy, and assessment of models for basin formation and evolution. Here we discuss some preliminary results concerning lunar impact basins, their deposits, and prebasin substrates, using the same approaches that we employed for the Orientale and South Pole-Aitken basins using the data from the first encounter.

  9. The 2018 and 2020 Updates of the U.S. National Seismic Hazard Models

    NASA Astrophysics Data System (ADS)

    Petersen, M. D.

    2017-12-01

    During 2018 the USGS will update the 2014 National Seismic Hazard Models by incorporating new seismicity models, ground motion models, site factors, fault inputs, and by improving weights to ground motion models using empirical and other data. We will update the earthquake catalog for the U.S. and introduce new rate models. Additional fault data will be used to improve rate estimates on active faults. New ground motion models (GMMs) and site factors for Vs30 have been released by the Pacific Earthquake Engineering Research Center (PEER) and we will consider these in assessing ground motions in craton and extended margin regions of the central and eastern U.S. The USGS will also include basin-depth terms for selected urban areas of the western United States to improve long-period shaking assessments using published depth estimates to 1.0 and 2.5 km/s shear wave velocities. We will produce hazard maps for input into the building codes that span a broad range of periods (0.1 to 5 s) and site classes (shear wave velocity from 2000 m/s to 200 m/s in the upper 30 m of the crust, Vs30). In the 2020 update we plan on including: a new national crustal model that defines basin depths required in the latest GMMs, new 3-D ground motion simulations for several urban areas, new magnitude-area equations, and new fault geodetic and geologic strain rate models. The USGS will also consider including new 3-D ground motion simulations for inclusion in these long-period maps. These new models are being evaluated and will be discussed at one or more regional and topical workshops held at the beginning of 2018.

  10. Source parameters and tectonic interpretation of recent earthquakes (1995 1997) in the Pannonian basin

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Horváth, Frank; Tóth, László

    2001-01-01

    From January 1995 to December 1997, about 74 earthquakes were located in the Pannonian basin and digitally recorded by a recently established network of seismological stations in Hungary. On reviewing the notable events, about 12 earthquakes were reported as felt with maximum intensity varying between 4 and 6 MSK. The dynamic source parameters of these earthquakes have been derived from P-wave displacement spectra. The displacement source spectra obtained are characterised by relatively small values of corner frequency ( f0) ranging between 2.5 and 10 Hz. The seismic moments change from 1.48×10 20 to 1.3×10 23 dyne cm, stress drops from 0.25 to 76.75 bar, fault length from 0.42 to 1.7 km and relative displacement from 0.05 to 15.35 cm. The estimated source parameters suggest a good agreement with the scaling law for small earthquakes. The small values of stress drops in the studied earthquakes can be attributed to the low strength of crustal materials in the Pannonian basin. However, the values of stress drops are not different for earthquake with thrust or normal faulting focal mechanism solutions. It can be speculated that an increase of the seismic activity in the Pannonian basin can be predicted in the long run because extensional development ceased and structural inversion is in progress. Seismic hazard assessment is a delicate job due to the inadequate knowledge of the seismo-active faults, particularly in the interior part of the Pannonian basin.

  11. Utah Flooding Hazard: Raising Public Awareness through the Creation of Multidisciplinary Web-Based Maps

    NASA Astrophysics Data System (ADS)

    Castleton, J.; Erickson, B.; Bowman, S. D.; Unger, C. D.

    2014-12-01

    The Utah Geological Survey's (UGS) Geologic Hazards Program has partnered with the U.S. Army Corps of Engineers to create geologically derived web-based flood hazard maps. Flooding in Utah communities has historically been one of the most damaging geologic hazards. The most serious floods in Utah have generally occurred in the Great Salt Lake basin, particularly in the Weber River drainage on the western slopes of the Wasatch Range, in areas of high population density. With a growing population of 2.9 million, the state of Utah is motivated to raise awareness about the potential for flooding. The process of increasing community resiliency to flooding begins with identification and characterization of flood hazards. Many small communities in areas experiencing rapid growth have not been mapped completely by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM). Existing FIRM maps typically only consider drainage areas that are greater than one square mile in determining flood zones and do not incorporate geologic data, such as the presence of young, geologically active alluvial fans that indicate a high potential for debris flows and sheet flooding. Our new flood hazard mapping combines and expands on FEMA data by incorporating mapping derived from 1:24,000-scale UGS geologic maps, LiDAR data, digital elevation models, and historical aerial photography. Our flood hazard maps are intended to supplement the FIRM maps to provide local governments and the public with additional flood hazard information so they may make informed decisions, ultimately reducing the risk to life and property from flooding hazards. Flooding information must be widely available and easily accessed. One of the most effective ways to inform the public is through web-based maps. Web-based flood hazard maps will not only supply the public with the flood information they need, but also provides a platform to add additional geologic hazards to an easily accessible format.

  12. Evaluating Coupled Human-Hydrologic Systems in High Altitude Regions: A Case Study of the Arun Watershed, Eastern Nepal

    NASA Astrophysics Data System (ADS)

    Voss, K.; Bookhagen, B.; Tague, C.; Lopez-Carr, D.

    2014-12-01

    The Himalaya exhibit dynamic ecological, hydrological, and climatic extremes that magnify the variability and extent of natural hazards, resulting in destruction to both physical and human landscapes. Coupled with poverty, these factors intensify local communities' vulnerability to climate change. This study highlights the Arun watershed in eastern Nepal as a case study to evaluate how local communities in high altitude regions are managing their water for domestic and agricultural needs while coping with extreme events, such as floods and landslides. Remotely-sensed precipitation, snowpack and glacial extent data from the past decade are combined with preliminary results from extensive field-based community surveys in the Arun watershed. The analysis of remotely-sensed data will describe seasonal trends in water availability, glacial lake growth, and the spatial variation of these trends within the basin. These hydrologic changes will be linked to the human survey analysis, which will provide an understanding of locals' perceptions of water challenges and the current water management strategies within the basin. Particular attention will be given to a comparison between the eastern and western tributaries of the Arun River, where the catchments are mainly rain-fed (eastern) versus glacial-fed (western). This contrast will highlight how different hydrologic scenarios evidenced from remote-sensing data motivate diverse human water management responses as defined in field surveys. A particular focus will be given to management decisions related to agriculture expansion and hydropower development. This synthesis of remote-sensing and social research methodologies provides a valuable perspective on coupled human-hydrologic systems.

  13. Alternatives to Crop Insurance for Mitigating Hydrologic Risk in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Baker, J. M.; Griffis, T. J.; Gorski, G.; Wood, J. D.

    2015-12-01

    Corn and soybean production in the Upper Mississippi River Basin can be limited by either excess or shortage of water, often in the same year within the same watershed. Most producers indemnify themselves against these hazards through the Federal crop insurance program, which is heavily subsidized, thus discouraging expenditures on other forms of risk mitigation. The cost is not trivial, amounting to more than 60 billion USD over the past 15 years. Examination of long-term precipitation and streamflow records at the 8-digit scale suggests that inter-annual hydrologic variability in the region is increasing, particularly in an area stretching from NW IL through much of IA and southern MN. Analysis of crop insurance statistics shows that these same watersheds exhibit the highest frequency of coincident claims for yield losses to both excess water and drought within the same year. An emphasis on development of water management strategies to increase landscape storage and subsequent reuse through supplemental irrigation in this region could reduce the cost of the crop insurance program and stabilize yield. However, we also note that analysis of yield data from USDA-NASS shows that interannual yield variability at the watershed scale is much more muted than the indemnity data suggest, indicating that adverse selection is probably a factor in the crop insurance marketplace. Consequently, we propose that hydrologic mitigation practices may be most cost-effective if they are carefully targeted, using topographic, soil, and meteorological data, in combination with more site-specificity in crop insurance data.

  14. Climate change impact on soil erosion in the Mandakini River Basin, North India

    NASA Astrophysics Data System (ADS)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  15. Flood mapping in ungauged basins using fully continuous hydrologic-hydraulic modeling

    NASA Astrophysics Data System (ADS)

    Grimaldi, Salvatore; Petroselli, Andrea; Arcangeletti, Ettore; Nardi, Fernando

    2013-04-01

    SummaryIn this work, a fully-continuous hydrologic-hydraulic modeling framework for flood mapping is introduced and tested. It is characterized by a simulation of a long rainfall time series at sub-daily resolution that feeds a continuous rainfall-runoff model producing a discharge time series that is directly given as an input to a bi-dimensional hydraulic model. The main advantage of the proposed approach is to avoid the use of the design hyetograph and the design hydrograph that constitute the main source of subjective analysis and uncertainty for standard methods. The proposed procedure is optimized for small and ungauged watersheds where empirical models are commonly applied. Results of a simple real case study confirm that this experimental fully-continuous framework may pave the way for the implementation of a less subjective and potentially automated procedure for flood hazard mapping.

  16. Wastewater characterization survey, Victor Valley Wastewater Reclamation Authority and hazardous-waste survey at George AFB, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binovi, R.D.; Ng, E.K.; Tetla, R.A.

    1987-01-01

    This is a report of a survey of the Victor Wastewater Reclamation Authority Sewerage system, the sewage treatment plant, and effluent from the various operations at George AFB, California. The scope of work included the characterization of the wastewater from George AFB, as well as characterization of effluents from 29 oil/water separators servicing industrial operations on base, flow measurements at three locations on base, a microbiological evaluation of aeration basin foam, bench-scale activated-sludge studies, and a review of results from previous surveys. Recommendations: (1) AFFF (Aqueous Film Forming Foam) should never be discharged to the sewer. (2) Programming for pretreatmentmore » should proceed at selected operations. (3) More waste and wastestream analysis be performed. (4) Upgrade waste accumulation points. (5) Implement an aggressive inspection program for oil/water separators. (6) Cut down on nonessential washing.« less

  17. Crustal structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography

    NASA Astrophysics Data System (ADS)

    van Wagoner, T. M.; Crosson, R. S.; Creager, K. C.; Medema, G.; Preston, L.; Symons, N. P.; Brocher, T. M.

    2002-12-01

    The availability of regional earthquake data from the Pacific Northwest Seismograph Network (PNSN), together with active source data from the Seismic Hazards Investigation in Puget Sound (SHIPS) seismic experiments, has allowed us to construct a new high-resolution 3-D, P wave velocity model of the crust to a depth of about 30 km in the central Puget Lowland. In our method, earthquake hypocenters and velocity model are jointly coupled in a fully nonlinear tomographic inversion. Active source data constrain the upper 10-15 km of the model, and earthquakes constrain the deepest portion of the model. A number of sedimentary basins are imaged, including the previously unrecognized Muckleshoot basin, and the previously incompletely defined Possession and Sequim basins. Various features of the shallow crust are imaged in detail and their structural transitions to the mid and lower crust are revealed. These include the Tacoma basin and fault zone, the Seattle basin and fault zone, the Seattle and Port Ludlow velocity highs, the Port Townsend basin, the Kingston Arch, and the Crescent basement, which is arched beneath the Lowland from its surface exposure in the eastern Olympics. Strong lateral velocity gradients, consistent with the existence of previously inferred faults, are observed, bounding the southern Port Townsend basin, the western edge of the Seattle basin beneath Dabob Bay, and portions of the Port Ludlow velocity high and the Tacoma basin. Significant velocity gradients are not observed across the southern Whidbey Island fault, the Lofall fault, or along most of the inferred location of the Hood Canal fault. Using improved earthquake locations resulting from our inversion, we determined focal mechanisms for a number of the best recorded earthquakes in the data set, revealing a complex pattern of deformation dominated by general arc-parallel regional tectonic compression. Most earthquakes occur in the basement rocks inferred to be the lower Tertiary Crescent formation. The sedimentary basins and the eastern part of the Olympic subduction complex are largely devoid of earthquakes. Clear association of hypocenters and focal mechanisms with previously mapped or proposed faults is difficult; however, seismicity, structure, and focal mechanisms associated with the Seattle fault zone suggest a possible high-angle mode of deformation with the north side up. We suggest that this deformation may be driven by isostatic readjustment of the Seattle basin.

  18. Crustal structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography

    USGS Publications Warehouse

    Van Wagoner, T. M.; Crosson, R.S.; Creager, K.C.; Medema, G.; Preston, L.; Symons, N.P.; Brocher, T.M.

    2002-01-01

    The availability of regional earthquake data from the Pacific Northwest Seismograph Network (PNSN), together with active source data from the Seismic Hazards Investigation in Puget Sound (SHIPS) seismic experiments, has allowed us to construct a new high-resolution 3-D, P wave velocity model of the crust to a depth of about 30 km in the central Puget Lowland. In our method, earthquake hypocenters and velocity model are jointly coupled in a fully nonlinear tomographic inversion. Active source data constrain the upper 10-15 km of the model, and earthquakes constrain the deepest portion of the model. A number of sedimentary basins are imaged, including the previously unrecognized Muckleshoot basin, and the previously incompletely defined Possession and Sequim basins. Various features of the shallow crust are imaged in detail and their structural transitions to the mid and lower crust are revealed. These include the Tacoma basin and fault zone, the Seattle basin and fault zone, the Seattle and Port Ludlow velocity highs, the Port Townsend basin, the Kingston Arch, and the Crescent basement, which is arched beneath the Lowland from its surface exposure in the eastern Olympics. Strong lateral velocity gradients, consistent with the existence of previously inferred faults, are observed, bounding the southern Port Townsend basin, the western edge of the Seattle basin beneath Dabob Bay, and portions of the Port Ludlow velocity high and the Tacoma basin. Significant velocity gradients are not observed across the southern Whidbey Island fault, the Lofall fault, or along most of the inferred location of the Hood Canal fault. Using improved earthquake locations resulting from our inversion, we determined focal mechanisms for a number of the best recorded earthquakes in the data set, revealing a complex pattern of deformation dominated by general arc-parallel regional tectonic compression. Most earthquakes occur in the basement rocks inferred to be the lower Tertiary Crescent formation. The sedimentary basins and the eastern part of the Olympic subduction complex are largely devoid of earthquakes. Clear association of hypocenters and focal mechanisms with previously mapped or proposed faults is difficult; however, seismicity, structure, and focal mechanisms associated with the Seattle fault zone suggest a possible high-angle mode of deformation with the north side up. We suggest that this deformation may be driven by isostatic readjustment of the Seattle basin.

  19. Thirty Years Later: Reflections of the Big Thompson Flood, Colorado, 1976 to 2006

    NASA Astrophysics Data System (ADS)

    Jarrett, R. D.; Costa, J. E.; Brunstein, F. C.; Quesenberry, C. A.; Vandas, S. J.; Capesius, J. P.; O'Neill, G. B.

    2006-12-01

    Thirty years ago, over 300 mm of rain fell in about 4 to 6 hours in the middle reaches of the Big Thompson River Basin during the devastating flash flood on July 31, 1976. The rainstorm produced flood discharges that exceeded 40 m3/s/km2. A peak discharge of 883 m3/s was estimated at the Big Thompson River near Drake streamflow-gaging station. The raging waters left 144 people dead, 250 injured, and over 800 people were evacuated by helicopter. Four-hundred eighteen homes and businesses were destroyed, as well as 438 automobiles, and damage to infrastructure left the canyon reachable only via helicopter. Total damage was estimated in excess of $116 million (2006 dollars). Natural hazards similar to the Big Thompson flood are rare, but the probability of a similar event hitting the Front Range, other parts of Colorado, or other parts of the Nation is real. Although much smaller in scale than the Big Thompson flood, several flash floods have happened during the monsoon in early July 2006 in the Colorado foothills that reemphasized the hazards associated with flash flooding. The U.S. Geological Survey (USGS) conducts flood research to help understand and predict the magnitude and likelihood of large streamflow events such as the Big Thompson flood. A summary of hydrologic conditions of the 1976 flood, what the 1976 flood can teach us about flash floods, a description of some of the advances in USGS flood science as a consequence of this disaster, and lessons that we learned to help reduce loss of life from this extraordinary flash flood are discussed. In the 30 years since the Big Thompson flood, there have been important advances in streamflow monitoring and flood warning. The National Weather Service (NWS) NEXRAD radar allows real-time monitoring of precipitation in most places in the United States. The USGS currently (2006) operates about 7,250 real-time streamflow-gaging stations in the United States that are monitored by the USGS, the NWS, and emergency managers. When substantial flooding occurs, the USGS mobilizes personnel to collect streamflow data in affected areas. Streamflow data improve flood forecasting and provide data for flood-frequency analysis for floodplain management, design of structures located in floodplains, and related water studies. An important lesson learned is that nature provides environmental signs before and during floods that can help people avoid hazard areas. Important contributions to flood science as a result of the 1976 flood include development of paleoflood methods to interpret the preserved flood-plain stratigraphy to document the number, magnitude, and age of floods that occurred prior to streamflow monitoring. These methods and data on large floods can be used in many mountain-river systems to help us better understand flood hazards and plan for the future. For example, according to conventional flood-frequency analysis, the 1976 Big Thompson flood had a flood recurrence interval of about 100 years. However, paleoflood research indicated the 1976 flood was the largest in about the last 10,000 years in the basin and had a flood recurrence interval in excess of 1,000 years.

  20. The dynamics and drivers of fuel and fire in the Portuguese public forest.

    PubMed

    Fernandes, Paulo M; Loureiro, Carlos; Guiomar, Nuno; Pezzatti, Gianni B; Manso, Filipa T; Lopes, Luís

    2014-12-15

    The assumption that increased wildfire incidence in the Mediterranean Basin during the last decades is an outcome of changes in land use warrants an objective analysis. In this study we examine how annual area burned (BA) in the Portuguese public forest varied in relation to environmental and human-influenced drivers during the 1943-2011 period. Fire behaviour models were used to describe fuel hazard considering biomass removal, cover type changes, area burned, post-disturbance fuel accumulation, forest age-classes distribution and fuel connectivity. Biomass removal decreased rapidly beyond the 1940s, which, along with afforestation, increased fuel hazard until the 1980s; a subsequent decline was caused by increased fire activity. Change point analysis indicates upward shifts in BA in 1952 and in 1973, both corresponding to six-fold increases. Fire weather (expressed by the 90th percentile of the Canadian FWI during summer) increased over the study period, accounting for 18 and 36% of log(BA) variation before 1974 and after 1973, respectively. Regression modelling indicates that BA responds positively to fire weather, fuel hazard and number of fires in descending order of importance; pre-summer and 2-year lagged precipitation respectively decrease and increase BA, but the effects are minor and non-significant when both variables are included in the model. Land use conflicts (expressed through more fires) played a role, but it was afforestation and agricultural abandonment that supported the fire regime shifts, explaining weather-drought as the current major driver of BA as well. We conclude that bottom-up factors, i.e. human-induced changes in landscape flammability and ignition density, can enhance or override the influence of weather-drought on the fire regime in Mediterranean humid regions. A more relevant role of fuel control in fire management policies and practices is warranted by our findings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. National Dam Inspection Program. Bentleyville Dam (NDI ID Number PA- 1096, DER ID Number 63-49), Ohio River Basin, Tributary North Branch Pigeon Creek, Washington County, Pennsylvania. Phase I Inspection Report

    DTIC Science & Technology

    1981-06-01

    controlled manner.V The Bentleyville Dam is a significant hazard-small size dam. TK2 recommended spillway design flood (SDF) for a dam of this size and...the dam was completed in 1938. 9. Evaluation. No major deficiencies were observed during the inspection which were considered as having an immediate

  2. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  3. A novel hazard assessment method for biomass gasification stations based on extended set pair analysis

    PubMed Central

    Yan, Fang; Xu, Kaili; Li, Deshun; Cui, Zhikai

    2017-01-01

    Biomass gasification stations are facing many hazard factors, therefore, it is necessary to make hazard assessment for them. In this study, a novel hazard assessment method called extended set pair analysis (ESPA) is proposed based on set pair analysis (SPA). However, the calculation of the connection degree (CD) requires the classification of hazard grades and their corresponding thresholds using SPA for the hazard assessment. In regard to the hazard assessment using ESPA, a novel calculation algorithm of the CD is worked out when hazard grades and their corresponding thresholds are unknown. Then the CD can be converted into Euclidean distance (ED) by a simple and concise calculation, and the hazard of each sample will be ranked based on the value of ED. In this paper, six biomass gasification stations are introduced to make hazard assessment using ESPA and general set pair analysis (GSPA), respectively. By the comparison of hazard assessment results obtained from ESPA and GSPA, the availability and validity of ESPA can be proved in the hazard assessment for biomass gasification stations. Meanwhile, the reasonability of ESPA is also justified by the sensitivity analysis of hazard assessment results obtained by ESPA and GSPA. PMID:28938011

  4. Hazard analysis on the Mid-Atlantic Continental Slope, DCS lease sale 59 Area

    USGS Publications Warehouse

    Cardinell, Alex P.; Keer, Frederick R.

    1982-01-01

    A multi-parameter high-resolution seismic survey covering 253 offshore lease blocks was undertaken for analysis of critical structural and depositional features and a suite of piston cores was examined for geotechnical properties on the Mid-Atlantic continental slope in the OCS Lease Sale 59 area. The analysis of this data revealed complex interrelationships between a number of buried structural and depositional features indicating the existence of a variety of slope environments in the proposed lease sale area. The relationship these depositional features have to fault scarps and other topographic irregularities is critical to hazards assessment in this area. Southwest of the Hudson Canyon area, a major slump complex was partially delineated and numerous drape structures, which in some cases appear to have developed into contemporaneous down-to-the-basin faults, are associated with topographic irregularities. Southwest of the Baltimore Canyon area, slumps may be a result of the formation of mud diapers. These diapers? are the first reported in the Mid-Atlantic continental slope. Piston cores were collected at selected locations to provide information on geotechnical strength parameters of slumps, slides, and undisturbed sediments. These data indicate that localized areas of under consolidated sediments are found on valley walls and ridges of the upper slope. These zones may represent discrete areas where either mass movement has occurred or the potential for mass movement may exist. Many of the mass-movement features identified in the OCS Lease Sale 59 area may be Pleistocene in age and are related to' conditions prevailing during low sea stands. Since these conditions are presently absent, the potential for sediment mass movement does not appear to present a major problem to oil and gas operations within the proposed OCS Lease Sale 59 area.

  5. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must... safety of property resulting from each permitted flight. This hazard analysis must— (1) Identify and...

  6. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must... safety of property resulting from each permitted flight. This hazard analysis must— (1) Identify and...

  7. Hydrotreater/Distillation Column Hazard Analysis Report Rev. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    This project Hazard and Risk Analysis Report contains the results of several hazard analyses and risk assessments. An initial assessment was conducted in 2012, which included a multi-step approach ranging from design reviews to a formal What-If hazard analysis. A second What-If hazard analysis was completed during February 2013 to evaluate the operation of the hydrotreater/distillation column processes to be installed in a process enclosure within the Process Development Laboratory West (PDL-West) facility located on the PNNL campus. The qualitative analysis included participation of project and operations personnel and applicable subject matter experts. The analysis identified potential hazardous scenarios, eachmore » based on an initiating event coupled with a postulated upset condition. The unmitigated consequences of each hazardous scenario were generally characterized as a process upset; the exposure of personnel to steam, vapors or hazardous material; a spray or spill of hazardous material; the creation of a flammable atmosphere; or an energetic release from a pressure boundary.« less

  8. Specific features of electric field in the atmosphere and Radon emanations in Tunkin Basin of Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Soloviev, S.; Loktev, D.

    2013-05-01

    Development of methods for diagnosing local crust encourages finding new ways for preventing hazardous geologic phenomena. Using measurements of several geophysical fields in addition to seismic methods enables to improve the existing methods and increase their reliability. In summer of 2009 and 2010, complex geophysical acquisition company was organized in the Tunkin Basin of the Baikal rift zone in South-Eastern Siberia, that runs 200 km to East-West from the southern tip of Baikal. Stationary observations were carried out in the central part of the Tunkin Basin, at the Geophysical observatory "I" of Institute of Solar-Terrestrial Physics of Siberian Branch of RAS and "II" near the Arshan settlement. Along with observations of microseismic noise and electric field variations in soil, there were performed measurements of electric field strength (Ez) in lowest atmosphere and volumetric activity of natural Radon in subsoil. Meteorological parameters were monitored with the use of DavisVantagePro meteorological stations. The analysis of observations showed that characteristic features of electric field in near-surface atmosphere are majorly defined by complex orography of the place and, consequently, by quickly changing meteorological conditions: thunderstorm activity and other mesometeorological events (with characteristic scale of tens of km and few hours long) in nearby rocks. The results of Ez(t) measurements performed under "good" weather conditions showed that the character of field variations depended on the local time with their maximum in daylight hours and minimum in the night. The analysis of Radon volumetric activity evidenced that its variations are influenced by atmospheric pressure and tides, and such influence is different at points "I" and "II". In particular, the tidal and atmospheric influence on Radon variations is more pronounced at "II" if compared to "I", which can be explained by locations of the registration points. Registration Point "II" is located close to tectonic faults, while "I" is in the center of the basin with its quite thick layer of sediments. Axial section observations of spatial inhomogeneities of electric field and Radon emanation were set along and across the Tunkin Basin. Observation points were set 3 to 10 km apart depending on the local relief. Each point was registering for 60 min under the conditions of "good" weather. There were analysed changes in mean strength of electric field and Radon volumetric activity as a function of distance along the axial section. It was found out that volumetric activity and electric field strength change in phase opposition - radon volumetric activity increase results in more intense ionization in near-surface atmosphere and consequently to decrease in the electric field strength. The concentration of Radon in subsoil atmosphere increases, and electric field strength decreases when approaching to rift zones rimming the Tunkin Basin from North and South. The results of axial section observations can be successfully used when mapping geological inhomogeneities in the Earth's crust. The research was done with financial support of RFBR, project# 12-05-00578

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoak, T.E.; Decker, A.D.

    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basinmore » analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.« less

  10. Automated Hazard Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, F. J.

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control and job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the workmore » planning process.« less

  11. Hydrothermal Liquefaction Treatment Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    Hazard analyses were performed to evaluate the modular hydrothermal liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios receivedmore » increased attention: •Scenarios involving a release of hazardous material or energy, controls were identified in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were identified for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.« less

  12. Hazard Analysis for Building 34 Vacuum Glove Box Assembly

    NASA Technical Reports Server (NTRS)

    Meginnis, Ian

    2014-01-01

    One of the characteristics of an effective safety program is the recognition and control of hazards before mishaps or failures occur. Conducting potentially hazardous tests necessitates a thorough hazard analysis in order to prevent injury to personnel, and to prevent damage to facilities and equipment. The primary purpose of this hazard analysis is to define and address the potential hazards and controls associated with the Building 34 Vacuum Glove Box Assembly, and to provide the applicable team of personnel with the documented results. It is imperative that each member of the team be familiar with the hazards and controls associated with his/her particular tasks, assignments and activities while interfacing with facility test systems, equipment and hardware. In fulfillment of the stated purposes, the goal of this hazard analysis is to identify all hazards that have the potential to harm personnel, damage the facility or its test systems or equipment, test articles, Government or personal property, or the environment. This analysis may also assess the significance and risk, when applicable, of lost test objectives when substantial monetary value is involved. The hazards, causes, controls, verifications, and risk assessment codes have been documented on the hazard analysis work sheets in Appendix A of this document. The preparation and development of this report is in accordance with JPR 1700.1, "JSC Safety and Health Handbook" and JSC 17773 Rev D "Instructions for Preparation of Hazard Analysis for JSC Ground Operations".

  13. Update of the USGS 2016 One-year Seismic Hazard Forecast for the Central and Eastern United States From Induced and Natural Earthquakes

    NASA Astrophysics Data System (ADS)

    Petersen, M. D.; Mueller, C. S.; Moschetti, M. P.; Hoover, S. M.; Llenos, A. L.; Ellsworth, W. L.; Michael, A. J.; Rubinstein, J. L.; McGarr, A.; Rukstales, K. S.

    2016-12-01

    The U.S. Geological Survey released a 2016 one-year forecast for seismic hazard in the central and eastern U.S., which included the influence from both induced and natural earthquakes. This forecast was primarily based on 2015 declustered seismicity rates but also included longer-term rates, 10- and 20- km smoothing distances, earthquakes between Mw 4.7 and maximum magnitudes of 6.0 or 7.1, and 9 alternative ground motion models. Results indicate that areas in Oklahoma, Kansas, Colorado, New Mexico, Arkansas, Texas, and the New Madrid Seismic Zone have a significant chance for damaging ground shaking levels in 2016 (greater than 1% chance of exceeding 0.12 PGA and MMI VI). We evaluate this one-year forecast by considering the earthquakes and ground shaking levels that occurred during the first half of 2016 (earthquakes not included in the forecast). During this period the full catalog records hundreds of events with M ≥ 3.0, but the declustered catalog eliminates most of these dependent earthquakes and results in much lower numbers of earthquakes. The declustered catalog based on USGS COMCAT indicates a M 5.1 earthquake occurred in the zone of highest hazard on the map. Two additional earthquakes of M ≥ 4.0 occurred in Oklahoma, and about 82 earthquakes of M ≥ 3.0 occurred with 77 in Oklahoma and Kansas, 4 in Raton Basin Colorado/New Mexico, and 1 near Cogdell Texas. In addition, 72 earthquakes occurred outside the zones of induced seismicity with more than half in New Madrid and eastern Tennessee. The catalog rates in the first half of 2016 and the corresponding seismic hazard were generally lower than in 2015. For example, the zones for Irving, Venus, and Fashing, Texas; Sun City, Kansas; and north-central Arkansas did not experience any earthquakes with M≥ 2.7 during this period. The full catalog rates were lower by about 30% in Raton Basin and the Oklahoma-Kansas zones but the declustered catalog rates did not drop as much. This decrease in earthquake activity may be related to a reported decrease in wastewater disposal caused by a drop in the price of oil and by regulatory actions. For example, during 2015 and 2016 regulators in Oklahoma and Kansas took several actions to reduce the disposal volumes in high hazard areas.

  14. Fluvial drainage networks: the fractal approach as an improvement of quantitative geomorphic analyses

    NASA Astrophysics Data System (ADS)

    Melelli, Laura; Liucci, Luisa; Vergari, Francesca; Ciccacci, Sirio; Del Monte, Maurizio

    2014-05-01

    Drainage basins are primary landscape units for geomorphological investigations. Both hillslopes and river drainage system are fundamental components in drainage basins analysis. As other geomorphological systems, also the drainage basins aim to an equilibrium condition where the sequence of erosion, transport and sedimentation approach to a condition of minimum energy effort. This state is revealed by a typical geometry of landforms and of drainage net. Several morphometric indexes can measure how much a drainage basin is far from the theoretical equilibrium configuration, revealing possible external disarray. In active tectonic areas, the drainage basins have a primary importance in order to highlight style, amount and rate of tectonic impulses, and morphometric indexes allow to estimate the tectonic activity classes of different sectors in a study area. Moreover, drainage rivers are characterized by a self-similarity structure; this promotes the use of fractals theory to investigate the system. In this study, fractals techniques are employed together with quantitative geomorphological analysis to study the Upper Tiber Valley (UTV), a tectonic intermontane basin located in northern Apennines (Umbria, central Italy). The area is the result of different tectonic phases. From Late Pliocene until present time the UTV is strongly controlled by a regional uplift and by an extensional phase with different sets of normal faults playing a fundamental role in basin morphology. Thirty-four basins are taken into account for the quantitative analysis, twenty on the left side of the basin, the others on the right side. Using fractals dimension of drainage networks, Horton's laws results, concavity and steepness indexes, and hypsometric curves, this study aims to obtain an evolutionary model of the UTV, where the uplift is compared to local subsidence induced by normal fault activity. The results highlight a well defined difference between western and eastern tributary basins, suggesting a greater disequilibrium in the last ones. The quantitative analysis points out the segments of the basin boundaries where the fault activity is more efficient and the resulting geomorphological implications.

  15. Flood frequencies and durations and their response to El Niño Southern Oscillation: Global analysis

    NASA Astrophysics Data System (ADS)

    Ward, P. J.; Kummu, M.; Lall, U.

    2016-08-01

    Floods are one of the most serious forms of natural hazards in terms of the damages they cause. In 2012 alone, flood damages exceeded 19 billion. A large proportion of the damages from several recent major flood disasters, such as those in South India and South Carolina (2015), England and Wales (2014), the Mississippi (2012), Thailand (2011), Queensland (Australia) (2010-2011), and Pakistan (2010), were related to the long duration of those flood events. However, most flood risk studies to date do not account for flood duration. In this paper, we provide the first global modelling exercise to assess the link between interannual climate variability and flood duration and frequency. Specifically, we examine relationships between simulated flood events and El Niño Southern Oscillation (ENSO). Our results show that the duration of flooding appears to be more sensitive to ENSO than is the case for flood frequency. At the globally aggregated scale, we found floods to be significantly longer during both El Niño and La Niña years, compared to neutral years. At the scale of individual river basins, we found strong correlations between ENSO and both flood frequency and duration for a large number of basins, with generally stronger correlations for flood duration than for flood frequency. Future research on flood impacts should attempt to incorporate more information on flood durations.

  16. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2007-01-01

    Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.

  17. Increasing stress on disaster risk finance due to large floods

    NASA Astrophysics Data System (ADS)

    Jongman, Brenden; Hochrainer-Stigler, Stefan; Feyen, Luc; Aerts, Jeroen; Mechler, Reinhard; Botzen, Wouter; Bouwer, Laurens; Pflug, Georg; Rojas, Rodrigo; Ward, Philip

    2014-05-01

    Recent major flood disasters have shown that single extreme events can affect multiple countries simultaneously, which puts high pressure on trans-national risk reduction and risk transfer mechanisms. To date, little is known about such flood hazard interdependencies across regions, and the corresponding joint risks at regional to continental scales. Reliable information on correlated loss probabilities is crucial for developing robust insurance schemes and public adaptation funds, and for enhancing our understanding of climate change impacts. Here we show that extreme discharges are strongly correlated across European river basins and that these correlations can, or should, be used in national to continental scale risk assessment. We present probabilistic trends in continental flood risk, and demonstrate that currently observed extreme flood losses could more than double in frequency by 2050 under future climate change and socioeconomic development. The results demonstrate that accounting for tail dependencies leads to higher estimates of extreme losses than estimates based on the traditional assumption of independence between basins. We suggest that risk management for these increasing losses is largely feasible, and we demonstrate that risk can be shared by expanding risk transfer financing, reduced by investing in flood protection, or absorbed by enhanced solidarity between countries. We conclude that these measures have vastly different efficiency, equity and acceptability implications, which need to be taken into account in broader consultation, for which our analysis provides a basis.

  18. Illinois basin coal fly ashes. 1. Chemical characterization and solubility

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.; Dickerson, D.R.; Schuller, R.M.; Martin, S.M.C.

    1984-01-01

    Twelve precipitator-collected fly ash samples (nine derived from high-sulfur Illinois Basin coals and three from Western U.S. coals) were found to contain a variety of paraffins, aryl esters, phenols, and polynuclear aromatic hydrocarbons including phenanthrene, pyrene, and chrysene but all at very low concentrations. Less than 1% of the organic carbon in the samples was extractable into benzene. Solubility studies with a short-term (24-h) extraction procedure and a long-term (20-week) procedure indicate that the inorganic chemical composition of some types of fly ash effluent is time dependent and may be most toxic to aquatic ecosystems when initially mixed with water and pumped to disposal ponds. Some acidic, high-Cd fly ashes would be classified as hazardous wastes if coal ash was included in this waste category by future RCRA revisions. ?? 1984 American Chemical Society.

  19. Study of application of ERTS-A imagery to fracture-related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J.; Russell, O. R.; Martin, K. R. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Mined land reclamation analysis procedures developed within the Indiana portion of the Illinois Coal Basin were independently tested in Ohio utilizing 1:80,000 scale enlargements of ERTS-1 image 1029-15361-7 (dated August 21, 1972). An area in Belmont County was selected for analysis due to the extensive surface mining and the different degrees of reclamation occurring in this area. Contour mining in this area provided the opportunity to extend techniques developed for analysis of relatively flat mining areas in Indiana to areas of rolling topography in Ohio. The analysts had no previous experience in the area. Field investigations largely confirmed office analysis results although in a few areas estimates of vegetation percentages were found to be too high. In one area this error approximated 25%. These results suggest that systematic ERTS-1 analysis in combination with selective field sampling can provide reliable vegetation percentage estimates in excess of 25% accuracy with minimum equipment investment and training. The utility of ERTS-1 for practical and reasonably reliable update of mined lands information for groups with budget limitations is suggested. Many states can benefit from low cost updates using ERTS-1 imagery from public sources.

  20. Analysis of Complex Marine Hazards on the Romanian Black Sea Shelf Using Combined Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Samoila, I. V.; Radulescu, V.; Moise, G.; Diaconu, A.; Radulescu, R.

    2017-12-01

    Combined geophysical acquisition technologies including High Resolution 2D Seismic (HR2D), Multi-Beam Echo-Sounding (MBES), Sub-Bottom Profiling (SBP) and Magnetometry were used in the Western Black Sea (offshore Romania) to identify possible geohazards, such as gas escaping surface sediments and tectonic hazard areas up to 1 km below the seafloor. The National Project was funded by the Research and Innovation Ministry of Romania, and has taken place over 1.5 years with the purpose of creating risk maps for the surveyed pilot area. Using an array of geophysical methods and creating a workflow to identify geohazard susceptible areas on the Romanian Black Sea continental shelf is important and beneficial for future research projects. The SBP and MBES data show disturbed areas that can be interpreted as gas escapes on the surface of the seafloor, and some escapes were confirmed on the HR2D profiles. Shallow gas indicators like gas chimneys and acoustic blanking are usually delimited by vertical, sub-vertical and/or quasi-horizontal faults that mark possible hazard areas on shallow sedimentary sections. Interpreted seismic profiles show three main markers: one delimiting the Pliocene-Quaternary boundary and two for the Miocene (Upper and Lower). Vertical and quasi-horizontal faults are characteristic for the Upper Miocene, while the Lower Miocene has NW-SE horizontal faults. Faults and possible hazard areas were marked on seismic sections and were further correlated with the MBES, SBP, Magnetometry and previously recorded data, such as earthquake epicenters scattered offshore in the Western Black Sea. The main fault systems likely to cause those earthquakes also aid the migration of gas if the faults are not sealed. We observed that the gas escapes were correlated with faults described on the recent seismic profiles. Mapping hazard areas will have an important contribution to better understand the recent evolution of the Western Black Sea basin but also for projecting the future offshore infrastructures. The resulting correlations in the geophysical data allowed us to create a workflow that shows desirable results for this area, and can be applied to other interest areas successfully and cost effectively.

  1. On the use of statistical methods to interpret electrical resistivity data from the Eumsung basin (Cretaceous), Korea

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Soo; Han, Soo-Hyung; Ryang, Woo-Hun

    2001-12-01

    Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole-dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E-W magnetotelluric lines and dipole-dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.

  2. Quantification of tsunami hazard on Canada's Pacific Coast; implications for risk assessment

    NASA Astrophysics Data System (ADS)

    Evans, Stephen G.; Delaney, Keith B.

    2015-04-01

    Our assessment of tsunami hazard on Canada's Pacific Coast (i.e., the coast of British Columbia) begins with a review of the 1964 tsunami generated by The Great Alaska Earthquake (M9.2) that resulted in significant damage to coastal communities and infrastructure. In particular, the tsunami waves swept up inlets on the west coast of Vancouver Island and damaged several communities; Port Alberni suffered upwards of 5M worth of damage. At Port Alberni, the maximum tsunami wave height was estimated at 8.2 m above mean sea level and was recorded on the stream gauge on the Somass River located at about 7 m a.s.l, 6 km upstream from its mouth. The highest wave (9.75 m above tidal datum) was reported from Shields Bay, Graham Island, Queen Charlotte Islands (Haida Gwaii). In addition, the 1964 tsunami was recorded on tide gauges at a number of locations on the BC coast. The 1964 signal and the magnitude and frequency of traces of other historical Pacific tsunamis (both far-field and local) are analysed in the Tofino tide gauge records and compared to tsunami traces in other tide gauges in the Pacific Basin (e.g., Miyako, Japan). Together with a review of the geological evidence for tsunami occurrence along Vancouver Island's west coast, we use this tide gauge data to develop a quantitative framework for tsunami hazard on Canada's Pacific coast. In larger time scales, tsunamis are a major component of the hazard from Cascadia megathrust events. From sedimentological evidence and seismological considerations, the recurrence interval of megathrust events on the Cascadia Subduction Zone has been estimated by others at roughly 500 years. We assume that the hazard associated with a high-magnitude destructive tsunami thus has an annual frequency of roughly 1/500. Compared to other major natural hazards in western Canada this represents a very high annual probability of potentially destructive hazard that, in some coastal communities, translates into high levels of local risk including life-loss risk. Our analysis further indicates that in terms of life-loss risk, communities on Canada's Pacific Coast that are exposed to high tsunami hazard, experience the highest natural risk in Canada. Although sparsely populated, the (outer) coast of British Columbia has important critical infrastructure that includes port developments, shoreline facilities related to forest resource exploitation, a large number of First Nations Reserves, small municipal centres, towns, and villages, (some of which are ecotourism and sport fishing centres), and a limited number of industrial facilities. For selected areas on the west coast of Vancouver Island inundation maps have been prepared for a range of tsunami scenarios. We find that key facilities and critical infrastructure are exposed to the hazards associated with tsunami inundation.

  3. Looking at groundwater research landscape of Jakarta Basin for better water management

    NASA Astrophysics Data System (ADS)

    Irawan, Dasapta Erwin; Priyambodho, Adhi; Novianti Rachmi, Cut; Maulana Wibowo, Dimas

    2017-07-01

    Based on our experience, defining the gap between what we know and what we don’t know is the hardest part in proposing water management strategy. Many techniques have been introduced to make this stage easier, and one of them is bibliometric analysis. The following paper is the second part of our bibliometric project in the search for a gap in the water resources research in Jakarta. This paper starts to analyse the visualisations that had been extracted from the previous paper based on our database. Using the keyword “groundwater Jakarta”, we managed to get 70 relevant papers. Several visualisations have been built using open source applications. Word cloud analysis shows that the trend to discuss groundwater in scientific sense had only been started in the early 2000’s. This is presumably due to the emerging regional autonomy in which forcing regions to understand their groundwater setting before creating a management strategy. More papers in the later time has been induced by more geo-hazards (land subsidence and floods) resulted in the vast groundwater pumping. More and more resources have been utilized to get more groundwater data. Water scientists by then understood that these hazards had been started long before the 2000’s. This had become the starting point of data era later on. The next era will be the era of water management. Hydrologists had been proposing integrated water management Jakarta and its nearby groundwater basins. Most of them have been strongly suggested to manage all water bodies, rainfall, surface water, and groundwater as one system. In the 2010’s we identify more papers are discussing in water quality following the vast discussion in water quantity in the previous era. People have been more aware the importance of quality in providing water system for the citizen. Then five years later, we believe that water researchers have also put their mind in the interactions between surface water and groundwater, especially in the riverbank, where most of the slums are located. Based on the results, we believe that more researches to understand interactions between groundwater and surface water would fill the gap to come up with better water management system in Jakarta.

  4. Flood impact assessment on the development of Archaia Olympia riparian area in Greece.

    NASA Astrophysics Data System (ADS)

    Pasaporti, Christina; Podimata, Marianthi; Yannopoulos, Panayotis

    2013-04-01

    A long list of articles in the literature examines several issues of flood risk management and applications of flood scenarios, taking into consideration the climate changes, as well as decision making tools in flood planning. The present study tries to highlight the conversation concerning flood impacts on the development rate of a riparian area. More specifically, Archaia (Ancient) Olympia watershed was selected as a case study area, since it is considered as a region of special interest and international significance. In addition, Alfeios River, which is the longest river of Peloponnisos Peninsula, passes through the plain of Archaia Olympia. Flood risk scenarios allow scientists and practitioners to understand the adverse effects of flooding on development activities such as farming, tourism etc. and infrastructures in the area such as road and railway networks, Flokas dam and the hydroelectric power plant, bridges, settlements and other properties. Flood risks cause adverse consequences on the region of Archaia Olympia (Ancient Olympic stadium) and Natura 2000 site area. Furthermore, SWOT analysis was used in order to quantify multicriteria and socio-economic characteristics of the study area. SWOT analysis, as a planning method, indicates the development perspective by identifying the strengths, weaknesses, threads and opportunities. Subsequent steps in the process of intergraded River Management Plan of Archaia Olympia could be derived from SWOT analysis. The recognition and analysis of hydro-geomorphological influences on riparian development activities can lead to the definition of hazardous and vulnerability zones and special warning equipment. The former information combined with the use of the spatial database for the catchment area of the River Alfeios, which aims to gather multiple watershed data, could serve in preparing the Management Plan of River Basin District 01 where Alfeios R. belongs. Greece has to fulfill the obligation of implementing River Basin Management Plans according to the European Water Framework Directive (WFD-EC 2000/60) and the European Directive on the assessment and management of the flood risk (EC 2007/60).

  5. 78 FR 69604 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Manufacturing Practice and Hazard Analysis and Risk- Based Preventive Controls for Human Food; Extension of... Hazard Analysis and Risk- Based Preventive Controls for Human Food'' and its information collection... Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for Human Food.'' IV. How To...

  6. 5. Basin assessment and watershed analysis

    Treesearch

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  7. Linkages Between Cretaceous Forearc and Retroarc Basin Development in Southern Tibet

    NASA Astrophysics Data System (ADS)

    Orme, D. A.; Laskowski, A. K.

    2015-12-01

    Integrated provenance and subsidence analysis of forearc and retroarc foreland basin strata were used to reconstruct the evolution of the southern margin of Eurasia during the Early to Late Cretaceous. The Cretaceous-Eocene Xigaze forearc basin, preserved along ~600 km of the southern Lhasa terrane, formed between the Gangdese magmatic arc and accretionary complex as subduction of Neo-Tethyan oceanic lithosphere accommodated the northward motion and subsequent collision of the Indian plate. Petrographic similarities between Xigaze forearc basin strata and Cretaceous-Eocene sedimentary rocks of the northern Lhasa terrane, interpreted as a retroarc foreland basin, were previously interpreted to record N-S trending river systems connecting the retro- and forearc regions during Cretaceous time. New sandstone petrographic and U-Pb detrital zircon provenance analysis of Xigaze forearc basin strata support this hypothesis. Qualitative and statistical provenance analysis using cumulative distribution functions and Kolmogorov-Smirnov (K-S) tests show that the forearc basin was derived from either the same source region as or recycled from the foreland basin. Quartz-rich sandstones with abundant carbonate sedimentary lithic grains and rounded, cobble limestone clasts suggests a more distal source than the proximal Gangdese arc. Therefore, we interpret that the northern Lhasa terrane was a significant source of Xigaze forearc detritus and track spatial and temporal variability in the connection between the retro- and forearc basin systems during the Late Cretaceous. A tectonic subsidence curve for the Xigaze forearc basin shows a steep and "kinked" shape similar to other ancient and active forearc basins. Initial subsidence was likely driven by thermal relaxation of the forearc ophiolite after emplacement while additional periods of rapid subsidence likely result from periods of high flux magmatism in the Gangdese arc and changes in plate convergence rate. Comparison of the subsidence history of the Xigaze forearc basin with the Cretaceous-Eocene retroarc foreland basin reveals coeval periods of rapid subsidence, specifically during the Aptian-Turonian, suggesting that the upper-plate was in an overall state of extension.

  8. Hyperspectral remote sensing and GIS techniques application for the evaluation and monitoring of interactions between natural risks and industrial hazards

    NASA Astrophysics Data System (ADS)

    Marino, Alessandra; Ludovisi, Giancarlo; Moccaldi, Antonio; Damiani, Fiorenzo

    2001-02-01

    The aim of this paper is to outline the potential of imaging spectroscopy and GIS techniques as tool for the management of data rich environments, as complex fluvial areas, exposed to geological, geomorphological, and hydrogeological risks. The area of study, the Pescara River Basin is characterized by the presence of important industrial sites and by the occurrence of floods, landslides and seismic events. Data were collected, during a specific flight, using an hyperspectral MIVIS sensor. Images have been processed in order to obtain updated and accurate land-cover and land-use maps that have been inserted in a specific GIS database and integrated with further information like lithology, geological structure, geomorphology, hydrogeological features, productive plants location and characters. The processing of data layers was performed, using a dedicated software, through typical GIS operators like indexing, recording, matrix analysis, proximity analysis. The interactions between natural risks, industrial installations, agricultural areas, water resources and urban settlements have been analyzed. This allowed the creation and processing of thematic layers like vulnerability, risk and impact maps.

  9. Review: Regional land subsidence accompanying groundwater extraction

    USGS Publications Warehouse

    Galloway, Devin L.; Burbey, Thomas J.

    2011-01-01

    The extraction of groundwater can generate land subsidence by causing the compaction of susceptible aquifer systems, typically unconsolidated alluvial or basin-fill aquifer systems comprising aquifers and aquitards. Various ground-based and remotely sensed methods are used to measure and map subsidence. Many areas of subsidence caused by groundwater pumping have been identified and monitored, and corrective measures to slow or halt subsidence have been devised. Two principal means are used to mitigate subsidence caused by groundwater withdrawal—reduction of groundwater withdrawal, and artificial recharge. Analysis and simulation of aquifer-system compaction follow from the basic relations between head, stress, compressibility, and groundwater flow and are addressed primarily using two approaches—one based on conventional groundwater flow theory and one based on linear poroelasticity theory. Research and development to improve the assessment and analysis of aquifer-system compaction, the accompanying subsidence and potential ground ruptures are needed in the topic areas of the hydromechanical behavior of aquitards, the role of horizontal deformation, the application of differential synthetic aperture radar interferometry, and the regional-scale simulation of coupled groundwater flow and aquifer-system deformation to support resource management and hazard mitigation measures.

  10. Hazard Analysis for Pneumatic Flipper Suitport/Z-1 Manned Evaluation, Chamber B, Building 32. Revision: Basic

    NASA Technical Reports Server (NTRS)

    2012-01-01

    One of the characteristics of an effective safety program is the recognition and control of hazards before mishaps or failures occur. Conducting potentially hazardous tests necessitates a thorough hazard analysis in order to protect our personnel from injury and our equipment from damage. The purpose of this hazard analysis is to define and address the potential hazards and controls associated with the Z1 Suit Port Test in Chamber B located in building 32, and to provide the applicable team of personnel with the documented results. It is imperative that each member of the team be familiar with the hazards and controls associated with his/her particular tasks, assignments, and activities while interfacing with facility test systems, equipment, and hardware. The goal of this hazard analysis is to identify all hazards that have the potential to harm personnel and/or damage facility equipment, flight hardware, property, or harm the environment. This analysis may also assess the significance and risk, when applicable, of lost test objectives when substantial monetary value is involved. The hazards, causes, controls, verifications, and risk assessment codes have been documented on the hazard analysis work sheets in appendix A of this document. The preparation and development of this report is in accordance with JPR 1700.1, JSC Safety and Health Handbook.

  11. A multidisciplinary approach to characterize the geometry of active faults: the example of Mt. Massico, Southern Italy

    NASA Astrophysics Data System (ADS)

    Luiso, P.; Paoletti, V.; Nappi, R.; La Manna, M.; Cella, F.; Gaudiosi, G.; Fedi, M.; Iorio, M.

    2018-06-01

    We present the results of a multidisciplinary and multiscale study at Mt. Massico, Southern Italy. Mt. Massico is a carbonate horst located along the Campanian-Latial margin of the Tyrrhenian basin, bordered by two main NE-SW systems of faults, and by NW-SE and N-S trending faults. Our analysis deals with the modelling of the main NE-SW faults. These faults were capable during Plio-Pleistocene and are still active today, even though with scarce and low-energy seismicity (Mw maximum = 4.8). We inferred the pattern of the fault planes through a combined interpretation of 2-D hypocentral sections, a multiscale analysis of gravity field and geochemical data. This allowed us to characterize the geometry of these faults and infer their large depth extent. This region shows very striking gravimetric signatures, well-known Quaternary faults, moderate seismicity and a localized geothermal fluid rise. Thus, this analysis represents a valid case study for testing the effectiveness of a multidisciplinary approach, and employing it in areas with buried and/or silent faults of potential high hazard, such as in the Apennine chain.

  12. CFD Analysis of different types of single basin solar stills

    NASA Astrophysics Data System (ADS)

    Maheswari, C. Uma; Meenakshi Reddy, R.

    2018-03-01

    The current work deals with the numerical and experimental analysis of a solar still of single basin with improved models of stepped, finned, PCM (Phase modification Materials) instrumentation in single slope. The work is additionally extended to double slope solar still of single basin and also the performances were compared with one another. The one slope basin inclinations were compared for 15° and 20°. From the investigations it had been ascertained that single slope with 20° and PCM instrumentation has given the upper productivity compared to different sorts.

  13. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    USGS Publications Warehouse

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.

    1997-01-01

    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in theenvironment; however, waterfowl were reproducing at the two ponds. Three tributary streams of Mc Elmo Creek that drain irrigated areas of the Montezuma Valley south of the creek were sampled in 1994. Mud Creek probably is the largest source of selenium to Mc Elmo Creek. Most biota samples from Mud Creek had elevated selenium concentrations when compared to guidelines for dietary items and freshwater fish. Selenium concentrations in water samples collected in the Mancos River Basin upstream from Navajo Wash, which includes the Mancos Project, ranged from less than 1 to 10 micrograms per liter. Mud Creek contributed about 74 percent of the selenium load to the upper Mancos River in March 1994.Selenium concentrations were much higher in Navajo Wash; a sample collected in March had 97 micrograms per liter of selenium. Bottom-sediment samples from two ponds in the Mancos Projectexceeded the concentration of concern of 4 micrograms per gram. The highest selenium concentrations in biota samples from streams in the Mancos River Basin were for samples from Navajo Wash. Mostconcentrations in biota in the upper Mancos River Basin were less than guidelines. Mean selenium concentrations in eggs from aquatic birds collected at three ponds in the Mancos Project slightly exceed the guideline associated with reduced hatchability.Five bird livers had a mean selenium concentration of 32.6 micrograms per gram dry weight, whichslightly exceeded the mean concentration of 30 micrograms per gram dry weight that is associated with reproductive impairment. Two of the pondshad a high selenium hazard rating; however, mallard reproduction was observed in 1994 at one of the ponds that had a high selenium-hazard rating.

  14. A study of mining-induced seismicity in Czech mines with longwall coal exploitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holub, K.

    2007-01-15

    A review is performed for the data of local and regional seismographical networks installed in mines of the Ostrava-Karvina Coal Basin (Czech Republic), where underground anthracite mining is carried out and dynamic events occur in the form of rockbursts. The seismological and seismoacoustic observations data obtained in panels that are in limiting state are analyzed. This aggregate information is a basic for determining hazardous zones and assigning rockburst prevention measures.

  15. Land subsidence susceptibility and hazard mapping: the case of Amyntaio Basin, Greece

    NASA Astrophysics Data System (ADS)

    Tzampoglou, P.; Loupasakis, C.

    2017-09-01

    Landslide susceptibility and hazard mapping has been applying for more than 20 years succeeding the assessment of the landslide risk and the mitigation the phenomena. On the contrary, equivalent maps aiming to study and mitigate land subsidence phenomena caused by the overexploitation of the aquifers are absent from the international literature. The current study focuses at the Amyntaio basin, located in West Macedonia at Florina prefecture. As proved by numerous studies the wider area has been severely affected by the overexploitation of the aquifers, caused by the mining and the agricultural activities. The intensive ground water level drop has triggered extensive land subsidence phenomena, especially at the perimeter of the open pit coal mine operating at the site, causing damages to settlements and infrastructure. The land subsidence susceptibility and risk maps were produced by applying the semi-quantitative WLC (Weighted Linear Combination) method, especially calibrated for this particular catastrophic event. The results were evaluated by using detailed field mapping data referring to the spatial distribution of the surface ruptures caused by the subsidence. The high correlation between the produced maps and the field mapping data, have proved the great value of the maps and of the applied technique on the management and the mitigation of the phenomena. Obviously, these maps can be safely used by decision-making authorities for the future urban safety development.

  16. Spatial analysis from remotely sensed observations of Congo basin of East African high Land to drain water using gravity for sustainable management of low laying Chad basin of Central Africa

    NASA Astrophysics Data System (ADS)

    Modu, B.; Herbert, B.

    2014-11-01

    The Chad basin which covers an area of about 2.4 million kilometer square is one of the largest drainage basins in Africa in the centre of Lake Chad .This basin was formed as a result of rifting and drifting episode, as such it has no outlet to the oceans or seas. It contains large area of desert from the north to the west. The basin covers in part seven countries such as Chad, Nigeria, Central African Republic, Cameroun, Niger, Sudan and Algeria. It is named Chad basin because 43.9% falls in Chad republic. Since its formation, the basin continues to experienced water shortage due to the activities of Dams combination, increase in irrigations and general reduction in rainfall. Chad basin needs an external water source for it to be function at sustainable level, hence needs for exploitation of higher east African river basin called Congo basin; which covers an area of 3.7 million square km lies in an astride the equator in west-central Africa-world second largest river basin after Amazon. The Congo River almost pans around republic of Congo, the democratic republic of Congo, the Central African Republic, western Zambia, northern Angola, part of Cameroun, and Tanzania. The remotely sensed imagery analysis and observation revealed that Congo basin is on the elevation of 275 to 460 meters and the Chad basin is on elevation of 240 meters. This implies that water can be drained from Congo basin via headrace down to the Chad basin for the water sustainability.

  17. Heavy metal speciation, leaching and toxicity status of a tropical rain-fed river Damodar, India.

    PubMed

    Pal, Divya; Maiti, Subodh Kumar

    2018-03-26

    Speciations of metals were assessed in a tropical rain-fed river, flowing through the highly economically important part of the India. The pattern of distribution of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) were evaluated in water and sediment along with mineralogical characterization, changes with different water quality parameters and their respective health hazard to the local population along the Damodar River basin during pre-monsoon and post-monsoon seasons. The outcome of the speciation analysis using MINTEQ indicated that free metal ions, carbonate, chloride and sulfate ions were predominantly in anionic inorganic fractions, while in cationic inorganic fractions metal loads were negligible. Metals loads were higher in sediment phase than in the aqueous phase. The estimated values of I geo in river sediment during both the seasons showed that most of the metals were found in the I geo class 0-1 which represents unpolluted to moderately polluted sediment status. The result of partition coefficient indicated the strong retention capability of Cr, Pb, Co and Mn, while Cd, Zn, Cu and Ni have resilient mobility capacity. The mineralogical analysis of sediment samples indicated that in Damodar River, quartz, kaolinite and calcite minerals were dominantly present. The hazard index values of Cd, Co and Cr were > 1 in river water, which suggested potential health risk for the children. A combination of pragmatic, computational and statistical relationship between ionic species and fractions of metals represented a strong persuasion for identifying the alikeness among the different sites of the river.

  18. EPOS-WP16: A Platform for European Multi-scale Laboratories

    NASA Astrophysics Data System (ADS)

    Spiers, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; W16 Participants

    2016-04-01

    The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. As such many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the work plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: - To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. - To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. - To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution.

  19. [Hazard function and life table: an introduction to the failure time analysis].

    PubMed

    Matsushita, K; Inaba, H

    1987-04-01

    Failure time analysis has become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistate demography. The idea of hazard function and failure time analysis, however, has not been properly introduced to nor commonly discussed by demographers in Japan. The concept of hazard function in comparison with life tables is briefly described, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential distribution, normal distribution, and proportional hazard models. The multiple decrement life table is also introduced as an example of lifetime data analysis with cause-specific hazard rates.

  20. 78 FR 24691 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Manufacturing Practice and Hazard Analysis and Risk- Based Preventive Controls for Human Food; Extension of... Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for Human Food'' that appeared in... Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for Human Food'' with a 120-day...

  1. What can we learn from the Wells, NV earthquake sequence about seismic hazard in the intermountain west?

    USGS Publications Warehouse

    Petersen, M.D.; Pankow, K.L.; Biasi, G.P.; Meremonte, M.

    2008-01-01

    The February 21, 2008 Wells, NV earthquake (M 6) was felt throughout eastern Nevada, southern Idaho, and western Utah. The town of Wells sustained significant damage to unreinforced masonry buildings. The earthquake occurred in a region of low seismic hazard with little seismicity, low geodetic strain rates, and few mapped faults. The peak horizontal ground acceleration predicted by the USGS National Seismic Hazard Maps is about 0.2 g at 2% probability of exceedance in 50 years, with the contributions coming mostly from the Ruby Mountain fault and background seismicity (M5-7.0). The hazard model predicts that the probability of occurrence of an M>6 event within 50 km of Wells is about 15% in 100 years. Although the earthquake was inside the USArray Transportable Array network, the nearest on-scale recordings of ground motions from the mainshock were too distant to estimate accelerations in town. The University of Nevada Reno, the University of Utah, and the U.S. Geological Survey deployed portable instruments to capture the ground motions from aftershocks of this rare normal-faulting event. Shaking from a M 4.7 aftershock recorded on portable instruments at distances less than 10 km exceeded 0.3 g, and sustained accelerations above 0.1 g lasted for about 5 seconds. For a magnitude 5 earthquake at 10 km distance the NGA equations predict median peak ground accelerations about 0.1 g. Ground motions from normal faulting earthquakes are poorly represented in the ground motion prediction equations. We compare portable and Transportable Array ground-motion recordings with prediction equations. Advanced National Seismic System stations in Utah recorded ground motions 250 km from the mainshock of about 2% g. The maximum ground motion recorded in Salt Lake City was in the center of the basin. We analyze the spatial variability of ground motions (rock vs. soil) and the influence of the Salt Lake Basin in modifying the ground motions. We then compare this data with the September 28, 2004 Parkfield aftershocks to contrast the differences between strike-slip and normal ground motions.

  2. Flood Hazard Mapping Assessment for Lebanon

    NASA Astrophysics Data System (ADS)

    Abdallah, Chadi; Darwich, Talal; Hamze, Mouin; Zaarour, Nathalie

    2014-05-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. In fact, floods are responsible for over one third of people affected by natural disasters; almost 190 million people in more than 90 countries are exposed to catastrophic floods every year. Nowadays, with the emerging global warming phenomenon, this number is expected to increase, therefore, flood prediction and prevention has become a necessity in many places around the globe to decrease damages caused by flooding. Available evidence hints at an increasing frequency of flooding disasters being witnessed in the last 25 years in Lebanon. The consequences of such events are tragic including annual financial losses of around 15 million dollars. In this work, a hydrologic-hydraulic modeling framework for flood hazard mapping over Lebanon covering 19 watershed was introduced. Several empirical, statistical and stochastic methods to calculate the flood magnitude and its related return periods, where rainfall and river gauge data are neither continuous nor available on a long term basis with an absence of proper river sections that under estimate flows during flood events. TRMM weather satellite information, automated drainage networks, curve numbers and other geometrical characteristics for each basin was prepared using WMS-software and then exported into HMS files to implement the hydrologic modeling (rainfall-runoff) for single designed storm of uniformly distributed depth along each basin. The obtained flow hydrographs were implemented in the hydraulic model (HEC-RAS) where relative water surface profiles are calculated and flood plains are delineated. The model was calibrated using the last flood event of January 2013, field investigation, and high resolution satellite images. Flow results proved to have an accuracy ranging between 83-87% when compared to the computed statistical and stochastic methods. Results included the generation of recurrence flood plain maps of 10, 50 & 100 years intensity maps along with flood hazard maps for each watershed. It is of utmost significance for this study to be effective that the produced flood intensity and hazard maps will be made available to decision-makers, planners and relevant community stakeholders.

  3. Prediction of Ungauged River Basin for Hydro Power Potential and Flood Risk Mitigation; a Case Study at Gin River, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Ratnayake, A. S.

    2011-12-01

    The most of the primary civilizations of the world emerged in or near river valleys or floodplains. The river channels and floodplains are single hydrologic and geomorphic system. The failure to appreciate the integral connection between floodplains and channel underlies many socioeconomic and environmental problems in river management today. However it is a difficult task of collecting reliable field hydrological data. Under such situations either synthetic or statistically generated data were used for hydraulic engineering designing and flood modeling. The fundamentals of precipitation-runoff relationship through synthetic unit hydrograph for Gin River basin were prepared using the method of the Flood Studies Report of the National Environmental Research Council, United Kingdom (1975). The Triangular Irregular Network model was constructed using Geographic Information System (GIS) to determine hazard prone zones. The 1:10,000 and 1:50,000 topography maps and field excursions were also used for initial site selection of mini-hydro power units and determine flooding area. The turbines output power generations were calculated using the parameters of net head and efficiency of turbine. The peak discharge achieves within 4.74 hours from the onset of the rainstorm and 11.95 hours time takes to reach its normal discharge conditions of Gin River basin. Stream frequency of Gin River is 4.56 (Junctions/ km2) while the channel slope is 7.90 (m/km). The regional coefficient on the catchment is 0.00296. Higher stream frequency and gentle channel slope were recognized as the flood triggering factors of Gin River basin and other parameters such as basins catchment area, main stream length, standard average annual rainfall and soil do not show any significant variations with other catchments of Sri Lanka. The flood management process, including control of flood disaster, prepared for a flood, and minimize it impacts are complicated in human population encroached and modified floodplains. Thus modern GIS technology has been productively executed to prepare hazard maps based on the flood modeling and also it would be further utilized for disaster preparedness and mitigation activities. Five suitable hydraulic heads were recognized for mini-hydro power sites and it would be the most economical and applicable flood controlling hydraulic engineering structure considering all morphologic, climatic, environmental and socioeconomic proxies of the study area. Mini-hydro power sites also utilized as clean, eco friendly and reliable energy source (8630.0 kW). Finally Francis Turbine can be employed as the most efficiency turbine for the selected sites bearing in mind of both technical and economical parameters.

  4. HOLOCENE MASS-WASTING EVENTS IN LAGO FAGNANO, TIERRA DEL FUEGO (54°S): IMPLICATIONS FOR PALEOSEISMICITY OF THE MAGALLANES-FAGNANO TRANSFORM FAULT

    NASA Astrophysics Data System (ADS)

    Ariztegui, D.; Waldmann, N.; Austin, J. A.; Anselmetti, F.; Moy, C.; Dunbar, R. B.

    2009-12-01

    High-resolution seismic imaging and sediment coring in Lago Fagnano, located along the Magallanes-Fagnano plate boundary in Tierra del Fuego, have revealed a chronologic catalog of Holocene mass-wasting events. These event layers are interpreted as resulting from slope instabilities that load the slope-adjacent lake floor during mass flow deposition thus mobilizing basin floor sediments through gravity spreading. A total of 22 mass flow deposits have been identified combining results from an 800 km-long dense grid of seismic profiles with a series of sediment cores. Successions of up to 6 m-thick mass-flow deposits pond the basin floor spreading eastward and westward following the main axis of the eastern sub-basin of Lago Fagnano. An age model on the basis of information from previous studies and from new radiocarbon dating allowed establishing a well-constrained chronologic mass-wasting event catalogue covering the last ~15000 years. Simultaneously-triggered basin-wide lateral slope failure and the formation of multiple debris flow and megaturbidite deposits are interpreted as the fingerprint of paleo-seismic activity along the Magallanes-Fagnano transform fault that runs along the entire lake basin. The slope failures and megaturbidites are interpreted as recording large earthquakes occurring along the transform fault since the early Holocene. The results from this study provide new data about the frequency and possible magnitude of Holocene earthquakes in Tierra del Fuego, which can be applied in the context of seismic hazard assessment in southernmost Patagonia.

  5. Geophysical setting of the February 21, 2008 Mw 6 Wells earthquake, Nevada, and implications for earthquake hazards

    USGS Publications Warehouse

    Ponce, David A.; Watt, Janet T.; Bouligand, C.

    2011-01-01

    We utilize gravity and magnetic methods to investigate the regional geophysical setting of the Wells earthquake. In particular, we delineate major crustal structures that may have played a role in the location of the earthquake and discuss the geometry of a nearby sedimentary basin that may have contributed to observed ground shaking. The February 21, 2008 Mw 6.0 Wells earthquake, centered about 10 km northeast of Wells, Nevada, caused considerable damage to local buildings, especially in the historic old town area. The earthquake occurred on a previously unmapped normal fault and preliminary relocated events indicate a fault plane dipping about 55 degrees to the southeast. The epicenter lies near the intersection of major Basin and Range normal faults along the Ruby Mountains and Snake Mountains, and strike-slip faults in the southern Snake Mountains. Regionally, the Wells earthquake epicenter is aligned with a crustal-scale boundary along the edge of a basement gravity high that correlates to the Ruby Mountains fault zone. The Wells earthquake also occurred near a geophysically defined strike-slip fault that offsets buried plutonic rocks by about 30 km. In addition, a new depth-to-basement map, derived from the inversion of gravity data, indicates that the Wells earthquake and most of its associated aftershock sequence lie below a small oval- to rhomboid-shaped basin, that reaches a depth of about 2 km. Although the basin is of limited areal extent, it could have contributed to increased ground shaking in the vicinity of the city of Wells, Nevada, due to basin amplification of seismic waves.

  6. Evaluation of site effects in Loja basin (southern Ecuador)

    NASA Astrophysics Data System (ADS)

    Guartán, J.; Navarro, M.; Soto, J.

    2013-05-01

    Site effect assessment based on subsurface ground conditions is often crucial for estimating the urban seismic hazard. In order to evaluate the site effects in the intra-mountain basin of Loja (southern Ecuador), geological and geomorphological survey and ambient noise measurements were carried out. A classification of shallow geologic materials was performed through a geological cartography and the use of geotechnical data and geophysical surveys. Seven lithological formations have been analyzed, both in composition and thickness of existing materials. The shear-wave velocity structure in the center of the basin, composed by alluvial materials, was evaluated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. VS30 structure was estimated and an average value of 346 m s-1 was obtained. This value agrees with the results obtained from SPT N-value (306-368 m s-1). Short-period ambient noise observations were performed in 72 sites on a 500m × 500m dimension grid. The horizontal-to-vertical spectral ratio (HVSR) method was applied in order to determine a ground predominant period distribution map. This map reveals an irregular distribution of predominant period values, ranged from 0.1 to 1.0 s, according with the heterogeneity of the basin. Lower values of the period are found in the harder formation (Quillollaco formation), while higher values are predominantly obtained in alluvial formation. These results will be used in the evaluation of ground dynamic properties and will be included in seismic microzoning of Loja basin. Keywords: Landform classification, Ambient noise, SPAC method, Rayleigh waves, Shear velocity profile, Ground predominant period. ;

  7. Estuarine Channel Evolution in Response to Closure of Secondary Basins: An Observational and Morphodynamic Modeling Study of the Western Scheldt Estuary

    NASA Astrophysics Data System (ADS)

    Nnafie, A.; Van Oyen, T.; De Maerschalck, B.; van der Vegt, M.; Wegen, M. van der

    2018-01-01

    The fringes of estuaries are often characterized by the presence of side embayments (secondary basins), with dimensions in the order of hundreds of meters to tens of kilometers. The presence of secondary basins significantly alters the hydrodynamic and sediment characteristics in the main estuary, implying that loss of secondary basin area due to human interventions might affect the estuarine morphodynamics. Analysis of historical bathymetric data of the Western Scheldt Estuary (Netherlands) suggests that closure of its secondary basins has triggered the observed lateral displacement of the nearby channels. This analysis motivated investigation of the impact of secondary basins on decadal evolution of estuarine channels, using the numerical model Delft3D. Model results show that channels that form near a secondary basin are located farther away from the bank of the estuary with respect to their positions in the case without a basin. Overall, results in cases with two or three basins are similar to those in case with one single basin. The wider the basin, the farther away the nearby channel forms. Removing a secondary basin causes a lateral displacement of the nearby channel toward the bank, indicating that the observed lateral displacement of channels in the Western Scheldt is triggered by closure of its secondary basins. The physical explanation is that tidal currents in the main estuary are weaker and more rotary near secondary basins, favoring sediment deposition and shoal development at these locations. Model results are particularly relevant for estuaries with moderate to high friction and converging width.

  8. Stratigraphy of the cambo-ordovician succession in Illnois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasemi, Yaghoob; Khorasgani, Zohreh; Leetaru, Hannes

    2014-09-30

    The Upper Cambrian through Lower Ordovician succession (Sauk II-III sequences) in the Illinois Basin covers the entire state of Illinois and most of the states of Indiana and Kentucky. To determine lateral and vertical lithologic variations of the rocks within the Cambro-Ordovician deposits that could serve as reservoir or seal for CO2 storage, detailed subsurface stratigraphic evaluation of the succession in Illinois was conducted. The Cambro-Ordovician succession in the Illinois Basin consists of mixed carbonate-siliciclastic deposits. Its thickness ranges from nearly 800 feet in the extreme northwest to nearly 8000 feet in the Reelfoot Rift in the extreme southeastern partmore » of the state. In northern and central Illinois, the Cambro-Ordovician rocks are classified as the Cambrian Knox and the Ordovician Prairie du Chien Groups, which consist of alternating dolomite and siliciclastic units. In the southern and deeper part of the Illinois Basin, the Cambro-Ordovician deposits consist chiefly of fine to coarsely crystalline dolomite capped by the Middle Ordovician Everton Formation. Detailed facies analysis indicates that the carbonate units consist mainly of mudstone to grainstone facies (fossiliferous/oolitic limestone and dolomite) with relics of bioclasts, ooids, intraclasts and peloids recording deposition on a shallow marine ramp setting. The dominant lithology of the Knox and the overlying Prairie du Chien Group is fine to coarsely crystalline, dense dolomite. However, porous and permeable vugular or fractured/cavernous dolomite intervals that grade to dense fine to coarsely crystalline dolomite are present within the dolomite units. Several hundred barrels of fluid were lost in some of these porous intervals during drilling, indicating high permeability. The sandstone intervals are porous and permeable and are texturally and compositionally mature. The permeable sandstone and porous dolomite intervals are laterally extensive and could serve as important reservoirs to store natural gas, CO2 or hazardous waste material. Results of this study show that the Cambro-Ordovician Knox Group in the Illinois Basin and adjacent Midwestern regions may be an attractive target for CO2 sequestration because these rocks are 1) laterally extensive, 2) consist of some porous and permeable dolomite and sandstone intervals, and 3) contain abundant impermeable shale and carbonate seals.« less

  9. The Crustal Structure and Seismicity of Eastern Venezuela

    NASA Astrophysics Data System (ADS)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.

    2001-12-01

    Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment from FU-Berlin and IRIS/PASSCAL Instrument Centre. key words: Seismic refraction, seismicity, crustal structure, Venezuela, Cariaco earthquake.

  10. Quantification of controls on regional rockfall activity and talus deposition, Kananaskis, Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Thapa, Prasamsa; Martin, Yvonne E.; Johnson, E. A.

    2017-12-01

    Rockfall is a significant geomorphic process in many mountainous regions that also poses a notable natural hazard risk. Most previous studies of rockfall erosion have investigated the mechanics and rates of local rockwall retreat and talus deposition, with only a few investigations of rockfall and/or associated talus considering larger spatial scales (i.e., drainage basin, mountain range). The purpose of the current research is to investigate the areal extent of rockfall-talus and controlling factors of its distribution over regional spatial scales (of order 102 km2) in Kananaskis, Canadian Rockies to inform our understanding of its significance in mountain development. To achieve this goal, a large talus inventory is collected and analyzed for 11 steep tributaries of the Kananaskis River, Canadian Rockies. Talus accumulations associated with rockfall provide evidence about the nature and rates of rockfall activity that supplies sediment to these deposits and are the focus of the present study. To quantify the controls of rockfall-talus activity in this region, we analyze the association of talus deposits with structural geology, glacial topography, and temperature-related weathering (i.e., frost cracking). A total of 324 talus polygons covering a surface area of 28.51 km2 are delineated within the 11 study basins, with the number of talus polygons in each study basin ranging from 1 to 73. Analysis of the talus inventory shows that cirques and glacially sculpted valleys are locations of notable talus accumulation in Kananaskis, with other locations of significant talus deposition being associated with thrust faults. We also found that the upper elevations at which talus deposits are typically found are the general range of elevations experiencing a notable number of days in the frost cracking window when this window is defined as - 3 to - 15 °C; no such association is found for the frost cracking window of - 3 to - 8 °C. Estimates of average erosion rates for all study basins combined are between 0.15 mm y- 1 (lower estimate) to 3.1 mm y- 1 (upper estimate). Rockfall activity is expected to have been most active for the several millennia following deglaciation (during the paraglacial period) when hillslopes were oversteepened.

  11. Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India; using remote sensing and GIS technique

    NASA Astrophysics Data System (ADS)

    Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.

    2017-11-01

    Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the function of active tectonism in the advancement of the basin.

  12. Temporal and spatial variation of hydrological condition in the Ziwu River Basin of the Han River in China

    NASA Astrophysics Data System (ADS)

    Li, Ziyan; Liu, Dengfeng; Huang, Qiang; Bai, Tao; Zhou, Shuai; Lin, Mu

    2018-06-01

    The middle route of South-To-North Water Diversion in China transfers water from the Han River and Han-To-Wei Water Diversion project of Shaanxi Province will transfer water from the Ziwu River, which is a tributary of the Han River. In order to gain a better understanding of future changes in the hydrological conditions within the Ziwu River basin, a Mann-Kendall (M-K) trend analysis is coupled with a persistence analysis using the rescaled range analysis (R/S) method. The future change in the hydrological characteristics of the Ziwu River basin is obtained by analysing the change of meteorological factors. The results show that, the future precipitation and potential evaporation are seasonal, and the spatial variation is significant. The proportion of basin area where the spring, summer, autumn and winter precipitation is predicted to continue increase is 0.00, 100.00, 19.00 and 16.00 %, meanwhile, the proportion of basin area that will continue to decrease in the future respectively will be 100.00, 0.00, 81.00 and 74.00 %.The future potential evapotranspiration of the four seasons in the basin shows a decreasing trend. The future water supply situation in the spring and autumn of the Ziwu River basin will degrade, and the future water supply situation in the summer and winter will improve. In addition, the areas with the same water supply situation are relatively concentrated. The results will provide scientific basis for the planning and management of river basin water resources and socio-hydrological processes analysis.

  13. FUTURE WATER ALLOCATION AND IN-STREAM VALUES IN THE WILLAMETTE RIVER BASIN: A BASIN-WIDE ANALYSIS

    EPA Science Inventory

    Our research investigated the impact on surface water resources of three different scenarios for the future development of the Willamette River Basin in Oregon (USA). Water rights in the basin, and in the western United States in general, are based on a system of law that binds ...

  14. Combination of Geophysical Methods to Support Urban Geological Mapping

    NASA Astrophysics Data System (ADS)

    Gabàs, A.; Macau, A.; Benjumea, B.; Bellmunt, F.; Figueras, S.; Vilà, M.

    2014-07-01

    Urban geological mapping is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards. Geophysics can have a pivotal role to yield subsurface information in urban areas provided that geophysical methods are capable of dealing with challenges related to these scenarios (e.g., low signal-to-noise ratio or special logistical arrangements). With this principal aim, a specific methodology is developed to characterize lithological changes, to image fault zones and to delineate basin geometry in the urban areas. The process uses the combination of passive and active techniques as complementary data: controlled source audio-magnetotelluric method (CSAMT), magnetotelluric method (MT), microtremor H/V analysis and ambient noise array measurements to overcome the limitations of traditional geophysical methodology. This study is focused in Girona and Salt surrounding areas (NE of Spain) where some uncertainties in subsurface knowledge (maps of bedrock depth and the isopach maps of thickness of quaternary sediments) need to be resolved to carry out the 1:5000 urban geological mapping. These parameters can be estimated using this proposed methodology. (1) Acoustic impedance contrast between Neogene sediments and Paleogene or Paleozoic bedrock is detected with microtremor H/V analysis that provides the soil resonance frequency. The minimum value obtained is 0.4 Hz in Salt city, and the maximum value is the 9.5 Hz in Girona city. The result of this first method is a fast scanner of the geometry of basement. (2) Ambient noise array constrains the bedrock depth using the measurements of shear-wave velocity of soft soil. (3) Finally, the electrical resistivity models contribute with a good description of lithological changes and fault imaging. The conductive materials (1-100 Ωm) are associated with Neogene Basin composed by unconsolidated detrital sediments; medium resistive materials (100-400 Ωm) correspond to Paleogene, and resistive materials (600-1,000 Ωm) are related with complex basement, granite of Paleozoic. The Neogene basin-basement boundary is constrained between surface and 500 m depth, approximately. The new geophysical methodology presented is an optimized and fast tool to refine geological mapping by adding 2D information to traditional geological data and improving the knowledge of subsoil.

  15. On-line solid phase extraction-liquid chromatography-tandem mass spectrometry for insect repellent residue analysis in surface waters using atmospheric pressure photoionization.

    PubMed

    Molins-Delgado, Daniel; García-Sillero, Daniel; Díaz-Cruz, M Silvia; Barceló, Damià

    2018-04-06

    Insect repellents (IRs) are a group of organic chemicals whose function is to prevent the ability of insects of landing in a surface. These compounds have been found in the environment and may pose a risk to non-target organisms. In this study, an on-line solid phase extraction - high performance liquid chromatography-tandem mass spectrometry multiresidue method was developed using an atmospheric photoionization source (SPE-HPLC-(APPI)-MS/MS). The use of the APPI as an alternative ionization technique to electrospray (ESI) and atmospheric pressure chemical ionization (APCI) allowed expanding the range of analytical techniques suitable for the analysis of IRs, so far relied in gas chromatography. High sensitivity and precision was reached with method limits of quantification between 0.2 and 4.6 ng l -1 and interday and intraday precision equal or below 15%. The validated method was applied to the study of surface water samples from three European river basins with different flow regime (Adige River in Italy, Sava River in the Balkans, and Evrotas River in Greece). The results showed that two IRs (DEET and Bayrepel) were ubiquitous in the Sava and Evrotas basins, reaching concentrations as high as 105 μg l -1 of Bayrepel in the Sava River, and 5 μg l -1 of DEET in the Evrotas River. Densely populated areas and effluent waste waters are pointed out as the responsible for this pollution. In the alpine river Adige, only three samples showed low levels of IRs (6.01-37.8 ng l -1 ). The concentrations measured were used to perform an environmental risk assessment based on the hazard quotients (HQs) estimation approach by using the chronic and acute eco-toxicity data available. The results revealed that despite the high frequency and eventually high concentrations of these IRs determined in the three basins, only few sites were at risk, with 1 < HQs < 3.3. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Geohazard assessment through the analysis of historical alluvial events in Southern Italy

    NASA Astrophysics Data System (ADS)

    Esposito, Eliana; Violante, Crescenzo

    2015-04-01

    The risk associated with extreme water events such as flash floods, results from a combination of overflows and landslides hazards. A multi-hazard approach have been utilized to analyze the 1773 flood that occurred in conjunction with heavy rainfall, causing major damage in terms of lost lives and economic cost over an area of 200 km2, including both the coastal strip between Salerno and Maiori and the Apennine hinterland, Campania region - Southern Italy. This area has been affected by a total of 40 flood events over the last five centuries, 26 of them occurred between 1900 and 2000. Streamflow events have produced severe impacts on Cava de' Tirreni (SA) and its territory and in particular four catastrophic floods in 1581, 1773, 1899 and 1954, caused a pervasive pattern of destruction. In the study area, rainstorm events typically occur in small and medium-sized fluvial system, characterized by small catchment areas and high-elevation drainage basins, causing the detachment of large amount of volcaniclastic and siliciclastic covers from the carbonate bedrock. The mobilization of these deposits (slope debris) mixed with rising floodwaters along the water paths can produce fast-moving streamflows of large proportion with significant hazardous implications (Violante et al., 2009). In this context the study of 1773 historical flood allows the detection and the definition of those areas where catastrophic events repeatedly took place over the time. Moreover, it improves the understanding of the phenomena themselves, including some key elements in the management of risk mitigation, such as the restoration of the damage suffered by the buildings and/or the environmental effects caused by the floods.

  17. Earth and water resources and hazards in Central America

    USGS Publications Warehouse

    Cunningham, Charles G.; Fary, R.W.; Guffanti, Marianne; Laura, Della; Lee, M.P.; Masters, C.D.; Miller, R.L.; Quinones-Marques, Ferdinand; Peebles, R.W.; Reinemund, J.A.; Russ, D.P.

    1984-01-01

    Long-range economic development in Central America will depend in large part on production of indigenous mineral, energy, and water resources and on mitigation of the disastrous effects of geologic and hydrologic hazards such as landslides, earthquakes, volcanic eruptions, and floods. The region has six world-class metal mines at present as well as additional evidence of widespread mineralization. Systematic investigations using modern mineral exploration techniques should reveal more mineral deposits suitable for development. Widespread evidence of lignite and geothermal resources suggests that intensive studies could identify producible energy sources in most Central American countries. Water supply and water quality vary greatly from country to country. Local problems of ground- and surface-water availability and of contamination create a need for systematic programs to provide better hydrologic data, capital improvements, and management. Disastrous earthquakes have destroyed or severely damaged many cities in Central America. Volcanic eruptions, landslides, mudflows, and floods have devastated most of the Pacific side of Central America at one time or another. A regional approach to earthquake, volcano, and flood-risk analysis and monitoring, using modern technology and concepts, would provide the facilities and means for acquiring knowledge necessary to reduce future losses. All Central American countries need to strengthen institutions and programs dealing with earth and water resources and natural hazards. Some of these needs may be satisfied through existing or pending projects and technical and economic assistance from U.S. or other sources. The need for a comprehensive study of the natural resources of Central America and the requirements for their development is evident. The U.S. Caribbean Basin Initiative offers both an excellent opportunity for a regional approach to these pervasive problems and an opportunity for international cooperation.

  18. Seismic waves in 3-D: from mantle asymmetries to reliable seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Panza, Giuliano F.; Romanelli, Fabio

    2014-10-01

    A global cross-section of the Earth parallel to the tectonic equator (TE) path, the great circle representing the equator of net lithosphere rotation, shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins. The low-velocity layer in the upper asthenosphere, at a depth range of 120 to 200 km, is assumed to represent the decoupling between the lithosphere and the underlying mantle. Along the TE-perturbed (TE-pert) path, a ubiquitous LVZ, about 1,000-km-wide and 100-km-thick, occurs in the asthenosphere. The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth. Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis (NDSHA), using realistic and duly validated synthetic time series, and generating a data bank of several thousands of seismograms that account for source, propagation, and site effects. Accordingly, with basic self-organized criticality concepts, NDSHA permits the integration of available information provided by the most updated seismological, geological, geophysical, and geotechnical databases for the site of interest, as well as advanced physical modeling techniques, to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures. Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory, and a case-study is discussed. In order to enable a reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered, resulting in a new, very efficient, analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.

  19. Flood risk analysis and adaptive strategy in context of uncertainties: a case study of Nhieu Loc Thi Nghe Basin, Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Ho, Long-Phi; Chau, Nguyen-Xuan-Quang; Nguyen, Hong-Quan

    2013-04-01

    The Nhieu Loc - Thi Nghe basin is the most important administrative and business area of Ho Chi Minh City. Due to system complexity of the basin such as the increasing trend of rainfall intensity, (tidal) water level and land subsidence, the simulation of hydrological, hydraulic variables for flooding prediction seems rather not adequate in practical projects. The basin is still highly vulnerable despite of multi-million USD investment for urban drainage improvement projects since the last decade. In this paper, an integrated system analysis in both spatial and temporal aspects based on statistical, GIS and modelling approaches has been conducted in order to: (1) Analyse risks before and after projects, (2) Foresee water-related risk under uncertainties of unfavourable driving factors and (3) Develop a sustainable flood risk management strategy for the basin. The results show that given the framework of risk analysis and adaptive strategy, certain urban developing plans in the basin must be carefully revised and/or checked in order to reduce the highly unexpected loss in the future

  20. Wellbore stability analysis and its application in the Fergana basin, central Asia

    NASA Astrophysics Data System (ADS)

    Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han

    2014-02-01

    Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.

  1. Digital Data for Volcano Hazards in the Crater Lake Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.

    2008-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.

  2. Using Climate Information for Disaster Risk Identification in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Zubair, L.

    2004-12-01

    We have engaged in a concerted attempt to undertake research and apply earth science information for development in Sri Lanka, with a focus on climate sciences. Here, we provide details of an ongoing attempt to harness science for disaster identification as a prelude to informed disaster management. Natural disasters not only result in death and destruction but also undermine decades of development gains as highlighted by recent examples from Sri Lanka. First, in May 2003, flooding and landslides in the South-West led to 260 deaths, damage to 120,000 homes and destruction of schools, infrastructure and agricultural land. Second, on December 26, 2000, a cyclone in the North-Central region left 8 dead, 55,000 displaced, with severe damage to fishing, agriculture, infrastructure and cultural sites. Third, an extended island-wide drought in 2001 and 2002 resulted in a 2% drop in GDP. In the aftermath of these disasters, improved disaster management has been deemed to be urgent by the Government of Sri Lanka. In the past the primary policy response to disasters was to provide emergency relief. It is increasingly recognized that appropriate disaster risk management, including risk assessment, preventive measures to reduce losses and improved preparedness, can help reduce death, destruction and socio-economic disruption. The overwhelming majority of hazards in Sri Lanka - droughts, floods, cyclones and landslides -have hydro-meteorological antecedents. Little systematic advantage has, however, been taken of hydro-meteorological information and advances in climate prediction for disaster management. Disaster risks are created by the interaction between hazard events and vulnerabilities of communities, infrastructure and economically important activities. A comprehensive disaster risk management system encompasses risk identification, risk reduction and risk transfer. We undertook an identification of risks for Sri Lanka at fine scale with the support of the Global Disaster Hotspots project of the Earth Institute at Columbia University. We developed tools that translate meteorological, environmental and socio-economic exposure and vulnerability information into assessments of relevant hazard related disaster risk at appropriate spatial and temporal scales. We also developed high-resolution predictive capabilities for assessing seasonal hazard event. We found that useful hazard risk and vulnerability analysis can be carried out with the type of data that is available in Sri Lanka with sufficiently fine scale as to be useful for national level planning and action. Also, hydro-meteorological information was essential to estimate hazard risks. This analysis brought out a distinct seasonality to drought, floods, landslides and cyclone hazards in Sri Lanka. This work provides a foundation for systematic disaster management that shall manage risks through measures such as hazard warnings, scenario-based relief identification and planning, strategic river basin management, risk mapping and land use zoning, standards for construction and infrastructure. The fostering of research and application capacity in the vulnerable community leads to the appropriate and sustainable use of earth science information. This work contributes to the mitigation of risk of vulnerable communities and provides an example of the harnessing of geosciences for poverty alleviation and improvement of human well-being. Note: The contributions of Vidhura Ralapanawe, Upamala Tennakoon, Ruvini Perera, Maxx Dilley, Bob Chen and the Hotspots team are gratefully acknowledged.

  3. Effects of Jefferson Road stormwater-detention basin on loads and concentrations of selected chemical constituents in East Branch of Allen Creek at Pittsford, Monroe County, New York

    USGS Publications Warehouse

    Sherwood, Donald A.

    2004-01-01

    Discharge and water-quality data collection at East Branch Allen Creek from 1990 through 2000 provide a basis for estimating the effect of the Jefferson Road detention basin on loads and concentrations of chemical constituents downstream from the basin. Mean monthly flow for the 5 years prior to construction of the detention basin (8.71 ft3/s) was slightly lower than after (9.08 ft3/s). The slightly higher mean monthly flow after basin construction may have been influenced by the peak flow for the period of record that occurred in July 1998 or variations in flow diverted from the canal. No statistically significant difference in average monthly mean flow before and after basin installation was indicated.Total phosphorus was the only constituent to show no months with significant differences in load after basin construction. Several constituents showed months with significantly smaller loads after basin construction than before, whereas some constituents showed certain months with smaller and some months with greater loads, after basin construction. Statistical analysis of the "mean monthly load" for all months before and all months after construction of the detention basin showed only one constituent (ammonia + organic nitrogen) with a significantly lower load after construction and none with higher loads.Median concentrations of ammonia + organic nitrogen showed a statistically significant decrease (from 0.78 mg/L to 0.60 mg/L) after basin installation, as did nitrite + nitrate (from 1.50 mg/L to 0.96 mg/L); in contrast, the median concentration of dissolved chloride increased from 95.5 mg/L before basin installation to 109 mg/L thereafter. A trend analysis of constituent concentrations before and after installation of the detention basin showed that total phosphorus had a downward trend after installation.Analysis of the data collected at East Branch Allen Creek indicates that the Jefferson Road detention basin, in some cases, provides an improvement (reduction) in loads of some constituents. These results are uncertain, however, because hydrologic conditions before basin installation differed from those in the 5 years that followed, and because inflow from the Erie-Barge canal may alter the water quality in the 1-mi reach between the basin outflow and the gaging station.

  4. A WebGIS service for managing, sharing and communicating information on mountain risks: a pilot study at the Barcelonnette Basin (South French Alps)

    NASA Astrophysics Data System (ADS)

    Frigerio, Simone; Skupinski, Grzegorz; Kappes, Melanie; Malet, Jean-Philippe; Puissant, Anne

    2010-05-01

    Integrative analysis, assessment and management of mountain hazards and risks require (1) the intense cooperation among scientists, local practitioners and stakeholders, (2) the compilation of multi-source GIS database on both the sources of the dangers and their impacts, and (3) the communication of scientific results which is still a challenge. Within the European project Mountain Risks and the French-research initiative OMIV (Multi-disciplinary Observatory on Slope Instabilities; http://eost.u-strasbg.fr/omiv), several approaches are under development aiming at a coherent communication of scientific results to the population in order to inform about hazards and risks and support practical risk management measures. A simple and user-friendly approach with a visual-web-based interface is proposed, able (1) to incorporate geographical information on past events and on controlling factors, (2) to include administrative boundaries and official risk regulation maps, and(3) to integrate all modeling results obtained in the study area (already performed or in progress). The possibility to share information by means of web services offers a double utility: firstly it is a way to decrease the gap between scientific community's results and stakeholders' practical needs (simple interface, easy-to-use buttons in a generally user-friendly approach). Secondly the wide collection of diverse information (records of historical events, conditioning and triggering factors, information on elements at risk and their vulnerability, modeling results) in combination with the possibility of comparison among the data offers a great support in the decision-making process. As first case study, the Barcelonnette Basin (South French Alps) has been chosen for the pilot development of the interface. The objective is to organize, manage and share a wide range of information and calibrate a correct web-service solution. Several steps are planned to achieve this goal: the creation of a hierarchical GeoDB that includes all information available for the area (high resolution airborne and satellite imagery, various DEMs, geo-environmental factor maps, susceptibility and hazard maps, historical events and old photographs, maps of elements at risk, potential consequence maps, existing risk scenarios and risk maps) using different organizational folders (splitted in web-switches), the definition of an OpenSource Cartoweb web-platform (based on GeoDB structure) and finally the adjustment of a POSTGIS and POSTGRESQL environment to accomplish query actions, a metadata support system, and a WMS for external data connection and layer control.

  5. Flood Vulnerability Analysis of the part of Karad Region, Satara District, Maharashtra using Remote Sensing and Geographic Information System technique

    NASA Astrophysics Data System (ADS)

    Warghat, Sumedh R.; Das, Sandipan; Doad, Atul; Mali, Sagar; Moon, Vishal S.

    2012-07-01

    Karad City is situated on the bank of confluence of river Krishna & Koyana, which is severely flood prone area. The floodwaters enter the city through the roads and disrupt the infrastructure in the whole city. Furthermore, due to negligence of the authorities and unplanned growth of the city, the people living in the city have harnessed the natural flow of water by constructing unnecessary embankments in the river Koyna. Due to this reason now river koyna is flowing in the form of a narrow channel, which very easily over-flows during very minor flooding.Flood Vulnerabilty Analysis has been done for the karad region of satara district, maharashtra using remote sensing and geographic information system technique. The aim of this study is to identify flood vulnerability zone by using GIS and RS technique and an attempt has been to demonstrat the application of remote sensing and GIS in order to map flood vulnerabilty area by utilizing ArcMap, and Erdas software. Flood vulnerabilty analysis of part the Karad Regian of Satara District, Maharashtra has been carried out with the objectives - Identify the Flood Prone area in the Koyana and Krishna river basin, Calculate surface runoff and Delineate flood sensitive areas. Delineate classified hazard Map, Evaluate the Flood affected area, Prepare the Flood Vulnerability Map by utilizing Remote Sensing and GIS technique. (C.J. Kumanan;S.M. Ramasamy)The study is based on GIS and spatial technique is used for analysis and understanding of flood problem in Karad Tahsil. The flood affected areas of the different magnitude has been identified and mapped using Arc GIS software. The analysis is useful for local planning authority for identification of risk areas and taking proper decision in right moment. In the analysis causative factors for flooding in watershed are taken into account as annual rainfall, size of watershed, basin slope, drainage density of natural channels and land use. (Dinand Alkema; Farah Aziz.)This study of flood vulnerable area determination in a part of Karad Tahsil is employed to illustrate the different approaches.

  6. Evolving Concepts and Teaching Approaches In Tectonics and Sedimentation.

    ERIC Educational Resources Information Center

    Graham, Stephan Alan

    1983-01-01

    Discusses five recent advances in sedimentary tectonics, noting how they are incorporated into college curricula. Advances discussed include basin type, tectonic setting, facies analysis (in conjunction with basin type/setting), stratigraphic analysis of reflection seismic data, and quantitative analysis of subsidence histories of sedimentary…

  7. 77 FR 55371 - System Safety Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ...-based rule and FRA seeks comments on all aspects of the proposed rule. An SSP would be implemented by a... SSP would be the risk-based hazard management program and risk-based hazard analysis. A properly implemented risk-based hazard management program and risk-based hazard analysis would identify the hazards and...

  8. Fractal simulation of urbanization for the analysis of vulnerability to natural hazards

    NASA Astrophysics Data System (ADS)

    Puissant, Anne; Sensier, Antoine; Tannier, Cécile; Malet, Jean-Philippe

    2016-04-01

    Since 50 years, mountain areas are affected by important land cover/use changes characterized by the decrease of pastoral activities, reforestation and urbanization with the development of tourism activities and infrastructures. These natural and anthropogenic transformations have an impact on the socio-economic activities but also on the exposure of the communities to natural hazards. In the context of the ANR Project SAMCO which aims at enhancing the overall resilience of societies on the impacts of mountain risks, the objective of this research was to help to determine where to locate new residential developments for different scenarios of land cover/use (based on the Prelude European Project) for the years 2030 and 2050. The Planning Support System (PSS), called MUP-City, based on a fractal multi-scale modeling approach is used because it allows taking into account local accessibility to some urban and rural amenities (Tannier et al., 2012). For this research, an experiment is performed on a mountain area in the French Alps (Barcelonnette Basin) to generate three scenarios of urban development with MUP-City at the scale of 1:10:000. The results are assessed by comparing the localization of residential developments with urban areas predicted by land cover and land use scenarios generated by cellular automata modelling (LCM and Dyna-clue) (Puissant et al., 2015). Based on these scenarios, the evolution of vulnerability is estimated.

  9. Implementation of Theeuropeanwater Framework Directive In France: New Challenges For River Basin Organisat Ion, Planning and Participation

    NASA Astrophysics Data System (ADS)

    Allain, S.

    The European Water Framework Directive (2000/60/EC) establishes a system of participatory river basin planning for national and international basins. The French institutional framework for water management is already very close to this system: the 1964 Water Law actually set up basin bodies, the Agences de l'Eau ("Water Agencies"), at the level of large river basins, and multipartite basin commissions, the Comités de Bassin ("River Basin Authorities"), in order to monitor the Agences de l'Eau's policies; besides, the 1992 Water Law created a planning procedure at this level, the Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE : "General Water Management Plan"), aiming to determine general orientations for the management of water resources and having to be defined by the Comités de Bassin. At first glance therefore, the implementation of the European Water Framework Directive should not raise a lot of problems in France. However, a quick analysis of the current situation shows that it is not so obvious : if the French Water Policy set up two basin organisations, neither of them deals concretely with the management of the water resources, and the implementation of water management plans depends on many stakeholders; the SDAGE itself only partially meets the demands of the Directive, regarding e. g. the economic analysis; finally, in spite of the creation of multipartite basin commissions, the public participation is very restricted. Such an analysis leads to pay more attention to the relations to establish between organisation, planning and participation at the level of large river basins. An analysis of other elements of the French institutional framework can help us in this way : another planning procedure was actually created by the 1992 Water Law, the Schéma d'Aménagement et de Gestion des Eaux (SAGE : "Water Management Plan"), aiming to fix general objectives to manage the water resources at the level of small river basins, and having to be defined and implemented by a new tripartite entity, the Commission Locale de l'Eau (CLE : Local Water Commission), which can be considered as a real river basin organisation; an empirical analysis of the implementation of such a procedure can offer therefore many new insights and the paper will present the results of an analysis of 10 case studies. But it will be also necessary to put such an experience side by side with the political will to develop public debates and to extend the roles of the Commission Nationale du Débat Public ("Public Debate National Commission").

  10. Probabilistic Seismic Risk Model for Western Balkans

    NASA Astrophysics Data System (ADS)

    Stejskal, Vladimir; Lorenzo, Francisco; Pousse, Guillaume; Radovanovic, Slavica; Pekevski, Lazo; Dojcinovski, Dragi; Lokin, Petar; Petronijevic, Mira; Sipka, Vesna

    2010-05-01

    A probabilistic seismic risk model for insurance and reinsurance purposes is presented for an area of Western Balkans, covering former Yugoslavia and Albania. This territory experienced many severe earthquakes during past centuries producing significant damage to many population centres in the region. The highest hazard is related to external Dinarides, namely to the collision zone of the Adriatic plate. The model is based on a unified catalogue for the region and a seismic source model consisting of more than 30 zones covering all the three main structural units - Southern Alps, Dinarides and the south-western margin of the Pannonian Basin. A probabilistic methodology using Monte Carlo simulation was applied to generate the hazard component of the model. Unique set of damage functions based on both loss experience and engineering assessments is used to convert the modelled ground motion severity into the monetary loss.

  11. Evaluation and design of a rain gauge network using a statistical optimization method in a severe hydro-geological hazard prone area

    NASA Astrophysics Data System (ADS)

    Fattoruso, Grazia; Longobardi, Antonia; Pizzuti, Alfredo; Molinara, Mario; Marocco, Claudio; De Vito, Saverio; Tortorella, Francesco; Di Francia, Girolamo

    2017-06-01

    Rainfall data collection gathered in continuous by a distributed rain gauge network is instrumental to more effective hydro-geological risk forecasting and management services though the input estimated rainfall fields suffer from prediction uncertainty. Optimal rain gauge networks can generate accurate estimated rainfall fields. In this research work, a methodology has been investigated for evaluating an optimal rain gauges network aimed at robust hydrogeological hazard investigations. The rain gauges of the Sarno River basin (Southern Italy) has been evaluated by optimizing a two-objective function that maximizes the estimated accuracy and minimizes the total metering cost through the variance reduction algorithm along with the climatological variogram (time-invariant). This problem has been solved by using an enumerative search algorithm, evaluating the exact Pareto-front by an efficient computational time.

  12. Kinematics of Active Deformation Across the Western Kunlun Mountain Range (Xinjiang, China) and Potential Seismic Hazards Within the Southern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie; Laborde, Amandine; Van der Woerd, Jérôme; Li, Haibing; Tapponnier, Paul; Coudroy, Thomas; Murray, Andrew

    2017-12-01

    The Western Kunlun mountain range is a slowly converging intracontinental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive a structural cross section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces from field sampling, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is proposed by combining all structural, morphological, and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of M ≥ 8 earthquakes if the whole decollement across the southern Tarim Basin is seismically locked and ruptures in one single event.

  13. Analysis of the evolution of precipitation in the Haihe river basin of China under changing environment

    NASA Astrophysics Data System (ADS)

    Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo

    2018-02-01

    Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.

  14. Occurrence, Distribution, Instantaneous Loads, and Yields of Dissolved Pesticides in the San Joaquin River Basin, California, During Summer Conditions, 1994 and 2001

    USGS Publications Warehouse

    Brown, Larry R.; Panshin, Sandra Y.; Kratzer, Charles R.; Zamora, Celia; Gronberg, JoAnn M.

    2004-01-01

    Water samples were collected from 22 drainage basins for analysis of 48 dissolved pesticides during summer flow conditions in 1994 and 2001. Of the 48 pesticides, 31 were reported applied in the basin in the 28 days preceding the June 1994 sampling, 25 in the 28 days preceding the June 2001 sampling, and 24 in the 28 days preceding the August 2001 sampling. The number of dissolved pesticides detected was similar among sampling periods: 26 were detected in June 1994, 28 in June 2001, and 27 in August 2001. Concentrations of chlorpyrifos exceeded the California criterion for the protection of aquatic life from acute exposure at six sites in June 1994 and at five sites in June 2001. There was a single exceedance of the criterion for diazinon in June 1994. The number of pesticides applied in tributary basins was highly correlated with basin area during each sampling period (Spearman's r = 0.85, 0.70, and 0.84 in June 1994, June 2001, and August 2001, respectively, and p < 0.01 in all cases). Larger areas likely include a wider variety of crops, resulting in more varied pesticide use. Jaccard's similarities, cluster analysis, principal components analysis, and instantaneous load calculations generally indicate that west-side tributary basins were different from east-side tributary basins. In general, west-side basins had higher concentrations, instantaneous loads, and instantaneous yields of dissolved pesticides than east-side basins, although there were a number of exceptions. These differences may be related to a number of factors, including differences in basin size, soil texture, land use, irrigation practices, and stream discharge.

  15. 9 CFR 417.2 - Hazard Analysis and HACCP Plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... more food safety hazards that are reasonably likely to occur, based on the hazard analysis conducted in... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Hazard Analysis and HACCP Plan. 417.2 Section 417.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE...

  16. 9 CFR 417.2 - Hazard Analysis and HACCP Plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... more food safety hazards that are reasonably likely to occur, based on the hazard analysis conducted in... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Hazard Analysis and HACCP Plan. 417.2 Section 417.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE...

  17. 9 CFR 417.2 - Hazard Analysis and HACCP Plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... more food safety hazards that are reasonably likely to occur, based on the hazard analysis conducted in... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Hazard Analysis and HACCP Plan. 417.2 Section 417.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE...

  18. 9 CFR 417.2 - Hazard Analysis and HACCP Plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... more food safety hazards that are reasonably likely to occur, based on the hazard analysis conducted in... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Hazard Analysis and HACCP Plan. 417.2 Section 417.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE...

  19. 9 CFR 417.2 - Hazard Analysis and HACCP Plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... more food safety hazards that are reasonably likely to occur, based on the hazard analysis conducted in... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Hazard Analysis and HACCP Plan. 417.2 Section 417.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE...

  20. A method for mapping flood hazard along roads.

    PubMed

    Kalantari, Zahra; Nickman, Alireza; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart

    2014-01-15

    A method was developed for estimating and mapping flood hazard probability along roads using road and catchment characteristics as physical catchment descriptors (PCDs). The method uses a Geographic Information System (GIS) to derive candidate PCDs and then identifies those PCDs that significantly predict road flooding using a statistical modelling approach. The method thus allows flood hazards to be estimated and also provides insights into the relative roles of landscape characteristics in determining road-related flood hazards. The method was applied to an area in western Sweden where severe road flooding had occurred during an intense rain event as a case study to demonstrate its utility. The results suggest that for this case study area three categories of PCDs are useful for prediction of critical spots prone to flooding along roads: i) topography, ii) soil type, and iii) land use. The main drivers among the PCDs considered were a topographical wetness index, road density in the catchment, soil properties in the catchment (mainly the amount of gravel substrate) and local channel slope at the site of a road-stream intersection. These can be proposed as strong indicators for predicting the flood probability in ungauged river basins in this region, but some care is needed in generalising the case study results other potential factors are also likely to influence the flood hazard probability. Overall, the method proposed represents a straightforward and consistent way to estimate flooding hazards to inform both the planning of future roadways and the maintenance of existing roadways. Copyright © 2013 Elsevier Ltd. All rights reserved.

Top