Simulant Basis for the Standard High Solids Vessel Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Reid A.; Fiskum, Sandra K.; Suffield, Sarah R.
The Waste Treatment and Immobilization Plant (WTP) is working to develop a Standard High Solids Vessel Design (SHSVD) process vessel. To support testing of this new design, WTP engineering staff requested that a Newtonian simulant and a non-Newtonian simulant be developed that would represent the Most Adverse Design Conditions (in development) with respect to mixing performance as specified by WTP. The majority of the simulant requirements are specified in 24590-PTF-RPT-PE-16-001, Rev. 0. The first step in this process is to develop the basis for these simulants. This document describes the basis for the properties of these two simulant types. Themore » simulant recipes that meet this basis will be provided in a subsequent document.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Tuomas P., E-mail: tuomas.rossi@alumni.aalto.fi; Sakko, Arto; Puska, Martti J.
We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate thatmore » the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.« less
Building the Case for SNAP: Creation of Multi-Band, Simulated Images With Shapelets
NASA Technical Reports Server (NTRS)
Ferry, Matthew A.
2005-01-01
Dark energy has simultaneously been the most elusive and most important phenomenon in the shaping of the universe. A case for a proposed space-telescope called SNAP (SuperNova Acceleration Probe) is being built, a crucial component of which is image simulations. One method for this is "Shapelets," developed at Caltech. Shapelets form an orthonormal basis and are uniquely able to represent realistic space images and create new images based on real ones. Previously, simulations were created using the Hubble Deep Field (HDF) as a basis Set in one band. In this project, image simulations are created.using the 4 bands of the Hubble Ultra Deep Field (UDF) as a basis set. This provides a better basis for simulations because (1) the survey is deeper, (2) they have a higher resolution, and (3) this is a step closer to simulating the 9 bands of SNAP. Image simulations are achieved by detecting sources in the UDF, decomposing them into shapelets, tweaking their parameters in realistic ways, and recomposing them into new images. Morphological tests were also run to verify the realism of the simulations. They have a wide variety of uses, including the ability to create weak gravitational lensing simulations.
Simulating parameters of lunar physical libration on the basis of its analytical theory
NASA Astrophysics Data System (ADS)
Petrova, N.; Zagidullin, A.; Nefediev, Yu.
2014-04-01
Results of simulating behavior of lunar physical libration parameters are presented. Some features in the speed change of impulse variables are revealed: fast periodic changes in р2 and long periodic changes in р3. A problem of searching for a dynamic explanation of this phenomenon is put. The simulation was performed on the basis of the analytical libration theory [1] in the programming environment VBA.
NASA Astrophysics Data System (ADS)
Goh, K. L.; Liew, S. C.; Hasegawa, B. H.
1997-12-01
Computer simulation results from our previous studies showed that energy dependent systematic errors exist in the values of attenuation coefficient synthesized using the basis material decomposition technique with acrylic and aluminum as the basis materials, especially when a high atomic number element (e.g., iodine from radiographic contrast media) was present in the body. The errors were reduced when a basis set was chosen from materials mimicking those found in the phantom. In the present study, we employed a basis material coefficients transformation method to correct for the energy-dependent systematic errors. In this method, the basis material coefficients were first reconstructed using the conventional basis materials (acrylic and aluminum) as the calibration basis set. The coefficients were then numerically transformed to those for a more desirable set materials. The transformation was done at the energies of the low and high energy windows of the X-ray spectrum. With this correction method using acrylic and an iodine-water mixture as our desired basis set, computer simulation results showed that accuracy of better than 2% could be achieved even when iodine was present in the body at a concentration as high as 10% by mass. Simulation work had also been carried out on a more inhomogeneous 2D thorax phantom of the 3D MCAT phantom. The results of the accuracy of quantitation were presented here.
Coarse-grained hydrodynamics from correlation functions
NASA Astrophysics Data System (ADS)
Palmer, Bruce
2018-02-01
This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configurations from a molecular dynamics simulation or other atomistic simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilibrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is demonstrated on a discrete particle simulation of diffusion with a spatially dependent diffusion coefficient. Correlation functions are calculated from the particle simulation and the spatially varying diffusion coefficient is recovered using a fitting procedure.
Simulant Development for LAWPS Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Schonewill, Philip P.; Burns, Carolyn A.
2017-05-23
This report describes simulant development work that was conducted to support the technology maturation of the LAWPS facility. Desired simulant physical properties (density, viscosity, solids concentration, solid particle size), sodium concentrations, and general anion identifications were provided by WRPS. The simulant recipes, particularly a “nominal” 5.6M Na simulant, are intended to be tested at several scales, ranging from bench-scale (500 mL) to full-scale. Each simulant formulation was selected to be chemically representative of the waste streams anticipated to be fed to the LAWPS system, and used the current version of the LAWPS waste specification as a formulation basis. After simulantmore » development iterations, four simulants of varying sodium concentration (5.6M, 6.0M, 4.0M, and 8.0M) were prepared and characterized. The formulation basis, development testing, and final simulant recipes and characterization data for these four simulants are presented in this report.« less
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2005-01-01
An investigation of the effect of basis selection on geometric nonlinear response prediction using a reduced-order nonlinear modal simulation is presented. The accuracy is dictated by the selection of the basis used to determine the nonlinear modal stiffness. This study considers a suite of available bases including bending modes only, bending and membrane modes, coupled bending and companion modes, and uncoupled bending and companion modes. The nonlinear modal simulation presented is broadly applicable and is demonstrated for nonlinear quasi-static and random acoustic response of flat beam and plate structures with isotropic material properties. Reduced-order analysis predictions are compared with those made using a numerical simulation in physical degrees-of-freedom to quantify the error associated with the selected modal bases. Bending and membrane responses are separately presented to help differentiate the bases.
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Biao; Ming, Li; Xin, Zhou
2015-12-01
Ensemble simulations, which use multiple short independent trajectories from dispersive initial conformations, rather than a single long trajectory as used in traditional simulations, are expected to sample complex systems such as biomolecules much more efficiently. The re-weighted ensemble dynamics (RED) is designed to combine these short trajectories to reconstruct the global equilibrium distribution. In the RED, a number of conformational functions, named as basis functions, are applied to relate these trajectories to each other, then a detailed-balance-based linear equation is built, whose solution provides the weights of these trajectories in equilibrium distribution. Thus, the sufficient and efficient selection of basis functions is critical to the practical application of RED. Here, we review and present a few possible ways to generally construct basis functions for applying the RED in complex molecular systems. Especially, for systems with less priori knowledge, we could generally use the root mean squared deviation (RMSD) among conformations to split the whole conformational space into a set of cells, then use the RMSD-based-cell functions as basis functions. We demonstrate the application of the RED in typical systems, including a two-dimensional toy model, the lattice Potts model, and a short peptide system. The results indicate that the RED with the constructions of basis functions not only more efficiently sample the complex systems, but also provide a general way to understand the metastable structure of conformational space. Project supported by the National Natural Science Foundation of China (Grant No. 11175250).
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2004-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for prediction of geometrically nonlinear response due to combined thermal-acoustic loadings. As with any such method, the accuracy of the solution is dictated by the selection of the modal basis, through which the nonlinear modal stiffness is determined. In this study, a suite of available bases are considered including (i) bending modes only; (ii) coupled bending and companion modes; (iii) uncoupled bending and companion modes; and (iv) bending and membrane modes. Comparison of these solutions with numerical simulation in physical degrees-of-freedom indicates that inclusion of any membrane mode variants (ii - iv) in the basis affects the bending displacement and stress response predictions. The most significant effect is on the membrane displacement, where it is shown that only the type (iv) basis accurately predicts its behavior. Results are presented for beam and plate structures in the thermally pre-buckled regime.
Alternative Modal Basis Selection Procedures for Nonlinear Random Response Simulation
NASA Technical Reports Server (NTRS)
Przekop, Adam; Guo, Xinyun; Rizzi, Stephen A.
2010-01-01
Three procedures to guide selection of an efficient modal basis in a nonlinear random response analysis are examined. One method is based only on proper orthogonal decomposition, while the other two additionally involve smooth orthogonal decomposition. Acoustic random response problems are employed to assess the performance of the three modal basis selection approaches. A thermally post-buckled beam exhibiting snap-through behavior, a shallowly curved arch in the auto-parametric response regime and a plate structure are used as numerical test articles. The results of the three reduced-order analyses are compared with the results of the computationally taxing simulation in the physical degrees of freedom. For the cases considered, all three methods are shown to produce modal bases resulting in accurate and computationally efficient reduced-order nonlinear simulations.
Simulation of the communication system between an AUV group and a surface station
NASA Astrophysics Data System (ADS)
Burtovaya, D.; Demin, A.; Demeshko, M.; Moiseev, A.; Kudryashova, A.
2017-01-01
An object model for simulation of the communications system of an autonomous underwater vehicles (AUV) group with a surface station is proposed in the paper. Implementation of the model is made on the basis of the software package “Object Distribution Simulation”. All structural relationships and behavior details are described. The application was developed on the basis of the proposed model and is now used for computational experiments on the simulation of the communications system between the autonomous underwater vehicles group and a surface station.
Coarse-grained hydrodynamics from correlation functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Bruce
This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configuration from a molecular dynamics simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilbrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is applied to some simple hydrodynamic cases to determine the feasibility of applying this to realistic nanoscale systems.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method
NASA Astrophysics Data System (ADS)
Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.
2018-05-01
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method.
Symonds, C; Kattirtzi, J A; Shalashilin, D V
2018-05-14
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
Demonstration of landfill gas enhancement techniques in landfill simulators
NASA Astrophysics Data System (ADS)
Walsh, J. J.; Vogt, W. G.
1982-02-01
Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.
NASA Astrophysics Data System (ADS)
Di Valentin, Cristiana
2007-10-01
In this work we present a simplified procedure to use hybrid functionals and localized atomic basis sets to simulate scanning tunneling microscopy (STM) images of stoichiometric, reduced and hydroxylated rutile (110) TiO2 surface. For the two defective systems it is necessary to introduce some exact Hartree-Fock exchange in the exchange functional in order to correctly describe the details of the electronic structure. Results are compared to the standard density functional theory and planewave basis set approach. Both methods have advantages and drawbacks that are analyzed in detail. In particular, for the localized basis set approach, it is necessary to introduce a number of Gaussian function in the vacuum region above the surface in order to correctly describe the exponential decay of the integrated local density of states from the surface. In the planewave periodic approach, a thick vacuum region is required to achieve correct results. Simulated STM images are obtained for both the reduced and hydroxylated surface which nicely compare with experimental findings. A direct comparison of the two defects as displayed in the simulated STM images indicates that the OH groups should appear brighter than oxygen vacancies in perfect agreement with the experimental STM data.
Model of interaction in Smart Grid on the basis of multi-agent system
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-11-01
This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.
NASA Technical Reports Server (NTRS)
Toups, Zachary O.; Hamilton, William A.; Kerne, Andruid
2012-01-01
Team coordination is essential across domains, enabling efficiency and safety. As technology improves, our temptation is to simulate with ever-higher fidelity, by making simulators re-create reality through their physical interfaces, functionality, and by making participants believe they are undertaking the simulated task. However, high-fidelity simulations often miss salient human-human work practices. We introduce the concept of zero-fidelity simulation (ZFS), a move away from literal high-fidelity mimesis of the concrete environment. ZFS alternatively models cooperation and communication as the basis of simulation. The ZFS Team Coordination Game (TeC) is developed from observation of fire emergency response work practice. We identify ways in which team members are mutually dependent on one another for information, and use these as the basis for the ZFS game design. The design creates a need for cooperation by restricting individual activity and requiring communication. The present research analyzes the design of interdependence in the validated ZFS TeC game. We successfully simulate interdependence between roles in emergency response without simulating the concrete environment.
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2017-11-01
With the spiritual guidance of the Circular on the Construction of National Virtual Simulation Experimental Teaching Center by the National Department of Education, according to the requirements of construction task and work content, and based on the reality of the simulation experimental teaching center of virtual chemical laboratory at Tianjin University, this paper mainly strengthens the understanding of virtual simulation experimental teaching center from three aspects, and on this basis, this article puts forward specific construction ideas, which refer to the “four combinations, five in one, the optimization of the resources and school-enterprise cooperation”, and on this basis, this article has made effective explorations. It also shows the powerful functions of the virtual simulation experimental teaching platform in all aspects by taking the synthesis and analysis of organic compounds as an example.
NASA Astrophysics Data System (ADS)
Pala, M. G.; Esseni, D.
2018-03-01
This paper presents the theory, implementation, and application of a quantum transport modeling approach based on the nonequilibrium Green's function formalism and a full-band empirical pseudopotential Hamiltonian. We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling between the device and the leads. After discussing the theory and the implementation of the new simulation methodology, we report results for complete, self-consistent simulations of different electron devices, including a silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.
Nonlinear Reduced-Order Simulation Using An Experimentally Guided Modal Basis
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2012-01-01
A procedure is developed for using nonlinear experimental response data to guide the modal basis selection in a nonlinear reduced-order simulation. The procedure entails using nonlinear acceleration response data to first identify proper orthogonal modes. Special consideration is given to cases in which some of the desired response data is unavailable. Bases consisting of linear normal modes are then selected to best represent the experimentally determined transverse proper orthogonal modes and either experimentally determined inplane proper orthogonal modes or the special case of numerically computed in-plane companions. The bases are subsequently used in nonlinear modal reduction and dynamic response simulations. The experimental data used in this work is simulated to allow some practical considerations, such as the availability of in-plane response data and non-idealized test conditions, to be explored. Comparisons of the nonlinear reduced-order simulations are made with the surrogate experimental data to demonstrate the effectiveness of the approach.
Real-time Simulation of Turboprop Engine Control System
NASA Astrophysics Data System (ADS)
Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi
2017-05-01
On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.
Three-Dimension Visualization for Primary Wheat Diseases Based on Simulation Model
NASA Astrophysics Data System (ADS)
Shijuan, Li; Yeping, Zhu
Crop simulation model has been becoming the core of agricultural production management and resource optimization management. Displaying crop growth process makes user observe the crop growth and development intuitionisticly. On the basis of understanding and grasping the occurrence condition, popularity season, key impact factors for main wheat diseases of stripe rust, leaf rust, stem rust, head blight and powdery mildew from research material and literature, we designed 3D visualization model for wheat growth and diseases occurrence. The model system will help farmer, technician and decision-maker to use crop growth simulation model better and provide decision-making support. Now 3D visualization model for wheat growth on the basis of simulation model has been developed, and the visualization model for primary wheat diseases is in the process of development.
Tests of Halon 1301 test gas simulants
NASA Astrophysics Data System (ADS)
Carhart, H. W.; Leonard, J. T.; Dinenno, P. J.; Starchville, M. D.; Forssell, E. W.; Wong, J. T.
1989-02-01
All new and retrofit installations of Halon 1301 (CBrF3) total flooding fire protection systems in shipboard machinery spaces require full acceptance discharge test. It is desirable to use a suitable simulant test gas in these tests in view of current and future regulation of Halon 1301. Sulfur hexafluoride, SF6, and chlorodifluromethane R-22, were identified as candidate simulants on the basis of their similarity in physical properties to Halon 1301. These two candidates were then evaluated on the basis of leakage from an enclosure. SF6 was determined to be an excellent simulant for Halon 1301 when considering leakage from an enclosure. Further testing of SF6 and R-22 is planned for other important aspects of Halon 1301 systems, i.e., flow hydraulics, initial mixing.
Assumptions Underlying the Use of Different Types of Simulations.
ERIC Educational Resources Information Center
Cunningham, J. Barton
1984-01-01
Clarifies appropriateness of certain simulation approaches by distinguishing between different types of simulations--experimental, predictive, evaluative, and educational--on the basis of purpose, assumptions, procedures, and criteria for evaluating. The kinds of questions each type best responds to are discussed. (65 references) (MBR)
ERIC Educational Resources Information Center
Martinez, Guadalupe; Naranjo, Francisco L.; Perez, Angel L.; Suero, Maria Isabel; Pardo, Pedro J.
2011-01-01
This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output.…
Structure prediction and molecular simulation of gases diffusion pathways in hydrogenase.
Sundaram, Shanthy; Tripathi, Ashutosh; Gupta, Vipul
2010-10-06
Although hydrogen is considered to be one of the most promising future energy sources and the technical aspects involved in using it have advanced considerably, the future supply of hydrogen from renewable sources is still unsolved. The [Fe]- hydrogenase enzymes are highly efficient H(2) catalysts found in ecologically and phylogenetically diverse microorganisms, including the photosynthetic green alga, Chlamydomonas reinhardtii. While these enzymes can occur in several forms, H(2) catalysis takes place at a unique [FeS] prosthetic group or H-cluster, located at the active site. 3D structure of the protein hydA1 hydrogenase from Chlamydomonas reinhardtti was predicted using the MODELER 8v2 software. Conserved region was depicted from the NCBI CDD Search. Template selection was done on the basis NCBI BLAST results. For single template 1FEH was used and for multiple templates 1FEH and 1HFE were used. The result of the Homology modeling was verified by uploading the file to SAVS server. On the basis of the SAVS result 3D structure predicted using single template was chosen for performing molecular simulation. For performing molecular simulation three strategies were used. First the molecular simulation of the protein was performed in solvated box containing bulk water. Then 100 H(2) molecules were randomly inserted in the solvated box and two simulations of 50 and 100 ps were performed. Similarly 100 O(2) molecules were randomly placed in the solvated box and again 50 and 100 ps simulation were performed. Energy minimization was performed before each simulation was performed. Conformations were saved after each simulation. Analysis of the gas diffusion was done on the basis of RMSD, Radius of Gyration and no. of gas molecule/ps plot.
Can You Fathom This? Connecting Data Analysis, Algebra, and Geometry with Probability Simulation
ERIC Educational Resources Information Center
Edwards, Michael Todd; Phelps, Steve
2008-01-01
Data analysis plays a prominent role in various facets of modern life: Schools evaluate and revise programs on the basis of test scores; policymakers make decisions on the basis of information gleaned from polling data; supermarkets stock shelves on the basis of data collected at checkout lanes. Data analysis provides teachers with new tools and…
Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.
Volkov basis for simulation of interaction of strong laser pulses and solids
NASA Astrophysics Data System (ADS)
Kidd, Daniel; Covington, Cody; Li, Yonghui; Varga, Kálmán
2018-01-01
An efficient and accurate basis comprised of Volkov states is implemented and tested for time-dependent simulations of interactions between strong laser pulses and crystalline solids. The Volkov states are eigenstates of the free electron Hamiltonian in an electromagnetic field and analytically represent the rapidly oscillating time-dependence of the orbitals, allowing significantly faster time propagation than conventional approaches. The Volkov approach can be readily implemented in plane-wave codes by multiplying the potential energy matrix elements with a simple time-dependent phase factor.
NASA Astrophysics Data System (ADS)
Choi, Jun-Ho; Cho, Minhaeng
2013-05-01
The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.
Ma, Jun; Liu, Lei; Ge, Sai; Xue, Qiang; Li, Jiangshan; Wan, Yong; Hui, Xinminnan
2018-03-01
A quantitative description of aerobic waste degradation is important in evaluating landfill waste stability and economic management. This research aimed to develop a coupling model to predict the degree of aerobic waste degradation. On the basis of the first-order kinetic equation and the law of conservation of mass, we first developed the coupling model of aerobic waste degradation that considered temperature, initial moisture content and air injection volume to simulate and predict the chemical oxygen demand in the leachate. Three different laboratory experiments on aerobic waste degradation were simulated to test the model applicability. Parameter sensitivity analyses were conducted to evaluate the reliability of parameters. The coupling model can simulate aerobic waste degradation, and the obtained simulation agreed with the corresponding results of the experiment. Comparison of the experiment and simulation demonstrated that the coupling model is a new approach to predict aerobic waste degradation and can be considered as the basis for selecting the economic air injection volume and appropriate management in the future.
Furniture rough mill costs evaluated by computer simulation
R. Bruce Anderson
1983-01-01
A crosscut-first furniture rough mill was simulated to evaluate processing and raw material costs on an individual part basis. Distributions representing the real-world characteristics of lumber, equipment feed speeds, and processing requirements are programed into the simulation. Costs of parts from a specific cutting bill are given, and effects of lumber input costs...
[ANSYS simulation of subcutaneous pustule electrical characteristics].
Liu, Baohua; Wang, Xuan; Zhu, Honglian; Wang, Guoyong
2011-12-01
With the growing number of clinical surgery, post-operative surgical wound infection has become a very difficult clinical problem. In the treatments of it, non-invasive test of wound infection and healing status has a significance in clinical medicine practice. In this paper, beginning with the electrical properties of skin tissue structure and on the basis of the electromagnetism and the human anatomy, using the finite element analysis software, we applied safe voltage on the 3D skin model, performed the subcutaneous pustule simulation study and gained the relational curve between depth and radius of the pustule model. The simulation results suggested that the method we put forward could be feasible, and it could provide basis for non-invasive detection of wound healing and wound infection status.
Computer simulation of gear tooth manufacturing processes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri; Huston, Ronald L.
1990-01-01
The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.
Stimulation from Simulation? A Teaching Model of Hillslope Hydrology for Use on Microcomputers.
ERIC Educational Resources Information Center
Burt, Tim; Butcher, Dave
1986-01-01
The design and use of a simple computer model which simulates a hillslope hydrology is described in a teaching context. The model shows a relatively complex environmental system can be constructed on the basis of a simple but realistic theory, thus allowing students to simulate the hydrological response of real hillslopes. (Author/TRS)
Identifying and Quantifying Emergent Behavior Through System of Systems Modeling and Simulation
2015-09-01
42 J . SUMMARY ..............................................................................................43 III. METHODOLOGY...our research. e. Ptolemy Ptolemy is a simulation and rapid prototype environment developed at the University of California Berkely in the...simulation. J . SUMMARY This chapter describes the many works used as a basis for this research. This research used the principles of Selberg’s 2008
Can't Get No (Dis)satisfaction: The "Statecraft" Simulation's Effect on Student Decision Making
ERIC Educational Resources Information Center
Raymond, Chad
2014-01-01
Simulations are often employed as content-teaching tools in political science, but their effect on students' reasoning skills is rarely assessed. This article explores what effect the "Statecraft" simulation might have on undergraduate students' perceptions of their decision making. Decisions are often evaluated on the basis of…
Influence of Left-Right Asymmetries on Voice Quality in Simulated Paramedian Vocal Fold Paralysis
ERIC Educational Resources Information Center
Samlan, Robin A.; Story, Brad H.
2017-01-01
Purpose: The purpose of this study was to determine the vocal fold structural and vibratory symmetries that are important to vocal function and voice quality in a simulated paramedian vocal fold paralysis. Method: A computational kinematic speech production model was used to simulate an exemplar "voice" on the basis of asymmetric…
Reevaluating simulation in nursing education: beyond the human patient simulator.
Schiavenato, Martin
2009-07-01
The human patient simulator or high-fidelity mannequin has become synonymous with the word simulation in nursing education. Founded on a historical context and on an evaluation of the current application of simulation in nursing education, this article challenges that assumption as limited and restrictive. A definition of simulation and a broader conceptualization of its application in nursing education are presented. The need for an ideological basis for simulation in nursing education is highlighted. The call is made for theory to answer the question of why simulation is used in nursing to anchor its proper and effective application in nursing education.
Optimization of global model composed of radial basis functions using the term-ranking approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Peng; Tao, Chao, E-mail: taochao@nju.edu.cn; Liu, Xiao-Jun
2014-03-15
A term-ranking method is put forward to optimize the global model composed of radial basis functions to improve the predictability of the model. The effectiveness of the proposed method is examined by numerical simulation and experimental data. Numerical simulations indicate that this method can significantly lengthen the prediction time and decrease the Bayesian information criterion of the model. The application to real voice signal shows that the optimized global model can capture more predictable component in chaos-like voice data and simultaneously reduce the predictable component (periodic pitch) in the residual signal.
Alternative Modal Basis Selection Procedures For Reduced-Order Nonlinear Random Response Simulation
NASA Technical Reports Server (NTRS)
Przekop, Adam; Guo, Xinyun; Rizi, Stephen A.
2012-01-01
Three procedures to guide selection of an efficient modal basis in a nonlinear random response analysis are examined. One method is based only on proper orthogonal decomposition, while the other two additionally involve smooth orthogonal decomposition. Acoustic random response problems are employed to assess the performance of the three modal basis selection approaches. A thermally post-buckled beam exhibiting snap-through behavior, a shallowly curved arch in the auto-parametric response regime and a plate structure are used as numerical test articles. The results of a computationally taxing full-order analysis in physical degrees of freedom are taken as the benchmark for comparison with the results from the three reduced-order analyses. For the cases considered, all three methods are shown to produce modal bases resulting in accurate and computationally efficient reduced-order nonlinear simulations.
Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Burken, John; Ishihara, Abraham
2011-01-01
This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.
Potential sites for tidal power in New Jersey.
DOT National Transportation Integrated Search
2014-04-01
High-resolution simulation is made to model tidal energy along the coastlines of New Jersey (NJ) and its neighbor states with an : unprecedentedly fine grid. On the basis of the simulation, a thorough search is made for sites for tidal power generati...
A Simulation Study Comparing Procedures for Assessing Individual Educational Growth. Report No. 182.
ERIC Educational Resources Information Center
Richards, James M., Jr.
A computer simulation procedure was developed to reproduce the overall pattern of results obtained in the Educational Testing Service Growth Study. Then simulated data for seven sets of 10,000 to 15,000 cases were analyzed, and findings compared on the basis of correlations between estimated and true growth scores. Findings showed that growth was…
Using Simulations to Teach Middle Grades U.S. History in an Age of Accountability
ERIC Educational Resources Information Center
DiCamillo, Lorrei; Gradwell, Jill M.
2012-01-01
In this year-long qualitative study we explore the case of two eighth grade U.S. History teachers who use simulations on a regular basis to teach heterogeneously-grouped students in a high-stakes testing environment. We describe the purposes the teachers espoused for implementing simulations and provide detailed portraits of three types of…
ERIC Educational Resources Information Center
Fauzi, Ahmad; Bundu, Patta; Tahmir, Suradi
2016-01-01
Bridge simulator constitutes a very fundamental and vital tool to trigger and ensure that seamen or seafarers possess the standardized competence required. By using the bridge simulator technique, a reality based study can be presented easily and delivered to the students in ongoing basis to their classroom or study place. Afterwards, the validity…
The Bravyi-Kitaev transformation for quantum computation of electronic structure
NASA Astrophysics Data System (ADS)
Seeley, Jacob T.; Richard, Martin J.; Love, Peter J.
2012-12-01
Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here, we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [Ann. Phys. 298, 210 (2002), 10.1006/aphy.2002.6254; e-print arXiv:quant-ph/0003137v2], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time step of the Bravyi-Kitaev derived Hamiltonian for H2 requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure.
Study on Roadheader Cutting Load at Different Properties of Coal and Rock
2013-01-01
The mechanism of cutting process of roadheader with cutting head was researched, and the influences of properties of coal and rock on cutting load were deeply analyzed. Aimed at the defects of traditional calculation method of cutting load on fully expressing the complex cutting process of cutting head, the method of finite element simulation was proposed to simulate the dynamic cutting process. Aimed at the characteristics of coal and rock which affect the cutting load, several simulations with different firmness coefficient were taken repeatedly, and the relationship between three-axis force and firmness coefficient was derived. A comparative analysis of cutting pick load between simulation results and theoretical formula was carried out, and a consistency was achieved. Then cutting process with a total cutting head was carried out on this basis. The results show that the simulation analysis not only provides a reliable guarantee for the accurate calculation of the cutting head load and improves the efficiency of the cutting head cutting test but also offers a basis for selection of cutting head with different geological conditions of coal or rock. PMID:24302866
Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.
Hertig, Samuel; Latorraca, Naomi R; Dror, Ron O
2016-06-01
Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.
Chatterjee, Paulami; Roy, Debjani
2017-08-01
Protein-protein interaction domain, PDZ, plays a critical role in efficient synaptic transmission in brain. Dysfunction of synaptic transmission is thought to be the underlying basis of many neuropsychiatric and neurodegenerative disorders including Alzheimer's disease (AD). In this study, Glutamate Receptor Interacting Protein1 (GRIP1) was identified as one of the most important differentially expressed, topologically significant proteins in the protein-protein interaction network. To date, very few studies have analyzed the detailed structural basis of PDZ-mediated protein interaction of GRIP1. In order to gain better understanding of structural and dynamic basis of these interactions, we employed molecular dynamics (MD) simulations of GRIP1-PDZ6 dimer bound with Liprin-alpha and GRIP1-PDZ6 dimer alone each with 100 ns simulations. The analyses of MD simulations of Liprin-alpha bound GRIP1-PDZ6 dimer show considerable conformational differences than that of peptide-free dimer in terms of SASA, hydrogen bonding patterns, and along principal component 1 (PC1). Our study also furnishes insight into the structural attunement of the PDZ6 domains of Liprin-alpha bound GRIP1 that is attributed by significant shift of the Liprin-alpha recognition helix in the simulated peptide-bound dimer compared to the crystal structure and simulated peptide-free dimer. It is evident that PDZ6 domains of peptide-bound dimer show differential movements along PC1 than that of peptide-free dimers. Thus, Liprin-alpha also serves an important role in conferring conformational changes along the dimeric interface of the peptide-bound dimer. Results reported here provide information that may lead to novel therapeutic approaches in AD.
Simulation of the photodetachment spectrum of HHfO- using coupled-cluster calculations
NASA Astrophysics Data System (ADS)
Mok, Daniel K. W.; Dyke, John M.; Lee, Edmond P. F.
2016-12-01
The photodetachment spectrum of HHfO- was simulated using restricted-spin coupled-cluster single-double plus perturbative triple {RCCSD(T)} calculations performed on the ground electronic states of HHfO and HHfO-, employing basis sets of up to quintuple-zeta quality. The computed RCCSD(T) electron affinity of 1.67 ± 0.02 eV at the complete basis set limit, including Hf 5s25p6 core correlation and zero-point energy corrections, agrees well with the experimental value of 1.70 ± 0.05 eV from a recent photodetachment study [X. Li et al., J. Chem. Phys. 136, 154306 (2012)]. For the simulation, Franck-Condon factors were computed which included allowances for anharmonicity and Duschinsky rotation. Comparisons between simulated and experimental spectra confirm the assignments of the molecular carrier and electronic states involved but suggest that the experimental vibrational structure has suffered from poor signal-to-noise ratio. An alternative assignment of the vibrational structure to that suggested in the experimental work is presented.
14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...
14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...
14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...
14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...
14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...
Modeling Age Differences in Infant Category Learning
ERIC Educational Resources Information Center
Shultz, Thomas R.; Cohen, Leslie B.
2004-01-01
We used an encoder version of cascade correlation to simulate Younger and Cohen's (1983, 1986) finding that 10-month-olds recover attention on the basis of correlations among stimulus features, but 4- and 7-month-olds recover attention on the basis of stimulus features. We captured these effects by varying the score threshold parameter in cascade…
Simulation of snow and soil water content as a basis for satellite retrievals
USDA-ARS?s Scientific Manuscript database
It is not yet possible to determine whether the snow has changed over time despite collection of passive microwave data for more than thirty years. Physically-based, but computationally simple snow and soil models have been coupled to form the basis of a data assimilation system for retrievals of sn...
Hybrid Grid and Basis Set Approach to Quantum Chemistry DMRG
NASA Astrophysics Data System (ADS)
Stoudenmire, Edwin Miles; White, Steven
We present a new approach for using DMRG for quantum chemistry that combines the advantages of a basis set with that of a grid approximation. Because DMRG scales linearly for quasi-one-dimensional systems, it is feasible to approximate the continuum with a fine grid in one direction while using a standard basis set approach for the transverse directions. Compared to standard basis set methods, we reach larger systems and achieve better scaling when approaching the basis set limit. The flexibility and reduced costs of our approach even make it feasible to incoporate advanced DMRG techniques such as simulating real-time dynamics. Supported by the Simons Collaboration on the Many-Electron Problem.
Statistical Inference for Big Data Problems in Molecular Biophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Arvind; Savol, Andrej; Burger, Virginia
2012-01-01
We highlight the role of statistical inference techniques in providing biological insights from analyzing long time-scale molecular simulation data. Technologi- cal and algorithmic improvements in computation have brought molecular simu- lations to the forefront of techniques applied to investigating the basis of living systems. While these longer simulations, increasingly complex reaching petabyte scales presently, promise a detailed view into microscopic behavior, teasing out the important information has now become a true challenge on its own. Mining this data for important patterns is critical to automating therapeutic intervention discovery, improving protein design, and fundamentally understanding the mech- anistic basis of cellularmore » homeostasis.« less
Vector control of wind turbine on the basis of the fuzzy selective neural net*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.
Validation of 2D flood models with insurance claims
NASA Astrophysics Data System (ADS)
Zischg, Andreas Paul; Mosimann, Markus; Bernet, Daniel Benjamin; Röthlisberger, Veronika
2018-02-01
Flood impact modelling requires reliable models for the simulation of flood processes. In recent years, flood inundation models have been remarkably improved and widely used for flood hazard simulation, flood exposure and loss analyses. In this study, we validate a 2D inundation model for the purpose of flood exposure analysis at the river reach scale. We validate the BASEMENT simulation model with insurance claims using conventional validation metrics. The flood model is established on the basis of available topographic data in a high spatial resolution for four test cases. The validation metrics were calculated with two different datasets; a dataset of event documentations reporting flooded areas and a dataset of insurance claims. The model fit relating to insurance claims is in three out of four test cases slightly lower than the model fit computed on the basis of the observed inundation areas. This comparison between two independent validation data sets suggests that validation metrics using insurance claims can be compared to conventional validation data, such as the flooded area. However, a validation on the basis of insurance claims might be more conservative in cases where model errors are more pronounced in areas with a high density of values at risk.
Stability Estimation of ABWR on the Basis of Noise Analysis
NASA Astrophysics Data System (ADS)
Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun
In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.
University Macro Analytic Simulation Model.
ERIC Educational Resources Information Center
Baron, Robert; Gulko, Warren
The University Macro Analytic Simulation System (UMASS) has been designed as a forecasting tool to help university administrators budgeting decisions. Alternative budgeting strategies can be tested on a computer model and then an operational alternative can be selected on the basis of the most desirable projected outcome. UMASS uses readily…
Developing a Learning Algorithm-Generated Empirical Relaxer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Wayne; Kallman, Josh; Toreja, Allen
2016-03-30
One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE) simulations is determining how much to relax the mesh during the Eulerian step. This determination is currently made by the user on a simulation-by-simulation basis. We present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a regressive random forest algorithm to automate this decision process. We also demonstrate that LAGER successfully relaxes a variety of test problems, maintains simulation accuracy, and has the potential to significantly decrease both the person-hours and computational hours needed to run a successful ALE simulation.
McAllister, Margaret; Searl, Kerry Reid; Davis, Susan
2013-12-01
Simulation learning in nursing has long made use of mannequins, standardized actors and role play to allow students opportunity to practice technical body-care skills and interventions. Even though numerous strategies have been developed to mimic or amplify clinical situations, a common problem that is difficult to overcome in even the most well-executed simulation experiences, is that students may realize the setting is artificial and fail to fully engage, remember or apply the learning. Another problem is that students may learn technical competence but remain uncertain about communicating with the person. Since communication capabilities are imperative in human service work, simulation learning that only achieves technical competence in students is not fully effective for the needs of nursing education. Furthermore, while simulation learning is a burgeoning space for innovative practices, it has been criticized for the absence of a basis in theory. It is within this context that an innovative simulation learning experience named "Mask-Ed (KRS simulation)", has been deconstructed and the active learning components examined. Establishing a theoretical basis for creative teaching and learning practices provides an understanding of how, why and when simulation learning has been effective and it may help to distinguish aspects of the experience that could be improved. Three conceptual theoretical fields help explain the power of this simulation technique: Vygotskian sociocultural learning theory, applied theatre and embodiment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pricing and simulation for real estate index options: Radial basis point interpolation
NASA Astrophysics Data System (ADS)
Gong, Pu; Zou, Dong; Wang, Jiayue
2018-06-01
This study employs the meshfree radial basis point interpolation (RBPI) for pricing real estate derivatives contingent on real estate index. This method combines radial and polynomial basis functions, which can guarantee the interpolation scheme with Kronecker property and effectively improve accuracy. An exponential change of variables, a mesh refinement algorithm and the Richardson extrapolation are employed in this study to implement the RBPI. Numerical results are presented to examine the computational efficiency and accuracy of our method.
The optical design and simulation of the collimated solar simulator
NASA Astrophysics Data System (ADS)
Zhang, Jun; Ma, Tao
2018-01-01
The solar simulator is a lighting device that can simulate the solar radiation. It has been widely used in the testing of solar cells, satellite space environment simulation and ground experiment, test and calibration precision of solar sensor. The solar simulator mainly consisted of short—arc xenon lamp, ellipsoidal reflectors, a group of optical integrator, field stop, aspheric folding mirror and collimating reflector. In this paper, the solar simulator's optical system basic size are given by calculation. Then the system is optically modeled with the Lighttools software, and the simulation analysis on solar simulator using the Monte Carlo ray -tracing technique is conducted. Finally, the simulation results are given quantitatively by diagrammatic form. The rationality of the design is verified on the basis of theory.
Person Oriented Models (POMs) provide a basis for simulating aggregate chemical exposures in a population over time (Price and Chaisson, 2005). POMs assign characteristics to simulated individuals that are used to determine the individual’s probability of interacting with e...
Design of full-scale adsorption systems typically includes expensive and time-consuming pilot studies to simulate full-scale adsorber performance. Accordingly, the rapid small-scale column test (RSSCT) was developed and evaluated experimentally. The RSSCT can simulate months of f...
Crowd Modeling in Military Simulations: Requirements Analysis, Survey, and Design Study
2003-04-01
Survey, Crowd Simulation Federate 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES John L...models of crowds and crowd behavior are essentially absent from current production military simulations. The absence of models of crowds in military...understanding of cognitive psychology, including better connection of cognition to behavior, is essential to provide a psychological basis for crowd models
NASA Astrophysics Data System (ADS)
Yuan, Yanbin; Zhou, You; Zhu, Yaqiong; Yuan, Xiaohui; Sælthun, N. R.
2007-11-01
Based on digital technology, flood routing simulation system development is an important component of "digital catchment". Taking QingJiang catchment as a pilot case, in-depth analysis on informatization of Qingjiang catchment management being the basis, aiming at catchment data's multi-source, - dimension, -element, -subject, -layer and -class feature, the study brings the design thought and method of "subject-point-source database" (SPSD) to design system structure in order to realize the unified management of catchments data in great quantity. Using the thought of integrated spatial information technology for reference, integrating hierarchical structure development model of digital catchment is established. The model is general framework of the flood routing simulation system analysis, design and realization. In order to satisfy the demands of flood routing three-dimensional simulation system, the object-oriented spatial data model are designed. We can analyze space-time self-adapting relation between flood routing and catchments topography, express grid data of terrain by using non-directed graph, apply breadth first search arithmetic, set up search method for the purpose of dynamically searching stream channel on the basis of simulated three-dimensional terrain. The system prototype is therefore realized. Simulation results have demonstrated that the proposed approach is feasible and effective in the application.
An Exospheric Temperature Model Based On CHAMP Observations and TIEGCM Simulations
NASA Astrophysics Data System (ADS)
Ruan, Haibing; Lei, Jiuhou; Dou, Xiankang; Liu, Siqing; Aa, Ercha
2018-02-01
In this work, thermospheric densities from the accelerometer measurement on board the CHAMP satellite during 2002-2009 and the simulations from the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) are employed to develop an empirical exospheric temperature model (ETM). The two-dimensional basis functions of the ETM are first provided from the principal component analysis of the TIEGCM simulations. Based on the exospheric temperatures derived from CHAMP thermospheric densities, a global distribution of the exospheric temperatures is reconstructed. A parameterization is conducted for each basis function amplitude as a function of solar-geophysical and seasonal conditions. Thus, the ETM can be utilized to model the thermospheric temperature and mass density under a specified condition. Our results showed that the averaged standard deviation of the ETM is generally less than 10% than approximately 30% in the MSIS model. Besides, the ETM reproduces the global thermospheric evolutions including the equatorial thermosphere anomaly.
NASA Astrophysics Data System (ADS)
Wang, Li Han
2018-06-01
Taking the forest vegetation in Zijin Mountain (Purple Mountain) Area of Nanjing as the research object, based on the simulation natural and semi natural plant communities, the systematic research on the construction of Nanjing regional plant landscape is carried out by the method such as literature and theory, investigation and evaluation, discussion and reference. On the basis of TWINSPAN classification, the species composition (flora and geographical composition), community structure, species diversity, interspecific relationship and ecological niche of Zijin Mountain natural vegetation are studied and analyzed as a basis for simulation design and planting. Then, from the three levels of ornamental value, resource development and utilization potential and biological characteristics, a comprehensive evaluation system used for wild ornamental plant resources in Zijin Mountain is built. Finally, some suggestions on the planting species of deep forest vegetation in Zijin Mountain are put forward.
Validation of the solar heating and cooling high speed performance (HISPER) computer code
NASA Technical Reports Server (NTRS)
Wallace, D. B.
1980-01-01
Developed to give a quick and accurate predictions HISPER, a simplification of the TRNSYS program, achieves its computational speed by not simulating detailed system operations or performing detailed load computations. In order to validate the HISPER computer for air systems the simulation was compared to the actual performance of an operational test site. Solar insolation, ambient temperature, water usage rate, and water main temperatures from the data tapes for an office building in Huntsville, Alabama were used as input. The HISPER program was found to predict the heating loads and solar fraction of the loads with errors of less than ten percent. Good correlation was found on both a seasonal basis and a monthly basis. Several parameters (such as infiltration rate and the outside ambient temperature above which heating is not required) were found to require careful selection for accurate simulation.
Decoy-state quantum key distribution with biased basis choice
Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng
2013-01-01
We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states. PMID:23948999
Decoy-state quantum key distribution with biased basis choice.
Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng
2013-01-01
We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states.
Fang, Juan; Gong, He; Kong, Lingyan; Zhu, Dong
2013-12-20
Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of osteoarthritis and provides theoretical basis and computational method for the prevention and treatment of osteoarthritis. It can also serve as basis for further study on periprosthetic BMD changes after total knee arthroplasty, and provide a theoretical basis for optimization design of prosthesis.
2013-01-01
Background Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. Methods The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. Results The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. Conclusions It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of osteoarthritis and provides theoretical basis and computational method for the prevention and treatment of osteoarthritis. It can also serve as basis for further study on periprosthetic BMD changes after total knee arthroplasty, and provide a theoretical basis for optimization design of prosthesis. PMID:24359345
Aerodynamic Simulation Analysis of Unmanned Airborne Electronic Bomb
NASA Astrophysics Data System (ADS)
Yang, Jiaoying; Guo, Yachao
2017-10-01
For microelectronic bombs for UAVs, on the basis of the use of rotors to lift the insurance on the basis of ammunition, increased tail to increase stability. The aerodynamic simulation of the outer structure of the ammunition was carried out by FLUENT software. The resistance coefficient, the lift coefficient and the pitch moment coefficient under different angle of attack and Mach number were obtained, and the aerodynamic characteristics of the electronic bomb were studied. The pressure line diagram and the velocity line diagram of the flow around the bomb are further analyzed, and the rationality of the external structure is verified, which provides a reference for the subsequent design of the electronic bomb.
Simpson, Robin; Devenyi, Gabriel A; Jezzard, Peter; Hennessy, T Jay; Near, Jamie
2017-01-01
To introduce a new toolkit for simulation and processing of magnetic resonance spectroscopy (MRS) data, and to demonstrate some of its novel features. The FID appliance (FID-A) is an open-source, MATLAB-based software toolkit for simulation and processing of MRS data. The software is designed specifically for processing data with multiple dimensions (eg, multiple radiofrequency channels, averages, spectral editing dimensions). It is equipped with functions for importing data in the formats of most major MRI vendors (eg, Siemens, Philips, GE, Agilent) and for exporting data into the formats of several common processing software packages (eg, LCModel, jMRUI, Tarquin). This paper introduces the FID-A software toolkit and uses examples to demonstrate its novel features, namely 1) the use of a spectral registration algorithm to carry out useful processing routines automatically, 2) automatic detection and removal of motion-corrupted scans, and 3) the ability to perform several major aspects of the MRS computational workflow from a single piece of software. This latter feature is illustrated through both high-level processing of in vivo GABA-edited MEGA-PRESS MRS data, as well as detailed quantum mechanical simulations to generate an accurate LCModel basis set for analysis of the same data. All of the described processing steps resulted in a marked improvement in spectral quality compared with unprocessed data. Fitting of MEGA-PRESS data using a customized basis set resulted in improved fitting accuracy compared with a generic MEGA-PRESS basis set. The FID-A software toolkit enables high-level processing of MRS data and accurate simulation of in vivo MRS experiments. Magn Reson Med 77:23-33, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Incorporating scenario-based simulation into a hospital nursing education program.
Nagle, Beth M; McHale, Jeanne M; Alexander, Gail A; French, Brian M
2009-01-01
Nurse educators are challenged to provide meaningful and effective learning opportunities for both new and experienced nurses. Simulation as a teaching and learning methodology is being embraced by nursing in academic and practice settings to provide innovative educational experiences to assess and develop clinical competency, promote teamwork, and improve care processes. This article provides an overview of the historical basis for using simulation in education, simulation methodologies, and perceived advantages and disadvantages. It also provides a description of the integration of scenario-based programs using a full-scale patient simulator into nursing education programming at a large academic medical center.
Development of an Implantable WBAN Path-Loss Model for Capsule Endoscopy
NASA Astrophysics Data System (ADS)
Aoyagi, Takahiro; Takizawa, Kenichi; Kobayashi, Takehiko; Takada, Jun-Ichi; Hamaguchi, Kiyoshi; Kohno, Ryuji
An implantable WBAN path-loss model for a capsule endoscopy which is used for examining digestive organs, is developed by conducting simulations and experiments. First, we performed FDTD simulations on implant WBAN propagation by using a numerical human model. Second, we performed FDTD simulations on a vessel that represents the human body. Third, we performed experiments using a vessel of the same dimensions as that used in the simulations. On the basis of the results of these simulations and experiments, we proposed the gradient and intercept parameters of the simple path-loss in-body propagation model.
78 FR 58328 - Change-1 to Navigation and Inspection Circular 04-08
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
...-simplified the process to a ``go/no-go'' decision that would not allow all factors to be considered. In... by immersion in sea simulation and video electronystagmography to study their vestibular systems. The... stricter standards on a case-by-case basis as needed. The Coast Guard disagrees that sea simulation and...
A Theory for the Neural Basis of Language Part 2: Simulation Studies of the Model
ERIC Educational Resources Information Center
Baron, R. J.
1974-01-01
Computer simulation studies of the proposed model are presented. Processes demonstrated are (1) verbally directed recall of visual experience; (2) understanding of verbal information; (3) aspects of learning and forgetting; (4) the dependence of recognition and understanding in context; and (5) elementary concepts of sentence production. (Author)
Estimating postfire water production in the Pacific Northwest
Donald F. Potts; David L. Peterson; Hans R. Zuuring
1989-01-01
Two hydrologic models were adapted to estimate postfire changer in water yield in Pacific Northwest watersheds. The WRENSS version of the simulation model PROSPER is used for hydrologic regimes dominated by rainfall: it calculates water available for streamflow onthe basis of seasonal precipitation and leaf area index. The WRENSS version of the simulation model WATBAL...
Ab initio molecular dynamics simulation of LiBr association in water
NASA Astrophysics Data System (ADS)
Izvekov, Sergei; Philpott, Michael R.
2000-12-01
A computationally economical scheme which unifies the density functional description of an ionic solute and the classical description of a solvent was developed. The density functional part of the scheme comprises Car-Parrinello and related formalisms. The substantial saving in the computer time is achieved by performing the ab initio molecular dynamics of the solute electronic structure in a relatively small basis set constructed from lowest energy Kohn-Sham orbitals calculated for a single anion in vacuum, instead of using plane wave basis. The methodology permits simulation of an ionic solution for longer time scales while keeping accuracy in the prediction of the solute electronic structure. As an example the association of the Li+-Br- ion-pair system in water is studied. The results of the combined molecular dynamics simulation are compared with that obtained from the classical simulation with ion-ion interaction described by the pair potential of Born-Huggins-Mayer type. The comparison reveals an important role played by the polarization of the Br- ion in the dynamics of ion pair association.
Simulation of data safety components for corporative systems
NASA Astrophysics Data System (ADS)
Yaremko, Svetlana A.; Kuzmina, Elena M.; Savchuk, Tamara O.; Krivonosov, Valeriy E.; Smolarz, Andrzej; Arman, Abenov; Smailova, Saule; Kalizhanova, Aliya
2017-08-01
The article deals with research of designing data safety components for corporations by means of mathematical simulations and modern information technologies. Simulation of threats ranks has been done which is based on definite values of data components. The rules of safety policy for corporative information systems have been presented. The ways of realization of safety policy rules have been proposed on the basis of taken conditions and appropriate class of valuable data protection.
Large-scale expensive black-box function optimization
NASA Astrophysics Data System (ADS)
Rashid, Kashif; Bailey, William; Couët, Benoît
2012-09-01
This paper presents the application of an adaptive radial basis function method to a computationally expensive black-box reservoir simulation model of many variables. An iterative proxy-based scheme is used to tune the control variables, distributed for finer control over a varying number of intervals covering the total simulation period, to maximize asset NPV. The method shows that large-scale simulation-based function optimization of several hundred variables is practical and effective.
Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs
NASA Astrophysics Data System (ADS)
Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.
2013-11-01
The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.
Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator
NASA Technical Reports Server (NTRS)
Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.
2012-01-01
SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.
Electrolyzers Enhancing Flexibility in Electric Grids
Mohanpurkar, Manish; Luo, Yusheng; Terlip, Danny; ...
2017-11-10
This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed, which enables an optimal operation of the load on themore » basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. In conclusion, the FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.« less
Model tests of wind turbine with a vertical axis of rotation type Lenz 2
NASA Astrophysics Data System (ADS)
Zwierzchowski, Jaroslaw; Laski, Pawel Andrzej; Blasiak, Slawomir; Takosoglu, Jakub Emanuel; Pietrala, Dawid Sebastian; Bracha, Gabriel Filip; Nowakowski, Lukasz
A building design of vertical axis wind turbines (VAWT) was presented in the article. The construction and operating principle of a wind turbine were described therein. Two VAWT turbine models were compared, i.a. Darrieus and Lenz2, taking their strengths and weaknesses into consideration. 3D solid models of turbine components were presented with the use of SolidWorks software. Using CFD methods, the air flow on two aerodynamic fins, symmetrical and asymmetrical, at different angles of attack were tested. On the basis of flow simulation conducted in FlowSimulation, an asymmetrical fin was chosen as the one showing greater load bearing capacities. Due to the uncertainty of trouble-free operation of Darrieus turbine on construction elements creating the basis thereof, a 3D model of Lenz2 turbine was constructed, which is more reliable and makes turbine self-start possible. On the basis of the research, components were designed and technical docu mentation was compiled.
Ab initio molecular simulations with numeric atom-centered orbitals
NASA Astrophysics Data System (ADS)
Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias
2009-11-01
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.
Optimization of Turbine Blade Design for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Shyy, Wei
1998-01-01
To facilitate design optimization of turbine blade shape for reusable launching vehicles, appropriate techniques need to be developed to process and estimate the characteristics of the design variables and the response of the output with respect to the variations of the design variables. The purpose of this report is to offer insight into developing appropriate techniques for supporting such design and optimization needs. Neural network and polynomial-based techniques are applied to process aerodynamic data obtained from computational simulations for flows around a two-dimensional airfoil and a generic three- dimensional wing/blade. For the two-dimensional airfoil, a two-layered radial-basis network is designed and trained. The performances of two different design functions for radial-basis networks, one based on the accuracy requirement, whereas the other one based on the limit on the network size. While the number of neurons needed to satisfactorily reproduce the information depends on the size of the data, the neural network technique is shown to be more accurate for large data set (up to 765 simulations have been used) than the polynomial-based response surface method. For the three-dimensional wing/blade case, smaller aerodynamic data sets (between 9 to 25 simulations) are considered, and both the neural network and the polynomial-based response surface techniques improve their performance as the data size increases. It is found while the relative performance of two different network types, a radial-basis network and a back-propagation network, depends on the number of input data, the number of iterations required for radial-basis network is less than that for the back-propagation network.
Monte Carlo simulation of aorta autofluorescence
NASA Astrophysics Data System (ADS)
Kuznetsova, A. A.; Pushkareva, A. E.
2016-08-01
Results of numerical simulation of autofluorescence of the aorta by the method of Monte Carlo are reported. Two states of the aorta, normal and with atherosclerotic lesions, are studied. A model of the studied tissue is developed on the basis of information about optical, morphological, and physico-chemical properties. It is shown that the data obtained by numerical Monte Carlo simulation are in good agreement with experimental results indicating adequacy of the developed model of the aorta autofluorescence.
2009-11-01
dynamics of the complex predicted by multiple molecular dynamics simulations , and discuss further structural optimization to achieve better in vivo efficacy...complex with BoNTAe and the dynamics of the complex predicted by multiple molecular dynamics simulations (MMDSs). On the basis of the 3D model, we discuss...is unlimited whereas AHP exhibited 54% inhibition under the same conditions (Table 1). Computer Simulation Twenty different molecular dynamics
27ps DFT Molecular Dynamics Simulation of a-maltose: A Reduced Basis Set Study.
USDA-ARS?s Scientific Manuscript database
DFT molecular dynamics simulations are time intensive when carried out on carbohydrates such as alpha-maltose, requiring up to three or more weeks on a fast 16-processor computer to obtain just 5ps of constant energy dynamics. In a recent publication [1] forces for dynamics were generated from B3LY...
Space shuttle visual simulation system design study
NASA Technical Reports Server (NTRS)
1973-01-01
The current and near-future state-of-the-art in visual simulation equipment technology is related to the requirements of the space shuttle visual system. Image source, image sensing, and displays are analyzed on a subsystem basis, and the principal conclusions are used in the formulation of a recommended baseline visual system. Perceptibility and visibility are also analyzed.
Sensitivity of fire behavior simulations to fuel model variations
Lucy A. Salazar
1985-01-01
Stylized fuel models, or numerical descriptions of fuel arrays, are used as inputs to fire behavior simulation models. These fuel models are often chosen on the basis of generalized fuel descriptions, which are related to field observations. Site-specific observations of fuels or fire behavior in the field are not readily available or necessary for most fire management...
Penetration of n-hexadecane and water into wood under conditions simulating catastrophic floods
Ganna Baglayeva; Wayne S. Seames; Charles R. Frihart; Jane O' Dell; Evguenii I. Kozliak
2017-01-01
To simulate fuel oil spills occurring during catastrophic floods, short-term absorption of two chemicals, n-hexadecane (representative of semivolatile organic compounds in fuel oil) and water, into southern yellow pine was gravimetrically monitored as a function of time at ambient conditions. Different scenarios were run on the basis of (1) the...
Galaxy clusters in simulations of the local Universe: a matter of constraints
NASA Astrophysics Data System (ADS)
Sorce, Jenny G.; Tempel, Elmo
2018-06-01
To study the full formation and evolution history of galaxy clusters and their population, high-resolution simulations of the latter are flourishing. However, comparing observed clusters to the simulated ones on a one-to-one basis to refine the models and theories down to the details is non-trivial. The large variety of clusters limits the comparisons between observed and numerical clusters. Simulations resembling the local Universe down to the cluster scales permit pushing the limit. Simulated and observed clusters can be matched on a one-to-one basis for direct comparisons provided that clusters are well reproduced besides being in the proper large-scale environment. Comparing random and local Universe-like simulations obtained with differently grouped observational catalogues of peculiar velocities, this paper shows that the grouping scheme used to remove non-linear motions in the catalogues that constrain the simulations affects the quality of the numerical clusters. With a less aggressive grouping scheme - galaxies still falling on to clusters are preserved - combined with a bias minimization scheme, the mass of the dark matter haloes, simulacra for five local clusters - Virgo, Centaurus, Coma, Hydra, and Perseus - is increased by 39 per cent closing the gap with observational mass estimates. Simulacra are found on average in 89 per cent of the simulations, an increase of 5 per cent with respect to the previous grouping scheme. The only exception is Perseus. Since the Perseus-Pisces region is not well covered by the used peculiar velocity catalogue, the latest release lets us foresee a better simulacrum for Perseus in a near future.
On simulation of local fluxes in molecular junctions
NASA Astrophysics Data System (ADS)
Cabra, Gabriel; Jensen, Anders; Galperin, Michael
2018-05-01
We present a pedagogical review of the current density simulation in molecular junction models indicating its advantages and deficiencies in analysis of local junction transport characteristics. In particular, we argue that current density is a universal tool which provides more information than traditionally simulated bond currents, especially when discussing inelastic processes. However, current density simulations are sensitive to the choice of basis and electronic structure method. We note that while discussing the local current conservation in junctions, one has to account for the source term caused by the open character of the system and intra-molecular interactions. Our considerations are illustrated with numerical simulations of a benzenedithiol molecular junction.
Helicopter simulation validation using flight data
NASA Technical Reports Server (NTRS)
Key, D. L.; Hansen, R. S.; Cleveland, W. B.; Abbott, W. Y.
1982-01-01
A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, John; Jacobson, Noah Tobias; Baczewski, Andrew
EMTpY is an implementation of effective mass theory in python. It is designed to simulate semiconductor qubits within a non-perturbative, multi-valley effective mass theory framework using robust Gaussian basis sets.
Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle
NASA Technical Reports Server (NTRS)
Waszak, Martin; Davidson, John B.; Ifju, Peter G.
2002-01-01
Micro aerial vehicles have been the subject of continued interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing has also been developed that exhibits desired characteristics in flight test demonstrations, competition, and in prior aerodynamics studies. This paper presents a simulation model and an assessment of flight control characteristics of the vehicle. Linear state space models of the vehicle associated with typical trimmed level flight conditions and which are suitable for control system design are presented as well. The simulation is used as the basis for the design of a measurement based nonlinear dynamic inversion control system and outer loop guidance system. The vehicle/controller system is the subject of ongoing investigations of autonomous and collaborative control schemes. The results indicate that the design represents a good basis for further development of the micro aerial vehicle for autonomous and collaborative controls research.
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.
2011-04-04
agreement between simulation and experiment is seen for UDMH , with simulations up to slightly above the boiling point of 336 K falling within a density ...conjunction wi th M05-2X density funct ional. Inclusion of a l one-pair on hydrazinium-based cations significantly improved ion electrostatic description...cation-anion complexes employing aug-cc- pvDz (cc-pvTz) basis functions at MP2 level or in conjunction with M05-2X density functional. Inclusion of
Simulation and study of small numbers of random events
NASA Technical Reports Server (NTRS)
Shelton, R. D.
1986-01-01
Random events were simulated by computer and subjected to various statistical methods to extract important parameters. Various forms of curve fitting were explored, such as least squares, least distance from a line, maximum likelihood. Problems considered were dead time, exponential decay, and spectrum extraction from cosmic ray data using binned data and data from individual events. Computer programs, mostly of an iterative nature, were developed to do these simulations and extractions and are partially listed as appendices. The mathematical basis for the compuer programs is given.
Characterization of the faulted behavior of digital computers and fault tolerant systems
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Miner, Paul S.
1989-01-01
A development status evaluation is presented for efforts conducted at NASA-Langley since 1977, toward the characterization of the latent fault in digital fault-tolerant systems. Attention is given to the practical, high speed, generalized gate-level logic system simulator developed, as well as to the validation methodology used for the simulator, on the basis of faultable software and hardware simulations employing a prototype MIL-STD-1750A processor. After validation, latency tests will be performed.
Monte Carlo Simulation of the Rapid Crystallization of Bismuth-Doped Silicon
NASA Technical Reports Server (NTRS)
Jackson, Kenneth A.; Gilmer, George H.; Temkin, Dmitri E.
1995-01-01
In this Letter we report Ising model simulations of the growth of alloys which predict quite different behavior near and far from equilibrium. Our simulations reproduce the phenomenon which has been termed 'solute trapping,' where concentrations of solute, which are far in excess of the equilibrium concentrations, are observed in the crystal after rapid crystallization. This phenomenon plays an important role in many processes which involve first order phase changes which take place under conditions far from equilibrium. The underlying physical basis for it has not been understood, but these Monte Carlo simulations provide a powerful means for investigating it.
NASA Astrophysics Data System (ADS)
Dang, Van Tuan; Lafon, Pascal; Labergere, Carl
2017-10-01
In this work, a combination of Proper Orthogonal Decomposition (POD) and Radial Basis Function (RBF) is proposed to build a surrogate model based on the Benchmark Springback 3D bending from the Numisheet2011 congress. The influence of the two design parameters, the geometrical parameter of the die radius and the process parameter of the blank holder force, on the springback of the sheet after a stamping operation is analyzed. The classical Design of Experience (DoE) uses Full Factorial to design the parameter space with sample points as input data for finite element method (FEM) numerical simulation of the sheet metal stamping process. The basic idea is to consider the design parameters as additional dimensions for the solution of the displacement fields. The order of the resultant high-fidelity model is reduced through the use of POD method which performs model space reduction and results in the basis functions of the low order model. Specifically, the snapshot method is used in our work, in which the basis functions is derived from snapshot deviation of the matrix of the final displacements fields of the FEM numerical simulation. The obtained basis functions are then used to determine the POD coefficients and RBF is used for the interpolation of these POD coefficients over the parameter space. Finally, the presented POD-RBF approach which is used for shape optimization can be performed with high accuracy.
ERIC Educational Resources Information Center
Abriata, Luciano A.
2011-01-01
A simple algorithm was implemented in a spreadsheet program to simulate the circular dichroism spectra of proteins from their secondary structure content and to fit [alpha]-helix, [beta]-sheet, and random coil contents from experimental far-UV circular dichroism spectra. The physical basis of the method is briefly reviewed within the context of…
The Values of College Students in Business Simulation Game: A Means-End Chain Approach
ERIC Educational Resources Information Center
Lin, Yu-Ling; Tu, Yu-Zu
2012-01-01
Business simulation games (BSGs) enable students to practice making decisions in a virtual environment, accumulate experience in application of strategies, and train themselves in modes of decision-making. This study examines the value sought by players of BSG. In this study, a means-end chain (MEC) model was adopted as the basis, and ladder…
ERIC Educational Resources Information Center
Giardina, Max
This paper examines the implementation of 3D simulation through the development of the Avenor Virtual Trainer and how situated learning and fidelity of model representation become the basis for more effective Interactive Multimedia Training Situations. The discussion will focus of some principles concerned with situated training, simulation,…
APEX: A Computerized Simulation Game as the Basis for an Undergraduate Interdisciplinary Course.
ERIC Educational Resources Information Center
Tannenbaum, Robert S.
APEX is a computerized gaming simulation; it is also the name of an interdisciplinary course in environmental problems in urban areas introduced at the School of Health Science, Hunter College of the City University of New York. In the course, students assume the roles of decision makers in both the private and public sectors. They receive data…
2016-09-15
18] under the context of robust parameter design for simulation. Bellucci’s technique is used in this research, primarily because the interior -point...Fundamentals of Radial Basis Neural Network (RBNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.2.2 Design of Experiments...with Neural Nets . . . . . . . . . . . . . 31 1.2.2.3 Factorial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.2.2.4
Effective Management Selection: The Analysis of Behavior by Simulation Techniques.
ERIC Educational Resources Information Center
Jaffee, Cabot L.
This book presents a system by which feedback might be generated and used as a basis for organizational change. The major areas covered consist of the development of a rationale for the use of simulation in the selection of supervisors, a description of actual techniques, and a method for training individuals in the use of the material. The…
Standard High Solids Vessel Design De-inventory Simulant Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, Sandra K.; Burns, Carolyn A.M.; Gauglitz, Phillip A.
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is working to develop a Standard High Solids Vessel Design (SHSVD) process vessel. To support testing of this new design, WTP engineering staff requested that a Newtonian simulant be developed that would represent the de-inventory (residual high-density tank solids cleanout) process. Its basis and target characteristics are defined in 24590-WTP-ES-ENG-16-021 and implemented through PNNL Test Plan TP-WTPSP-132 Rev. 1.0. This document describes the de-inventory Newtonian carrier fluid (DNCF) simulant composition that will satisfy the basis requirement to mimic the density (1.18 g/mL ± 0.1 g/mL) and viscosity (2.8 cP ± 0.5more » cP) of 5 M NaOH at 25 °C.1 The simulant viscosity changes significantly with temperature. Therefore, various solution compositions may be required, dependent on the test stand process temperature range, to meet these requirements. Table ES.1 provides DNCF compositions at selected temperatures that will meet the density and viscosity specifications as well as the temperature range at which the solution will meet the acceptable viscosity tolerance.« less
PPLN-waveguide-based polarization entangled QKD simulator
NASA Astrophysics Data System (ADS)
Gariano, John; Djordjevic, Ivan B.
2017-08-01
We have developed a comprehensive simulator to study the polarization entangled quantum key distribution (QKD) system, which takes various imperfections into account. We assume that a type-II SPDC source using a PPLN-based nonlinear optical waveguide is used to generate entangled photon pairs and implements the BB84 protocol, using two mutually unbiased basis with two orthogonal polarizations in each basis. The entangled photon pairs are then simulated to be transmitted to both parties; Alice and Bob, through the optical channel, imperfect optical elements and onto the imperfect detector. It is assumed that Eve has no control over the detectors, and can only gain information from the public channel and the intercept resend attack. The secure key rate (SKR) is calculated using an upper bound and by using actual code rates of LDPC codes implementable in FPGA hardware. After the verification of the simulation results, such as the pair generation rate and the number of error due to multiple pairs, for the ideal scenario, available in the literature, we then introduce various imperfections. Then, the results are compared to previously reported experimental results where a BBO nonlinear crystal is used, and the improvements in SKRs are determined for when a PPLN-waveguide is used instead.
Jabor, A; Vlk, T; Boril, P
1996-04-15
We designed a simulation model for the assessment of the financial risks involved when a new diagnostic test is introduced in the laboratory. The model is based on a neural network consisting of ten neurons and assumes that input entities can have assigned appropriate uncertainty. Simulations are done on a 1-day interval basis. Risk analysis completes the model and the financial effects are evaluated for a selected time period. The basic output of the simulation consists of total expenses and income during the simulation time, net present value of the project at the end of simulation, total number of control samples during simulation, total number of patients evaluated and total number of used kits.
A computer simulation of an adaptive noise canceler with a single input
NASA Astrophysics Data System (ADS)
Albert, Stuart D.
1991-06-01
A description of an adaptive noise canceler using Widrows' LMS algorithm is presented. A computer simulation of canceler performance (adaptive convergence time and frequency transfer function) was written for use as a design tool. The simulations, assumptions, and input parameters are described in detail. The simulation is used in a design example to predict the performance of an adaptive noise canceler in the simultaneous presence of both strong and weak narrow-band signals (a cosited frequency hopping radio scenario). On the basis of the simulation results, it is concluded that the simulation is suitable for use as an adaptive noise canceler design tool; i.e., it can be used to evaluate the effect of design parameter changes on canceler performance.
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-03-01
On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.
NASA Astrophysics Data System (ADS)
Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D.
2017-08-01
Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.
[Computer simulation of a clinical magnet resonance tomography scanner for training purposes].
Hackländer, T; Mertens, H; Cramer, B M
2004-08-01
The idea for this project was born by the necessity to offer medical students an easy approach to the theoretical basics of magnetic resonance imaging. The aim was to simulate the features and functions of such a scanner on a commercially available computer by means of a computer program. The simulation was programmed in pure Java under the GNU General Public License and is freely available for a commercially available computer with Windows, Macintosh or Linux operating system. The graphic user interface is oriented to a real scanner. In an external program parameter, images for the proton density and the relaxation times T1 and T2 are calculated on the basis of clinical examinations. From this, the image calculation is carried out in the simulation program pixel by pixel on the basis of a pulse sequence chosen and modified by the user. The images can be stored and printed. In addition, it is possible to display and modify k-space images. Seven classes of pulse sequences are implemented and up to 14 relevant sequence parameters, such as repetition time and echo time, can be altered. Aliasing and motion artifacts can be simulated. As the image calculation only takes a few seconds, interactive working is possible. The simulation has been used in the university education for more than 1 year, successfully illustrating the dependence of the MR images on the measuring parameters. This should facititate the approach of students to the understanding MR imaging in the future.
Chiral symmetry breaking and the spin content of hadrons
NASA Astrophysics Data System (ADS)
Glozman, L. Ya.; Lang, C. B.; Limmer, M.
2012-04-01
From the parton distributions in the infinite momentum frame, one finds that only about 30% of the nucleon spin is carried by spins of the valence quarks, which gave rise to the term “spin crisis”. Similar results hold for the lowest mesons, as it follows from the lattice simulations. We define the spin content of a meson in the rest frame and use a complete and orthogonal q¯q chiral basis and a unitary transformation from the chiral basis to the 2LJ basis. Then, given a mixture of different allowed chiral representations in the meson wave function at a given resolution scale, one can obtain its spin content at this scale. To obtain the mixture of the chiral representations in the meson, we measure in dynamical lattice simulations a ratio of couplings of interpolators with different chiral structure. For the ρ meson, we obtain practically the 3S1 state with no trace of the spin crisis. Then a natural question arises: which definition does reflect the spin content of a hadron?
Surface structure analysis of BaSi2(100) epitaxial film grown on Si(111) using CAICISS
NASA Astrophysics Data System (ADS)
Okasaka, Shouta; Kubo, Osamu; Tamba, Daiki; Ohashi, Tomohiro; Tabata, Hiroshi; Katayama, Mitsuhiro
2015-05-01
Geometry and surface structure of a BaSi2(100) film on Si(111) formed by reactive deposition epitaxy (RDE) have been investigated using coaxial impact-collision ion scattering spectroscopy and atomic force microscopy. BaSi2(100) film can be grown only when the Ba deposition rate is sufficiently fast. It is revealed that a BaSi2(100) film grown at 600 °C has better crystallinity than a film grown at 750 °C owing to the mixture of planes other than (100) in the RDE process at higher temperatures. The azimuth angle dependence of the scattering intensity from Ba shows sixfold symmetry, indicating that the minimum height of surface steps on BaSi2(100) is half of the length of unit cell. By comparing the simulated azimuth angle dependences for more than ten surface models with experimental one, it is strongly indicated that the surface of a BaSi2(100) film grown on Si(111) is terminated by Si tetrahedra.
NASA Astrophysics Data System (ADS)
Lee, Hee-Seung; Tuckerman, Mark E.
2007-04-01
Dynamical properties of liquid water were studied using Car-Parrinello [Phys. Rev. Lett. 55, 2471 (1985)] ab initio molecular dynamics (AIMD) simulations within the Kohn-Sham (KS) density functional theory employing the Becke-Lee-Yang-Parr exchange-correlation functional for the electronic structure. The KS orbitals were expanded in a discrete variable representation basis set, wherein the complete basis set limit can be easily reached and which, therefore, provides complete convergence of ionic forces. In order to minimize possible nonergodic behavior of the simulated water system in a constant energy (NVE) ensemble, a long equilibration run (30ps) preceded a 60ps long production run. The temperature drift during the entire 60ps trajectory was found to be minimal. The diffusion coefficient [0.055Å2/ps] obtained from the present work for 32 D2O molecules is a factor of 4 smaller than the most up to date experimental value, but significantly larger than those of other recent AIMD studies. Adjusting the experimental result so as to match the finite-sized system used in the present study brings the comparison between theory and experiment to within a factor of 3. More importantly, the system is not observed to become "glassy" as has been reported in previous AIMD studies. The computed infrared spectrum is in good agreement with experimental data, especially in the low frequency regime where the translational and librational motions of water are manifested. The long simulation length also made it possible to perform detailed studies of hydrogen bond dynamics. The relaxation dynamics of hydrogen bonds observed in the present AIMD simulation is slower than those of popular force fields, such as the TIP4P potential, but comparable to that of the TIP5P potential.
Lee, Hee-Seung; Tuckerman, Mark E
2007-04-28
Dynamical properties of liquid water were studied using Car-Parrinello [Phys. Rev. Lett. 55, 2471 (1985)] ab initio molecular dynamics (AIMD) simulations within the Kohn-Sham (KS) density functional theory employing the Becke-Lee-Yang-Parr exchange-correlation functional for the electronic structure. The KS orbitals were expanded in a discrete variable representation basis set, wherein the complete basis set limit can be easily reached and which, therefore, provides complete convergence of ionic forces. In order to minimize possible nonergodic behavior of the simulated water system in a constant energy (NVE) ensemble, a long equilibration run (30 ps) preceded a 60 ps long production run. The temperature drift during the entire 60 ps trajectory was found to be minimal. The diffusion coefficient [0.055 A2/ps] obtained from the present work for 32 D2O molecules is a factor of 4 smaller than the most up to date experimental value, but significantly larger than those of other recent AIMD studies. Adjusting the experimental result so as to match the finite-sized system used in the present study brings the comparison between theory and experiment to within a factor of 3. More importantly, the system is not observed to become "glassy" as has been reported in previous AIMD studies. The computed infrared spectrum is in good agreement with experimental data, especially in the low frequency regime where the translational and librational motions of water are manifested. The long simulation length also made it possible to perform detailed studies of hydrogen bond dynamics. The relaxation dynamics of hydrogen bonds observed in the present AIMD simulation is slower than those of popular force fields, such as the TIP4P potential, but comparable to that of the TIP5P potential.
[Somatic disorders, factitious disorders and simulation: the subtle art of differential diagnosis].
Lleshi, V; Le Goff-Cubilier, V; Budry, P; Bryois, C
2007-04-04
In every day practice, it is difficult, sometimes impossible, and always ethically delicate to determine the differential diagnosis between: disorders of a somatic nature, simulation and factitious disorders, as much for the psychiatrist as for the general practitioner in the front line. Our aim is to lead a reflection on this controversial theme on the basis of a clinical illustration.
Computer simulation in mechanical spectroscopy
NASA Astrophysics Data System (ADS)
Blanter, M. S.
2012-09-01
Several examples are given for use of computer simulation in mechanical spectroscopy. On one hand simulation makes it possible to study relaxation mechanisms, and on the other hand to use the colossal accumulation of experimental material to study metals and alloys. The following examples are considered: the effect of Al atom ordering on the Snoek carbon peak in alloys of the system Fe - Al - C; the effect of plastic strain on Finkel'shtein - Rozin relaxation in Fe - Ni - C austenitic steel; checking the adequacy of energy interactions of interstitial atoms, calculated on the basis of a first-principle model by simulation of the concentration dependence of Snoek relaxation parameters in Nb - O.
Spatio-Temporal Process Simulation of Dam-Break Flood Based on SPH
NASA Astrophysics Data System (ADS)
Wang, H.; Ye, F.; Ouyang, S.; Li, Z.
2018-04-01
On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.
Finite-element approach to Brownian dynamics of polymers.
Cyron, Christian J; Wall, Wolfgang A
2009-12-01
In the last decades simulation tools for Brownian dynamics of polymers have attracted more and more interest. Such simulation tools have been applied to a large variety of problems and accelerated the scientific progress significantly. However, the currently most frequently used explicit bead models exhibit severe limitations, especially with respect to time step size, the necessity of artificial constraints and the lack of a sound mathematical foundation. Here we present a framework for simulations of Brownian polymer dynamics based on the finite-element method. This approach allows simulating a wide range of physical phenomena at a highly attractive computational cost on the basis of a far-developed mathematical background.
MHD Instability and Turbulence in the Tachocline
NASA Technical Reports Server (NTRS)
Werne, Joseph
2001-01-01
In this quarter we have begun simulations on the Cray T3E at PSC and we are debugging our code on the TSC. The PSC simulations are examining stratified shear turbulence with a flow-aligned magnetic field and passive tracer particles. We have conducted analysis of neutral simulations to establish a firm basis of comparison. Second-order structure functions have been computed, fit, and compared to theoretical expressions relating the dissipation fields and the structure-function-fit parameters. Agreement with high-Reynolds number observations is excellent, giving us confidence that the lower-Re simulations are relevant to higher-Re flows. We have also evaluated the neutral layer anisotropy.
Implementing system simulation of C3 systems using autonomous objects
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1987-01-01
The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.
Dry Volume Fracturing Simulation of Shale Gas Reservoir
NASA Astrophysics Data System (ADS)
Xu, Guixi; Wang, Shuzhong; Luo, Xiangrong; Jing, Zefeng
2017-11-01
Application of CO2 dry fracturing technology to shale gas reservoir development in China has advantages of no water consumption, little reservoir damage and promoting CH4 desorption. This paper uses Meyer simulation to study complex fracture network extension and the distribution characteristics of shale gas reservoirs in the CO2 dry volume fracturing process. The simulation results prove the validity of the modified CO2 dry fracturing fluid used in shale volume fracturing and provides a theoretical basis for the following study on interval optimization of the shale reservoir dry volume fracturing.
Computational simulation of laser heat processing of materials
NASA Astrophysics Data System (ADS)
Shankar, Vijaya; Gnanamuthu, Daniel
1987-04-01
A computational model simulating the laser heat treatment of AISI 4140 steel plates with a CW CO2 laser beam has been developed on the basis of the three-dimensional, time-dependent heat equation (subject to the appropriate boundary conditions). The solution method is based on Newton iteration applied to a triple-approximate factorized form of the equation. The method is implicit and time-accurate; the maintenance of time-accuracy in the numerical formulation is noted to be critical for the simulation of finite length workpieces with a finite laser beam dwell time.
Simulation of blast action on civil structures using ANSYS Autodyn
NASA Astrophysics Data System (ADS)
Fedorova, N. N.; Valger, S. A.; Fedorov, A. V.
2016-10-01
The paper presents the results of 3D numerical simulations of shock wave spreading in cityscape area. ANSYS Autodyne software is used for the computations. Different test cases are investigated numerically. On the basis of the computations, the complex transient flowfield structure formed in the vicinity of prismatic bodies was obtained and analyzed. The simulation results have been compared to the experimental data. The ability of two numerical schemes is studied to correctly predict the pressure history in several gauges placed on walls of the obstacles.
NASA Astrophysics Data System (ADS)
Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V.
2016-03-01
Various issues of numerical simulation of supersonic gas flows with allowance for thermochemical nonequilibrium on the basis of fluid dynamic equations in the two-temperature approximation are discussed. The computational tool for modeling flows with thermochemical nonequilibrium is the commercial software package ANSYS Fluent with an additional userdefined open-code module. A comparative analysis of results obtained by various models of vibration-dissociation coupling in binary gas mixtures of nitrogen and oxygen is performed. Results of numerical simulations are compared with available experimental data.
Simulation of separated flow past a bluff body using Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Ghia, K. N.; Ghia, U.; Osswald, G. A.; Liu, C. A.
1987-01-01
Two-dimensional flow past a bluff body is presently simulated on the basis of an analysis that employs the incompressible, unsteady Navier-Stokes equations in terms of vorticity and stream function. The fully implicit, time-marching, alternating-direction, implicit-block Gaussian elimination used is a direct method with second-order spatial accuracy; this allows it to avoid the introduction of any artificial viscosity. Attention is given to the simulation of flow past a circular cylinder with and without symmetry, requiring the use of either the half or the full cylinder, respectively.
'Yes, but what about the Student?'.
Schultz, C L
1984-02-01
Student evaluations of a simulated case conference in a rehabilitation setting were discussed and analysed, on the basis of the proposition that role-playing and simulated gaming are educational techniques of value in the training of health professionals. Eighteen fourth-year physiotherapy students responded positively in terms of insights gained from participation in a simulated group exercise. Students expressed interest in similar exercises to enable them to gain further insights into specific situations of relevance to their future professional lives. Copyright © 1983 Australian Physiotherapy Association. Published by . All rights reserved.
SIMSAT: An object oriented architecture for real-time satellite simulation
NASA Technical Reports Server (NTRS)
Williams, Adam P.
1993-01-01
Real-time satellite simulators are vital tools in the support of satellite missions. They are used in the testing of ground control systems, the training of operators, the validation of operational procedures, and the development of contingency plans. The simulators must provide high-fidelity modeling of the satellite, which requires detailed system information, much of which is not available until relatively near launch. The short time-scales and resulting high productivity required of such simulator developments culminates in the need for a reusable infrastructure which can be used as a basis for each simulator. This paper describes a major new simulation infrastructure package, the Software Infrastructure for Modelling Satellites (SIMSAT). It outlines the object oriented design methodology used, describes the resulting design, and discusses the advantages and disadvantages experienced in applying the methodology.
Development of Simulated Disturbing Source for Isolation Switch
NASA Astrophysics Data System (ADS)
Cheng, Lin; Liu, Xiang; Deng, Xiaoping; Pan, Zhezhe; Zhou, Hang; Zhu, Yong
2018-01-01
In order to simulate the substation in the actual scene of the harsh electromagnetic environment, and then research on electromagnetic compatibility testing of electronic instrument transformer, On the basis of the original isolation switch as a harassment source of the electronic instrument transformer electromagnetic compatibility test system, an isolated switch simulation source system was developed, to promote the standardization of the original test. In this paper, the circuit breaker is used to control the opening and closing of the gap arc to simulate the operating of isolating switch, and the isolation switch simulation harassment source system is designed accordingly. Comparison with the actual test results of the isolating switch, it is proved that the system can meet the test requirements, and the simulation harassment source system has good stability and high reliability.
NASA Technical Reports Server (NTRS)
Clancy, Daniel J.; Oezguener, Uemit; Graham, Ronald E.
1994-01-01
The potential for excessive plume impingement loads on Space Station Freedom solar arrays, caused by jet firings from an approaching Space Shuttle, is addressed. An artificial neural network is designed to determine commanded solar array beta gimbal angle for minimum plume loads. The commanded angle would be determined dynamically. The network design proposed involves radial basis functions as activation functions. Design, development, and simulation of this network design are discussed.
NASA Astrophysics Data System (ADS)
Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.
2011-11-01
High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.
Amyloid oligomer structure characterization from simulations: A general method
NASA Astrophysics Data System (ADS)
Nguyen, Phuong H.; Li, Mai Suan; Derreumaux, Philippe
2014-03-01
Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.
An application of sedimentation simulation in Tahe oilfield
NASA Astrophysics Data System (ADS)
Tingting, He; Lei, Zhao; Xin, Tan; Dongxu, He
2017-12-01
The braided river delta develops in Triassic low oil formation in the block 9 of Tahe oilfield, but its sedimentation evolution process is unclear. By using sedimentation simulation technology, sedimentation process and distribution of braided river delta are studied based on the geological parameters including sequence stratigraphic division, initial sedimentation environment, relative lake level change and accommodation change, source supply and sedimentary transport pattern. The simulation result shows that the error rate between strata thickness of simulation and actual strata thickness is small, and the single well analysis result of simulation is highly consistent with the actual analysis, which can prove that the model is reliable. The study area belongs to braided river delta retrogradation evolution process, which provides favorable basis for fine reservoir description and prediction.
Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project
NASA Technical Reports Server (NTRS)
Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.;
2008-01-01
Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.
Economic communication model set
NASA Astrophysics Data System (ADS)
Zvereva, Olga M.; Berg, Dmitry B.
2017-06-01
This paper details findings from the research work targeted at economic communications investigation with agent-based models usage. The agent-based model set was engineered to simulate economic communications. Money in the form of internal and external currencies was introduced into the models to support exchanges in communications. Every model, being based on the general concept, has its own peculiarities in algorithm and input data set since it was engineered to solve the specific problem. Several and different origin data sets were used in experiments: theoretic sets were estimated on the basis of static Leontief's equilibrium equation and the real set was constructed on the basis of statistical data. While simulation experiments, communication process was observed in dynamics, and system macroparameters were estimated. This research approved that combination of an agent-based and mathematical model can cause a synergetic effect.
The magnetic topology of the plasmoid flux rope in a MHD-simulation of magnetotail reconnection
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, M.
1990-01-01
On the basis of a 3D MHD simulation, the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration (including a net dawn-dusk magnetic field component B sub y N is discussed. As a consequence of B sub y N not equalling 0, the plasmoid assumes a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage, topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of an ad hoc plasmoid model.
NASA Astrophysics Data System (ADS)
Kostenko, I. S.; Zaytsev, A. I.; Minaev, D. D.; Kurkin, A. A.; Pelinovsky, E. N.; Oshmarina, O. E.
2018-01-01
Observation data on the September 5, 1971, earthquake that occurred near the Moneron Island (Sakhalin) have been analyzed and a numerical simulation of the tsunami induced by this earthquake is conducted. The tsunami source identified in this study indicates that the observational data are in good agreement with the results of calculations performed on the basis of shallow-water equations.
Comparison of hybrid and pure Monte Carlo shower generators on an event by event basis
NASA Astrophysics Data System (ADS)
Allen, J.; Drescher, H.-J.; Farrar, G.
SENECA is a hybrid air shower simulation written by H. Drescher that utilizes both Monte Carlo simulation and cascade equations. By using the cascade equations only in the high energy portion of the shower, where they are extremely accurate, SENECA is able to utilize the advantages in speed from the cascade equations yet still produce complete, three dimensional particle distributions at ground level. We present a comparison, on an event by event basis, of SENECA and CORSIKA, a well trusted MC simulation. By using the same first interaction in both SENECA and CORSIKA, the effect of the cascade equations can be studied within a single shower, rather than averages over many showers. Our study shows that for showers produced in this manner, SENECA agrees with CORSIKA to a very high accuracy as to densities, energies, and timing information for individual species of ground-level particles from both iron and proton primaries with energies between 1EeV and 100EeV. Used properly, SENECA produces ground particle distributions virtually indistinguishable from those of CORSIKA in a fraction of the time. For example, for a shower induced by a 40 EeV proton simulated with 10-6 thinning, SENECA is 10 times faster than CORSIKA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaszczyk, Jaroslaw; Lu, Zhenwei; Li, Yue
2014-09-01
To understand the structural basis for the biochemical differences and further investigate the catalytic mechanism of DHNA, we have determined the structure of EcDHNA complexed with NP at 1.07-Å resolution [PDB:2O90], built an atomic model of EcDHNA complexed with the substrate DHNP, and performed molecular dynamics (MD) simulation analysis of the substrate complex. EcDHNA has the same fold as SaDHNA and also forms an octamer that consists of two tetramers, but the packing of one tetramer with the other is significantly different between the two enzymes. Furthermore, the structures reveal significant differences in the vicinity of the active site, particularlymore » in the loop that connects strands β3 and β4, mainly due to the substitution of nearby residues. The building of an atomic model of the complex of EcDHNA and the substrate DHNP and the MD simulation of the complex show that some of the hydrogen bonds between the substrate and the enzyme are persistent, whereas others are transient. The substrate binding model and MD simulation provide the molecular basis for the biochemical behaviors of the enzyme, including noncooperative substrate binding, indiscrimination of a pair of epimers as the substrates, proton wire switching during catalysis, and formation of epimerization product.« less
Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A
2013-11-01
A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kruglyakov, Mikhail; Kuvshinov, Alexey
2018-05-01
3-D interpretation of electromagnetic (EM) data of different origin and scale becomes a common practice worldwide. However, 3-D EM numerical simulations (modeling)—a key part of any 3-D EM data analysis—with realistic levels of complexity, accuracy and spatial detail still remains challenging from the computational point of view. We present a novel, efficient 3-D numerical solver based on a volume integral equation (IE) method. The efficiency is achieved by using a high-order polynomial (HOP) basis instead of the zero-order (piecewise constant) basis that is invoked in all routinely used IE-based solvers. We demonstrate that usage of the HOP basis allows us to decrease substantially the number of unknowns (preserving the same accuracy), with corresponding speed increase and memory saving.
Initial evaluation of discrete orthogonal basis reconstruction of ECT images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, E.B.; Donohue, K.D.
1996-12-31
Discrete orthogonal basis restoration (DOBR) is a linear, non-iterative, and robust method for solving inverse problems for systems characterized by shift-variant transfer functions. This simulation study evaluates the feasibility of using DOBR for reconstructing emission computed tomographic (ECT) images. The imaging system model uses typical SPECT parameters and incorporates the effects of attenuation, spatially-variant PSF, and Poisson noise in the projection process. Sample reconstructions and statistical error analyses for a class of digital phantoms compare the DOBR performance for Hartley and Walsh basis functions. Test results confirm that DOBR with either basis set produces images with good statistical properties. Nomore » problems were encountered with reconstruction instability. The flexibility of the DOBR method and its consistent performance warrants further investigation of DOBR as a means of ECT image reconstruction.« less
Theory of quantized systems: formal basis for DEVS/HLA distributed simulation environment
NASA Astrophysics Data System (ADS)
Zeigler, Bernard P.; Lee, J. S.
1998-08-01
In the context of a DARPA ASTT project, we are developing an HLA-compliant distributed simulation environment based on the DEVS formalism. This environment will provide a user- friendly, high-level tool-set for developing interoperable discrete and continuous simulation models. One application is the study of contract-based predictive filtering. This paper presents a new approach to predictive filtering based on a process called 'quantization' to reduce state update transmission. Quantization, which generates state updates only at quantum level crossings, abstracts a sender model into a DEVS representation. This affords an alternative, efficient approach to embedding continuous models within distributed discrete event simulations. Applications of quantization to message traffic reduction are discussed. The theory has been validated by DEVSJAVA simulations of test cases. It will be subject to further test in actual distributed simulations using the DEVS/HLA modeling and simulation environment.
JMSS-1: a new Martian soil simulant
NASA Astrophysics Data System (ADS)
Zeng, Xiaojia; Li, Xiongyao; Wang, Shijie; Li, Shijie; Spring, Nicole; Tang, Hong; Li, Yang; Feng, Junming
2015-05-01
It is important to develop Martian soil simulants that can be used in Mars exploration programs and Mars research. A new Martian soil simulant, called Jining Martian Soil Simulant (JMSS-1), was developed at the Lunar and Planetary Science Research Center at the Institute of Geochemistry, Chinese Academy of Sciences. The raw materials of JMSS-1 are Jining basalt and Fe oxides (magnetite and hematite). JMSS-1 was produced by mechanically crushing Jining basalt with the addition of small amounts of magnetite and hematite. The properties of this simulant, including chemical composition, mineralogy, particle size, mechanical properties, reflectance spectra, dielectric properties, volatile content, and hygroscopicity, have been analyzed. On the basis of these test results, it was demonstrated that JMSS-1 is an ideal Martian soil simulant in terms of chemical composition, mineralogy, and physical properties. JMSS-1 would be an appropriate choice as a Martian soil simulant in scientific and engineering experiments in China's Mars exploration in the future.
14 CFR 60.5 - Quality management system.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE § 60.5 Quality... regular basis as described in QPS appendix E of this part. (b) The QMS program must provide a process for...
Chemical recombination in an expansion tube
NASA Technical Reports Server (NTRS)
Bakos, Robert J.; Morgan, Richard G.
1994-01-01
The note describes the theoretical basis of chemical recombination in an expansion tube which simulates energy, Reynolds number, and stream chemistry at near-orbital velocities. Expansion tubes can satisfy ground-based hypersonic propulsion and aerothermal testing requirements.
Chopped random-basis quantum optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caneva, Tommaso; Calarco, Tommaso; Montangero, Simone
2011-08-15
In this work, we describe in detail the chopped random basis (CRAB) optimal control technique recently introduced to optimize time-dependent density matrix renormalization group simulations [P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)]. Here, we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.
Radial basis function and its application in tourism management
NASA Astrophysics Data System (ADS)
Hu, Shan-Feng; Zhu, Hong-Bin; Zhao, Lei
2018-05-01
In this work, several applications and the performances of the radial basis function (RBF) are briefly reviewed at first. After that, the binomial function combined with three different RBFs including the multiquadric (MQ), inverse quadric (IQ) and inverse multiquadric (IMQ) distributions are adopted to model the tourism data of Huangshan in China. Simulation results showed that all the models match very well with the sample data. It is found that among the three models, the IMQ-RBF model is more suitable for forecasting the tourist flow.
Computer considerations for real time simulation of a generalized rotor model
NASA Technical Reports Server (NTRS)
Howe, R. M.; Fogarty, L. E.
1977-01-01
Scaled equations were developed to meet requirements for real time computer simulation of the rotor system research aircraft. These equations form the basis for consideration of both digital and hybrid mechanization for real time simulation. For all digital simulation estimates of the required speed in terms of equivalent operations per second are developed based on the complexity of the equations and the required intergration frame rates. For both conventional hybrid simulation and hybrid simulation using time-shared analog elements the amount of required equipment is estimated along with a consideration of the dynamic errors. Conventional hybrid mechanization using analog simulation of those rotor equations which involve rotor-spin frequencies (this consititutes the bulk of the equations) requires too much analog equipment. Hybrid simulation using time-sharing techniques for the analog elements appears possible with a reasonable amount of analog equipment. All-digital simulation with affordable general-purpose computers is not possible because of speed limitations, but specially configured digital computers do have the required speed and consitute the recommended approach.
NASA Technical Reports Server (NTRS)
Claus, Steven J.; Loos, Alfred C.
1989-01-01
RTM is a FORTRAN '77 computer code which simulates the infiltration of textile reinforcements and the kinetics of thermosetting polymer resin systems. The computer code is based on the process simulation model developed by the author. The compaction of dry, woven textile composites is simulated to describe the increase in fiber volume fraction with increasing compaction pressure. Infiltration is assumed to follow D'Arcy's law for Newtonian viscous fluids. The chemical changes which occur in the resin during processing are simulated with a thermo-kinetics model. The computer code is discussed on the basis of the required input data, output files and some comments on how to interpret the results. An example problem is solved and a complete listing is included.
Modeling and simulation research on electromagnetic and energy-recycled damper based on Adams
NASA Astrophysics Data System (ADS)
Zhou, C. F.; Zhang, K.; Zhang, Pengfei
2018-05-01
In order to study the voltage and power output characteristics of the electromagnetic and energy-recycled damper which consists of gear, rack and generator, the Adams model of this damper and the Simulink model of generator are established, and the co-simulation is accomplished with these two models. The output indexes such as the gear speed and power of generator are obtained by the simulation, and the simulation results demonstrate that the voltage peak of the damper is 25 V; the maximum output power of the damper is 8 W. The above research provides a basis for the prototype development of electromagnetic and energy-recycled damper with gear and rack.
A review of quasi-coherent structures in a numerically simulated turbulent boundary layer
NASA Technical Reports Server (NTRS)
Robinson, S. K.; Kline, S. J.; Spalart, P. R.
1989-01-01
Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated.
NASA Astrophysics Data System (ADS)
Kantardgi, Igor; Zheleznyak, Mark; Demchenko, Raisa; Dykyi, Pavlo; Kivva, Sergei; Kolomiets, Pavlo; Sorokin, Maxim
2014-05-01
The nearshore hydrodynamic fields are produced by the nonlinear interactions of the shoaling waves of different time scales and currents. To simulate the wind wave and swells propagated to the coasts, wave generated near shore currents, nonlinear-dispersive wave transformation and wave diffraction in interaction with coastal and port structure, sediment transport and coastal erosion the chains of the models should be used. The objective of this presentation is to provide an overview of the results of the application of the model chains for the assessment of the wave impacts on new construction designed at the Black Sea coasts and the impacts of these constructions on the coastal erosion/ accretion processes to demonstrate needs for further development of the nonlinear models for the coastal engineering applications. The open source models Wave Watch III and SWAN has been used to simulate wave statistics of the dedicated areas of the Black Sea in high resolution to calculated the statistical parameters of the extreme wave approaching coastal zone construction in accordance with coastal engineering standards. As the main tool for the costal hydrodynamic simulations the modeling system COASTOX-MORPHO has been used, that includes the following models. HWAVE -code based on hyperbolic version of mild slope equations., HWAVE-S - spectral version of HWAVE., BOUSS-FNL - fully nonlinear system of Boussinesq equations for simulation wave nonlinear -dispersive wave transformation in coastal areas. COASTOX-CUR - the code provided the numerical solution of the Nonlinear Shallow Water Equations (NLSWE) by finite-volume methods on the unstructured grid describing the long wave transformation in the coastal zone with the efficient drying -wetting algorithms to simulate the inundation of the coastal areas including tsunami wave runup. Coastox -Cur equations with the radiation stress term calculated via near shore wave fields simulate the wave generated nearhore currents. COASTOX-SED - the module of the simulation of the sediment transport in which the suspended sediments are simulated on the basis of the solution of 2-D advection -diffusion equation and the bottom sediment transport calculations are provided the basis of a library of the most popular semi-empirical formulas. MORPH - the module of the simulation of the morphological transformation of coastal zone based on the mass balance equation, on the basis of the sediment fluxes, calculated in the SED module. MORPH management submodel is responsible for the execution of the model chain "waves- current- sediments - morphodynamics- waves". The open source model SWASH has been used to simulate nonlinear resonance phenomena in coastal waters. The model chain was applied to simulate the potential impact of the designed shore protection structures at the Sochi Olympic Park on coastal morphodynamics, the wave parameters and nonlinear oscillations in the new ports designed in Gelenddjik and Taman at North-East coast of the Black Sea. The modeling results are compared with the results of the physical modeling in the hydraulic flumes of Moscow University of Civil Engineering.
NASA Astrophysics Data System (ADS)
Drescher, A. C.; Gadgil, A. J.; Price, P. N.; Nazaroff, W. W.
Optical remote sensing and iterative computed tomography (CT) can be applied to measure the spatial distribution of gaseous pollutant concentrations. We conducted chamber experiments to test this combination of techniques using an open path Fourier transform infrared spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). Although ART converged to solutions that showed excellent agreement with the measured ray-integral concentrations, the solutions were inconsistent with simultaneously gathered point-sample concentration measurements. A new CT method was developed that combines (1) the superposition of bivariate Gaussians to represent the concentration distribution and (2) a simulated annealing minimization routine to find the parameters of the Gaussian basis functions that result in the best fit to the ray-integral concentration data. This method, named smooth basis function minimization (SBFM), generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present an analysis of two sets of experimental data that compares the performance of ART and SBFM. We conclude that SBFM is a superior CT reconstruction method for practical indoor and outdoor air monitoring applications.
A simulation for teaching the basic and clinical science of fluid therapy.
Rawson, Richard E; Dispensa, Marilyn E; Goldstein, Richard E; Nicholson, Kimberley W; Vidal, Noni Korf
2009-09-01
The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical cases that, by nature, are diverse, change over time, and respond in unique ways to therapeutic interventions. We developed a dynamic model using STELLA software that simulates normal and abnormal fluid and electrolyte balance in the dog. Students interact, not with the underlying model, but with a user interface that provides sufficient data (skin turgor, chemistry panel, etc.) for the clinical assessment of patients and an opportunity for treatment. Students administer fluids and supplements, and the model responds in "real time," requiring regular reassessment and, potentially, adaptation of the treatment strategy. The level of success is determined by clinical outcome, including improvement, deterioration, or death. We expected that the simulated cases could be used to teach both the clinical and basic science of fluid therapy. The simulation provides exposure to a realistic clinical environment, and students tend to focus on this aspect of the simulation while, for the most part, ignoring an exploration of the underlying physiological basis for patient responses. We discuss how the instructor's expertise can provide sufficient support, feedback, and scaffolding so that students can extract maximum understanding of the basic science in the context of assessing and treating at the clinical level.
Kawamura, Kunio
2017-01-01
Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers. PMID:28974048
Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.
Saller, Maximilian A C; Habershon, Scott
2017-07-11
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
Air-cooling characteristics of simulated grape packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, R.L.; Comunian, F.
Experimental simulation of the external forced convection on the outside of grape packages was performed. Average heat transfer coefficients for air flow around such containers were found to range from 8 to 13.4 W/(m[sup 2]K). A physical description of the convective process was formulated on the basis of data obtained in three types of experiment. Expressions for the average heat transfer coefficient from single packages in air flow were proposed.
NASA Astrophysics Data System (ADS)
Buzyurkin, A. E.; Gladky, I. L.; Kraus, E. I.
2015-03-01
Stress-strain curves of dynamic loading of VT6, OT4, and OT4-0 titanium-based alloys are constructed on the basis of experimental data, and the Johnson-Cook model parameters are determined. Results of LS-DYNA simulations of the processes of deformation and fracture of the fan casing after its high-velocity impact with a fan blade simulator are presented.
High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow
NASA Astrophysics Data System (ADS)
Savel'ev, A. D.
2018-02-01
On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.
Guidelines for Applying Video Simulation Technology to Training Land Design
1993-02-01
Training Land Design for Realism." The technical monitor was Dr. Victor Diersing, CEHSC-FN. This study was performed by the Environmental Resources...technology to their land management activities. 5 Objective The objective of this study was to provide a general overview of the use of video simulation...4). A market study of currently available hardware and software provided the basis for descriptions of hardware and software systems, and their
Control Systems with Pulse Width Modulation in Matrix Converters
NASA Astrophysics Data System (ADS)
Bondarev, A. V.; Fedorov, S. V.; Muravyova, E. A.
2018-03-01
In this article, the matrix frequency converter for the system of the frequency control of the electric drive is considered. Algorithms of formation of an output signal on the basis of pulse width modulation were developed for the quantitative analysis of quality of an output signal on the basis of mathematical models. On the basis of simulation models of an output signal, assessment of quality of this signal was carried out. The analysis of harmonic composition of the voltage output received on the basis of pulse width modulation was made for the purpose of determination of opportunities of the control system for improving harmonic composition. The result of such analysis led to the fact that the device formation of switching functions of the control system on the basis of PWM does not lead to a distortion reduction of a harmonic of the control signal, and leads to offset of harmonic in the field of frequencies, the multiple relatively carrier frequency.
JSC Mars-1 Martian Soil Simulant: Melting Experiments and Electron Microprobe Studies
NASA Technical Reports Server (NTRS)
Carpenter, P.; Sebille, L.; Boles, W.; Chadwell, M.; Schwarz, L.
2003-01-01
JSC Mars-1 has been developed as a Martian regolith simulant, and is the <1 mm size fraction of a palagonitic tephra (a glassy volcanic ash altered at low temperatures) from Pu'u Nene cinder cone on the Island of Hawaii. The Mars-1 simulant forms the basis for numerous terrestrial studies which aim to evaluate the suitability of Martian soil for materials processing. Martian soil may be sintered to form building materials for construction, and also melted or reacted to extract metals for various uses, as well as oxygen for life support.
The very local Hubble flow: Computer simulations of dynamical history
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Makarov, D. I.
2004-02-01
The phenomenon of the very local (≤3 Mpc) Hubble flow is studied on the basis of the data of recent precision observations. A set of computer simulations is performed to trace the trajectories of the flow galaxies back in time to the epoch of the formation of the Local Group. It is found that the ``initial conditions'' of the flow are drastically different from the linear velocity-distance relation. The simulations enable one also to recognize the major trends of the flow evolution and identify the dynamical role of universal antigravity produced by the cosmic vacuum.
Breathing, bubbling, and bending: DNA flexibility from multimicrosecond simulations.
Zeida, Ari; Machado, Matías Rodrigo; Dans, Pablo Daniel; Pantano, Sergio
2012-08-01
Bending of the seemingly stiff DNA double helix is a fundamental physical process for any living organism. Specialized proteins recognize DNA inducing and stabilizing sharp curvatures of the double helix. However, experimental evidence suggests a high protein-independent flexibility of DNA. On the basis of coarse-grained simulations, we propose that DNA experiences thermally induced kinks associated with the spontaneous formation of internal bubbles. Comparison of the protein-induced DNA curvature calculated from the Protein Data Bank with that sampled by our simulations suggests that thermally induced distortions can account for ~80% of the DNA curvature present in experimentally solved structures.
NASA Astrophysics Data System (ADS)
Shi, Chengkun; Sun, Hanxu; Jia, Qingxuan; Zhao, Kailiang
2009-05-01
For realizing omni-directional movement and operating task of spherical space robot system, this paper describes an innovated prototype and analyzes dynamic characteristics of a spherical rolling robot with telescopic manipulator. Based on the Newton-Euler equations, the kinematics and dynamic equations of the spherical robot's motion are instructed detailedly. Then the motion simulations of the robot in different environments are developed with ADAMS. The simulation results validate the mathematics model of the system. And the dynamic model establishes theoretical basis for the latter job.
A framework for visualization of battlefield network behavior
NASA Astrophysics Data System (ADS)
Perzov, Yury; Yurcik, William
2006-05-01
An extensible network simulation application was developed to study wireless battlefield communications. The application monitors node mobility and depicts broadcast and unicast traffic as expanding rings and directed links. The network simulation was specially designed to support fault injection to show the impact of air strikes on disabling nodes. The application takes standard ns-2 trace files as an input and provides for performance data output in different graphical forms (histograms and x/y plots). Network visualization via animation of simulation output can be saved in AVI format that may serve as a basis for a real-time battlefield awareness system.
Remotely piloted vehicle: Application of the GRASP analysis method
NASA Technical Reports Server (NTRS)
Andre, W. L.; Morris, J. B.
1981-01-01
The application of General Reliability Analysis Simulation Program (GRASP) to the remotely piloted vehicle (RPV) system is discussed. The model simulates the field operation of the RPV system. By using individual component reliabilities, the overall reliability of the RPV system is determined. The results of the simulations are given in operational days. The model represented is only a basis from which more detailed work could progress. The RPV system in this model is based on preliminary specifications and estimated values. The use of GRASP from basic system definition, to model input, and to model verification is demonstrated.
Concept and numerical simulations of a reactive anti-fragment armour layer
NASA Astrophysics Data System (ADS)
Hušek, Martin; Kala, Jiří; Král, Petr; Hokeš, Filip
2017-07-01
The contribution describes the concept and numerical simulation of a ballistic protective layer which is able to actively resist projectiles or smaller colliding fragments flying at high speed. The principle of the layer was designed on the basis of the action/reaction system of reactive armour which is used for the protection of armoured vehicles. As the designed ballistic layer consists of steel plates simultaneously combined with explosive material - primary explosive and secondary explosive - the technique of coupling the Finite Element Method with Smoothed Particle Hydrodynamics was used for the simulations. Certain standard situations which the ballistic layer should resist were simulated. The contribution describes the principles for the successful execution of numerical simulations, their results, and an evaluation of the functionality of the ballistic layer.
Generalized dynamic engine simulation techniques for the digital computer
NASA Technical Reports Server (NTRS)
Sellers, J.; Teren, F.
1974-01-01
Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.
Generalized dynamic engine simulation techniques for the digital computer
NASA Technical Reports Server (NTRS)
Sellers, J.; Teren, F.
1974-01-01
Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.
Generalized dynamic engine simulation techniques for the digital computers
NASA Technical Reports Server (NTRS)
Sellers, J.; Teren, F.
1975-01-01
Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar digital programs on future engine simulation philosophy is also discussed.
Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire
2016-06-25
Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.
Sjöström, Hans-Erik; Englund, Claire
2016-01-01
Objective. To develop and implement a virtual tablet machine simulation to aid distance students’ understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students’ perceptions, the use of the tablet simulation contributed to their understanding of the compaction process. PMID:27402990
Dataflow computing approach in high-speed digital simulation
NASA Technical Reports Server (NTRS)
Ercegovac, M. D.; Karplus, W. J.
1984-01-01
New computational tools and methodologies for the digital simulation of continuous systems were explored. Programmability, and cost effective performance in multiprocessor organizations for real time simulation was investigated. Approach is based on functional style languages and data flow computing principles, which allow for the natural representation of parallelism in algorithms and provides a suitable basis for the design of cost effective high performance distributed systems. The objectives of this research are to: (1) perform comparative evaluation of several existing data flow languages and develop an experimental data flow language suitable for real time simulation using multiprocessor systems; (2) investigate the main issues that arise in the architecture and organization of data flow multiprocessors for real time simulation; and (3) develop and apply performance evaluation models in typical applications.
NASA Astrophysics Data System (ADS)
Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo
2018-05-01
Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.
Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena
NASA Astrophysics Data System (ADS)
Yang, Jianqiang; Ma, Hong; Zhong, Suchuang
2018-03-01
In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.
Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register.
Wang, Ya; Dolde, Florian; Biamonte, Jacob; Babbush, Ryan; Bergholm, Ville; Yang, Sen; Jakobi, Ingmar; Neumann, Philipp; Aspuru-Guzik, Alán; Whitfield, James D; Wrachtrup, Jörg
2015-08-25
Ab initio computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH(+). Moreover, we report an energy uncertainty (given our model basis) of the order of 10(-14) hartree, which is 10 orders of magnitude below the desired chemical precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides an important step toward a fully scalable solid-state implementation of a quantum chemistry simulator.
Three Tier Unified Process Model for Requirement Negotiations and Stakeholder Collaborations
NASA Astrophysics Data System (ADS)
Niazi, Muhammad Ashraf Khan; Abbas, Muhammad; Shahzad, Muhammad
2012-11-01
This research paper is focused towards carrying out a pragmatic qualitative analysis of various models and approaches of requirements negotiations (a sub process of requirements management plan which is an output of scope managementís collect requirements process) and studies stakeholder collaborations methodologies (i.e. from within communication management knowledge area). Experiential analysis encompass two tiers; first tier refers to the weighted scoring model while second tier focuses on development of SWOT matrices on the basis of findings of weighted scoring model for selecting an appropriate requirements negotiation model. Finally the results are simulated with the help of statistical pie charts. On the basis of simulated results of prevalent models and approaches of negotiations, a unified approach for requirements negotiations and stakeholder collaborations is proposed where the collaboration methodologies are embeded into selected requirements negotiation model as internal parameters of the proposed process alongside some external required parameters like MBTI, opportunity analysis etc.
Angular Momentum Content of the ρ Meson in Lattice QCD
NASA Astrophysics Data System (ADS)
Glozman, Leonid Ya.; Lang, C. B.; Limmer, Markus
2009-09-01
The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the LJ2S+1 basis one may extract a partial wave content of a meson. We present results for the ground state of the ρ meson using quenched simulations as well as simulations with nf=2 dynamical quarks, all for lattice spacings close to 0.15 fm. We point out that these results indicate a simple S13-wave composition of the ρ meson in the infrared, like in the SU(6) flavor-spin quark model.
NASA Astrophysics Data System (ADS)
Nakamura, Koichi
2018-06-01
Thermoelectric properties of transition metal dichalcogenide (TMDC) monolayer models, such as Seebeck coefficient and lattice heat capacity, were simulated on the basis of first-principles calculations. The calculated Seebeck coefficients are appropriate for the thermoelectric element of all the TMDC monolayer models introduced in this study. In the MoX2/WX2 (X = S, Se, and Te) heterojunction structure, carrier electrons and holes are respectively distributed in the MoX2 and WX2 regions by adopting a common Fermi energy for both electronic structures. In particular, in the X = Te case, the practical carrier concentration with a large Seebeck coefficient can be evaluated without doping. The lattice heat capacities and their temperature dependence tendencies can be classified on the basis of the minimum frequencies of the optical modes. The quotient of the lattice thermal conductivity over the phonon relaxation time gives the temperature-independent specific values according to the kind of TMDC monolayer.
Nonlinear Reduced-Order Simulation Using Stress-Free and Pre-Stressed Modal Bases
NASA Technical Reports Server (NTRS)
Przekop, Adam; Stover, Michael A.; Rizzi, Stephen A.
2009-01-01
A study is undertaken to determine the advantages and disadvantages associated with application of stress-free and pre-stressed modal bases in a reduced-order finite-element-based nonlinear simulation. A planar beam is chosen as an application example and its response due to combined thermal and random pressure loadings is examined. Combinations of two random pressure levels and two thermal conditions are investigated. The latter consists of an ambient temperature condition and an elevated temperature condition in the post-buckled regime. It is found that stress-free normal modes establish a broadly applicable modal basis yielding accurate results for all the loading regimes considered. In contrast, the range of applicability for a thermally pre-stressed modal basis is found to be limited. The behavior is explained by scrutinizing the coupling found in the linear stiffness and the effect this coupling has on the structural response characteristics under the range of loading conditions considered.
Angular momentum content of the rho meson in lattice QCD.
Glozman, Leonid Ya; Lang, C B; Limmer, Markus
2009-09-18
The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the ;{2S+1}L_{J} basis one may extract a partial wave content of a meson. We present results for the ground state of the rho meson using quenched simulations as well as simulations with n_{f} = 2 dynamical quarks, all for lattice spacings close to 0.15 fm. We point out that these results indicate a simple ;{3}S_{1}-wave composition of the rho meson in the infrared, like in the SU(6) flavor-spin quark model.
Zhou, Jingwen; Xu, Zhenghong; Chen, Shouwen
2013-04-01
The thuringiensin abiotic degradation processes in aqueous solution under different conditions, with a pH range of 5.0-9.0 and a temperature range of 10-40°C, were systematically investigated by an exponential decay model and a radius basis function (RBF) neural network model, respectively. The half-lives of thuringiensin calculated by the exponential decay model ranged from 2.72 d to 16.19 d under the different conditions mentioned above. Furthermore, an RBF model with accuracy of 0.1 and SPREAD value 5 was employed to model the degradation processes. The results showed that the model could simulate and predict the degradation processes well. Both the half-lives and the prediction data showed that thuringiensin was an easily degradable antibiotic, which could be an important factor in the evaluation of its safety. Copyright © 2012 Elsevier Ltd. All rights reserved.
The dimension of attractors underlying periodic turbulent Poiseuille flow
NASA Technical Reports Server (NTRS)
Keefe, Laurence; Moin, Parviz; Kim, John
1992-01-01
A lower bound on the Liapunov dimenison, D-lambda, of the attractor underlying turbulent, periodic Poiseuille flow at a pressure-gradient Reynolds number of 3200 is calculated, on the basis of a coarse-grained (16x33x8) numerical solution, to be approximately 352. Comparison of Liapunov exponent spectra from this and a higher-resolution (16x33x16) simulation on the same spatial domain shows these spectra to have a universal shape when properly scaled. On the basis of these scaling properties, and a partial exponent spectrum from a still higher-resolution (32x33x32) simulation, it is argued that the actual dimension of the attractor underlying motion of the given computational domain is approximately 780. It is suggested that this periodic turbulent shear flow is deterministic chaos, and that a strange attractor does underly solutions to the Navier-Stokes equations in such flows.
LANDSAT data for state planning. [of transportation for Georgia
NASA Technical Reports Server (NTRS)
Faust, N. L.; Spann, G. W.
1975-01-01
The results of an effort to generate and apply automated classification of LANDSAT digital data to state of Georgia problems are presented. This phase centers on an analysis of the usefulness of LANDSAT digital data to provide land-use data for transportation planning. Hall County, Georgia was chosen as a test site because it is part of a seventeen county area for which the Georgia Department of Transportation is currently designing a Transportation Planning Land-Use Simulation Model. The land-cover information derived from this study was compared to several other existing sources of land-use data for Hall County and input into this simulation. The results indicate that there is difficulty comparing LANDSAT derived land-cover information with previous land-use information since the LANDSAT data are acquired on an acre by acre grid basis while all previous land-use surveys for Hall County used land-use data on a parcel basis.
Holistic Nursing Simulation: A Concept Analysis.
Cohen, Bonni S; Boni, Rebecca
2018-03-01
Simulation as a technology and holistic nursing care as a philosophy are two components within nursing programs that have merged during the process of knowledge and skill acquisition in the care of the patients as whole beings. Simulation provides opportunities to apply knowledge and skill through the use of simulators, standardized patients, and virtual settings. Concerns with simulation have been raised regarding the integration of the nursing process and recognizing the totality of the human being. Though simulation is useful as a technology, the nursing profession places importance on patient care, drawing on knowledge, theories, and expertise to administer patient care. There is a need to promptly and comprehensively define the concept of holistic nursing simulation to provide consistency and a basis for quality application within nursing curricula. This concept analysis uses Walker and Avant's approach to define holistic nursing simulation by defining antecedents, consequences, and empirical referents. The concept of holism and the practice of holistic nursing incorporated into simulation require an analysis of the concept of holistic nursing simulation by developing a language and model to provide direction for educators in design and development of holistic nursing simulation.
Human System Simulation in Support of Human Performance Technical Basis at NPPs
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Gertman; Katya Le Blanc; alan mecham
2010-06-01
This paper focuses on strategies and progress toward establishing the Idaho National Laboratory’s (INL’s) Human Systems Simulator Laboratory at the Center for Advanced Energy Studies (CAES), a consortium of Idaho State Universities. The INL is one of the National Laboratories of the US Department of Energy. One of the first planned applications for the Human Systems Simulator Laboratory is implementation of a dynamic nuclear power plant simulation (NPP) where studies of operator workload, situation awareness, performance and preference will be carried out in simulated control rooms including nuclear power plant control rooms. Simulation offers a means by which to reviewmore » operational concepts, improve design practices and provide a technical basis for licensing decisions. In preparation for the next generation power plant and current government and industry efforts in support of light water reactor sustainability, human operators will be attached to a suite of physiological measurement instruments and, in combination with traditional Human Factors Measurement techniques, carry out control room tasks in simulated advanced digital and hybrid analog/digital control rooms. The current focus of the Human Systems Simulator Laboratory is building core competence in quantitative and qualitative measurements of situation awareness and workload. Of particular interest is whether introduction of digital systems including automated procedures has the potential to reduce workload and enhance safety while improving situation awareness or whether workload is merely shifted and situation awareness is modified in yet to be determined ways. Data analysis is carried out by engineers and scientists and includes measures of the physical and neurological correlates of human performance. The current approach supports a user-centered design philosophy (see ISO 13407 “Human Centered Design Process for Interactive Systems, 1999) wherein the context for task performance along with the requirements of the end-user are taken into account during the design process and the validity of design is determined through testing of real end users« less
Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm
NASA Astrophysics Data System (ADS)
Gilat Schmidt, Taly; Barber, Rina F.; Sidky, Emil Y.
2017-03-01
Metal objects cause artifacts in computed tomography (CT) images. This work investigated the feasibility of a spectral CT method to reduce metal artifacts. Spectral CT acquisition combined with optimization-based reconstruction is proposed to reduce artifacts by modeling the physical effects that cause metal artifacts and by providing the flexibility to selectively remove corrupted spectral measurements in the spectral-sinogram space. The proposed Constrained `One-Step' Spectral CT Image Reconstruction (cOSSCIR) algorithm directly estimates the basis material maps while enforcing convex constraints. The incorporation of constraints on the reconstructed basis material maps is expected to mitigate undersampling effects that occur when corrupted data is excluded from reconstruction. The feasibility of the cOSSCIR algorithm to reduce metal artifacts was investigated through simulations of a pelvis phantom. The cOSSCIR algorithm was investigated with and without the use of a third basis material representing metal. The effects of excluding data corrupted by metal were also investigated. The results demonstrated that the proposed cOSSCIR algorithm reduced metal artifacts and improved CT number accuracy. For example, CT number error in a bright shading artifact region was reduced from 403 HU in the reference filtered backprojection reconstruction to 33 HU using the proposed algorithm in simulation. In the dark shading regions, the error was reduced from 1141 HU to 25 HU. Of the investigated approaches, decomposing the data into three basis material maps and excluding the corrupted data demonstrated the greatest reduction in metal artifacts.
River Runoff Estimates on the Basis of Satellite-Derived Surface Currents and Water Levels
NASA Astrophysics Data System (ADS)
Gruenler, S.; Romeiser, R.; Stammer, D.
2007-12-01
One promising technique for river runoff estimates from space is the retrieval of surface currents on the basis of synthetic aperture radar along-track interferometry (ATI). The German satellite TerraSAR-X, which was launched in June 2007, permits current measurements by ATI in an experimental mode of operation. Based on numerical simulations, we present first findings of a research project in which the potential of satellite measurements of various parameters with different temporal and spatial sampling characteristics is evaluated and a dedicated data synthesis system for river discharge estimates is developed. We address the achievable accuracy and limitations of such estimates for different local flow conditions at selected test sites. High-resolution three- dimensional current fields in the Elbe river (Germany) from a numerical model of the German Federal Waterways Engineering and Research Institute (BAW) are used as reference data set and input for simulations of a variety of possible measuring and data interpretation strategies to be evaluated. For example, runoff estimates on the basis of measured surface current fields and river widths from TerraSAR-X and water levels from radar altimetry are simulated. Despite the simplicity of some of the applied methods, the results provide quite comprehensive pictures of the Elbe river runoff dynamics. Although the satellite-based river runoff estimates exhibit a lower accuracy in comparison to traditional gauge measurements, the proposed measuring strategies are quite promising for the monitoring of river discharge dynamics in regions where only sparse in-situ measurements are available. We discuss the applicability to a number of major rivers around the world.
Values of Flood Hazard Mapping for Disaster Risk Assessment and Communication
NASA Astrophysics Data System (ADS)
Sayama, T.; Takara, K. T.
2015-12-01
Flood plains provide tremendous benefits for human settlements. Since olden days people have lived with floods and attempted to control them if necessary. Modern engineering works such as building embankment have enabled people to live even in flood prone areas, and over time population and economic assets have concentrated in these areas. In developing countries also, rapid land use change alters exposure and vulnerability to floods and consequently increases disaster risk. Flood hazard mapping is an essential step for any counter measures. It has various objectives including raising awareness of residents, finding effective evacuation routes and estimating potential damages through flood risk mapping. Depending on the objectives and data availability, there are also many possible approaches for hazard mapping including simulation basis, community basis and remote sensing basis. In addition to traditional paper-based hazard maps, Information and Communication Technology (ICT) promotes more interactive hazard mapping such as movable hazard map to demonstrate scenario simulations for risk communications and real-time hazard mapping for effective disaster responses and safe evacuations. This presentation first summarizes recent advancement of flood hazard mapping by focusing on Japanese experiences and other examples from Asian countries. Then it introduces a flood simulation tool suitable for hazard mapping at the river basin scale even in data limited regions. In the past few years, the tool has been practiced by local officers responsible for disaster management in Asian countries. Through the training activities of hazard mapping and risk assessment, we conduct comparative analysis to identify similarity and uniqueness of estimated economic damages depending on topographic and land use conditions.
Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D
2009-09-01
Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.
Autiero, Ida; Ruvo, Menotti; Improta, Roberto; Vitagliano, Luigi
2018-04-01
Aptamers are RNA/DNA biomolecules representing an emerging class of protein interactors and regulators. Despite the growing interest in these molecules, current understanding of chemical-physical basis of their target recognition is limited. Recently, the characterization of the aptamer targeting the protein-S8 has suggested that flexibility plays important functional roles. We investigated the structural versatility of the S8-aptamer by molecular dynamics simulations. Five different simulations have been conducted by varying starting structures and temperatures. The simulation of S8-aptamer complex provides a dynamic view of the contacts occurring at the complex interface. The simulation of the aptamer in ligand-free state indicates that its central region is intrinsically endowed with a remarkable flexibility. Nevertheless, none of the trajectory structures adopts the structure observed in the S8-aptamer complex. The aptamer ligand-bound is very rigid in the simulation carried out at 300 K. A structural transition of this state, providing insights into the aptamer-protein recognition process, is observed in a simulation carried out at 400 K. These data indicate that a key event in the binding is linked to the widening of the central region of the aptamer. Particularly relevant is switch of the A26 base from its ligand-free state to a location that allows the G13-C28 base-pairing. Intrinsic flexibility of the aptamer is essential for partner recognition. Present data indicate that S8 recognizes the aptamer through an induced-fit rather than a population-shift mechanism. The present study provides deeper understanding of the structural basis of the structural versatility of aptamers. Copyright © 2018 Elsevier B.V. All rights reserved.
Strategy for long-term 3D cloud-resolving simulations over the ARM SGP site and preliminary results
NASA Astrophysics Data System (ADS)
Lin, W.; Liu, Y.; Song, H.; Endo, S.
2011-12-01
Parametric representations of cloud/precipitation processes continue having to be adopted in climate simulations with increasingly higher spatial resolution or with emerging adaptive mesh framework; and it is only becoming more critical that such parameterizations have to be scale aware. Continuous cloud measurements at DOE's ARM sites have provided a strong observational basis for novel cloud parameterization research at various scales. Despite significant progress in our observational ability, there are important cloud-scale physical and dynamical quantities that are either not currently observable or insufficiently sampled. To complement the long-term ARM measurements, we have explored an optimal strategy to carry out long-term 3-D cloud-resolving simulations over the ARM SGP site using Weather Research and Forecasting (WRF) model with multi-domain nesting. The factors that are considered to have important influences on the simulated cloud fields include domain size, spatial resolution, model top, forcing data set, model physics and the growth of model errors. The hydrometeor advection that may play a significant role in hydrological process within the observational domain but is often lacking, and the limitations due to the constraint of domain-wide uniform forcing in conventional cloud system-resolving model simulations, are at least partly accounted for in our approach. Conventional and probabilistic verification approaches are employed first for selected cases to optimize the model's capability of faithfully reproducing the observed mean and statistical distributions of cloud-scale quantities. This then forms the basis of our setup for long-term cloud-resolving simulations over the ARM SGP site. The model results will facilitate parameterization research, as well as understanding and dissecting parameterization deficiencies in climate models.
Politański, Piotr; Bortkiewicz, Alicja; Zmyślony, Marek
2013-06-01
The paper reports the results of the determinations of UMTS EMF distributions in the driver’s cab of motor vehicle simulators. The results will serve as the basis for future research on the influence of EMF emitted by mobile phones on driver physiology. Two motor vehicle driving simulators were monitored, while an EMF source was placed at the driver's head or on the dashboard of the motor vehicle driving simulator. For every applied configuration, the maximal electric field strength was measured, as were the values at 16 points corresponding to chosen locations on a driver's or passenger's body. When the power was set for the maximum (49 mW), a value of 27 V/m was measured in the vicinity of the driver's head when the phone was close to the head. With the same power, when the phone was placed on the dashboard, the measured maximum was 15.2 V/m in the vicinity of the driver's foot. Similar results were obtained for the passenger. Significant perturbations in EMF distribution and an increase in electric field strength values in the mo-tor vehicle driving simulator were also observed in comparison to free space measurements, and the electric field strength was up to 3 times higher inside the simulator. This study can act as the basis of future studies concerning the influence of the EMF emitted by mobile phones on the physiology of the driver. Additionally, the authors postulate that it is advisable to keep mobile phones at a distance from the head, i.e. use, whenever possible, hands-free kits to reduce EMF exposure, both for drivers and passengers.
Olivieri, Giorgia; Parry, Krista M; D'Auria, Raffaella; Tobias, Douglas J; Brown, Matthew A
2018-01-18
Specific ion effects of the large halide anions have been shown to moderate anion adsorption to the air-water interface (AWI), but little quantitative attention has been paid to the behavior of alkali cations. Here we investigate the concentration and local distribution of sodium (Na + ) at the AWI in dilute (<1 M) aqueous solutions of NaCl, NaBr, and NaI using a combination of molecular dynamics (MD) and SESSA simulations, and liquid jet ambient pressure photoelectron spectroscopy measurements. We use SESSA to simulate Na 2p photoelectron intensities on the basis of the atom density profiles obtained from MD simulations, and we compare the simulation results with photoelectron spectroscopy experiments to evaluate the performance of a nonpolarizable force field model versus that of an induced dipole polarizable one. Our results show that the nonpolarizable force model developed by Horinek and co-workers (Chem. Phys. Lett. 2009, 479, 173-183) accurately predicts the local concentration and distribution of Na + near the AWI for all three electrolytes, whereas the polarizable model does not. To our knowledge, this is the first interface-specific spectroscopic validation of a MD force field. The molecular origins of the unique Na + distributions for the three electrolytes are analyzed on the basis of electrostatic arguments, and shown to arise from an indirect anion effect wherein the identity of the anion affects the strength of the attractive Na + -H 2 O electrostatic interaction. Finally, we use the photoelectron spectroscopy results to constrain the range of inelastic mean free paths (IMFPs) for the three electrolyte solutions used in the SESSA simulations that are able to reproduce the experimental intensities. Our results suggest that earlier estimates of IMFPs for aqueous solutions are likely too high.
Development and evaluation of packet video schemes
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Y. C.; Hadenfeldt, A. C.
1990-01-01
Reflecting the two tasks proposed for the current year, namely a feasibility study of simulating the NASA network, and a study of progressive transmission schemes, are presented. The view of the NASA network, gleaned from the various technical reports made available to use, is provided. Also included is a brief overview of how the current simulator could be modified to accomplish the goal of simulating the NASA network. As the material in this section would be the basis for the actual simulation, it is important to make sure that it is an accurate reflection of the requirements on the simulator. Brief descriptions of the set of progressive transmission algorithms selected for the study are contained. The results available in the literature were obtained under a variety of different assumptions, not all of which are stated. As such, the only way to compare the efficiency and the implementational complexity of the various algorithms is to simulate them.
Laser Doppler velocimeter system simulation for sensing aircraft wake vortices
NASA Technical Reports Server (NTRS)
Thomson, J. A. L.; Meng, J. C. S.
1974-01-01
A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.
Design of teleoperation system with a force-reflecting real-time simulator
NASA Technical Reports Server (NTRS)
Hirata, Mitsunori; Sato, Yuichi; Nagashima, Fumio; Maruyama, Tsugito
1994-01-01
We developed a force-reflecting teleoperation system that uses a real-time graphic simulator. This system eliminates the effects of communication time delays in remote robot manipulation. The simulator provides the operator with predictive display and feedback of computed contact forces through a six-degree of freedom (6-DOF) master arm on a real-time basis. With this system, peg-in-hole tasks involving round-trip communication time delays of up to a few seconds were performed at three support levels: a real image alone, a predictive display with a real image, and a real-time graphic simulator with computed-contact-force reflection and a predictive display. The experimental results indicate the best teleoperation efficiency was achieved by using the force-reflecting simulator with two images. The shortest work time, lowest sensor maximum, and a 100 percent success rate were obtained. These results demonstrate the effectiveness of simulated-force-reflecting teleoperation efficiency.
NASA Technical Reports Server (NTRS)
Fisher, Jody l.; Striepe, Scott A.
2007-01-01
The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.
Bicentennial Era: Three Years to Go
ERIC Educational Resources Information Center
Parsley, James F.; Olsen, Henry D.
1973-01-01
A time capsule, a sketch of events during the pre-Revolutionary War period of 1771-1776, a list of leading characters and a bibliography are offered as the basis for a re-enactment, role playing, simulation, and in-depth studies. (KM)
Towards Application of NASA Standard for Models and Simulations in Aeronautical Design Process
NASA Astrophysics Data System (ADS)
Vincent, Luc; Dunyach, Jean-Claude; Huet, Sandrine; Pelissier, Guillaume; Merlet, Joseph
2012-08-01
Even powerful computational techniques like simulation endure limitations in their validity domain. Consequently using simulation models requires cautions to avoid making biased design decisions for new aeronautical products on the basis of inadequate simulation results. Thus the fidelity, accuracy and validity of simulation models shall be monitored in context all along the design phases to build confidence in achievement of the goals of modelling and simulation.In the CRESCENDO project, we adapt the Credibility Assessment Scale method from NASA standard for models and simulations from space programme to the aircraft design in order to assess the quality of simulations. The proposed eight quality assurance metrics aggregate information to indicate the levels of confidence in results. They are displayed in management dashboard and can secure design trade-off decisions at programme milestones.The application of this technique is illustrated in aircraft design context with specific thermal Finite Elements Analysis. This use case shows how to judge the fitness- for-purpose of simulation as Virtual testing means and then green-light the continuation of Simulation Lifecycle Management (SLM) process.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2014-01-01
Simulation codes often utilize finite-dimensional approximation resulting in numerical error. Some examples include, numerical methods utilizing grids and finite-dimensional basis functions, particle methods using a finite number of particles. These same simulation codes also often contain sources of uncertainty, for example, uncertain parameters and fields associated with the imposition of initial and boundary data,uncertain physical model parameters such as chemical reaction rates, mixture model parameters, material property parameters, etc.
An Examination of the Conceptual Basis of a Tactical, Logistical, and Air Simulation (ATLAS).
1980-03-01
guides the simulation from the start. From this scenario and the de - veloping tactical situation comes information which triggers the tactical-decision...effect of tactical aircraft in a combat situation together with the effect of weapons to destroy the aircraft. The presence of transport aircraft is...sector, the ability of that sector to resupply existing combat units, to transport replacement items and supplies, and to move the new unit through
Shape control of large space structures
NASA Technical Reports Server (NTRS)
Hagan, M. T.
1982-01-01
A survey has been conducted to determine the types of control strategies which have been proposed for controlling the vibrations in large space structures. From this survey several representative control strategies were singled out for detailed analyses. The application of these strategies to a simplified model of a large space structure has been simulated. These simulations demonstrate the implementation of the control algorithms and provide a basis for a preliminary comparison of their suitability for large space structure control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Roekel, Luke
We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.
Simulation study on combustion of biomass
NASA Astrophysics Data System (ADS)
Zhao, M. L.; Liu, X.; Cheng, J. W.; Liu, Y.; Jin, Y. A.
2017-01-01
Biomass combustion is the most common energy conversion technology, offering the advantages of low cost, low risk and high efficiency. In this paper, the transformation and transfer of biomass in the process of combustion are discussed in detail. The process of furnace combustion and gas phase formation was analyzed by numerical simulation. The experimental results not only help to optimize boiler operation and realize the efficient combustion of biomass, but also provide theoretical basis for the improvement of burner technology.
Sparse approximation problem: how rapid simulated annealing succeeds and fails
NASA Astrophysics Data System (ADS)
Obuchi, Tomoyuki; Kabashima, Yoshiyuki
2016-03-01
Information processing techniques based on sparseness have been actively studied in several disciplines. Among them, a mathematical framework to approximately express a given dataset by a combination of a small number of basis vectors of an overcomplete basis is termed the sparse approximation. In this paper, we apply simulated annealing, a metaheuristic algorithm for general optimization problems, to sparse approximation in the situation where the given data have a planted sparse representation and noise is present. The result in the noiseless case shows that our simulated annealing works well in a reasonable parameter region: the planted solution is found fairly rapidly. This is true even in the case where a common relaxation of the sparse approximation problem, the G-relaxation, is ineffective. On the other hand, when the dimensionality of the data is close to the number of non-zero components, another metastable state emerges, and our algorithm fails to find the planted solution. This phenomenon is associated with a first-order phase transition. In the case of very strong noise, it is no longer meaningful to search for the planted solution. In this situation, our algorithm determines a solution with close-to-minimum distortion fairly quickly.
Multi-scale simulations of apatite-collagen composites: from molecules to materials
NASA Astrophysics Data System (ADS)
Zahn, Dirk
2017-03-01
We review scale-bridging simulation studies for the exploration of atomicto-meso scale processes that account for the unique structure and mechanic properties of apatite-protein composites. As the atomic structure and composition of such complex biocomposites only partially is known, the first part (i) of our modelling studies is dedicated to realistic crystal nucleation scenarios of inorganic-organic composites. Starting from the association of single ions, recent insights range from the mechanisms of motif formation, ripening reactions and the self-organization of nanocrystals, including their interplay with growth-controlling molecular moieties. On this basis, (ii) reliable building rules for unprejudiced scale-up models can be derived to model bulk materials. This is exemplified for (enamel-like) apatite-protein composites, encompassing up to 106 atom models to provide a realistic account of the 10 nm length scale, whilst model coarsening is used to reach μm length scales. On this basis, a series of deformation and fracture simulation studies were performed and helped to rationalize biocomposite hardness, plasticity, toughness, self-healing and fracture mechanisms. Complementing experimental work, these modelling studies provide particularly detailed insights into the relation of hierarchical composite structure and favorable mechanical properties.
Nonlinear Reduced Order Random Response Analysis of Structures with Shallow Curvature
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.
2006-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.
Nonlinear Reduced Order Random Response Analysis of Structures With Shallow Curvature
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.
2005-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.
NASA Astrophysics Data System (ADS)
Jie, M.; Zhang, J.; Guo, B. B.
2017-12-01
As a typical distributed hydrological model, the SWAT model also has a challenge in calibrating parameters and analysis their uncertainty. This paper chooses the Chaohe River Basin China as the study area, through the establishment of the SWAT model, loading the DEM data of the Chaohe river basin, the watershed is automatically divided into several sub-basins. Analyzing the land use, soil and slope which are on the basis of the sub-basins and calculating the hydrological response unit (HRU) of the study area, after running SWAT model, the runoff simulation values in the watershed are obtained. On this basis, using weather data, known daily runoff of three hydrological stations, combined with the SWAT-CUP automatic program and the manual adjustment method are used to analyze the multi-site calibration of the model parameters. Furthermore, the GLUE algorithm is used to analyze the parameters uncertainty of the SWAT model. Through the sensitivity analysis, calibration and uncertainty study of SWAT, the results indicate that the parameterization of the hydrological characteristics of the Chaohe river is successful and feasible which can be used to simulate the Chaohe river basin.
Broadband light sources based on InAs/InGaAs metamorphic quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seravalli, L.; Trevisi, G.; Frigeri, P.
We propose a design for a semiconductor structure emitting broadband light in the infrared, based on InAs quantum dots (QDs) embedded into a metamorphic step-graded In{sub x}Ga{sub 1−x}As buffer. We developed a model to calculate the metamorphic QD energy levels based on the realistic QD parameters and on the strain-dependent material properties; we validated the results of simulations by comparison with the experimental values. On this basis, we designed a p-i-n heterostructure with a graded index profile toward the realization of an electrically pumped guided wave device. This has been done by adding layers where QDs are embedded in In{submore » x}Al{sub y}Ga{sub 1−x−y}As layers, to obtain a symmetric structure from a band profile point of view. To assess the room temperature electro-luminescence emission spectrum under realistic electrical injection conditions, we performed device-level simulations based on a coupled drift-diffusion and QD rate equation model. On the basis of the device simulation results, we conclude that the present proposal is a viable option to realize broadband light-emitting devices.« less
Robust mode space approach for atomistic modeling of realistically large nanowire transistors
NASA Astrophysics Data System (ADS)
Huang, Jun Z.; Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard
2018-01-01
Nanoelectronic transistors have reached 3D length scales in which the number of atoms is countable. Truly atomistic device representations are needed to capture the essential functionalities of the devices. Atomistic quantum transport simulations of realistically extended devices are, however, computationally very demanding. The widely used mode space (MS) approach can significantly reduce the numerical cost, but a good MS basis is usually very hard to obtain for atomistic full-band models. In this work, a robust and parallel algorithm is developed to optimize the MS basis for atomistic nanowires. This enables engineering-level, reliable tight binding non-equilibrium Green's function simulation of nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) with a realistic cross section of 10 nm × 10 nm using a small computer cluster. This approach is applied to compare the performance of InGaAs and Si nanowire n-type MOSFETs (nMOSFETs) with various channel lengths and cross sections. Simulation results with full-band accuracy indicate that InGaAs nanowire nMOSFETs have no drive current advantage over their Si counterparts for cross sections up to about 10 nm × 10 nm.
NASA Astrophysics Data System (ADS)
Langhoff, P. W.; Winstead, C. L.
Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.
A practical radial basis function equalizer.
Lee, J; Beach, C; Tepedelenlioglu, N
1999-01-01
A radial basis function (RBF) equalizer design process has been developed in which the number of basis function centers used is substantially fewer than conventionally required. The reduction of centers is accomplished in two-steps. First an algorithm is used to select a reduced set of centers that lie close to the decision boundary. Then the centers in this reduced set are grouped, and an average position is chosen to represent each group. Channel order and delay, which are determining factors in setting the initial number of centers, are estimated from regression analysis. In simulation studies, an RBF equalizer with more than 2000-to-1 reduction in centers performed as well as the RBF equalizer without reduction in centers, and better than a conventional linear equalizer.
NASA Technical Reports Server (NTRS)
Mcneill, Walter, E.; Chung, William W.; Stortz, Michael W.
1995-01-01
A piloted motion simulator evaluation, using the NASA Ames Vertical Motion Simulator, was conducted in support of a NASA Lewis Contractual study of the integration of flight and propulsion systems of a STOVL aircraft. Objectives of the study were to validate the Design Methods for Integrated Control Systems (DMICS) concept, to evaluate the handling qualities, and to assess control power usage. The E-7D ejector-augmentor STOVL fighter design served as the basis for the simulation. Handling-qualities ratings were obtained during precision hover and shipboard landing tasks. Handling-qualities ratings for these tasks ranged from satisfactory to adequate. Further improvement of the design process to fully validate the DMICS concept appears to be warranted.
Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.
2009-10-09
The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected tomore » come from increasingly diverse educational and experiential backgrounds.« less
Molecular dynamics study of a polymeric reverse osmosis membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harder, E.; Walters, D. E.; Bodnar, Y. D.
2009-07-30
Molecular dynamics (MD) simulations are used to investigate the properties of an atomic model of an aromatic polyamide reverse osmosis membrane. The monomers forming the polymeric membrane are cross-linked progressively on the basis of a heuristic distance criterion during MD simulations until the system interconnectivity reaches completion. Equilibrium MD simulations of the hydrated membrane are then used to determine the density and diffusivity of water within the membrane. Given a 3 MPa pressure differential and a 0.125 {micro}m width membrane, the simulated water flux is calculated to be 1.4 x 10{sup -6} m/s, which is in fair agreement with anmore » experimental flux measurement of 7.7 x 10{sup -6} m/s.« less
Enhanced sampling techniques in biomolecular simulations.
Spiwok, Vojtech; Sucur, Zoran; Hosek, Petr
2015-11-01
Biomolecular simulations are routinely used in biochemistry and molecular biology research; however, they often fail to match expectations of their impact on pharmaceutical and biotech industry. This is caused by the fact that a vast amount of computer time is required to simulate short episodes from the life of biomolecules. Several approaches have been developed to overcome this obstacle, including application of massively parallel and special purpose computers or non-conventional hardware. Methodological approaches are represented by coarse-grained models and enhanced sampling techniques. These techniques can show how the studied system behaves in long time-scales on the basis of relatively short simulations. This review presents an overview of new simulation approaches, the theory behind enhanced sampling methods and success stories of their applications with a direct impact on biotechnology or drug design. Copyright © 2014 Elsevier Inc. All rights reserved.
Unstructured grid methods for the simulation of 3D transient flows
NASA Technical Reports Server (NTRS)
Morgan, K.; Peraire, J.; Peiro, J.
1994-01-01
A description of the research work undertaken under NASA Research Grant NAGW-2962 has been given. Basic algorithmic development work, undertaken for the simulation of steady three dimensional inviscid flow, has been used as the basis for the construction of a procedure for the simulation of truly transient flows in three dimensions. To produce a viable procedure for implementation on the current generation of computers, moving boundary components are simulated by fixed boundaries plus a suitably modified boundary condition. Computational efficiency is increased by the use of an implicit time stepping scheme in which the equation system is solved by explicit multistage time stepping with multigrid acceleration. The viability of the proposed approach has been demonstrated by considering the application of the procedure to simulation of a transonic flow over an oscillating ONERA M6 wing.
Polymer Composites Corrosive Degradation: A Computational Simulation
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2007-01-01
A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.
2013-01-01
ξi be the Legendre -Gauss-Lobatto (LGL) points defined as the roots of (1 − ξ2)P ′N (ξ) = 0, where PN (ξ) is the N th order Legendre polynomial . The...mesh refinement. By expanding the solution in a basis of high order polynomials in each element, one can dynamically adjust the order of these basis...on refining the mesh while keeping the polynomial order constant across the elements. If we choose to allow non-conforming elements, the challenge in
Numerical simulation of intelligent compaction technology for construction quality control.
DOT National Transportation Integrated Search
2015-02-01
For eciently updating models of large-scale structures, the response surface (RS) method based on radial basis : functions (RBFs) is proposed to model the input-output relationship of structures. The key issues for applying : the proposed method a...
Towards a Basis for Designing Backwater and Side Channel Restorations
USDA-ARS?s Scientific Manuscript database
Design criteria for river channel restoration is becoming highly developed with several handbooks and guidance documents available, despite notable differences among various schools of thought. Basic principles of stable channel design and riverine habitat simulation undergird channel reconstructio...
RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY
The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...
Target modelling for SAR image simulation
NASA Astrophysics Data System (ADS)
Willis, Chris J.
2014-10-01
This paper examines target models that might be used in simulations of Synthetic Aperture Radar imagery. We examine the basis for scattering phenomena in SAR, and briefly review the Swerling target model set, before considering extensions to this set discussed in the literature. Methods for simulating and extracting parameters for the extended Swerling models are presented. It is shown that in many cases the more elaborate extended Swerling models can be represented, to a high degree of fidelity, by simpler members of the model set. Further, it is shown that it is quite unlikely that these extended models would be selected when fitting models to typical data samples.
Working Performance Analysis of Rolling Bearings Used in Mining Electric Excavator Crowd Reducer
NASA Astrophysics Data System (ADS)
Zhang, Y. H.; Hou, G.; Chen, G.; Liang, J. F.; Zheng, Y. M.
2017-12-01
Refer to the statistical load data of digging process, on the basis of simulation analysis of crowd reducer system dynamics, the working performance simulation analysis of rolling bearings used in crowd reducer of large mining electric excavator is completed. The contents of simulation analysis include analysis of internal load distribution, rolling elements contact stresses and rolling bearing fatigue life. The internal load characteristics of rolling elements in cylindrical roller bearings are obtained. The results of this study identified that all rolling bearings satisfy the requirements of contact strength and fatigue life. The rationality of bearings selection and arrangement is also verified.
Molecular Basis of Mechano-Signal Transduction in Vascular Endothelial Cells
NASA Technical Reports Server (NTRS)
Jo, Hanjoong
2004-01-01
Simulated microgravity studies using a random positioning machine (RPM). One RPM machine has been built for us by Fokker Science in Netherland. Using the device, we have developed an in vitro system to examine the effect of simulated microgravity on osteoblastic bone cells. Using this system, we have carried out gene chip studies to determine the gene expression profiles of osteoblasts cultured under simulated microgravity conditions in comparison to static controls. From this study, we have identified numerous genes, some of which are expected ones inducing bone loss, but many of which are unexpected and unknown. These findings are being prepared for publications.
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey; Estes, Sue; Sprigg, William A.; Nickovic, Slobodan; Huete, Alfredo; Solano, Ramon; Ratana, Piyachat; Jiang, Zhangyan; Flowers, Len; Zelicoff, Alan
2009-01-01
This slide presentation reviews the environmental factors that affect asthma and allergies and work to predict and simulate the downwind exposure to airborne pollen. Using a modification of Dust REgional Atmosphere Model (DREAM) that incorporates phenology (i.e. PREAM) the aim was to predict concentrations of pollen in time and space. The strategy for using the model to simulate downwind pollen dispersal, and evaluate the results. Using MODerate-resolution Imaging Spectroradiometer (MODIS), to get seasonal sampling of Juniper, the pollen chosen for the study, land cover on a near daily basis. The results of the model are reviewed.
Optimization Research of Generation Investment Based on Linear Programming Model
NASA Astrophysics Data System (ADS)
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Vreck, D; Gernaey, K V; Rosen, C; Jeppsson, U
2006-01-01
In this paper, implementation of the Benchmark Simulation Model No 2 (BSM2) within Matlab-Simulink is presented. The BSM2 is developed for plant-wide WWTP control strategy evaluation on a long-term basis. It consists of a pre-treatment process, an activated sludge process and sludge treatment processes. Extended evaluation criteria are proposed for plant-wide control strategy assessment. Default open-loop and closed-loop strategies are also proposed to be used as references with which to compare other control strategies. Simulations indicate that the BM2 is an appropriate tool for plant-wide control strategy evaluation.
Numerical Simulation of the Flow over a Segment-Conical Body on the Basis of Reynolds Equations
NASA Astrophysics Data System (ADS)
Egorov, I. V.; Novikov, A. V.; Palchekovskaya, N. V.
2018-01-01
Numerical simulation was used to study the 3D supersonic flow over a segment-conical body similar in shape to the ExoMars space vehicle. The nonmonotone behavior of the normal force acting on the body placed in a supersonic gas flow was analyzed depending on the angle of attack. The simulation was based on the numerical solution of the unsteady Reynolds-averaged Navier-Stokes equations with a two-parameter differential turbulence model. The solution of the problem was obtained using the in-house solver HSFlow with an efficient parallel algorithm intended for multiprocessor super computers.
NASA Astrophysics Data System (ADS)
Junk, S.
2016-08-01
Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.
Lunar thermal measurements in conjunction with Project Apollo
NASA Technical Reports Server (NTRS)
Clark, S. P., Jr.
1973-01-01
Problems related to the feasibility of measuring lunar heat flow at the lunar surface are analyzed, and the findings which required that a drill be developed for lunar use are discussed. Numerical simulations were made of the in situ measurement of lunar thermal conductivity using a circular ring source of heat. The results of these simulations formed the basis for the criteria used in designing a subsurface thermal probe for ALSEP. Preliminary analyses are presented on the data obtained from the Apollo 15 and 17 missions.
A Novel Automatic Phase Selection Device: Design and Optimization
NASA Astrophysics Data System (ADS)
Zhang, Feng; Li, Haitao; Li, Na; Zhang, Nan; Lv, Wei; Cui, Xiaojiang
2018-01-01
At present, AICD completion is an effective way to slow down the bottom water cone. Effective extension of the period without water production. According on the basis of investigating the AICD both at home and abroad, this paper designed a new type of AICD, and with the help of fluid numerical simulation software, the internal flow field was analysed, and its structure is optimized. The simulation results show that the tool can restrict the flow of water well, and the flow of oil is less.
Interleaved concatenated codes: new perspectives on approaching the Shannon limit.
Viterbi, A J; Viterbi, A M; Sindhushayana, N T
1997-09-02
The last few years have witnessed a significant decrease in the gap between the Shannon channel capacity limit and what is practically achievable. Progress has resulted from novel extensions of previously known coding techniques involving interleaved concatenated codes. A considerable body of simulation results is now available, supported by an important but limited theoretical basis. This paper presents a computational technique which further ties simulation results to the known theory and reveals a considerable reduction in the complexity required to approach the Shannon limit.
Information prioritization for control and automation of space operations
NASA Technical Reports Server (NTRS)
Ray, Asock; Joshi, Suresh M.; Whitney, Cynthia K.; Jow, Hong N.
1987-01-01
The applicability of a real-time information prioritization technique to the development of a decision support system for control and automation of Space Station operations is considered. The steps involved in the technique are described, including the definition of abnormal scenarios and of attributes, measures of individual attributes, formulation and optimization of a cost function, simulation of test cases on the basis of the cost function, and examination of the simulation scenerios. A list is given comparing the intrinsic importances of various Space Station information data.
Parallel algorithms for simulating continuous time Markov chains
NASA Technical Reports Server (NTRS)
Nicol, David M.; Heidelberger, Philip
1992-01-01
We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.
Like-Me Simulation as an Effective and Cognitively Plausible Basis for Social Robotics
2009-02-24
sec- onds, and when productions were available , the model re- sponds in 2.3 seconds. 4.4 Perspective Taking Discussion In experiments testing human...behavior. First, if there are existing productions for the specific situation, they provide the re- sponse. If no productions are available , the model...1. REPORT DATE FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE ’Like-Me’ Simulation as an Effective
NASA Astrophysics Data System (ADS)
Iyer, Kartheik; Gawiser, Eric
2017-06-01
The Dense Basis SED fitting method reveals previously inaccessible information about the number and duration of star formation episodes and the timing of stellar mass assembly as well as uncertainties in these quantities, in addition to accurately recovering traditional SED parameters including M*, SFR and dust attenuation. This is done using basis Star Formation Histories (SFHs) chosen by comparing the goodness-of-fit of mock galaxy SEDs to the goodness-of-reconstruction of their SFHs, trained and validated using three independent datasets of mock galaxies at z=1 from SAMs, Hydrodynamic simulations and stochastic realizations. Of the six parametrizations of SFHs considered, we reject the traditional parametrizations of constant and exponential SFHs and suggest four novel improvements, quantifying the bias and scatter of each parametrization. We then apply the method to a sample of 1100 CANDELS GOODS-S galaxies at 1
Next Generation Simulation Framework for Robotic and Human Space Missions
NASA Technical Reports Server (NTRS)
Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven
2012-01-01
The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.
NASA Astrophysics Data System (ADS)
van Hoeve, Miriam D.; Klobukowski, Mariusz
2018-03-01
Simulation of the electronic spectra of HRgF (Rg = Ar, Kr, Xe, Rn) was carried out using the time-dependent density functional method, with the CAMB3LYP functional and several basis sets augmented with even-tempered diffuse functions. A full spectral assignment for the HRgF systems was done. The effect of the rare gas matrix on the HRgF (Rg = Ar and Kr) spectra was investigated and it was found that the matrix blue-shifted the spectra. Scalar relativistic effects on the spectra were also studied and it was found that while the excitation energies of HArF and HKrF were insignificantly affected by relativistic effects, most of the excitation energies of HXeF and HRnF were red-shifted. Spin-orbit coupling was found to significantly affect excitation energies in HRnF. Analysis of performance of the model core potential basis set relative to all-electron (AE) basis sets showed that the former basis set increased computational efficiency and gave results similar to those obtained with the AE basis set.
These documents provide allocations of phosphorus loads to Lake Champlain to meet water quality criteria, describe basis for allocation for future growth, & describe how implementation measures were simulated to determine that allocations can be achieved
Karacan, C Özgen; Olea, Ricardo A
2018-03-01
Chemical properties of coal largely determine coal handling, processing, beneficiation methods, and design of coal-fired power plants. Furthermore, these properties impact coal strength, coal blending during mining, as well as coal's gas content, which is important for mining safety. In order for these processes and quantitative predictions to be successful, safer, and economically feasible, it is important to determine and map chemical properties of coals accurately in order to infer these properties prior to mining. Ultimate analysis quantifies principal chemical elements in coal. These elements are C, H, N, S, O, and, depending on the basis, ash, and/or moisture. The basis for the data is determined by the condition of the sample at the time of analysis, with an "as-received" basis being the closest to sampling conditions and thus to the in-situ conditions of the coal. The parts determined or calculated as the result of ultimate analyses are compositions, reported in weight percent, and pose the challenges of statistical analyses of compositional data. The treatment of parts using proper compositional methods may be even more important in mapping them, as most mapping methods carry uncertainty due to partial sampling as well. In this work, we map the ultimate analyses parts of the Springfield coal from an Indiana section of the Illinois basin, USA, using sequential Gaussian simulation of isometric log-ratio transformed compositions. We compare the results with those of direct simulations of compositional parts. We also compare the implications of these approaches in calculating other properties using correlations to identify the differences and consequences. Although the study here is for coal, the methods described in the paper are applicable to any situation involving compositional data and its mapping.
Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Thomas; Efendiev, Yalchin; Tchelepi, Hamdi
2016-05-24
Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.« less
Algebraic Turbulence-Chemistry Interaction Model
NASA Technical Reports Server (NTRS)
Norris, Andrew T.
2012-01-01
The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.
Fashioning the Face: Sensorimotor Simulation Contributes to Facial Expression Recognition.
Wood, Adrienne; Rychlowska, Magdalena; Korb, Sebastian; Niedenthal, Paula
2016-03-01
When we observe a facial expression of emotion, we often mimic it. This automatic mimicry reflects underlying sensorimotor simulation that supports accurate emotion recognition. Why this is so is becoming more obvious: emotions are patterns of expressive, behavioral, physiological, and subjective feeling responses. Activation of one component can therefore automatically activate other components. When people simulate a perceived facial expression, they partially activate the corresponding emotional state in themselves, which provides a basis for inferring the underlying emotion of the expresser. We integrate recent evidence in favor of a role for sensorimotor simulation in emotion recognition. We then connect this account to a domain-general understanding of how sensory information from multiple modalities is integrated to generate perceptual predictions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.
Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy
2016-01-01
This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.
Haji, Faizal A; Da Silva, Celina; Daigle, Delton T; Dubrowski, Adam
2014-08-01
Presently, health care simulation research is largely conducted on a study-by-study basis. Although such "project-based" research generates a plethora of evidence, it can be chaotic and contradictory. A move toward sustained, thematic, theory-based programs of research is necessary to advance knowledge in the field. Recognizing that simulation is a complex intervention, we present a framework for developing research programs in simulation-based education adapted from the Medical Research Council (MRC) guidance. This framework calls for an iterative approach to developing, refining, evaluating, and implementing simulation interventions. The adapted framework guidance emphasizes: (1) identification of theory and existing evidence; (2) modeling and piloting interventions to clarify active ingredients and identify mechanisms linking the context, intervention, and outcomes; and (3) evaluation of intervention processes and outcomes in both the laboratory and real-world setting. The proposed framework will aid simulation researchers in developing more robust interventions that optimize simulation-based education and advance our understanding of simulation pedagogy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillis, D.R.
A computer-based simulation with an artificial intelligence component and discovery learning was investigated as a method to formulate training needs for new or unfamiliar technologies. Specifically, the study examined if this simulation method would provide for the recognition of applications and knowledge/skills which would be the basis for establishing training needs. The study also examined the effect of field-dependence/independence on recognition of applications and knowledge/skills. A pretest-posttest control group experimental design involving fifty-eight college students from an industrial technology program was used. The study concluded that the simulation was effective in developing recognition of applications and the knowledge/skills for amore » new or unfamiliar technology. And, the simulation's effectiveness for providing this recognition was not limited by an individual's field-dependence/independence.« less
NASA Technical Reports Server (NTRS)
Madden, Michael G.; Wyrick, Roberta; O'Neill, Dale E.
2005-01-01
Space Shuttle Processing is a complicated and highly variable project. The planning and scheduling problem, categorized as a Resource Constrained - Stochastic Project Scheduling Problem (RC-SPSP), has a great deal of variability in the Orbiter Processing Facility (OPF) process flow from one flight to the next. Simulation Modeling is a useful tool in estimation of the makespan of the overall process. However, simulation requires a model to be developed, which itself is a labor and time consuming effort. With such a dynamic process, often the model would potentially be out of synchronization with the actual process, limiting the applicability of the simulation answers in solving the actual estimation problem. Integration of TEAMS model enabling software with our existing schedule program software is the basis of our solution. This paper explains the approach used to develop an auto-generated simulation model from planning and schedule efforts and available data.
NASA Astrophysics Data System (ADS)
Dörr, Dominik; Joppich, Tobias; Schirmaier, Fabian; Mosthaf, Tobias; Kärger, Luise; Henning, Frank
2016-10-01
Thermoforming of continuously fiber reinforced thermoplastics (CFRTP) is ideally suited to thin walled and complex shaped products. By means of forming simulation, an initial validation of the producibility of a specific geometry, an optimization of the forming process and the prediction of fiber-reorientation due to forming is possible. Nevertheless, applied methods need to be validated. Therefor a method is presented, which enables the calculation of error measures for the mismatch between simulation results and experimental tests, based on measurements with a conventional coordinate measuring device. As a quantitative measure, describing the curvature is provided, the presented method is also suitable for numerical or experimental sensitivity studies on wrinkling behavior. The applied methods for forming simulation, implemented in Abaqus explicit, are presented and applied to a generic geometry. The same geometry is tested experimentally and simulation and test results are compared by the proposed validation method.
Structural Composites Corrosive Management by Computational Simulation
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2006-01-01
A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.
A fast simulation method for radiation maps using interpolation in a virtual environment.
Li, Meng-Kun; Liu, Yong-Kuo; Peng, Min-Jun; Xie, Chun-Li; Yang, Li-Qun
2018-05-10
In nuclear decommissioning, virtual simulation technology is a useful tool to achieve an effective work process by using virtual environments to represent the physical and logical scheme of a real decommissioning project. This technology is cost-saving and time-saving, with the capacity to develop various decommissioning scenarios and reduce the risk of retrofitting. The method utilises a radiation map in a virtual simulation as the basis for the assessment of exposure to a virtual human. In this paper, we propose a fast simulation method using a known radiation source. The method has a unique advantage over point kernel and Monte Carlo methods because it generates the radiation map using interpolation in a virtual environment. The simulation of the radiation map including the calculation and the visualisation were realised using UNITY and MATLAB. The feasibility of the proposed method was tested on a hypothetical case and the results obtained are discussed in this paper.
Simulating Isotope Enrichment by Gaseous Diffusion
NASA Astrophysics Data System (ADS)
Reed, Cameron
2015-04-01
A desktop-computer simulation of isotope enrichment by gaseous diffusion has been developed. The simulation incorporates two non-interacting point-mass species whose members pass through a cascade of cells containing porous membranes and retain constant speeds as they reflect off the walls of the cells and the spaces between holes in the membranes. A particular feature is periodic forward recycling of enriched material to cells further along the cascade along with simultaneous return of depleted material to preceding cells. The number of particles, the mass ratio, the initial fractional abundance of the lighter species, and the time between recycling operations can be chosen by the user. The simulation is simple enough to be understood on the basis of two-dimensional kinematics, and demonstrates that the fractional abundance of the lighter-isotope species increases along the cascade. The logic of the simulation will be described and results of some typical runs will be presented and discussed.
MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance
2014-01-01
Background Computer simulations are important for validating novel image acquisition and reconstruction strategies. In cardiovascular magnetic resonance (CMR), numerical simulations need to combine anatomical information and the effects of cardiac and/or respiratory motion. To this end, a framework for realistic CMR simulations is proposed and its use for image reconstruction from undersampled data is demonstrated. Methods The extended Cardiac-Torso (XCAT) anatomical phantom framework with various motion options was used as a basis for the numerical phantoms. Different tissue, dynamic contrast and signal models, multiple receiver coils and noise are simulated. Arbitrary trajectories and undersampled acquisition can be selected. The utility of the framework is demonstrated for accelerated cine and first-pass myocardial perfusion imaging using k-t PCA and k-t SPARSE. Results MRXCAT phantoms allow for realistic simulation of CMR including optional cardiac and respiratory motion. Example reconstructions from simulated undersampled k-t parallel imaging demonstrate the feasibility of simulated acquisition and reconstruction using the presented framework. Myocardial blood flow assessment from simulated myocardial perfusion images highlights the suitability of MRXCAT for quantitative post-processing simulation. Conclusion The proposed MRXCAT phantom framework enables versatile and realistic simulations of CMR including breathhold and free-breathing acquisitions. PMID:25204441
NASA Astrophysics Data System (ADS)
Sundberg, Mikaela
While the distinction between theory and experiment is often used to discuss the place of simulation from a philosophical viewpoint, other distinctions are possible from a sociological perspective. Turkle (1995) distinguishes between cultures of calculation and cultures of simulation and relates these cultures to the distinction between modernity and postmodernity, respectively. What can we understand about contemporary simulation practices in science by looking at them from the point of view of these two computer cultures? What new questions does such an analysis raise for further studies? On the basis of two case studies, the present paper compares and discusses simulation activities in astrophysics and meteorology. It argues that simulation practices manifest aspects of both of these cultures simultaneously, but in different situations. By employing the dichotomies surface/depth, play/seriousness, and extreme/reasonable to characterize and operationalize cultures of calculation and cultures of simulation as sensitizing concepts, the analysis shows how simulation code work shifts from development to use, the importance of but also resistance towards too much visualizations, and how simulation modelers play with extreme values, yet also try to achieve reasonable results compared to observations.
NASA Astrophysics Data System (ADS)
Dolzhenkova, E. V.; Iurieva, L. V.
2018-05-01
The study presents the author's algorithm for the industrial enterprise repair service organization simulation based on the reliability theory, as well as the results of its application. The monitoring of the industrial enterprise repair service organization is proposed to perform on the basis of the enterprise's state indexes for the main resources (equipment, labour, finances, repair areas), which allows quantitative evaluation of the reliability level as a resulting summary rating of the said parameters and the ensuring of an appropriate level of the operation reliability of the serviced technical objects. Under the conditions of the tough competition, the following approach is advisable: the higher efficiency of production and a repair service itself, the higher the innovative attractiveness of an industrial enterprise. The results of the calculations show that in order to prevent inefficient losses of production and to reduce the repair costs, it is advisable to apply the reliability theory. The overall reliability rating calculated on the basis of the author's algorithm has low values. The processing of the statistical data forms the reliability characteristics for the different workshops and services of an industrial enterprise, which allows one to define the failure rates of the various units of equipment and to establish the reliability indexes necessary for the subsequent mathematical simulation. The proposed simulating algorithm contributes to an increase of the efficiency of the repair service organization and improvement of the innovative attraction of an industrial enterprise.
Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS
Community Multiscale Air Quality (CMAQ) model simulations utilizing the traditional organic aerosol (OA) treatment (CMAQ-AE6) and a volatility basis set (VBS) treatment for OA (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Specia...
ERIC Educational Resources Information Center
Spain, James D.; Soldan, Theodore
1983-01-01
Describes two computer simulations of the predator-prey interaction in which students explore theories and mathematical equations involved in this biological process. The programs (for Apple II), designed for college level ecology, may be used in lecture/demonstrations or as a basis for laboratory assignments. A list of student objectives is…
David A. Marquis; Richard L. Ernst
1992-01-01
Describes the purpose and function of the SILVAH computer program in general terms; provides detailed instructions on use of the program; and provides information on program organization , data formats, and the basis of processing algorithms.
Research on orbit prediction for solar-based calibration proper satellite
NASA Astrophysics Data System (ADS)
Chen, Xuan; Qi, Wenwen; Xu, Peng
2018-03-01
Utilizing the mathematical model of the orbit mechanics, the orbit prediction is to forecast the space target's orbit information of a certain time based on the orbit of the initial moment. The proper satellite radiometric calibration and calibration orbit prediction process are introduced briefly. On the basis of the research of the calibration space position design method and the radiative transfer model, an orbit prediction method for proper satellite radiometric calibration is proposed to select the appropriate calibration arc for the remote sensor and to predict the orbit information of the proper satellite and the remote sensor. By analyzing the orbit constraint of the proper satellite calibration, the GF-1solar synchronous orbit is chose as the proper satellite orbit in order to simulate the calibration visible durance for different satellites to be calibrated. The results of simulation and analysis provide the basis for the improvement of the radiometric calibration accuracy of the satellite remote sensor, which lays the foundation for the high precision and high frequency radiometric calibration.
Natarajan, Kathiresan; Senapati, Sanjib
2012-01-01
The vital role of tubulin dimer in cell division makes it an attractive drug target. Drugs that target tubulin showed significant clinical success in treating various cancers. However, the efficacy of these drugs is attenuated by the emergence of tubulin mutants that are unsusceptible to several classes of tubulin binding drugs. The molecular basis of drug resistance of the tubulin mutants is yet to be unraveled. Here, we employ molecular dynamics simulations, protein-ligand docking, and MMPB(GB)SA analyses to examine the binding of anticancer drugs, taxol and epothilone to the reported point mutants of tubulin - T274I, R282Q, and Q292E. Results suggest that the mutations significantly alter the tubulin structure and dynamics, thereby weaken the interactions and binding of the drugs, primarily by modifying the M loop conformation and enlarging the pocket volume. Interestingly, these mutations also affect the tubulin distal sites that are associated with microtubule building processes. PMID:22879949
The validity of multiphase DNS initialized on the basis of single--point statistics
NASA Astrophysics Data System (ADS)
Subramaniam, Shankar
1999-11-01
A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.
Logistics Process Analysis ToolProcess Analysis Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
2008-03-31
LPAT is the resulting integrated system between ANL-developed Enhanced Logistics Intra Theater Support Tool (ELIST) sponsored by SDDC-TEA and the Fort Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the process Anlysis Tool (PAT) which evolved into a stand=-along tool for detailed process analysis at a location. Combined with ELIST, an inter-installation logistics component was added to enable users to define large logistical agent-based models without having to program. PAT is the evolution of an ANL-developed software system called Fortmore » Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the Process Analysis Tool(PAT) which evolved into a stand-alone tool for detailed process analysis at a location (sponsored by the SDDC-TEA).« less
A new class of methods for functional connectivity estimation
NASA Astrophysics Data System (ADS)
Lin, Wutu
Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.
OpenSim: open-source software to create and analyze dynamic simulations of movement.
Delp, Scott L; Anderson, Frank C; Arnold, Allison S; Loan, Peter; Habib, Ayman; John, Chand T; Guendelman, Eran; Thelen, Darryl G
2007-11-01
Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.
NASA Astrophysics Data System (ADS)
Moron, Vincent; Navarra, Antonio
2000-05-01
This study presents the skill of the seasonal rainfall of tropical America from an ensemble of three 34-year general circulation model (ECHAM 4) simulations forced with observed sea surface temperature between 1961 and 1994. The skill gives a first idea of the amount of potential predictability if the sea surface temperatures are perfectly known some time in advance. We use statistical post-processing based on the leading modes (extracted from Singular Value Decomposition of the covariance matrix between observed and simulated rainfall fields) to improve the raw skill obtained by simple comparison between observations and simulations. It is shown that 36-55 % of the observed seasonal variability is explained by the simulations on a regional basis. Skill is greatest for Brazilian Nordeste (March-May), but also for northern South America or the Caribbean basin in June-September or northern Amazonia in September-November for example.
Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation
NASA Astrophysics Data System (ADS)
Malecha, Ziemowit; Chini, Gregory; Julien, Keith
2012-11-01
Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.
Synchrotron-based EUV lithography illuminator simulator
Naulleau, Patrick P.
2004-07-27
A lithographic illuminator to illuminate a reticle to be imaged with a range of angles is provided. The illumination can be employed to generate a pattern in the pupil of the imaging system, where spatial coordinates in the pupil plane correspond to illumination angles in the reticle plane. In particular, a coherent synchrotron beamline is used along with a potentially decoherentizing holographic optical element (HOE), as an experimental EUV illuminator simulation station. The pupil fill is completely defined by a single HOE, thus the system can be easily modified to model a variety of illuminator fill patterns. The HOE can be designed to generate any desired angular spectrum and such a device can serve as the basis for an illuminator simulator.
Multi-fidelity methods for uncertainty quantification in transport problems
NASA Astrophysics Data System (ADS)
Tartakovsky, G.; Yang, X.; Tartakovsky, A. M.; Barajas-Solano, D. A.; Scheibe, T. D.; Dai, H.; Chen, X.
2016-12-01
We compare several multi-fidelity approaches for uncertainty quantification in flow and transport simulations that have a lower computational cost than the standard Monte Carlo method. The cost reduction is achieved by combining a small number of high-resolution (high-fidelity) simulations with a large number of low-resolution (low-fidelity) simulations. We propose a new method, a re-scaled Multi Level Monte Carlo (rMLMC) method. The rMLMC is based on the idea that the statistics of quantities of interest depends on scale/resolution. We compare rMLMC with existing multi-fidelity methods such as Multi Level Monte Carlo (MLMC) and reduced basis methods and discuss advantages of each approach.
Piloted Simulation Study of Rudder Pedal Force/Feel Characteristics
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
2007-01-01
A piloted, fixed-base simulation was conducted in 2006 to determine optimum rudder pedal force/feel characteristics for transport aircraft. As part of this research, an evaluation of four metrics for assessing rudder pedal characteristics previously presented in the literature was conducted. This evaluation was based upon the numerical handling qualities ratings assigned to a variety of pedal force/feel systems used in the simulation study. It is shown that, with the inclusion of a fifth metric, most of the rudder pedal force/feel system designs that were rated poorly by the evaluation pilots could be identified. It is suggested that these metrics form the basis of a certification requirement for transport aircraft.
Development of an autonomous video rendezous and docking system
NASA Technical Reports Server (NTRS)
Tietz, J. C.; Kelly, J. H.
1982-01-01
Video control systems using three flashing lights and two other types of docking aids were evaluated through computer simulation and other approaches. The three light system performed much better than the others. Its accuracy is affected little by tumbling of the target spacecraft, and in the simulations it was able to cope with attitude rates up to 20,000 degrees per hour about the docking axis. Its performance with rotation about other axes is determined primarily by the state estimation and goal setting portions of the control system, not by measurement accuracy. A suitable control system, and a computer program that can serve as the basis for the physical simulation are discussed.
Modern Scientific Visualization is more than Just Pretty Pictures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E Wes; Rubel, Oliver; Wu, Kesheng
2008-12-05
While the primary product of scientific visualization is images and movies, its primary objective is really scientific insight. Too often, the focus of visualization research is on the product, not the mission. This paper presents two case studies, both that appear in previous publications, that focus on using visualization technology to produce insight. The first applies"Query-Driven Visualization" concepts to laser wakefield simulation data to help identify and analyze the process of beam formation. The second uses topological analysis to provide a quantitative basis for (i) understanding the mixing process in hydrodynamic simulations, and (ii) performing comparative analysis of data frommore » two different types of simulations that model hydrodynamic instability.« less
Wang, Qin; Wang, Xiang-Bin
2014-01-01
We present a model on the simulation of the measurement-device independent quantum key distribution (MDI-QKD) with phase randomized general sources. It can be used to predict experimental observations of a MDI-QKD with linear channel loss, simulating corresponding values for the gains, the error rates in different basis, and also the final key rates. Our model can be applicable to the MDI-QKDs with arbitrary probabilistic mixture of different photon states or using any coding schemes. Therefore, it is useful in characterizing and evaluating the performance of the MDI-QKD protocol, making it a valuable tool in studying the quantum key distributions. PMID:24728000
Monte-Carlo Geant4 numerical simulation of experiments at 247-MeV proton microscope
NASA Astrophysics Data System (ADS)
Kantsyrev, A. V.; Skoblyakov, A. V.; Bogdanov, A. V.; Golubev, A. A.; Shilkin, N. S.; Yuriev, D. S.; Mintsev, V. B.
2018-01-01
A radiographic facility for an investigation of fast dynamic processes with areal density of targets up to 5 g/cm2 is under development on the basis of high-current proton linear accelerator at the Institute for Nuclear Research (Troitsk, Russia). A virtual model of the proton microscope developed in a software toolkit Geant4 is presented in the article. Fullscale Monte-Carlo numerical simulation of static radiographic experiments at energy of a proton beam 247 MeV was performed. The results of simulation of proton radiography experiments with static model of shock-compressed xenon are presented. The results of visualization of copper and polymethyl methacrylate step wedges static targets also described.
Two Novel Applications of an Integrated Model for the Assessment of Global Water Resources
NASA Astrophysics Data System (ADS)
Hanasaki, N.; Kanae, S.; Oki, T.
2009-12-01
To assess global water availability and use at a subannual timescale, an integrated global water resources model was developed consisting of six modules: land surface hydrology, river routing, crop growth, reservoir operation, environmental flow requirement estimation, and anthropogenic water withdrawal. The model, called H08, simulates both natural and anthropogenic water flow globally (excluding Antarctica) on a daily basis at a spatial resolution of 1.0°×1.0°or 0.5°×0.5° (longitude and latitude). Here, we present two novel applications of H08. First, a global hydrological simulation was conducted for 10 years from 1986 to 1995 at a spatial resolution of 1.0°×1.0°, and global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies using conventional annual basis indices. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3) and the allocation of environmental flow requirements can alter the population under high water stress by approximately -11% to +5% globally. Second, global flows of virtual water (i.e. the volume of water consumption required to produce commodities imported to an exporting nation) were estimated. The H08 model enabled us to simulate the virtual water content of major crops consistent with their global hydrological simulation. Moreover, we were able to assess two major sources of virtual water flow or content simultaneously: green water (evapotranspiration originated from precipitation) and blue water (evapotranspiration originated from irrigation). Blue water was further subdivided into three subcategories (i.e., streamflow, medium-size reservoirs, and nonrenewable and nonlocal blue water). Using global trade data for 2000 and the simulated virtual water content of major crops, the virtual water flow was estimated globally. Our results indicated that the global virtual water export (i.e., the volume of water that an exporting nation consumes to produce the commodities that it trades abroad) of five crops (barley, maize, rice, soybean, and wheat) and three livestock products (beef, pork, and chicken) is 545 km3yr-1. Of the total virtual water exports, 61 km3 yr-1 (11%) are blue water (i.e., irrigation water) and 26 km3 yr-1 (5%) are nonrenewable and nonlocal blue water.
Taming Wild Horses: The Need for Virtual Time-based Scheduling of VMs in Network Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J
2012-01-01
The next generation of scalable network simulators employ virtual machines (VMs) to act as high-fidelity models of traffic producer/consumer nodes in simulated networks. However, network simulations could be inaccurate if VMs are not scheduled according to virtual time, especially when many VMs are hosted per simulator core in a multi-core simulator environment. Since VMs are by default free-running, on the outset, it is not clear if, and to what extent, their untamed execution affects the results in simulated scenarios. Here, we provide the first quantitative basis for establishing the need for generalized virtual time scheduling of VMs in network simulators,more » based on an actual prototyped implementations. To exercise breadth, our system is tested with multiple disparate applications: (a) a set of message passing parallel programs, (b) a computer worm propagation phenomenon, and (c) a mobile ad-hoc wireless network simulation. We define and use error metrics and benchmarks in scaled tests to empirically report the poor match of traditional, fairness-based VM scheduling to VM-based network simulation, and also clearly show the better performance of our simulation-specific scheduler, with up to 64 VMs hosted on a 12-core simulator node.« less
Mok, Daniel W K; Lee, Edmond P F; Chau, Foo-Tim; Dyke, John M
2009-03-10
RCCSD(T) and/or CASSCF/MRCI calculations have been carried out on the X̃(1)A' and Ã(1)A'' states of HSiCl employing basis sets of up to the aug-cc-pV5Z quality. Contributions from core correlation and extrapolation to the complete basis set limit were included in determining the computed equilibrium geometrical parameters and relative electronic energy of these two states of HSiCl. Franck-Condon factors which include allowance for anharmonicity and Duschinsky rotation between these two states of HSiCl and DSiCl were calculated employing RCCSD(T) and CASSCF/MRCI potential energy functions, and were used to simulate the Ã(1)A'' ← X̃(1)A' absorption and Ã(1)A'' → X̃(1)A' single vibronic level (SVL) emission spectra of HSiCl and DSiCl. Simulated absorption and experimental LIF spectra, and simulated and observed Ã(1)A''(0,0,0) → X̃(1)A' SVL emission spectra, of HSiCl and DSiCl are in very good agreement. However, agreement between simulated and observed Ã(1)A''(0,1,0) → X̃(1)A' and Ã(1)A''(0,2,1) → X̃(1)A' SVL emission spectra of DSiCl is not as good. Preliminary calculations on low-lying excited states of HSiCl suggest that vibronic interaction between low-lying vibrational levels of the Ã(1)A'' state and highly excited vibrational levels of the ã(3)A'' is possible. Such vibronic interaction may change the character of the low-lying vibrational levels of the Ã(1)A'' state, which would lead to perturbation in the SVL emission spectra from these vibrational levels.
Chakraborty, Srirupa; Zheng, Wenjun
2015-01-27
We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron-microscopy maps to construct new structural models of the kinesin-tubulin complex in APO and ATP state, and then conducted extensive MD simulations (total 400 ns for each state), followed by flexibility analysis, principal component analysis, hydrogen bond analysis, and binding free energy analysis. Our modeling and simulation have revealed key nucleotide-dependent changes in the structure and flexibility of the nucleotide-binding pocket (featuring a highly flexible and open switch I in APO state) and the tubulin-binding site, and allosterically coupled motions driving the APO to ATP transition. In addition, our binding free energy analysis has identified a set of key residues involved in kinesin-tubulin binding. On the basis of our simulation, we have attempted to address several outstanding issues in kinesin study, including the possible roles of β-sheet twist and neck linker docking in regulating nucleotide release and binding, the structural mechanism of ADP release, and possible extension and shortening of α4 helix during the ATPase cycle. This study has provided a comprehensive structural and dynamic picture of kinesin's major ATPase states, and offered promising targets for future mutational and functional studies to investigate the molecular mechanism of kinesin motors.
Clinical Core Competency Training for NASA Flight Surgeons
NASA Technical Reports Server (NTRS)
Polk, J. D.; Schmid, Josef; Hurst, Victor, IV; Doerr, Harold K.; Doerr, Harold K.
2007-01-01
Introduction: The cohort of NASA flight surgeons (FS) is a very accomplished group with varied clinical backgrounds; however, the NASA Flight Surgeon Office has identified that the extremely demanding schedule of this cohort prevents many of these physicians from practicing clinical medicine on a regular basis. In an effort to improve clinical competency, the NASA FS Office has dedicated one day a week for the FS to receive clinical training. Each week, an FS is assigned to one of five clinical settings, one being medical patient simulation. The Medical Operations Support Team (MOST) was tasked to develop curricula using medical patient simulation that would meet the clinical and operational needs of the NASA FS Office. Methods: The MOST met with the Lead FS and Training Lead FS to identify those core competencies most important to the FS cohort. The MOST presented core competency standards from the American Colleges of Emergency Medicine and Internal Medicine as a basis for developing the training. Results: The MOST identified those clinical areas that could be best demonstrated and taught using medical patient simulation, in particular, using high fidelity human patient simulators. Curricula are currently being developed and additional classes will be implemented to instruct the FS cohort. The curricula will incorporate several environments for instruction, including lab-based and simulated microgravity-based environments. Discussion: The response from the NASA FS cohort to the initial introductory class has been positive. As a result of this effort, the MOST has identified three types of training to meet the clinical needs of the FS Office; clinical core competency training, individual clinical refresher training, and just-in-time training (specific for post-ISS Expedition landings). The MOST is continuing to work with the FS Office to augment the clinical training for the FS cohort, including the integration of Web-based learning.
Renner, Franziska
2016-09-01
Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.
Browder, Joan A.; Restrepo, V.R.; Rice, J.K.; Robblee, M.B.; Zein-Eldin, Z.
1999-01-01
Two modeling approaches were used to explore the basis for variation in recruitment of pink shrimp, Farfantepenaeus duorarum, to the Tortugas fishing grounds. Emphasis was on development and juvenile densities on the nursery grounds. An exploratory simulation modeling exercise demonstrated large year-to-year variations in recruitment contributions to the Tortugas rink shrimp fishery may occur on some nursery grounds, and production may differ considerably among nursery grounds within the same year, simply on the basis of differences in temperature and salinity. We used a growth and survival model to simulate cumulative harvests from a July-centered cohort of early-settlement-stage postlarvae from two parts of Florida Bay (western Florida Bay and northcentral Florida Bay), using historic temperature and salinity data from these areas. Very large year-to-year differences in simulated cumulative harvests were found for recruits from Whipray Basin. Year-to-year differences in simulated harvests of recruits from Johnson Key Basin were much smaller. In a complementary activity, generalized linear and additive models and intermittent, historic density records were used to develop an uninterrupted multi-year time series of monthly density estimates for juvenile rink shrimp in the Johnson Key Basin. The developed data series was based on relationships of density with environmental variables. The strongest relationship was with sea-surface temperature. Three other environmental variables (rainfall, water level at Everglades National Park Well P35, and mean wind speed) also contributed significantly to explaining variation in juvenile densities. Results of the simulation model and two of the three statistical models yielded similar interannual patterns for Johnson Key Basin. While it is not possible to say that one result validates the other, the concordance of the annual patterns from the two models is supportive of both approaches.
A method for spectral DNS of low Rm channel flows based on the least dissipative modes
NASA Astrophysics Data System (ADS)
Kornet, Kacper; Pothérat, Alban
2015-10-01
We put forward a new type of spectral method for the direct numerical simulation of flows where anisotropy or very fine boundary layers are present. The main idea is to take advantage of the fact that such structures are dissipative and that their presence should reduce the number of degrees of freedom of the flow, when paradoxically, their fine resolution incurs extra computational cost in most current methods. The principle of this method is to use a functional basis with elements that already include these fine structures so as to avoid these extra costs. This leads us to develop an algorithm to implement a spectral method for arbitrary functional bases, and in particular, non-orthogonal ones. We construct a basic implementation of this algorithm to simulate magnetohydrodynamic (MHD) channel flows with an externally imposed, transverse magnetic field, where very thin boundary layers are known to develop along the channel walls. In this case, the sought functional basis can be built out of the eigenfunctions of the dissipation operator, which incorporate these boundary layers, and it turns out to be non-orthogonal. We validate this new scheme against numerical simulations of freely decaying MHD turbulence based on a finite volume code and it is found to provide accurate results. Its ability to fully resolve wall-bounded turbulence with a number of modes close to that required by the dynamics is demonstrated on a simple example. This opens the way to full-blown simulations of MHD turbulence under very high magnetic fields. Until now such simulations were too computationally expensive. In contrast to traditional methods the computational cost of the proposed method, does not depend on the intensity of the magnetic field.
POD/MAC-Based Modal Basis Selection for a Reduced Order Nonlinear Response Analysis
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2007-01-01
A feasibility study was conducted to explore the applicability of a POD/MAC basis selection technique to a nonlinear structural response analysis. For the case studied the application of the POD/MAC technique resulted in a substantial improvement of the reduced order simulation when compared to a classic approach utilizing only low frequency modes present in the excitation bandwidth. Further studies are aimed to expand application of the presented technique to more complex structures including non-planar and two-dimensional configurations. For non-planar structures the separation of different displacement components may not be necessary or desirable.
Evidence-based ergonomics. A comparison of Japanese and American office layouts.
Noro, Kageyu; Fujimaki, Goroh; Kishi, Shinsuke
2003-01-01
There is a variety of alternatives in office layouts. Yet the theoretical basis and criteria for predicting how well these layouts accommodate employees are poorly understood. The objective of this study was to evaluate criteria for selecting office layouts. Intensive computer workers worked in simulated office layouts in a controlled experimental laboratory. Eye movement measures indicate that knowledge work requires both concentration and interaction. Findings pointed to one layout as providing optimum balance between these 2 requirements. Recommendations for establishing a theoretical basis and design criteria for selecting office layouts based on work style are suggested.
NASA Astrophysics Data System (ADS)
Sethi, Sanjna; Moors, Eddy; Jamir, Chubamenla
2017-04-01
The carbon exchange between vegetation and the atmosphere tends to vary on an annual basis. This change is a continuous process its trend emerging over a period of years can be analysed. In any such trend over a prolonged period, some years stand out more than the others on account of extreme events. Explaining deviations from the expected average emissions may help to understand the drivers behind these interannual deviations. Such noticeable deviations in trend maybe on account of extreme events and need to be analysed in overall context of the ecosystem. This research's focus is to identify the main drivers responsible for the deviations, and how extreme events impact the variability over a prolonged period of time. The hypothesis being that extreme events are driving these deviations. Carbon flux data done for multiple years (1997-2015) for a site at the Loobos Pine Forest is used and compared with an ecosystem model, LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) to understand if the deviation of measured data from the simulated data is on account of extreme events on a monthly and daily basis. A Principal Component Analysis is performed on the identified deviations between measured and simulated carbon exchange to pin point the main cause behind their occurrence.
Wu, Hua'an; Zeng, Bo; Zhou, Meng
2017-11-15
High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.
Description and comparative evaluation of a proposed design for the low visibility approach study
DOT National Transportation Integrated Search
1985-10-01
Ths memorandum was prepared in support of the low visibility simulation study being : conducted by the FAA as a basis for establishing the lowest RVR (runway visual range) : required for safe, fail passive auto landings in Category III weather. A des...
Energy-Efficient Design for Florida Educational Facilities.
ERIC Educational Resources Information Center
Florida Solar Energy Center, Cape Canaveral.
This manual provides a detailed simulation analysis of a variety of energy conservation measures (ECMs) with the intent of giving educational facility design teams in Florida a basis for decision making. The manual's three sections cover energy efficiency design considerations that appear throughout the following design processes: schematic…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Po Jen; Lai, S. K., E-mail: sklai@coll.phy.ncu.edu.tw; Rapallo, Arnaldo
Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible syntheticmore » polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit solvent, we performed in this work the classical molecular dynamics simulation on a realistic model solution with the peptide embedded in an explicit water environment, and calculated its dynamic properties both as an outcome of the simulations, and by the diffusion theory in reduced statistical-mechanical approach within HBA on the premise that the mode-coupling approach to the diffusion theory can give both the long-range and local dynamics starting from equilibrium averages which were obtained from detailed atomistic simulations.« less
HuPSON: the human physiology simulation ontology.
Gündel, Michaela; Younesi, Erfan; Malhotra, Ashutosh; Wang, Jiali; Li, Hui; Zhang, Bijun; de Bono, Bernard; Mevissen, Heinz-Theodor; Hofmann-Apitius, Martin
2013-11-22
Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios.The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
Zhang, Gaigong; Lin, Lin; Hu, Wei; ...
2017-01-27
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin; Hu, Wei
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
NASA Technical Reports Server (NTRS)
Yoshida, Kinjiro; Hayashi, Kengo; Takami, Hiroshi
1996-01-01
Further feasibility study on a superconducting linear synchronous motor (LSM) rocket launcher system is presented on the basis of dynamic simulations of electric power, efficiency and power factor as well as the ascending motions of the launcher and rocket. The advantages of attractive-mode operation are found from comparison with repulsive-mode operation. It is made clear that the LSM rocket launcher system, of which the long-stator is divided optimally into 60 sections according to launcher speeds, can obtain high efficiency and power factor.
Pilot-model analysis and simulation study of effect of control task desired control response
NASA Technical Reports Server (NTRS)
Adams, J. J.; Gera, J.; Jaudon, J. B.
1978-01-01
A pilot model analysis was performed that relates pilot control compensation, pilot aircraft system response, and aircraft response characteristics for longitudinal control. The results show that a higher aircraft short period frequency is required to achieve superior pilot aircraft system response in an altitude control task than is required in an attitude control task. These results were confirmed by a simulation study of target tracking. It was concluded that the pilot model analysis provides a theoretical basis for determining the effect of control task on pilot opinions.
Investigation of experimental pole-figure errors by simulation of individual spectra
NASA Astrophysics Data System (ADS)
Lychagina, T. A.; Nikolaev, D. I.
2007-09-01
The errors in measuring the crystallographic texture described by pole figures are studied. A set of diffraction spectra for a sample of the MA2-1 alloy (Mg + 4.5% Al + 1% Zn) are measured, simulation of individual spectra on the basis of which the pole figures were obtained is performed, and their errors are determined. The conclusion about the possibility of determining the effect of errors of the diffraction peak half-width on the pole figure errors that was drawn in our previous studies is confirmed.
Mesoscale energy deposition footprint model for kiloelectronvolt cluster bombardment of solids.
Russo, Michael F; Garrison, Barbara J
2006-10-15
Molecular dynamics simulations have been performed to model 5-keV C60 and Au3 projectile bombardment of an amorphous water substrate. The goal is to obtain detailed insights into the dynamics of motion in order to develop a straightforward and less computationally demanding model of the process of ejection. The molecular dynamics results provide the basis for the mesoscale energy deposition footprint model. This model provides a method for predicting relative yields based on information from less than 1 ps of simulation time.
NASA Technical Reports Server (NTRS)
Lee, A. T.; Bussolari, S. R.
1986-01-01
The effect of motion platform systems on pilot behavior is considered with emphasis placed on civil aviation applications. A dynamic model for human spatial orientation based on the physiological structure and function of the human vestibular system is presented. Motion platform alternatives were evaluated on the basis of the following motion platform conditions: motion with six degrees-of-freedom required for Phase II simulators and two limited motion conditions. Consideration was given to engine flameout, airwork, and approach and landing scenarios.
Interleaved concatenated codes: New perspectives on approaching the Shannon limit
Viterbi, A. J.; Viterbi, A. M.; Sindhushayana, N. T.
1997-01-01
The last few years have witnessed a significant decrease in the gap between the Shannon channel capacity limit and what is practically achievable. Progress has resulted from novel extensions of previously known coding techniques involving interleaved concatenated codes. A considerable body of simulation results is now available, supported by an important but limited theoretical basis. This paper presents a computational technique which further ties simulation results to the known theory and reveals a considerable reduction in the complexity required to approach the Shannon limit. PMID:11038568
Monte Carlo simulation of nonadiabatic expansion in cometary atmospheres - Halley
NASA Astrophysics Data System (ADS)
Hodges, R. R.
1990-02-01
Monte Carlo methods developed for the characterization of velocity-dependent collision processes and ballistic transports in planetary exospheres form the basis of the present computer simulation of icy comet atmospheres, which iteratively undertakes the simultaneous determination of velocity distribution for five neutral species (water, together with suprathermal OH, H2, O, and H) in a flow regime varying from the hydrodynamic to the ballistic. Experimental data from the neutral mass spectrometer carried by Giotto for its March, 1986 encounter with Halley are compared with a model atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyniers, G.C.; Froment, G.F.; Kopinke, F.D.
1994-11-01
An extensive experimental program has been carried out in a pilot unit for the thermal cracking of hydrocarbons. On the basis of the experimental information and the insight in the mechanisms for coke formation in pyrolysis reactors, a mathematical model describing the coke formation has been derived. This model has been incorporated in the existing simulation tools at the Laboratorium voor Petrochemische Techniek, and the run length of an industrial naphtha cracking furnace has been accurately simulated. In this way the coking model has been validated.
NASA Astrophysics Data System (ADS)
da Silva, A. M. R.; de Macêdo, J. A.
2016-06-01
On the basis of the technological advancement in the middle and the difficulty of learning by the students in the discipline of physics, this article describes the process of elaboration and implementation of a hypermedia system for high school teachers involving computer simulations for teaching basic concepts of electromagnetism, using free tool. With the completion and publication of the project there will be a new possibility of interaction of students and teachers with the technology in the classroom and in labs.
Study on the frame body structure of micro-electric vehicle based on frontal crash safety
NASA Astrophysics Data System (ADS)
Lu, Yaoquan; Zhang, Sanchuan
2017-08-01
In order to research the safety of skeleton type body of micro-electric vehicles in the frontal collision, the method of finite element modeling and simulation are used to analyze frame body that is fitted with the energy absorption structure, the simulation results show that On the basis of absorbing the most energy and the least of body acceleration, the absorbent structure parameters can be optimized, the optimized parameters are length 180 mm, wall thickness 3 mm and materials Q460.
Ozone production potential following convective redistribution of biomass burning emissions
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Thompson, Anne M.; Scala, John R.; Tao, Wei-Kuo; Simpson, Joanne
1992-01-01
The effects of deep convection on the potential for forming ozone in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud photochemical and dynamic simulations based on observations in the 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. It is seen that there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed hydrocarbons, NO(x), and CO compared to the example of no convection.
Advances in the computation of transonic separated flows over finite wings
NASA Technical Reports Server (NTRS)
Kaynak, Unver; Flores, Jolen
1989-01-01
Problems encountered in numerical simulations of transonic wind-tunnel experiments with low-aspect-ratio wings are surveyed and illustrated. The focus is on the zonal Euler/Navier-Stokes program developed by Holst et al. (1985) and its application to shock-induced separation. The physical basis and numerical implementation of the method are reviewed, and results are presented from studies of the effects of artificial dissipation, boundary conditions, grid refinement, the turbulence model, and geometry representation on the simulation accuracy. Extensive graphs and diagrams and typical flow visualizations are provided.
Hruszkewycz, Stephan O; Holt, Martin V; Tripathi, Ash; Maser, Jörg; Fuoss, Paul H
2011-06-15
We present the framework for convergent beam Bragg ptychography, and, using simulations, we demonstrate that nanocrystals can be ptychographically reconstructed from highly convergent x-ray Bragg diffraction. The ptychographic iterative engine is extended to three dimensions and shown to successfully reconstruct a simulated nanocrystal using overlapping raster scans with a defocused curved beam, the diameter of which matches the crystal size. This object reconstruction strategy can serve as the basis for coherent diffraction imaging experiments at coherent scanning nanoprobe x-ray sources.
A study of remote sensing as applied to regional and small watersheds. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
Ambaruch, R.
1974-01-01
The accuracy of remotely sensed measurements to provide inputs to hydrologic models of watersheds is studied. A series of sensitivity analyses on continuous simulation models of three watersheds determined: (1)Optimal values and permissible tolerances of inputs to achieve accurate simulation of streamflow from the watersheds; (2) Which model inputs can be quantified from remote sensing, directly, indirectly or by inference; and (3) How accurate remotely sensed measurements (from spacecraft or aircraft) must be to provide a basis for quantifying model inputs within permissible tolerances.
Kim, Dae Wook; Kim, Sug-Whan
2005-02-07
We present a novel simulation technique that offers efficient mass fabrication strategies for 2m class hexagonal mirror segments of extremely large telescopes. As the first of two studies in series, we establish the theoretical basis of the tool influence function (TIF) for precessing tool polishing simulation for non-rotating workpieces. These theoretical TIFs were then used to confirm the reproducibility of the material removal foot-prints (measured TIFs) of the bulged precessing tooling reported elsewhere. This is followed by the reverse-computation technique that traces, employing the simplex search method, the real polishing pressure from the empirical TIF. The technical details, together with the results and implications described here, provide the theoretical tool for material removal essential to the successful polishing simulation which will be reported in the second study.
Simulation of short-term electric load using an artificial neural network
NASA Astrophysics Data System (ADS)
Ivanin, O. A.
2018-01-01
While solving the task of optimizing operation modes and equipment composition of small energy complexes or other tasks connected with energy planning, it is necessary to have data on energy loads of a consumer. Usually, there is a problem with obtaining real load charts and detailed information about the consumer, because a method of load-charts simulation on the basis of minimal information should be developed. The analysis of work devoted to short-term loads prediction allows choosing artificial neural networks as a most suitable mathematical instrument for solving this problem. The article provides an overview of applied short-term load simulation methods; it describes the advantages of artificial neural networks and offers a neural network structure for electric loads of residential buildings simulation. The results of modeling loads with proposed method and the estimation of its error are presented.
The Resource Usage Aware Backfilling
NASA Astrophysics Data System (ADS)
Guim, Francesc; Rodero, Ivan; Corbalan, Julita
Job scheduling policies for HPC centers have been extensively studied in the last few years, especially backfilling based policies. Almost all of these studies have been done using simulation tools. All the existent simulators use the runtime (either estimated or real) provided in the workload as a basis of their simulations. In our previous work we analyzed the impact on system performance of considering the resource sharing (memory bandwidth) of running jobs including a new resource model in the Alvio simulator. Based on this studies we proposed the LessConsume and LessConsume Threshold resource selection policies. Both are oriented to reduce the saturation of the shared resources thus increasing the performance of the system. The results showed how both resource allocation policies shown how the performance of the system can be improved by considering where the jobs are finally allocated.
Molecular simulation studies on chemical reactivity of methylcyclopentadiene.
Wang, Qingsheng; Zhang, Yingchun; Rogers, William J; Mannan, M Sam
2009-06-15
Molecular simulations are important to predict thermodynamic values for reactive chemicals especially when sufficient experimental data are not available. Methylcyclopentadiene (MCP) is an example of a highly reactive and hazardous compound in the chemical process industry. In this work, chemical reactivity of 2-methylcyclopentadiene, including isomerization, dimerization, and oxidation reactions, is investigated in detail by theoretical computational chemistry methods and empirical thermodynamic-energy correlation. On the basis of molecular simulations, an average value of -15.2 kcal/mol for overall heat of dimerization and -45.6 kcal/mol for overall heat of oxidation were obtained in gaseous phase at 298 K and 1 atm. These molecular simulation studies can provide guidance for the design of safer chemical processes, safer handling of MCP, and also provide useful information for an investigation of the T2 Laboratories explosion on December 19, 2007, in Florida.
Hydrodynamic simulations of stellar wind disruption by a compact X-ray source
NASA Technical Reports Server (NTRS)
Blondin, John M.; Kallman, Timothy R.; Fryxell, Bruce A.; Taam, Ronald E.
1990-01-01
This paper presents two-dimensional numerical simulations of the gas flow in the orbital plane of a massive X-ray binary system, in which the mass accretion is fueled by a radiation-driven wind from an early-type companion star. These simulations are used to examine the role of the compact object (either a neutron star or a black hole) in disturbing the radiatively accelerating wind of the OB companion, with an emphasis on understanding the origin of the observed soft X-ray photoelectric absorption seen at late orbital phases in these systems. On the basis of these simulations, it is suggested that the phase-dependent photoelectric absorption seen in several of these systems can be explained by dense filaments of compressend gas formed in the nonsteady accreation bow shock and wake of the compact object.
NASA Astrophysics Data System (ADS)
Toshimitsu, Kazuhiko; Narihara, Takahiko; Kikugawa, Hironori; Akiyoshi, Arata; Kawazu, Yuuya
2017-04-01
The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine (HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.
Hedger, George; Sansom, Mark S. P.
2017-01-01
Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterisation of these sites is of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. PMID:26946244
Simulation of free-electron lasers seeded with broadband radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajlekov, Svetoslav; Fawley, William; Schroeder, Carl
2011-03-10
The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FELmore » process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds.« less
Tupper, Judith B; Pearson, Karen B; Meinersmann, Krista M; Dvorak, Jean
2013-06-01
Continuing education for health care workers is an important mechanism for maintaining patient safety and high-quality health care. Interdisciplinary continuing education that incorporates simulation can be an effective teaching strategy for improving patient safety. Health care professionals who attended a recent Patient Safety Academy had the opportunity to experience firsthand a simulated situation that included many potential patient safety errors. This high-fidelity activity combined the best practice components of a simulation and a collaborative experience that promoted interdisciplinary communication and learning. Participants were challenged to see, learn, and experience "ah-ha" moments of insight as a basis for error reduction and quality improvement. This innovative interdisciplinary educational training method can be offered in place of traditional lecture or online instruction in any facility, hospital, nursing home, or community care setting. Copyright 2013, SLACK Incorporated.
Analysis of sensor network observations during some simulated landslide experiments
NASA Astrophysics Data System (ADS)
Scaioni, M.; Lu, P.; Feng, T.; Chen, W.; Wu, H.; Qiao, G.; Liu, C.; Tong, X.; Li, R.
2012-12-01
A multi-sensor network was tested during some experiments on a landslide simulation platform established at Tongji University (Shanghai, P.R. China). Here landslides were triggered by means of artificial rainfall (see Figure 1). The sensor network currently incorporates contact sensors and two imaging systems. This represent a novel solution, because the spatial sensor network incorporate either contact sensors and remote sensors (video-cameras). In future, these sensors will be installed on two real ground slopes in Sichuan province (South-West China), where Wenchuan earthquake occurred in 2008. This earthquake caused the immediate activation of several landslide, while other area became unstable and still are a menace for people and properties. The platform incorporates the reconstructed scale slope, sensor network, communication system, database and visualization system. Some landslide simulation experiments allowed ascertaining which sensors could be more suitable to be deployed in Wenchuan area. The poster will focus on the analysis of results coming from down scale simulations. Here the different steps of the landslide evolution can be followed on the basis of sensor observations. This include underground sensors to detect the water table level and the pressure in the ground, a set of accelerometers and two inclinometers. In the first part of the analysis the full data series are investigated to look for correlations and common patterns, as well as to link them to the physical processes. In the second, 4 subsets of sensors located in neighbor positions are analyzed. The analysis of low- and high-speed image sequences allowed to track a dense field of displacement on the slope surface. These outcomes have been compared to the ones obtained from accelerometers for cross-validation. Images were also used for the photogrammetric reconstruction of the slope topography during the experiment. Consequently, volume computation and mass movements could be evaluated on the basis of processed images.; Figure 1 - The landslide simulation platform at Tongji University at the end of an experiment. The picture shows the body of simulated landslide.
Dynamic Snap-Through of Thin-Walled Structures by a Reduced Order Method
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.
2006-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures exposed to combined high intensity random pressure fluctuations and thermal loadings. The study is conducted on a flat aluminum beam, which permits a comparison of results obtained by a reduced-order analysis with those obtained from a numerically intensive simulation in physical degrees-of-freedom. A uniformly distributed thermal loading is first applied to investigate the dynamic instability associated with thermal buckling. A uniformly distributed random loading is added to investigate the combined thermal-acoustic response. In the latter case, three types of response characteristics are considered, namely: (i) small amplitude vibration around one of the two stable buckling equilibrium positions, (ii) intermittent snap-through response between the two equilibrium positions, and (iii) persistent snap-through response between the two equilibrium positions. For the reduced order analysis, four categories of modal basis functions are identified including those having symmetric transverse (ST), anti-symmetric transverse (AT), symmetric in-plane (SI), and anti-symmetric in-plane (AI) displacements. The effect of basis selection on the quality of results is investigated for the dynamic thermal buckling and combined thermal-acoustic response. It is found that despite symmetric geometry, loading, and boundary conditions, the AT and SI modes must be included in the basis as they participate in the snap-through behavior.
Dynamic Snap-Through of Thermally Buckled Structures by a Reduced Order Method
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.
2007-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures exposed to combined high intensity random pressure fluctuations and thermal loadings. The study is conducted on a flat aluminum beam, which permits a comparison of results obtained by a reduced-order analysis with those obtained from a numerically intensive simulation in physical degrees-of-freedom. A uniformly distributed thermal loading is first applied to investigate the dynamic instability associated with thermal buckling. A uniformly distributed random loading is added to investigate the combined thermal-acoustic response. In the latter case, three types of response characteristics are considered, namely: (i) small amplitude vibration around one of the two stable buckling equilibrium positions, (ii) intermittent snap-through response between the two equilibrium positions, and (iii) persistent snap-through response between the two equilibrium positions. For the reduced-order analysis, four categories of modal basis functions are identified including those having symmetric transverse, anti-symmetric transverse, symmetric in-plane, and anti-symmetric in-plane displacements. The effect of basis selection on the quality of results is investigated for the dynamic thermal buckling and combined thermal-acoustic response. It is found that despite symmetric geometry, loading, and boundary conditions, the anti-symmetric transverse and symmetric in-plane modes must be included in the basis as they participate in the snap-through behavior.
Coarse-grained Brownian ratchet model of membrane protrusion on cellular scale.
Inoue, Yasuhiro; Adachi, Taiji
2011-07-01
Membrane protrusion is a mechanochemical process of active membrane deformation driven by actin polymerization. Previously, Brownian ratchet (BR) was modeled on the basis of the underlying molecular mechanism. However, because the BR requires a priori load that cannot be determined without information of the cell shape, it cannot be effective in studies in which resultant shapes are to be solved. Other cellular-scale models describing the protrusion have also been suggested for modeling a whole cell; however, these models were not developed on the basis of coarse-grained physics representing the underlying molecular mechanism. Therefore, to express the membrane protrusion on the cellular scale, we propose a novel mathematical model, the coarse-grained BR (CBR), which is derived on the basis of nonequilibrium thermodynamics theory. The CBR can reproduce the BR within the limit of the quasistatic process of membrane protrusion and can estimate the protrusion velocity consistently with an effective elastic constant that represents the state of the energy of the membrane. Finally, to demonstrate the applicability of the CBR, we attempt to perform a cellular-scale simulation of migrating keratocyte in which the proposed CBR is used for the membrane protrusion model on the cellular scale. The results show that the experimentally observed shapes of the leading edge are well reproduced by the simulation. In addition, The trend of dependences of the protrusion velocity on the curvature of the leading edge, the temperature, and the substrate stiffness also agreed with the other experimental results. Thus, the CBR can be considered an appropriate cellular-scale model to express the membrane protrusion on the basis of its underlying molecular mechanism.
Basis set study of classical rotor lattice dynamics.
Witkoskie, James B; Wu, Jianlan; Cao, Jianshu
2004-03-22
The reorientational relaxation of molecular systems is important in many phenomenon and applications. In this paper, we explore the reorientational relaxation of a model Brownian rotor lattice system with short range interactions in both the high and low temperature regimes. In this study, we use a basis set expansion to capture collective motions of the system. The single particle basis set is used in the high temperature regime, while the spin wave basis is used in the low temperature regime. The equations of motion derived in this approach are analogous to the generalized Langevin equation, but the equations render flexibility by allowing nonequilibrium initial conditions. This calculation shows that the choice of projection operators in the generalized Langevin equation (GLE) approach corresponds to defining a specific inner-product space, and this inner-product space should be chosen to reveal the important physics of the problem. The basis set approach corresponds to an inner-product and projection operator that maintain the orthogonality of the spherical harmonics and provide a convenient platform for analyzing GLE expansions. The results compare favorably with numerical simulations, and the formalism is easily extended to more complex systems. (c) 2004 American Institute of Physics
Creative Role-Playing Exercises in Science and Technology.
ERIC Educational Resources Information Center
Parisi, Lynn, Ed.
Five simulations for addressing science-related social issues in either the secondary science or social studies classroom are presented. Following a foreword, introduction, and description of the conceptual basis for the activities, each of the activities is presented in its entirety. Complete teacher and student materials for conducting each of…
NASA Astrophysics Data System (ADS)
Yusupov, L. R.; Klochkova, K. V.; Simonova, L. A.
2017-09-01
The paper presents a methodology of modeling the chemical composition of the composite material via genetic algorithm for optimization of the manufacturing process of products. The paper presents algorithms of methods based on intelligent system of vermicular graphite iron design
Analysis of equi-intensity curves and NU distribution of EAS
NASA Technical Reports Server (NTRS)
Tanahashi, G.
1985-01-01
The distribution of the number of muons in extensive air showers (EAS) and the equi-intensity curves of EAS are analyzed on the basis of Monte Carlo simulation of various cosmic ray composition and the interaction models. Problems in the two best combined models are discussed.
Recent NHEERL research under EPA's Libby Action Plan has determined that elongated particle relative potency for rat pleural mesothelioma is best predicted on the basis of total external surface area (TSA) of slightly acid leached test samples which simulate particle bio-durabili...
Evaluation of Materials and Concepts for Aircraft Fire Protection
NASA Technical Reports Server (NTRS)
Anderson, R. A.; Price, J. O.; Mcclure, A. H.; Tustin, E. A.
1976-01-01
Woven fiberglass fluted-core simulated aircraft interior panels were flame tested and structurally evaluated against the Boeing 747 present baseline interior panels. The NASA-defined panels, though inferior on a strength-to-weight basis, showed better structural integrity after flame testing, due to the woven fiberglass structure.
Air quality (AQ) simulation models provide a basis for implementing the National Ambient Air Quality Standards (NAAQS) and are a tool for performing risk-based assessments and for developing environmental management strategies. Fine particulate matter (PM 2.5), its constituent...
1993-05-19
The Laboratories Theory, Modeling and Simulation , • ATP Characterization J Education and Human Resources • MTC Facilities -- NBSR and CNRF MISSION...34 Automiated System for Composite Analysis (ASCA).Y -Basis for usefri(eadly numerical methods to describe composite laminates and predict ?heir response
Simulation of hardwood log sawing
D.B. Richards; W.K. Adkins; H. Hallock; E.H. Bulgrin
1979-01-01
Mathematical modeling computer programs for several hardwood sawing systems have been developed and are described. One has judgment capabilities. Several of the subroutines are common to all of the models. These models are the basis for further research which examines the question of best-grade sawing method in terms of lumber value yield.
Graphical Means for Inspecting Qualitative Models of System Behaviour
ERIC Educational Resources Information Center
Bouwer, Anders; Bredeweg, Bert
2010-01-01
This article presents the design and evaluation of a tool for inspecting conceptual models of system behaviour. The basis for this research is the Garp framework for qualitative simulation. This framework includes modelling primitives, such as entities, quantities and causal dependencies, which are combined into model fragments and scenarios.…
Simulation of minimally invasive vascular interventions for training purposes.
Alderliesten, Tanja; Konings, Maurits K; Niessen, Wiro J
2004-01-01
To master the skills required to perform minimally invasive vascular interventions, proper training is essential. A computer simulation environment has been developed to provide such training. The simulation is based on an algorithm specifically developed to simulate the motion of a guide wire--the main instrument used during these interventions--in the human vasculature. In this paper, the design and model of the computer simulation environment is described and first results obtained with phantom and patient data are presented. To simulate minimally invasive vascular interventions, a discrete representation of a guide wire is used which allows modeling of guide wires with different physical properties. An algorithm for simulating the propagation of a guide wire within a vascular system, on the basis of the principle of minimization of energy, has been developed. Both longitudinal translation and rotation are incorporated as possibilities for manipulating the guide wire. The simulation is based on quasi-static mechanics. Two types of energy are introduced: internal energy related to the bending of the guide wire, and external energy resulting from the elastic deformation of the vessel wall. A series of experiments were performed on phantom and patient data. Simulation results are qualitatively compared with 3D rotational angiography data. The results indicate plausible behavior of the simulation.
Simulating direct shear tests with the Bullet physics library: A validation study.
Izadi, Ehsan; Bezuijen, Adam
2018-01-01
This study focuses on the possible uses of physics engines, and more specifically the Bullet physics library, to simulate granular systems. Physics engines are employed extensively in the video gaming, animation and movie industries to create physically plausible scenes. They are designed to deliver a fast, stable, and optimal simulation of certain systems such as rigid bodies, soft bodies and fluids. This study focuses exclusively on simulating granular media in the context of rigid body dynamics with the Bullet physics library. The first step was to validate the results of the simulations of direct shear testing on uniform-sized metal beads on the basis of laboratory experiments. The difference in the average angle of mobilized frictions was found to be only 1.0°. In addition, a very close match was found between dilatancy in the laboratory samples and in the simulations. A comprehensive study was then conducted to determine the failure and post-failure mechanism. We conclude with the presentation of a simulation of a direct shear test on real soil which demonstrated that Bullet has all the capabilities needed to be used as software for simulating granular systems.
Research on simulation system with the wide range and high-precision laser energy characteristics
NASA Astrophysics Data System (ADS)
Dong, Ke-yan; Lou, Yan; He, Jing-yi; Tong, Shou-feng; Jiang, Hui-lin
2012-10-01
The Hardware-in-the-loop(HWIL) simulation test is one of the important parts for the development and performance testing of semi-active laser-guided weapons. In order to obtain accurate results, the confidence level of the target environment should be provided for a high-seeker during the HWIL simulation test of semi-active laser-guided weapons, and one of the important simulation parameters is the laser energy characteristic. In this paper, based on the semi-active laser-guided weapon guidance principles, an important parameter of simulation of confidence which affects energy characteristics in performance test of HWIL simulation was analyzed. According to the principle of receiving the same energy by using HWIL simulation and in practical application, HWIL energy characteristics simulation systems with the crystal absorption structure was designed. And on this basis, the problems of optimal design of the optical system were also analyzed. The measured results show that the dynamic attenuation range of the system energy is greater than 50dB, the dynamic attenuation stability is less than 5%, and the maximum energy changing rate driven by the servo motor is greater than 20dB/s.
Large Scale Geologic Controls on Hydraulic Stimulation
NASA Astrophysics Data System (ADS)
McLennan, J. D.; Bhide, R.
2014-12-01
When simulating a hydraulic fracturing, the analyst has historically prescribed a single planar fracture. Originally (in the 1950s through the 1970s) this was necessitated by computational restrictions. In the latter part of the twentieth century, hydraulic fracture simulation evolved to incorporate vertical propagation controlled by modulus, fluid loss, and the minimum principal stress. With improvements in software, computational capacity, and recognition that in-situ discontinuities are relevant, fully three-dimensional hydraulic simulation is now becoming possible. Advances in simulation capabilities enable coupling structural geologic data (three-dimensional representation of stresses, natural fractures, and stratigraphy) with decision making processes for stimulation - volumes, rates, fluid types, completion zones. Without this interaction between simulation capabilities and geological information, low permeability formation exploitation may linger on the fringes of real economic viability. Comparative simulations have been undertaken in varying structural environments where the stress contrast and the frequency of natural discontinuities causes varying patterns of multiple, hydraulically generated or reactivated flow paths. Stress conditions and nature of the discontinuities are selected as variables and are used to simulate how fracturing can vary in different structural regimes. The basis of the simulations is commercial distinct element software (Itasca Corporation's 3DEC).
Izsó, Lajos; Székely, Ildikó; Dános, László
2015-01-01
The aim of this paper - based on the extensive experiences of the authors gained by using one particular work simulator - is to present some promising possibilities of the application of this (and any other similar) work simulator in the field of skill assessment, skill development and vocational aptitude tests of physically disabled persons. During skill assessment and development, as parts of the therapy, the focus is on the disabled functions. During vocational aptitude tests, however, the focus is already on the functions that remained intact and therefore can be the basis of returning to work. Some factual examples are provided to realize the proposed possibilities in practice.
NASA Astrophysics Data System (ADS)
Noe, Frank
To efficiently simulate and generate understanding from simulations of complex macromolecular systems, the concept of slow collective coordinates or reaction coordinates is of fundamental importance. Here we will introduce variational approaches to approximate the slow coordinates and the reaction coordinates between selected end-states given MD simulations of the macromolecular system and a (possibly large) basis set of candidate coordinates. We will then discuss how to select physically intuitive order paremeters that are good surrogates of this variationally optimal result. These result can be used in order to construct Markov state models or other models of the stationary and kinetics properties, in order to parametrize low-dimensional / coarse-grained model of the dynamics. Deutsche Forschungsgemeinschaft, European Research Council.
Modeling contamination migration on the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Swartz, Douglas A.; Anderson, Scot K.; Chen, Kenny C.; Giordano, Rino J.; Knollenberg, Perry J.; Morris, Peter A.; Plucinsky, Paul P.; Tice, Neil W.; Tran, Hien
2005-01-01
During its first 5 years of operation, the cold (-60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), on board the Chandra X-ray Observatory, has accumulated a contaminating layer that attenuates the low-energy x rays. To assist in assessing the likelihood of successfully baking off the contaminant, members of the Chandra Team developed contamination-migration simulation software. The simulation follows deposition onto and (temperature-dependent) vaporization from surfaces comprising a geometrical model of the Observatory. A separate thermal analysis, augmented by on-board temperature monitoring, provides temperatures for each surface of the same geometrical model. This paper describes the physical basis for the simulations, the methodologies, and the predicted migration of the contaminant for various bake-out scenarios and assumptions.
Competitive Binding of Natural Amphiphiles with Graphene Derivatives
NASA Astrophysics Data System (ADS)
Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng
2013-07-01
Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment.
Towards process-informed bias correction of climate change simulations
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Shepherd, Theodore G.; Widmann, Martin; Zappa, Giuseppe; Walton, Daniel; Gutiérrez, José M.; Hagemann, Stefan; Richter, Ingo; Soares, Pedro M. M.; Hall, Alex; Mearns, Linda O.
2017-11-01
Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods are operationally used to post-process regional climate projections. However, many problems have been identified, and some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction cannot overcome major model errors, and naive application might result in ill-informed adaptation decisions. We conclude with a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases.
Nonclassical and semiclassical para-Bose states
NASA Astrophysics Data System (ADS)
Huerta Alderete, C.; Villanueva Vergara, Liliana; Rodríguez-Lara, B. M.
2017-04-01
Motivated by the proposal to simulate para-Bose oscillators in a trapped-ion setup [C. Huerta Alderete and B. M. Rodríguez-Lara, Phys. Rev. A 95, 013820 (2017), 10.1103/PhysRevA.95.013820], we introduce an overcomplete, nonorthogonal basis for para-Bose Hilbert spaces. The states spanning these bases can be experimentally realized in the trapped-ion simulation via time evolution. The para-Bose states show both nonclassical and semiclassical statistics on their Fock state distribution, asymmetric field quadrature variances, and do not minimize the uncertainty relation for the field quadratures. These properties are analytically controlled by the para-Bose order and the evolution time; both parameters might be feasible for fine tuning in the trapped-ion quantum simulation.
Performance calculation and simulation system of high energy laser weapon
NASA Astrophysics Data System (ADS)
Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke
2014-12-01
High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.
Competitive Binding of Natural Amphiphiles with Graphene Derivatives
Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng
2013-01-01
Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment. PMID:23881402
Mobility Models for Systems Evaluation
NASA Astrophysics Data System (ADS)
Musolesi, Mirco; Mascolo, Cecilia
Mobility models are used to simulate and evaluate the performance of mobile wireless systems and the algorithms and protocols at the basis of them. The definition of realistic mobility models is one of the most critical and, at the same time, difficult aspects of the simulation of applications and systems designed for mobile environments. There are essentially two possible types of mobility patterns that can be used to evaluate mobile network protocols and algorithms by means of simulations: traces and synthetic models [130]. Traces are obtained by means of measurements of deployed systems and usually consist of logs of connectivity or location information, whereas synthetic models are mathematical models, such as sets of equations, which try to capture the movement of the devices.
Some observational tests of a minimal galaxy formation model
NASA Astrophysics Data System (ADS)
Cohn, J. D.
2017-04-01
Dark matter simulations can serve as a basis for creating galaxy histories via the galaxy-dark matter connection. Here, one such model by Becker is implemented with several variations on three different dark matter simulations. Stellar mass and star formation rates are assigned to all simulation subhaloes at all times, using subhalo mass gain to determine stellar mass gain. The observational properties of the resulting galaxy distributions are compared to each other and observations for a range of redshifts from 0 to 2. Although many of the galaxy distributions seem reasonable, there are noticeable differences as simulations, subhalo mass gain definitions or subhalo mass definitions are altered, suggesting that the model should change as these properties are varied. Agreement with observations may improve by including redshift dependence in the added-by-hand random contribution to star formation rate. There appears to be an excess of faint quiescent galaxies as well (perhaps due in part to differing definitions of quiescence). The ensemble of galaxy formation histories for these models tend to have more scatter around their average histories (for a fixed final stellar mass) than the two more predictive and elaborate semi-analytic models of Guo et al. and Henriques et al., and require more basis fluctuations (using principal component analysis) to capture 90 per cent of the scatter around their average histories. The codes to plot model predictions (in some cases alongside observational data) are publicly available to test other mock catalogues at https://github.com/jdcphysics/validation/. Information on how to use these codes is in Appendix A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan
The National Renewable Energy Laboratory (NREL) and DONG Energy are interested in collaborating for the development of control algorithms, modeling, and grid simulator testing of wind turbine generator systems involving NWTC's advanced Controllable Grid Interface (CGI). NREL and DONG Energy will work together to develop control algorithms, models, test methods, and protocols involving NREL's CGI, as well as appropriate data acquisition systems for grid simulation testing. The CRADA also includes work on joint publication of results achieved from modeling and testing efforts. Further, DONG Energy will send staff to NREL on a long-term basis for collaborative work including modeling andmore » testing. NREL will send staff to DONG Energy on a short-term basis to visit wind power sites and participate in meetings relevant to this collaborative effort. DOE has provided NREL with over 10 years of support in developing custom facilities and capabilities to enable testing of full-scale integrated wind turbine drivetrain systems in accordance with the needs of the US wind industry. NREL currently operates a 2.5MW dynamometer and is in the processes of commissioning a 5MW dynamometer and a grid simulator (referred to as a 'Controllable Grid Interface' or CGI). DONG Energy is the market leader in offshore wind power development, with currently over 1 GW of on- and offshore wind power in operation, and 1.3 GW under construction. DONG Energy has on-going R&D projects involving high voltage DC (HVDC) transmission.« less
Simulation of the hot rolling of steel with direct iteration
NASA Astrophysics Data System (ADS)
Hanoglu, Umut; Šarler, Božidar
2017-10-01
In this study a simulation system based on the meshless Local Radial Basis Function Collocation Method (LRBFCM) is applied for the hot rolling of steel. Rolling is a complex, 3D, thermo-mechanical problem; however, 2D cross-sectional slices are used as computational domains that are aligned with the rolling direction and no heat flow or strain is considered in the direction that is orthogonal to the slices. For each predefined position with respect to the rolling direction, the solution procedure is repeated until the slice reaches the final rolling position. Collocation nodes are initially distributed over the domain and boundaries of the initial slice. A local solution is achieved by considering the overlapping influence domains with either 5 or 7 nodes. Radial Basis Functions (RBFs) are used for the temperature discretization in the thermal model and displacement discretization in the mechanical model. The meshless solution procedure does not require a mesh-generation algorithm in the classic sense. Strong-form mechanical and thermal models are run for each slice regarding the contact with the roll's surface. Ideal plastic material behavior is considered for the mechanical results, where the nonlinear stress-strain relation is solved with a direct iteration. The majority of the Finite Element Model (FEM) simulations, including commercial software, use a conventional Newton-Raphson algorithm. However, direct iteration is chosen here due to its better compatibility with meshless methods. In order to overcome any unforeseen stability issues, the redistribution of the nodes by Elliptic Node Generation (ENG) is applied to one or more slices throughout the simulation. The rolling simulation presented here helps the user to design, test and optimize different rolling schedules. The results can be seen minutes after the simulation's start in terms of temperature, displacement, stress and strain fields as well as important technological parameters, like the roll-separating forces, roll toque, etc. An example of a rolling simulation, in which an initial size of 110x110 mm steel is rolled to a round bar with 80 mm diameter, is shown in Fig. 3. A user-friendly computer application for industrial use is created by using the C# and .NET frameworks.
NASA Astrophysics Data System (ADS)
Ishibashi, Yoshihiro; Fukui, Minoru
2018-03-01
The effect of the probabilistic delayed start on the one-dimensional traffic flow is investigated on the basis of several models. Analogy with the degeneracy of the states and its resolution, as well as that with the mathematical procedures adopted for them, is utilized. The perturbation is assumed to be proportional to the probability of the delayed start, and the perturbation function is determined so that imposed conditions are fulfilled. The obtained formulas coincide with those previously derived on the basis of the mean-field analyses of the Nagel-Schreckenberg and Fukui-Ishibashi models, and reproduce the cellular automaton simulation results.
Molecular Bases of Enantioselectivity of Haloalkane Dehalogenase DbjA
NASA Astrophysics Data System (ADS)
Sato, Yukari; Natsume, Ryo; Prokop, Zbynek; Brezovsky, Jan; Chaloupkova, Radka; Damborsky, Jiri; Nagata, Yuji; Senda, Toshiya
Enzymes are widely used for the synthesis of pharmaceuticals, agrochemicals, and food additives because they can catalyze high enantioselective transformations. In order to construct selective enzymes by protein engineering, it is important to understand the molecular basis of enzyme-substrate interactions that contribute to enantioselectivity. The haloalkane dehalogenase DbjA showed high enantioselectivity for two racemic mixtures: α-bromoesters and β-bromoalkanes. Thermodynamic analysis, protein crystallography, and computer simulations indicated that DbjA carries two bases for the enantiodiscrimination of each racemic mixture. This study helps us understand the molecular basis of the enantioselectivity and opens up new possibilities for constructing enantiospecific biocatalysts through protein engineering.
[A method for inducing standardized spiral fractures of the tibia in the animal experiment].
Seibold, R; Schlegel, U; Cordey, J
1995-07-01
A method for the deliberate weakening of cortical bone has been developed on the basis of an already established technique for creating butterfly fractures. It enables one to create the same type of fracture, i.e., a spiral fracture, every time. The fracturing process is recorded as a force-strain curve. The results of the in vitro investigations form a basis for the preparation of experimental tasks aimed at demonstrating internal fixation techniques and their influence on the vascularity of the bone in simulated fractures. Animal protection law lays down that this fracture model must not fail in animal experiments.
Hetero-phase fluctuations in the pre-melting region in ionic crystals
NASA Astrophysics Data System (ADS)
Matsunaga, S.; Tamaki, S.
2008-06-01
The theory of the pre-melting phenomena in ionic crystals on the basis of the concept of the hetero phase fluctuation has been applied to KCl and AgCl crystal. The large scale molecular dynamics simulations (MD) in KCl and AgCl crystals are also performed to examine the ionic configuration in premelting region in the vicinity of their melting points. The size of the liquid like clusters are estimated by the theory and MD. The structural features of liquid like clusters are discussed by MD results using the Lindemann instability condition. The ionic conductivities in the pre-melting region are also discussed on the same theoretical basis.
[Full-scale simulation in German medical schools and anesthesia residency programs : Status quo].
Baschnegger, H; Meyer, O; Zech, A; Urban, B; Rall, M; Breuer, G; Prückner, S
2017-01-01
Simulation has been increasingly used in medicine. In 2003 German university departments of anesthesiology were provided with a full-scale patient simulator, designated for use with medical students. Meanwhile simulation courses are also offered to physicians and nurses. Currently, the national model curriculum for residency programs in anesthesiology is being revised, possibly to include mandatory simulation training. To assess the status quo of full-scale simulation training for medical school, residency and continuing medical education in German anesthesiology. All 38 German university chairs for anesthesiology as well as five arbitrarily chosen non-university facilities were invited to complete an online questionnaire regarding their centers' infrastructure and courses held between 2010 and 2012. The overall return rate was 86 %. In university simulation centers seven non-student staff members, mainly physicians, were involved, adding up to a full-time equivalent of 1.2. All hours of work were paid by 61 % of the centers. The median center size was 100 m 2 (range 20-500 m 2 ), equipped with three patient simulators (1-32). Simulators of high or very high fidelity are available at 80 % of the centers. Scripted scenarios were used by 91 %, video debriefing by 69 %. Of the participating university centers, 97 % offered courses for medical students, 81 % for the department's employees, 43 % for other departments of their hospital, and 61 % for external participants. In 2012 the median center reached 46 % of eligible students (0-100), 39 % of the department's physicians (8-96) and 16 % of its nurses (0-56) once. For physicians and nurses from these departments that equals one simulation-based training every 2.6 and 6 years, respectively. 31 % made simulation training mandatory for their residents, 29 % for their nurses and 24 % for their attending physicians. The overall rates of staff ever exposed to simulation were 45 % of residents (8-90), and 30 % each of nurses (10-80) and attendings (0-100). Including external courses the average center trained 59 (4-271) professionals overall in 2012. No clear trend could be observed over the three years polled. The results for the non-university centers were comparable. Important first steps have been taken to implement full-scale simulation in Germany. In addition to programs for medical students courses for physicians and nurses are available today. To reach everyone clinically involved in German anesthesiology on a regular basis the current capacities need to be dramatically increased. The basis for that to happen will be new concepts for funding, possibly supported by external requirements such as the national model curriculum for residency in anesthesiology.
Weighted Ensemble Simulation: Review of Methodology, Applications, and Software
Zuckerman, Daniel M.; Chong, Lillian T.
2018-01-01
The weighted ensemble (WE) methodology orchestrates quasi-independent parallel simulations run with intermittent communication that can enhance sampling of rare events such as protein conformational changes, folding, and binding. The WE strategy can achieve superlinear scaling—the unbiased estimation of key observables such as rate constants and equilibrium state populations to greater precision than would be possible with ordinary parallel simulation. WE software can be used to control any dynamics engine, such as standard molecular dynamics and cell-modeling packages. This article reviews the theoretical basis of WE and goes on to describe successful applications to a number of complex biological processes—protein conformational transitions, (un)binding, and assembly processes, as well as cell-scale processes in systems biology. We furthermore discuss the challenges that need to be overcome in the next phase of WE methodological development. Overall, the combined advances in WE methodology and software have enabled the simulation of long-timescale processes that would otherwise not be practical on typical computing resources using standard simulation. PMID:28301772
System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.
Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae
2017-11-18
Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.
The relative entropy is fundamental to adaptive resolution simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreis, Karsten; Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz; Potestio, Raffaello, E-mail: potestio@mpip-mainz.mpg.de
Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy withmore » respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner.« less
Weighted Ensemble Simulation: Review of Methodology, Applications, and Software.
Zuckerman, Daniel M; Chong, Lillian T
2017-05-22
The weighted ensemble (WE) methodology orchestrates quasi-independent parallel simulations run with intermittent communication that can enhance sampling of rare events such as protein conformational changes, folding, and binding. The WE strategy can achieve superlinear scaling-the unbiased estimation of key observables such as rate constants and equilibrium state populations to greater precision than would be possible with ordinary parallel simulation. WE software can be used to control any dynamics engine, such as standard molecular dynamics and cell-modeling packages. This article reviews the theoretical basis of WE and goes on to describe successful applications to a number of complex biological processes-protein conformational transitions, (un)binding, and assembly processes, as well as cell-scale processes in systems biology. We furthermore discuss the challenges that need to be overcome in the next phase of WE methodological development. Overall, the combined advances in WE methodology and software have enabled the simulation of long-timescale processes that would otherwise not be practical on typical computing resources using standard simulation.
NASA Astrophysics Data System (ADS)
Nickles, Cassandra; Goodman, Matthew; Saez, Jose; Issakhanian, Emin
2016-11-01
California's current drought has renewed public interest in recycled water from Water Reclamation Plants (WRPs). It is critical that the recycled water meets public health standards. This project consists of simulating the transport of an instantaneous conservative tracer through the WRP chlorine contact tanks. Local recycled water regulations stipulate a minimum 90-minute modal contact time during disinfection at peak dry weather design flow. In-situ testing is extremely difficult given flowrate dependence on real world sewage line supply and recycled water demand. Given as-built drawings and operation parameters, the chlorine contact tanks are modeled to simulate extreme situations, which may not meet regulatory standards. The turbulent flow solutions are used as the basis to model the transport of a turbulently diffusing conservative tracer added instantaneously to the inlet of the reactors. This tracer simulates the transport through advection and dispersion of chlorine in the WRPs. Previous work validated the models against experimental data. The current work shows the predictive value of the simulations.
The relative entropy is fundamental to adaptive resolution simulations
NASA Astrophysics Data System (ADS)
Kreis, Karsten; Potestio, Raffaello
2016-07-01
Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy with respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner.
NASA Astrophysics Data System (ADS)
Boakye-Boateng, Nasir Abdulai
The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.
Knapp, B; Frantal, S; Cibena, M; Schreiner, W; Bauer, P
2011-08-01
Molecular dynamics is a commonly used technique in computational biology. One key issue of each molecular dynamics simulation is: When does this simulation reach equilibrium state? A widely used way to determine this is the visual and intuitive inspection of root mean square deviation (RMSD) plots of the simulation. Although this technique has been criticized several times, it is still often used. Therefore, we present a study proving that this method is not reliable at all. We conducted a survey with participants from the field in which we illustrated different RMSD plots to scientists in the field of molecular dynamics. These plots were randomized and repeated, using a statistical model and different variants of the plots. We show that there is no mutual consent about the point of equilibrium. The decisions are severely biased by different parameters. Therefore, we conclude that scientists should not discuss the equilibration of a molecular dynamics simulation on the basis of a RMSD plot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi
1997-07-01
The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed bymore » three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.« less
Groschen, George E.
1994-01-01
Results of the projected withdrawal simulations from 1984-2000 indicate that the general historical trend of saline-water movement probably will continue. The saline water in the Rio Grande alluvium is the major source of saline-water intrusion into the freshwater zone throughout the historical period and into the future on the basis of simulation results. Some saline water probably will continue to move downward from the Rio Grande alluvium to the freshwater below. Injection of treated sewage effluent into some wells will create a small zone of freshwater containing slightly increased amounts of dissolved solids in the northern area of the Texas part of the Hueco bolson aquifer. Many factors, such as well interference, pumping schedules, and other factors not specifically represented in the regional simulation, can substantially affect dissolved-solids concentrations at individual wells.
Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems
NASA Technical Reports Server (NTRS)
Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.
1997-01-01
The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.
Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.
Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B
2018-06-22
Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reduction of Simulation Times for High-Q Structures using the Resonance Equation
Hall, Thomas Wesley; Bandaru, Prabhakar R.; Rees, Daniel Earl
2015-11-17
Simulating steady state performance of high quality factor (Q) resonant RF structures is computationally difficult for structures with sizes on the order of more than a few wavelengths because of the long times (on the order of ~ 0.1 ms) required to achieve steady state in comparison with maximum time step that can be used in the simulation (typically, on the order of ~ 1 ps). This paper presents analytical and computational approaches that can be used to accelerate the simulation of the steady state performance of such structures. The basis of the proposed approach is the utilization of amore » larger amplitude signal at the beginning to achieve steady state earlier relative to the nominal input signal. Finally, the methodology for finding the necessary input signal is then discussed in detail, and the validity of the approach is evaluated.« less
NASA Astrophysics Data System (ADS)
Xie, Gui-long; Zhang, Yong-hong; Huang, Shi-ping
2012-04-01
Using coarse-grained molecular dynamics simulations based on Gay-Berne potential model, we have simulated the cooling process of liquid n-butanol. A new set of GB parameters are obtained by fitting the results of density functional theory calculations. The simulations are carried out in the range of 290-50 K with temperature decrements of 10 K. The cooling characteristics are determined on the basis of the variations of the density, the potential energy and orientational order parameter with temperature, whose slopes all show discontinuity. Both the radial distribution function curves and the second-rank orientational correlation function curves exhibit splitting in the second peak. Using the discontinuous change of these thermodynamic and structure properties, we obtain the glass transition at an estimate of temperature Tg=120±10 K, which is in good agreement with experimental results 110±1 K.
Modified two-layer social force model for emergency earthquake evacuation
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Hong; Qin, Xin; Liu, Baoxi
2018-02-01
Studies of crowd behavior with related research on computer simulation provide an effective basis for architectural design and effective crowd management. Based on low-density group organization patterns, a modified two-layer social force model is proposed in this paper to simulate and reproduce a group gathering process. First, this paper studies evacuation videos from the Luan'xian earthquake in 2012, and extends the study of group organization patterns to a higher density. Furthermore, taking full advantage of the strength in crowd gathering simulations, a new method on grouping and guidance is proposed while using crowd dynamics. Second, a real-life grouping situation in earthquake evacuation is simulated and reproduced. Comparing with the fundamental social force model and existing guided crowd model, the modified model reduces congestion time and truly reflects group behaviors. Furthermore, the experiment result also shows that a stable group pattern and a suitable leader could decrease collision and allow a safer evacuation process.
NASA Technical Reports Server (NTRS)
Shipman, D. L.
1972-01-01
The development of a model to simulate the information system of a program management type of organization is reported. The model statistically determines the following parameters: type of messages, destinations, delivery durations, type processing, processing durations, communication channels, outgoing messages, and priorites. The total management information system of the program management organization is considered, including formal and informal information flows and both facilities and equipment. The model is written in General Purpose System Simulation 2 computer programming language for use on the Univac 1108, Executive 8 computer. The model is simulated on a daily basis and collects queue and resource utilization statistics for each decision point. The statistics are then used by management to evaluate proposed resource allocations, to evaluate proposed changes to the system, and to identify potential problem areas. The model employs both empirical and theoretical distributions which are adjusted to simulate the information flow being studied.
A Framework for Daylighting Optimization in Whole Buildings with OpenStudio
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-08-12
We present a toolkit and workflow for leveraging the OpenStudio (Guglielmetti et al. 2010) platform to perform daylighting analysis and optimization in a whole building energy modeling (BEM) context. We have re-implemented OpenStudio's integrated Radiance and EnergyPlus functionality as an OpenStudio Measure. The OpenStudio Radiance Measure works within the OpenStudio Application and Parametric Analysis Tool, as well as the OpenStudio Server large scale analysis framework, allowing a rigorous daylighting simulation to be performed on a single building model or potentially an entire population of programmatically generated models. The Radiance simulation results can automatically inform the broader building energy model, andmore » provide dynamic daylight metrics as a basis for decision. Through introduction and example, this paper illustrates the utility of the OpenStudio building energy modeling platform to leverage existing simulation tools for integrated building energy performance simulation, daylighting analysis, and reportage.« less
NASA Astrophysics Data System (ADS)
Kim, Hyun-Tae; Romanelli, M.; Yuan, X.; Kaye, S.; Sips, A. C. C.; Frassinetti, L.; Buchanan, J.; Contributors, JET
2017-06-01
This paper presents for the first time a statistical validation of predictive TRANSP simulations of plasma temperature using two transport models, GLF23 and TGLF, over a database of 80 baseline H-mode discharges in JET-ILW. While the accuracy of the predicted T e with TRANSP-GLF23 is affected by plasma collisionality, the dependency of predictions on collisionality is less significant when using TRANSP-TGLF, indicating that the latter model has a broader applicability across plasma regimes. TRANSP-TGLF also shows a good matching of predicted T i with experimental measurements allowing for a more accurate prediction of the neutron yields. The impact of input data and assumptions prescribed in the simulations are also investigated in this paper. The statistical validation and the assessment of uncertainty level in predictive TRANSP simulations for JET-ILW-DD will constitute the basis for the extrapolation to JET-ILW-DT experiments.
Centralized Networks to Generate Human Body Motions
Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan
2017-01-01
We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons’ states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers’ trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings. PMID:29240694
Ahmed, Bilal; Ali Ashfaq, Usman; Usman Mirza, Muhammad
2018-05-01
Obesity is the worst health risk worldwide, which is linked to a number of diseases. Pancreatic lipase is considered as an affective cause of obesity and can be a major target for controlling the obesity. The present study was designed to find out best phytochemicals against pancreatic lipase through molecular docking combined with molecular dynamics (MD) simulation. For this purpose, a total of 3770 phytochemicals were docked against pancreatic lipase and ranked them on the basis of binding affinity. Finally, 10 molecules (Kushenol K, Rosmarinic acid, Reserpic acid, Munjistin, Leachianone G, Cephamycin C, Arctigenin, 3-O-acetylpadmatin, Geniposide and Obtusin) were selected that showed strong bonding with the pancreatic lipase. MD simulations were performed on top five compounds using AMBER16. The simulated complexes revealed stability and ligands remained inside the binding pocket. This study concluded that these finalised molecules can be used as drug candidate to control obesity.
Water-resources optimization model for Santa Barbara, California
Nishikawa, Tracy
1998-01-01
A simulation-optimization model has been developed for the optimal management of the city of Santa Barbara's water resources during a drought. The model, which links groundwater simulation with linear programming, has a planning horizon of 5 years. The objective is to minimize the cost of water supply subject to: water demand constraints, hydraulic head constraints to control seawater intrusion, and water capacity constraints. The decision variables are montly water deliveries from surface water and groundwater. The state variables are hydraulic heads. The drought of 1947-51 is the city's worst drought on record, and simulated surface-water supplies for this period were used as a basis for testing optimal management of current water resources under drought conditions. The simulation-optimization model was applied using three reservoir operation rules. In addition, the model's sensitivity to demand, carry over [the storage of water in one year for use in the later year(s)], head constraints, and capacity constraints was tested.
Flow Channel Influence of a Collision-Based Piezoelectric Jetting Dispenser on Jet Performance
Deng, Guiling; Li, Junhui; Duan, Ji’an
2018-01-01
To improve the jet performance of a bi-piezoelectric jet dispenser, mathematical and simulation models were established according to the operating principle. In order to improve the accuracy and reliability of the simulation calculation, a viscosity model of the fluid was fitted to a fifth-order function with shear rate based on rheological test data, and the needle displacement model was fitted to a nine-order function with time based on real-time displacement test data. The results show that jet performance is related to the diameter of the nozzle outlet and the cone angle of the nozzle, and the impacts of the flow channel structure were confirmed. The approach of numerical simulation is confirmed by the testing results of droplet volume. It will provide a reliable simulation platform for mechanical collision-based jet dispensing and a theoretical basis for micro jet valve design and improvement. PMID:29677140
Centralized Networks to Generate Human Body Motions.
Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres
2017-12-14
We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.
The Milky Way's Mass Inferered by Satellite Kinematics from the Illustris Simulation
NASA Astrophysics Data System (ADS)
Lazar, Alexander; Boylan-Kolchin, Michael
2017-06-01
A precise interpretion of the Milky Way’s dark matter halo mass has limited our ability to depict the Milky Way in cosmological context. One of the noteworthy issues is that only a handful of tracers — satellite galaxies — probe the gravitational potential at large radii, and converting observed velocities into a constraint on the mass profile requires significant assumptions. High resolution cosmological simulations provide a powerful tool for interpreting data, but most results to date rely on dark-matter-only simulations that neglect the effects of galaxy formation physics. We compare the orbital kinematics of satellite galaxies in the Illustris simulation with its dark-matter-only counterpart, which allows us to compare, on an object-by-object basis, the differences influenced in orbits from baryonic physics. We quantify the effects of galaxy formation physics on orbital distributions of satellites and describe how these differences affect inferences for the mass of the Milky Way.
Application of hands-on simulation games to improve classroom experience
NASA Astrophysics Data System (ADS)
Hamzeh, Farook; Theokaris, Christina; Rouhana, Carel; Abbas, Yara
2017-09-01
While many construction companies claim substantial productivity and profit gains when applying lean construction principles, it remains a challenge to teach these principles in a classroom. Lean construction emphasises collaborative processes and integrated delivery practices. Consequently, new teaching methods that nurture such values should form the basis of lean construction education. One of the proposed methods is 'hands-on team simulation games' which can be employed to replicate various real-life processes, projects, or systems for the purpose of teaching, analysing, and understanding. This study aims at assessing this simulation games and understanding their impact on students' learning and satisfaction. Surveys and tests are administered to assess changes in student's perception of their learning styles and their understanding of key lean construction concepts. Results show a positive student reaction to hands-on simulation games, provide pedagogical insights, and highlight suggestions for improvement.
State of the art in electromagnetic modeling for the Compact Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Kabel, Andreas; Lee, Lie-Quan
SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less
Inflated speedups in parallel simulations via malloc()
NASA Technical Reports Server (NTRS)
Nicol, David M.
1990-01-01
Discrete-event simulation programs make heavy use of dynamic memory allocation in order to support simulation's very dynamic space requirements. When programming in C one is likely to use the malloc() routine. However, a parallel simulation which uses the standard Unix System V malloc() implementation may achieve an overly optimistic speedup, possibly superlinear. An alternate implementation provided on some (but not all systems) can avoid the speedup anomaly, but at the price of significantly reduced available free space. This is especially severe on most parallel architectures, which tend not to support virtual memory. It is shown how a simply implemented user-constructed interface to malloc() can both avoid artificially inflated speedups, and make efficient use of the dynamic memory space. The interface simply catches blocks on the basis of their size. The problem is demonstrated empirically, and the effectiveness of the solution is shown both empirically and analytically.
NASA Technical Reports Server (NTRS)
Pace, Dale K.
2000-01-01
A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.
Efficient parallel architecture for highly coupled real-time linear system applications
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo
1988-01-01
A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.
Software for Secondary-School Learning About Robotics
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.
2005-01-01
The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.
Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.
2008-01-01
Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.
Face aging effect simulation model based on multilayer representation and shearlet transform
NASA Astrophysics Data System (ADS)
Li, Yuancheng; Li, Yan
2017-09-01
In order to extract detailed facial features, we build a face aging effect simulation model based on multilayer representation and shearlet transform. The face is divided into three layers: the global layer of the face, the local features layer, and texture layer, which separately establishes the aging model. First, the training samples are classified according to different age groups, and we use active appearance model (AAM) at the global level to obtain facial features. The regression equations of shape and texture with age are obtained by fitting the support vector machine regression, which is based on the radial basis function. We use AAM to simulate the aging of facial organs. Then, for the texture detail layer, we acquire the significant high-frequency characteristic components of the face by using the multiscale shearlet transform. Finally, we get the last simulated aging images of the human face by the fusion algorithm. Experiments are carried out on the FG-NET dataset, and the experimental results show that the simulated face images have less differences from the original image and have a good face aging simulation effect.
Using radial NMR profiles to characterize pore size distributions
NASA Astrophysics Data System (ADS)
Deriche, Rachid; Treilhard, John
2012-02-01
Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).
HuPSON: the human physiology simulation ontology
2013-01-01
Background Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. Results We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios. The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). Conclusions HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain. PMID:24267822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gigley, H.M.
1982-01-01
An artificial intelligence approach to the simulation of neurolinguistically constrained processes in sentence comprehension is developed using control strategies for simulation of cooperative computation in associative networks. The desirability of this control strategy in contrast to ATN and production system strategies is explained. A first pass implementation of HOPE, an artificial intelligence simulation model of sentence comprehension, constrained by studies of aphasic performance, psycholinguistics, neurolinguistics, and linguistic theory is described. Claims that the model could serve as a basis for sentence production simulation and for a model of language acquisition as associative learning are discussed. HOPE is a model thatmore » performs in a normal state and includes a lesion simulation facility. HOPE is also a research tool. Its modifiability and use as a tool to investigate hypothesized causes of degradation in comprehension performance by aphasic patients are described. Issues of using behavioral constraints in modelling and obtaining appropriate data for simulated process modelling are discussed. Finally, problems of validation of the simulation results are raised; and issues of how to interpret clinical results to define the evolution of the model are discussed. Conclusions with respect to the feasibility of artificial intelligence simulation process modelling are discussed based on the current state of research.« less
Strutwolf, Jörg; Arrigan, Damien W M
2010-10-01
Micropore membranes have been used to form arrays of microinterfaces between immiscible electrolyte solutions (µITIES) as a basis for the sensing of non-redox-active ions. Implementation of stripping voltammetry as a sensing method at these arrays of µITIES was applied recently to detect drugs and biomolecules at low concentrations. The present study uses computational simulation to investigate the optimum conditions for stripping voltammetric sensing at the µITIES array. In this scenario, the diffusion of ions in both the aqueous and the organic phases contributes to the sensing response. The influence of the preconcentration time, the micropore aspect ratio, the location of the microinterface within the pore, the ratio of the diffusion coefficients of the analyte ion in the organic and aqueous phases, and the pore wall angle were investigated. The simulations reveal that the accessibility of the microinterfaces during the preconcentration period should not be hampered by a recessed interface and that diffusional transport in the phase where the analyte ions are preconcentrated should be minimized. This will ensure that the ions are accumulated within the micropores close to the interface and thus be readily available for back transfer during the stripping process. On the basis of the results, an optimal combination of the examined parameters is proposed, which together improve the stripping voltammetric signal and provide an improvement in the detection limit.
Algorithm theoretical basis for GEDI level-4A footprint above ground biomass density.
NASA Astrophysics Data System (ADS)
Kellner, J. R.; Armston, J.; Blair, J. B.; Duncanson, L.; Hancock, S.; Hofton, M. A.; Luthcke, S. B.; Marselis, S.; Tang, H.; Dubayah, R.
2017-12-01
The Global Ecosystem Dynamics Investigation is a NASA Earth-Venture-2 mission that will place a multi-beam waveform lidar instrument on the International Space Station. GEDI data will provide globally representative measurements of vertical height profiles (waveforms) and estimates of above ground carbon stocks throughout the planet's temperate and tropical regions. Here we describe the current algorithm theoretical basis for the L4A footprint above ground biomass data product. The L4A data product is above ground biomass density (AGBD, Mg · ha-1) at the scale of individual GEDI footprints (25 m diameter). Footprint AGBD is derived from statistical models that relate waveform height metrics to field-estimated above ground biomass. The field estimates are from long-term permanent plot inventories in which all free-standing woody plants greater than a diameter size threshold have been identified and mapped. We simulated GEDI waveforms from discrete-return airborne lidar data using the GEDI waveform simulator. We associated height metrics from simulated waveforms with field-estimated AGBD at 61 sites in temperate and tropical regions of North and South America, Europe, Africa, Asia and Australia. We evaluated the ability of empirical and physically-based regression and machine learning models to predict AGBD at the footprint level. Our analysis benchmarks the performance of these models in terms of site and region-specific accuracy and transferability using a globally comprehensive calibration and validation dataset.
Light focusing through a multiple scattering medium: ab initio computer simulation
NASA Astrophysics Data System (ADS)
Danko, Oleksandr; Danko, Volodymyr; Kovalenko, Andrey
2018-01-01
The present study considers ab initio computer simulation of the light focusing through a complex scattering medium. The focusing is performed by shaping the incident light beam in order to obtain a small focused spot on the opposite side of the scattering layer. MSTM software (Auburn University) is used to simulate the propagation of an arbitrary monochromatic Gaussian beam and obtain 2D distribution of the optical field in the selected plane of the investigated volume. Based on the set of incident and scattered fields, the pair of right and left eigen bases and corresponding singular values were calculated. The pair of right and left eigen modes together with the corresponding singular value constitute the transmittance eigen channel of the disordered media. Thus, the scattering process is described in three steps: 1) initial field decomposition in the right eigen basis; 2) scaling of decomposition coefficients for the corresponding singular values; 3) assembling of the scattered field as the composition of the weighted left eigen modes. Basis fields are represented as a linear combination of the original Gaussian beams and scattered fields. It was demonstrated that 60 independent control channels provide focusing the light into a spot with the minimal radius of approximately 0.4 μm at half maximum. The intensity enhancement in the focal plane was equal to 68 that coincided with theoretical prediction.
Wu, Hua’an; Zhou, Meng
2017-01-01
High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy. PMID:29140266
Column compression strength of tubular packaging forms made from paper
Thomas J. Urbanik; Sung K. Lee; Charles G. Johnson
2006-01-01
Tubular packaging forms fabricated and shaped from rolled paper are used as reinforcing corner posts for major appliances packaged in corrugated containers. Tests of column compression strength simulate the expected performance loads from appliances stacked in warehouses. Column strength depends on tube geometry, paper properties, basis weight, and number of...
Baryon axial charges from chirally improved fermions - first results
NASA Astrophysics Data System (ADS)
Engel, G.; Gattringer, C.; Glozman, L. Y.; Lang, C. B.; Limmer, M.; Mohler, D.; Schäfer, A.
We present first results from dynamical Chirally Improved (CI) fermion simulations for the axial charge $G_A$ of various hadrons. We work with 16^3x32 lattices of spatial extent 2.4 fm and use the variational method with a suitable basis of Jacobi-smeared interpolators to suppress contaminations from excited states.
The Science Thought Experiment: How Might It Be Used Profitably in the Classroom?
ERIC Educational Resources Information Center
Klassen, Stephen
2006-01-01
It is well established that thought experiments are both scientifically and philosophically significant, and even that they are pedagogically significant. However, the basis and methodology for their pedagogical use is not as well established. Pedagogical thought experiments are defined as mental simulations with special features to isolate…
27ps DFTMD Simulations of Maltose using a Reduced Basis Set
USDA-ARS?s Scientific Manuscript database
The disaccharide, a-maltose, has been studied using constant energy density functional molecular dynamics (DFTMD) at the B3LYP/6-31+G*/4-31G+COSMO (solvent) level of theory. Maltose is of particular interest as the variation in glycosidic dihedral angles has been found to be dependent upon the star...
The Impact of Inflation on Endowment Assets
ERIC Educational Resources Information Center
Birkeland, Kathryn; Carr, David L.; Lavin, Angeline M.
2013-01-01
Maintaining spending power in real terms (current) while preserving an endowment's value in real terms (future) is the crux of intergenerational equity. Tobin's (1974) model provides the conceptual basis on which simulations were developed to study the impact of various inflation (0%, TIPS, CPI, HECA, and HEPI) and new giving scenarios ($0, $4…
Using Spreadsheets to Teach Aspects of Biology Involving Mathematical Models
ERIC Educational Resources Information Center
Carlton, Kevin; Nicholls, Mike; Ponsonby, David
2004-01-01
Some aspects of biology, for example the Hardy-Weinberg simulation of population genetics or modelling heat flow in lizards, have an undeniable mathematical basis. Students can find the level of mathematical skill required to deal with such concepts to be an insurmountable hurdle to understanding. If not used effectively, spreadsheet models…
Teaching the Meaning of Statistical Techniques with Microcomputer Simulation.
ERIC Educational Resources Information Center
Lee, Motoko Y.; And Others
Students in an introductory statistics course are often preoccupied with learning the computational routines of specific summary statistics and thereby fail to develop an understanding of the meaning of those statistics or their conceptual basis. To help students develop a better understanding of the meaning of three frequently used statistics,…
The Neural Basis of Error Detection: Conflict Monitoring and the Error-Related Negativity
ERIC Educational Resources Information Center
Yeung, Nick; Botvinick, Matthew M.; Cohen, Jonathan D.
2004-01-01
According to a recent theory, anterior cingulate cortex is sensitive to response conflict, the coactivation of mutually incompatible responses. The present research develops this theory to provide a new account of the error-related negativity (ERN), a scalp potential observed following errors. Connectionist simulations of response conflict in an…
Stephen G. Boyce
1985-01-01
Viewing the forest as a system that self-organizes in response to a schedule of harvest and culture provides a new basis for making forestry decisions. Computer simulations of states of forest organization through time provide displays of tne production of forest benefits ranging from timber and water to wildlife and recreation. From these displays, the manager chooses...
A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy
ERIC Educational Resources Information Center
Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf
2009-01-01
The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…
The Procter and Gamble Decaffeination Project: A Multimedia Instruction Module.
ERIC Educational Resources Information Center
Squires, R. G.; And Others
1996-01-01
Purdue University (Indiana) is developing a series of computer modules of state-of-the-art chemical engineering processes to serve as the basis for computer-simulated experiments. One, sponsored by Procter and Gamble, models the extraction step in the decaffeination process and allows students to determine the optimal extraction conditions for…
NASA Astrophysics Data System (ADS)
Mousavi Nezhad, Mohaddeseh; Fisher, Quentin J.; Gironacci, Elia; Rezania, Mohammad
2018-06-01
Reliable prediction of fracture process in shale-gas rocks remains one of the most significant challenges for establishing sustained economic oil and gas production. This paper presents a modeling framework for simulation of crack propagation in heterogeneous shale rocks. The framework is on the basis of a variational approach, consistent with Griffith's theory. The modeling framework is used to reproduce the fracture propagation process in shale rock samples under standard Brazilian disk test conditions. Data collected from the experiments are employed to determine the testing specimens' tensile strength and fracture toughness. To incorporate the effects of shale formation heterogeneity in the simulation of crack paths, fracture properties of the specimens are defined as spatially random fields. A computational strategy on the basis of stochastic finite element theory is developed that allows to incorporate the effects of heterogeneity of shale rocks on the fracture evolution. A parametric study has been carried out to better understand how anisotropy and heterogeneity of the mechanical properties affect both direction of cracks and rock strength.
Zhang, Lin; Sun, Yan
2014-04-29
Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases.
Spatial surplus production modeling of Atlantic tunas and billfish.
Carruthers, Thomas R; McAllister, Murdoch K; Taylor, Nathan G
2011-10-01
We formulate and simulation-test a spatial surplus production model that provides a basis with which to undertake multispecies, multi-area, stock assessment. Movement between areas is parameterized using a simple gravity model that includes a "residency" parameter that determines the degree of stock mixing among areas. The model is deliberately simple in order to (1) accommodate nontarget species that typically have fewer available data and (2) minimize computational demand to enable simulation evaluation of spatial management strategies. Using this model, we demonstrate that careful consideration of spatial catch and effort data can provide the basis for simple yet reliable spatial stock assessments. If simple spatial dynamics can be assumed, tagging data are not required to reliably estimate spatial distribution and movement. When applied to eight stocks of Atlantic tuna and billfish, the model tracks regional catch data relatively well by approximating local depletions and exchange among high-abundance areas. We use these results to investigate and discuss the implications of using spatially aggregated stock assessment for fisheries in which the distribution of both the population and fishing vary over time.
Borodin, Oleg; Smith, Grant D
2006-03-30
A quantum chemistry study of Li(+) interactions with ethers, carbonates, alkanes, and a trifluoromethanesulfonylimide anion (TFSI(-)) was performed at the MP2, B3LYP, and HF levels using the aug-cc-pvDz basis set for solvents and TFSI(-) anion, and [8s4p3d/5s3p2d]-type basis set for Li. A classical many-polarizable force field was developed for the LiTFSI salt interacting with ethylene carbonate (EC), gamma-butyrolactone (GBL), dimethyl carbonate (DMC), acetone, oligoethers, n-alkanes, and perfluoroalkanes. Molecular dynamics (MD) simulations were performed for EC/LiTFSI, PC/LiTFSI, GBL/LiTFSI, DMC/LiTFSI, 1,2-dimethoxyethane/LiTFSI, pentaglyme/LiTFSI, and poly(ethylene oxide) (MW = 2380)/LiTFSI electrolytes at temperatures from 298 to 423 K and salt concentrations from 0.3 to 5 M. The ion and solvent self-diffusion coefficients, electrolyte conductivity, electrolyte density, LiTFSI apparent molar volumes, and structure of the Li(+) cation environment predicted by MD simulations were found in good agreement with experimental data.
Operations planning simulation: Model study
NASA Technical Reports Server (NTRS)
1974-01-01
The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.
Parachute-deployment-parameter identification based on an analytical simulation of Viking BLDT AV-4
NASA Technical Reports Server (NTRS)
Talay, T. A.
1974-01-01
A six-degree-of-freedom analytical simulation of parachute deployment dynamics developed at the Langley Research Center is presented. A comparison study was made using flight results from the Viking Balloon Launched Decelerator Test (BLDT) AV-4. Since there are significant voids in the knowledge of vehicle and decelerator aerodynamics and suspension system physical properties, a set of deployment-parameter input has been defined which may be used as a basis for future studies of parachute deployment dynamics. The study indicates the analytical model is sufficiently sophisticated to investigate parachute deployment dynamics with reasonable accuracy.
Fadda, Elisa; Woods, Robert J
2010-08-01
The characterization of the 3D structure of oligosaccharides, their conjugates and analogs is particularly challenging for traditional experimental methods. Molecular simulation methods provide a basis for interpreting sparse experimental data and for independently predicting conformational and dynamic properties of glycans. Here, we summarize and analyze the issues associated with modeling carbohydrates, with a detailed discussion of four of the most recently developed carbohydrate force fields, reviewed in terms of applicability to natural glycans, carbohydrate-protein complexes and the emerging area of glycomimetic drugs. In addition, we discuss prospectives and new applications of carbohydrate modeling in drug discovery.
Aggregate age-at-marriage patterns from individual mate-search heuristics.
Todd, Peter M; Billari, Francesco C; Simão, Jorge
2005-08-01
The distribution of age at first marriage shows well-known strong regularities across many countries and recent historical periods. We accounted for these patterns by developing agent-based models that simulate the aggregate behavior of individuals who are searching for marriage partners. Past models assumed fully rational agents with complete knowledge of the marriage market; our simulated agents used psychologically plausible simple heuristic mate search rules that adjust aspiration levels on the basis of a sequence of encounters with potential partners. Substantial individual variation must be included in the models to account for the demographically observed age-at-marriage patterns.
Stand-off detection of alcohol in car cabins
NASA Astrophysics Data System (ADS)
Młyńczak, Jarosław; Kubicki, Jan; Kopczyński, Krzysztof
2014-01-01
The results of experiments concerning detection of alcohol vapors in car cabins using a laboratory device, which was developed and built at the Institute of Optoelectronics at the Military University of Technology, are described. The work is a continuation of the investigations presented in an earlier paper. On the basis of those results, the whole device was designed and built. Then it was investigated using a car with special system simulating a driver under the influence of alcohol. To simulate the appropriate concentration of alcohol in human blood, a special method of generation of alcohol vapor was developed.
NASA Technical Reports Server (NTRS)
1979-01-01
A manned remote work station (MRWS) mission scenario, broken down into the three time phases was selected as the basis for analysis of the MRWS flight article requirements and concepts. The mission roles for the three time phases, supporting tradeoff and evaluation studies, was used to identify key issues requiring simulation. The MRWS is discussed in terms of its capability to perform such operations as support of Spacelab experiments, servicing and repair of satellites, and construction. Future considerations for the use of the MRWS are also given.
Radiation chemistry in the Jovian stratosphere - Laboratory simulations
NASA Technical Reports Server (NTRS)
Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl
1992-01-01
The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.
Simulation of Delamination Under High Cycle Fatigue in Composite Materials Using Cohesive Models
NASA Technical Reports Server (NTRS)
Camanho, Pedro P.; Turon, Albert; Costa, Josep; Davila, Carlos G.
2006-01-01
A new thermodynamically consistent damage model is proposed for the simulation of high-cycle fatigue crack growth. The basis for the formulation is an interfacial degradation law that links Fracture Mechanics and Damage Mechanics to relate the evolution of the damage variable, d, with the crack growth rate da/dN. The damage state is a function of the loading conditions (R and (Delta)G) as well as the experimentally-determined crack growth rates for the material. The formulation ensures that the experimental results can be reproduced by the analysis without the need of additional adjustment parameters.
Research on grid connection control technology of double fed wind generator
NASA Astrophysics Data System (ADS)
Ling, Li
2017-01-01
The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.
Simulation Of Seawater Intrusion With 2D And 3D Models: Nauru Island Case Study
NASA Astrophysics Data System (ADS)
Ghassemi, F.; Jakeman, A. J.; Jacobson, G.; Howard, K. W. F.
1996-03-01
With the advent of large computing capacities during the past few decades, sophisticated models have been developed for the simulation of seawater intrusion in coastal and island aquifers. Currently, several models are commercially available for the simulation of this problem. This paper describes the mathematical basis and application of the SUTRA and HST3D models to simulate seawater intrusion in Nauru Island, in the central Pacific Ocean. A comparison of the performance and limitations of these two models in simulating a real problem indicates that three-dimensional simulation of seawater intrusion with the HST3D model has the major advantage of being able to specify natural boundary conditions as well as pumping stresses. However, HST3D requires a small grid size and short time steps in order to maintain numerical stability and accuracy. These requirements lead to solution of a large set of linear equations that requires the availability of powerful computing facilities in terms of memory and computing speed. Combined results of the two simulation models indicate a safe pumping rate of 400 m3/d for the aquifer on Nauru Island, where additional fresh water is presently needed for the rehabilitation of mined-out land.
Application of MODFLOW’s farm process to California’s Central Valley
Faunt, Claudia; Hanson, Randall T.; Schmid, Wolfgang; Belitz, Kenneth
2008-01-01
landscape processes. The FMP provides coupled simulation of the ground-water and surface-water components of the hydrologic cycle for irrigated and non-irrigated areas. A dynamic allocation of ground-water recharge and ground-water pumping is simulated on the basis of residual crop-water demand after surface-water deliveries and root uptake from shallow ground water. The FMP links with the Streamflow Routing Package SFR1) to facilitate the simulated conveyance of surface-water deliveries. Ground-water Pumpage through both single-aquifer and multi-node wells, irrigation return flow, and variable irrigation efficiencies also are simulated by the FMP. The simulated deliveries and ground-water pumpage in the updated model reflect climatic differences, differences among defined water-balance regions, and changes in the waterdelivery system, during the 1961–2003 simulation period. The model is designed to accept forecasts from Global Climate Models (GCMs) to simulate the potential effects on surface-water delivery, ground-water pumpage, and ground-water storage in response to climate change. The model provides a detailed transient analysis of changes in ground-water availability in relation to climatic variability, urbanization, and changes in irrigated agriculture.
Software Estimates Costs of Testing Rocket Engines
NASA Technical Reports Server (NTRS)
Smith, C. L.
2003-01-01
Simulation-Based Cost Model (SiCM), a discrete event simulation developed in Extend , simulates pertinent aspects of the testing of rocket propulsion test articles for the purpose of estimating the costs of such testing during time intervals specified by its users. A user enters input data for control of simulations; information on the nature of, and activity in, a given testing project; and information on resources. Simulation objects are created on the basis of this input. Costs of the engineering-design, construction, and testing phases of a given project are estimated from numbers and labor rates of engineers and technicians employed in each phase, the duration of each phase; costs of materials used in each phase; and, for the testing phase, the rate of maintenance of the testing facility. The three main outputs of SiCM are (1) a curve, updated at each iteration of the simulation, that shows overall expenditures vs. time during the interval specified by the user; (2) a histogram of the total costs from all iterations of the simulation; and (3) table displaying means and variances of cumulative costs for each phase from all iterations. Other outputs include spending curves for each phase.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
NASA Astrophysics Data System (ADS)
Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Liu, Jianhua; Wang, Xiaoman; Jiang, Huilin; Liu, Zhi
2014-12-01
The laser transmission characteristics affected in the complex channel environment, which limits the performance of laser equipment and engineering application severely. The article aim at the influence of laser transmission in atmospheric and seawater channels, summarizes the foreign researching work of the simulation and comprehensive test regarding to the laser transmission characteristics in complex environment. And researched the theory of atmospheric turbulence effect, water attenuation features, and put forward the corresponding theoretical model. And researched the simulate technology of atmospheric channel and sea water channel, put forward the analog device plan, adopt the similar theory of flowing to simulate the atmosphere turbulence .When the flowing has the same condition of geometric limits including the same Reynolds, they must be similar to each other in the motivation despite of the difference in the size, speed, and intrinsic quality. On this basis, set up a device for complex channel simulation and comprehensive testing, the overall design of the structure of the device, Hot and Cold Air Convection Simulation of Atmospheric Turbulence, mainly consists of cell body, heating systems, cooling systems, automatic control system. he simulator provides platform and method for the basic research of laser transmission characteristics in the domestic.
Physical habitat simulation system reference manual: version II
Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.
1989-01-01
There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.
Senapati, Nimai; Chabbi, Abad; Giostri, André Faé; Yeluripati, Jagadeesh B; Smith, Pete
2016-12-01
The DailyDayCent biogeochemical model was used to simulate nitrous oxide (N 2 O) emissions from two contrasting agro-ecosystems viz. a mown-grassland and a grain-cropping system in France. Model performance was tested using high frequency measurements over three years; additionally a local sensitivity analysis was performed. Annual N 2 O emissions of 1.97 and 1.24kgNha -1 year -1 were simulated from mown-grassland and grain-cropland, respectively. Measured and simulated water filled pore space (r=0.86, ME=-2.5%) and soil temperature (r=0.96, ME=-0.63°C) at 10cm soil depth matched well in mown-grassland. The model predicted cumulative hay and crop production effectively. The model simulated soil mineral nitrogen (N) concentrations, particularly ammonium (NH 4 + ), reasonably, but the model significantly underestimated soil nitrate (NO 3 - ) concentration under both systems. In general, the model effectively simulated the dynamics and the magnitude of daily N 2 O flux over the whole experimental period in grain-cropland (r=0.16, ME=-0.81gNha -1 day -1 ), with reasonable agreement between measured and modelled N 2 O fluxes for the mown-grassland (r=0.63, ME=-0.65gNha -1 day -1 ). Our results indicate that DailyDayCent has potential for use as a tool for predicting overall N 2 O emissions in the study region. However, in-depth analysis shows some systematic discrepancies between measured and simulated N 2 O fluxes on a daily basis. The current exercise suggests that the DailyDayCent may need improvement, particularly the sub-module responsible for N transformations, for better simulating soil mineral N, especially soil NO 3 - concentration, and N 2 O flux on a daily basis. The sensitivity analysis shows that many factors such as climate change, N-fertilizer use, input uncertainty and parameter value could influence the simulation of N 2 O emissions. Sensitivity estimation also helped to identify critical parameters, which need careful estimation or site-specific calibration for successful modelling of N 2 O emissions in the study region. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shirley, Rachel Elizabeth
Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize and diagnose the accident in the scenario. These models estimate how the effects of the scenario conditions are mediated by simulator bias, and demonstrate how to quantify the strength of the simulator bias. Third, development of a quantitative model of subjective PSFs based on objective data (plant parameters, alarms, etc.) and PSF values reported by student operators. The objective PSF model is based on the PSF network in the IDAC HRA method. The final model is a mixed effects Bayesian hierarchical linear regression model. The subjective PSF model includes three factors: The Environmental PSF, the simulator Bias, and the Context. The Environmental Bias is mediated by an operator sensitivity coefficient that captures the variation in operator reactions to plant conditions. The data collected in the pilot experiments are not expected to reflect professional NPP operator performance, because the students are still novice operators. However, the models used in this research and the methods developed to analyze them demonstrate how to consider simulator bias in experiment design and how to use simulator data to enhance the technical basis of a complex HRA method. The contributions of the research include a framework for discussing simulator bias, a quantitative method for estimating simulator bias, a method for obtaining operator-reported PSF values, and a quantitative method for incorporating the variability in operator perception into PSF models. The research demonstrates applications of Structural Equation Modeling and hierarchical Bayesian linear regression models in HRA. Finally, the research demonstrates the benefits of using student operators as a test platform for HRA research.
NASA Astrophysics Data System (ADS)
Jayne, R., Jr.; Pollyea, R.
2016-12-01
Carbon capture and sequestration (CCS) in geologic reservoirs is one strategy for reducing anthropogenic CO2 emissions from large-scale point-source emitters. Recent developments at the CarbFix CCS pilot in Iceland have shown that basalt reservoirs are highly effective for permanent mineral trapping on the basis of CO2-water-rock interactions, which result in the formation of carbonates minerals. In order to advance our understanding of basalt sequestration in large igneous provinces, this research uses numerical simulation to evaluate the feasibility of industrial-scale CO2 injections in the Columbia River Basalt Group (CRBG). Although bulk reservoir properties are well constrained on the basis of field and laboratory testing from the Wallula Basalt Sequestration Pilot Project, there remains significant uncertainty in the spatial distribution of permeability at the scale of individual basalt flows. Geostatistical analysis of hydrologic data from 540 wells illustrates that CRBG reservoirs are reasonably modeled as layered heterogeneous systems on the basis of basalt flow morphology; however, the regional dataset is insufficient to constrain permeability variability at the scale of an individual basalt flow. As a result, permeability distribution for this modeling study is established by centering the lognormal permeability distribution in the regional dataset over the bulk permeability measured at Wallula site, which results in a spatially random permeability distribution within the target reservoir. In order to quantify the effects of this permeability uncertainty, CO2 injections are simulated within 50 equally probable synthetic reservoir domains. Each model domain comprises three-dimensional geometry with 530,000 grid blocks, and fracture-matrix interaction is simulated as interacting continua for the two low permeability layers (flow interiors) bounding the injection zone. Results from this research illustrate that permeability uncertainty at the scale of individual basalt flows may significantly impact both injection pressure accumulation and CO2 distribution.
NASA Astrophysics Data System (ADS)
Vandenberghe, Stefaan; Staelens, Steven; Byrne, Charles L.; Soares, Edward J.; Lemahieu, Ignace; Glick, Stephen J.
2006-06-01
In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast recovery were obtained with MLEM when the correct system matrix was used instead of simple ray tracing. The correct modelling was the major cause of improved contrast for the same background noise. Less important factors were the choice of the algorithm (MLEM performed better than ART) and the basis functions (generalized natural pixels gave better results than pixels).
Numerical simulation of artificial hip joint motion based on human age factor
NASA Astrophysics Data System (ADS)
Ramdhani, Safarudin; Saputra, Eko; Jamari, J.
2018-05-01
Artificial hip joint is a prosthesis (synthetic body part) which usually consists of two or more components. Replacement of the hip joint due to the occurrence of arthritis, ordinarily patients aged or older. Numerical simulation models are used to observe the range of motion in the artificial hip joint, the range of motion of joints used as the basis of human age. Finite- element analysis (FEA) is used to calculate stress von mises in motion and observes a probability of prosthetic impingement. FEA uses a three-dimensional nonlinear model and considers the position variation of acetabular liner cups. The result of numerical simulation shows that FEA method can be used to analyze the performance calculation of the artificial hip joint at this time more accurate than conventional method.
Improving rotorcraft survivability to RPG attack using inverse methods
NASA Astrophysics Data System (ADS)
Anderson, D.; Thomson, D. G.
2009-09-01
This paper presents the results of a preliminary investigation of optimal threat evasion strategies for improving the survivability of rotorcraft under attack by rocket propelled grenades (RPGs). The basis of this approach is the application of inverse simulation techniques pioneered for simulation of aggressive helicopter manoeuvres to the RPG engagement problem. In this research, improvements in survivability are achieved by computing effective evasive manoeuvres. The first step in this process uses the missile approach warning system camera (MAWS) on the aircraft to provide angular information of the threat. Estimates of the RPG trajectory and impact point are then estimated. For the current flight state an appropriate evasion response is selected then realised via inverse simulation of the platform dynamics. Results are presented for several representative engagements showing the efficacy of the approach.
Coarse-Grained MD Simulations and Protein-Protein Interactions: The Cohesin-Dockerin System.
Hall, Benjamin A; Sansom, Mark S P
2009-09-08
Coarse-grained molecular dynamics (CG-MD) may be applied as part of a multiscale modeling approach to protein-protein interactions. The cohesin-dockerin interaction provides a valuable test system for evaluation of the use of CG-MD, as structural (X-ray) data indicate a dual binding mode for the cohesin-dockerin pair. CG-MD simulations (of 5 μs duration) of the association of cohesin and dockerin identify two distinct binding modes, which resemble those observed in X-ray structures. For each binding mode, ca. 80% of interfacial residues are predicted correctly. Furthermore, each of the binding modes identified by CG-MD is conformationally stable when converted to an atomistic model and used as the basis of a conventional atomistic MD simulation of duration 20 ns.
A Simulator for the Respiratory Tree in Healthy Subjects Derived from Continued Fractions Expansions
NASA Astrophysics Data System (ADS)
Muntean, Ionuţ; Ionescu, Clara; Naşcu, Ioan
2009-04-01
Taking into account the self-similar recurrent geometrical structure of the human respiratory tree, the total respiratory impedance can be represented using an electrical equivalent of a ladder network model. In this paper, the parameters of the respiratory tree are employed in simulation, based on clinical insight and morphology. Once the transfer function of the total input impedance model is calculated, it is further interpreted in its continued fraction expansion form. The purpose is to compare the ladder network structure with the continuous fraction expansion form of the impedance. The results are supporting the theory of fractional-order impedance appearance (also known as constant-phase behaviour) and help understanding the mathematical and morphological basis for constructing a physiology-based simulator of the human lungs.
Baseline process description for simulating plutonium oxide production for precalc project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, J. A.
Savannah River National Laboratory (SRNL) started a multi-year project, the PreCalc Project, to develop a computational simulation of a plutonium oxide (PuO 2) production facility with the objective to study the fundamental relationships between morphological and physicochemical properties. This report provides a detailed baseline process description to be used by SRNL personnel and collaborators to facilitate the initial design and construction of the simulation. The PreCalc Project team selected the HB-Line Plutonium Finishing Facility as the basis for a nominal baseline process since the facility is operational and significant model validation data can be obtained. The process boundary as wellmore » as process and facility design details necessary for multi-scale, multi-physics models are provided.« less
NASA Technical Reports Server (NTRS)
Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.
1982-01-01
Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.
Multilayer metal-oxide-metal nanopatterns via nanoimprint and strip-off for multispectral resonance
NASA Astrophysics Data System (ADS)
Jeon, Sohee; Sung, Sang-Keun; Jang, Eun-Hwan; Jeong, Junho; Surabhi, Srivathsava; Choi, Jun-Hyuk; Jeong, Jong-Ryul
2018-01-01
A fabrication technology for multispectral plasmonic resonators is presented on a basis of metal-insulator-metal (MIM) nanopattern arrays. Resonators comprised of MIM nanopatterns were fabricated using nanoimprint-based transfer and strip-off following MIM depositions. Two different kinds of configuration (web and hole) were developed for three and five layers of MIMs. The corresponding measured transmittance and reflectance spectroscopies were compared to their counterpart finite difference time domain (FDTD) simulation results. The results implied various plasmonic resonance couplings occurred at different locations around the metal structures, dependent on the layer and array configuration. By tuning the model geometry and simulation conditions, agreement between the experimental results and simulation was achieved. This work is believed to provide a viable fabrication method for multispectral resonance filters or sensors.
Pre- and postprocessing for reservoir simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.
1991-05-01
This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less
Fluctuations, noise, and numerical methods in gyrokinetic particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas Grant
In this thesis, the role of the "marker weight" (or "particle weight") used in gyrokinetic particle-in-cell (PIC) simulations is explored. Following a review of the foundations and major developments of gyrokinetic theory, key concepts of the Monte Carlo methods which form the basis for PIC simulations are set forth. Consistent with these methods, a Klimontovich representation for the set of simulation markers is developed in the extended phase space {R, v||, v ⊥, W, P} (with the additional coordinates representing weight fields); clear distinctions are consequently established between the marker distribution function and various physical distribution functions (arising from diverse moments of the marker distribution). Equations describing transport in the simulation are shown to be easily derivable using the formalism. The necessity of a two-weight model for nonequilibrium simulations is demonstrated, and a simple method for calculating the second (background-related) weight is presented. Procedures for arbitrary marker loading schemes in gyrokinetic PIC simulations are outlined; various initialization methods for simulations are compared. Possible effects of inadequate velocity-space resolution in gyrokinetic continuum simulations are explored. The "partial-f" simulation method is developed and its limitations indicated. A quasilinear treatment of electrostatic drift waves is shown to correctly predict nonlinear saturation amplitudes, and the relevance of the gyrokinetic fluctuation-dissipation theorem in assessing the effects of discrete-marker-induced statistical noise on the resulting marginally stable states is demonstrated.
Prediction of helicopter simulator sickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, R.D.; Birdwell, J.D.; Allgood, G.O.
1990-01-01
Machine learning methods from artificial intelligence are used to identify information in sampled accelerometer signals and associative behavioral patterns which correlates pilot simulator sickness with helicopter simulator dynamics. These simulators are used to train pilots in fundamental procedures, tactics, and response to emergency conditions. Simulator sickness induced by these systems represents a risk factor to both the pilot and manufacturer. Simulator sickness symptoms are closely aligned with those of motion sickness. Previous studies have been performed by behavioral psychologists using information gathered with surveys and motor skills performance measures; however, the results are constrained by the limited information which ismore » accessible in this manner. In this work, accelerometers were installed in the simulator cab, enabling a complete record of flight dynamics and the pilot's control response as a function of time. Given the results of performance measures administered to detect simulator sickness symptoms, the problem was then to find functions of the recorded data which could be used to help predict the simulator sickness level and susceptibility. Methods based upon inductive inference were used, which yield decision trees whose leaves indicate the degree of simulator-induced sickness. The long-term goal is to develop a gauge'' which can provide an on-line prediction of simulator sickness level, given a pilot's associative behavioral patterns (learned expectations). This will allow informed decisions to be made on when to terminate a hop and provide an effective basis for determining training and flight restrictions placed upon the pilot after simulator use. 6 refs., 6 figs.« less
Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies
Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung
2017-01-01
A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672
Analysing malaria drug trials on a per-individual or per-clone basis: a comparison of methods.
Jaki, Thomas; Parry, Alice; Winter, Katherine; Hastings, Ian
2013-07-30
There are a variety of methods used to estimate the effectiveness of antimalarial drugs in clinical trials, invariably on a per-person basis. A person, however, may have more than one malaria infection present at the time of treatment. We evaluate currently used methods for analysing malaria trials on a per-individual basis and introduce a novel method to estimate the cure rate on a per-infection (clone) basis. We used simulated and real data to highlight the differences of the various methods. We give special attention to classifying outcomes as cured, recrudescent (infections that never fully cleared) or ambiguous on the basis of genetic markers at three loci. To estimate cure rates on a per-clone basis, we used the genetic information within an individual before treatment to determine the number of clones present. We used the genetic information obtained at the time of treatment failure to classify clones as recrudescence or new infections. On the per-individual level, we find that the most accurate methods of classification label an individual as newly infected if all alleles are different at the beginning and at the time of failure and as a recrudescence if all or some alleles were the same. The most appropriate analysis method is survival analysis or alternatively for complete data/per-protocol analysis a proportion estimate that treats new infections as successes. We show that the analysis of drug effectiveness on a per-clone basis estimates the cure rate accurately and allows more detailed evaluation of the performance of the treatment. Copyright © 2012 John Wiley & Sons, Ltd.
The Reduced Basis Method in Geosciences: Practical examples for numerical forward simulations
NASA Astrophysics Data System (ADS)
Degen, D.; Veroy, K.; Wellmann, F.
2017-12-01
Due to the highly heterogeneous character of the earth's subsurface, the complex coupling of thermal, hydrological, mechanical, and chemical processes, and the limited accessibility we have to face high-dimensional problems associated with high uncertainties in geosciences. Performing the obviously necessary uncertainty quantifications with a reasonable number of parameters is often not possible due to the high-dimensional character of the problem. Therefore, we are presenting the reduced basis (RB) method, being a model order reduction (MOR) technique, that constructs low-order approximations to, for instance, the finite element (FE) space. We use the RB method to address this computationally challenging simulations because this method significantly reduces the degrees of freedom. The RB method is decomposed into an offline and online stage, allowing to make the expensive pre-computations beforehand to get real-time results during field campaigns. Generally, the RB approach is most beneficial in the many-query and real-time context.We will illustrate the advantages of the RB method for the field of geosciences through two examples of numerical forward simulations.The first example is a geothermal conduction problem demonstrating the implementation of the RB method for a steady-state case. The second examples, a Darcy flow problem, shows the benefits for transient scenarios. In both cases, a quality evaluation of the approximations is given. Additionally, the runtimes for both the FE and the RB simulations are compared. We will emphasize the advantages of this method for repetitive simulations by showing the speed-up for the RB solution in contrast to the FE solution. Finally, we will demonstrate how the used implementation is usable in high-performance computing (HPC) infrastructures and evaluate its performance for such infrastructures. Hence, we will especially point out its scalability, yielding in an optimal usage on HPC infrastructures and normal working stations.
Technique for simulating peak-flow hydrographs in Maryland
Dillow, Jonathan J.A.
1998-01-01
The efficient design and management of many bridges, culverts, embankments, and flood-protection structures may require the estimation of time-of-inundation and (or) storage of floodwater relating to such structures. These estimates can be made on the basis of information derived from the peak-flow hydrograph. Average peak-flow hydrographs corresponding to a peak discharge of specific recurrence interval can be simulated for drainage basins having drainage areas less than 500 square miles in Maryland, using a direct technique of known accuracy. The technique uses dimensionless hydrographs in conjunction with estimates of basin lagtime and instantaneous peak flow. Ordinary least-squares regression analysis was used to develop an equation for estimating basin lagtime in Maryland. Drainage area, main channel slope, forest cover, and impervious area were determined to be the significant explanatory variables necessary to estimate average basin lagtime at the 95-percent confidence interval. Qualitative variables included in the equation adequately correct for geographic bias across the State. The average standard error of prediction associated with the equation is approximated as plus or minus (+/-) 37.6 percent. Volume correction factors may be applied to the basin lagtime on the basis of a comparison between actual and estimated hydrograph volumes prior to hydrograph simulation. Three dimensionless hydrographs were developed and tested using data collected during 278 significant rainfall-runoff events at 81 stream-gaging stations distributed throughout Maryland and Delaware. The data represent a range of drainage area sizes and basin conditions. The technique was verified by applying it to the simulation of 20 peak-flow events and comparing actual and simulated hydrograph widths at 50 and 75 percent of the observed peak-flow levels. The events chosen are considered extreme in that the average recurrence interval of the selected peak flows is 130 years. The average standard errors of prediction were +/- 61 and +/- 56 percent at the 50 and 75 percent of peak-flow hydrograph widths, respectively.
Light Curve Simulation Using Spacecraft CAD Models and Empirical Material Spectral BRDFS
NASA Astrophysics Data System (ADS)
Willison, A.; Bedard, D.
This paper presents a Matlab-based light curve simulation software package that uses computer-aided design (CAD) models of spacecraft and the spectral bidirectional reflectance distribution function (sBRDF) of their homogenous surface materials. It represents the overall optical reflectance of objects as a sBRDF, a spectrometric quantity, obtainable during an optical ground truth experiment. The broadband bidirectional reflectance distribution function (BRDF), the basis of a broadband light curve, is produced by integrating the sBRDF over the optical wavelength range. Colour-filtered BRDFs, the basis of colour-filtered light curves, are produced by first multiplying the sBRDF by colour filters, and integrating the products. The software package's validity is established through comparison of simulated reflectance spectra and broadband light curves with those measured of the CanX-1 Engineering Model (EM) nanosatellite, collected during an optical ground truth experiment. It is currently being extended to simulate light curves of spacecraft in Earth orbit, using spacecraft Two-Line-Element (TLE) sets, yaw/pitch/roll angles, and observer coordinates. Measured light curves of the NEOSSat spacecraft will be used to validate simulated quantities. The sBRDF was chosen to represent material reflectance as it is spectrometric and a function of illumination and observation geometry. Homogeneous material sBRDFs were obtained using a goniospectrometer for a range of illumination and observation geometries, collected in a controlled environment. The materials analyzed include aluminum alloy, two types of triple-junction photovoltaic (TJPV) cell, white paint, and multi-layer insulation (MLI). Interpolation and extrapolation methods were used to determine the sBRDF for all possible illumination and observation geometries not measured in the laboratory, resulting in empirical look-up tables. These look-up tables are referenced when calculating the overall sBRDF of objects, where the contribution of each facet is proportionally integrated.
Chau, Foo-Tim; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2004-07-22
Restricted-spin coupled-cluster single-double plus perturbative triple excitation [RCCSD(T)] potential energy functions (PEFs) were calculated for the X (2)A" and A (2)A' states of HPCl employing the augmented correlation-consistent polarized-valence-quadruple-zeta (aug-cc-pVQZ) basis set. Further geometry optimization calculations were carried out on both electronic states of HPCl at the RCCSD(T) level with all electron and quasirelativistic effective core potential basis sets of better than the aug-cc-pVQZ quality, and also including some core electrons, in order to obtain more reliable geometrical parameters and relative electronic energy of the two states. Anharmonic vibrational wave functions of the two states of HPCl and DPCl, and Franck-Condon (FC) factors of the A (2)A'-X (2)A" transition were computed employing the RCCSD(T)/aug-cc-pVQZ PEFs. Calculated FC factors with allowance for Duschinsky rotation and anharmonicity were used to simulate the single-vibronic-level (SVL) emission spectra of HPCl and DPCl reported by Brandon et al. [J. Chem. Phys. 119, 2037 (2003)] and the chemiluminescence spectrum reported by Bramwell et al. [Chem. Phys. Lett. 331, 483 (2000)]. Comparison between simulated and observed SVL emission spectra gives the experimentally derived equilibrium geometry of the A (2)A' state of HPCl of r(e)(PCl) = 2.0035 +/- 0.0015 A, theta(e) = 116.08 +/- 0.60 degrees, and r(e)(HP) = 1.4063+/-0.0015 A via the iterative Franck-Condon analysis procedure. Comparison between simulated and observed chemiluminescence spectra confirms that the vibrational population distribution of the A (2)A' state of HPCl is non-Boltzmann, as proposed by Baraille et al. [Chem. Phys. 289, 263 (2003)].
NASA Astrophysics Data System (ADS)
Girard, L.; Weiss, J.; Molines, J. M.; Barnier, B.; Bouillon, S.
2009-08-01
Sea ice drift and deformation from models are evaluated on the basis of statistical and scaling properties. These properties are derived from two observation data sets: the RADARSAT Geophysical Processor System (RGPS) and buoy trajectories from the International Arctic Buoy Program (IABP). Two simulations obtained with the Louvain-la-Neuve Ice Model (LIM) coupled to a high-resolution ocean model and a simulation obtained with the Los Alamos Sea Ice Model (CICE) were analyzed. Model ice drift compares well with observations in terms of large-scale velocity field and distributions of velocity fluctuations although a significant bias on the mean ice speed is noted. On the other hand, the statistical properties of ice deformation are not well simulated by the models: (1) The distributions of strain rates are incorrect: RGPS distributions of strain rates are power law tailed, i.e., exhibit "wild randomness," whereas models distributions remain in the Gaussian attraction basin, i.e., exhibit "mild randomness." (2) The models are unable to reproduce the spatial and temporal correlations of the deformation fields: In the observations, ice deformation follows spatial and temporal scaling laws that express the heterogeneity and the intermittency of deformation. These relations do not appear in simulated ice deformation. Mean deformation in models is almost scale independent. The statistical properties of ice deformation are a signature of the ice mechanical behavior. The present work therefore suggests that the mechanical framework currently used by models is inappropriate. A different modeling framework based on elastic interactions could improve the representation of the statistical and scaling properties of ice deformation.
Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.
Werner, J; Buse, M; Foegen, A
1989-01-01
In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.
A polygon-based modeling approach to assess exposure of resources and assets to wildfire
Matthew P. Thompson; Joe Scott; Jeffrey D. Kaiden; Julie W. Gilbertson-Day
2013-01-01
Spatially explicit burn probability modeling is increasingly applied to assess wildfire risk and inform mitigation strategy development. Burn probabilities are typically expressed on a per-pixel basis, calculated as the number of times a pixel burns divided by the number of simulation iterations. Spatial intersection of highly valued resources and assets (HVRAs) with...
Wood-adhesive bonding failure : modeling and simulation
Zhiyong Cai
2010-01-01
The mechanism of wood bonding failure when exposed to wet conditions or wet/dry cycles is not fully understood and the role of the resulting internal stresses exerted upon the wood-adhesive bondline has yet to be quantitatively determined. Unlike previous modeling this study has developed a new two-dimensional internal-stress model on the basis of the mechanics of...
An Investigation of Visual, Aural, Motion and Control Movement Cues.
ERIC Educational Resources Information Center
Matheny, W. G.; And Others
A study was conducted to determine the ways in which multi-sensory cues can be simulated and effectively used in the training of pilots. Two analytical bases, one called the stimulus environment approach and the other an information array approach, are developed along with a cue taxonomy. Cues are postulated on the basis of information gained from…
ERIC Educational Resources Information Center
Weems, Scott A.; Reggia, James A.
2006-01-01
The Wernicke-Lichtheim-Geschwind (WLG) theory of the neurobiological basis of language is of great historical importance, and it continues to exert a substantial influence on most contemporary theories of language in spite of its widely recognized limitations. Here, we suggest that neurobiologically grounded computational models based on the WLG…
A Pedagogical Approach to the Boltzmann Factor through Experiments and Simulations
ERIC Educational Resources Information Center
Battaglia, O. R.; Bonura, A.; Sperandeo-Mineo, R. M.
2009-01-01
The Boltzmann factor is the basis of a huge amount of thermodynamic and statistical physics, both classical and quantum. It governs the behaviour of all systems in nature that are exchanging energy with their environment. To understand why the expression has this specific form involves a deep mathematical analysis, whose flow of logic is hard to…
Landsat TM Classifications For SAFIS Using FIA Field Plots
William H. Cooke; Andrew J. Hartsell
2001-01-01
Wall-to-wall Landsat Thematic Mapper (TM) classification efforts in Georgia require field validation. We developed a new crown modeling procedure based on Forest Health Monitoring (FHM) data to test Forest Inventory and Analysis (FIA) data. These models simulate the proportion of tree crowns that reflect light on a FIA subplot basis. We averaged subplot crown...
Joseph K. O. Amoah; Devendra M. Amatya; Soronnadi Nnaji
2012-01-01
Hydrologic models often require correct estimates of surface macro-depressional storage to accurately simulate rainfallârunoff processes. Traditionally, depression storage is determined through model calibration or lumped with soil storage components or on an ad hoc basis. This paper investigates a holistic approach for estimating surface depressional storage capacity...
ERIC Educational Resources Information Center
Berndsen, Christopher E.; Young, Byron H.; McCormick, Quinlin J.; Enke, Raymond A.
2016-01-01
Single nucleotide polymorphisms (SNPs) in DNA can result in phenotypes where the biochemical basis may not be clear due to the lack of protein structures. With the growing number of modeling and simulation software available on the internet, students can now participate in determining how small changes in genetic information impact cellular…
Novel Methods for Electromagnetic Simulation and Design
2016-08-03
The resulting discretized integral equations are compatible with fast multipoleaccelerated solvers and will form the basis for high fidelity...expansion”) which are high-order, efficient and easy to use on arbitrarily triangulated surfaces. The resulting discretized integral equations are...created a user interface compatible with both low and high order discretizations , and implemented the generalized Debye approach of [4]. The
ERIC Educational Resources Information Center
Eberholst, Mads Kaemsgaard; Hartley, Jannie Møller; Olsen, Maria Bendix
2016-01-01
This article looks at journalism students' experiences in a course that simulates an online newsroom. On the basis of a quantitative survey and more qualitative reflections from the students, we explore the dilemmas that students experience "working" as online journalists and how these are related to broader issues of journalistic…
Alejandro A. Royo; Walter P. Carson
2006-01-01
The mechanistic basis underpinning forest succession is the gap-phase paradigm in which overstory disturbance interacts with seedling and sapling shade tolerance to determine successional trajectories. The theory, and ensuing simulation models, typically assume that understory plants have little impact on the advance regeneration layer's composition. We challenge...
Sawing SHOLO logs: three methods
Ronald E. Coleman; Hugh W. Reynolds
1973-01-01
Three different methods of sawing the SHOLO log were compared on a board-foot yield basis. Using sawmill simulation, all three methods of sawing were performed on the same sample of logs, eliminating differences due to sapling. A statistical test was made to determine whether or not there were any real differences between the board-foot yields. Two of the sawing...
USDA-ARS?s Scientific Manuscript database
Due to the differential crop responses to water stress at different growth stages, scheduling irrigation within a crop season is a challenge facing agricultural producers, especially when water availability varies on a monthly, seasonal and yearly basis. The objective of this study was to optimize i...
ERIC Educational Resources Information Center
Chew, Yuan Yuan; Chin, Cheen Fei; Yeong, Foong May
2015-01-01
Topics on the molecular basis underlying cancer are quite popular among students. Also, excellent textbooks abound that provide interesting materials for discussion during lectures and tutorials about major events leading to cancer formation and progression. However, much less is available for students to conduct experiments for the analysis of…
Reduced Order Methods for Prediction of Thermal-Acoustic Fatigue
NASA Technical Reports Server (NTRS)
Przekop, A.; Rizzi, S. A.
2004-01-01
The goal of this investigation is to assess the quality of high-cycle-fatigue life estimation via a reduced order method, for structures undergoing random nonlinear vibrations in a presence of thermal loading. Modal reduction is performed with several different suites of basis functions. After numerically solving the reduced order system equations of motion, the physical displacement time history is obtained by an inverse transformation and stresses are recovered. Stress ranges obtained through the rainflow counting procedure are used in a linear damage accumulation method to yield fatigue estimates. Fatigue life estimates obtained using various basis functions in the reduced order method are compared with those obtained from numerical simulation in physical degrees-of-freedom.
Quantum chemical calculations of glycine glutaric acid
NASA Astrophysics Data System (ADS)
Arioǧlu, ćaǧla; Tamer, Ömer; Avci, Davut; Atalay, Yusuf
2017-02-01
Density functional theory (DFT) calculations of glycine glutaric acid were performed by using B3LYP levels with 6-311++G(d,p) basis set. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. HOMO and LUMO energies were calculated, and the obtained energy gap shows that charge transfer occurs in the title compound. Vibrational frequencies were calculated and compare with experimental ones. 3D molecular surfaces of the title compound were simulated using the same level and basis set. Finally, the 13C and 1H NMR chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method.
A Nonlinear Reduced Order Method for Prediction of Acoustic Fatigue
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.
2006-01-01
The goal of this investigation is to assess the quality of high-cycle-fatigue life estimation via a reduced order method, for structures undergoing geometrically nonlinear random vibrations. Modal reduction is performed with several different suites of basis functions. After numerically solving the reduced order system equations of motion, the physical displacement time history is obtained by an inverse transformation and stresses are recovered. Stress ranges obtained through the rainflow counting procedure are used in a linear damage accumulation method to yield fatigue estimates. Fatigue life estimates obtained using various basis functions in the reduced order method are compared with those obtained from numerical simulation in physical degrees-of-freedom.
Radial Basis Function Neural Network Application to Power System Restoration Studies
Sadeghkhani, Iman; Ketabi, Abbas; Feuillet, Rene
2012-01-01
One of the most important issues in power system restoration is overvoltages caused by transformer switching. These overvoltages might damage some equipment and delay power system restoration. This paper presents a radial basis function neural network (RBFNN) to study transformer switching overvoltages. To achieve good generalization capability for developed RBFNN, equivalent parameters of the network are added to RBFNN inputs. The developed RBFNN is trained with the worst-case scenario of switching angle and remanent flux and tested for typical cases. The simulated results for a partial of 39-bus New England test system show that the proposed technique can estimate the peak values and duration of switching overvoltages with good accuracy. PMID:22792093
Dimensionality and noise in energy selective x-ray imaging
Alvarez, Robert E.
2013-01-01
Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging. Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator. Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 103. With the soft tissue component, it is 2.7 × 104. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB. Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems. PMID:24320442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Christian; Sawall, Stefan; Knaup, Michael
2014-06-15
Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger themore » loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a contrast factor for contrast-resolution plots. Furthermore, the authors calculate the contrast-to-noise ratio with the low contrast disks and the authors compare the agreement of the reconstructions with the ground truth by calculating the normalized cross-correlation and the root-mean-square deviation. To evaluate the clinical performance of the proposed method, the authors reconstruct patient data acquired with a Somatom Definition Flash dual source CT scanner (Siemens Healthcare, Forchheim, Germany). Results: The results of the simulation study show that among the compared algorithms AIR achieves the highest resolution and the highest agreement with the ground truth. Compared to the reference FBP reconstruction AIR is able to reduce the relative pixel noise by up to 50% and at the same time achieve a higher resolution by maintaining the edge information from the basis images. These results can be confirmed with the patient data. Conclusions: To evaluate the AIR algorithm simulated and measured patient data of a state-of-the-art clinical CT system were processed. It is shown, that generating CT images through the reconstruction of weighting coefficients has the potential to improve the resolution noise trade-off and thus to improve the dose usage in clinical CT.« less
Hydrologic modeling of two glaciated watersheds in Northeast Pennsylvania
Srinivasan, M.S.; Hamlett, J.M.; Day, R.L.; Sams, J.I.; Petersen, G.W.
1998-01-01
A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36 x 106 m3 and the simulated streamflow volume was 13.82 x 106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36??106 m3 and the simulated streamflow volume was 13.82??106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Dáithí A.; Risser, Mark D.; Angélil, Oliver M.
This paper presents two contributions for research into better understanding the role of anthropogenic warming in extreme weather. The first contribution is the generation of a large number of multi-decadal simulations using a medium-resolution atmospheric climate model, CAM5.1-1degree, under two scenarios of historical climate following the protocols of the C20C+ Detection and Attribution project: the one we have experienced (All-Hist), and one that might have been experienced in the absence of human interference with the climate system (Nat-Hist). These simulations are also specifically designed for understanding extreme weather and atmospheric variability in the context of anthropogenic climate change.The second contributionmore » takes advantage of the duration and size of these simulations in order to identify features of variability in the prescribed ocean conditions that may strongly influence calculated estimates of the role of anthropogenic emissions on extreme weather frequency (event attribution). There is a large amount of uncertainty in how much anthropogenic emissions should warm regional ocean surface temperatures, yet contributions to the C20C+ Detection and Attribution project and similar efforts so far use only one or a limited number of possible estimates of the ocean warming attributable to anthropogenic emissions when generating their Nat-Hist simulations. Thus, the importance of the uncertainty in regional attributable warming estimates to the results of event attribution studies is poorly understood. The identification of features of the anomalous ocean state that seem to strongly influence event attribution estimates should therefore be able to serve as a basis set for effective sampling of other plausible attributable warming patterns. The identification performed in this paper examines monthly temperature and precipitation output from the CAM5.1-1degree simulations averaged over 237 land regions, and compares interannual anomalous variations in the ratio between the frequencies of extremes in the All-Hist and Nat-Hist simulations against variations in ocean temperatures.« less
Stone, Dáithí A.; Risser, Mark D.; Angélil, Oliver M.; ...
2018-03-01
This paper presents two contributions for research into better understanding the role of anthropogenic warming in extreme weather. The first contribution is the generation of a large number of multi-decadal simulations using a medium-resolution atmospheric climate model, CAM5.1-1degree, under two scenarios of historical climate following the protocols of the C20C+ Detection and Attribution project: the one we have experienced (All-Hist), and one that might have been experienced in the absence of human interference with the climate system (Nat-Hist). These simulations are also specifically designed for understanding extreme weather and atmospheric variability in the context of anthropogenic climate change.The second contributionmore » takes advantage of the duration and size of these simulations in order to identify features of variability in the prescribed ocean conditions that may strongly influence calculated estimates of the role of anthropogenic emissions on extreme weather frequency (event attribution). There is a large amount of uncertainty in how much anthropogenic emissions should warm regional ocean surface temperatures, yet contributions to the C20C+ Detection and Attribution project and similar efforts so far use only one or a limited number of possible estimates of the ocean warming attributable to anthropogenic emissions when generating their Nat-Hist simulations. Thus, the importance of the uncertainty in regional attributable warming estimates to the results of event attribution studies is poorly understood. The identification of features of the anomalous ocean state that seem to strongly influence event attribution estimates should therefore be able to serve as a basis set for effective sampling of other plausible attributable warming patterns. The identification performed in this paper examines monthly temperature and precipitation output from the CAM5.1-1degree simulations averaged over 237 land regions, and compares interannual anomalous variations in the ratio between the frequencies of extremes in the All-Hist and Nat-Hist simulations against variations in ocean temperatures.« less
NEVESIM: event-driven neural simulation framework with a Python interface.
Pecevski, Dejan; Kappel, David; Jonke, Zeno
2014-01-01
NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies.
NEVESIM: event-driven neural simulation framework with a Python interface
Pecevski, Dejan; Kappel, David; Jonke, Zeno
2014-01-01
NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies. PMID:25177291
Monte Carlo simulations of secondary electron emission due to ion beam milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahady, Kyle; Tan, Shida; Greenzweig, Yuval
We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes thismore » study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.« less
Tieleman, D Peter
2006-10-01
A key function of biological membranes is to provide mechanisms for the controlled transport of ions, nutrients, metabolites, peptides and proteins between a cell and its environment. We are using computer simulations to study several processes involved in transport. In model membranes, the distribution of small molecules can be accurately calculated; we are making progress towards understanding the factors that determine the partitioning behaviour in the inhomogeneous lipid environment, with implications for drug distribution, membrane protein folding and the energetics of voltage gating. Lipid bilayers can be simulated at a scale that is sufficiently large to study significant defects, such as those caused by electroporation. Computer simulations of complex membrane proteins, such as potassium channels and ATP-binding cassette (ABC) transporters, can give detailed information about the atomistic dynamics that form the basis of ion transport, selectivity, conformational change and the molecular mechanism of ATP-driven transport. This is illustrated in the present review with recent simulation studies of the voltage-gated potassium channel KvAP and the ABC transporter BtuCD.
Using cognitive task analysis to develop simulation-based training for medical tasks.
Cannon-Bowers, Jan; Bowers, Clint; Stout, Renee; Ricci, Katrina; Hildabrand, Annette
2013-10-01
Pressures to increase the efficacy and effectiveness of medical training are causing the Department of Defense to investigate the use of simulation technologies. This article describes a comprehensive cognitive task analysis technique that can be used to simultaneously generate training requirements, performance metrics, scenario requirements, and simulator/simulation requirements for medical tasks. On the basis of a variety of existing techniques, we developed a scenario-based approach that asks experts to perform the targeted task multiple times, with each pass probing a different dimension of the training development process. In contrast to many cognitive task analysis approaches, we argue that our technique can be highly cost effective because it is designed to accomplish multiple goals. The technique was pilot tested with expert instructors from a large military medical training command. These instructors were employed to generate requirements for two selected combat casualty care tasks-cricothyroidotomy and hemorrhage control. Results indicated that the technique is feasible to use and generates usable data to inform simulation-based training system design. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Ab-Initio Molecular Dynamics Simulation of Graphene Sheet
NASA Astrophysics Data System (ADS)
Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.
2017-01-01
The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.
Physical Principle for Generation of Randomness
NASA Technical Reports Server (NTRS)
Zak, Michail
2009-01-01
A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)
Coarse-grained simulations of protein-protein association: an energy landscape perspective.
Ravikumar, Krishnakumar M; Huang, Wei; Yang, Sichun
2012-08-22
Understanding protein-protein association is crucial in revealing the molecular basis of many biological processes. Here, we describe a theoretical simulation pipeline to study protein-protein association from an energy landscape perspective. First, a coarse-grained model is implemented and its applications are demonstrated via molecular dynamics simulations for several protein complexes. Second, an enhanced search method is used to efficiently sample a broad range of protein conformations. Third, multiple conformations are identified and clustered from simulation data and further projected on a three-dimensional globe specifying protein orientations and interacting energies. Results from several complexes indicate that the crystal-like conformation is favorable on the energy landscape even if the landscape is relatively rugged with metastable conformations. A closer examination on molecular forces shows that the formation of associated protein complexes can be primarily electrostatics-driven, hydrophobics-driven, or a combination of both in stabilizing specific binding interfaces. Taken together, these results suggest that the coarse-grained simulations and analyses provide an alternative toolset to study protein-protein association occurring in functional biomolecular complexes. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Coarse-Grained Simulations of Protein-Protein Association: An Energy Landscape Perspective
Ravikumar, Krishnakumar M.; Huang, Wei; Yang, Sichun
2012-01-01
Understanding protein-protein association is crucial in revealing the molecular basis of many biological processes. Here, we describe a theoretical simulation pipeline to study protein-protein association from an energy landscape perspective. First, a coarse-grained model is implemented and its applications are demonstrated via molecular dynamics simulations for several protein complexes. Second, an enhanced search method is used to efficiently sample a broad range of protein conformations. Third, multiple conformations are identified and clustered from simulation data and further projected on a three-dimensional globe specifying protein orientations and interacting energies. Results from several complexes indicate that the crystal-like conformation is favorable on the energy landscape even if the landscape is relatively rugged with metastable conformations. A closer examination on molecular forces shows that the formation of associated protein complexes can be primarily electrostatics-driven, hydrophobics-driven, or a combination of both in stabilizing specific binding interfaces. Taken together, these results suggest that the coarse-grained simulations and analyses provide an alternative toolset to study protein-protein association occurring in functional biomolecular complexes. PMID:22947945
[Hi-Fi simulation: Teaching crisis resource management to surgery residents].
Georgescu, Mihai; Tanoubi, Issam; Drolet, Pierre; Robitaille, Arnaud; Perron, Roger; Patenaude, Jean Victor
2015-02-01
High-fidelity (HiFi) simulation has shown its effectiveness for teaching crisis resource management (CRM) principles, and our institutional experience in this area is mainly with anesthesiology residents. We recently added to our postgraduate curriculum a new CRM course designed to cater to the specific needs of surgical residents. This short communication describes the experience of the University of Montreal Simulation Centre (Centre d'Apprentissage des Attitudes et Habiletés Cliniques CAAHC) regarding HiFi simulationbased CRM and communication skills teaching for surgical residents. Thirty residents agreed to participate in a simulation course with pre-established scenarios and educational CRM objectives on a voluntary basis. When surveyed immediately after the activity, all residents agreed that the educational objectives were well defined (80% "strongly agree" and 20% "agree"). The survey also showed that the course was well accepted by all participants (96% "strongly agree" and 4% "agree"). Further trials with randomized groups and more reliable assessment tools are needed to validate our results. Still, integrating HiFi simulation based CRM learning in the surgical residency curriculum seems like an interesting step.
A physical-based gas-surface interaction model for rarefied gas flow simulation
NASA Astrophysics Data System (ADS)
Liang, Tengfei; Li, Qi; Ye, Wenjing
2018-01-01
Empirical gas-surface interaction models, such as the Maxwell model and the Cercignani-Lampis model, are widely used as the boundary condition in rarefied gas flow simulations. The accuracy of these models in the prediction of macroscopic behavior of rarefied gas flows is less satisfactory in some cases especially the highly non-equilibrium ones. Molecular dynamics simulation can accurately resolve the gas-surface interaction process at atomic scale, and hence can predict accurate macroscopic behavior. They are however too computationally expensive to be applied in real problems. In this work, a statistical physical-based gas-surface interaction model, which complies with the basic relations of boundary condition, is developed based on the framework of the washboard model. In virtue of its physical basis, this new model is capable of capturing some important relations/trends for which the classic empirical models fail to model correctly. As such, the new model is much more accurate than the classic models, and in the meantime is more efficient than MD simulations. Therefore, it can serve as a more accurate and efficient boundary condition for rarefied gas flow simulations.
Remapping dark matter halo catalogues between cosmological simulations
NASA Astrophysics Data System (ADS)
Mead, A. J.; Peacock, J. A.
2014-05-01
We present and test a method for modifying the catalogue of dark matter haloes produced from a given cosmological simulation, so that it resembles the result of a simulation with an entirely different set of parameters. This extends the method of Angulo & White, which rescales the full particle distribution from a simulation. Working directly with the halo catalogue offers an advantage in speed, and also allows modifications of the internal structure of the haloes to account for non-linear differences between cosmologies. Our method can be used directly on a halo catalogue in a self-contained manner without any additional information about the overall density field; although the large-scale displacement field is required by the method, this can be inferred from the halo catalogue alone. We show proof of concept of our method by rescaling a matter-only simulation with no baryon acoustic oscillation (BAO) features to a more standard Λ cold dark matter model containing a cosmological constant and a BAO signal. In conjunction with the halo occupation approach, this method provides a basis for the rapid generation of mock galaxy samples spanning a wide range of cosmological parameters.
NASA Astrophysics Data System (ADS)
Aboy, María; Santos, Iván; López, Pedro; Marqués, Luis A.; Pelaz, Lourdes
2018-04-01
Several atomistic techniques have been combined to identify the structure of defects responsible for X and W photoluminescence lines in crystalline Si. We used kinetic Monte Carlo simulations to reproduce irradiation and annealing conditions used in photoluminescence experiments. We found that W and X radiative centers are related to small Si self-interstitial clusters but coexist with larger Si self-interstitials clusters that can act as nonradiative centers. We used molecular dynamics simulations to explore the many different configurations of small Si self-interstitial clusters, and selected those having symmetry compatible with W and X photoluminescence centers. Using ab initio simulations, we calculated their formation energy, donor levels, and energy of local vibrational modes. On the basis of photoluminescence experiments and our multiscale theoretical calculations, we discuss the possible atomic configurations responsible for W and X photoluminescence centers in Si. Our simulations also reveal that the intensity of photoluminescence lines is the result of competition between radiative centers and nonradiative competitors, which can explain the experimental quenching of W and X lines even in the presence of the photoluminescence centers.
NASA Astrophysics Data System (ADS)
Tabata, Toshinori; Hiramatsu, Kazuaki; Harada, Masayoshi; Shiraishi, Hideto; Shuto, Toshio
This study investigated appropriate arrangement of nori aquafarming grounds from the view point of nori growth in the Ariake Sea coastal waters. Databases of the sea-bed topography and nori aquafarming grounds were constructed using GIS. Then the tidal currents and salinity in the Ariake Sea were simulated using a two-dimensional depth-integrated model, which was developed by integrating the three-dimensional continuity, momentum, and diffusion equations. The wetting and drying scheme was also introduced to account for the appearance and disappearance of tidal flats. The velocities and directions of the simulated tidal currents, salinity, and tidal land appearance were in good agreement with observed data. Five scenarios considered by the Fukuoka Prefectural Government were introduced in the simulation model to identify the most appropriate arrangement. An experimental formula for nitrogen assimilation kinetics in the nori body was introduced to evaluate the simulation results for the five scenarios. The scenarios with a reduced density of aquafarming grounds had increased nori growth, suggesting that the arrangement of the aquafarming grounds affected the nori growth. The simulation results were used to identify the most appropriate arrangement of aquafarming grounds.
Measurement of human pilot dynamic characteristics in flight simulation
NASA Technical Reports Server (NTRS)
Reedy, James T.
1987-01-01
Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.