DOE Office of Scientific and Technical Information (OSTI.GOV)
Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au
Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/ormore » second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.« less
NASA Astrophysics Data System (ADS)
Spackman, Peter R.; Karton, Amir
2015-05-01
Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol-1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol-1.
Accurate Methods for Large Molecular Systems (Preprint)
2009-01-06
tensor, EFP calculations are basis set dependent. The smallest recommended basis set is 6- 31++G( d , p )52 The dependence of the computational cost of...and second order perturbation theory (MP2) levels with the 6-31G( d , p ) basis set. Additional SFM tests are presented for a small set of alpha...helices using the 6-31++G( d , p ) basis set. The larger 6-311++G(3df,2p) basis set is employed for creating all EFPs used for non- bonded interactions, since
Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.
Saller, Maximilian A C; Habershon, Scott
2017-07-11
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
Basis sets for the calculation of core-electron binding energies
NASA Astrophysics Data System (ADS)
Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.
2018-05-01
Core-electron binding energies (CEBEs) computed within a Δ self-consistent field approach require large basis sets to achieve convergence with respect to the basis set limit. It is shown that supplementing a basis set with basis functions from the corresponding basis set for the element with the next highest nuclear charge (Z + 1) provides basis sets that give CEBEs close to the basis set limit. This simple procedure provides relatively small basis sets that are well suited for calculations where the description of a core-ionised state is important, such as time-dependent density functional theory calculations of X-ray emission spectroscopy.
Friese, Daniel H; Ringholm, Magnus; Gao, Bin; Ruud, Kenneth
2015-10-13
We present theory, implementation, and applications of a recursive scheme for the calculation of single residues of response functions that can treat perturbations that affect the basis set. This scheme enables the calculation of nonlinear light absorption properties to arbitrary order for other perturbations than an electric field. We apply this scheme for the first treatment of two-photon circular dichroism (TPCD) using London orbitals at the Hartree-Fock level of theory. In general, TPCD calculations suffer from the problem of origin dependence, which has so far been solved by using the velocity gauge for the electric dipole operator. This work now enables comparison of results from London orbital and velocity gauge based TPCD calculations. We find that the results from the two approaches both exhibit strong basis set dependence but that they are very similar with respect to their basis set convergence.
NASA Astrophysics Data System (ADS)
Goh, K. L.; Liew, S. C.; Hasegawa, B. H.
1997-12-01
Computer simulation results from our previous studies showed that energy dependent systematic errors exist in the values of attenuation coefficient synthesized using the basis material decomposition technique with acrylic and aluminum as the basis materials, especially when a high atomic number element (e.g., iodine from radiographic contrast media) was present in the body. The errors were reduced when a basis set was chosen from materials mimicking those found in the phantom. In the present study, we employed a basis material coefficients transformation method to correct for the energy-dependent systematic errors. In this method, the basis material coefficients were first reconstructed using the conventional basis materials (acrylic and aluminum) as the calibration basis set. The coefficients were then numerically transformed to those for a more desirable set materials. The transformation was done at the energies of the low and high energy windows of the X-ray spectrum. With this correction method using acrylic and an iodine-water mixture as our desired basis set, computer simulation results showed that accuracy of better than 2% could be achieved even when iodine was present in the body at a concentration as high as 10% by mass. Simulation work had also been carried out on a more inhomogeneous 2D thorax phantom of the 3D MCAT phantom. The results of the accuracy of quantitation were presented here.
Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin
2011-06-07
The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics
Benchmark of Ab Initio Bethe-Salpeter Equation Approach with Numeric Atom-Centered Orbitals
NASA Astrophysics Data System (ADS)
Liu, Chi; Kloppenburg, Jan; Kanai, Yosuke; Blum, Volker
The Bethe-Salpeter equation (BSE) approach based on the GW approximation has been shown to be successful for optical spectra prediction of solids and recently also for small molecules. We here present an all-electron implementation of the BSE using numeric atom-centered orbital (NAO) basis sets. In this work, we present benchmark of BSE implemented in FHI-aims for low-lying excitation energies for a set of small organic molecules, the well-known Thiel's set. The difference between our implementation (using an analytic continuation of the GW self-energy on the real axis) and the results generated by a fully frequency dependent GW treatment on the real axis is on the order of 0.07 eV for the benchmark molecular set. We study the convergence behavior to the complete basis set limit for excitation spectra, using a group of valence correlation consistent NAO basis sets (NAO-VCC-nZ), as well as for standard NAO basis sets for ground state DFT with extended augmentation functions (NAO+aug). The BSE results and convergence behavior are compared to linear-response time-dependent DFT, where excellent numerical convergence is shown for NAO+aug basis sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Tuomas P., E-mail: tuomas.rossi@alumni.aalto.fi; Sakko, Arto; Puska, Martti J.
We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate thatmore » the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.« less
On basis set superposition error corrected stabilization energies for large n-body clusters.
Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael
2011-10-07
In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. © 2011 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, Yoshifumi, E-mail: y.noguchi@issp.u-tokyo.ac.jp; Hiyama, Miyabi; Akiyama, Hidefumi
2014-07-28
The optical properties of an isolated firefly luciferin anion are investigated by using first-principles calculations, employing the many-body perturbation theory to take into account the excitonic effect. The calculated photoabsorption spectra are compared with the results obtained using the time-dependent density functional theory (TDDFT) employing the localized atomic orbital (AO) basis sets and a recent experiment in vacuum. The present method well reproduces the line shape at the photon energy corresponding to the Rydberg and resonance excitations but overestimates the peak positions by about 0.5 eV. However, the TDDFT-calculated positions of some peaks are closer to those of the experiment.more » We also investigate the basis set dependency in describing the free electron states above vacuum level and the excitons involving the transitions to the free electron states and conclude that AO-only basis sets are inaccurate for free electron states and the use of a plane wave basis set is required.« less
Orbital-Dependent Density Functionals for Chemical Catalysis
2014-10-17
noncollinear density functional theory to show that the low-spin state of Mn3 in a model of the oxygen -evolving complex of photosystem II avoids...DK, which denotes the cc-pV5Z-DK basis set for 3d metals and hydrogen and the ma-cc- pV5Z-DK basis set for oxygen ) and to nonrelativistic all...cc-pV5Z basis set for oxygen ). As compared to NCBS-DK results, all ECP calculations perform worse than def2-TZVP all-electron relativistic
Electric dipole moment of diatomic molecules by configuration interaction. IV.
NASA Technical Reports Server (NTRS)
Green, S.
1972-01-01
The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.
On the effects of basis set truncation and electron correlation in conformers of 2-hydroxy-acetamide
NASA Astrophysics Data System (ADS)
Szarecka, A.; Day, G.; Grout, P. J.; Wilson, S.
Ab initio quantum chemical calculations have been used to study the differences in energy between two gas phase conformers of the 2-hydroxy-acetamide molecule that possess intramolecular hydrogen bonding. In particular, rotation around the central C-C bond has been considered as a factor determining the structure of the hydrogen bond and stabilization of the conformer. Energy calculations include full geometiy optimization using both the restricted matrix Hartree-Fock model and second-order many-body perturbation theory with a number of commonly used basis sets. The basis sets employed ranged from the minimal STO-3G set to [`]split-valence' sets up to 6-31 G. The effects of polarization functions were also studied. The results display a strong basis set dependence.
NASA Astrophysics Data System (ADS)
Romero, Angel H.
2017-10-01
The influence of ring puckering angle on the multipole moments of sixteen four-membered heterocycles (1-16) was theoretically estimated using MP2 and different DFTs in combination with the 6-31+G(d,p) basis set. To obtain an accurate evaluation, CCSD/cc-pVDZ level and, the MP2 and PBE1PBE methods in combination with the aug-cc-pVDZ and aug-cc-pVTZ basis sets were performed on the planar geometries of 1-16. In general, the DFT and MP2 approaches provided an identical dependence of the electrical properties with the puckering angle for 1-16. Quantitatively, the quality of the level of theory and basis sets affects significant the predictions of the multipole moments, in particular for the heterocycles containing C=O and C=S bonds. Convergence basis sets within the MP2 and PBE1PBE approximations are reached in the dipole moment calculations when the aug-cc-pVTZ basis set is used, while the quadrupole and octupole moment computations require a larger basis set than aug-cc-pVTZ. On the other hand, the multipole moments showed a strong dependence with the molecular geometry and the nature of the carbon-heteroatom bonds. Specifically, the C-X bond determines the behavior of the μ(ϕ), θ(ϕ) and Ώ(ϕ) functions, while the C=Y bond plays an important role in the magnitude of the studied properties.
Galas, David J; Sakhanenko, Nikita A; Skupin, Alexander; Ignac, Tomasz
2014-02-01
Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.
Projected Hybrid Orbitals: A General QM/MM Method
2015-01-01
A projected hybrid orbital (PHO) method was described to model the covalent boundary in a hybrid quantum mechanical and molecular mechanical (QM/MM) system. The PHO approach can be used in ab initio wave function theory and in density functional theory with any basis set without introducing system-dependent parameters. In this method, a secondary basis set on the boundary atom is introduced to formulate a set of hybrid atomic orbtials. The primary basis set on the boundary atom used for the QM subsystem is projected onto the secondary basis to yield a representation that provides a good approximation to the electron-withdrawing power of the primary basis set to balance electronic interactions between QM and MM subsystems. The PHO method has been tested on a range of molecules and properties. Comparison with results obtained from QM calculations on the entire system shows that the present PHO method is a robust and balanced QM/MM scheme that preserves the structural and electronic properties of the QM region. PMID:25317748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.
We establish a new estimate for the binding energy between two benzene molecules in the parallel-displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum, (ii) the expansion of the orbital basis set, and (iii) the level of electron correlation. The calculations were performed at the second-order Møller–Plesset perturbation (MP2) and the coupled cluster including singles, doubles, and a perturbative estimate of triples replacement [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for basis set superposition error (BSSE), we have estimated the complete basis set (CBS) limit bymore » employing the family of Dunning’s correlation-consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2772 basis functions), whereas the largest CCSD(T) calculation was with the cc-pV5Z basis set (1752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-ζ quality, observing that both its intra- and intermolecular parts have practically converged with the triple-ζ quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [within <0.01 kcal/mol for MP2 and <0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSE-corrected binding energies was found to converge to the same CBS limit much faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (ΔE) and BSSE-corrected (ΔE cp) binding energies, their average value (ΔE ave), as well as the average of the latter over the plain and augmented sets (Δ~E ave) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the π–π binding energy in the PD benzene dimer is D e = -2.65 ± 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is -2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is -5.00 ± 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). Finally, the spin-component-scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while scaled opposite spin (SOS) MP2 yielded results that are too low when compared to CCSD(T).« less
Kolmann, Stephen J; Jordan, Meredith J T
2010-02-07
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
NASA Astrophysics Data System (ADS)
Kolmann, Stephen J.; Jordan, Meredith J. T.
2010-02-01
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sissay, Adonay; Abanador, Paul; Mauger, François
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less
Petruzielo, F R; Toulouse, Julien; Umrigar, C J
2011-02-14
A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.
NASA Astrophysics Data System (ADS)
van Hoeve, Miriam D.; Klobukowski, Mariusz
2018-03-01
Simulation of the electronic spectra of HRgF (Rg = Ar, Kr, Xe, Rn) was carried out using the time-dependent density functional method, with the CAMB3LYP functional and several basis sets augmented with even-tempered diffuse functions. A full spectral assignment for the HRgF systems was done. The effect of the rare gas matrix on the HRgF (Rg = Ar and Kr) spectra was investigated and it was found that the matrix blue-shifted the spectra. Scalar relativistic effects on the spectra were also studied and it was found that while the excitation energies of HArF and HKrF were insignificantly affected by relativistic effects, most of the excitation energies of HXeF and HRnF were red-shifted. Spin-orbit coupling was found to significantly affect excitation energies in HRnF. Analysis of performance of the model core potential basis set relative to all-electron (AE) basis sets showed that the former basis set increased computational efficiency and gave results similar to those obtained with the AE basis set.
NASA Astrophysics Data System (ADS)
Boffi, Nicholas M.; Jain, Manish; Natan, Amir
2016-02-01
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations.
NASA Astrophysics Data System (ADS)
Hamed, Samia; Rangel, Tonatiuh; Bruneval, Fabien; Neaton, Jeffrey B.
Quantitative understanding of charged and neutral excitations of organic molecules is critical in diverse areas of study that include astrophysics and the development of energy technologies that are clean and efficient. The recent use of local basis sets with ab initio many-body perturbation theory in the GW approximation and the Bethe-Saltpeter equation approach (BSE), methods traditionally applied to periodic condensed phases with a plane-wave basis, has opened the door to detailed study of such excitations for molecules, as well as accurate numerical benchmarks. Here, through a series of systematic benchmarks with a Gaussian basis, we report on the extent to which the predictive power and utility of this approach depend critically on interdependent underlying approximations and choices for molecules, including the mean-field starting point (eg optimally-tuned range separated hybrids, pure DFT functionals, and untuned hybrids), the GW scheme, and the Tamm Dancoff approximation. We demonstrate the effects of these choices in the context of Thiels' set while drawing analogies to linear-response time-dependent DFT and making comparisons to best theoretical estimates from higher-order wavefunction-based theories.
NASA Astrophysics Data System (ADS)
Duer, Stanisław; Wrzesień, Paweł; Duer, Radosław
2017-10-01
This article describes rules and conditions for making a structure (a set) of facts for an expert knowledge base of the intelligent system to diagnose Wind Power Plants' equipment. Considering particular operational conditions of a technical object, that is a set of Wind Power Plant's equipment, this is a significant issue. A structural model of Wind Power Plant's equipment is developed. Based on that, a functional - diagnostic model of Wind Power Plant's equipment is elaborated. That model is a basis for determining primary elements of the object structure, as well as for interpreting a set of diagnostic signals and their reference signals. The key content of this paper is a description of rules for building of facts on the basis of developed analytical dependence. According to facts, their dependence is described by rules for transferring of a set of pieces of diagnostic information into a specific set of facts. The article consists of four chapters that concern particular issues on the subject.
Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A
2016-06-15
We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G(**) basis set with up to 8100 basis functions show that PS-FLR-TDDFT CPU time scales as N(2.05) with the number of basis functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
Zhang, Gaigong; Lin, Lin; Hu, Wei; ...
2017-01-27
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin; Hu, Wei
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKemmish, Laura K., E-mail: laura.mckemmish@gmail.com; Research School of Chemistry, Australian National University, Canberra
Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RAMPITUP. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or verymore » large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.« less
Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data
NASA Astrophysics Data System (ADS)
Reinscheid, F.; Reinscheid, U. M.
2016-02-01
Using limonene as test molecule, the success and the limitations of three chiroptical methods (optical rotatory dispersion (ORD), electronic and vibrational circular dichroism, ECD and VCD) could be demonstrated. At quite low levels of theory (mpw1pw91/cc-pvdz, IEFPCM (integral equation formalism polarizable continuum model)) the experimental ORD values differ by less than 10 units from the calculated values. The modelling in the condensed phase still represents a challenge so that experimental NMR data were used to test for aggregation and solvent-solute interactions. After establishing a reasonable structural model, only the ECD spectra prediction showed a decisive dependence on the basis set: only augmented (in the case of Dunning's basis sets) or diffuse (in the case of Pople's basis sets) basis sets predicted the position and shape of the ECD bands correctly. Based on these result we propose a procedure to assign the absolute configuration (AC) of an unknown compound using the comparison between experimental and calculated chiroptical data.
NASA Astrophysics Data System (ADS)
Frisch, Michael J.; Binkley, J. Stephen; Schaefer, Henry F., III
1984-08-01
The relative energies of the stationary points on the FH2 and H2CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Møller-Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H2→FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol-1 of the experimental value using the largest basis set considered. The qualitative features of the H2CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended.
Buryak, Ilya; Lokshtanov, Sergei; Vigasin, Andrey
2012-09-21
The present work aims at ab initio characterization of the integrated intensity temperature variation of collision-induced absorption (CIA) in N(2)-H(2)(D(2)). Global fits of potential energy surface (PES) and induced dipole moment surface (IDS) were made on the basis of CCSD(T) (coupled cluster with single and double and perturbative triple excitations) calculations with aug-cc-pV(T,Q)Z basis sets. Basis set superposition error correction and extrapolation to complete basis set (CBS) limit techniques were applied to both energy and dipole moment. Classical second cross virial coefficient calculations accounting for the first quantum correction were employed to prove the quality of the obtained PES. The CIA temperature dependence was found in satisfactory agreement with available experimental data.
The Emotional and Moral Basis of Rationality
ERIC Educational Resources Information Center
Boostrom, Robert
2013-01-01
This chapter explores the basis of rationality, arguing that critical thinking tends to be taught in schools as a set of skills because of the failure to recognize that choosing to think critically depends on the prior development of stable sentiments or moral habits that nourish a rational self. Primary among these stable sentiments are the…
NASA Astrophysics Data System (ADS)
Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.
Locally dense basis sets (
Zhu, Wuming; Trickey, S B
2017-12-28
In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.
NASA Astrophysics Data System (ADS)
Zhu, Wuming; Trickey, S. B.
2017-12-01
In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.
Sensitivity of the Properties of Ruthenium “Blue Dimer” to Method, Basis Set, and Continuum Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozkanlar, Abdullah; Clark, Aurora E.
2012-05-23
The ruthenium “blue dimer” [(bpy)2RuIIIOH2]2O4+ is best known as the first well-defined molecular catalyst for water oxidation. It has been subject to numerous computational studies primarily employing density functional theory. However, those studies have been limited in the functionals, basis sets, and continuum models employed. The controversy in the calculated electronic structure and the reaction energetics of this catalyst highlights the necessity of benchmark calculations that explore the role of density functionals, basis sets, and continuum models upon the essential features of blue-dimer reactivity. In this paper, we report Kohn-Sham complete basis set (KS-CBS) limit extrapolations of the electronic structuremore » of “blue dimer” using GGA (BPW91 and BP86), hybrid-GGA (B3LYP), and meta-GGA (M06-L) density functionals. The dependence of solvation free energy corrections on the different cavity types (UFF, UA0, UAHF, UAKS, Bondi, and Pauling) within polarizable and conductor-like polarizable continuum model has also been investigated. The most common basis sets of double-zeta quality are shown to yield results close to the KS-CBS limit; however, large variations are observed in the reaction energetics as a function of density functional and continuum cavity model employed.« less
Pavanello, Michele; Tung, Wei-Cheng; Adamowicz, Ludwik
2009-11-14
Efficient optimization of the basis set is key to achieving a very high accuracy in variational calculations of molecular systems employing basis functions that are explicitly dependent on the interelectron distances. In this work we present a method for a systematic enlargement of basis sets of explicitly correlated functions based on the iterative-complement-interaction approach developed by Nakatsuji [Phys. Rev. Lett. 93, 030403 (2004)]. We illustrate the performance of the method in the variational calculations of H(3) where we use explicitly correlated Gaussian functions with shifted centers. The total variational energy (-1.674 547 421 Hartree) and the binding energy (-15.74 cm(-1)) obtained in the calculation with 1000 Gaussians are the most accurate results to date.
Hahn, David K; RaghuVeer, Krishans; Ortiz, J V
2014-05-15
Time-dependent density functional theory (TD-DFT) and electron propagator theory (EPT) are used to calculate the electronic transition energies and ionization energies, respectively, of species containing phosphorus or sulfur. The accuracy of TD-DFT and EPT, in conjunction with various basis sets, is assessed with data from gas-phase spectroscopy. TD-DFT is tested using 11 prominent exchange-correlation functionals on a set of 37 vertical and 19 adiabatic transitions. For vertical transitions, TD-CAM-B3LYP calculations performed with the MG3S basis set are lowest in overall error, having a mean absolute deviation from experiment of 0.22 eV, or 0.23 eV over valence transitions and 0.21 eV over Rydberg transitions. Using a larger basis set, aug-pc3, improves accuracy over the valence transitions via hybrid functionals, but improved accuracy over the Rydberg transitions is only obtained via the BMK functional. For adiabatic transitions, all hybrid functionals paired with the MG3S basis set perform well, and B98 is best, with a mean absolute deviation from experiment of 0.09 eV. The testing of EPT used the Outer Valence Green's Function (OVGF) approximation and the Partial Third Order (P3) approximation on 37 vertical first ionization energies. It is found that OVGF outperforms P3 when basis sets of at least triple-ζ quality in the polarization functions are used. The largest basis set used in this study, aug-pc3, obtained the best mean absolute error from both methods -0.08 eV for OVGF and 0.18 eV for P3. The OVGF/6-31+G(2df,p) level of theory is particularly cost-effective, yielding a mean absolute error of 0.11 eV.
Context-dependent control over attentional capture
Cosman, Joshua D.; Vecera, Shaun P.
2014-01-01
A number of studies have demonstrated that the likelihood of a salient item capturing attention is dependent on the “attentional set” an individual employs in a given situation. The instantiation of an attentional set is often viewed as a strategic, voluntary process, relying on working memory systems that represent immediate task priorities. However, influential theories of attention and automaticity propose that goal-directed control can operate more or less automatically on the basis of longer-term task representations, a notion supported by a number of recent studies. Here, we provide evidence that longer-term contextual learning can rapidly and automatically influence the instantiation of a given attentional set. Observers learned associations between specific attentional sets and specific task-irrelevant background scenes during a training session, and in the ensuing test session simply reinstating particular scenes on a trial by trial basis biased observers to employ the associated attentional set. This directly influenced the magnitude of attentional capture, suggesting that memory for the context in which a task is performed can play an important role in the ability to instantiate a particular attentional set and overcome distraction by salient, task-irrelevant information. PMID:23025581
Rizzo, Antonio; Vahtras, Olav
2011-06-28
A computational approach to the calculation of excited state electronic circular dichroism (ESECD) spectra of chiral molecules is discussed. Frequency dependent quadratic response theory is employed to compute the rotatory strength for transitions between excited electronic states, by employing both a magnetic gauge dependent and a (velocity-based) magnetic gauge independent approach. Application is made to the lowest excited states of two prototypical chiral molecules, propylene oxide, also known as 1,2-epoxypropane or methyl oxirane, and R-(+)-1,1'-bi(2-naphthol), or BINOL. The dependence of the rotatory strength for transitions between the lowest three excited states of methyl oxirane upon the quality and extension of the basis set is analyzed, by employing a hierarchy of correlation consistent basis sets. Once established that basis sets of at least triple zeta quality, and at least doubly augmented, are sufficient to ensure sufficiently converged results, at least at the Hartree-Fock self-consistent field (HF-SCF) level, the rotatory strengths for all transitions between the lowest excited electronic states of methyl oxirane are computed and analyzed, employing HF-SCF, and density functional theory (DFT) electronic structure models. For DFT, both the popular B3LYP and its recently highly successful CAM-B3LYP extension are exploited. The strong dependence of the spectra upon electron correlation is highlighted. A HF-SCF and DFT study is carried out also for BINOL, a system where excited states show the typical pairing structure arising from the interaction of the two monomeric moieties, and whose conformational changes following photoexcitation were studied recently with via time-resolved CD.
Security of quantum key distribution with iterative sifting
NASA Astrophysics Data System (ADS)
Tamaki, Kiyoshi; Lo, Hoi-Kwong; Mizutani, Akihiro; Kato, Go; Lim, Charles Ci Wen; Azuma, Koji; Curty, Marcos
2018-01-01
Several quantum key distribution (QKD) protocols employ iterative sifting. After each quantum transmission round, Alice and Bob disclose part of their setting information (including their basis choices) for the detected signals. This quantum phase then ends when the basis dependent termination conditions are met, i.e., the numbers of detected signals per basis exceed certain pre-agreed threshold values. Recently, however, Pfister et al (2016 New J. Phys. 18 053001) showed that the basis dependent termination condition makes QKD insecure, especially in the finite key regime, and they suggested to disclose all the setting information after finishing the quantum phase. However, this protocol has two main drawbacks: it requires that Alice possesses a large memory, and she also needs to have some a priori knowledge about the transmission rate of the quantum channel. Here we solve these two problems by introducing a basis-independent termination condition to the iterative sifting in the finite key regime. The use of this condition, in combination with Azuma’s inequality, provides a precise estimation on the amount of privacy amplification that needs to be applied, thus leading to the security of QKD protocols, including the loss-tolerant protocol (Tamaki et al 2014 Phys. Rev. A 90 052314), with iterative sifting. Our analysis indicates that to announce the basis information after each quantum transmission round does not compromise the key generation rate of the loss-tolerant protocol. Our result allows the implementation of wider classes of classical post-processing techniques in QKD with quantified security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzminskii, M.B.; Bagator'yants, A.A.; Kazanskii, V.B.
1986-08-01
The authors perform ab-initio calculations, by the SCF MO LCAO method, of the electronic and geometric structure of the systems CuCO /SUP n+/ (n=0, 1) and potential curves of CO, depending on the charge state of the copper, with variation of all geometric parameters. The calculations of open-shell electronic states were performed by the unrestricted SCF method in a minimal basis set (I, STO-3G for the C and O, and MINI-1' for the Cu) and in a valence two-exponential basis set (II, MIDI-1 for the C and O, and MIDI'2' for the Cu). The principal results from the calculation inmore » the more flexible basis II are presented and the agreement between the results obtained in the minimal basis I and these data is then analyzed qualitatively.« less
Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.
Götz, Andreas W; Kollmar, Christian; Hess, Bernd A
2005-09-01
We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.
Heats of NF(sub n) (n= 1-3) and NF(sub n)(+)(n = 1-3)
NASA Technical Reports Server (NTRS)
Ricca, Alessandra; Arnold, James (Technical Monitor)
1998-01-01
Accurate heats of formation are computed for NF(sub n) and NF(sub n)(+), for n = 1-3. The geometries and the vibrational frequencies are determined at the B3LYP level of theory. The energetics are determined at the CCSD(T) level of theory. Basis set limit values are obtained by extrapolation. In those cases where the CCSD(T) calculations become prohibitively large, the basis set extrapolation is performed at the MP2 level. The temperature dependence of the heat of formation, heat capacity, and entropy are computed for the temperature range 300 to 4000 K and fit to a polynomial.
Accuracy of Td-DFT in the Ultraviolet and Circular Dichroism Spectra of Deoxyguanosine and Uridine.
Miyahara, Tomoo; Nakatsuji, Hiroshi
2018-01-11
Accuracy of the time-dependent density functional theory (Td-DFT) was examined for the ultraviolet (UV) and circular dichroism (CD) spectra of deoxyguanosine (dG) and uridine, using 11 different DFT functionals and two different basis sets. The Td-DFT results of the UV and CD spectra were strongly dependent on the functionals used. The basis-set dependence was observed only for the CD spectral calculations. For the UV spectra, the B3LYP and PBE0 functionals gave relatively good results. For the CD spectra, the B3LYP and PBE0 with 6-311G(d,p) basis gave relatively permissible result only for dG. The results of other functionals were difficult to be used for the studies of the UV and CD spectra, though the symmetry adapted cluster-configuration interaction (SAC-CI) method reproduced well the experimental spectra of these molecules. To obtain valuable information from the theoretical calculations of the UV and CD spectra, the theoretical tool must be able to reproduce correctly both of the intensities and peak positions of the UV and CD spectra. Then, we can analyze the reasons of the changes of the intensity and/or the peak position to clarify the chemistry involved. It is difficult to recommend Td-DFT as such tools of science, at least from the examinations using dG and uridine.
Model's sparse representation based on reduced mixed GMsFE basis methods
NASA Astrophysics Data System (ADS)
Jiang, Lijian; Li, Qiuqi
2017-06-01
In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.
Model's sparse representation based on reduced mixed GMsFE basis methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn
2017-06-01
In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a largemore » number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.« less
Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamini, Vittorino
2010-02-15
Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less
Al-Harbi, L M; El-Mossalamy, E H; Obaid, A Y; Al-Jedaani, A H
2014-01-01
Charge transfer complexes of substituted aryl Schiff bases as donors with picric acid and m-dinitrobenzene as acceptors were investigated by using computational analysis calculated by Configuration Interaction Singles Hartree-Fock (CIS-HF) at standard 6-31G∗ basis set and Time-Dependent Density-Functional Theory (TD-DFT) levels of theory at standard 6-31G∗∗ basis set, infrared spectra, visible and nuclear magnetic resonance spectra are investigated. The optimized geometries and vibrational frequencies were evaluated. The energy and oscillator strength were calculated by Configuration Interaction Singles Hartree-Fock method (CIS-HF) and the Time-Dependent Density-Functional Theory (TD-DFT) results. Electronic properties, such as HOMO and LUMO energies and band gaps of CTCs set, were studied by the Time-Dependent density functional theory with Becke-Lee-Young-Parr (B3LYP) composite exchange correlation functional and by Configuration Interaction Singles Hartree-Fock method (CIS-HF). The ionization potential Ip and electron affinity EA were calculated by PM3, HF and DFT methods. The columbic force was calculated theoretically by using (CIS-HF and TD-DFT) methods. This study confirms that the theoretical calculation of vibrational frequencies for (aryl Schiff bases--(m-dinitrobenzene and picric acid)) complexes are quite useful for the vibrational assignment and for predicting new vibrational frequencies. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.
2012-10-01
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T; Dannenberg, J J
2012-10-07
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.
2012-01-01
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states. PMID:23039587
First-principle modelling of forsterite surface properties: Accuracy of methods and basis sets.
Demichelis, Raffaella; Bruno, Marco; Massaro, Francesco R; Prencipe, Mauro; De La Pierre, Marco; Nestola, Fabrizio
2015-07-15
The seven main crystal surfaces of forsterite (Mg2 SiO4 ) were modeled using various Gaussian-type basis sets, and several formulations for the exchange-correlation functional within the density functional theory (DFT). The recently developed pob-TZVP basis set provides the best results for all properties that are strongly dependent on the accuracy of the wavefunction. Convergence on the structure and on the basis set superposition error-corrected surface energy can be reached also with poorer basis sets. The effect of adopting different DFT functionals was assessed. All functionals give the same stability order for the various surfaces. Surfaces do not exhibit any major structural differences when optimized with different functionals, except for higher energy orientations where major rearrangements occur around the Mg sites at the surface or subsurface. When dispersions are not accounted for, all functionals provide similar surface energies. The inclusion of empirical dispersions raises the energy of all surfaces by a nearly systematic value proportional to the scaling factor s of the dispersion formulation. An estimation for the surface energy is provided through adopting C6 coefficients that are more suitable than the standard ones to describe O-O interactions in minerals. A 2 × 2 supercell of the most stable surface (010) was optimized. No surface reconstruction was observed. The resulting structure and surface energy show no difference with respect to those obtained when using the primitive cell. This result validates the (010) surface model here adopted, that will serve as a reference for future studies on adsorption and reactivity of water and carbon dioxide at this interface. © 2015 Wiley Periodicals, Inc.
Srinivasan, Aravind; Ray, Asok K
2006-01-01
Silicon fullerene like nanostructures with six carbon atoms on the surface of Si60 cages by substitution, as well as inside the cage at various symmetry orientations have been studied within the generalized gradient approximation to density functional theory. Full geometry optimizations have been performed without any symmetry constraints using the Gaussian 03 suite of programs and the LANL2DZ basis set. Thus, for the silicon atom, the Hay-Wadt pseudopotential with the associated basis set are used for the core electrons and the valence electrons, respectively. For the carbon atom, the Dunning/Huzinaga double zeta basis set is employed. Electronic and geometric properties of the nanostructures are presented and discussed in detail. It was found that optimized silicon-carbon fullerene like nanostructures have increased stability compared to bare Si60 cage and the stability depends on the orientation of carbon atoms, as well as on the nature of bonding between silicon and carbon atoms and also on the carbon-carbon bonding.
Vibrational spectra, DFT quantum chemical calculations and conformational analysis of P-iodoanisole.
Arivazhagan, M; Anitha Rexalin, D; Geethapriya, J
2013-09-01
The solid phase FT-IR and FT-Raman spectra of P-iodoanisole (P-IA) have been recorded in the regions 400-4000 and 50-4000 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by ab initio (HF) and density functional theory (B3LYP) methods with LanL2DZ as basis set. The potential energy surface scan for the selected dihedral angle of P-IA has been performed to identify stable conformer. The optimized structure parameters and vibrational wavenumbers of stable conformer have been predicted by density functional B3LYP method with LanL2DZ (with effective core potential representations of electrons near the nuclei for post-third row atoms) basis set. The nucleophilic and electrophilic sites obtained from the molecular electrostatic potential (MEP) surface were calculated. The temperature dependence of thermodynamic properties has been analyzed. Several thermodynamic parameters have been calculated using B3LYP with LanL2DZ basis set. Copyright © 2013 Elsevier B.V. All rights reserved.
Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set
NASA Astrophysics Data System (ADS)
Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, David
2018-05-01
The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papajak, Ewa; Truhlar, Donald G.
We present sets of convergent, partially augmented basis set levels corresponding to subsets of the augmented “aug-cc-pV(n+d)Z” basis sets of Dunning and co-workers. We show that for many molecular properties a basis set fully augmented with diffuse functions is computationally expensive and almost always unnecessary. On the other hand, unaugmented cc-pV(n+d)Z basis sets are insufficient for many properties that require diffuse functions. Therefore, we propose using intermediate basis sets. We developed an efficient strategy for partial augmentation, and in this article, we test it and validate it. Sequentially deleting diffuse basis functions from the “aug” basis sets yields the “jul”,more » “jun”, “may”, “apr”, etc. basis sets. Tests of these basis sets for Møller-Plesset second-order perturbation theory (MP2) show the advantages of using these partially augmented basis sets and allow us to recommend which basis sets offer the best accuracy for a given number of basis functions for calculations on large systems. Similar truncations in the diffuse space can be performed for the aug-cc-pVxZ, aug-cc-pCVxZ, etc. basis sets.« less
Performance of correlation receivers in the presence of impulse noise.
NASA Technical Reports Server (NTRS)
Moore, J. D.; Houts, R. C.
1972-01-01
An impulse noise model, which assumes that each noise burst contains a randomly weighted version of a basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. Unlike the performance results for additive white Gaussian noise, it is shown that the error performance for impulse noise is affected by the choice of signal-set basis function, and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy. Furthermore, it is demonstrated that the correlation-receiver error performance can be improved by inserting a properly specified nonlinear device prior to the receiver input.
Dobson, Adam J.; Chaston, John M.; Newell, Peter D.; Donahue, Leanne; Hermann, Sara L.; Sannino, David R.; Westmiller, Stephanie; Wong, Adam C.-N.; Clark, Andrew G.; Lazzaro, Brian P.; Douglas, Angela E.
2015-01-01
Animals bear communities of gut microorganisms with substantial effects on animal nutrition, but the host genetic basis of these effects is unknown. Here, we use Drosophila to demonstrate substantial among-genotype variation in the effects of eliminating the gut microbiota on five host nutritional indices (weight, and protein, lipid, glucose and glycogen contents); this includes variation in both the magnitude and direction of microbiota-dependent effects. Genome-wide associations to identify the genetic basis of the microbiota-dependent variation reveal polymorphisms in largely non-overlapping sets of genes associated with variation in the nutritional traits, including strong representation of conserved genes functioning in signaling. Key genes identified by the GWA study are validated by loss-of-function mutations that altered microbiota-dependent nutritional effects. We conclude that the microbiota interacts with the animal at multiple points in the signaling and regulatory networks that determine animal nutrition. These interactions with the microbiota are likely conserved across animals, including humans. PMID:25692519
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jibben, Zechariah Joel; Herrmann, Marcus
Here, we present a Runge-Kutta discontinuous Galerkin method for solving conservative reinitialization in the context of the conservative level set method. This represents an extension of the method recently proposed by Owkes and Desjardins [21], by solving the level set equations on the refined level set grid and projecting all spatially-dependent variables into the full basis used by the discontinuous Galerkin discretization. By doing so, we achieve the full k+1 order convergence rate in the L1 norm of the level set field predicted for RKDG methods given kth degree basis functions when the level set profile thickness is held constantmore » with grid refinement. Shape and volume errors for the 0.5-contour of the level set, on the other hand, are found to converge between first and second order. We show a variety of test results, including the method of manufactured solutions, reinitialization of a circle and sphere, Zalesak's disk, and deforming columns and spheres, all showing substantial improvements over the high-order finite difference traditional level set method studied for example by Herrmann. We also demonstrate the need for kth order accurate normal vectors, as lower order normals are found to degrade the convergence rate of the method.« less
NASA Astrophysics Data System (ADS)
Lisio, Giovanni; Candia, Sante; Campolo, Giovanni; Pascucci, Dario
2011-08-01
Thales Alenia Space Italy has carried out the definition of a configurable (on mission basis) PUS ECSS-E_70- 41A see [3] Centralised Services Layer, characterised by:- a mission-independent set of 'classes' implementing the services logic.- a mission-dependent set of configuration data and selection flags.The software components belonging to this layer implement the PUS standard services ECSS-E_70-41A and a set of mission-specific services. The design of this layer has been performed by separating the services mechanisms (mission-independent execution logic) from the services configuration information (mission-dependent data). Once instantiated for a specific mission, the PUS Centralised Services Layer offers a large set of capabilities available to the CSCI's Applications Layer. This paper describes the building blocks PUS architectural solution developed by Thales Alenia Space Italy, emphasizing the mechanisms which allow easy configuration of the Scalable PUS library to fulfill the requirements of different missions. This paper also focus the Thales Alenia Space solution to automatically generate the mission-specific "PUS Services" flight software based on mission specific requirements. Building the PUS services mechanisms, which are configurable on mission basis is part of the PRIMA (Multipurpose Spacecraft Bus ) 'missionisation' process improvement. PRIMA Platform Avionics Software (ASW) is continuously evolving to improve modularity and standardization of interfaces and of SW components (see references in [1]).
Mapping Dependence Between Extreme Rainfall and Storm Surge
NASA Astrophysics Data System (ADS)
Wu, Wenyan; McInnes, Kathleen; O'Grady, Julian; Hoeke, Ron; Leonard, Michael; Westra, Seth
2018-04-01
Dependence between extreme storm surge and rainfall can have significant implications for flood risk in coastal and estuarine regions. To supplement limited observational records, we use reanalysis surge data from a hydrodynamic model as the basis for dependence mapping, providing information at a resolution of approximately 30 km along the Australian coastline. We evaluated this approach by comparing the dependence estimates from modeled surge to that calculated using historical surge records from 79 tide gauges around Australia. The results show reasonable agreement between the two sets of dependence values, with the exception of lower seasonal variation in the modeled dependence values compared to the observed data, especially at locations where there are multiple processes driving extreme storm surge. This is due to the combined impact of local bathymetry as well as the resolution of the hydrodynamic model and its meteorological inputs. Meteorological drivers were also investigated for different combinations of extreme rainfall and surge—namely rain-only, surge-only, and coincident extremes—finding that different synoptic patterns are responsible for each combination. The ability to supplement observational records with high-resolution modeled surge data enables a much more precise quantification of dependence along the coastline, strengthening the physical basis for assessments of flood risk in coastal regions.
27ps DFTMD Simulations of Maltose using a Reduced Basis Set
USDA-ARS?s Scientific Manuscript database
The disaccharide, a-maltose, has been studied using constant energy density functional molecular dynamics (DFTMD) at the B3LYP/6-31+G*/4-31G+COSMO (solvent) level of theory. Maltose is of particular interest as the variation in glycosidic dihedral angles has been found to be dependent upon the star...
38 CFR 3.802 - Medal of Honor.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Compensation, and Dependency and Indemnity Compensation Special Benefits § 3.802 Medal of Honor. (a) The... certificate issued in which the right of the person named in the certificate to the special pension is set forth. The special pension will be authorized on the basis of such certification. (Authority: 38 U.S.C...
NASA Astrophysics Data System (ADS)
Kruse, Holger; Grimme, Stefan
2012-04-01
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model chemistry yields MAD=0.68 kcal/mol, which represents a huge improvement over plain B3LYP/6-31G* (MAD=2.3 kcal/mol). Application of gCP-corrected B97-D3 and HF-D3 on a set of large protein-ligand complexes prove the robustness of the method. Analytical gCP gradients make optimizations of large systems feasible with small basis sets, as demonstrated for the inter-ring distances of 9-helicene and most of the complexes in Hobza's S22 test set. The method is implemented in a freely available FORTRAN program obtainable from the author's website.
Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set
Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; ...
2018-02-07
The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less
Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.
The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less
Horizontal vectorization of electron repulsion integrals.
Pritchard, Benjamin P; Chow, Edmond
2016-10-30
We present an efficient implementation of the Obara-Saika algorithm for the computation of electron repulsion integrals that utilizes vector intrinsics to calculate several primitive integrals concurrently in a SIMD vector. Initial benchmarks display a 2-4 times speedup with AVX instructions over comparable scalar code, depending on the basis set. Speedup over scalar code is found to be sensitive to the level of contraction of the basis set, and is best for (lAlB|lClD) quartets when lD = 0 or lB=lD=0, which makes such a vectorization scheme particularly suitable for density fitting. The basic Obara-Saika algorithm, how it is vectorized, and the performance bottlenecks are analyzed and discussed. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cotton-Mouton effect and shielding polarizabilities of ethylene: An MCSCF study
NASA Astrophysics Data System (ADS)
Coriani, Sonia; Rizzo, Antonio; Ruud, Kenneth; Helgaker, Trygve
1997-03-01
The static hypermagnetizabilities and nuclear shielding polarizabilities of the carbon and hydrogen atoms of ethylene have been computed using multiconfigurational linear-response theory and a finite-field method, in a mixed analytical-numerical approach. Extended sets of magnetic-field-dependent basis functions have been employed in large MCSCF calculations, involving active spaces giving rise to a few million configurations in the finite-field perturbed symmetry. The convergence of the observables with respect to the extension of the basis set as well as the effect of electron correlation have been investigated. Whereas for the shielding polarizabilities we can compare with other published SCF results, the ab initio estimates for the static hypermagnetizabilities and the observable to which they are related - the Cotton-Mouton constant, - are presented for the first time.
NASA Astrophysics Data System (ADS)
Maranzana, Andrea; Giordana, Anna; Indarto, Antonius; Tonachini, Glauco; Barone, Vincenzo; Causà, Mauro; Pavone, Michele
2013-12-01
Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB. Counterpoise-corrected interaction energies ΔEAB are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A-B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [EMP2/CBS] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔECC-MP, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔEAB with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol-1. The zero-point vibrational energy corrected estimates Δ(EAB+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D0 measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π-π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms).
Maranzana, Andrea; Giordana, Anna; Indarto, Antonius; Tonachini, Glauco; Barone, Vincenzo; Causà, Mauro; Pavone, Michele
2013-12-28
Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB. Counterpoise-corrected interaction energies ΔEAB are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A-B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [EMP2/CBS] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔECC-MP, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔEAB with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol(-1). The zero-point vibrational energy corrected estimates Δ(EAB+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D0 measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π-π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms).
IR and NMR spectroscopic correlation of enterobactin by DFT
NASA Astrophysics Data System (ADS)
Moreno, M.; Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E. K. U.
2018-06-01
Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097-6104], Enterobactin (H6EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H6EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections sbnd LC-PBEsbnd and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H6EB structures dependent of dihedral angles. The results show a significant difference between the Osbnd H and Nsbnd H bands, while the Cdbnd O amide and Osbnd (Cdbnd O)sbnd IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H6EB structure. Calculated 1H and 13C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H6EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H6EB is also reported of manner to enrich the knowledge about its reactivity.
Jibben, Zechariah Joel; Herrmann, Marcus
2017-08-24
Here, we present a Runge-Kutta discontinuous Galerkin method for solving conservative reinitialization in the context of the conservative level set method. This represents an extension of the method recently proposed by Owkes and Desjardins [21], by solving the level set equations on the refined level set grid and projecting all spatially-dependent variables into the full basis used by the discontinuous Galerkin discretization. By doing so, we achieve the full k+1 order convergence rate in the L1 norm of the level set field predicted for RKDG methods given kth degree basis functions when the level set profile thickness is held constantmore » with grid refinement. Shape and volume errors for the 0.5-contour of the level set, on the other hand, are found to converge between first and second order. We show a variety of test results, including the method of manufactured solutions, reinitialization of a circle and sphere, Zalesak's disk, and deforming columns and spheres, all showing substantial improvements over the high-order finite difference traditional level set method studied for example by Herrmann. We also demonstrate the need for kth order accurate normal vectors, as lower order normals are found to degrade the convergence rate of the method.« less
Correlation consistent basis sets for the atoms In–Xe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahler, Andrew; Wilson, Angela K., E-mail: akwilson@unt.edu
In this work, the correlation consistent family of Gaussian basis sets has been expanded to include all-electron basis sets for In–Xe. The methodology for developing these basis sets is described, and several examples of the performance and utility of the new sets have been provided. Dissociation energies and bond lengths for both homonuclear and heteronuclear diatomics demonstrate the systematic convergence behavior with respect to increasing basis set quality expected by the family of correlation consistent basis sets in describing molecular properties. Comparison with recently developed correlation consistent sets designed for use with the Douglas-Kroll Hamiltonian is provided.
Optimization of Turbine Blade Design for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Shyy, Wei
1998-01-01
To facilitate design optimization of turbine blade shape for reusable launching vehicles, appropriate techniques need to be developed to process and estimate the characteristics of the design variables and the response of the output with respect to the variations of the design variables. The purpose of this report is to offer insight into developing appropriate techniques for supporting such design and optimization needs. Neural network and polynomial-based techniques are applied to process aerodynamic data obtained from computational simulations for flows around a two-dimensional airfoil and a generic three- dimensional wing/blade. For the two-dimensional airfoil, a two-layered radial-basis network is designed and trained. The performances of two different design functions for radial-basis networks, one based on the accuracy requirement, whereas the other one based on the limit on the network size. While the number of neurons needed to satisfactorily reproduce the information depends on the size of the data, the neural network technique is shown to be more accurate for large data set (up to 765 simulations have been used) than the polynomial-based response surface method. For the three-dimensional wing/blade case, smaller aerodynamic data sets (between 9 to 25 simulations) are considered, and both the neural network and the polynomial-based response surface techniques improve their performance as the data size increases. It is found while the relative performance of two different network types, a radial-basis network and a back-propagation network, depends on the number of input data, the number of iterations required for radial-basis network is less than that for the back-propagation network.
NASA Astrophysics Data System (ADS)
Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin
2016-05-01
With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Jonathon; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Neaton, Jeffrey B.
With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methodsmore » and systems examined, the most complete basis is Jensen’s pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.« less
Improving stroke outcome: the benefits of increasing availability of technology.
Heller, R. F.; Langhorne, P.; James, E.
2000-01-01
INTRODUCTION: A decision analysis was performed to explore the potential benefits of interventions to improve the outcome of patients admitted to hospital with a stroke, in the context of the technology available in different parts of the world. METHODS: The outcome of death or dependency was used with a six-month end-point. RESULTS: Four settings were identified that would depend on the resources available. The proportion of stroke patients who were dead or dependent at six months was 61.5% with no intervention at all. Setting 4, with the only intervention being the delayed introduction of aspirin, produced a 0.5% absolute improvement in outcome (death or dependency), and the addition of an organized stroke unit (Setting 3) produced the largest incremental improvement, of 2.7%. Extra interventions associated with non-urgent computed tomography and thus the ability to avoid anticoagulation or aspirin for those with a haemorrhagic stroke (Setting 2), and immediate computed tomography scanning to allow the use of thrombolytics in non-haemorrhagic stroke (Setting 1), produced only small incremental benefits of 0.4% in each case. DISCUSSION: To reduce the burden of illness due to stroke, efforts at primary prevention are essential and likely to have a greater impact than even the best interventions after the event. In the absence of good primary prevention, whatever is possible must be done to reduce the sequelae of stroke. This analysis provides a rational basis for beginning the development of clinical guidelines applicable to the economic setting of the patient. PMID:11143194
Characterization of impulse noise and analysis of its effect upon correlation receivers
NASA Technical Reports Server (NTRS)
Houts, R. C.; Moore, J. D.
1971-01-01
A noise model is formulated to describe the impulse noise in many digital systems. A simplified model, which assumes that each noise burst contains a randomly weighted version of the same basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. A procedure is established for extending the results for the simplified noise model to the general model. Unlike the performance results for Gaussian noise, it is shown that for impulse noise the error performance is affected by the choice of signal-set basis functions and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy.
Structural and spectroscopic investigation of the N-methylformamide-water (NMF···3H2O) complex
NASA Astrophysics Data System (ADS)
Hammami, F.; Ghalla, H.; Chebaane, A.; Nasr, S.
2015-01-01
In this work, theoretical studies on the structure, molecular properties, hydrogen bonding, and vibrational spectra of the N-methylformamide-water (NMF...3H2O) complex will be presented. The molecular geometry was optimised by using Hartree-Fock (HF), second Møller-Plesset (MP2), and density functional theory methods with different basis sets. The harmonic vibrational frequencies are computed by using the B3LYP method with 6-311++G(d,p) as a basis set and then scaled with a suitable scale factor to yield good coherence with the observed values. The temperature dependence of various thermodynamic functions (heat capacity, entropy, and enthalpy changes) was also studied. A detailed analysis of the nature of the hydrogen bonding, using natural bond orbital (NBO) and topological atoms in molecules theory, has been reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook
2015-03-07
We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less
Capraro, Valerio; Cococcioni, Giorgia
2015-01-01
Recent studies suggest that cooperative decision-making in one-shot interactions is a history-dependent dynamic process: promoting intuition versus deliberation typically has a positive effect on cooperation (dynamism) among people living in a cooperative setting and with no previous experience in economic games on cooperation (history dependence). Here, we report on a laboratory experiment exploring how these findings transfer to a non-cooperative setting. We find two major results: (i) promoting intuition versus deliberation has no effect on cooperative behaviour among inexperienced subjects living in a non-cooperative setting; (ii) experienced subjects cooperate more than inexperienced subjects, but only under time pressure. These results suggest that cooperation is a learning process, rather than an instinctive impulse or a self-controlled choice, and that experience operates primarily via the channel of intuition. Our findings shed further light on the cognitive basis of human cooperative decision-making and provide further support for the recently proposed social heuristics hypothesis. PMID:26156762
Priority-setting for achieving universal health coverage
Chalkidou, Kalipso; Glassman, Amanda; Marten, Robert; Vega, Jeanette; Tritasavit, Nattha; Gyansa-Lutterodt, Martha; Seiter, Andreas; Kieny, Marie Paule; Hofman, Karen; Culyer, Anthony J
2016-01-01
Abstract Governments in low- and middle-income countries are legitimizing the implementation of universal health coverage (UHC), following a United Nation’s resolution on UHC in 2012 and its reinforcement in the sustainable development goals set in 2015. UHC will differ in each country depending on country contexts and needs, as well as demand and supply in health care. Therefore, fundamental issues such as objectives, users and cost–effectiveness of UHC have been raised by policy-makers and stakeholders. While priority-setting is done on a daily basis by health authorities – implicitly or explicitly – it has not been made clear how priority-setting for UHC should be conducted. We provide justification for explicit health priority-setting and guidance to countries on how to set priorities for UHC. PMID:27274598
Optimization of selected molecular orbitals in group basis sets.
Ferenczy, György G; Adams, William H
2009-04-07
We derive a local basis equation which may be used to determine the orbitals of a group of electrons in a system when the orbitals of that group are represented by a group basis set, i.e., not the basis set one would normally use but a subset suited to a specific electronic group. The group orbitals determined by the local basis equation minimize the energy of a system when a group basis set is used and the orbitals of other groups are frozen. In contrast, under the constraint of a group basis set, the group orbitals satisfying the Huzinaga equation do not minimize the energy. In a test of the local basis equation on HCl, the group basis set included only 12 of the 21 functions in a basis set one might ordinarily use, but the calculated active orbital energies were within 0.001 hartree of the values obtained by solving the Hartree-Fock-Roothaan (HFR) equation using all 21 basis functions. The total energy found was just 0.003 hartree higher than the HFR value. The errors with the group basis set approximation to the Huzinaga equation were larger by over two orders of magnitude. Similar results were obtained for PCl(3) with the group basis approximation. Retaining more basis functions allows an even higher accuracy as shown by the perfect reproduction of the HFR energy of HCl with 16 out of 21 basis functions in the valence basis set. When the core basis set was also truncated then no additional error was introduced in the calculations performed for HCl with various basis sets. The same calculations with fixed core orbitals taken from isolated heavy atoms added a small error of about 10(-4) hartree. This offers a practical way to calculate wave functions with predetermined fixed core and reduced base valence orbitals at reduced computational costs. The local basis equation can also be used to combine the above approximations with the assignment of local basis sets to groups of localized valence molecular orbitals and to derive a priori localized orbitals. An appropriately chosen localization and basis set assignment allowed a reproduction of the energy of n-hexane with an error of 10(-5) hartree, while the energy difference between its two conformers was reproduced with a similar accuracy for several combinations of localizations and basis set assignments. These calculations include localized orbitals extending to 4-5 heavy atoms and thus they require to solve reduced dimension secular equations. The dimensions are not expected to increase with increasing system size and thus the local basis equation may find use in linear scaling electronic structure calculations.
Endo, Minoru; Kondo, Takahito; Shimada, Rie; Tsukahara, Kiyoaki
2018-06-01
Patients with body mass index (BMI) < 25 kg/m 2 and obstructive sleep apnea syndrome (OSAS) are highly suspicious for position-dependent OSAS. Diagnosis of position-dependent/position-independent OSAS can be difficult in patients satisfying both 'BMI >25 kg/m 2 ' and 'any of tongue enlargement (TE), palatine tonsil hypertrophy (PTH) and obstruction by Muller's maneuver (OMM)'. Polysomnography is warranted in such patients. The objective was to retrospectively elucidate criteria for differentiating position-dependent OSAS on the basis of patient information and physical examinations of the upper airway obtainable in clinics. The 643 patients were categorized as positional patients (PPs) or non-positional patients (NPPs). The patient background factors examined were sex, age, BMI, and hypertension. TE, PTH, pharyngeal tonsil hypertrophy, and OMM were evaluated. Cross-validation was performed using even-numbered registrations as the training set group (Group A) and odd-numbered registrations as the test case group (Group B). In Group A, patients with BMI <25 kg/m 2 were clearly more frequent among PP than among NPP. In Group A with BMI ≥25 kg/m 2 , significant differences were found for TE, PTH and OMM. Significant differences were found between 0 and 1/2/3 for number of factors. Results generated from Group A were validated in Group B.
Feller, David; Peterson, Kirk A
2013-08-28
The effectiveness of the recently developed, explicitly correlated coupled cluster method CCSD(T)-F12b is examined in terms of its ability to reproduce atomization energies derived from complete basis set extrapolations of standard CCSD(T). Most of the standard method findings were obtained with aug-cc-pV7Z or aug-cc-pV8Z basis sets. For a few homonuclear diatomic molecules it was possible to push the basis set to the aug-cc-pV9Z level. F12b calculations were performed with the cc-pVnZ-F12 (n = D, T, Q) basis set sequence and were also extrapolated to the basis set limit using a Schwenke-style, parameterized formula. A systematic bias was observed in the F12b method with the (VTZ-F12/VQZ-F12) basis set combination. This bias resulted in the underestimation of reference values associated with small molecules (valence correlation energies <0.5 E(h)) and an even larger overestimation of atomization energies for bigger systems. Consequently, caution should be exercised in the use of F12b for high accuracy studies. Root mean square and mean absolute deviation error metrics for this basis set combination were comparable to complete basis set values obtained with standard CCSD(T) and the aug-cc-pVDZ through aug-cc-pVQZ basis set sequence. However, the mean signed deviation was an order of magnitude larger. Problems partially due to basis set superposition error were identified with second row compounds which resulted in a weak performance for the smaller VDZ-F12/VTZ-F12 combination of basis sets.
NASA Astrophysics Data System (ADS)
Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.
2015-12-01
It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.
NASA Astrophysics Data System (ADS)
Chmela, Jiří; Harding, Michael E.
2018-06-01
Optimised auxiliary basis sets for lanthanide atoms (Ce to Lu) for four basis sets of the Karlsruhe error-balanced segmented contracted def2 - series (SVP, TZVP, TZVPP and QZVPP) are reported. These auxiliary basis sets enable the use of the resolution-of-the-identity (RI) approximation in post Hartree-Fock methods - as for example, second-order perturbation theory (MP2) and coupled cluster (CC) theory. The auxiliary basis sets are tested on an enlarged set of about a hundred molecules where the test criterion is the size of the RI error in MP2 calculations. Our tests also show that the same auxiliary basis sets can be used together with different effective core potentials. With these auxiliary basis set calculations of MP2 and CC quality can now be performed efficiently on medium-sized molecules containing lanthanides.
The Nonobvious Basis of Ownership: Preschool Children Trace the History and Value of Owned Objects
ERIC Educational Resources Information Center
Gelman, Susan A.; Manczak, Erika M.; Noles, Nicholaus S.
2012-01-01
For adults, ownership is nonobvious: (a) determining ownership depends more on an object's history than on perceptual cues, and (b) ownership confers special value on an object ("endowment effect"). This study examined these concepts in preschoolers (2.0-4.4) and adults (n = 112). Participants saw toy sets in which 1 toy was designated as the…
Spin Contamination Error in Optimized Geometry of Singlet Carbene (1A1) by Broken-Symmetry Method
NASA Astrophysics Data System (ADS)
Kitagawa, Yasutaka; Saito, Toru; Nakanishi, Yasuyuki; Kataoka, Yusuke; Matsui, Toru; Kawakami, Takashi; Okumura, Mitsutaka; Yamaguchi, Kizashi
2009-10-01
Spin contamination errors of a broken-symmetry (BS) method in optimized structural parameters of the singlet methylene (1A1) molecule are quantitatively estimated for the Hartree-Fock (HF) method, post-HF methods (CID, CCD, MP2, MP3, MP4(SDQ)), and a hybrid DFT (B3LYP) method. For the purpose, the optimized geometry by the BS method is compared with that of an approximate spin projection (AP) method. The difference between the BS and the AP methods is about 10-20° in the HCH angle. In order to examine the basis set dependency of the spin contamination error, calculated results by STO-3G, 6-31G*, and 6-311++G** are compared. The error depends on the basis sets, but the tendencies of each method are classified into two types. Calculated energy splitting values between the triplet and the singlet states (ST gap) indicate that the contamination of the stable triplet state makes the BS singlet solution stable and the ST gap becomes small. The energy order of the spin contamination error in the ST gap is estimated to be 10-1 eV.
Li, Wentao; Yuan, Jiuchuang; Yuan, Meiling; Zhang, Yong; Yao, Minghai; Sun, Zhigang
2018-01-03
A new global potential energy surface (PES) of the O + + H 2 system was constructed with the permutation invariant polynomial neural network method, using about 63 000 ab initio points, which were calculated by employing the multi-reference configuration interaction method with aug-cc-pVTZ and aug-cc-pVQZ basis sets. For improving the accuracy of the PES, the basis set was extrapolated to the complete basis set limit by the two-point extrapolation method. The root mean square error of fitting was only 5.28 × 10 -3 eV. The spectroscopic constants of the diatomic molecules were calculated and compared with previous theoretical and experimental results, which suggests that the present results agree well with the experiment. On the newly constructed PES, reaction dynamics studies were performed using the time-dependent wave packet method. The calculated integral cross sections (ICSs) were compared with the available theoretical and experimental results, where a good agreement with the experimental data was seen. Significant forward and backward scatterings were observed in the whole collision energy region studied. At the same time, the differential cross sections biased the forward scattering, especially at higher collision energies.
Ab Initio Density Fitting: Accuracy Assessment of Auxiliary Basis Sets from Cholesky Decompositions.
Boström, Jonas; Aquilante, Francesco; Pedersen, Thomas Bondo; Lindh, Roland
2009-06-09
The accuracy of auxiliary basis sets derived by Cholesky decompositions of the electron repulsion integrals is assessed in a series of benchmarks on total ground state energies and dipole moments of a large test set of molecules. The test set includes molecules composed of atoms from the first three rows of the periodic table as well as transition metals. The accuracy of the auxiliary basis sets are tested for the 6-31G**, correlation consistent, and atomic natural orbital basis sets at the Hartree-Fock, density functional theory, and second-order Møller-Plesset levels of theory. By decreasing the decomposition threshold, a hierarchy of auxiliary basis sets is obtained with accuracies ranging from that of standard auxiliary basis sets to that of conventional integral treatments.
A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.
Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F
2017-11-01
The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach. This spatial model constitutes an elegant alternative to voxel-based approaches in neuroimaging studies; not only are their atoms biologically informed, they are also adaptive to high resolutions, represent high dimensions efficiently, and capture long-range spatial dependencies, which are important and challenging objectives for neuroimaging data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Texture zeros and hierarchical masses from flavour (mis)alignment
NASA Astrophysics Data System (ADS)
Hollik, W. G.; Saldana-Salazar, U. J.
2018-03-01
We introduce an unconventional interpretation of the fermion mass matrix elements. As the full rotational freedom of the gauge-kinetic terms renders a set of infinite bases called weak bases, basis-dependent structures as mass matrices are unphysical. Matrix invariants, on the other hand, provide a set of basis-independent objects which are of more relevance. We employ one of these invariants to give a new parametrisation of the mass matrices. By virtue of it, one gains control over its implicit implications on several mass matrix structures. The key element is the trace invariant which resembles the equation of a hypersphere with a radius equal to the Frobenius norm of the mass matrix. With the concepts of alignment or misalignment we can identify texture zeros with certain alignments whereas Froggatt-Nielsen structures in the matrix elements are governed by misalignment. This method allows further insights of traditional approaches to the underlying flavour geometry.
Actively addressed single pixel full-colour plasmonic display
NASA Astrophysics Data System (ADS)
Franklin, Daniel; Frank, Russell; Wu, Shin-Tson; Chanda, Debashis
2017-05-01
Dynamic, colour-changing surfaces have many applications including displays, wearables and active camouflage. Plasmonic nanostructures can fill this role by having the advantages of ultra-small pixels, high reflectivity and post-fabrication tuning through control of the surrounding media. However, previous reports of post-fabrication tuning have yet to cover a full red-green-blue (RGB) colour basis set with a single nanostructure of singular dimensions. Here, we report a method which greatly advances this tuning and demonstrates a liquid crystal-plasmonic system that covers the full RGB colour basis set, only as a function of voltage. This is accomplished through a surface morphology-induced, polarization-dependent plasmonic resonance and a combination of bulk and surface liquid crystal effects that manifest at different voltages. We further demonstrate the system's compatibility with existing LCD technology by integrating it with a commercially available thin-film-transistor array. The imprinted surface interfaces readily with computers to display images as well as video.
Calculation of smooth potential energy surfaces using local electron correlation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mata, Ricardo A.; Werner, Hans-Joachim
2006-11-14
The geometry dependence of excitation domains in local correlation methods can lead to noncontinuous potential energy surfaces. We propose a simple domain merging procedure which eliminates this problem in many situations. The method is applied to heterolytic bond dissociations of ketene and propadienone, to SN2 reactions of Cl{sup -} with alkylchlorides, and in a quantum mechanical/molecular mechanical study of the chorismate mutase enzyme. It is demonstrated that smooth potentials are obtained in all cases. Furthermore, basis set superposition error effects are reduced in local calculations, and it is found that this leads to better basis set convergence when computing barriermore » heights or weak interactions. When the electronic structure strongly changes between reactants or products and the transition state, the domain merging procedure leads to a balanced description of all structures and accurate barrier heights.« less
NASA Astrophysics Data System (ADS)
Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin
2017-06-01
With the aim of mitigating the basis set error in density functional theory (DFT) calculations employing local basis sets, we herein develop two empirical corrections for basis set superposition error (BSSE) in the def2-SVPD basis, a basis which—when stripped of BSSE—is capable of providing near-complete-basis DFT results for non-covalent interactions. Specifically, we adapt the existing pairwise geometrical counterpoise (gCP) approach to the def2-SVPD basis, and we develop a beyond-pairwise approach, DFT-C, which we parameterize across a small set of intermolecular interactions. Both gCP and DFT-C are evaluated against the traditional Boys-Bernardi counterpoise correction across a set of 3402 non-covalent binding energies and isomerization energies. We find that the DFT-C method represents a significant improvement over gCP, particularly for non-covalently-interacting molecular clusters. Moreover, DFT-C is transferable among density functionals and can be combined with existing functionals—such as B97M-V—to recover large-basis results at a fraction of the cost.
Analysis of Plasma Bubble Signatures in the Ionosphere
2011-03-01
the equinoctial months resulted in greater slant TEC differences and, hence, greater communication problems. The results of this study not only...resulting in miscalculated enemy positions and misidentified space objects and orbit tracks. Errors in orbital positions could result in disastrous...uses a time-dependent physics-based model of the global ionosphere-plasmasphere and a Kalman filter as a basis for assimilating a diverse set of real
Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin
2003-01-01
A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...
NASA Astrophysics Data System (ADS)
de Jong, G. Theodoor; Geerke, Daan P.; Diefenbach, Axel; Matthias Bickelhaupt, F.
2005-06-01
We have evaluated the performance of 24 popular density functionals for describing the potential energy surface (PES) of the archetypal oxidative addition reaction of the methane C-H bond to the palladium atom by comparing the results with our recent ab initio [CCSD(T)] benchmark study of this reaction. The density functionals examined cover the local density approximation (LDA), the generalized gradient approximation (GGA), meta-GGAs as well as hybrid density functional theory. Relativistic effects are accounted for through the zeroth-order regular approximation (ZORA). The basis-set dependence of the density-functional-theory (DFT) results is assessed for the Becke-Lee-Yang-Parr (BLYP) functional using a hierarchical series of Slater-type orbital (STO) basis sets ranging from unpolarized double-ζ (DZ) to quadruply polarized quadruple-ζ quality (QZ4P). Stationary points on the reaction surface have been optimized using various GGA functionals, all of which yield geometries that differ only marginally. Counterpoise-corrected relative energies of stationary points are converged to within a few tenths of a kcal/mol if one uses the doubly polarized triple-ζ (TZ2P) basis set and the basis-set superposition error (BSSE) drops to 0.0 kcal/mol for our largest basis set (QZ4P). Best overall agreement with the ab initio benchmark PES is achieved by functionals of the GGA, meta-GGA, and hybrid-DFT type, with mean absolute errors of 1.3-1.4 kcal/mol and errors in activation energies ranging from +0.8 to -1.4 kcal/mol. Interestingly, the well-known BLYP functional compares very reasonably with an only slightly larger mean absolute error of 2.5 kcal/mol and an underestimation by -1.9 kcal/mol of the overall barrier (i.e., the difference in energy between the TS and the separate reactants). For comparison, with B3LYP we arrive at a mean absolute error of 3.8 kcal/mol and an overestimation of the overall barrier by 4.5 kcal/mol.
IR and NMR spectroscopic correlation of enterobactin by DFT.
Moreno, M; Zacarias, A; Porzel, A; Velasquez, L; Gonzalez, G; Alegría-Arcos, M; Gonzalez-Nilo, F; Gross, E K U
2018-06-05
Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097-6104], Enterobactin (H 6 EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H 6 EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections LC-PBE and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H 6 EB structures dependent of dihedral angles. The results show a significant difference between the OH and NH bands, while the CO amide and O(CO) IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H 6 EB structure. Calculated 1 H and 13 C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H 6 EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H 6 EB is also reported of manner to enrich the knowledge about its reactivity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Polarization functions for the modified m6-31G basis sets for atoms Ga through Kr.
Mitin, Alexander V
2013-09-05
The 2df polarization functions for the modified m6-31G basis sets of the third-row atoms Ga through Kr (Int J Quantum Chem, 2007, 107, 3028; Int J. Quantum Chem, 2009, 109, 1158) are proposed. The performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets were examined in molecular calculations carried out by the density functional theory (DFT) method with B3LYP hybrid functional, Møller-Plesset perturbation theory of the second order (MP2), quadratic configuration interaction method with single and double substitutions and were compared with those for the known 6-31G basis sets as well as with the other similar 641 and 6-311G basis sets with and without polarization functions. Obtained results have shown that the performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets are better in comparison with the performances of the known 6-31G, 6-31G(d,p) and 6-31G(2df,p) basis sets. These improvements are mainly reached due to better approximations of different electrons belonging to the different atomic shells in the modified basis sets. Applicability of the modified basis sets in thermochemical calculations is also discussed. © 2013 Wiley Periodicals, Inc.
Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baudin, Pablo, E-mail: baudin.pablo@gmail.com; qLEAP – Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C; Marín, José Sánchez
2014-03-14
A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well asmore » the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.« less
Capraro, Valerio; Cococcioni, Giorgia
2015-07-22
Recent studies suggest that cooperative decision-making in one-shot interactions is a history-dependent dynamic process: promoting intuition versus deliberation typically has a positive effect on cooperation (dynamism) among people living in a cooperative setting and with no previous experience in economic games on cooperation (history dependence). Here, we report on a laboratory experiment exploring how these findings transfer to a non-cooperative setting. We find two major results: (i) promoting intuition versus deliberation has no effect on cooperative behaviour among inexperienced subjects living in a non-cooperative setting; (ii) experienced subjects cooperate more than inexperienced subjects, but only under time pressure. These results suggest that cooperation is a learning process, rather than an instinctive impulse or a self-controlled choice, and that experience operates primarily via the channel of intuition. Our findings shed further light on the cognitive basis of human cooperative decision-making and provide further support for the recently proposed social heuristics hypothesis. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Finite Nuclei in the Quark-Meson Coupling Model.
Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W
2016-03-04
We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.
Leverentz, Hannah R; Truhlar, Donald G
2009-06-09
This work tests the capability of the electrostatically embedded many-body (EE-MB) method to calculate accurate (relative to conventional calculations carried out at the same level of electronic structure theory and with the same basis set) binding energies of mixed clusters (as large as 9-mers) consisting of water, ammonia, sulfuric acid, and ammonium and bisulfate ions. This work also investigates the dependence of the accuracy of the EE-MB approximation on the type and origin of the charges used for electrostatically embedding these clusters. The conclusions reached are that for all of the clusters and sets of embedding charges studied in this work, the electrostatically embedded three-body (EE-3B) approximation is capable of consistently yielding relative errors of less than 1% and an average relative absolute error of only 0.3%, and that the performance of the EE-MB approximation does not depend strongly on the specific set of embedding charges used. The electrostatically embedded pairwise approximation has errors about an order of magnitude larger than EE-3B. This study also explores the question of why the accuracy of the EE-MB approximation shows such little dependence on the types of embedding charges employed.
Document Set Differentiability Analyzer v. 0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Thor D.
Software is a JMP Scripting Language (JSL) script designed to evaluate the differentiability of a set of documents that exhibit some conceptual commonalities but are expected to describe substantially different – thus differentiable – categories. The script imports the document set, a subset of which may be partitioned into an additions pool. The bulk of the documents form a basis pool. Text analysis is applied to the basis pool to extract a mathematical representation of its conceptual content, referred to as the document concept space. A bootstrapping approach is applied to that mathematical representation in order to generate a representationmore » of a large population of randomly designed documents that could be written within the concept space, notably without actually writing the text of those documents.The Kolmogorov-Smirnov test is applied to determine whether the basis pool document set exhibits superior differentiation relative to the randomly designed virtual documents produced by bootstrapping. If an additions pool exists, the documents are incrementally added to the basis pool, choosing the best differentiated remaining document at each step. In this manner the impact of additional categories to overall document set differentiability may be assessed.The software was developed to assess the differentiability of job description document sets. Differentiability is key to meaningful categorization. Poor job differentiation may have economic, ethical, and/or legal implications for an organization. Job categories are used in the assignment of market-based salaries; consequently, poor differentiation of job duties may set the stage for legal challenges if very similar jobs pay differently depending on title, a circumstance that also invites economic waste.The software can be applied to ensure job description set differentiability, reducing legal, economic, and ethical risks to an organization and its people. The extraction of the conceptual space to a mathematical representation enables identification of exceedingly similar documents. In the event of redundancy, two jobs may be collapsed into one. If in the judgment of the subject matter experts the jobs are truly different, the conceptual similarities are highlighted, inviting inclusion of appropriate descriptive content to explicitly characterize those differences. When additional job categories may be needed as the organization changes, the software enables evaluation of proposed additions to ensure that the resulting document set remains adequately differentiated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe
2016-07-28
Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set producesmore » <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.« less
Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures.
Papior, Nick R; Calogero, Gaetano; Brandbyge, Mads
2018-06-27
We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C 60 ). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.
Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures
NASA Astrophysics Data System (ADS)
Papior, Nick R.; Calogero, Gaetano; Brandbyge, Mads
2018-06-01
We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.
Time-dependent density functional theory description of total photoabsorption cross sections
NASA Astrophysics Data System (ADS)
Tenorio, Bruno Nunes Cabral; Nascimento, Marco Antonio Chaer; Rocha, Alexandre Braga
2018-02-01
The time-dependent version of the density functional theory (TDDFT) has been used to calculate the total photoabsorption cross section of a number of molecules, namely, benzene, pyridine, furan, pyrrole, thiophene, phenol, naphthalene, and anthracene. The discrete electronic pseudo-spectra, obtained in a L2 basis set calculation were used in an analytic continuation procedure to obtain the photoabsorption cross sections. The ammonia molecule was chosen as a model system to compare the results obtained with TDDFT to those obtained with the linear response coupled cluster approach in order to make a link with our previous work and establish benchmarks.
Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth
2015-02-10
Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.
Derivation of a formula for the resonance integral for a nonorthogonal basis set
Yim, Yung-Chang; Eyring, Henry
1981-01-01
In a self-consistent field calculation, a formula for the off-diagonal matrix elements of the core Hamiltonian is derived for a nonorthogonal basis set by a polyatomic approach. A set of parameters is then introduced for the repulsion integral formula of Mataga-Nishimoto to fit the experimental data. The matrix elements computed for the nonorthogonal basis set in the π-electron approximation are transformed to those for an orthogonal basis set by the Löwdin symmetrical orthogonalization. PMID:16593009
Non-expanded dispersion energies and damping functions for Ar 2 and Li 2
NASA Astrophysics Data System (ADS)
Knowles, Peter J.; Meath, William J.
1986-02-01
The non-expanded second-order dispersion energies and damping functions associated with the long-range dispersion energies varying as R-6, R-8and R-10 have been calculated for Ar 2 and Li 2 with the time-dependent Hartree-Fock method, using extended Gaussian basis sets. These results are used to discuss the difficulties associated with ab initio computations of these quantities.
Womack, James C; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton
2016-11-28
Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.
NASA Astrophysics Data System (ADS)
Womack, James C.; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton
2016-11-01
Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.
Studies of dispersion energy in hydrogen-bonded systems. H2O-HOH, H2O-HF, H3N-HF, HF-HF
NASA Astrophysics Data System (ADS)
Szcześniak, M. M.; Scheiner, Steve
1984-02-01
Dispersion energy is calculated in the systems H2O-HOH, H2O-HF, H3N-HF, and HF-HF as a function of the intermolecular separation using a variety of methods. M≂ller-Plesset perturbation theory to second and third orders is applied in conjunction with polarized basis sets of 6-311G** type and with an extended basis set including a second set of polarization functions (DZ+2P). These results are compared to a multipole expansion of the dispersion energy, based on the Unsöld approximation, carried out to the inverse tenth power of the intermolecular distance. Pairwise evaluation is also carried out using both atom-atom and bond-bond formulations. The MP3/6-311G** results are in generally excellent accord with the leading R-6 term of the multipole expansion. This expansion, if carried out to the R-10 term, reproduces extremely well previously reported dispersion energies calculated via variation-perturbation theory. Little damping of the expansion is required for intermolecular distances equal to or greater than the equilibrium separation. Although the asymptotic behavior of the MP2 dispersion energy is somewhat different than that of the other methods, augmentation of the basis set by a second diffuse set of d functions leads to quite good agreement in the vicinity of the minima. Both the atom-atom and bond-bond parametrization schemes are in good qualitative agreement with the other methods tested. All approaches produce similar dependence of the dispersion energy upon the angular orientation between the two molecules involved in the H bond.
Mackie, Iain D; DiLabio, Gino A
2011-10-07
The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined. © 2011 American Institute of Physics
Dixit, Anant; Claudot, Julien; Lebègue, Sébastien; Rocca, Dario
2017-06-07
By using a formulation based on the dynamical polarizability, we propose a novel implementation of second-order Møller-Plesset perturbation (MP2) theory within a plane wave (PW) basis set. Because of the intrinsic properties of PWs, this method is not affected by basis set superposition errors. Additionally, results are converged without relying on complete basis set extrapolation techniques; this is achieved by using the eigenvectors of the static polarizability as an auxiliary basis set to compactly and accurately represent the response functions involved in the MP2 equations. Summations over the large number of virtual states are avoided by using a formalism inspired by density functional perturbation theory, and the Lanczos algorithm is used to include dynamical effects. To demonstrate this method, applications to three weakly interacting dimers are presented.
NASA Astrophysics Data System (ADS)
Martin, Jan M. L.; Sundermann, Andreas
2001-02-01
We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper.
Hybrid Grid and Basis Set Approach to Quantum Chemistry DMRG
NASA Astrophysics Data System (ADS)
Stoudenmire, Edwin Miles; White, Steven
We present a new approach for using DMRG for quantum chemistry that combines the advantages of a basis set with that of a grid approximation. Because DMRG scales linearly for quasi-one-dimensional systems, it is feasible to approximate the continuum with a fine grid in one direction while using a standard basis set approach for the transverse directions. Compared to standard basis set methods, we reach larger systems and achieve better scaling when approaching the basis set limit. The flexibility and reduced costs of our approach even make it feasible to incoporate advanced DMRG techniques such as simulating real-time dynamics. Supported by the Simons Collaboration on the Many-Electron Problem.
Genetic Basis of Haloperidol Resistance in Saccharomyces cerevisiae Is Complex and Dose Dependent
Wang, Xin; Kruglyak, Leonid
2014-01-01
The genetic basis of most heritable traits is complex. Inhibitory compounds and their effects in model organisms have been used in many studies to gain insights into the genetic architecture underlying quantitative traits. However, the differential effect of compound concentration has not been studied in detail. In this study, we used a large segregant panel from a cross between two genetically divergent yeast strains, BY4724 (a laboratory strain) and RM11_1a (a vineyard strain), to study the genetic basis of variation in response to different doses of a drug. Linkage analysis revealed that the genetic architecture of resistance to the small-molecule therapeutic drug haloperidol is highly dose-dependent. Some of the loci identified had effects only at low doses of haloperidol, while other loci had effects primarily at higher concentrations of the drug. We show that a major QTL affecting resistance across all concentrations of haloperidol is caused by polymorphisms in SWH1, a homologue of human oxysterol binding protein. We identify a complex set of interactions among the alleles of the genes SWH1, MKT1, and IRA2 that are most pronounced at a haloperidol dose of 200 µM and are only observed when the remainder of the genome is of the RM background. Our results provide further insight into the genetic basis of drug resistance. PMID:25521586
Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman
2008-04-24
We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results insignificantly for iron(II) porphyrin coordinated with imidazole. Poor performance of a "locally dense" basis set with a large number of basis functions on the Fe center was observed in calculation of quintet-triplet gaps. Our results lead to a series of suggestions for density functional theory calculations of quintet-triplet energy gaps in ferrohemes with a single axial imidazole; these suggestions are potentially applicable for other transition-metal complexes.
NASA Astrophysics Data System (ADS)
Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli
2013-03-01
Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.
Actively addressed single pixel full-colour plasmonic display
Franklin, Daniel; Frank, Russell; Wu, Shin-Tson; Chanda, Debashis
2017-01-01
Dynamic, colour-changing surfaces have many applications including displays, wearables and active camouflage. Plasmonic nanostructures can fill this role by having the advantages of ultra-small pixels, high reflectivity and post-fabrication tuning through control of the surrounding media. However, previous reports of post-fabrication tuning have yet to cover a full red-green-blue (RGB) colour basis set with a single nanostructure of singular dimensions. Here, we report a method which greatly advances this tuning and demonstrates a liquid crystal-plasmonic system that covers the full RGB colour basis set, only as a function of voltage. This is accomplished through a surface morphology-induced, polarization-dependent plasmonic resonance and a combination of bulk and surface liquid crystal effects that manifest at different voltages. We further demonstrate the system's compatibility with existing LCD technology by integrating it with a commercially available thin-film-transistor array. The imprinted surface interfaces readily with computers to display images as well as video. PMID:28488671
Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav
2013-10-28
We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.
Calculating the True and Observed Rates of Complex Heterogeneous Catalytic Reactions
NASA Astrophysics Data System (ADS)
Avetisov, A. K.; Zyskin, A. G.
2018-06-01
Equations of the theory of steady-state complex reactions are considered in matrix form. A set of stage stationarity equations is given, and an algorithm is described for deriving the canonic set of stationarity equations with appropriate corrections for the existence of fast stages in a mechanism. A formula for calculating the number of key compounds is presented. The applicability of the Gibbs rule to estimating the number of independent compounds in a complex reaction is analyzed. Some matrix equations relating the rates of dependent and key substances are derived. They are used as a basis to determine the general diffusion stoichiometry relationships between temperature, the concentrations of dependent reaction participants, and the concentrations of key reaction participants in a catalyst grain. An algorithm is described for calculating heat and mass transfer in a catalyst grain with respect to arbitrary complex heterogeneous catalytic reactions.
Localized basis sets for unbound electrons in nanoelectronics.
Soriano, D; Jacob, D; Palacios, J J
2008-02-21
It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of Gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.
NASA Astrophysics Data System (ADS)
Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet
2015-02-01
In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.
Near Hartree-Fock quality GTO basis sets for the second-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry
1987-01-01
Energy optimized, near Hartree-Fock quality Gaussian basis sets ranging in size from (17s12p) to (20s15p) are presented for the ground states of the second-row atoms for Na(2P), Na(+), Na(-), Mg(3P), P(-), S(-), and Cl(-). In addition, optimized supplementary functions are given for the ground state basis sets to describe the negative ions, and the excited Na(2P) and Mg(3P) atomic states. The ratios of successive orbital exponents describing the inner part of the 1s and 2p orbitals are found to be nearly independent of both nuclear charge and basis set size. This provides a method of obtaining good starting estimates for other basis set optimizations.
NASA Astrophysics Data System (ADS)
Feller, David
2017-07-01
Benchmark adiabatic ionization potentials were obtained with the Feller-Peterson-Dixon (FPD) theoretical method for a collection of 48 atoms and small molecules. In previous studies, the FPD method demonstrated an ability to predict atomization energies (heats of formation) and electron affinities well within a 95% confidence level of ±1 kcal/mol. Large 1-particle expansions involving correlation consistent basis sets (up to aug-cc-pV8Z in many cases and aug-cc-pV9Z for some atoms) were chosen for the valence CCSD(T) starting point calculations. Despite their cost, these large basis sets were chosen in order to help minimize the residual basis set truncation error and reduce dependence on approximate basis set limit extrapolation formulas. The complementary n-particle expansion included higher order CCSDT, CCSDTQ, or CCSDTQ5 (coupled cluster theory with iterative triple, quadruple, and quintuple excitations) corrections. For all of the chemical systems examined here, it was also possible to either perform explicit full configuration interaction (CI) calculations or to otherwise estimate the full CI limit. Additionally, corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, non-adiabatic effects, and other minor factors were considered. The root mean square deviation with respect to experiment for the ionization potentials was 0.21 kcal/mol (0.009 eV). The corresponding level of agreement for molecular enthalpies of formation was 0.37 kcal/mol and for electron affinities 0.20 kcal/mol. Similar good agreement with experiment was found in the case of molecular structures and harmonic frequencies. Overall, the combination of energetic, structural, and vibrational data (655 comparisons) reflects the consistent ability of the FPD method to achieve close agreement with experiment for small molecules using the level of theory applied in this study.
Teodoro, Tiago Quevedo; Visscher, Lucas; da Silva, Albérico Borges Ferreira; Haiduke, Roberto Luiz Andrade
2017-03-14
The f-block elements are addressed in this third part of a series of prolapse-free basis sets of quadruple-ζ quality (RPF-4Z). Relativistic adapted Gaussian basis sets (RAGBSs) are used as primitive sets of functions while correlating/polarization (C/P) functions are chosen by analyzing energy lowerings upon basis set increments in Dirac-Coulomb multireference configuration interaction calculations with single and double excitations of the valence spinors. These function exponents are obtained by applying the RAGBS parameters in a polynomial expression. Moreover, through the choice of C/P characteristic exponents from functions of lower angular momentum spaces, a reduction in the computational demand is attained in relativistic calculations based on the kinetic balance condition. The present study thus complements the RPF-4Z sets for the whole periodic table (Z ≤ 118). The sets are available as Supporting Information and can also be found at http://basis-sets.iqsc.usp.br .
Combination of large and small basis sets in electronic structure calculations on large systems
NASA Astrophysics Data System (ADS)
Røeggen, Inge; Gao, Bin
2018-04-01
Two basis sets—a large and a small one—are associated with each nucleus of the system. Each atom has its own separate one-electron basis comprising the large basis set of the atom in question and the small basis sets for the partner atoms in the complex. The perturbed atoms in molecules and solids model is at core of the approach since it allows for the definition of perturbed atoms in a system. It is argued that this basis set approach should be particularly useful for periodic systems. Test calculations are performed on one-dimensional arrays of H and Li atoms. The ground-state energy per atom in the linear H array is determined versus bond length.
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-07
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The parallelization efficiency for the Coulomb terms can be somewhat smaller (speedup ~15-25 for 30 processors), but their contribution to the total calculation time is small. Thus, the parallel program completes a Becke3-Lee-Yang-Parr energy and gradient calculation on the Ag-TB2-helicate in less than 4 h on 30 processors. We also present the necessary extension of the Lagrangian formalism, which enables the calculation of the TDDFT excited state properties in the frozen-core approximation. The algorithms described in this work are implemented into the ORCA electronic structure system.
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
NASA Technical Reports Server (NTRS)
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
The structural basis for function in diamond-like carbon binding peptides.
Gabryelczyk, Bartosz; Szilvay, Géza R; Linder, Markus B
2014-07-29
The molecular structural basis for the function of specific peptides that bind to diamond-like carbon (DLC) surfaces was investigated. For this, a competition assay that provided a robust way of comparing relative affinities of peptide variants was set up. Point mutations of specific residues resulted in significant effects, but it was shown that the chemical composition of the peptide was not sufficient to explain peptide affinity. More significantly, rearrangements in the sequence indicated that the binding is a complex recognition event that is dependent on the overall structure of the peptide. The work demonstrates the unique properties of peptides for creating functionality at interfaces via noncovalent binding for potential applications in, for example, nanomaterials, biomedical materials, and sensors.
High quality Gaussian basis sets for fourth-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry; Faegri, Knut, Jr.
1992-01-01
Energy optimized Gaussian basis sets of triple-zeta quality for the atoms Rb-Xe have been derived. Two series of basis sets are developed: (24s 16p 10d) and (26s 16p 10d) sets which were expanded to 13d and 19p functions as the 4d and 5p shells become occupied. For the atoms lighter than Cd, the (24s 16p 10d) sets with triple-zeta valence distributions are higher in energy than the corresponding double-zeta distribution. To ensure a triple-zeta distribution and a global energy minimum, the (26s 16p 10d) sets were derived. Total atomic energies from the largest basis sets are between 198 and 284 (mu)E(sub H) above the numerical Hartree-Fock energies.
Models and techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1978-01-01
The development of system models that can provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer are described. Specific topics covered include: system models; performability evaluation; capability and functional dependence; computation of trajectory set probabilities; and hierarchical modeling of an air transport mission.
Orbital-Dependent Density Functionals for Chemical Catalysis
2011-02-16
E2 and SN2 Reactions: Effects of the Choice of Density Functional, Basis Set, and Self-Consistent Iterations," Y. Zhao and D. G. Truhlar, Journal...for the anti-‐ E2, syn-‐E2, and SN2 pathways of the reactions of F-‐ and Cl-‐ with CH3CH2F and
Roper, Ian P E; Besley, Nicholas A
2016-03-21
The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.
Dobes, Petr; Otyepka, Michal; Strnad, Miroslav; Hobza, Pavel
2006-05-24
The interaction between roscovitine and cyclin-dependent kinase 2 (cdk2) was investigated by performing correlated ab initio quantum-chemical calculations. The whole protein was fragmented into smaller systems consisting of one or a few amino acids, and the interaction energies of these fragments with roscovitine were determined by using the MP2 method with the extended aug-cc-pVDZ basis set. For selected complexes, the complete basis set limit MP2 interaction energies, as well as the coupled-cluster corrections with inclusion of single, double and noninteractive triples contributions [CCSD(T)], were also evaluated. The energies of interaction between roscovitine and small fragments and between roscovitine and substantial sections of protein (722 atoms) were also computed by using density-functional tight-binding methods covering dispersion energy (DFTB-D) and the Cornell empirical potential. Total stabilisation energy originates predominantly from dispersion energy and methods that do not account for the dispersion energy cannot, therefore, be recommended for the study of protein-inhibitor interactions. The Cornell empirical potential describes reasonably well the interaction between roscovitine and protein; therefore, this method can be applied in future thermodynamic calculations. A limited number of amino acid residues contribute significantly to the binding of roscovitine and cdk2, whereas a rather large number of amino acids make a negligible contribution.
Relativistic well-tempered Gaussian basis sets for helium through mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, S.; Matsuoka, O.
1989-10-01
Exponent parameters of the nonrelativistically optimized well-tempered Gaussian basis sets of Huzinaga and Klobukowski have been employed for Dirac--Fock--Roothaan calculations without their reoptimization. For light atoms He (atomic number {ital Z}=2)--Rh ({ital Z}=45), the number of exponent parameters used has been the same as the nonrelativistic basis sets and for heavier atoms Pd ({ital Z}=46)--Hg({ital Z}=80), two 2{ital p} (and three 3{ital d}) Gaussian basis functions have been augmented. The scheme of kinetic energy balance and the uniformly charged sphere model of atomic nuclei have been adopted. The qualities of the calculated basis sets are close to the Dirac--Fock limit.
NASA Astrophysics Data System (ADS)
Wang, Feng; Pang, Wenning; Duffy, Patrick
2012-12-01
Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the calculated orbitals.
Plumley, Joshua A.; Dannenberg, J. J.
2011-01-01
We evaluate the performance of nine functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-DFT molecular orbital calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise corrected PES. The calculated ΔE's with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, due to error compensation, the smaller basis sets gave the best results (in comparison to experimental and high level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. Since many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: 1) D95(d,p) with B3LYP, B97D, M06 or MPWB1k; 2) 6-311G(d,p) with B3LYP; 3) D95++(d,p) with B3LYP, B97D or MPWB1K; 4)6-311++G(d,p) with B3LYP or B97D; and 5) aug-cc-pVDZ with M05-2X, M06-2X or X3LYP. PMID:21328398
Plumley, Joshua A; Dannenberg, J J
2011-06-01
We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Miliordos, Evangelos; Xantheas, Sotiris S.
2015-03-01
We report the variation of the binding energy of the Formic Acid Dimer with the size of the basis set at the Coupled Cluster with iterative Singles, Doubles and perturbatively connected Triple replacements [CCSD(T)] level of theory, estimate the Complete Basis Set (CBS) limit, and examine the validity of the Basis Set Superposition Error (BSSE)-correction for this quantity that was previously challenged by Kalescky, Kraka, and Cremer (KKC) [J. Chem. Phys. 140, 084315 (2014)]. Our results indicate that the BSSE correction, including terms that account for the substantial geometry change of the monomers due to the formation of two strong hydrogen bonds in the dimer, is indeed valid for obtaining accurate estimates for the binding energy of this system as it exhibits the expected decrease with increasing basis set size. We attribute the discrepancy between our current results and those of KKC to their use of a valence basis set in conjunction with the correlation of all electrons (i.e., including the 1s of C and O). We further show that the use of a core-valence set in conjunction with all electron correlation converges faster to the CBS limit as the BSSE correction is less than half than the valence electron/valence basis set case. The uncorrected and BSSE-corrected binding energies were found to produce the same (within 0.1 kcal/mol) CBS limits. We obtain CCSD(T)/CBS best estimates for De = - 16.1 ± 0.1 kcal/mol and for D0 = - 14.3 ± 0.1 kcal/mol, the later in excellent agreement with the experimental value of -14.22 ± 0.12 kcal/mol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardirossian, Narbe; Head-Gordon, Martin
2013-08-22
For a set of eight equilibrium intermolecular complexes, it is discovered in this paper that the basis set limit (BSL) cannot be reached by aug-cc-pV5Z for three of the Minnesota density functionals: M06-L, M06-HF, and M11-L. In addition, the M06 and M11 functionals exhibit substantial, but less severe, difficulties in reaching the BSL. By using successively finer grids, it is demonstrated that this issue is not related to the numerical integration of the exchange-correlation functional. In addition, it is shown that the difficulty in reaching the BSL is not a direct consequence of the structure of the augmented functions inmore » Dunning’s basis sets, since modified augmentation yields similar results. By using a very large custom basis set, the BSL appears to be reached for the HF dimer for all of the functionals. As a result, it is concluded that the difficulties faced by several of the Minnesota density functionals are related to an interplay between the form of these functionals and the structure of standard basis sets. It is speculated that the difficulty in reaching the basis set limit is related to the magnitude of the inhomogeneity correction factor (ICF) of the exchange functional. A simple modification of the M06-L exchange functional that systematically reduces the basis set superposition error (BSSE) for the HF dimer in the aug-cc-pVQZ basis set is presented, further supporting the speculation that the difficulty in reaching the BSL is caused by the magnitude of the exchange functional ICF. In conclusion, the BSSE is plotted with respect to the internuclear distance of the neon dimer for two of the examined functionals.« less
NASA Astrophysics Data System (ADS)
Wieferink, Jürgen; Krüger, Peter; Pollmann, Johannes
2006-11-01
We present an algorithm for DFT calculations employing Gaussian basis sets for the wave function and a Fourier basis for the potential representation. In particular, a numerically very efficient calculation of the local potential matrix elements and the charge density is described. Special emphasis is placed on the consequences of periodicity and explicit k -vector dependence. The algorithm is tested by comparison with more straightforward ones for the case of adsorption of ethylene on the silicon-rich SiC(001)-(3×2) surface clearly revealing its substantial advantages. A complete self-consistency cycle is speeded up by roughly one order of magnitude since the calculation of matrix elements and of the charge density are accelerated by factors of 10 and 80, respectively, as compared to their straightforward calculation. Our results for C2H4:SiC(001)-(3×2) show that ethylene molecules preferentially adsorb in on-top positions above Si dimers on the substrate surface saturating both dimer dangling bonds per unit cell. In addition, a twist of the molecules around a surface-perpendicular axis is slightly favored energetically similar to the case of a complete monolayer of ethylene adsorbed on the Si(001)-(2×1) surface.
Atomization Energies of SO and SO2; Basis Set Extrapolation Revisted
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Arnold, James (Technical Monitor)
1998-01-01
The addition of tight functions to sulphur and extrapolation to the complete basis set limit are required to obtain accurate atomization energies. Six different extrapolation procedures are tried. The best atomization energies come from the series of basis sets that yield the most consistent results for all extrapolation techniques. In the variable alpha approach, alpha values larger than 4.5 or smaller than 3, appear to suggest that the extrapolation may not be reliable. It does not appear possible to determine a reliable basis set series using only the triple and quadruple zeta based sets. The scalar relativistic effects reduce the atomization of SO and SO2 by 0.34 and 0.81 kcal/mol, respectively, and clearly must be accounted for if a highly accurate atomization energy is to be computed. The magnitude of the core-valence (CV) contribution to the atomization is affected by missing diffuse valence functions. The CV contribution is much more stable if basis set superposition errors are accounted for. A similar study of SF, SF(+), and SF6 shows that the best family of basis sets varies with the nature of the S bonding.
ERIC Educational Resources Information Center
Bowen, J. Philip; Sorensen, Jennifer B.; Kirschner, Karl N.
2007-01-01
The analysis explains the basis set superposition error (BSSE) and fragment relaxation involved in calculating the interaction energies using various first principle theories. Interacting the correlated fragment and increasing the size of the basis set can help in decreasing the BSSE to a great extent.
An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Weixuan, E-mail: weixuan.li@usc.edu; Lin, Guang, E-mail: guang.lin@pnnl.gov; Zhang, Dongxiao, E-mail: dxz@pku.edu.cn
2014-02-01
The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect—except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos basis functions in the expansion helps to capture uncertainty more accurately but increases computational cost. Selection of basis functionsmore » is particularly important for high-dimensional stochastic problems because the number of polynomial chaos basis functions required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE basis functions are pre-set based on users' experience. Also, for sequential data assimilation problems, the basis functions kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE basis functions for different problems and automatically adjusts the number of basis functions in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm was tested with different examples and demonstrated great effectiveness in comparison with non-adaptive PCKF and EnKF algorithms.« less
The effect of diffuse basis functions on valence bond structural weights
NASA Astrophysics Data System (ADS)
Galbraith, John Morrison; James, Andrew M.; Nemes, Coleen T.
2014-03-01
Structural weights and bond dissociation energies have been determined for H-F, H-X, and F-X molecules (-X = -OH, -NH2, and -CH3) at the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) levels of theory with the aug-cc-pVDZ and 6-31++G(d,p) basis sets. At the BOVB level, the aug-cc-pVDZ basis set yields a counterintuitive ordering of ionic structural weights when the initial heavy atom s-type basis functions are included. For H-F, H-OH, and F-X, the ordering follows chemical intuition when these basis functions are not included. These counterintuitive weights are shown to be a result of the diffuse polarisation function on one VB fragment being spatially located, in part, on the other VB fragment. Except in the case of F-CH3, this problem is corrected with the 6-31++G(d,p) basis set. The initial heavy atom s-type functions are shown to make an important contribution to the VB orbitals and bond dissociation energies and, therefore, should not be excluded. It is recommended to not use diffuse basis sets in valence bond calculations unless absolutely necessary. If diffuse basis sets are needed, the 6-31++G(d,p) basis set should be used with caution and the structural weights checked against VBSCF values which have been shown to follow the expected ordering in all cases.
Cha, Kihoon; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su
2015-01-01
It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation.
2015-01-01
Background It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. Results In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. Conclusions This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation. PMID:26043779
Qiao, Yuanhua; Keren, Nir; Mannan, M Sam
2009-08-15
Risk assessment and management of transportation of hazardous materials (HazMat) require the estimation of accident frequency. This paper presents a methodology to estimate hazardous materials transportation accident frequency by utilizing publicly available databases and expert knowledge. The estimation process addresses route-dependent and route-independent variables. Negative binomial regression is applied to an analysis of the Department of Public Safety (DPS) accident database to derive basic accident frequency as a function of route-dependent variables, while the effects of route-independent variables are modeled by fuzzy logic. The integrated methodology provides the basis for an overall transportation risk analysis, which can be used later to develop a decision support system.
A chromophoric study of 2-ethylhexyl p-methoxycinnamate
NASA Astrophysics Data System (ADS)
Alves, Leonardo F.; Gargano, Ricardo; Alcanfor, Silvia K. B.; Romeiro, Luiz A. S.; Martins, João B. L.
2011-11-01
Ultraviolet absorption spectra of 2-ethylhexyl p-methoxycinnamate have been recorded in different solvents and calculated using the time dependent density functional theory. The calculations were performed with the aid of B3LYP, PBE1PBE, M06, and PBEPBE functionals and 6-31+G(2d) basis set. The geometries were initially optimized using PM5 semiempirical method for the conformational search. The calculations of excited states were carried out using the time dependent with IEF-PCM solvent reaction field method. The experimental data were obtained in the wavelength range from 200 to 400 nm using 10 different solvents. The TD-PBE1PBE method shows the best agreement to the experimental results.
On the optimization of Gaussian basis sets
NASA Astrophysics Data System (ADS)
Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.
2003-01-01
A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.
Cost differential by site of service for cancer patients receiving chemotherapy.
Hayes, Jad; Hoverman, Russell J; Brow, Matthew E; Dilbeck, Dana C; Verrilli, Diana K; Garey, Jody; Espirito, Janet L; Cardona, Jorge; Beveridge, Roy
2015-03-01
To compare the costs of: 1) chemotherapy treatment across clinical, demographic, and geographic variables; and 2) various cancer care-related cost categories between patients receiving chemotherapy in a community oncology versus a hospital outpatient setting. Data from the calendar years 2008 to 2010 from the Truven Health Analytics MarketScan Commercial Claims and Encounters Database were analyzed. During 2010, the data set contained approximately 45 million unique commercially insured patients with 70,984 cancer patients receiving chemotherapy. These patients were assigned to cohorts depending on whether they received chemotherapy at a community oncology or hospital outpatient setting. Cost data for 9 common cancer types were extracted from the database and analyzed on a per member per month basis to normalize costs; costs included amounts paid by the payer and patient payment. Community oncology and hospital outpatient setting chemotherapy treatment costs were categorized and examined according to cancer diagnosis, patient demographics, and geographic location. Patients receiving chemotherapy treatment in the community oncology clinic had a 20% to 39% lower mean per member per month cost of care, depending on diagnosis, compared with those receiving chemotherapy in the hospital outpatient setting. This cost differential was consistent across cancer type, geographic location, patient age, and number of chemotherapy sessions. Various cost categories examined were also higher for those treated in the hospital outpatient setting. The cost of care for patients receiving chemotherapy was consistently lower in the community oncology clinic compared with the hospital outpatient setting, controlling for the clinical, demographic, and geographic variables analyzed.
NASA Astrophysics Data System (ADS)
Choi, Chu Hwan
2002-09-01
Ab initio chemistry has shown great promise in reproducing experimental results and in its predictive power. The many complicated computational models and methods seem impenetrable to an inexperienced scientist, and the reliability of the results is not easily interpreted. The application of midbond orbitals is used to determine a general method for use in calculating weak intermolecular interactions, especially those involving electron-deficient systems. Using the criteria of consistency, flexibility, accuracy and efficiency we propose a supermolecular method of calculation using the full counterpoise (CP) method of Boys and Bernardi, coupled with Moller-Plesset (MP) perturbation theory as an efficient electron-correlative method. We also advocate the use of the highly efficient and reliable correlation-consistent polarized valence basis sets of Dunning. To these basis sets, we add a general set of midbond orbitals and demonstrate greatly enhanced efficiency in the calculation. The H2-H2 dimer is taken as a benchmark test case for our method, and details of the computation are elaborated. Our method reproduces with great accuracy the dissociation energies of other previous theoretical studies. The added efficiency of extending the basis sets with conventional means is compared with the performance of our midbond-extended basis sets. The improvement found with midbond functions is notably superior in every case tested. Finally, a novel application of midbond functions to the BH5 complex is presented. The system is an unusual van der Waals complex. The interaction potential curves are presented for several standard basis sets and midbond-enhanced basis sets, as well as for two popular, alternative correlation methods. We report that MP theory appears to be superior to coupled-cluster (CC) in speed, while it is more stable than B3LYP, a widely-used density functional theory (DFT). Application of our general method yields excellent results for the midbond basis sets. Again they prove superior to conventional extended basis sets. Based on these results, we recommend our general approach as a highly efficient, accurate method for calculating weakly interacting systems.
Frequency analysis via the method of moment functionals
NASA Technical Reports Server (NTRS)
Pearson, A. E.; Pan, J. Q.
1990-01-01
Several variants are presented of a linear-in-parameters least squares formulation for determining the transfer function of a stable linear system at specified frequencies given a finite set of Fourier series coefficients calculated from transient nonstationary input-output data. The basis of the technique is Shinbrot's classical method of moment functionals using complex Fourier based modulating functions to convert a differential equation model on a finite time interval into an algebraic equation which depends linearly on frequency-related parameters.
Causes and Consequences of Genetic Background Effects Illuminated by Integrative Genomic Analysis
Chandler, Christopher H.; Chari, Sudarshan; Dworkin, Ian
2014-01-01
The phenotypic consequences of individual mutations are modulated by the wild-type genetic background in which they occur. Although such background dependence is widely observed, we do not know whether general patterns across species and traits exist or about the mechanisms underlying it. We also lack knowledge on how mutations interact with genetic background to influence gene expression and how this in turn mediates mutant phenotypes. Furthermore, how genetic background influences patterns of epistasis remains unclear. To investigate the genetic basis and genomic consequences of genetic background dependence of the scallopedE3 allele on the Drosophila melanogaster wing, we generated multiple novel genome-level datasets from a mapping-by-introgression experiment and a tagged RNA gene expression dataset. In addition we used whole genome resequencing of the parental lines—two commonly used laboratory strains—to predict polymorphic transcription factor binding sites for SD. We integrated these data with previously published genomic datasets from expression microarrays and a modifier mutation screen. By searching for genes showing a congruent signal across multiple datasets, we were able to identify a robust set of candidate loci contributing to the background-dependent effects of mutations in sd. We also show that the majority of background-dependent modifiers previously reported are caused by higher-order epistasis, not quantitative noncomplementation. These findings provide a useful foundation for more detailed investigations of genetic background dependence in this system, and this approach is likely to prove useful in exploring the genetic basis of other traits as well. PMID:24504186
Basis set limit and systematic errors in local-orbital based all-electron DFT
NASA Astrophysics Data System (ADS)
Blum, Volker; Behler, Jörg; Gehrke, Ralf; Reuter, Karsten; Scheffler, Matthias
2006-03-01
With the advent of efficient integration schemes,^1,2 numeric atom-centered orbitals (NAO's) are an attractive basis choice in practical density functional theory (DFT) calculations of nanostructured systems (surfaces, clusters, molecules). Though all-electron, the efficiency of practical implementations promises to be on par with the best plane-wave pseudopotential codes, while having a noticeably higher accuracy if required: Minimal-sized effective tight-binding like calculations and chemically accurate all-electron calculations are both possible within the same framework; non-periodic and periodic systems can be treated on equal footing; and the localized nature of the basis allows in principle for O(N)-like scaling. However, converging an observable with respect to the basis set is less straightforward than with competing systematic basis choices (e.g., plane waves). We here investigate the basis set limit of optimized NAO basis sets in all-electron calculations, using as examples small molecules and clusters (N2, Cu2, Cu4, Cu10). meV-level total energy convergence is possible using <=50 basis functions per atom in all cases. We also find a clear correlation between the errors which arise from underconverged basis sets, and the system geometry (interatomic distance). ^1 B. Delley, J. Chem. Phys. 92, 508 (1990), ^2 J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002).
Hill, J Grant
2013-09-30
Auxiliary basis sets (ABS) specifically matched to the cc-pwCVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y-Pd at the second-order Møller-Plesset perturbation theory level. Calculation of the core-valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution-of-the-identity component of explicitly correlated calculations is also investigated, where it is shown that i-type functions are important to produce well-controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double-ζ calculations produce results close to conventional quadruple-ζ, and triple-ζ is within chemical accuracy of the complete basis set limit. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Faegri, Knut, Jr.
1990-01-01
The paper investigates bounds failure in calculations using Gaussian basis sets for the solution of the one-electron Dirac equation for the 2p1/2 state of Hg(79+). It is shown that bounds failure indicates inadequacies in the basis set, both in terms of the exponent range and the number of functions. It is also shown that overrepresentation of the small component space may lead to unphysical results. It is concluded that it is important to use matched large and small component basis sets with an adequate size and exponent range.
Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping
2006-03-09
Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less
On the performance of large Gaussian basis sets for the computation of total atomization energies
NASA Technical Reports Server (NTRS)
Martin, J. M. L.
1992-01-01
The total atomization energies of a number of molecules have been computed using an augmented coupled-cluster method and (5s4p3d2f1g) and 4s3p2d1f) atomic natural orbital (ANO) basis sets, as well as the correlation consistent valence triple zeta plus polarization (cc-pVTZ) correlation consistent valence quadrupole zeta plus polarization (cc-pVQZ) basis sets. The performance of ANO and correlation consistent basis sets is comparable throughout, although the latter can result in significant CPU time savings. Whereas the inclusion of g functions has significant effects on the computed Sigma D(e) values, chemical accuracy is still not reached for molecules involving multiple bonds. A Gaussian-1 (G) type correction lowers the error, but not much beyond the accuracy of the G1 model itself. Using separate corrections for sigma bonds, pi bonds, and valence pairs brings down the mean absolute error to less than 1 kcal/mol for the spdf basis sets, and about 0.5 kcal/mol for the spdfg basis sets. Some conclusions on the success of the Gaussian-1 and Gaussian-2 models are drawn.
Swimming of a sphere in a viscous incompressible fluid with inertia
NASA Astrophysics Data System (ADS)
Felderhof, B. U.; Jones, R. B.
2017-08-01
The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.
Betowski, Don; Bevington, Charles; Allison, Thomas C
2016-01-19
Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.
On the ab initio evaluation of Hubbard parameters. II. The κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal
NASA Astrophysics Data System (ADS)
Fortunelli, Alessandro; Painelli, Anna
1997-05-01
A previously proposed approach for the ab initio evaluation of Hubbard parameters is applied to BEDT-TTF dimers. The dimers are positioned according to four geometries taken as the first neighbors from the experimental data on the κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal. RHF-SCF, CAS-SCF and frozen-orbital calculations using the 6-31G** basis set are performed with different values of the total charge, allowing us to derive all the relevant parameters. It is found that the electronic structure of the BEDT-TTF planes is adequately described by the standard Extended Hubbard Model, with the off-diagonal electron-electron interaction terms (X and W) of negligible size. The derived parameters are in good agreement with available experimental data. Comparison with previous theoretical estimates shows that the t values compare well with those obtained from Extended Hückel Theory (whereas the minimal basis set estimates are completely unreliable). On the other hand, the Uaeff values exhibit an appreciable dependence on the chemical environment.
Saco-Alvarez, Liliana; Durán, Iria; Ignacio Lorenzo, J; Beiras, Ricardo
2010-05-01
The sea-urchin embryo test (SET) has been frequently used as a rapid, sensitive, and cost-effective biological tool for marine monitoring worldwide, but the selection of a sensitive, objective, and automatically readable endpoint, a stricter quality control to guarantee optimum handling and biological material, and the identification of confounding factors that interfere with the response have hampered its widespread routine use. Size increase in a minimum of n=30 individuals per replicate, either normal larvae or earlier developmental stages, was preferred to observer-dependent, discontinuous responses as test endpoint. Control size increase after 48 h incubation at 20 degrees C must meet an acceptability criterion of 218 microm. In order to avoid false positives minimums of 32 per thousand salinity, 7 pH and 2mg/L oxygen, and a maximum of 40 microg/L NH(3) (NOEC) are required in the incubation media. For in situ testing size increase rates must be corrected on a degree-day basis using 12 degrees C as the developmental threshold. Copyright 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl
An ab initio intermolecular potential energy surface (PES) has been constructed for the benzene-krypton (BKr) van der Waals (vdW) complex. The interaction energy has been calculated at the coupled cluster level of theory with single, double, and perturbatively included triple excitations using different basis sets. As a result, a few analytical PESs of the complex have been determined. They allowed a prediction of the complex structure and its vibrational vdW states. The vibrational energy level pattern exhibits a distinct polyad structure. Comparison of the equilibrium structure, the dipole moment, and vibrational levels of BKr with their experimental counterparts has allowedmore » us to design an optimal basis set composed of a small Dunning’s basis set for the benzene monomer, a larger effective core potential adapted basis set for Kr and additional midbond functions. Such a basis set yields vibrational energy levels that agree very well with the experimental ones as well as with those calculated from the available empirical PES derived from the microwave spectra of the BKr complex. The basis proposed can be applied to larger complexes including Kr because of a reasonable computational cost and accurate results.« less
Polarized atomic orbitals for self-consistent field electronic structure calculations
NASA Astrophysics Data System (ADS)
Lee, Michael S.; Head-Gordon, Martin
1997-12-01
We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, C.L.; Pankaskie, P.J.; Heasler, P.G.
Reactor fuel failure data sets in the form of initial power (P/sub i/), final power (P/sub f/), transient increase in power (..delta..P), and burnup (Bu) were obtained for pressurized heavy water reactors (PHWRs), boiling water reactors (BWRs), and pressurized water reactors (PWRs). These data sets were evaluated and used as the basis for developing two predictive fuel failure models, a graphical concept called the PCI-OGRAM, and a nonlinear regression based model called PROFIT. The PCI-OGRAM is an extension of the FUELOGRAM developed by AECL. It is based on a critical threshold concept for stress dependent stress corrosion cracking. The PROFITmore » model, developed at Pacific Northwest Laboratory, is the result of applying standard statistical regression methods to the available PCI fuel failure data and an analysis of the environmental and strain rate dependent stress-strain properties of the Zircaloy cladding.« less
Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations.
Kananenka, Alexei A; Kohut, Sviataslau V; Gaiduk, Alex P; Ryabinkin, Ilya G; Staroverov, Viktor N
2013-08-21
Given a set of canonical Kohn-Sham orbitals, orbital energies, and an external potential for a many-electron system, one can invert the Kohn-Sham equations in a single step to obtain the corresponding exchange-correlation potential, vXC(r). For orbitals and orbital energies that are solutions of the Kohn-Sham equations with a multiplicative vXC(r) this procedure recovers vXC(r) (in the basis set limit), but for eigenfunctions of a non-multiplicative one-electron operator it produces an orbital-averaged potential. In particular, substitution of Hartree-Fock orbitals and eigenvalues into the Kohn-Sham inversion formula is a fast way to compute the Slater potential. In the same way, we efficiently construct orbital-averaged exchange and correlation potentials for hybrid and kinetic-energy-density-dependent functionals. We also show how the Kohn-Sham inversion approach can be used to compute functional derivatives of explicit density functionals and to approximate functional derivatives of orbital-dependent functionals.
Ahuja, Abha; De Vito, Scott; Singh, Rama S
2011-04-01
Genetic architecture of variation underlying male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila, was examined. First, in order to test for condition dependence, diet was manipulated in a set of ten Drosophila melanogaster full-sib families. We confirmed heightened condition dependent expression of sex comb bristle number and its female homologue (distal transverse row bristles) as compared to non-sex sternopleural bristles. Significant genotype by environment effects were detected for the sex traits indicating a genetic basis for condition dependence. Next we measured sex comb bristle number and sternopleural bristle number, as well as residual mass, a commonly used condition index, in a set of thirty half-sib families. Sire effect was not significant for sex comb and sternopleural bristle number, and we detected a strong dominance and/or maternal effect or X chromosome effect for both traits. A strong sire effect was detected for condition and its heritability was the highest as compared to sex comb and sternopleural bristles. We discuss our results in light of the rapid response to divergent artificial selection for sex comb bristle number reported previously. The nature of genetic variation for male sex traits continues to be an important unresolved issue in evolutionary biology.
Problem of quantifying quantum correlations with non-commutative discord
NASA Astrophysics Data System (ADS)
Majtey, A. P.; Bussandri, D. G.; Osán, T. M.; Lamberti, P. W.; Valdés-Hernández, A.
2017-09-01
In this work we analyze a non-commutativity measure of quantum correlations recently proposed by Guo (Sci Rep 6:25241, 2016). By resorting to a systematic survey of a two-qubit system, we detected an undesirable behavior of such a measure related to its representation-dependence. In the case of pure states, this dependence manifests as a non-satisfactory entanglement measure whenever a representation other than the Schmidt's is used. In order to avoid this basis-dependence feature, we argue that a minimization procedure over the set of all possible representations of the quantum state is required. In the case of pure states, this minimization can be analytically performed and the optimal basis turns out to be that of Schmidt's. In addition, the resulting measure inherits the main properties of Guo's measure and, unlike the latter, it reduces to a legitimate entanglement measure in the case of pure states. Some examples involving general mixed states are also analyzed considering such an optimization. The results show that, in most cases of interest, the use of Guo's measure can result in an overestimation of quantum correlations. However, since Guo's measure has the advantage of being easily computable, it might be used as a qualitative estimator of the presence of quantum correlations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... physician services in a teaching setting. 415.170 Section 415.170 Public Health CENTERS FOR MEDICARE... BY PHYSICIANS IN PROVIDERS, SUPERVISING PHYSICIANS IN TEACHING SETTINGS, AND RESIDENTS IN CERTAIN SETTINGS Physician Services in Teaching Settings § 415.170 Conditions for payment on a fee schedule basis...
Mota, Elder A V; Neto, Abel F G; Marques, Francisco C; Mota, Gunar V S; Martins, Marcelo G; Costa, Fabio L P; Borges, Rosivaldo S; Neto, Antonio M J C
2018-07-01
The electronic structures and optical properties of triphenylamine-functionalized graphene (G-TPA) doped with transition metals, using water as a solvent, were theoretically investigated to verify the efficiency of photocatalytic hydrogen production with the use of transition metals. This study was performed by Density Functional Theory and Time-dependent Density Functional Theory through Gaussian 09W software, adopting the B3LYP functional for all structures. The 6-31g(d) basis set was used for H, C and N atoms, and the LANL2DZ basis set for transition metals using the Effective Core Potentials method. Two approaches were adopted: (1) using single metallic dopants (Ni, Pd, Fe, Os and Pt) and (2) using combinations of Ni with the other dopants (NiPd, NiPt, NiFe and NiOs). The DOS spectra reveal an increase of accessible states in the valence shell, in addition to a gap decrease for all dopants. This doping also increases the absorption in the visible region of solar radiation where sunlight is most intense (400 nm to 700 nm), with additional absorption peaks. The results lead us to propose the G-TPA structures doped with Ni, Pd, Pt, NiPt or NiPd to be novel catalysts for the conversion of solar energy for photocatalytic hydrogen production, since they improve the absorption of solar energy in the range of interest for solar radiation; and act as reaction centers, reducing the required overpotential for hydrogen production from water.
NASA Technical Reports Server (NTRS)
Lindh, Roland; Lee, Timothy J.; Bernhardsson, Anders; Persson, B. Joakim; Karlstroem, Gunnar; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The autoaromatization of (Z)-hex-3-ene-1,5-diyne to the singlet biradical para-benzyne has been reinvestigated by state of the art ab initio methods. Previous CCSD(T)/6-31G(d,p) and CASPT2[0]/ANO[C(5s4p2d1f)/H(3s2p)] calculations estimated the the reaction heat at 298 K to be 8-10 and 4.9 plus or minus 3.2 kcal/mol, respectively. Recent NO- and oxygen-dependent trapping experiments and collision-induced dissociation threshold energy experiments estimate the heat of reaction to be 8.5 plus or minus 1.0 at 470 K (recomputed to 9.5 plus or minus 1.0 at 298 K) and 8.4 plus or minus 3.0 kcal/mol at 298 K, respectively. New theoretical estimates at 298 K predict the values at the basis set limit for the CCSD(T) and CASPT2(g1) methods to be 12.7 plus or minus 2.0 and 5.4 plus or minus 2.0 kcal/mol, respectively. The experimentally predicted electronic contribution to the heat of activation is 28.6 kcal/mol. This can be compared with 25.5 and 29.8 kcal/mol from the CASPT2[g1] and the CCSD(T) methods, respectively. The new study has in particular improved on the one-particle basis set for the CCSD(T) method as compared to earlier studies. For the CASPT2 investigation the better suited CASPT2[g1] approximation is utilized. The original CASPT2 method, CASPT2[0], systematically favors open shell systems relative to closed shell systems. This was previously corrected empirically. The study shows that the energy difference between CCSD(T) and CASPT2[g1] at the basis set limit is estimated to be 7 plus or minus 2 kcal/mol. The study also demonstrates that the estimated heat of reaction is very sensitive to the quality of the basis set.
A novel Gaussian-Sinc mixed basis set for electronic structure calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerke, Jonathan L.; Lee, Young; Tymczak, C. J.
2015-08-14
A Gaussian-Sinc basis set methodology is presented for the calculation of the electronic structure of atoms and molecules at the Hartree–Fock level of theory. This methodology has several advantages over previous methods. The all-electron electronic structure in a Gaussian-Sinc mixed basis spans both the “localized” and “delocalized” regions. A basis set for each region is combined to make a new basis methodology—a lattice of orthonormal sinc functions is used to represent the “delocalized” regions and the atom-centered Gaussian functions are used to represent the “localized” regions to any desired accuracy. For this mixed basis, all the Coulomb integrals are definablemore » and can be computed in a dimensional separated methodology. Additionally, the Sinc basis is translationally invariant, which allows for the Coulomb singularity to be placed anywhere including on lattice sites. Finally, boundary conditions are always satisfied with this basis. To demonstrate the utility of this method, we calculated the ground state Hartree–Fock energies for atoms up to neon, the diatomic systems H{sub 2}, O{sub 2}, and N{sub 2}, and the multi-atom system benzene. Together, it is shown that the Gaussian-Sinc mixed basis set is a flexible and accurate method for solving the electronic structure of atomic and molecular species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, J. Grant, E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu; Peterson, Kirk A., E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu
New correlation consistent basis sets, cc-pVnZ-PP-F12 (n = D, T, Q), for all the post-d main group elements Ga–Rn have been optimized for use in explicitly correlated F12 calculations. The new sets, which include not only orbital basis sets but also the matching auxiliary sets required for density fitting both conventional and F12 integrals, are designed for correlation of valence sp, as well as the outer-core d electrons. The basis sets are constructed for use with the previously published small-core relativistic pseudopotentials of the Stuttgart-Cologne variety. Benchmark explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)-F12b] calculations of themore » spectroscopic properties of numerous diatomic molecules involving 4p, 5p, and 6p elements have been carried out and compared to the analogous conventional CCSD(T) results. In general the F12 results obtained with a n-zeta F12 basis set were comparable to conventional aug-cc-pVxZ-PP or aug-cc-pwCVxZ-PP basis set calculations obtained with x = n + 1 or even x = n + 2. The new sets used in CCSD(T)-F12b calculations are particularly efficient at accurately recovering the large correlation effects of the outer-core d electrons.« less
Govindarajan, M; Karabacak, M; Periandy, S; Xavier, S
2012-08-01
FT-IR and FT-Raman spectra of α,α,α-trichlorotoluene have been recorded and analyzed. The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311++G(d,p) method and a comparative study between HF level and various basis sets combination. The fundamental vibrational wavenumbers as well as their intensities were calculated and a good agreement between observed and scaled calculated wavenumbers has been achieved. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The effects due to the substitutions of methyl group and halogen were investigated. The absorption energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT). The electric dipole moment, polarizability and the first hyperpolarizability values of the α,α,α-trichlorotoluene have been calculated. (1)H NMR chemical shifts were calculated by using the gauge independent atomic orbital (GIAO) method with HF and B3LYP methods with 6-311++G(d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties were performed. Mulliken and natural charges of the title molecule were also calculated and interpreted. Copyright © 2012 Elsevier B.V. All rights reserved.
Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies
Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung
2017-01-01
A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672
A new proton fluence model for E greater than 10 MeV
NASA Technical Reports Server (NTRS)
Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.
1988-01-01
Researchers describe a new engineering model for the fluence of protons with energies greater than 10 MeV. The data set used is a combination of observations made primarily from the Earth's surface between 1956 and 1963 and observations made from spacecraft in the vicinity of Earth between 1963 and 1985. With this data set we find that the distinction between ordinary proton events and anomalously large proton events made in earlier work disappears. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. In contrast to earlier models, results do not depend critically on the fluence from any one event.
A combined representation method for use in band structure calculations. 1: Method
NASA Technical Reports Server (NTRS)
Friedli, C.; Ashcroft, N. W.
1975-01-01
A representation was described whose basis levels combine the important physical aspects of a finite set of plane waves with those of a set of Bloch tight-binding levels. The chosen combination has a particularly simple dependence on the wave vector within the Brillouin Zone, and its use in reducing the standard one-electron band structure problem to the usual secular equation has the advantage that the lattice sums involved in the calculation of the matrix elements are actually independent of the wave vector. For systems with complicated crystal structures, for which the Korringa-Kohn-Rostoker (KKR), Augmented-Plane Wave (APW) and Orthogonalized-Plane Wave (OPW) methods are difficult to apply, the present method leads to results with satisfactory accuracy and convergence.
The scientific basis of tobacco product regulation.
2007-01-01
This report presents the conclusions reached and recommendations made by the members of the WHO Study Group on Tobacco Product Regulation at its third meeting, during which it reviewed four background papers specially commissioned for the meeting and which dealt, respectively, with the following four themes. 1. The contents and design features of tobacco products: their relationship to dependence potential and consumer appeal. 2. Candy-flavoured tobacco products: research needs and regulatory recommendations. 3. Biomarkers of tobacco exposure and of tobacco smoke-induced health effects. 4. Setting maximum limits for toxic constituents in cigarette smoke. The Study Group's recommendations in relation to each theme are set out at the end of the section dealing with that theme; its overall recommendations are summarized in section 6.
Manna, Debashree; Kesharwani, Manoj K; Sylvetsky, Nitai; Martin, Jan M L
2017-07-11
Benchmark ab initio energies for BEGDB and WATER27 data sets have been re-examined at the MP2 and CCSD(T) levels with both conventional and explicitly correlated (F12) approaches. The basis set convergence of both conventional and explicitly correlated methods has been investigated in detail, both with and without counterpoise corrections. For the MP2 and CCSD-MP2 contributions, rapid basis set convergence observed with explicitly correlated methods is compared to conventional methods. However, conventional, orbital-based calculations are preferred for the calculation of the (T) term, since it does not benefit from F12. CCSD(F12*) converges somewhat faster with the basis set than CCSD-F12b for the CCSD-MP2 term. The performance of various DFT methods is also evaluated for the BEGDB data set, and results show that Head-Gordon's ωB97X-V and ωB97M-V functionals outperform all other DFT functionals. Counterpoise-corrected DSD-PBEP86 and raw DSD-PBEPBE-NL also perform well and are close to MP2 results. In the WATER27 data set, the anionic (deprotonated) water clusters exhibit unacceptably slow basis set convergence with the regular cc-pVnZ-F12 basis sets, which have only diffuse s and p functions. To overcome this, we have constructed modified basis sets, denoted aug-cc-pVnZ-F12 or aVnZ-F12, which have been augmented with diffuse functions on the higher angular momenta. The calculated final dissociation energies of BEGDB and WATER27 data sets are available in the Supporting Information. Our best calculated dissociation energies can be reproduced through n-body expansion, provided one pushes to the basis set and electron correlation limit for the two-body term; for the three-body term, post-MP2 contributions (particularly CCSD-MP2) are important for capturing the three-body dispersion effects. Terms beyond four-body can be adequately captured at the MP2-F12 level.
On the Use of a Mixed Gaussian/Finite-Element Basis Set for the Calculation of Rydberg States
NASA Technical Reports Server (NTRS)
Thuemmel, Helmar T.; Langhoff, Stephen (Technical Monitor)
1996-01-01
Configuration-interaction studies are reported for the Rydberg states of the helium atom using mixed Gaussian/finite-element (GTO/FE) one particle basis sets. Standard Gaussian valence basis sets are employed, like those, used extensively in quantum chemistry calculations. It is shown that the term values for high-lying Rydberg states of the helium atom can be obtained accurately (within 1 cm -1), even for a small GTO set, by augmenting the n-particle space with configurations, where orthonormalized interpolation polynomials are singly occupied.
Geometry-dependent atomic multipole models for the water molecule.
Loboda, O; Millot, C
2017-10-28
Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.
Geometry-dependent atomic multipole models for the water molecule
NASA Astrophysics Data System (ADS)
Loboda, O.; Millot, C.
2017-10-01
Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.
Perturbation corrections to Koopmans' theorem. V - A study with large basis sets
NASA Technical Reports Server (NTRS)
Chong, D. P.; Langhoff, S. R.
1982-01-01
The vertical ionization potentials of N2, F2 and H2O were calculated by perturbation corrections to Koopmans' theorem using six different basis sets. The largest set used includes several sets of polarization functions. Comparison is made with measured values and with results of computations using Green's functions.
A new basis set for molecular bending degrees of freedom.
Jutier, Laurent
2010-07-21
We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range theta in [0:pi]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH(++), HCCH(+), and HCCS are presented.
Extended polarization in 3rd order SCC-DFTB from chemical potential equilization
Kaminski, Steve; Giese, Timothy J.; Gaus, Michael; York, Darrin M.; Elstner, Marcus
2012-01-01
In this work we augment the approximate density functional method SCC-DFTB (DFTB3) with the chemical potential equilization (CPE) approach in order to improve the performance for molecular electronic polarizabilities. The CPE method, originally implemented for NDDO type methods by Giese and York, has been shown to emend minimal basis methods wrt response properties significantly, and has been applied to SCC-DFTB recently. CPE allows to overcome this inherent limitation of minimal basis methods by supplying an additional response density. The systematic underestimation is thereby corrected quantitatively without the need to extend the atomic orbital basis, i.e. without increasing the overall computational cost significantly. Especially the dependency of polarizability as a function of molecular charge state was significantly improved from the CPE extension of DFTB3. The empirical parameters introduced by the CPE approach were optimized for 172 organic molecules in order to match the results from density functional methods (DFT) methods using large basis sets. However, the first order derivatives of molecular polarizabilities, as e.g. required to compute Raman activities, are not improved by the current CPE implementation, i.e. Raman spectra are not improved. PMID:22894819
Shinsky, Stephen A; Monteith, Kelsey E; Viggiano, Susan; Cosgrove, Michael S
2015-03-06
Mixed lineage leukemia protein-1 (MLL1) is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases that are required for metazoan development. MLL1 is the best characterized human SET1 family member, which includes MLL1-4 and SETd1A/B. MLL1 assembles with WDR5, RBBP5, ASH2L, DPY-30 (WRAD) to form the MLL1 core complex, which is required for H3K4 dimethylation and transcriptional activation. Because all SET1 family proteins interact with WRAD in vivo, it is hypothesized they are regulated by similar mechanisms. However, recent evidence suggests differences among family members that may reflect unique regulatory inputs in the cell. Missing is an understanding of the intrinsic enzymatic activities of different SET1 family complexes under standard conditions. In this investigation, we reconstituted each human SET1 family core complex and compared subunit assembly and enzymatic activities. We found that in the absence of WRAD, all but one SET domain catalyzes at least weak H3K4 monomethylation. In the presence of WRAD, all SET1 family members showed stimulated monomethyltransferase activity but differed in their di- and trimethylation activities. We found that these differences are correlated with evolutionary lineage, suggesting these enzyme complexes have evolved to accomplish unique tasks within metazoan genomes. To understand the structural basis for these differences, we employed a "phylogenetic scanning mutagenesis" assay and identified a cluster of amino acid substitutions that confer a WRAD-dependent gain-of-function dimethylation activity on complexes assembled with the MLL3 or Drosophila trithorax proteins. These results form the basis for understanding how WRAD differentially regulates SET1 family complexes in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Development of the PROMIS nicotine dependence item banks.
Shadel, William G; Edelen, Maria Orlando; Tucker, Joan S; Stucky, Brian D; Hansen, Mark; Cai, Li
2014-09-01
Nicotine dependence is a core construct important for understanding cigarette smoking and smoking cessation behavior. This article describes analyses conducted to develop and evaluate item banks for assessing nicotine dependence among daily and nondaily smokers. Using data from a sample of daily (N = 4,201) and nondaily (N =1,183) smokers, we conducted a series of item factor analyses, item response theory analyses, and differential item functioning analyses (according to gender, age, and race/ethnicity) to arrive at a unidimensional set of nicotine dependence items for daily and nondaily smokers. We also evaluated performance of short forms (SFs) and computer adaptive tests (CATs) to efficiently assess dependence. A total of 32 items were included in the Nicotine Dependence item banks; 22 items are common across daily and nondaily smokers, 5 are unique to daily smokers, and 5 are unique to nondaily smokers. For both daily and nondaily smokers, the Nicotine Dependence item banks are strongly unidimensional, highly reliable (reliability = 0.97 and 0.97, respectively), and perform similarly across gender, age, and race/ethnicity groups. SFs common to daily and nondaily smokers consist of 8 and 4 items (reliability = 0.91 and 0.81, respectively). Results from simulated CATs showed that dependence can be assessed with very good precision for most respondents using fewer than 6 items adaptively selected from the item banks. Nicotine dependence on cigarettes can be assessed on the basis of these item banks via one of the SFs, by using CATs, or through a tailored set of items selected for a specific research purpose. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald; Werner, Hans-Joachim
2009-11-01
Accurate extrapolation to the complete basis set (CBS) limit of valence correlation energies calculated with explicitly correlated MP2-F12 and CCSD(T)-F12b methods have been investigated using a Schwenke-style approach for molecules containing both first and second row atoms. Extrapolation coefficients that are optimal for molecular systems containing first row elements differ from those optimized for second row analogs, hence values optimized for a combined set of first and second row systems are also presented. The new coefficients are shown to produce excellent results in both Schwenke-style and equivalent power-law-based two-point CBS extrapolations, with the MP2-F12/cc-pV(D,T)Z-F12 extrapolations producing an average error of just 0.17 mEh with a maximum error of 0.49 for a collection of 23 small molecules. The use of larger basis sets, i.e., cc-pV(T,Q)Z-F12 and aug-cc-pV(Q,5)Z, in extrapolations of the MP2-F12 correlation energy leads to average errors that are smaller than the degree of confidence in the reference data (˜0.1 mEh). The latter were obtained through use of very large basis sets in MP2-F12 calculations on small molecules containing both first and second row elements. CBS limits obtained from optimized coefficients for conventional MP2 are only comparable to the accuracy of the MP2-F12/cc-pV(D,T)Z-F12 extrapolation when the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets are used. The CCSD(T)-F12b correlation energy is extrapolated as two distinct parts: CCSD-F12b and (T). While the CCSD-F12b extrapolations with smaller basis sets are statistically less accurate than those of the MP2-F12 correlation energies, this is presumably due to the slower basis set convergence of the CCSD-F12b method compared to MP2-F12. The use of larger basis sets in the CCSD-F12b extrapolations produces correlation energies with accuracies exceeding the confidence in the reference data (also obtained in large basis set F12 calculations). It is demonstrated that the use of the 3C(D) Ansatz is preferred for MP2-F12 CBS extrapolations. Optimal values of the geminal Slater exponent are presented for the diagonal, fixed amplitude Ansatz in MP2-F12 calculations, and these are also recommended for CCSD-F12b calculations.
Borodin, Oleg; Smith, Grant D
2006-03-30
Classical many-body polarizable force fields were developed for n-alkanes, perflouroalkanes, polyethers, ketones, and linear and cyclic carbonates on the basis of quantum chemistry dimer energies of model compounds and empirical thermodynamic liquid-state properties. The dependence of the electron correlation contribution to the dimer binding energy on basis-set size and level of theory was investigated as a function of molecular separation for a number of alkane, ether, and ketone dimers. Molecular dynamics (MD) simulations of the force fields accurately predicted structural, dynamic, and transport properties of liquids and unentangled polymer melts. On average, gas-phase dimer binding energies predicted with the force field were between those from MP2/aug-cc-pvDz and MP2/aug-cc-pvTz quantum chemistry calculations.
The terrain signatures of administrative units: a tool for environmental assessment.
Miliaresis, George Ch
2009-03-01
The quantification of knowledge related to the terrain and the landuse/landcover of administrative units in Southern Greece (Peloponnesus) is performed from the CGIAR-CSI SRTM digital elevation model and the CORINE landuse/landcover database. Each administrative unit is parametrically represented by a set of attributes related to its relief. Administrative units are classified on the basis of K-means cluster analysis in an attempt to see how they are organized into groups and cluster derived geometric signatures are defined. Finally each cluster is parametrically represented on the basis of the occurrence of the Corine landuse/landcover classes included and thus, landcover signatures are derived. The geometric and the landuse/landcover signatures revealed a terrain dependent landuse/landcover organization that was used in the assessment of the forest fires impact at moderate resolution scale.
GW100: Benchmarking G0W0 for Molecular Systems.
van Setten, Michiel J; Caruso, Fabio; Sharifzadeh, Sahar; Ren, Xinguo; Scheffler, Matthias; Liu, Fang; Lischner, Johannes; Lin, Lin; Deslippe, Jack R; Louie, Steven G; Yang, Chao; Weigend, Florian; Neaton, Jeffrey B; Evers, Ferdinand; Rinke, Patrick
2015-12-08
We present the GW100 set. GW100 is a benchmark set of the ionization potentials and electron affinities of 100 molecules computed with the GW method using three independent GW codes and different GW methodologies. The quasi-particle energies of the highest-occupied molecular orbitals (HOMO) and lowest-unoccupied molecular orbitals (LUMO) are calculated for the GW100 set at the G0W0@PBE level using the software packages TURBOMOLE, FHI-aims, and BerkeleyGW. The use of these three codes allows for a quantitative comparison of the type of basis set (plane wave or local orbital) and handling of unoccupied states, the treatment of core and valence electrons (all electron or pseudopotentials), the treatment of the frequency dependence of the self-energy (full frequency or more approximate plasmon-pole models), and the algorithm for solving the quasi-particle equation. Primary results include reference values for future benchmarks, best practices for convergence within a particular approach, and average error bars for the most common approximations.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present an alternate set of basis functions, each defined over a pair of planar triangular patches, for the method of moments solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped, closed, conducting surfaces. The present basis functions are point-wise orthogonal to the pulse basis functions previously defined. The prime motivation to develop the present set of basis functions is to utilize them for the electromagnetic solution of dielectric bodies using a surface integral equation formulation which involves both electric and magnetic cur- rents. However, in the present work, only the conducting body solution is presented and compared with other data.
Computing Finite-Time Lyapunov Exponents with Optimally Time Dependent Reduction
NASA Astrophysics Data System (ADS)
Babaee, Hessam; Farazmand, Mohammad; Sapsis, Themis; Haller, George
2016-11-01
We present a method to compute Finite-Time Lyapunov Exponents (FTLE) of a dynamical system using Optimally Time-Dependent (OTD) reduction recently introduced by H. Babaee and T. P. Sapsis. The OTD modes are a set of finite-dimensional, time-dependent, orthonormal basis {ui (x , t) } |i=1N that capture the directions associated with transient instabilities. The evolution equation of the OTD modes is derived from a minimization principle that optimally approximates the most unstable directions over finite times. To compute the FTLE, we evolve a single OTD mode along with the nonlinear dynamics. We approximate the FTLE from the reduced system obtained from projecting the instantaneous linearized dynamics onto the OTD mode. This results in a significant reduction in the computational cost compared to conventional methods for computing FTLE. We demonstrate the efficiency of our method for double Gyre and ABC flows. ARO project 66710-EG-YIP.
High order discretization techniques for real-space ab initio simulations
NASA Astrophysics Data System (ADS)
Anderson, Christopher R.
2018-03-01
In this paper, we present discretization techniques to address numerical problems that arise when constructing ab initio approximations that use real-space computational grids. We present techniques to accommodate the singular nature of idealized nuclear and idealized electronic potentials, and we demonstrate the utility of using high order accurate grid based approximations to Poisson's equation in unbounded domains. To demonstrate the accuracy of these techniques, we present results for a Full Configuration Interaction computation of the dissociation of H2 using a computed, configuration dependent, orbital basis set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Megala, M.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in
The electronic and optical transfer properties of Benzene, Benzoic Acid (BA), Nitrobenzene (NB) and Para Nitro Benzoic Acid (PNBA) at ground and first excited state has been investigated by the Density functional theory (DFT)and Time Dependent Density Functional Theory (TDDFT) using SVWN functional/3-21G basis set respectively. Possible intra-molecular charge transfer and n to π* transitions in the ground and the first excitation states have been predicted by the molecular orbitals and the Natural Bond Orbital (NBO) analysis. The simulated absorption spectra have been generated and the result compared with existing experimental results.
Charge transport and trapping in organic field effect transistors exposed to polar analytes
NASA Astrophysics Data System (ADS)
Duarte, Davianne; Sharma, Deepak; Cobb, Brian; Dodabalapur, Ananth
2011-03-01
Pentacene based organic thin-film transistors were used to study the effects of polar analytes on charge transport and trapping behavior during vapor sensing. Three sets of devices with differing morphology and mobility (0.001-0.5 cm2/V s) were employed. All devices show enhanced trapping upon exposure to analyte molecules. The organic field effect transistors with different mobilities also provide evidence for morphology dependent partition coefficients. This study helps provide a physical basis for many reports on organic transistor based sensor response.
NASA Technical Reports Server (NTRS)
Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.
1992-01-01
The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.
Brandenburg, Jan Gerit; Grimme, Stefan
2014-01-01
We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.
Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.
Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung
2017-02-15
A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.
Point Set Denoising Using Bootstrap-Based Radial Basis Function.
Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad
2016-01-01
This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.
Three- and four-body nonadditivities in nucleic acid tetramers: a CCSD(T) study.
Pitonák, M; Neogrády, P; Hobza, P
2010-02-14
Three- and four-body nonadditivities in the uracil tetramer (in DNA-like geometry) and the GC step (in crystal geometry) were investigated at various levels of the wave-function theory: HF, MP2, MP3, L-CCD, CCSD and CCSD(T). All of the calculations were performed using the 6-31G**(0.25,0.15) basis set, whereas the HF, MP2 and the MP3 nonadditivities were, for the sake of comparison, also determined with the much larger aug-cc-pVDZ basis set. The HF and MP2 levels do not provide reliable values for many-body terms, making it necessary to go beyond the MP2 level. The benchmark CCSD(T) three- and four-body nonadditivities are reasonably well reproduced at the MP3 level, and almost quantitative agreement is obtained (fortuitously) either on the L-CCD level or as an average of the MP3 and the CCSD results. Reliable values of many-body terms (especially their higher-order correlation contributions) are obtained already when the rather small 6-31G**(0.25,0.15) basis set is used. The four-body term is much smaller when compared to the three-body terms, but it is definitely not negligible, e.g. in the case of the GC step it represents about 16% of all of the three- and four-body terms. While investigating the geometry dependence of many-body terms for the GG step at the MP3/6-31G**(0.25,0.15) level, we found that it is necessary to include at least three-body terms in the determination of optimal geometry parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, So; Yanai, Takeshi; De Jong, Wibe A.
Coupled-cluster methods including through and up to the connected single, double, triple, and quadruple substitutions (CCSD, CCSDT, and CCSDTQ) have been automatically derived and implemented for sequential and parallel executions for use in conjunction with a one-component third-order Douglas-Kroll (DK3) approximation for relativistic corrections. A combination of the converging electron-correlation methods, the accurate relativistic reference wave functions, and the use of systematic basis sets tailored to the relativistic approximation has been shown to predict the experimental singlet-triplet separations within 0.02 eV (0.5 kcal/mol) for five triatomic hydrides (CH2, NH2+, SiH2, PH2+, and AsH2+), the experimental bond lengths within 0.002 angstroms,more » rotational constants within 0.02 cm-1, vibration-rotation constants within 0.01 cm-1, centrifugal distortion constants within 2 %, harmonic vibration frequencies within 9 cm-1 (0.4 %), anharmonic vibrational constants within 2 cm-1, and dissociation energies within 0.03 eV (0.8 kcal/mol) for twenty diatomic hydrides (BH, CH, NH, OH, FH, AlH, SiH, PH, SH, ClH, GaH, GeH, AsH, SeH, BrH, InH, SnH, SbH, TeH, and IH) containing main-group elements across the second through fifth periods of the periodic table. In these calculations, spin-orbit effects on dissociation energies, which were assumed to be additive, were estimated from the measured spin-orbit coupling constants of atoms and diatomic molecules, and an electronic energy in the complete-basis-set, complete-electron-correlation limit has been extrapolated by the formula which was in turn based on the exponential-Gaussian extrapolation formula of the basis set dependence.« less
NASA Astrophysics Data System (ADS)
Rohmer, Jeremy
2016-04-01
Predicting the temporal evolution of landslides is typically supported by numerical modelling. Dynamic sensitivity analysis aims at assessing the influence of the landslide properties on the time-dependent predictions (e.g., time series of landslide displacements). Yet two major difficulties arise: 1. Global sensitivity analysis require running the landslide model a high number of times (> 1000), which may become impracticable when the landslide model has a high computation time cost (> several hours); 2. Landslide model outputs are not scalar, but function of time, i.e. they are n-dimensional vectors with n usually ranging from 100 to 1000. In this article, I explore the use of a basis set expansion, such as principal component analysis, to reduce the output dimensionality to a few components, each of them being interpreted as a dominant mode of variation in the overall structure of the temporal evolution. The computationally intensive calculation of the Sobol' indices for each of these components are then achieved through meta-modelling, i.e. by replacing the landslide model by a "costless-to-evaluate" approximation (e.g., a projection pursuit regression model). The methodology combining "basis set expansion - meta-model - Sobol' indices" is then applied to the La Frasse landslide to investigate the dynamic sensitivity analysis of the surface horizontal displacements to the slip surface properties during the pore pressure changes. I show how to extract information on the sensitivity of each main modes of temporal behaviour using a limited number (a few tens) of long running simulations. In particular, I identify the parameters, which trigger the occurrence of a turning point marking a shift between a regime of low values of landslide displacements and one of high values.
Midbond basis functions for weakly bound complexes
NASA Astrophysics Data System (ADS)
Shaw, Robert A.; Hill, J. Grant
2018-06-01
Weakly bound systems present a difficult problem for conventional atom-centred basis sets due to large separations, necessitating the use of large, computationally expensive bases. This can be remedied by placing a small number of functions in the region between molecules in the complex. We present compact sets of optimised midbond functions for a range of complexes involving noble gases, alkali metals and small molecules for use in high accuracy coupled -cluster calculations, along with a more robust procedure for their optimisation. It is shown that excellent results are possible with double-zeta quality orbital basis sets when a few midbond functions are added, improving both the interaction energy and the equilibrium bond lengths of a series of noble gas dimers by 47% and 8%, respectively. When used in conjunction with explicitly correlated methods, near complete basis set limit accuracy is readily achievable at a fraction of the cost that using a large basis would entail. General purpose auxiliary sets are developed to allow explicitly correlated midbond function studies to be carried out, making it feasible to perform very high accuracy calculations on weakly bound complexes.
NASA Astrophysics Data System (ADS)
Rabli, Djamal; McCarroll, Ronald
2018-02-01
This review surveys the different theoretical approaches, used to describe inelastic and rearrangement processes in collisions involving atoms and ions. For a range of energies from a few meV up to about 1 keV, the adiabatic representation is expected to be valid and under these conditions, inelastic and rearrangement processes take place via a network of avoided crossings of the potential energy curves of the collision system. In general, such avoided crossings are finite in number. The non-adiabatic coupling, due to the breakdown of the Born-Oppenheimer separation of the electronic and nuclear variables, depends on the ratio of the electron mass to the nuclear mass terms in the total Hamiltonian. By limiting terms in the total Hamiltonian correct to first order in the electron to nuclear mass ratio, a system of reaction coordinates is found which allows for a correct description of both inelastic channels. The connection between the use of reaction coordinates in the quantum description and the electron translation factors of the impact parameter approach is established. A major result is that only when reaction coordinates are used, is it possible to introduce the notion of a minimal basis set. Such a set must include all avoided crossings including both radial coupling and long range Coriolis coupling. But, only when reactive coordinates are used, can such a basis set be considered as complete. In particular when the centre of nuclear mass is used as centre of coordinates, rather than the correct reaction coordinates, it is shown that erroneous results are obtained. A few results to illustrate this important point are presented: one concerning a simple two-state Landau-Zener type avoided crossing, the other concerning a network of multiple crossings in a typical electron capture process involving a highly charged ion with a neutral atom.
Varandas, A J C
2009-02-01
The potential energy surface for the C(20)-He interaction is extrapolated for three representative cuts to the complete basis set limit using second-order Møller-Plesset perturbation calculations with correlation consistent basis sets up to the doubly augmented variety. The results both with and without counterpoise correction show consistency with each other, supporting that extrapolation without such a correction provides a reliable scheme to elude the basis-set-superposition error. Converged attributes are obtained for the C(20)-He interaction, which are used to predict the fullerene dimer ones. Time requirements show that the method can be drastically more economical than the counterpoise procedure and even competitive with Kohn-Sham density functional theory for the title system.
Exact exchange-correlation potentials of singlet two-electron systems
NASA Astrophysics Data System (ADS)
Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.
2017-10-01
We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.
Correlation consistent basis sets for actinides. I. The Th and U atoms.
Peterson, Kirk A
2015-02-21
New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc - pV nZ - PP and cc - pV nZ - DK3, as well as outer-core correlation (valence + 5s5p5d), cc - pwCV nZ - PP and cc - pwCV nZ - DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThFn (n = 2 - 4), ThO2, and UFn (n = 4 - 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF4, ThF3, ThF2, and ThO2 are all within their experimental uncertainties. Bond dissociation energies of ThF4 and ThF3, as well as UF6 and UF5, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF4 and ThO2. The DKH3 atomization energy of ThO2 was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.
On the basis set convergence of electron–electron entanglement measures: helium-like systems
Hofer, Thomas S.
2013-01-01
A systematic investigation of three different electron–electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li+ and Be2+ using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one–electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li+ and Be2+. In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used. PMID:24790952
On the basis set convergence of electron-electron entanglement measures: helium-like systems.
Hofer, Thomas S
2013-01-01
A systematic investigation of three different electron-electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li(+) and Be(2+) using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one-electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li(+) and Be(2+). In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used.
The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are currently over 200 chemicals with high GWP reported by the Intergovernmental Panel on Climate Change, World Meteorological Organization, or Environmental Protection Agency, there may be hundreds of additional chemicals that may also have significant GWP. Evaluation of various approaches to estimate radiative efficiency (RE) and atmospheric lifetime will help to refine GWP estimates for compounds where no measured IR spectrum is available. This study compares values of RE calculated using computational chemistry techniques for 235 chemical compounds against the best available values. It is important to assess the reliability of the underlying computational methods for computing RE to understand the sources of deviations from the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models. The values derived using these models are found to be in reasonable agreement with reported RE values (though significant improvement is obtained through scaling). The effect of varying the computational method and basis set used to calculate the frequency data is also discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed values of RE in this study. Deviations of
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2007-01-01
In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
[Density functional theory studies on structure and spectrum of Cu3 Ti cluster].
Wei, Yong-Hui; Cheng, Jian-Bo; Zhao, Bing; Lombardi, John R
2008-07-01
Bulk intermetallic Ti-Cu compounds have been found to possess special properties, including increased hardness, as well as displaying enhanced sound absorption and e shape memory. Since only one Raman progression is observed, there is not sufficient information to determine the structure of TiCu3. The different structures and vibrational frequencies of the Cu3 Ti cluster were studied by means of the density functional theory with SVWN5, B3LYP and BPW91 methods at basis sets of lanl2dz, 6-31g, 6-311g, 6-311g(d), 6-311 +/- g(2df) and 6-311 +/- g(3d2f). The calculated results show that the ground state of the Cu3 Ti cluster is a e-type structure with the C2v point group symmetry, and the bond lengths and vibrational frequencies of Cu3 T are considerably dependent on the variation of basis sets. We observed only a single Raman progression in approximately 300 cm(-1). This progression is most likely the totally symmetric stretch. The computed and observed Raman spectra were also compared with each other.
Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland
2009-04-21
Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.
NASA Astrophysics Data System (ADS)
Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland
2009-04-01
Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.
Entanglement and Berry Phase in a Parameterized Three-Qubit System
NASA Astrophysics Data System (ADS)
Shao, Wenyi; Du, Yangyang; Yang, Qi; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2017-03-01
In this paper, we construct a parameterized form of unitary breve {R}_{123}(θ 1,θ 2,φ) matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃 1 and 𝜃 2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃 1 = 𝜃 2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Zhoufei; Ouyang, Xiaolong; Gong, Zhihao
An extended hierarchy equation of motion (HEOM) is proposed and applied to study the dynamics of the spin-boson model. In this approach, a complete set of orthonormal functions are used to expand an arbitrary bath correlation function. As a result, a complete dynamic basis set is constructed by including the system reduced density matrix and auxiliary fields composed of these expansion functions, where the extended HEOM is derived for the time derivative of each element. The reliability of the extended HEOM is demonstrated by comparison with the stochastic Hamiltonian approach under room-temperature classical ohmic and sub-ohmic noises and the multilayermore » multiconfiguration time-dependent Hartree theory under zero-temperature quantum ohmic noise. Upon increasing the order in the hierarchical expansion, the result obtained from the extended HOEM systematically converges to the numerically exact answer.« less
Liu, Jinyi; Zhang, Dongyun; Luo, Wenjing; Yu, Yonghui; Yu, Jianxiu; Li, Jingxia; Zhang, Xinhai; Zhang, Baolin; Chen, Jingyuan; Wu, Xue-Ru; Rosas-Acosta, Germán; Huang, Chuanshu
2011-01-01
X-linked inhibitor of apoptosis protein (XIAP) overexpression has been found to be associated with malignant cancer progression and aggression in individuals with many types of cancers. However, the molecular basis of XIAP in the regulation of cancer cell biological behavior remains largely unknown. In this study, we found that a deficiency of XIAP expression in human cancer cells by either knock-out or knockdown leads to a marked reduction in β-actin polymerization and cytoskeleton formation. Consistently, cell migration and invasion were also decreased in XIAP-deficient cells compared with parental wild-type cells. Subsequent studies demonstrated that the regulation of cell motility by XIAP depends on its interaction with the Rho GDP dissociation inhibitor (RhoGDI) via the XIAP RING domain. Furthermore, XIAP was found to negatively regulate RhoGDI SUMOylation, which might affect its activity in controlling cell motility. Collectively, our studies provide novel insights into the molecular mechanisms by which XIAP regulates cancer invasion and offer a further theoretical basis for setting XIAP as a potential prognostic marker and specific target for treatment of cancers with metastatic properties. PMID:21402697
NASA Astrophysics Data System (ADS)
Balabanov, Nikolai B.; Peterson, Kirk A.
2005-08-01
Sequences of basis sets that systematically converge towards the complete basis set (CBS) limit have been developed for the first-row transition metal elements Sc-Zn. Two families of basis sets, nonrelativistic and Douglas-Kroll-Hess (-DK) relativistic, are presented that range in quality from triple-ζ to quintuple-ζ. Separate sets are developed for the description of valence (3d4s) electron correlation (cc-pVnZ and cc-pVnZ-DK; n =T,Q, 5) and valence plus outer-core (3s3p3d4s) correlation (cc-pwCVnZ and cc-pwCVnZ-DK; n =T,Q, 5), as well as these sets augmented by additional diffuse functions for the description of negative ions and weak interactions (aug-cc-pVnZ and aug-cc-pVnZ-DK). Extensive benchmark calculations at the coupled cluster level of theory are presented for atomic excitation energies, ionization potentials, and electron affinities, as well as molecular calculations on selected hydrides (TiH, MnH, CuH) and other diatomics (TiF, Cu2). In addition to observing systematic convergence towards the CBS limits, both 3s3p electron correlation and scalar relativity are calculated to strongly impact many of the atomic and molecular properties investigated for these first-row transition metal species.
High-order nonlinear susceptibilities of He
NASA Astrophysics Data System (ADS)
Liu, W.-C.; Clark, Charles W.
1996-05-01
High-order nonlinear optical response of noble gases to intense laser radiation is of considerable experimental interest, but is difficult to measure or calculate accurately. We have begun a set of calculations of frequency-dependent nonlinear susceptibilities of He 1s^2, within the framework of Rayleigh-Schrödinger perturbation theory at lowest applicable order, with the goal of providing critically evaluated atomic data for modelling high harmonic generation processes. The atomic Hamiltonian is decomposed in term of Hylleraas coordinates and spherical harmonics using the formalism of Pont and Shakeshaft (M. Pont and R. Shakeshaft, Phy. Rev. A 51), 257 (1995), and the hierarchy of inhomogeneous equations of perturbation theory is solved iteratively. A combination of Hylleraas and Frankowski basis functions is used(J. D. Baker, Master thesis, U. Delaware (1988); J. D. Baker, R. N. Hill, and J. D. Morgan, AIP Conference Proceedings 189) 123(1989); the compact Hylleraas basis provides a highly accurate representation of the ground state wavefunction, whereas the diffuse Frankowski basis functions efficiently reproduce the correct asymptotic structure of the perturbed orbitals.
NASA Astrophysics Data System (ADS)
Hill, J. Grant; Peterson, Kirk A.
2017-12-01
New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.
Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de
A surface-hopping extension of the coupled coherent states-method [D. Shalashilin and M. Child, Chem. Phys. 304, 103-120 (2004)] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schrödinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully’s fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronicmore » wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both interference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution if convergence with respect to the number of trajectories is achieved and the potential energy surfaces are known globally. The method is tested on a 2D model for a conical intersection [A. Ferretti, J. Chem. Phys. 104, 5517 (1996)], where a nuclear wavepacket encircles the point of degeneracy between two potential energy surfaces and interferes with itself. These interference effects are absent in classical trajectory-based molecular dynamics but can be fully incorpo rated if trajectories are replaced by surface hopping coupled coherent states.« less
[Influence of transport parameters values on volume flows in the double-membrane system].
Slezak, Andrzej; Bryll, Arkadiusz
2005-01-01
On the basis of Kedem-Katchalsky non-linear equations for the double-membrane system, research were carried out upon the influence of the transmembrane transport parameters, i.e. hydraulic permeability (Lp), reflection (sigma) and solute (omega) coefficients on the volume flows in the double-membrane system. The membrane system was composed of two membranes Ml and Mr characterized by coefficients, respectively Lpl, sigmal, omegal and Lp(r), sigmar, omegar, that separated the solutions at concentrations Cl, Cm, Cr. In order to show the influence of the membranes parameters values on the volume flow intensity, there were calculated the following dependencies: J(v sigma) = f omega(Lp)ii, Jv = f sigma(omega r)Lp,i), Jv = f sigma(sigma(omega r Lp,li), Jv = f sigma(sigma omega l Lp,ri) , (i = l, r), in conditions of set out mechanic pressure (Pl = Pr = Po = const.) and set concentrations (Cl = Cr = C = const.). The graphical pictures of the two first equations are hyperbolas and straight lines in particular cases, whereas the graphical pictures of further two dependencies are more complex.
NASA Astrophysics Data System (ADS)
Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas
2010-05-01
The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.
The non-obvious basis of ownership: Preschool children trace the history and value of owned objects
Gelman, Susan A.; Manczak, Erika M.; Noles, Nicholaus S.
2012-01-01
For adults, ownership is non-obvious: (a) determining ownership depends more on an object’s history than on perceptual cues, and (b) ownership confers special value on an object (“endowment effect”). This study examined these concepts in preschoolers (2.0–4.4) and adults (N=112). Participants saw toy-sets in which one toy was designated as the participant’s, and one as the researcher’s. Toys were then scrambled and participants were asked to identify their toy and the researcher’s toy. By three years of age, participants used object history to determine ownership, and identified even undesirable toys as their own. Furthermore, participants at all ages showed an endowment effect (greater liking of items designated as their own). Thus, even 2-year-olds appreciate the non-obvious basis of ownership. PMID:22716967
NASA Astrophysics Data System (ADS)
Varandas, António J. C.
2018-04-01
Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.
Quantum Mechanical Calculations of Monoxides of Silicon Carbide Molecules
2003-03-01
Data for CO Final Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -112.6850703739 2.02121 -1 2 DVZ...Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -363.7341927429 0.617643 -1 2 DVZ -363.7114852831 0 3 DVZ...Input Geometry Output Geometry Basis Set Final Energy (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE -1 2 O-C-Si Linear O-C-Si Linear DZV -401.5363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, S.; Shinada, M.; Matsuoka, O.
1990-10-01
A systematic calculation of new relativistic Gaussian basis sets is reported. The new basis sets are similar to the previously reported ones (J. Chem. Phys. {bold 91}, 4193 (1989)), but, in the calculation, the Breit interaction has been explicitly included besides the Dirac--Coulomb Hamiltonian. They have been adopted for the calculation of the self-consistent field effect on the Breit interaction energies and are expected to be useful for the studies on higher-order effects such as the electron correlations and other quantum electrodynamical effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Jong, Wibe A.; Harrison, Robert J.; Dixon, David A.
A parallel implementation of the spin-free one-electron Douglas-Kroll(-Hess) Hamiltonian (DKH) in NWChem is discussed. An efficient and accurate method to calculate DKH gradients is introduced. It is shown that the use of standard (non-relativistic) contracted basis set can produce erroneous results for elements beyond the first row elements. The generation of DKH contracted cc-pVXZ (X = D, T, Q, 5) basis sets for H, He, B - Ne, Al - Ar, and Ga - Br will be discussed.
Near Hartree-Fock quality GTO basis sets for the first- and third-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry
1989-01-01
Energy-optimized Gaussian-type-orbital (GTO) basis sets of accuracy approaching that of numerical Hartree-Fock computations are compiled for the elements of the first and third rows of the periodic table. The methods employed in calculating the sets are explained; the applicability of the sets to electronic-structure calculations is discussed; and the results are presented in tables and briefly characterized.
Antony, Jens; Grimme, Stefan; Liakos, Dimitrios G; Neese, Frank
2011-10-20
With dispersion-corrected density functional theory (DFT-D3) intermolecular interaction energies for a diverse set of noncovalently bound protein-ligand complexes from the Protein Data Bank are calculated. The focus is on major contacts occurring between the drug molecule and the binding site. Generalized gradient approximation (GGA), meta-GGA, and hybrid functionals are used. DFT-D3 interaction energies are benchmarked against the best available wave function based results that are provided by the estimated complete basis set (CBS) limit of the local pair natural orbital coupled-electron pair approximation (LPNO-CEPA/1) and compared to MP2 and semiempirical data. The size of the complexes and their interaction energies (ΔE(PL)) varies between 50 and 300 atoms and from -1 to -65 kcal/mol, respectively. Basis set effects are considered by applying extended sets of triple- to quadruple-ζ quality. Computed total ΔE(PL) values show a good correlation with the dispersion contribution despite the fact that the protein-ligand complexes contain many hydrogen bonds. It is concluded that an adequate, for example, asymptotically correct, treatment of dispersion interactions is necessary for the realistic modeling of protein-ligand binding. Inclusion of the dispersion correction drastically reduces the dependence of the computed interaction energies on the density functional compared to uncorrected DFT results. DFT-D3 methods provide results that are consistent with LPNO-CEPA/1 and MP2, the differences of about 1-2 kcal/mol on average (<5% of ΔE(PL)) being on the order of their accuracy, while dispersion-corrected semiempirical AM1 and PM3 approaches show a deviating behavior. The DFT-D3 results are found to depend insignificantly on the choice of the short-range damping model. We propose to use DFT-D3 as an essential ingredient in a QM/MM approach for advanced virtual screening approaches of protein-ligand interactions to be combined with similarly "first-principle" accounts for the estimation of solvation and entropic effects.
No need for external orthogonality in subsystem density-functional theory.
Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R
2016-08-03
Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes.
Core-core and core-valence correlation
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.
NASA Astrophysics Data System (ADS)
Iramain, Maximiliano A.; Davies, Lilian; Brandán, Silvia Antonia
2018-07-01
The potassium 2-isonicotinoyltrifluorborate salt has been characterized by using FT-IR, FT-Raman and UV-Visible spectroscopies while its structural properties were studied by using B3LYP/6-31G* and B3LYP/6-311++G** calculations in gas and aqueous solution phases. Four conformers with CS and C1 symmetries were found in the potential energy surfaces but only one of them presents the minimum energy. Two dimeric species of this salt were also optimized in accordance to the layered architectures suggested for trifluoroborate potassium salts in the solid phase. Here, the experimental Raman bands at 796, 748 and 676 cm-1 clearly support the presence of both dimers. On the other hand, the 2-isonicotinoyltrifluorborate anion was optimized because its presence is expected in solution. Reasonable correlations were observed between the predicted FTIR, Raman and UV-visible spectra with the corresponding experimental ones. The solvation energies for the salt in aqueous solution were predicted by using both methods. Here, it is observed that the change of furane by pyridine ring generates an increase in the solvation energies of the potassium 2-isonicotinoyltrifluorborate salt in relation to potassium 3-furoyltrifluoroborate salt. The study of the charges has revealed that there is an effect of the size of the basis set on the Mulliken charges while the AIM analyses suggest that the F⋯H and O⋯K interactions are also strongly dependent of the medium and the size of the basis sets. The bond orders for the F and K atoms evidence their higher ionic characteristics in solution with both basis sets. The NBO and AIM results clearly support the higher stability of this salt in both media. The studies by using the frontier orbitals indicate that the change of furane by pyridine ring decreases the reactivity of this salt by using 6-31G* basis set but increases when the other one is employed. Another effect of change of furane by pyridine ring is observed in the increase of the f(νCdbnd O) and f(νBF3) force constants. In addition, the force fields for the salt in both media were reported together to their complete vibrational assignments and force constants by using both levels of theory.
Gilbert, Jeremy L
2006-12-15
Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.
Numerical judgments by chimpanzees (Pan troglodytes) in a token economy.
Beran, Michael J; Evans, Theodore A; Hoyle, Daniel
2011-04-01
We presented four chimpanzees with a series of tasks that involved comparing two token sets or comparing a token set to a quantity of food. Selected tokens could be exchanged for food items on a one-to-one basis. Chimpanzees successfully selected the larger numerical set for comparisons of 1 to 5 items when both sets were visible and when sets were presented through one-by-one addition of tokens into two opaque containers. Two of four chimpanzees used the number of tokens and food items to guide responding in all conditions, rather than relying on token color, size, total amount, or duration of set presentation. These results demonstrate that judgments of simultaneous and sequential sets of stimuli are made by some chimpanzees on the basis of the numerousness of sets rather than other non-numerical dimensions. The tokens were treated as equivalent to food items on the basis of their numerousness, and the chimpanzees maximized reward by choosing the larger number of items in all situations.
Correlation consistent basis sets for actinides. I. The Th and U atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Kirk A., E-mail: kipeters@wsu.edu
New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc − pV nZ − PP and cc − pV nZ − DK3, as well as outer-core correlation (valence + 5s5p5d), cc − pwCV nZ − PP and cc − pwCV nZ − DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Bothmore » series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThF{sub n} (n = 2 − 4), ThO{sub 2}, and UF{sub n} (n = 4 − 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF{sub 4}, ThF{sub 3}, ThF{sub 2}, and ThO{sub 2} are all within their experimental uncertainties. Bond dissociation energies of ThF{sub 4} and ThF{sub 3}, as well as UF{sub 6} and UF{sub 5}, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF{sub 4} and ThO{sub 2}. The DKH3 atomization energy of ThO{sub 2} was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.« less
Segmented all-electron Gaussian basis sets of double and triple zeta qualities for Fr, Ra, and Ac
NASA Astrophysics Data System (ADS)
Campos, C. T.; de Oliveira, A. Z.; Ferreira, I. B.; Jorge, F. E.; Martins, L. S. C.
2017-05-01
Segmented all-electron basis sets of valence double and triple zeta qualities plus polarization functions for the elements Fr, Ra, and Ac are generated using non-relativistic and Douglas-Kroll-Hess (DKH) Hamiltonians. The sets are augmented with diffuse functions with the purpose to describe appropriately the electrons far from the nuclei. At the DKH-B3LYP level, first atomic ionization energies and bond lengths, dissociation energies, and polarizabilities of a sample of diatomics are calculated. Comparison with theoretical and experimental data available in the literature is carried out. It is verified that despite the small sizes of the basis sets, they are yet reliable.
NASA Astrophysics Data System (ADS)
Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi
2005-03-01
The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.
Conformational effect of dicyclo-hexano-18-crown-6 on isotopic fractionation of zinc: DFT approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boda, A.; Singha Deb, A. K.; Ali, Sk. M.
2014-04-24
Generalized gradient approximated BP86 density functional employing triple zeta valence plus polarization (TZVP) basis set has been used to compute the reduced partition function ratio and isotopic separation factor for zinc isotopes. The isotopic separation factor was found to be in good agreement with the experimental results. The isotopic separation factor was found to depend on the conformation of the crown ether ligand. The trans-trans conformation shows the highest fractionation compared to cis-cis conformer. The present theoretical results can thus be used to plan the isotope separation experiments.
Introducing various ligands into superhalogen anions reduces their electronic stabilities
NASA Astrophysics Data System (ADS)
Smuczyńska, Sylwia; Skurski, Piotr
2008-02-01
The vertical electron detachment energies (VDE) of six NaX2- anions (where X = F, Cl, Br) were calculated at the OVGF level with the 6-311++G(3df) basis sets. In all the cases studied the VDE exceeds the electron affinity of chlorine atom and thus those species were classified as superhalogen anions. The largest vertical binding energy was found for the NaF2- system (6.644 eV). The strong VDE dependence on the ligand type, ligand-central atom distance, and the character of the highest occupied molecular orbital (HOMO) was observed and discussed.
Galvão, B R L; Rodrigues, S P J; Varandas, A J C
2008-07-28
A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.
Coupled-cluster treatment of molecular strong-field ionization
NASA Astrophysics Data System (ADS)
Jagau, Thomas-C.
2018-05-01
Ionization rates and Stark shifts of H2, CO, O2, H2O, and CH4 in static electric fields have been computed with coupled-cluster methods in a basis set of atom-centered Gaussian functions with a complex-scaled exponent. Consideration of electron correlation is found to be of great importance even for a qualitatively correct description of the dependence of ionization rates and Stark shifts on the strength and orientation of the external field. The analysis of the second moments of the molecular charge distribution suggests a simple criterion for distinguishing tunnel and barrier suppression ionization in polyatomic molecules.
Rational Density Functional Selection Using Game Theory.
McAnanama-Brereton, Suzanne; Waller, Mark P
2018-01-22
Theoretical chemistry has a paradox of choice due to the availability of a myriad of density functionals and basis sets. Traditionally, a particular density functional is chosen on the basis of the level of user expertise (i.e., subjective experiences). Herein we circumvent the user-centric selection procedure by describing a novel approach for objectively selecting a particular functional for a given application. We achieve this by employing game theory to identify optimal functional/basis set combinations. A three-player (accuracy, complexity, and similarity) game is devised, through which Nash equilibrium solutions can be obtained. This approach has the advantage that results can be systematically improved by enlarging the underlying knowledge base, and the deterministic selection procedure mathematically justifies the density functional and basis set selections.
Siu, Chi-Kit; Liu, Zhi-Feng; Tse, John S
2002-09-11
We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations at the MP2/6-31G** level. Finally, the switch-off of the H(2) elimination for n > 24 is explored and attributed to the diffusion of protons through enlarged hydrogen bonded H(2)O networks, which reduces the probability of finding a proton near the Al-H bond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kersten, J. A. F., E-mail: jennifer.kersten@cantab.net; Alavi, Ali, E-mail: a.alavi@fkf.mpg.de; Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart
2016-08-07
The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses andmore » compares two contrasting “universal” explicitly correlated approaches that fit into the FCIQMC framework: the [2]{sub R12} method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mE{sub h} to 3-4 mE{sub h}. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.« less
Plasser, Felix; Mewes, Stefanie A; Dreuw, Andreas; González, Leticia
2017-11-14
High-level multireference computations on electronically excited and charged states of tetracene are performed, and the results are analyzed using an extensive wave function analysis toolbox that has been newly implemented in the Molcas program package. Aside from verifying the strong effect of dynamic correlation, this study reveals an unexpected critical influence of the atomic orbital basis set. It is shown that different polarized double-ζ basis sets produce significantly different results for energies, densities, and overall wave functions, with the best performance obtained for the atomic natural orbital (ANO) basis set by Pierloot et al. Strikingly, the ANO basis set not only reproduces the energies but also performs exceptionally well in terms of describing the diffuseness of the different states and of their attachment/detachment densities. This study, thus, not only underlines the fact that diffuse basis functions are needed for an accurate description of the electronic wave functions but also shows that, at least for the present example, it is enough to include them implicitly in the contraction scheme.
A novel feature extraction approach for microarray data based on multi-algorithm fusion
Jiang, Zhu; Xu, Rong
2015-01-01
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277
A novel feature extraction approach for microarray data based on multi-algorithm fusion.
Jiang, Zhu; Xu, Rong
2015-01-01
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.
Zhao, Dandan; Liang, Shengnan; Jin, Zhenlan; Li, Ling
2014-07-09
Previous studies have confirmed that attention can be modulated by the current task set while involuntarily captured by salient items. However, little is known on which factors the modulation of attentional capture is dependent on when the same stimuli with different task sets are presented. In the present study, participants conducted two visual search tasks with the same search arrays by varying target and distractor settings (color singleton as target, onset singleton as distractor, named as color task, and vice versa). Ipsilateral and contralateral color distractors resulted in two different relative saliences in two tasks, respectively. Both reaction times (RTs) and N2-posterior-contralateral (N2pc) results showed that there was no difference between ipsilateral and contralateral color distractors in the onset task. However, both RTs and the latency of N2pc showed a delay to the ipsilateral onset distractor compared with the contralateral onset distractor. Moreover, the N2pc observed under the contralateral distractor condition in the color task was reversed, and its amplitude was attenuated. On the basis of these results, we proposed a parameter called distractor cost (DC), computed by subtracting RTs under the contralateral distractor condition from the ipsilateral condition. The results suggest that an enhanced DC might be related to the modification of N2pc in searching for the color target. Taken together, these findings provide evidence that the effect of task set-modulating attentional capture in visual search is related to the DC.
Decomposability and convex structure of thermal processes
NASA Astrophysics Data System (ADS)
Mazurek, Paweł; Horodecki, Michał
2018-05-01
We present an example of a thermal process (TP) for a system of d energy levels, which cannot be performed without an instant access to the whole energy space. This TP is uniquely connected with a transition between some states of the system, that cannot be performed without access to the whole energy space even when approximate transitions are allowed. Pursuing the question about the decomposability of TPs into convex combinations of compositions of processes acting non-trivially on smaller subspaces, we investigate transitions within the subspace of states diagonal in the energy basis. For three level systems, we determine the set of extremal points of these operations, as well as the minimal set of operations needed to perform an arbitrary TP, and connect the set of TPs with thermomajorization criterion. We show that the structure of the set depends on temperature, which is associated with the fact that TPs cannot increase deterministically extractable work from a state—the conclusion that holds for arbitrary d level system. We also connect the decomposability problem with detailed balance symmetry of an extremal TPs.
Convergence of third order correlation energy in atoms and molecules.
Kahn, Kalju; Granovsky, Alex A; Noga, Jozef
2007-01-30
We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-09-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-05
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Huang, Xinchuan; Valeev, Edward F.; Lee, Timothy J.
2010-12-01
One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H2O, N2H+, NO2+, and C2H2 molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N2H+ where it is concluded that basis set extrapolation is still preferred. The differences for H2O and NO2+ are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C2H2, however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)R12, incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N2H+ and NO2+ were computed, including basis set extrapolation, core-correlation, scalar relativity, and higher-order correlation and then used to compute highly accurate spectroscopic data for all isotopologues. Agreement with high-resolution experiment for 14N2H+ and 14N2D+ was excellent, but for 14N16O2+ agreement for the two stretching fundamentals is outside the expected residual uncertainty in the theoretical values, and it is concluded that there is an error in the experimental quantities. It is hoped that the highly accurate spectroscopic data presented for the minor isotopologues of N2H+ and NO2+ will be useful in the interpretation of future laboratory or astronomical observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvetsky, Nitai, E-mail: gershom@weizmann.ac.il; Martin, Jan M. L., E-mail: gershom@weizmann.ac.il; Peterson, Kirk A., E-mail: kipeters@wsu.edu
2016-06-07
In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H–He, B–Ne, and Al–Ar, is shown to be very close to the basis setmore » limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl{sub 4}) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than “valence limit + CV correction” approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from CCSD-F12b/cc-pV{Q,5}Z-F12 calculations, but the (T) component from conventional CCSD(T)/aug’-cc-pV{Q,5}Z + d calculations using Schwenke’s extrapolation; post-CCSD(T), core-valence, and relativistic corrections are to be obtained as in the original W4 theory. W4-F12 is found to agree slightly better than W4 with ATcT (active thermochemical tables) data, at a substantial saving in computation time and especially I/O overhead. A W4-F12 calculation on benzene is presented as a proof of concept.« less
Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria O.; Eisenberg, Tobias; Harder, Lea M.; Schandorff, Søren; Farkas, Thomas; Kirkegaard, Thomas; Becker, Andrea C.; Schroeder, Sabrina; Vanselow, Katja; Lundberg, Emma; Nielsen, Mogens M.; Kristensen, Anders R.; Akimov, Vyacheslav; Bunkenborg, Jakob; Madeo, Frank; Jäättelä, Marja; Andersen, Jens S.
2012-01-01
Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection. PMID:22311637
NASA Astrophysics Data System (ADS)
Resende, Stella M.; De Almeida, Wagner B.; van Duijneveldt-van de Rijdt, Jeanne G. C. M.; van Duijneveldt, Frans B.
2001-08-01
Geometrical parameters for the equilibrium (MIN) and lowest saddle-point (TS) geometries of the C2H4⋯SO2 dimer, and the corresponding binding energies, were calculated using the Hartree-Fock and correlated levels of ab initio theory, in basis sets ranging from the D95(d,p) double-zeta basis set to the aug-cc-pVQZ correlation consistent basis set. An assessment of the effect of the basis set superposition error (BSSE) on these results was made. The dissociation energy from the lowest vibrational state was estimated to be 705±100 cm-1 at the basis set limit, which is well within the range expected from experiment. The barrier to internal rotation was found to be 53±5 cm-1, slightly higher than the (revised) experimental result of 43 cm-1, probably due to zero-point vibrational effects. Our results clearly show that, in direct contrast with recent ideas, the BSSE correction affects differentially the MIN and TS binding energies and so has to be included in the calculation of small energy barriers such as that in the C2H4⋯SO2 dimer. Previous reports of positive MP2 frozen-core binding energies for this complex in basis D95(d,p) are confirmed. The anomalies are shown to be an artifact arising from an incorrect removal of virtual orbitals by the default frozen-core option in the GAUSSIAN program.
Scaling and efficiency determine the irreversible evolution of a market
Baldovin, F.; Stella, A. L.
2007-01-01
In setting up a stochastic description of the time evolution of a financial index, the challenge consists in devising a model compatible with all stylized facts emerging from the analysis of financial time series and providing a reliable basis for simulating such series. Based on constraints imposed by market efficiency and on an inhomogeneous-time generalization of standard simple scaling, we propose an analytical model which accounts simultaneously for empirical results like the linear decorrelation of successive returns, the power law dependence on time of the volatility autocorrelation function, and the multiscaling associated to this dependence. In addition, our approach gives a justification and a quantitative assessment of the irreversible character of the index dynamics. This irreversibility enters as a key ingredient in a novel simulation strategy of index evolution which demonstrates the predictive potential of the model.
Dynamic thresholds and a summary ROC curve: Assessing prognostic accuracy of longitudinal markers.
Saha-Chaudhuri, P; Heagerty, P J
2018-04-19
Cancer patients, chronic kidney disease patients, and subjects infected with HIV are routinely monitored over time using biomarkers that represent key health status indicators. Furthermore, biomarkers are frequently used to guide initiation of new treatments or to inform changes in intervention strategies. Since key medical decisions can be made on the basis of a longitudinal biomarker, it is important to evaluate the potential accuracy associated with longitudinal monitoring. To characterize the overall accuracy of a time-dependent marker, we introduce a summary ROC curve that displays the overall sensitivity associated with a time-dependent threshold that controls time-varying specificity. The proposed statistical methods are similar to concepts considered in disease screening, yet our methods are novel in choosing a potentially time-dependent threshold to define a positive test, and our methods allow time-specific control of the false-positive rate. The proposed summary ROC curve is a natural averaging of time-dependent incident/dynamic ROC curves and therefore provides a single summary of net error rates that can be achieved in the longitudinal setting. Copyright © 2018 John Wiley & Sons, Ltd.
Kujala, S T; Knürr, T; Kärkkäinen, K; Neale, D B; Sillanpää, M J; Savolainen, O
2017-05-01
Local adaptation is a common feature of plant and animal populations. Adaptive phenotypic traits are genetically differentiated along environmental gradients, but the genetic basis of such adaptation is still poorly known. Genetic association studies of local adaptation combine data over populations. Correcting for population structure in these studies can be problematic since both selection and neutral demographic events can create similar allele frequency differences between populations. Correcting for demography with traditional methods may lead to eliminating some true associations. We developed a new Bayesian approach for identifying the loci underlying an adaptive trait in a multipopulation situation in the presence of possible double confounding due to population stratification and adaptation. With this method we studied the genetic basis of timing of bud set, a surrogate trait for timing of yearly growth cessation that confers local adaptation to the populations of Scots pine (Pinus sylvestris). Population means of timing of bud set were highly correlated with latitude. Most effects at individual loci were small. Interestingly, we found genetic heterogeneity (that is, different sets of loci associated with the trait) between the northern and central European parts of the cline. We also found indications of stronger stabilizing selection toward the northern part of the range. The harsh northern conditions may impose greater selective pressure on timing of growth cessation, and the relative importance of different environmental cues used for tracking the seasons might differ depending on latitude of origin.
Fault Management Design Strategies
NASA Technical Reports Server (NTRS)
Day, John C.; Johnson, Stephen B.
2014-01-01
Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2007-06-18
UEDGE is an interactive suite of physics packages using the Python or BASIS scripting systems. The plasma is described by time-dependent 2D plasma fluid equations that include equations for density, velocity, ion temperature, electron temperature, electrostatic potential, and gas density in the edge region of a magnetic fusion energy confinement device. Slab, cylindrical, and toroidal geometries are allowed, and closed and open magnetic field-line regions are included. Classical transport is assumed along magnetic field lines, and anomalous transport is assumed across field lines. Multi-charge state impurities can be included with the corresponding line-radiation energy loss. Although UEDGE is written inmore » Fortran, for efficient execution and analysis of results, it utilizes either Python or BASIS scripting shells. Python is easily available for many platforms (http://www.Python.org/). The features and availability of BASIS are described in "Basis Manual Set" by P.F. Dubois, Z.C. Motteler, et al., Lawrence Livermore National Laboratory report UCRL-MA-1 18541, June, 2002 and http://basis.llnl.gov. BASIS has been reviewed and released by LLNL for unlimited distribution. The Python version utilizes PYBASIS scripts developed by D.P. Grote, LLNL. The Python version also uses MPPL code and MAC Perl script, available from the public-domain BASIS source above. The Forthon version of UEDGE uses the same source files, but utilizes Forthon to produce a Python-compatible source. Forthon has been developed by D.P. Grote at LBL (see http://hifweb.lbl.gov/Forthon/ and Grote et al. in the references below), and it is freely available. The graphics can be performed by any package importable to Python, such as PYGIST.« less
NASA Technical Reports Server (NTRS)
Wolf, David R.
2004-01-01
The topic of this paper is a hierarchy of information-like functions, here named the information correlation functions, where each function of the hierarchy may be thought of as the information between the variables it depends upon. The information correlation functions are particularly suited to the description of the emergence of complex behaviors due to many- body or many-agent processes. They are particularly well suited to the quantification of the decomposition of the information carried among a set of variables or agents, and its subsets. In more graphical language, they provide the information theoretic basis for understanding the synergistic and non-synergistic components of a system, and as such should serve as a forceful toolkit for the analysis of the complexity structure of complex many agent systems. The information correlation functions are the natural generalization to an arbitrary number of sets of variables of the sequence starting with the entropy function (one set of variables) and the mutual information function (two sets). We start by describing the traditional measures of information (entropy) and mutual information.
Heid, Esther
2018-01-01
Ground and excited state dipoles and polarizabilities of the chromophores N-methyl-6-oxyquinolinium betaine (MQ) and coumarin 153 (C153) in solution have been evaluated using time-dependent density functional theory (TD-DFT). A method for determining the atomic polarizabilities has been developed; the molecular dipole has been decomposed into atomic charge transfer and polarizability terms, and variation in the presence of an electric field has been used to evaluate atomic polarizabilities. On excitation, MQ undergoes very site-specific changes in polarizability while C153 shows significantly less variation. We also conclude that MQ cannot be adequately described by standard atomic polarizabilities based on atomic number and hybridization state. Changes in the molecular polarizability of MQ (on excitation) are not representative of the local site-specific changes in atomic polarizability, thus the overall molecular polarizability ratio does not provide a good approximation for local atom-specific polarizability changes on excitation. Accurate excited state force fields are needed for computer simulation of solvation dynamics. The chromophores considered in this study are often used as molecular probes. The methods and data reported here can be used for the construction of polarizable ground and excited state force fields. Atomic and molecular polarizabilities (ground and excited states) have been evaluated over a range of functionals and basis sets. Different mechanisms for including solvation effects have been examined; using a polarizable continuum model, explicit solvation and via sampling of clusters extracted from a MD simulation. A range of different solvents have also been considered. PMID:29542743
Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi
2012-01-01
BACKGROUND AND PURPOSE The volatile anaesthetic sevoflurane affects heart rate in clinical settings. The present study investigated the effect of sevoflurane on sinoatrial (SA) node automaticity and its underlying ionic mechanisms. EXPERIMENTAL APPROACH Spontaneous action potentials and four ionic currents fundamental for pacemaking, namely, the hyperpolarization-activated cation current (If), T-type and L-type Ca2+ currents (ICa,T and ICa,L, respectively), and slowly activating delayed rectifier K+ current (IKs), were recorded in isolated guinea-pig SA node cells using perforated and conventional whole-cell patch-clamp techniques. Heart rate in guinea-pigs was recorded ex vivo in Langendorff mode and in vivo during sevoflurane inhalation. KEY RESULTS In isolated SA node cells, sevoflurane (0.12–0.71 mM) reduced the firing rate of spontaneous action potentials and its electrical basis, diastolic depolarization rate, in a qualitatively similar concentration-dependent manner. Sevoflurane (0.44 mM) reduced spontaneous firing rate by approximately 25% and decreased If, ICa,T, ICa,L and IKs by 14.4, 31.3, 30.3 and 37.1%, respectively, without significantly affecting voltage dependence of current activation. The negative chronotropic effect of sevoflurane was partly reproduced by a computer simulation of SA node cell electrophysiology. Sevoflurane reduced heart rate in Langendorff-perfused hearts, but not in vivo during sevoflurane inhalation in guinea-pigs. CONCLUSIONS AND IMPLICATIONS Sevoflurane at clinically relevant concentrations slowed diastolic depolarization and thereby reduced pacemaking activity in SA node cells, at least partly due to its inhibitory effect on If, ICa,T and ICa,L. These findings provide an important electrophysiological basis of alterations in heart rate during sevoflurane anaesthesia in clinical settings. PMID:22356456
O'Donoghue, Patrick; Luthey-Schulten, Zaida
2005-02-25
We present a new algorithm, based on the multidimensional QR factorization, to remove redundancy from a multiple structural alignment by choosing representative protein structures that best preserve the phylogenetic tree topology of the homologous group. The classical QR factorization with pivoting, developed as a fast numerical solution to eigenvalue and linear least-squares problems of the form Ax=b, was designed to re-order the columns of A by increasing linear dependence. Removing the most linear dependent columns from A leads to the formation of a minimal basis set which well spans the phase space of the problem at hand. By recasting the problem of redundancy in multiple structural alignments into this framework, in which the matrix A now describes the multiple alignment, we adapted the QR factorization to produce a minimal basis set of protein structures which best spans the evolutionary (phase) space. The non-redundant and representative profiles obtained from this procedure, termed evolutionary profiles, are shown in initial results to outperform well-tested profiles in homology detection searches over a large sequence database. A measure of structural similarity between homologous proteins, Q(H), is presented. By properly accounting for the effect and presence of gaps, a phylogenetic tree computed using this metric is shown to be congruent with the maximum-likelihood sequence-based phylogeny. The results indicate that evolutionary information is indeed recoverable from the comparative analysis of protein structure alone. Applications of the QR ordering and this structural similarity metric to analyze the evolution of structure among key, universally distributed proteins involved in translation, and to the selection of representatives from an ensemble of NMR structures are also discussed.
NASA Astrophysics Data System (ADS)
Bytev, Vladimir V.; Kniehl, Bernd A.
2016-09-01
We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function FC of three variables. Catalogue identifier: AEPP_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPP_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 243461 No. of bytes in distributed program, including test data, etc.: 61610782 Distribution format: tar.gz Programming language: Mathematica. Computer: All computers running Mathematica. Operating system: Operating systems running Mathematica. Classification: 4.4. Does the new version supersede the previous version?: No, it significantly extends the previous version. Nature of problem: Reduction of hypergeometric function FC of three variables to a set of basis functions. Solution method: Differential reduction. Reasons for new version: The extension package allows the user to handle the Lauricella function FC of three variables. Summary of revisions: The previous version goes unchanged. Running time: Depends on the complexity of the problem.
Evolutionary optimization of radial basis function classifiers for data mining applications.
Buchtala, Oliver; Klimek, Manuel; Sick, Bernhard
2005-10-01
In many data mining applications that address classification problems, feature and model selection are considered as key tasks. That is, appropriate input features of the classifier must be selected from a given (and often large) set of possible features and structure parameters of the classifier must be adapted with respect to these features and a given data set. This paper describes an evolutionary algorithm (EA) that performs feature and model selection simultaneously for radial basis function (RBF) classifiers. In order to reduce the optimization effort, various techniques are integrated that accelerate and improve the EA significantly: hybrid training of RBF networks, lazy evaluation, consideration of soft constraints by means of penalty terms, and temperature-based adaptive control of the EA. The feasibility and the benefits of the approach are demonstrated by means of four data mining problems: intrusion detection in computer networks, biometric signature verification, customer acquisition with direct marketing methods, and optimization of chemical production processes. It is shown that, compared to earlier EA-based RBF optimization techniques, the runtime is reduced by up to 99% while error rates are lowered by up to 86%, depending on the application. The algorithm is independent of specific applications so that many ideas and solutions can be transferred to other classifier paradigms.
NASA Astrophysics Data System (ADS)
Arockia doss, M.; Savithiri, S.; Rajarajan, G.; Thanikachalam, V.; Saleem, H.
2015-09-01
The structural and spectroscopic studies of 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone (PDPOSC) were made by adopting B3LYP/HF levels theory using 6-311++G(d,p) basis set. The FT-IR and Raman spectra were recorded in solid phase, the fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. DFT method indicates that B3LYP is superior to HF method for molecular vibrational analysis. UV-vis spectrum of the compound was recorded in different solvents in the region of 200-800 nm and the electronic properties such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies were evaluated by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E(2)) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen and oxygen were calculated using B3LYP/6-311++G(d,p) level theory. Moreover, thermodynamic properties of the title compound were calculated by B3LYP/HF, levels using 6-311++G(d,p) basis set. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.
NASA Astrophysics Data System (ADS)
Sinha, Leena; Karabacak, Mehmet; Narayan, V.; Cinar, Mehmet; Prasad, Onkar
2013-05-01
Gabapentin (GP), structurally related to the neurotransmitter GABA (gamma-aminobutyric acid), mimics the activity of GABA and is also widely used in neurology for the treatment of peripheral neuropathic pain. It exists in zwitterionic form in solid state. The present communication deals with the quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of GP using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. In view of the fact that amino acids exist as zwitterions as well as in the neutral form depending on the environment (solvent, pH, etc.), molecular properties of both the zwitterionic and neutral form of GP have been analyzed. The fundamental vibrational wavenumbers as well as their intensities were calculated and compared with experimental FT-IR and FT-Raman spectra. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The electric dipole moment, polarizability and the first hyperpolarizability values of the GP have been calculated at the same level of theory and basis set. The nonlinear optical (NLO) behavior of zwitterionic and neutral form has been compared. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. Ultraviolet-visible (UV-Vis) spectrum of the title molecule has also been calculated using TD-DFT method. The thermodynamic properties of both the zwitterionic and neutral form of GP at different temperatures have been calculated.
Basis set study of classical rotor lattice dynamics.
Witkoskie, James B; Wu, Jianlan; Cao, Jianshu
2004-03-22
The reorientational relaxation of molecular systems is important in many phenomenon and applications. In this paper, we explore the reorientational relaxation of a model Brownian rotor lattice system with short range interactions in both the high and low temperature regimes. In this study, we use a basis set expansion to capture collective motions of the system. The single particle basis set is used in the high temperature regime, while the spin wave basis is used in the low temperature regime. The equations of motion derived in this approach are analogous to the generalized Langevin equation, but the equations render flexibility by allowing nonequilibrium initial conditions. This calculation shows that the choice of projection operators in the generalized Langevin equation (GLE) approach corresponds to defining a specific inner-product space, and this inner-product space should be chosen to reveal the important physics of the problem. The basis set approach corresponds to an inner-product and projection operator that maintain the orthogonality of the spherical harmonics and provide a convenient platform for analyzing GLE expansions. The results compare favorably with numerical simulations, and the formalism is easily extended to more complex systems. (c) 2004 American Institute of Physics
Theoretical study of the XP3 (X = Al, B, Ga) clusters
NASA Astrophysics Data System (ADS)
Ueno, Leonardo T.; Lopes, Cinara; Malaspina, Thaciana; Roberto-Neto, Orlando; Canuto, Sylvio; Machado, Francisco B. C.
2012-05-01
The lowest singlet and triplet states of AlP3, GaP3 and BP3 molecules with Cs, C2v and C3v symmetries were characterized using the B3LYP functional and the aug-cc-pVTZ and aug-cc-pVQZ correlated consistent basis sets. Geometrical parameters and vibrational frequencies were calculated and compared to existent experimental and theoretical data. Relative energies were obtained with single point CCSD(T) calculations using the aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z basis sets, and then extrapolating to the complete basis set (CBS) limit.
How to compute isomerization energies of organic molecules with quantum chemical methods.
Grimme, Stefan; Steinmetz, Marc; Korth, Martin
2007-03-16
The reaction energies for 34 typical organic isomerizations including oxygen and nitrogen heteroatoms are investigated with modern quantum chemical methods that have the perspective of also being applicable to large systems. The experimental reaction enthalpies are corrected for vibrational and thermal effects, and the thus derived "experimental" reaction energies are compared to corresponding theoretical data. A series of standard AO basis sets in combination with second-order perturbation theory (MP2, SCS-MP2), conventional density functionals (e.g., PBE, TPSS, B3-LYP, MPW1K, BMK), and new perturbative functionals (B2-PLYP, mPW2-PLYP) are tested. In three cases, obvious errors of the experimental values could be detected, and accurate coupled-cluster [CCSD(T)] reference values have been used instead. It is found that only triple-zeta quality AO basis sets provide results close enough to the basis set limit and that sets like the popular 6-31G(d) should be avoided in accurate work. Augmentation of small basis sets with diffuse functions has a notable effect in B3-LYP calculations that is attributed to intramolecular basis set superposition error and covers basic deficiencies of the functional. The new methods based on perturbation theory (SCS-MP2, X2-PLYP) are found to be clearly superior to many other approaches; that is, they provide mean absolute deviations of less than 1.2 kcal mol-1 and only a few (<10%) outliers. The best performance in the group of conventional functionals is found for the highly parametrized BMK hybrid meta-GGA. Contrary to accepted opinion, hybrid density functionals offer no real advantage over simple GGAs. For reasonably large AO basis sets, results of poor quality are obtained with the popular B3-LYP functional that cannot be recommended for thermochemical applications in organic chemistry. The results of this study are complementary to often used benchmarks based on atomization energies and should guide chemists in their search for accurate and efficient computational thermochemistry methods.
Shotorban, Babak
2010-04-01
The dynamic least-squares kernel density (LSQKD) model [C. Pantano and B. Shotorban, Phys. Rev. E 76, 066705 (2007)] is used to solve the Fokker-Planck equations. In this model the probability density function (PDF) is approximated by a linear combination of basis functions with unknown parameters whose governing equations are determined by a global least-squares approximation of the PDF in the phase space. In this work basis functions are set to be Gaussian for which the mean, variance, and covariances are governed by a set of partial differential equations (PDEs) or ordinary differential equations (ODEs) depending on what phase-space variables are approximated by Gaussian functions. Three sample problems of univariate double-well potential, bivariate bistable neurodynamical system [G. Deco and D. Martí, Phys. Rev. E 75, 031913 (2007)], and bivariate Brownian particles in a nonuniform gas are studied. The LSQKD is verified for these problems as its results are compared against the results of the method of characteristics in nondiffusive cases and the stochastic particle method in diffusive cases. For the double-well potential problem it is observed that for low to moderate diffusivity the dynamic LSQKD well predicts the stationary PDF for which there is an exact solution. A similar observation is made for the bistable neurodynamical system. In both these problems least-squares approximation is made on all phase-space variables resulting in a set of ODEs with time as the independent variable for the Gaussian function parameters. In the problem of Brownian particles in a nonuniform gas, this approximation is made only for the particle velocity variable leading to a set of PDEs with time and particle position as independent variables. Solving these PDEs, a very good performance by LSQKD is observed for a wide range of diffusivities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandbyge, Mads, E-mail: mads.brandbyge@nanotech.dtu.dk
2014-05-07
In a recent paper Reuter and Harrison [J. Chem. Phys. 139, 114104 (2013)] question the widely used mean-field electron transport theories, which employ nonorthogonal localized basis sets. They claim these can violate an “implicit decoupling assumption,” leading to wrong results for the current, different from what would be obtained by using an orthogonal basis, and dividing surfaces defined in real-space. We argue that this assumption is not required to be fulfilled to get exact results. We show how the current/transmission calculated by the standard Greens function method is independent of whether or not the chosen basis set is nonorthogonal, andmore » that the current for a given basis set is consistent with divisions in real space. The ambiguity known from charge population analysis for nonorthogonal bases does not carry over to calculations of charge flux.« less
NASA Astrophysics Data System (ADS)
Espinosa-Garcia, J.
Ab initio molecular orbital theory was used to study parts of the reaction between the CH2Br radical and the HBr molecule, and two possibilities were analysed: attack on the hydrogen and attack on the bromine of the HBr molecule. Optimized geometries and harmonic vibrational frequencies were calculated at the second-order Moller-Plesset perturbation theory levels, and comparison with available experimental data was favourable. Then single-point calculations were performed at several higher levels of calculation. In the attack on the hydrogen of HBr, two stationary points were located on the direct hydrogen abstraction reaction path: a very weak hydrogen bonded complex of reactants, C···HBr, close to the reactants, followed by the saddle point (SP). The effects of level of calculation (method + basis set), spin projection, zeropoint energy, thermal corrections (298K), spin-orbit coupling and basis set superposition error (BSSE) on the energy changes were analysed. Taking the reaction enthalpy (298K) as reference, agreement with experiment was obtained only when high correlation energy and large basis sets were used. It was concluded that at room temperature (i.e., with zero-point energy and thermal corrections), when the BSSE was included, the complex disappears and the activation enthalpy (298K) ranges from 0.8kcal mol-1 to 1.4kcal mol-1 above the reactants, depending on the level of calculation. It was concluded also that this result is the balance of a complicated interplay of many factors, which are affected by uncertainties in the theoretical calculations. Finally, another possible complex (X complex), which involves the alkyl radical being attracted to the halogen end of HBr (C···BrH), was explored also. It was concluded that this X complex does not exist at room temperature.
Mechanistic and kinetic study of the CH3CO + O2 reaction.
Hou, Hua; Li, Aixiao; Hu, Hongyi; Li, Yuzhen; Li, Hui; Wang, Baoshan
2005-06-08
Potential-energy surface of the CH3CO + O2 reaction has been calculated by ab initio quantum chemistry methods. The geometries were optimized using the second-order Moller-Plesset theory (MP2) with the 6-311G(d,p) basis set and the coupled-cluster theory with single and double excitations (CCSD) with the correlation consistent polarized valence double zeta (cc-pVDZ) basis set. The relative energies were calculated using the Gaussian-3 second-order Moller-Plesset theory with the CCSD/cc-pVDZ geometries. Multireference self-consistent-field and MP2 methods were also employed using the 6-311G(d,p) and 6-311++G(3df,2p) basis sets. Both addition/elimination and direct abstraction mechanisms have been investigated. It was revealed that acetylperoxy radical [CH3C(O)OO] is the initial adduct and the formation of OH and alpha-lactone [CH2CO2(1A')] is the only energetically accessible decomposition channel. The other channels, e.g., abstraction, HO2 + CH2CO, O + CH3CO2, CO + CH3O2, and CO2 + CH3O, are negligible. Multichannel Rice-Ramsperger-Kassel-Marcus theory and transition state theory (E-resolved) were employed to calculate the overall and individual rate coefficients and the temperature and pressure dependences. Fairly good agreement between theory and experiments has been obtained without any adjustable parameters. It was concluded that at pressures below 3 Torr, OH and CH2CO2(1A') are the major nascent products of the oxidation of acetyl radicals, although CH2CO2(1A') might either undergo unimolecular decomposition to form the final products of CH2O + CO or react with OH and Cl to generate H2O and HCl. The acetylperoxy radicals formed by collisional stabilization are the major products at the elevated pressures. In atmosphere, the yield of acetylperoxy is nearly unity and the contribution of OH is only marginal.
NASA Astrophysics Data System (ADS)
García-Díaz, J. Carlos
2009-11-01
Fault detection and diagnosis is an important problem in process engineering. Process equipments are subject to malfunctions during operation. Galvanized steel is a value added product, furnishing effective performance by combining the corrosion resistance of zinc with the strength and formability of steel. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing and the increasingly stringent quality requirements in automotive industry has also demanded ongoing efforts in process control to make the process more robust. When faults occur, they change the relationship among these observed variables. This work compares different statistical regression models proposed in the literature for estimating the quality of galvanized steel coils on the basis of short time histories. Data for 26 batches were available. Five variables were selected for monitoring the process: the steel strip velocity, four bath temperatures and bath level. The entire data consisting of 48 galvanized steel coils was divided into sets. The first training data set was 25 conforming coils and the second data set was 23 nonconforming coils. Logistic regression is a modeling tool in which the dependent variable is categorical. In most applications, the dependent variable is binary. The results show that the logistic generalized linear models do provide good estimates of quality coils and can be useful for quality control in manufacturing process.
Some considerations about Gaussian basis sets for electric property calculations
NASA Astrophysics Data System (ADS)
Arruda, Priscilla M.; Canal Neto, A.; Jorge, F. E.
Recently, segmented contracted basis sets of double, triple, and quadruple zeta valence quality plus polarization functions (XZP, X = D, T, and Q, respectively) for the atoms from H to Ar were reported. In this work, with the objective of having a better description of polarizabilities, the QZP set was augmented with diffuse (s and p symmetries) and polarization (p, d, f, and g symmetries) functions that were chosen to maximize the mean dipole polarizability at the UHF and UMP2 levels, respectively. At the HF and B3LYP levels of theory, electric dipole moment and static polarizability for a sample of molecules were evaluated. Comparison with experimental data and results obtained with a similar size basis set, whose diffuse functions were optimized for the ground state energy of the anion, was done.
ERIC Educational Resources Information Center
Lee, Liangshiu
2010-01-01
The basis sets for symmetry operations of d[superscript 1] to d[superscript 9] complexes in an octahedral field and the resulting terms are derived for the ground states and spin-allowed excited states. The basis sets are of fundamental importance in group theory. This work addresses such a fundamental issue, and the results are pedagogically…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCEmore » allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.« less
Multi-GPU maximum entropy image synthesis for radio astronomy
NASA Astrophysics Data System (ADS)
Cárcamo, M.; Román, P. E.; Casassus, S.; Moral, V.; Rannou, F. R.
2018-01-01
The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. This work presents a high performance GPU version of non-gridding MEM, which is tested using real and simulated data. We propose a single-GPU and a multi-GPU implementation for single and multi-spectral data, respectively. We also make use of the Peer-to-Peer and Unified Virtual Addressing features of newer GPUs which allows to exploit transparently and efficiently multiple GPUs. Several ALMA data sets are used to demonstrate the effectiveness in imaging and to evaluate GPU performance. The results show that a speedup from 1000 to 5000 times faster than a sequential version can be achieved, depending on data and image size. This allows to reconstruct the HD142527 CO(6-5) short baseline data set in 2.1 min, instead of 2.5 days that takes a sequential version on CPU.
R -matrix-incorporating-time method for H2+ in short and intense laser fields
NASA Astrophysics Data System (ADS)
Ó Broin, Cathal; Nikolopoulos, L. A. A.
2015-12-01
In this work we develop an approach for a molecular hydrogen ion (H2+ ) in the Born-Oppenheimer approximation while exposed to intense short-pulse radiation. Our starting point is the R -matrix-incorporating-time formulation for atomic hydrogen [L. A. A. Nikolopoulos et al., Phys. Rev. A 78, 063420 (2008), 10.1103/PhysRevA.78.063420], which has proven to be successful at treating multielectron atomic systems efficiently and with a high accuracy [L. R. Moore et al., J. Mod. Opt. 58, 1132 (2011), 10.1080/09500340.2011.559315]. The present study on H2+ is performed with the similar objective of developing an ab initio method for solving the time-dependent Schrödinger equation for multielectron diatomic molecules exposed to an external time-dependent potential field. The theoretical formulation is developed in detail for the molecular hydrogen ion where all the multielectron and internuclei complications are absent. As in the atomic case, the configuration space of the electron's coordinates is separated artificially over two regions: the inner (I) and outer (II) regions. In region I the time-dependent wave function is expanded on the eigenstate basis corresponding to the molecule's Hamiltonian augmented by Bloch operators, while in region II a grid representation is used. We demonstrate the independence of our results from the introduced artificial boundary surface by calculating observables that are directly accessed experimentally and also by showing that gauge-dependent quantities are also invariant with the region I box size. We also compare our results with other theoretical works and emphasize cases where basis-set approaches are currently very computationally expensive or intractable in terms of computational resources.
Merriman, Tony R; Choi, Hyon K; Dalbeth, Nicola
2014-05-01
Gout results from deposition of monosodium urate (MSU) crystals. Elevated serum urate concentrations (hyperuricemia) are not sufficient for the development of disease. Genome-wide association studies (GWAS) have identified 28 loci controlling serum urate levels. The largest genetic effects are seen in genes involved in the renal excretion of uric acid, with others being involved in glycolysis. Whereas much is understood about the genetic control of serum urate levels, little is known about the genetic control of inflammatory responses to MSU crystals. Extending knowledge in this area depends on recruitment of large, clinically ascertained gout sample sets suitable for GWAS. Copyright © 2014 Elsevier Inc. All rights reserved.
Water detection at the moon, Mars and comets with a combined neutron gamma ray instrument
NASA Technical Reports Server (NTRS)
Metzger, Albert E.; Haines, Eldon L.
1991-01-01
Measuring the fluxes of thermal and epithermal neutrons at a planetary object in conjunction with gamma-ray spectroscopic observations will provide information about the chemical composition of the surface which is less model dependent than the gamma ray measurements by themselves. Researchers devised a passive neutron detector for this purpose. An experimental model was designed and built. Three variables provided the basis for a set of experiments: thickness of the Sm and B layers, the presence or absence of the ACS, and the position of the source relative to the PND's cylindrical axis. Experimental results are given.
Karaseva, E M
2011-01-01
Proceeding from long-term data on the numbers of eggs of cod in ichthyoplankton, the total annual production of cod eggs at four main spawning grounds of the Baltic Sea was calculated. It was shown that the long-term fluctuations of cod egg production were positively related to the dynamics of the volume of waters coming to the Baltic Sea in years of the North Sea advections. It is suggested that this dependence was determined by a set of adaptations providing the extension of cod reproduction upon the improvement of the environment.
Pair production in low-energy collisions of uranium nuclei beyond the monopole approximation
NASA Astrophysics Data System (ADS)
Maltsev, I. A.; Shabaev, V. M.; Tupitsyn, I. I.; Kozhedub, Y. S.; Plunien, G.; Stöhlker, Th.
2017-10-01
A method for calculation of electron-positron pair production in low-energy heavy-ion collisions beyond the monopole approximation is presented. The method is based on the numerical solving of the time-dependent Dirac equation with the full two-center potential. The one-electron wave functions are expanded in the finite basis set constructed on the two-dimensional spatial grid. Employing the developed approach the probabilities of bound-free pair production are calculated for collisions of bare uranium nuclei at the energy near the Coulomb barrier. The obtained results are compared with the corresponding values calculated in the monopole approximation.
Waves in a plane graphene - dielectric waveguide structure
NASA Astrophysics Data System (ADS)
Evseev, Dmitry A.; Eliseeva, Svetlana V.; Sementsov, Dmitry I.
2017-10-01
The features of the guided TE modes propagation have been investigated on the basis of computer simulations in a planar structure consisting of a set of alternating layers of dielectric and graphene. Within the framework of the effective medium approximation, the dispersion relations have been received for symmetric and antisymmetric waveguide modes, determined by the frequency range of their existence. The wave field distribution by structure, frequency dependences of the constants of propagation and transverse components of the wave vectors, as well as group and phase velocities of waveguide modes have been obtained, the effect of the graphene part in a structure on the waveguide mode behavior has been shown.
Minimization of Basis Risk in Parametric Earthquake Cat Bonds
NASA Astrophysics Data System (ADS)
Franco, G.
2009-12-01
A catastrophe -cat- bond is an instrument used by insurance and reinsurance companies, by governments or by groups of nations to cede catastrophic risk to the financial markets, which are capable of supplying cover for highly destructive events, surpassing the typical capacity of traditional reinsurance contracts. Parametric cat bonds, a specific type of cat bonds, use trigger mechanisms or indices that depend on physical event parameters published by respected third parties in order to determine whether a part or the entire bond principal is to be paid for a certain event. First generation cat bonds, or cat-in-a-box bonds, display a trigger mechanism that consists of a set of geographic zones in which certain conditions need to be met by an earthquake’s magnitude and depth in order to trigger payment of the bond principal. Second generation cat bonds use an index formulation that typically consists of a sum of products of a set of weights by a polynomial function of the ground motion variables reported by a geographically distributed seismic network. These instruments are especially appealing to developing countries with incipient insurance industries wishing to cede catastrophic losses to the financial markets because the payment trigger mechanism is transparent and does not involve the parties ceding or accepting the risk, significantly reducing moral hazard. In order to be successful in the market, however, parametric cat bonds have typically been required to specify relatively simple trigger conditions. The consequence of such simplifications is the increase of basis risk. This risk represents the possibility that the trigger mechanism fails to accurately capture the actual losses of a catastrophic event, namely that it does not trigger for a highly destructive event or vice versa, that a payment of the bond principal is caused by an event that produced insignificant losses. The first case disfavors the sponsor who was seeking cover for its losses while the second disfavors the investor who loses part of the investment without a reasonable cause. A streamlined and fairly automated methodology has been developed to design parametric triggers that minimize the basis risk while still maintaining their level of relative simplicity. Basis risk is minimized in both, first and second generation, parametric cat bonds through an optimization procedure that aims to find the most appropriate magnitude thresholds, geographic zones, and weight index values. Sensitivity analyses to different design assumptions show that first generation cat bonds are typically affected by a large negative basis risk, namely the risk that the bond will not trigger for events within the risk level transferred, unless a sufficiently small geographic resolution is selected to define the trigger zones. Second generation cat bonds in contrast display a bias towards negative or positive basis risk depending on the degree of the polynomial used as well as on other design parameters. Two examples are presented, the construction of a first generation parametric trigger mechanism for Costa Rica and the design of a second generation parametric index for Japan.
A rough set approach for determining weights of decision makers in group decision making.
Yang, Qiang; Du, Ping-An; Wang, Yong; Liang, Bin
2017-01-01
This study aims to present a novel approach for determining the weights of decision makers (DMs) based on rough group decision in multiple attribute group decision-making (MAGDM) problems. First, we construct a rough group decision matrix from all DMs' decision matrixes on the basis of rough set theory. After that, we derive a positive ideal solution (PIS) founded on the average matrix of rough group decision, and negative ideal solutions (NISs) founded on the lower and upper limit matrixes of rough group decision. Then, we obtain the weight of each group member and priority order of alternatives by using relative closeness method, which depends on the distances from each individual group member' decision to the PIS and NISs. Through comparisons with existing methods and an on-line business manager selection example, the proposed method show that it can provide more insights into the subjectivity and vagueness of DMs' evaluations and selections.
How is flow experienced and by whom? Testing flow among occupations.
Llorens, Susana; Salanova, Marisa; Rodríguez, Alma M
2013-04-01
The aims of this paper are to test (1) the factorial structure of the frequency of flow experience at work; (2) the flow analysis model in work settings by differentiating the frequency of flow and the frequency of its prerequisites; and (3) whether there are significant differences in the frequency of flow experience depending on the occupation. A retrospective study among 957 employees (474 tile workers and 483 secondary school teachers) using multigroup confirmatory factorial analyses and multiple analyses of variance suggested that on the basis of the flow analysis model in work settings, (1) the frequency of flow experience has a two-factor structure (enjoyment and absorption); (2) the frequency of flow experience at work is produced when both challenge and skills are high and balanced; and (3) secondary school teachers experience flow more frequently than tile workers. Copyright © 2012 John Wiley & Sons, Ltd.
The two-electron atomic systems. S-states
NASA Astrophysics Data System (ADS)
Liverts, Evgeny Z.; Barnea, Nir
2010-01-01
A simple Mathematica program for computing the S-state energies and wave functions of two-electron (helium-like) atoms (ions) is presented. The well-known method of projecting the Schrödinger equation onto the finite subspace of basis functions was applied. The basis functions are composed of the exponentials combined with integer powers of the simplest perimetric coordinates. No special subroutines were used, only built-in objects supported by Mathematica. The accuracy of results and computation time depend on the basis size. The precise energy values of 7-8 significant figures along with the corresponding wave functions can be computed on a single processor within a few minutes. The resultant wave functions have a simple analytical form consisting of elementary functions, that enables one to calculate the expectation values of arbitrary physical operators without any difficulties. Program summaryProgram title: TwoElAtom-S Catalogue identifier: AEFK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 185 No. of bytes in distributed program, including test data, etc.: 495 164 Distribution format: tar.gz Programming language: Mathematica 6.0; 7.0 Computer: Any PC Operating system: Any which supports Mathematica; tested under Microsoft Windows XP and Linux SUSE 11.0 RAM:⩾10 bytes Classification: 2.1, 2.2, 2.7, 2.9 Nature of problem: The Schrödinger equation for atoms (ions) with more than one electron has not been solved analytically. Approximate methods must be applied in order to obtain the wave functions or other physical attributes from quantum mechanical calculations. Solution method: The S-wave function is expanded into a triple basis set in three perimetric coordinates. Method of projecting the two-electron Schrödinger equation (for atoms/ions) onto a subspace of the basis functions enables one to obtain the set of homogeneous linear equations F.C=0 for the coefficients C of the above expansion. The roots of equation det(F)=0 yield the bound energies. Restrictions: First, the too large length of expansion (basis size) takes the too large computation time giving no perceptible improvement in accuracy. Second, the order of polynomial Ω (input parameter) in the wave function expansion enables one to calculate the excited nS-states up to n=Ω+1 inclusive. Additional comments: The CPC Program Library includes "A program to calculate the eigenfunctions of the random phase approximation for two electron systems" (AAJD). It should be emphasized that this fortran code realizes a very rough approximation describing only the averaged electron density of the two electron systems. It does not characterize the properties of the individual electrons and has a number of input parameters including the Roothaan orbitals. Running time: ˜10 minutes (depends on basis size and computer speed)
An efficient method for quantum transport simulations in the time domain
NASA Astrophysics Data System (ADS)
Wang, Y.; Yam, C.-Y.; Frauenheim, Th.; Chen, G. H.; Niehaus, T. A.
2011-11-01
An approximate method based on adiabatic time dependent density functional theory (TDDFT) is presented, that allows for the description of the electron dynamics in nanoscale junctions under arbitrary time dependent external potentials. The density matrix of the device region is propagated according to the Liouville-von Neumann equation. The semi-infinite leads give rise to dissipative terms in the equation of motion which are calculated from first principles in the wide band limit. In contrast to earlier ab initio implementations of this formalism, the Hamiltonian is here approximated in the spirit of the density functional based tight-binding (DFTB) method. Results are presented for two prototypical molecular devices and compared to full TDDFT calculations. The temporal profile of the current traces is qualitatively well captured by the DFTB scheme. Steady state currents show considerable variations, both in comparison of approximate and full TDDFT, but also among TDDFT calculations with different basis sets.
Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; ...
2014-11-28
The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less
Rapid radiofrequency field mapping in vivo using single-shot STEAM MRI.
Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter
2008-09-01
Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60 degrees and 100 degrees instead of 90 degrees , inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T(2)-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods.
Modeling of Density-Dependent Flow based on the Thermodynamically Constrained Averaging Theory
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Schultz, P. B.; Kelley, C. T.; Miller, C. T.; Gray, W. G.
2016-12-01
The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for density-dependent flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as a diffusion that arises from gradients associated with pressure and activity and the ability to describe both high and low concentration displacement. The TCAT model is presented and closure relations for the TCAT model are postulated based on microscale averages and a parameter estimation is performed on a subset of the experimental data. Due to the sharpness of the fronts, an adaptive moving mesh technique was used to ensure grid independent solutions within the run time constraints. The optimized parameters are then used for forward simulations and compared to the set of experimental data not used for the parameter estimation.
Significance tests for functional data with complex dependence structure.
Staicu, Ana-Maria; Lahiri, Soumen N; Carroll, Raymond J
2015-01-01
We propose an L 2 -norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment.
Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.
Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos A; Hulse, Raymond E; Roux, Benoît; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo
2014-03-01
The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2005-01-01
A general-purpose method to mechanically transform system requirements into a probably equivalent model has yet to appeal: Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including sensor networks and autonomous systems. Currently available tools and methods that start with a formal model of a system and mechanically produce a probably equivalent implementation are valuable but not su8cient. The "gap" unfilled by such tools and methods is that their. formal models cannot be proven to be equivalent to the system requirements as originated by the customel: For the classes of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a probably equivalent formal model that can be used as the basis for code generation and other transformations.
Arigovindan, Muthuvel; Shaevitz, Joshua; McGowan, John; Sedat, John W; Agard, David A
2010-03-29
We address the problem of computational representation of image formation in 3D widefield fluorescence microscopy with depth varying spherical aberrations. We first represent 3D depth-dependent point spread functions (PSFs) as a weighted sum of basis functions that are obtained by principal component analysis (PCA) of experimental data. This representation is then used to derive an approximating structure that compactly expresses the depth variant response as a sum of few depth invariant convolutions pre-multiplied by a set of 1D depth functions, where the convolving functions are the PCA-derived basis functions. The model offers an efficient and convenient trade-off between complexity and accuracy. For a given number of approximating PSFs, the proposed method results in a much better accuracy than the strata based approximation scheme that is currently used in the literature. In addition to yielding better accuracy, the proposed methods automatically eliminate the noise in the measured PSFs.
Gaussian functional regression for output prediction: Model assimilation and experimental design
NASA Astrophysics Data System (ADS)
Nguyen, N. C.; Peraire, J.
2016-03-01
In this paper, we introduce a Gaussian functional regression (GFR) technique that integrates multi-fidelity models with model reduction to efficiently predict the input-output relationship of a high-fidelity model. The GFR method combines the high-fidelity model with a low-fidelity model to provide an estimate of the output of the high-fidelity model in the form of a posterior distribution that can characterize uncertainty in the prediction. A reduced basis approximation is constructed upon the low-fidelity model and incorporated into the GFR method to yield an inexpensive posterior distribution of the output estimate. As this posterior distribution depends crucially on a set of training inputs at which the high-fidelity models are simulated, we develop a greedy sampling algorithm to select the training inputs. Our approach results in an output prediction model that inherits the fidelity of the high-fidelity model and has the computational complexity of the reduced basis approximation. Numerical results are presented to demonstrate the proposed approach.
NASA Astrophysics Data System (ADS)
Martínez-Sánchez, Michael-Adán; Aquino, Norberto; Vargas, Rubicelia; Garza, Jorge
2017-12-01
The Schrödinger equation associated to the hydrogen atom confined by a dielectric continuum is solved exactly and suggests the appropriate basis set to be used when an atom is immersed in a dielectric continuum. Exact results show that this kind of confinement spread the electron density, which is confirmed through the Shannon entropy. The basis set suggested by the exact results is similar to Slater type orbitals and it was applied on two-electron atoms, where the H- ion ejects one electron for moderate confinements for distances much larger than those commonly used to generate cavities in solvent models.
Dessalew, Nigus; Bharatam, Prasad V
2007-07-01
Selective glycogen synthase kinase 3 (GSK3) inhibition over cyclin dependent kinases such as cyclin dependent kinase 2 (CDK2) and cyclin dependent kinase 4 (CDK4) is an important requirement for improved therapeutic profile of GSK3 inhibitors. The concepts of selectivity and additivity fields have been employed in developing selective CoMFA models for these related kinases. Initially, sets of three individual CoMFA models were developed, using 36 compounds of bisarylmaleimide series to correlate with the GSK3, CDK2 and CDK4 inhibitory potencies. These models showed a satisfactory statistical significance: CoMFA-GSK3 (r(2)(con), r(2)(cv): 0.931, 0.519), CoMFA-CDK2 (0.937, 0.563), and CoMFA-CDK4 (0.892, 0.725). Three different selective CoMFA models were then developed using differences in pIC(50) values. These three models showed a superior statistical significance: (i) CoMFA-Selective1 (r(2)(con), r(2)(cv): 0.969, 0.768), (ii) CoMFA-Selective 2 (0.974, 0.835) and (iii) CoMFA-Selective3 (0.963, 0.776). The selective models were found to outperform the individual models in terms of the quality of correlation and were found to be more informative in pinpointing the structural basis for the observed quantitative differences of kinase inhibition. An in-depth comparative investigation was carried out between the individual and selective models to gain an insight into the selectivity criterion. To further validate this approach, a set of new compounds were designed which show selectivity and were docked into the active site of GSK3, using FlexX based incremental construction algorithm.
Fragment approach to constrained density functional theory calculations using Daubechies wavelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan
2015-06-21
In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix ofmore » the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varandas, A. J. C., E-mail: varandas@uc.pt; Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória; Pansini, F. N. N.
2014-12-14
A method previously suggested to calculate the correlation energy at the complete one-electron basis set limit by reassignment of the basis hierarchical numbers and use of the unified singlet- and triplet-pair extrapolation scheme is applied to a test set of 106 systems, some with up to 48 electrons. The approach is utilized to obtain extrapolated correlation energies from raw values calculated with second-order Møller-Plesset perturbation theory and the coupled-cluster singles and doubles excitations method, some of the latter also with the perturbative triples corrections. The calculated correlation energies have also been used to predict atomization energies within an additive scheme.more » Good agreement is obtained with the best available estimates even when the (d, t) pair of hierarchical numbers is utilized to perform the extrapolations. This conceivably justifies that there is no strong reason to exclude double-zeta energies in extrapolations, especially if the basis is calibrated to comply with the theoretical model.« less
NASA Astrophysics Data System (ADS)
Petersson, George A.; Malick, David K.; Frisch, Michael J.; Braunstein, Matthew
2006-07-01
Examination of the convergence of full valence complete active space self-consistent-field configuration interaction including all single and double excitation (CASSCF-CISD) energies with expansion of the one-electron basis set reveals a pattern very similar to the convergence of single determinant energies. Calculations on the lowest four singlet states and the lowest four triplet states of N2 with the sequence of n-tuple-ζ augmented polarized (nZaP) basis sets (n =2, 3, 4, 5, and 6) are used to establish the complete basis set limits. Full configuration-interaction (CI) and core electron contributions must be included for very accurate potential energy surfaces. However, a simple extrapolation scheme that has no adjustable parameters and requires nothing more demanding than CAS(10e -,8orb)-CISD/3ZaP calculations gives the Re, ωe, ωeXe, Te, and De for these eight states with rms errors of 0.0006Å, 4.43cm-1, 0.35cm-1, 0.063eV, and 0.018eV, respectively.
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American statute applies and the acquisition cannot be set aside for...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
Celeste, Ricardo; Maringolo, Milena P; Comar, Moacyr; Viana, Rommel B; Guimarães, Amanda R; Haiduke, Roberto L A; da Silva, Albérico B F
2015-10-01
Accurate Gaussian basis sets for atoms from H to Ba were obtained by means of the generator coordinate Hartree-Fock (GCHF) method based on a polynomial expansion to discretize the Griffin-Wheeler-Hartree-Fock equations (GWHF). The discretization of the GWHF equations in this procedure is based on a mesh of points not equally distributed in contrast with the original GCHF method. The results of atomic Hartree-Fock energies demonstrate the capability of these polynomial expansions in designing compact and accurate basis sets to be used in molecular calculations and the maximum error found when compared to numerical values is only 0.788 mHartree for indium. Some test calculations with the B3LYP exchange-correlation functional for N2, F2, CO, NO, HF, and HCN show that total energies within 1.0 to 2.4 mHartree compared to the cc-pV5Z basis sets are attained with our contracted bases with a much smaller number of polarization functions (2p1d and 2d1f for hydrogen and heavier atoms, respectively). Other molecular calculations performed here are also in very good accordance with experimental and cc-pV5Z results. The most important point to be mentioned here is that our generator coordinate basis sets required only a tiny fraction of the computational time when compared to B3LYP/cc-pV5Z calculations.
Rice, Nigel; Dixon, Paul; Lloyd, David C E F; Roberts, David
2000-01-01
Objective To develop a weighted capitation formula for setting target allocations for prescribing expenditures for health authorities and primary care groups in England. Design Regression analysis relating prescribing costs to the demographic, morbidity, and mortality composition of practice lists. Setting 8500 general practices in England. Subjects Data from the 1991 census were attributed to practice lists on the basis of the place of residence of the practice population. Main outcome measures Variation in age, sex, and temporary resident originated prescribing units (ASTRO(97)-PUs) adjusted net ingredient cost of general practices in England for 1997-8 modelled for the impact of health and social needs after controlling for differences in supply. Results A needs gradient based on the four variables: permanent sickness, percentage of dependants in no carer households, percentage of students, and percentage of births on practice lists. These, together with supply characteristics, explained 41% of variation in prescribing costs per ASTRO(97)-PU adjusted capita across practices. The latter alone explained about 35% of variation in total costs per head across practices. Conclusions The model has good statistical specification and contains intuitively plausible needs drivers of prescribing expenditure. Together with adjustments made for differences in ASTRO(97)-PUs the model is capable of explaining 62% (35%+0.65% (41%)) of variation in prescribing expenditure at practice level. The results of the study have formed the basis for setting target budgets for 1999-2000 allocations for prescribing expenditure for health authorities and primary care groups. PMID:10650026
COMPARATIVE ASSESSMENT OF THE COMPOSITION AND CHARGE STATE OF NITROGENASE FeMo-COFACTOR
Harris, Travis V.; Szilagyi, Robert K.
2011-01-01
A significant limitation in our understanding of the molecular mechanism of biological nitrogen fixation is the uncertain composition of the FeMo-cofactor (FeMo-co) of nitrogenase. In this study we present a systematic, density functional theory-based evaluation of spin coupling schemes, iron oxidation states, ligand protonation states, and interstitial ligand composition using a wide range of experimental criteria. The employed functionals and basis sets were validated with molecular orbital information from X-ray absorption spectroscopic data of relevant iron-sulfur clusters. Independently from the employed level of theory, the electronic structure with the greatest number of antiferromagnetic interactions corresponds to the lowest energy state for a given charge and oxidation state distribution of the iron ions. The relative spin state energies of resting and oxidized FeMo-co already allowed the exclusion of certain iron oxidation state distributions and interstitial ligand compositions. Geometry optimized FeMo-co structures of several models further eliminated additional states and compositions, while reduction potentials indicated a strong preference for the most likely charge state of FeMo-co. Mössbauer and ENDOR parameter calculations were found to be remarkably dependent on the employed training set, density functional and basis set. Overall, we found that a more oxidized [MoIV-2FeII-5FeIII-9S2−-C4−] composition with a hydroxyl-protonated homocitrate ligand satisfies all of the available experimental criteria, and is thus favored over the currently preferred composition of [MoIV-4FeII-3FeIII-9S2−-N3−] from the literature. PMID:21545160
Spectroscopic properties of Arx-Zn and Arx-Ag+ (x = 1,2) van der Waals complexes
NASA Astrophysics Data System (ADS)
Oyedepo, Gbenga A.; Peterson, Charles; Schoendorff, George; Wilson, Angela K.
2013-03-01
Potential energy curves have been constructed using coupled cluster with singles, doubles, and perturbative triple excitations (CCSD(T)) in combination with all-electron and pseudopotential-based multiply augmented correlation consistent basis sets [m-aug-cc-pV(n + d)Z; m = singly, doubly, triply, n = D,T,Q,5]. The effect of basis set superposition error on the spectroscopic properties of Ar-Zn, Ar2-Zn, Ar-Ag+, and Ar2-Ag+ van der Waals complexes was examined. The diffuse functions of the doubly and triply augmented basis sets have been constructed using the even-tempered expansion. The a posteriori counterpoise scheme of Boys and Bernardi and its generalized variant by Valiron and Mayer has been utilized to correct for basis set superposition error (BSSE) in the calculated spectroscopic properties for diatomic and triatomic species. It is found that even at the extrapolated complete basis set limit for the energetic properties, the pseudopotential-based calculations still suffer from significant BSSE effects unlike the all-electron basis sets. This indicates that the quality of the approximations used in the design of pseudopotentials could have major impact on a seemingly valence-exclusive effect like BSSE. We confirm the experimentally determined equilibrium internuclear distance (re), binding energy (De), harmonic vibrational frequency (ωe), and C1Π ← X1Σ transition energy for ArZn and also predict the spectroscopic properties for the low-lying excited states of linear Ar2-Zn (X1Σg, 3Πg, 1Πg), Ar-Ag+ (X1Σ, 3Σ, 3Π, 3Δ, 1Σ, 1Π, 1Δ), and Ar2-Ag+ (X1Σg, 3Σg, 3Πg, 3Δg, 1Σg, 1Πg, 1Δg) complexes, using the CCSD(T) and MR-CISD + Q methods, to aid in their experimental characterizations.
Context-sensitive autoassociative memories as expert systems in medical diagnosis
Pomi, Andrés; Olivera, Fernando
2006-01-01
Background The complexity of our contemporary medical practice has impelled the development of different decision-support aids based on artificial intelligence and neural networks. Distributed associative memories are neural network models that fit perfectly well to the vision of cognition emerging from current neurosciences. Methods We present the context-dependent autoassociative memory model. The sets of diseases and symptoms are mapped onto a pair of basis of orthogonal vectors. A matrix memory stores the associations between the signs and symptoms, and their corresponding diseases. A minimal numerical example is presented to show how to instruct the memory and how the system works. In order to provide a quick appreciation of the validity of the model and its potential clinical relevance we implemented an application with real data. A memory was trained with published data of neonates with suspected late-onset sepsis in a neonatal intensive care unit (NICU). A set of personal clinical observations was used as a test set to evaluate the capacity of the model to discriminate between septic and non-septic neonates on the basis of clinical and laboratory findings. Results We show here that matrix memory models with associations modulated by context can perform automatic medical diagnosis. The sequential availability of new information over time makes the system progress in a narrowing process that reduces the range of diagnostic possibilities. At each step the system provides a probabilistic map of the different possible diagnoses to that moment. The system can incorporate the clinical experience, building in that way a representative database of historical data that captures geo-demographical differences between patient populations. The trained model succeeds in diagnosing late-onset sepsis within the test set of infants in the NICU: sensitivity 100%; specificity 80%; percentage of true positives 91%; percentage of true negatives 100%; accuracy (true positives plus true negatives over the totality of patients) 93,3%; and Cohen's kappa index 0,84. Conclusion Context-dependent associative memories can operate as medical expert systems. The model is presented in a simple and tutorial way to encourage straightforward implementations by medical groups. An application with real data, presented as a primary evaluation of the validity and potentiality of the model in medical diagnosis, shows that the model is a highly promising alternative in the development of accuracy diagnostic tools. PMID:17121675
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardirossian, Narbe; Head-Gordon, Martin
2016-06-07
A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation is presented in this paper. The final 12-parameter functional form is selected from approximately 10 × 10 9 candidate fits that are trained on a training set of 870 data points and tested on a primary test set of 2964 data points. The resulting density functional, ωB97M-V, is further tested for transferability on a secondary test set of 1152 data points. For comparison, ωB97M-V is benchmarked against 11 leading density functionals including M06-2X, ωB97X-D, M08-HX, M11, ωM05-D, ωB97X-V, and MN15. Encouragingly, the overall performance of ωB97M-V on nearlymore » 5000 data points clearly surpasses that of all of the tested density functionals. Finally, in order to facilitate the use of ωB97M-V, its basis set dependence and integration grid sensitivity are thoroughly assessed, and recommendations that take into account both efficiency and accuracy are provided.« less
A projection-free method for representing plane-wave DFT results in an atom-centered basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu
2015-09-14
Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less
Zhao, Chunyu; Burge, James H
2007-12-24
Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.
The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO
NASA Astrophysics Data System (ADS)
de Dios, Angel C.; Jameson, Cynthia J.
1997-09-01
We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clay, Raymond C.; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550; Morales, Miguel A., E-mail: moralessilva2@llnl.gov
2015-06-21
Multideterminant wavefunctions, while having a long history in quantum chemistry, are increasingly being used in highly accurate quantum Monte Carlo calculations. Since the accuracy of QMC is ultimately limited by the quality of the trial wavefunction, multi-Slater determinants wavefunctions offer an attractive alternative to Slater-Jastrow and more sophisticated wavefunction ansatz for several reasons. They can be efficiently calculated, straightforwardly optimized, and systematically improved by increasing the number of included determinants. In spite of their potential, however, the convergence properties of multi-Slater determinant wavefunctions with respect to orbital set choice and excited determinant selection are poorly understood, which hinders the applicationmore » of these wavefunctions to large systems and solids. In this paper, by performing QMC calculations on the equilibrium and stretched carbon dimer, we find that convergence of the recovered correlation energy with respect to number of determinants can depend quite strongly on basis set and determinant selection methods, especially where there is strong correlation. We demonstrate that properly chosen orbital sets and determinant selection techniques from quantum chemistry methods can dramatically reduce the required number of determinants (and thus the computational cost) to reach a given accuracy, which we argue shows clear need for an automatic QMC-only method for selecting determinants and generating optimal orbital sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardirossian, Narbe; Head-Gordon, Martin
2013-12-18
A 10-parameter, range-separated hybrid (RSH), generalized gradient approximation (GGA) density functional with nonlocal correlation (VV10) is presented in this paper. Instead of truncating the B97-type power series inhomogeneity correction factors (ICF) for the exchange, same-spin correlation, and opposite-spin correlation functionals uniformly, all 16 383 combinations of the linear parameters up to fourth order (m = 4) are considered. These functionals are individually fit to a training set and the resulting parameters are validated on a primary test set in order to identify the 3 optimal ICF expansions. Through this procedure, it is discovered that the functional that performs best onmore » the training and primary test sets has 7 linear parameters, with 3 additional nonlinear parameters from range-separation and nonlocal correlation. The resulting density functional, ωB97X-V, is further assessed on a secondary test set, the parallel-displaced coronene dimer, as well as several geometry datasets. Finally and furthermore, the basis set dependence and integration grid sensitivity of ωB97X-V are analyzed and documented in order to facilitate the use of the functional.« less
NASA Astrophysics Data System (ADS)
Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide; Christiansen, Ove
2018-02-01
We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.
Context-dependent discrimination and the evolution of mimicry.
Holen, Øistein Haugsten; Johnstone, Rufus A
2006-03-01
Many mimetic organisms have evolved a close resemblance to their models, making it difficult to discriminate between them on the basis of appearance alone. However, if mimics and models differ slightly in their activity patterns, behavior, or use of microhabitats, the exact circumstances under which a signaler is encountered may provide additional clues to its identity. We employ an optimality model of mimetic discrimination in which signal receivers obtain information about the relative risk of encountering mimics and models by observing an external background cue and flexibly adjust their response thresholds. Although such flexibility on the part of signal receivers has been predicted by theory and is supported by empirical evidence in a range of biological settings, little is known about the effects it has on signalers. We show that the presence of external cues that partly reveal signaler identity may benefit models and harm mimics, harm both, or even benefit both, depending on ecological circumstances. Moreover, if mimetic traits are costly to express, or mimics are related to their neighbors, context-dependent discrimination can dramatically alter the outcome of mimetic evolution. We discuss context-dependent discrimination among signal receivers in relation to small-scale synchrony in model and mimic activity patterns.
NASA Astrophysics Data System (ADS)
Győrffy, Werner; Knizia, Gerald; Werner, Hans-Joachim
2017-12-01
We present the theory and algorithms for computing analytical energy gradients for explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12). The main difficulty in F12 gradient theory arises from the large number of two-electron integrals for which effective two-body density matrices and integral derivatives need to be calculated. For efficiency, the density fitting approximation is used for evaluating all two-electron integrals and their derivatives. The accuracies of various previously proposed MP2-F12 approximations [3C, 3C(HY1), 3*C(HY1), and 3*A] are demonstrated by computing equilibrium geometries for a set of molecules containing first- and second-row elements, using double-ζ to quintuple-ζ basis sets. Generally, the convergence of the bond lengths and angles with respect to the basis set size is strongly improved by the F12 treatment, and augmented triple-ζ basis sets are sufficient to closely approach the basis set limit. The results obtained with the different approximations differ only very slightly. This paper is the first step towards analytical gradients for coupled-cluster singles and doubles with perturbative treatment of triple excitations, which will be presented in the second part of this series.
New interplanetary proton fluence model
NASA Technical Reports Server (NTRS)
Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.
1990-01-01
A new predictive engineering model for the interplanetary fluence of protons with above 10 MeV and above 30 MeV is described. The data set used is a combination of observations made from the earth's surface and from above the atmosphere between 1956 and 1963 and observations made from spacecraft in the vicinity of earth between 1963 and 1985. The data cover a time period three times as long as the period used in earlier models. With the use of this data set the distinction between 'ordinary proton events' and 'anomalously large events' made in earlier work disappears. This permitted the use of statistical analysis methods developed for 'ordinary events' on the entire data set. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. At energies above 30 MeV, the old and new models agree. In contrast to earlier models, the results do not depend critically on the fluence from any one event and are independent of sunspot number. Mission probability curves derived from the fluence distribution are presented.
Quantum chemical modeling of enzymatic reactions: the case of histone lysine methyltransferase.
Georgieva, Polina; Himo, Fahmi
2010-06-01
Quantum chemical cluster models of enzyme active sites are today an important and powerful tool in the study of various aspects of enzymatic reactivity. This methodology has been applied to a wide spectrum of reactions and many important mechanistic problems have been solved. Herein, we report a systematic study of the reaction mechanism of the histone lysine methyltransferase (HKMT) SET7/9 enzyme, which catalyzes the methylation of the N-terminal histone tail of the chromatin structure. In this study, HKMT SET7/9 serves as a representative case to examine the modeling approach for the important class of methyl transfer enzymes. Active site models of different sizes are used to evaluate the methodology. In particular, the dependence of the calculated energies on the model size, the influence of the dielectric medium, and the particular choice of the dielectric constant are discussed. In addition, we examine the validity of some technical aspects, such as geometry optimization in solvent or with a large basis set, and the use of different density functional methods. Copyright 2010 Wiley Periodicals, Inc.
Pernu, Tuomas K.
2017-01-01
The mental realm seems different to the physical realm; the mental is thought to be dependent on, yet distinct from the physical. But how, exactly, are the two realms supposed to be different, and what, exactly, creates the seemingly insurmountable juxtaposition between the mental and the physical? This review identifies and discusses five marks of the mental, features that set characteristically mental phenomena apart from the characteristically physical phenomena. These five marks (intentionality, consciousness, free will, teleology, and normativity) are not presented as a set of features that define mentality. Rather, each of them is something we seem to associate with phenomena we consider mental, and each of them seems to be in tension with the physical view of reality in its own particular way. It is thus suggested how there is no single mind-body problem, but a set of distinct but interconnected problems. Each of these separate problems is analyzed, and their differences, similarities and connections are identified. This provides a useful basis for future theoretical work on psychology and philosophy of mind, that until now has too often suffered from unclarities, inadequacies, and conflations. PMID:28736537
Simplified DFT methods for consistent structures and energies of large systems
NASA Astrophysics Data System (ADS)
Caldeweyher, Eike; Gerit Brandenburg, Jan
2018-05-01
Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.
A practical radial basis function equalizer.
Lee, J; Beach, C; Tepedelenlioglu, N
1999-01-01
A radial basis function (RBF) equalizer design process has been developed in which the number of basis function centers used is substantially fewer than conventionally required. The reduction of centers is accomplished in two-steps. First an algorithm is used to select a reduced set of centers that lie close to the decision boundary. Then the centers in this reduced set are grouped, and an average position is chosen to represent each group. Channel order and delay, which are determining factors in setting the initial number of centers, are estimated from regression analysis. In simulation studies, an RBF equalizer with more than 2000-to-1 reduction in centers performed as well as the RBF equalizer without reduction in centers, and better than a conventional linear equalizer.
7 CFR 1703.309 - Terms of repayment of deferred loan payments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... monthly or quarterly basis depending on the existing repayment terms of the direct loan or insured loan.... The deferment payments will be made on either a monthly or quarterly basis depending on the existing... community, business, or economic development projects not included in paragraph (a) of this section, the...
NASA Astrophysics Data System (ADS)
Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2018-03-01
In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.
Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method
NASA Astrophysics Data System (ADS)
Fedorov, Dmitri G.; Kitaura, Kazuo
2014-03-01
We developed a dual basis approach within the fragment molecular orbital formalism enabling efficient and accurate use of large basis sets. The method was tested on water clusters and polypeptides and applied to perform geometry optimization of chignolin (PDB: 1UAO) in solution at the level of DFT/6-31++G∗∗, obtaining a structure in agreement with experiment (RMSD of 0.4526 Å). The polarization in polypeptides is discussed with a comparison of the α-helix and β-strand.
NASA Astrophysics Data System (ADS)
Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2018-06-01
In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5 D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.
Structure and NMR spectra of some [2.2]paracyclophanes. The dilemma of [2.2]paracyclophane symmetry.
Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Ostrowski, Maciej; Demissie, Taye Beyene; Ruud, Kenneth; Kuś, Piotr; Hopf, Henning; Lin, Shaw-Tao
2011-09-29
Density functional theory (DFT) quantum chemical calculations of the structure and NMR parameters for highly strained hydrocarbon [2.2]paracyclophane 1 and its three derivatives are presented. The calculated NMR parameters are compared with the experimental ones. By least-squares fitting of the (1)H spectra, almost all J(HH) coupling constants could be obtained with high accuracy. Theoretical vicinal J(HH) couplings in the aliphatic bridges, calculated using different basis sets (6-311G(d,p), and Huz-IV) reproduce the experimental values with essentially the same root-mean-square (rms) error of about 1.3 Hz, regardless of the basis set used. These discrepancies could be in part due to a considerable impact of rovibrational effects on the observed J(HH) couplings, since the latter show a measurable dependence on temperature. Because of the lasting literature controversies concerning the symmetry of parent compound 1, D(2h) versus D(2), a critical analysis of the relevant literature data is carried out. The symmetry issue is prone to confusion because, according to some literature claims, the two hypothetical enantiomeric D(2) structures of 1 could be separated by a very low energy barrier that would explain the occurrence of rovibrational effects on the observed vicinal J(HH) couplings. However, the D(2h) symmetry of 1 with a flat energy minimum could also account for these effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Cole, Jacqueline M.; Dai, Chencheng
2014-05-28
The optoelectronic properties of four azo dye-sensitized TiO2 interfaces are systematically studied as a function of a changing dye anchoring group: carboxylate, sulfonate, hydroxyl, and pyridyl. The variation in optoelectronic properties of the free dyes and those in dye/TiO 2 nanocomposites are studied both experimentally and computationally, in the context of prospective dye-sensitized solar cell (DSSC) applications. Experimental UV/vis absorption spectroscopy, cyclic voltammetry, and DSSC device performance testing reveal a strong dependence on the nature of the anchor of the optoelectronic properties of these dyes, both in solution and as dye/TiO2 nanocomposites. First-principles calculations on both an isolated dye/TiO2 clustermore » model (using localized basis sets) and each dye modeled onto the surface of a 2D periodic TiO2 nanostructure (using plane wave basis sets) are presented. Detailed examination of these experimental and computational results, in terms of light harvesting, electron conversion and photovoltaic device performance characteristics, indicates that carboxylate is the best anchoring group, and hydroxyl is the worst, whereas sulfonate and pyridyl groups exhibit competing potential. Different sensitization solvents are found to affect critically the extent of dye adsorption achieved in the dye-sensitization of the TiO2 semiconductor, especially where the anchor is a pyridyl group.« less
Bertazzini, Michele
2016-01-01
Numerous angiosperms rely on pollinators to ensure efficient flower fertilization, offering a reward consisting of nourishing nectars produced by specialized floral cells, known as nectaries. Nectar components are believed to derive from phloem sap that is enzymatically processed and transformed within nectaries. An increasing body of evidence suggests that nectar composition, mainly amino acids, may influence pollinator attraction and fidelity. This notwithstanding, little is known about the range of natural variability in nectar content for crop species. Sugar and amino acid composition of nectar harvested from field-grown plants at the 63–65 phenological stage was determined for a set of 44 winter genotypes of rapeseed, a bee-pollinated crop. Significant differences were found for solute concentrations, and an even higher variability was evident for nectar volumes, resulting in striking differences when results were expressed on a single flower basis. The comparison of nectar and phloem sap from a subset of eight varieties pointed out qualitative and quantitative diversities with respect to both sugars and amino acids. Notably, amino acid concentration in phloem sap was up to 100 times higher than in nectar. Phloem sap showed a much more uniform composition, suggesting that nectar variability depends mainly on nectary metabolism. A better understanding of the basis of nectar production would allow an improvement of seed set efficiency, as well as hive management and honey production. PMID:27014311
Kastrup, Marc; Tittmann, Benjamin; Sawatzki, Tanja; Gersch, Martin; Vogt, Charlotte; Rosenthal, Max; Rosseau, Simone; Spies, Claudia
2017-01-01
The current demographic development of our society results in an increasing number of elderly patients with chronic diseases being treated in the intensive care unit. A possible long-term consequence of such a treatment is that patients remain dependent on certain invasive organ support systems, such as long-term ventilator dependency. The main goal of this project is to define the transition process between in-hospital and out of hospital (ambulatory) ventilator support. A further goal is to identify evidence-based quality indicators to help define and describe this process. This project describes an ideal sequence of processes (process chain), based on the current evidence from the literature. Besides the process chain, key data and quality indicators were described in detail. Due to the limited project timeline, these indicators were not extensively tested in the clinical environment. The results of this project may serve as a solid basis for proof of feasibility and proof of concept investigations, optimize the transition process of ventilator-dependent patients from a clinical to an ambulatory setting, as well as reduce the rate of emergency re-admissions. PMID:29308061
Non-equilibrium Transport in Carbon based Adsorbate Systems
NASA Astrophysics Data System (ADS)
Fürst, Joachim; Brandbyge, Mads; Stokbro, Kurt; Jauho, Antti-Pekka
2007-03-01
We have used the Atomistix Tool Kit(ATK) and TranSIESTA[1] packages to investigate adsorption of iron atoms on a graphene sheet. The technique of both codes is based on density functional theory using local basis sets[2], and non-equilibrium Green's functions (NEGF) to calculate the charge distribution under external bias. Spin dependent electronic structure calculations are performed for different iron coverages. These reveal adsorption site dependent charge transfer from iron to graphene leading to screening effects. Transport calculations show spin dependent scattering of the transmission which is analysed obtaining the transmission eigenchannels for each spin type. The phenomena of electromigration of iron in these systems at finite bias will be discussed, estimating the so-called wind force from the reflection[3]. [1] M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro. Physical Review B (Condensed Matter and Materials Physics), 65(16):165401/11-7, 2002. [2] Jose M. Soler, Emilio Artacho, Julian D. Gale, Alberto Garcia, Javier Junquera, Pablo Ordejon, and Daniel Sanchez-Portal. Journal of Physics Condensed Matter, 14(11):2745-2779, 2002. [3] Sorbello. Theory of electromigration. Solid State Physics, 1997.
Theory of electron g-tensor in bulk and quantum-well semiconductors
NASA Astrophysics Data System (ADS)
Lau, Wayne H.; Flatte', Michael E.
2004-03-01
We present quantitative calculations for the electron g-tensors in bulk and quantum-well semiconductors based on a generalized P.p envelope function theory solved in a fourteen-band restricted basis set. The dependences of g-tensor on structure, magnetic field, carrier density, temperature, and spin polarization have been explored and will be described. It is found that at temperatures of a few Kelvin and fields of a few Tesla, the g-tensors for bulk semiconductors develop quasi-steplike dependences on carrier density or magnetic field due to magnetic quantization, and this effect is even more pronounced in quantum-well semiconductors due to the additional electric quantization along the growth direction. The influence of quantum confinement on the electron g-tensors in QWs is studied by examining the dependence of electron g-tensors on well width. Excellent agreement between these calculated electron g-tensors and measurements [1-2] is found for GaAs/AlGaAs QWs. This work was supported by DARPA/ARO. [1] A. Malinowski and R. T. Harley, Phys. Rev. B 62, 2051 (2000);[2] Le Jeune et al., Semicond. Sci. Technol. 12, 380 (1997).
NASA Astrophysics Data System (ADS)
Bozorgzadeh, Nezam; Yanagimura, Yoko; Harrison, John P.
2017-12-01
The Hoek-Brown empirical strength criterion for intact rock is widely used as the basis for estimating the strength of rock masses. Estimations of the intact rock H-B parameters, namely the empirical constant m and the uniaxial compressive strength σc, are commonly obtained by fitting the criterion to triaxial strength data sets of small sample size. This paper investigates how such small sample sizes affect the uncertainty associated with the H-B parameter estimations. We use Monte Carlo (MC) simulation to generate data sets of different sizes and different combinations of H-B parameters, and then investigate the uncertainty in H-B parameters estimated from these limited data sets. We show that the uncertainties depend not only on the level of variability but also on the particular combination of parameters being investigated. As particular combinations of H-B parameters can informally be considered to represent specific rock types, we discuss that as the minimum number of required samples depends on rock type it should correspond to some acceptable level of uncertainty in the estimations. Also, a comparison of the results from our analysis with actual rock strength data shows that the probability of obtaining reliable strength parameter estimations using small samples may be very low. We further discuss the impact of this on ongoing implementation of reliability-based design protocols and conclude with suggestions for improvements in this respect.
Lotka-Volterra competition models for sessile organisms.
Spencer, Matthew; Tanner, Jason E
2008-04-01
Markov models are widely used to describe the dynamics of communities of sessile organisms, because they are easily fitted to field data and provide a rich set of analytical tools. In typical ecological applications, at any point in time, each point in space is in one of a finite set of states (e.g., species, empty space). The models aim to describe the probabilities of transitions between states. In most Markov models for communities, these transition probabilities are assumed to be independent of state abundances. This assumption is often suspected to be false and is rarely justified explicitly. Here, we start with simple assumptions about the interactions among sessile organisms and derive a model in which transition probabilities depend on the abundance of destination states. This model is formulated in continuous time and is equivalent to a Lotka-Volterra competition model. We fit this model and a variety of alternatives in which transition probabilities do not depend on state abundances to a long-term coral reef data set. The Lotka-Volterra model describes the data much better than all models we consider other than a saturated model (a model with a separate parameter for each transition at each time interval, which by definition fits the data perfectly). Our approach provides a basis for further development of stochastic models of sessile communities, and many of the methods we use are relevant to other types of community. We discuss possible extensions to spatially explicit models.
Donny, Eric C.; Hatsukami, Dorothy K.; Benowitz, Neal L.; Sved, Alan F.; Tidey, Jennifer W.; Cassidy, Rachel N.
2014-01-01
Introduction Both the Tobacco Control Act in the U.S. and Article 9 of the Framework Convention on Tobacco Control enable governments to directly address the addictiveness of combustible tobacco by reducing nicotine through product standards. Although nicotine may have some harmful effects, the detrimental health effects of smoked tobacco are primarily due to non-nicotine constituents. Hence, the health effects of nicotine reduction would likely be determined by changes in behavior that result in changes in smoke exposure. Methods Herein, we review the current evidence on nicotine reduction and discuss some of the challenges in establishing the empirical basis for regulatory decisions. Results To date, research suggests that very low nicotine content cigarettes produce a desirable set of outcomes, including reduced exposure to nicotine, reduced smoking, and reduced dependence, without significant safety concerns. However, much is still unknown, including the effects of gradual versus abrupt changes in nicotine content, effects in vulnerable populations, and impact on youth. Discussion A coordinated effort must be made to provide the best possible scientific basis for regulatory decisions. The outcome of this effort may provide the foundation for a novel approach to tobacco control that dramatically reduces the devastating health consequences of smoked tobacco. PMID:24967958
Donny, Eric C; Hatsukami, Dorothy K; Benowitz, Neal L; Sved, Alan F; Tidey, Jennifer W; Cassidy, Rachel N
2014-11-01
Both the Tobacco Control Act in the U.S. and Article 9 of the Framework Convention on Tobacco Control enable governments to directly address the addictiveness of combustible tobacco by reducing nicotine through product standards. Although nicotine may have some harmful effects, the detrimental health effects of smoked tobacco are primarily due to non-nicotine constituents. Hence, the health effects of nicotine reduction would likely be determined by changes in behavior that result in changes in smoke exposure. Herein, we review the current evidence on nicotine reduction and discuss some of the challenges in establishing the empirical basis for regulatory decisions. To date, research suggests that very low nicotine content cigarettes produce a desirable set of outcomes, including reduced exposure to nicotine, reduced smoking, and reduced dependence, without significant safety concerns. However, much is still unknown, including the effects of gradual versus abrupt changes in nicotine content, effects in vulnerable populations, and impact on youth. A coordinated effort must be made to provide the best possible scientific basis for regulatory decisions. The outcome of this effort may provide the foundation for a novel approach to tobacco control that dramatically reduces the devastating health consequences of smoked tobacco. Copyright © 2014 Elsevier Inc. All rights reserved.
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
Z-dependence of mean excitation energies for second and third row atoms and their ions
NASA Astrophysics Data System (ADS)
Sauer, Stephan P. A.; Sabin, John R.; Oddershede, Jens
2018-05-01
All mean excitation energies for second and third row atoms and their ions are calculated in the random-phase approximation using large basis sets. To a very good approximation, it turns out that mean excitation energies within an isoelectronic series are a quadratic function of the nuclear charge. It is demonstrated that this behavior is linked to the fact that the contributions from continuum electronic states give the dominate contributions to the mean excitation energies and that these contributions for atomic ions appear hydrogen-like. We argue that this finding may present a method to get a first estimate of mean excitation energies also for other non-relativistic atomic ions.
Boltalin, A I; Korenev, Yu M; Sipachev, V A
2007-07-19
Molecular constants of MPbF3 (M=Li, Na, K, Rb, and Cs) were calculated theoretically at the MP2(full) and B3LYP levels with the SDD (Pb, K, Rb, and Cs) and cc-aug-pVQZ (F, Li, and Na) basis sets to determine the thermochemical characteristics of the substances. Satisfactory agreement with experiment was obtained, including the unexpected nonmonotonic dependence of substance dissociation energies on the alkali metal atomic number. The bond lengths of the theoretical CsPbF3 model were substantially elongated compared with experimental estimates, likely because of errors in both theoretical calculations and electron diffraction data processing.
Forrest, Michael D.
2014-01-01
Without synaptic input, Purkinje neurons can spontaneously fire in a repeating trimodal pattern that consists of tonic spiking, bursting and quiescence. Climbing fiber input (CF) switches Purkinje neurons out of the trimodal firing pattern and toggles them between a tonic firing and a quiescent state, while setting the gain of their response to Parallel Fiber (PF) input. The basis to this transition is unclear. We investigate it using a biophysical Purkinje cell model under conditions of CF and PF input. The model can replicate these toggle and gain functions, dependent upon a novel account of intracellular calcium dynamics that we hypothesize to be applicable in real Purkinje cells. PMID:25191262
NASA Astrophysics Data System (ADS)
Rashvand, Taghi
2016-11-01
We present a new scheme for quantum teleportation that one can teleport an unknown state via a non-maximally entangled channel with certainly, using an auxiliary system. In this scheme depending on the state of the auxiliary system, one can find a class of orthogonal vectors set as a basis which by performing von Neumann measurement in each element of this class Alice can teleport an unknown state with unit fidelity and unit probability. A comparison of our scheme with some previous schemes is given and we will see that our scheme has advantages that the others do not.
The neuropsychopharmacology of fronto-executive function: monoaminergic modulation.
Robbins, T W; Arnsten, A F T
2009-01-01
We review the modulatory effects of the catecholamine neurotransmitters noradrenaline and dopamine on prefrontal cortical function. The effects of pharmacologic manipulations of these systems, sometimes in comparison with the indoleamine serotonin (5-HT), on performance on a variety of tasks that tap working memory, attentional-set formation and shifting, reversal learning, and response inhibition are compared in rodents, nonhuman primates, and humans using, in a behavioral context, several techniques ranging from microiontophoresis and single-cell electrophysiological recording to pharmacologic functional magnetic resonance imaging. Dissociable effects of drugs and neurotoxins affecting these monoamine systems suggest new ways of conceptualizing state-dependent fronto-executive functions, with implications for understanding the molecular genetic basis of mental illness and its treatment.
42 CFR 457.700 - Basis, scope, and applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Strategic Planning, Reporting, and Evaluation § 457.700 Basis, scope, and applicability. (a) Statutory basis... strategic planning, reports, and program budgets; and (2) Section 2108 of the Act, which sets forth... strategic planning, monitoring, reporting and evaluation under title XXI. (c) Applicability. The...
42 CFR 457.700 - Basis, scope, and applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Strategic Planning, Reporting, and Evaluation § 457.700 Basis, scope, and applicability. (a) Statutory basis... strategic planning, reports, and program budgets; and (2) Section 2108 of the Act, which sets forth... strategic planning, monitoring, reporting and evaluation under title XXI. (c) Applicability. The...
50 CFR 403.04 - Determinations and hearings under section 109(c) of the MMPA.
Code of Federal Regulations, 2010 CFR
2010-10-01
... management program the state must provide for a process, consistent with section 109(c) of the Act, to... must include the elements set forth below. (b) Basis, purpose, and scope. The process set forth in this... made solely on the basis of the record developed at the hearing. The state agency in making its final...
Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Nowara, Ewa; Johnson, Bruce
2015-03-01
The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.
NASA Astrophysics Data System (ADS)
Zhang, Xing; Carter, Emily A.
2018-01-01
We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.
NASA Astrophysics Data System (ADS)
Ben Amor, Nadia; Hoyau, Sophie; Maynau, Daniel; Brenner, Valérie
2018-05-01
A benchmark set of relevant geometries of a model protein, the N-acetylphenylalanylamide, is presented to assess the validity of the approximate second-order coupled cluster (CC2) method in studying low-lying excited states of such bio-relevant systems. The studies comprise investigations of basis-set dependence as well as comparison with two multireference methods, the multistate complete active space 2nd order perturbation theory (MS-CASPT2) and the multireference difference dedicated configuration interaction (DDCI) methods. First of all, the applicability and the accuracy of the quasi-linear multireference difference dedicated configuration interaction method have been demonstrated on bio-relevant systems by comparison with the results obtained by the standard MS-CASPT2. Second, both the nature and excitation energy of the first low-lying excited state obtained at the CC2 level are very close to the Davidson corrected CAS+DDCI ones, the mean absolute deviation on the excitation energy being equal to 0.1 eV with a maximum of less than 0.2 eV. Finally, for the following low-lying excited states, if the nature is always well reproduced at the CC2 level, the differences on excitation energies become more important and can depend on the geometry.
Ben Amor, Nadia; Hoyau, Sophie; Maynau, Daniel; Brenner, Valérie
2018-05-14
A benchmark set of relevant geometries of a model protein, the N-acetylphenylalanylamide, is presented to assess the validity of the approximate second-order coupled cluster (CC2) method in studying low-lying excited states of such bio-relevant systems. The studies comprise investigations of basis-set dependence as well as comparison with two multireference methods, the multistate complete active space 2nd order perturbation theory (MS-CASPT2) and the multireference difference dedicated configuration interaction (DDCI) methods. First of all, the applicability and the accuracy of the quasi-linear multireference difference dedicated configuration interaction method have been demonstrated on bio-relevant systems by comparison with the results obtained by the standard MS-CASPT2. Second, both the nature and excitation energy of the first low-lying excited state obtained at the CC2 level are very close to the Davidson corrected CAS+DDCI ones, the mean absolute deviation on the excitation energy being equal to 0.1 eV with a maximum of less than 0.2 eV. Finally, for the following low-lying excited states, if the nature is always well reproduced at the CC2 level, the differences on excitation energies become more important and can depend on the geometry.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method
NASA Astrophysics Data System (ADS)
Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.
2018-05-01
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method.
Symonds, C; Kattirtzi, J A; Shalashilin, D V
2018-05-14
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
NASA Astrophysics Data System (ADS)
Yockel, Scott; Mintz, Benjamin; Wilson, Angela K.
2004-07-01
Advanced ab initio [coupled cluster theory through quasiperturbative triple excitations (CCSD(T))] and density functional (B3LYP) computational chemistry approaches were used in combination with the standard and augmented correlation consistent polarized valence basis sets [cc-pVnZ and aug-cc-pVnZ, where n=D(2), T(3), Q(4), and 5] to investigate the energetic and structural properties of small molecules containing third-row (Ga-Kr) atoms. These molecules were taken from the Gaussian-2 (G2) extended test set for third-row atoms. Several different schemes were used to extrapolate the calculated energies to the complete basis set (CBS) limit for CCSD(T) and the Kohn-Sham (KS) limit for B3LYP. Zero point energy and spin orbital corrections were included in the results. Overall, CCSD(T) atomization energies, ionization energies, proton affinities, and electron affinities are in good agreement with experiment, within 1.1 kcal/mol when the CBS limit has been determined using a series of two basis sets of at least triple zeta quality. For B3LYP, the overall mean absolute deviation from experiment for the three properties and the series of molecules is more significant at the KS limit, within 2.3 and 2.6 kcal/mol for the cc-pVnZ and aug-cc-pVnZ basis set series, respectively.
NASA Astrophysics Data System (ADS)
Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.
2011-11-01
High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.
A new parallel algorithm of MP2 energy calculations.
Ishimura, Kazuya; Pulay, Peter; Nagase, Shigeru
2006-03-01
A new parallel algorithm has been developed for second-order Møller-Plesset perturbation theory (MP2) energy calculations. Its main projected applications are for large molecules, for instance, for the calculation of dispersion interaction. Tests on a moderate number of processors (2-16) show that the program has high CPU and parallel efficiency. Timings are presented for two relatively large molecules, taxol (C(47)H(51)NO(14)) and luciferin (C(11)H(8)N(2)O(3)S(2)), the former with the 6-31G* and 6-311G** basis sets (1,032 and 1,484 basis functions, 164 correlated orbitals), and the latter with the aug-cc-pVDZ and aug-cc-pVTZ basis sets (530 and 1,198 basis functions, 46 correlated orbitals). An MP2 energy calculation on C(130)H(10) (1,970 basis functions, 265 correlated orbitals) completed in less than 2 h on 128 processors.
Smolin, John A; Gambetta, Jay M; Smith, Graeme
2012-02-17
We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.
A machine learning approach for efficient uncertainty quantification using multiscale methods
NASA Astrophysics Data System (ADS)
Chan, Shing; Elsheikh, Ahmed H.
2018-02-01
Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.
Höfener, Sebastian; Bischoff, Florian A; Glöss, Andreas; Klopper, Wim
2008-06-21
In the recent years, Slater-type geminals (STGs) have been used with great success to expand the first-order wave function in an explicitly-correlated perturbation theory. The present work reports on this theory's implementation in the framework of the Turbomole suite of programs. A formalism is presented for evaluating all of the necessary molecular two-electron integrals by means of the Obara-Saika recurrence relations, which can be applied when the STG is expressed as a linear combination of a small number (n) of Gaussians (STG-nG geminal basis). In the Turbomole implementation of the theory, density fitting is employed and a complementary auxiliary basis set (CABS) is used for the resolution-of-the-identity (RI) approximation of explicitly-correlated theory. By virtue of this RI approximation, the calculation of molecular three- and four-electron integrals is avoided. An approximation is invoked to avoid the two-electron integrals over the commutator between the operators of kinetic energy and the STG. This approximation consists of computing commutators between matrices in place of operators. Integrals over commutators between operators would have occurred if the theory had been formulated and implemented as proposed originally. The new implementation in Turbomole was tested by performing a series of calculations on rotational conformers of the alkanols n-propanol through n-pentanol. Basis-set requirements concerning the orbital basis, the auxiliary basis set for density fitting and the CABS were investigated. Furthermore, various (constrained) optimizations of the amplitudes of the explicitly-correlated double excitations were studied. These amplitudes can be optimized in orbital-variant and orbital-invariant manners, or they can be kept fixed at the values governed by the rational generator approach, that is, by the electron cusp conditions. Electron-correlation effects beyond the level of second-order perturbation theory were accounted for by conventional coupled-cluster calculations with single, double and perturbative triple excitations [CCSD(T)]. The explicitly-correlated perturbation theory results were combined with CCSD(T) results and compared with literature data obtained by basis-set extrapolation.
The structure and energetics of Cr(CO)6 and Cr(CO)5
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.; Liu, Bowen; Lindh, Roland
1992-01-01
The geometric structure of Cr(CO)6 is optimized at the modified coupled pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD, and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD, and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used. Calculations using larger basis sets reduce the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. In the largest basis set, the total CO binding energy of Cr(CO)6 is estimated to be 140 kcal/mol at the CCSD(T) level of theory, or about 86 percent of the experimental value. The remaining discrepancy between the experimental and theoretical value is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive set (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.
Flener-Lovitt, Charity; Woon, David E; Dunning, Thom H; Girolami, Gregory S
2010-02-04
Density functional theory and ab initio methods have been used to calculate the structures and energies of minima and transition states for the reactions of methane coordinated to a transition metal. The reactions studied are reversible C-H bond activation of the coordinated methane ligand to form a transition metal methyl hydride complex and dissociation of the coordinated methane ligand. The reaction sequence can be summarized as L(x)M(CH(3))H <==> L(x)M(CH(4)) <==> L(x)M + CH(4), where L(x)M is the osmium-containing fragment (C(5)H(5))Os(R(2)PCH(2)PR(2))(+) and R is H or CH(3). Three-center metal-carbon-hydrogen interactions play an important role in this system. Both basis sets and functionals have been benchmarked in this work, including new correlation consistent basis sets for a third transition series element, osmium. Double zeta quality correlation consistent basis sets yield energies close to those from calculations with quadruple-zeta basis sets, with variations that are smaller than the differences between functionals. The energies of important species on the potential energy surface, calculated by using 10 DFT functionals, are compared both to experimental values and to CCSD(T) single point calculations. Kohn-Sham natural bond orbital descriptions are used to understand the differences between functionals. Older functionals favor electrostatic interactions over weak donor-acceptor interactions and, therefore, are not particularly well suited for describing systems--such as sigma-complexes--in which the latter are dominant. Newer kinetic and dispersion-corrected functionals such as MPW1K and M05-2X provide significantly better descriptions of the bonding interactions, as judged by their ability to predict energies closer to CCSD(T) values. Kohn-Sham and natural bond orbitals are used to differentiate between bonding descriptions. Our evaluations of these basis sets and DFT functionals lead us to recommend the use of dispersion corrected functionals in conjunction with double-zeta or larger basis sets with polarization functions for calculations involving weak interactions, such as those found in sigma-complexes with transition metals.
Liu, Yuan; Zhao, Jijun; Li, Fengyu; Chen, Zhongfang
2013-01-15
Accurate description of hydrogen-bonding energies between water molecules and van der Waals interactions between guest molecules and host water cages is crucial for study of methane hydrates (MHs). Using high-level ab initio MP2 and CCSD(T) results as the reference, we carefully assessed the performance of a variety of exchange-correlation functionals and various basis sets in describing the noncovalent interactions in MH. The functionals under investigation include the conventional GGA, meta-GGA, and hybrid functionals (PBE, PW91, TPSS, TPSSh, B3LYP, and X3LYP), long-range corrected functionals (ωB97X, ωB97, LC-ωPBE, CAM-B3LYP, and LC-TPSS), the newly developed Minnesota class functionals (M06-L, M06-HF, M06, and M06-2X), and the dispersion-corrected density functional theory (DFT) (DFT-D) methods (B97-D, ωB97X-D, PBE-TS, PBE-Grimme, and PW91-OBS). We found that the conventional functionals are not suitable for MH, notably, the widely used B3LYP functional even predicts repulsive interaction between CH(4) and (H(2)O)(6) cluster. M06-2X is the best among the M06-Class functionals. The ωB97X-D outperforms the other DFT-D methods and is recommended for accurate first-principles calculations of MH. B97-D is also acceptable as a compromise of computational cost and precision. Considering both accuracy and efficiency, B97-D, ωB97X-D, and M06-2X functional with 6-311++G(2d,2p) basis set without basis set superposition error (BSSE) correction are recommended. Though a fairly large basis set (e.g., aug-cc-pVTZ) and BSSE correction are necessary for a reliable MP2 calculation, DFT methods are less sensitive to the basis set and BSSE correction if the basis set is sufficient (e.g., 6-311++G(2d,2p)). These assessments provide useful guidance for choosing appropriate methodology of first-principles simulation of MH and related systems. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano
2013-01-01
Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activations, which is designed to help to better understand how these correlations may contribute to generating appropriate motor behavior. The algorithm we propose first divides correlations between muscle synergies into types (noise correlations, quantifying the trial-to-trial covariations of synergy activations at fixed task, and signal correlations, quantifying the similarity of task tuning of the trial-averaged activation coefficients of different synergies), and then uses single-trial methods (task-decoding and information theory) to quantify their overall effect on the task-discriminating information carried by muscle synergy activations. We apply the method to both synchronous and time-varying synergies and exemplify it on electromyographic data recorded during performance of reaching movements in different directions. Our method reveals the robust presence of information-enhancing patterns of signal and noise correlations among pairs of synchronous synergies, and shows that they enhance by 9-15% (depending on the set of tasks) the task-discriminating information provided by the synergy decompositions. We suggest that the proposed methodology could be useful for assessing whether single-trial activations of one synergy depend on activations of other synergies and quantifying the effect of such dependences on the task-to-task differences in muscle activation patterns.
47 CFR 4.1 - Scope, basis and purpose.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Scope, basis and purpose. 4.1 Section 4.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL DISRUPTIONS TO COMMUNICATIONS General § 4.1 Scope, basis and purpose. In this part, the Federal Communications Commission is setting forth requirements...
47 CFR 4.1 - Scope, basis and purpose.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Scope, basis and purpose. 4.1 Section 4.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL DISRUPTIONS TO COMMUNICATIONS General § 4.1 Scope, basis and purpose. In this part, the Federal Communications Commission is setting forth requirements...
Computational studies of metal-metal and metal-ligand interactions
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.
1992-01-01
The geometric structure of Cr(CO)6 is optimized at the modified coupled-pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. A detailed comparison of the properties of free CO is therefore given, at both the MCPF and CCSD/CCSD(T) levels of treatment, using a variety of basis sets. With very large one-particle basis sets, the SSCD(T) method gives excellent results for the bond distance, dipole moment and harmonic frequency of free CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used here and in a previous study. Calculations using larger basis sets reduced the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. The remaining discrepancy between the experimental and theoretical total binding energy of Cr(CO)6 is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive se (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.
Derosa, Pedro A
2009-06-01
A computationally cheap approach combining time-independent density functional theory (TIDFT) and semiempirical methods with an appropriate extrapolation procedure is proposed to accurately estimate geometrical and electronic properties of conjugated polymers using just a small set of oligomers. The highest occupied molecular orbital-lowest unoccupied molecular orbital gap (HLG) obtained at a TIDFT level (B3PW91) for two polymers, trans-polyacetylene--the simplest conjugated polymer, and a much larger poly(2-methoxy-5-(2,9-ethyl-hexyloxy)-1,4-phenylenevinylene (MEH-PPV) polymer converge to virtually the same asymptotic value than the excitation energy obtained with time-dependent DFT (TDDFT) calculations using the same functional. For TIDFT geometries, the HLG is found to converge to a value within the experimentally accepted range for the band gap of these polymers, when an exponential extrapolation is used; however if semiempirical geometries are used, a linear fit of the HLG versus 1/n is found to produce the best results. Geometrical parameters are observed to reach a saturation value in good agreement with experimental information, within the length of oligomers calculated here and no extrapolation was considered necessary. Finally, the performance of three different semiempirical methods (AM1, PM3, and MNDO) and for the TIDFT calculations, the performance of 7 different full electron basis sets (6-311+G**, 6-31+ +G**, 6-311+ +G**, 6-31+G**, 6-31G**, 6-31+G*, and 6-31G) is compared and it is determined that the choice of semiempirical method or the basis set does not significantly affect the results. 2008 Wiley Periodicals, Inc.
Economic Risk of Bee Pollination in Maine Wild Blueberry, Vaccinium angustifolium.
Asare, Eric; Hoshide, Aaron K; Drummond, Francis A; Criner, George K; Chen, Xuan
2017-10-01
Recent pollinator declines highlight the importance of evaluating economic risk of agricultural systems heavily dependent on rented honey bees or native pollinators. Our study analyzed variability of native bees and honey bees, and the risks these pose to profitability of Maine's wild blueberry industry. We used cross-sectional data from organic, low-, medium-, and high-input wild blueberry producers in 1993, 1997-1998, 2005-2007, and from 2011 to 2015 (n = 162 fields). Data included native and honey bee densities (count/m2/min) and honey bee stocking densities (hives/ha). Blueberry fruit set, yield, and honey bee hive stocking density models were estimated. Fruit set is impacted about 1.6 times more by native bees than honey bees on a per bee basis. Fruit set significantly explained blueberry yield. Honey bee stocking density in fields predicted honey bee foraging densities. These three models were used in enterprise budgets for all four systems from on-farm surveys of 23 conventional and 12 organic producers (2012-2013). These budgets formed the basis of Monte Carlo simulations of production and profit. Stochastic dominance of net farm income (NFI) cumulative distribution functions revealed that if organic yields are high enough (2,345 kg/ha), organic systems are economically preferable to conventional systems. However, if organic yields are lower (724 kg/ha), it is riskier with higher variability of crop yield and NFI. Although medium-input systems are stochastically dominant with lower NFI variability compared with other conventional systems, the high-input system breaks even with the low-input system if honey bee hive rental prices triple in the future. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Rayka, Milad; Goli, Mohammad; Shahbazian, Shant
2018-02-07
An effective set of Hartree-Fock (HF) equations are derived for electrons of muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator, which are completely equivalent to the usual two-component HF equations used to derive stationary states of the muonic molecules. In these effective equations, a non-Coulombic potential is added to the orthodox coulomb and exchange potential energy terms, which describes the interaction of the muon and the electrons effectively and is optimized during the self-consistent field cycles. While in the two-component HF equations a muon is treated as a quantum particle, in the effective HF equations it is absorbed into the effective potential and practically transformed into an effective potential field experienced by electrons. The explicit form of the effective potential depends on the nature of muon's vibrations and is derivable from the basis set used to expand the muonic spatial orbital. The resulting effective Hartree-Fock equations are implemented computationally and used successfully, as a proof of concept, in a series of muonic molecules containing all atoms from the second and third rows of the Periodic Table. To solve the algebraic version of the equations muon-specific Gaussian basis sets are designed for both muon and surrounding electrons and it is demonstrated that the optimized exponents are quite distinct from those derived for the hydrogen isotopes. The developed effective HF theory is quite general and in principle can be used for any muonic system while it is the starting point for a general effective electronic structure theory that incorporates various types of quantum correlations into the muonic systems beyond the HF equations.
Electronic and spectroscopic characterizations of SNP isomers
NASA Astrophysics Data System (ADS)
Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.
2018-02-01
High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.
Jayaprakash, Paul T; Hashim, Natassha; Yusop, Ridzuan Abd Aziz Mohd
2015-08-01
Video vision mixer based skull-photo superimposition is a popular method for identifying skulls retrieved from unidentified human remains. A report on the reliability of the superimposition method suggested increased failure rates of 17.3 to 32% to exclude and 15 to 20% to include skulls while using related and unrelated face photographs. Such raise in failures prompted an analysis of the methods employed for the research. The protocols adopted for assessing the reliability are seen to vary from those suggested by the practitioners in the field. The former include overlaying the skull- and face-images on the basis of morphology by relying on anthropometric landmarks on the front plane of the face-images and evaluating the goodness of match depending on mix-mode images; the latter consist of orienting the skull considering landmarks on both the eye and ear planes of the face- and skull-images and evaluating the match utilizing images seen in wipe-mode in addition to those in mix-mode. Superimposition of a skull with face-images of five living individuals in two sets of experiments, one following the procedure described for the research on reliability and the other applying the methods suggested by the practitioners has shown that overlaying the images on the basis of morphology depending on the landmarks on the front plane alone and assessing the match in mix-mode fails to exclude the skull. However, orienting the skull relying on the relationship between the anatomical landmarks on the skull- and face-images such as Whitnall's tubercle and exocanthus in the front (eye) plane and the porion and tragus in the rear (ear) plane as well as assessing the match using wipe-mode images enables excluding that skull while superimposing with the same set of face-images. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Spin-Controlled Conductivity in a Thiophene-Functionalized Iron-Bis(dicarbollide)
NASA Astrophysics Data System (ADS)
Beach, Benjamin; Sauriol, Dustin; Derosa, Pedro
2016-04-01
The relationship between spin state and conductivity is studied for a thiophene-functionalized iron(III)-bis(dicarbollide) with one or two thiophenes at each end of the cage. Iron has a high ground state spin that can be adjusted by external electromagnetic fields to produce different magnetic states. The hypothesis explored here is that changes in the spin state of these Fe-containing molecules can lead to significant changes in molecular conductivity. Two examples of the possible application of such spin-dependent conductivity are its use as a molecular switch, the basic building block in digital logic, or as a memory bit. The molecules were first optimized using the Becke-3 Lee-Yang-Parr functional (B3LYP) with the 6-31G(d) basis set. A relaxed molecular geometry at each spin state was then placed between gold electrodes to conduct spin-polarized electron transport calculations with the density functional theory/non-equilibrium Green's functions formalism. The revised Perdew-Burke-Ernzerhf solids exchange-correlation functional (PBES) with double zeta polarized basis set was used. The result of these calculations show that the conductivity increases with the spin state. The cage structure is shown to exhibit fully delocalized molecular orbitals (MOs) appropriate for high conductivity and thus, in this system, the conductivity depends on the position of the MOs relative to the Fermi level. Minority spins are responsible for the conductivity of the doublet spin state while majority spins dominate for the quartet and sextet spin states as they are found closer to the Fermi level when they are occupied. Energy calculations predict a difference in energy between the more and the less conductive spin states (sextet and doublet respectively) that is 15-20 times greater than the thermal energy, which would imply stability at room temperature; however, the energy difference is sufficiently small that transitions between spin states can be induced.
Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory
NASA Astrophysics Data System (ADS)
Ohnishi, Yu-ya; Ten-no, Seiichiro
2013-09-01
The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.
Surface structure analysis of BaSi2(100) epitaxial film grown on Si(111) using CAICISS
NASA Astrophysics Data System (ADS)
Okasaka, Shouta; Kubo, Osamu; Tamba, Daiki; Ohashi, Tomohiro; Tabata, Hiroshi; Katayama, Mitsuhiro
2015-05-01
Geometry and surface structure of a BaSi2(100) film on Si(111) formed by reactive deposition epitaxy (RDE) have been investigated using coaxial impact-collision ion scattering spectroscopy and atomic force microscopy. BaSi2(100) film can be grown only when the Ba deposition rate is sufficiently fast. It is revealed that a BaSi2(100) film grown at 600 °C has better crystallinity than a film grown at 750 °C owing to the mixture of planes other than (100) in the RDE process at higher temperatures. The azimuth angle dependence of the scattering intensity from Ba shows sixfold symmetry, indicating that the minimum height of surface steps on BaSi2(100) is half of the length of unit cell. By comparing the simulated azimuth angle dependences for more than ten surface models with experimental one, it is strongly indicated that the surface of a BaSi2(100) film grown on Si(111) is terminated by Si tetrahedra.
NASA Astrophysics Data System (ADS)
Datta, Dipayan; Kossmann, Simone; Neese, Frank
2016-09-01
The domain-based local pair-natural orbital coupled-cluster (DLPNO-CC) theory has recently emerged as an efficient and powerful quantum-chemical method for the calculation of energies of molecules comprised of several hundred atoms. It has been demonstrated that the DLPNO-CC approach attains the accuracy of a standard canonical coupled-cluster calculation to about 99.9% of the basis set correlation energy while realizing linear scaling of the computational cost with respect to system size. This is achieved by combining (a) localized occupied orbitals, (b) large virtual orbital correlation domains spanned by the projected atomic orbitals (PAOs), and (c) compaction of the virtual space through a truncated pair natural orbital (PNO) basis. In this paper, we report on the implementation of an analytic scheme for the calculation of the first derivatives of the DLPNO-CC energy for basis set independent perturbations within the singles and doubles approximation (DLPNO-CCSD) for closed-shell molecules. Perturbation-independent one-particle density matrices have been implemented in order to account for the response of the CC wave function to the external perturbation. Orbital-relaxation effects due to external perturbation are not taken into account in the current implementation. We investigate in detail the dependence of the computed first-order electrical properties (e.g., dipole moment) on the three major truncation parameters used in a DLPNO-CC calculation, namely, the natural orbital occupation number cutoff used for the construction of the PNOs, the weak electron-pair cutoff, and the domain size cutoff. No additional truncation parameter has been introduced for property calculation. We present benchmark calculations on dipole moments for a set of 10 molecules consisting of 20-40 atoms. We demonstrate that 98%-99% accuracy relative to the canonical CCSD results can be consistently achieved in these calculations. However, this comes with the price of tightening the threshold for the natural orbital occupation number cutoff by an order of magnitude compared to the DLPNO-CCSD energy calculations.
Przybytek, Michal; Helgaker, Trygve
2013-08-07
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.
NASA Astrophysics Data System (ADS)
Legler, C. R.; Brown, N. R.; Dunbar, R. A.; Harness, M. D.; Nguyen, K.; Oyewole, O.; Collier, W. B.
2015-06-01
The Scaled Quantum Mechanical (SQM) method of scaling calculated force constants to predict theoretically calculated vibrational frequencies is expanded to include a broad array of polarized and augmented basis sets based on the split valence 6-31G and 6-311G basis sets with the B3LYP density functional. Pulay's original choice of a single polarized 6-31G(d) basis coupled with a B3LYP functional remains the most computationally economical choice for scaled frequency calculations. But it can be improved upon with additional polarization functions and added diffuse functions for complex molecular systems. The new scale factors for the B3LYP density functional and the 6-31G, 6-31G(d), 6-31G(d,p), 6-31G+(d,p), 6-31G++(d,p), 6-311G, 6-311G(d), 6-311G(d,p), 6-311G+(d,p), 6-311G++(d,p), 6-311G(2d,p), 6-311G++(2d,p), 6-311G++(df,p) basis sets are shown. The double d polarized models did not perform as well and the source of the decreased accuracy was investigated. An alternate system of generating internal coordinates that uses the out-of plane wagging coordinate whenever it is possible; makes vibrational assignments via potential energy distributions more meaningful. Automated software to produce SQM scaled vibrational calculations from different molecular orbital packages is presented.
CCSDT calculations of molecular equilibrium geometries
NASA Astrophysics Data System (ADS)
Halkier, Asger; Jørgensen, Poul; Gauss, Jürgen; Helgaker, Trygve
1997-08-01
CCSDT equilibrium geometries of CO, CH 2, F 2, HF, H 2O and N 2 have been calculated using the correlation-consistent cc-pVXZ basis sets. Similar calculations have been performed for SCF, CCSD and CCSD(T). In general, bond lengths decrease when improving the basis set and increase when improving the N-electron treatment. CCSD(T) provides an excellent approximation to CCSDT for bond lengths as the largest difference between CCSDT and CCSD(T) is 0.06 pm. At the CCSDT/cc-pVQZ level, basis set deficiencies, neglect of higher-order excitations, and incomplete treatment of core-correlation all give rise to errors of a few tenths of a pm, but to a large extent, these errors cancel. The CCSDT/cc-pVQZ bond lengths deviate on average only by 0.11 pm from experiment.
NASA Technical Reports Server (NTRS)
Almlof, Jan; Taylor, Peter R.
1990-01-01
A recently proposed scheme for using natural orbitals from atomic configuration interaction wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outermost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital sets.
NASA Astrophysics Data System (ADS)
Sebastian, S.; Sylvestre, S.; Jayabharathi, J.; Ayyapan, S.; Amalanathan, M.; Oudayakumar, K.; Herman, Ignatius A.
2015-02-01
In this work we analyzed the vibrational spectra of 3,5-dinitrosalicylic acid (3,5DNSA) molecule. The total energy of eight possible conformers can be calculated by Density Functional Theory with 6-31G(d,p) as basis set to find the most stable conformer. Computational result identify the most stable conformer of 3,5DNSA is C6. The assignments of the vibrational spectra have been carried out by computing Total Energy Distribution (TED). The molecular geometry, second order perturbation energies and Electron Density (ED) transfer from filled lone pairs of Lewis base to unfilled Lewis acid sites for 3,5-DNSA molecular analyzed on the basis of Natural Bond Orbital (NBO) analysis. The formation of inter and intramolecular hydrogen bonding between sbnd OH and sbnd COOH group gave the evidence for the formation of dimer formation for 3,5-DNSA molecule. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra.
NASA Astrophysics Data System (ADS)
Sienkiewicz-Gromiuk, Justyna
2018-01-01
The DFT studies were carried out with the B3LYP method utilizing the 6-31G and 6-311++G(d,p) basis sets depending on whether the aim of calculations was to gain the geometry at equilibrium, or to calculate the optimized molecular structure of (benzylthio)acetic acid (Hbta) in the forms of monomer and dimer. The minimum conformational energy search was followed by the potential energy surface (PES) scan of all rotary bonds existing in the acid molecule. The optimized geometrical monomeric and dimeric structures of the title compound were compared with the experimental structural data in the solid state. The detailed vibrational interpretation of experimental infrared and Raman bands was performed on the basis of theoretically simulated ESFF-scaled wavenumbers calculated for the monomer and dimer structures of Hbta. The electronic characteristics of Hbta is also presented in terms of Mulliken atomic charges, frontier molecular orbitals and global reactivity descriptors. Additionally, the MEP and ESP surfaces were computed to predict coordination sites for potential metal complex formation.
NASA Astrophysics Data System (ADS)
Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.
2015-04-01
A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.
Color constancy: enhancing von Kries adaption via sensor transformations
NASA Astrophysics Data System (ADS)
Finlayson, Graham D.; Drew, Mark S.; Funt, Brian V.
1993-09-01
Von Kries adaptation has long been considered a reasonable vehicle for color constancy. Since the color constancy performance attainable via the von Kries rule strongly depends on the spectral response characteristics of the human cones, we consider the possibility of enhancing von Kries performance by constructing new `sensors' as linear combinations of the fixed cone sensitivity functions. We show that if surface reflectances are well-modeled by 3 basis functions and illuminants by 2 basis functions then there exists a set of new sensors for which von Kries adaptation can yield perfect color constancy. These new sensors can (like the cones) be described as long-, medium-, and short-wave sensitive; however, both the new long- and medium-wave sensors have sharpened sensitivities -- their support is more concentrated. The new short-wave sensor remains relatively unchanged. A similar sharpening of cone sensitivities has previously been observed in test and field spectral sensitivities measured for the human eye. We present simulation results demonstrating improved von Kries performance using the new sensors even when the restrictions on the illumination and reflectance are relaxed.
Choosing Meteorological Input for the Global Modeling Initiative Assessment of High Speed Aircraft
NASA Technical Reports Server (NTRS)
Douglas, A. R.; Prather, M. P.; Hall, T. M.; Strahan, S. E.; Rasch, P. J.; Sparling, L. C.; Coy, L.; Rodriquez, J. M.
1998-01-01
The Global Modeling Initiative (GMI) science team is developing a three dimensional chemistry and transport model (CTM) to be used in assessment of the atmospheric effects of aviation. Requirements are that this model be documented, be validated against observations, use a realistic atmospheric circulation, and contain numerical transport and photochemical modules representing atmospheric processes. The model must also retain computational efficiency to be tractable to use for multiple scenarios and sensitivity studies. To meet these requirements, a facility model concept was developed in which the different components of the CTM are evaluated separately. The first use of the GMI model will be to evaluate the impact of the exhaust of supersonic aircraft on the stratosphere. The assessment calculations will depend strongly on the wind and temperature fields used by the CTM. Three meteorological data sets for the stratosphere are available to GMI: the National Center for Atmospheric Research Community Climate Model (CCM2), the Goddard Earth Observing System Data Assimilation System (GEOS DAS), and the Goddard Institute for Space Studies general circulation model (GISS). Objective criteria were established by the GMI team to identify the data set which provides the best representation of the stratosphere. Simulations of gases with simple chemical control were chosen to test various aspects of model transport. The three meteorological data sets were evaluated and graded based on their ability to simulate these aspects of stratospheric measurements. This paper describes the criteria used in grading the meteorological fields. The meteorological data set which has the highest score and therefore was selected for GMI is CCM2. This type of objective model evaluation establishes a physical basis for interpretation of differences between models and observations. Further, the method provides a quantitative basis for defining model errors, for discriminating between different models, and for ready re-evaluation of improved models. These in turn will lead to a higher level of confidence in assessment calculations.
A rough set approach for determining weights of decision makers in group decision making
Yang, Qiang; Du, Ping-an; Wang, Yong; Liang, Bin
2017-01-01
This study aims to present a novel approach for determining the weights of decision makers (DMs) based on rough group decision in multiple attribute group decision-making (MAGDM) problems. First, we construct a rough group decision matrix from all DMs’ decision matrixes on the basis of rough set theory. After that, we derive a positive ideal solution (PIS) founded on the average matrix of rough group decision, and negative ideal solutions (NISs) founded on the lower and upper limit matrixes of rough group decision. Then, we obtain the weight of each group member and priority order of alternatives by using relative closeness method, which depends on the distances from each individual group member’ decision to the PIS and NISs. Through comparisons with existing methods and an on-line business manager selection example, the proposed method show that it can provide more insights into the subjectivity and vagueness of DMs’ evaluations and selections. PMID:28234974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannon, Kevin P.; Li, Chenyang; Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu
2016-05-28
We report an efficient implementation of a second-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT2) [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)]. Our implementation employs factorized two-electron integrals to avoid storage of large four-index intermediates. It also exploits the block structure of the reference density matrices to reduce the computational cost to that of second-order Møller–Plesset perturbation theory. Our new DSRG-MRPT2 implementation is benchmarked on ten naphthyne isomers using basis sets up to quintuple-ζ quality. We find that the singlet-triplet splittings (Δ{sub ST}) of the naphthyne isomers strongly depend onmore » the equilibrium structures. For a consistent set of geometries, the Δ{sub ST} values predicted by the DSRG-MRPT2 are in good agreements with those computed by the reduced multireference coupled cluster theory with singles, doubles, and perturbative triples.« less
Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism
NASA Astrophysics Data System (ADS)
Valley, Nicholas; Jensen, Lasse; Autschbach, Jochen; Schatz, George C.
2010-08-01
Hyper-Raman spectra for pyridine and pyridine on the surface of a tetrahedral 20 silver atom cluster are calculated using static hyperpolarizability derivatives obtained from time dependent density functional theory. The stability of the results with respect to choice of exchange-correlation functional and basis set is verified by comparison with experiment and with Raman spectra calculated for the same systems using the same methods. Calculated Raman spectra were found to match well with experiment and previous theoretical calculations. The calculated normal and surface enhanced hyper-Raman spectra closely match experimental results. The chemical enhancement factors for hyper-Raman are generally larger than for Raman (102-104 versus 101-102). Integrated hyper-Raman chemical enhancement factors are presented for a set of substituted pyridines. A two-state model is developed to predict these chemical enhancement factors and this was found to work well for the majority of the molecules considered, providing a rationalization for the difference between hyper-Raman and Raman enhancement factors.
Towards a Quantum Theory of Humour
NASA Astrophysics Data System (ADS)
Gabora, Liane; Kitto, Kirsty
2016-12-01
This paper proposes that cognitive humour can be modelled using the mathematical framework of quantum theory, suggesting that a Quantum Theory of Humour (QTH) is a viable approach. We begin with brief overviews of both research on humour, and the generalized quantum framework. We show how the bisociation of incongruous frames or word meanings in jokes can be modelled as a linear superposition of a set of basis states, or possible interpretations, in a complex Hilbert space. The choice of possible interpretations depends on the context provided by the set-up versus the punchline of a joke. We apply QTH first to a verbal pun, and then consider how this might be extended to frame blending in cartoons. An initial study of 85 participant responses to 35 jokes (and a number of variants) suggests that there is reason to believe that a quantum approach to the modelling of cognitive humour is a viable new avenue of research for the field of quantum cognition.
Mothering: an unacknowledged aspect of undergraduate clinical teachers' work in nursing.
McKenna, Lisa; Wellard, Sally
2009-05-01
Clinical education is an important component of undergraduate nurse education, in which clinical teachers facilitate students' application of theoretical classroom knowledge into the clinical practice setting. Mothering as part of clinical teachers' work was a major finding from a larger study exploring clinical teaching work to identify what shaped their work and barriers to their work in clinical settings. The study used semi-structured interviews, informed by the work of Foucault. Maternal discourses emerged as a predominant one as participants presented their relationships with students describing examples of nurturing, protecting, supporting, guiding and providing discipline. The unexpected finding contradicted the dominant view of students as adult learners, and potentially positions them as dependent in their learning in clinical environments. Exploration of this discourse in the context of the study forms the basis of this paper. It is argued that the overall impact of maternal discourses on clinical teaching and learning is unclear but warrants more detailed investigation.
Vélez, Ederley; Alberola, Antonio; Polo, Víctor
2009-12-17
The magnetic exchange coupling constants between two Mn(II) centers for a set of five inverse crown structures have been investigated by means of a methodology based on broken-symmetry unrestricted density functional theory. These novel and highly unstable compounds present superexchange interactions between two Mn centers, each one with S = 5/2 through anionic "guests" such as oxygen, benzene, or hydrides or through the cationic ring formed by amide ligands and alkali metals (Na, Li). Magnetic exchange couplings calculated at B3LYP/6-31G(d,p) level yield strong antiferromagnetic couplings for compounds linked via an oxygen atom or hydride and very small antiferromagnetic couplings for those linked via a benzene molecule, deprotonated in either 1,4- or 1,3- positions. Analysis of the magnetic orbitals and spin polarization maps provide an understanding of the exchange mechanism between the Mn centers. The dependence of J with respect to 10 different density functional theory potentials employed and the basis set has been analyzed.
Li, Zhi; Deng, Li-Qun; Chen, Jin-Xiang; Zhou, Chun-Qiong; Chen, Wen-Hua
2015-12-28
Six squaramido-functionalized bis(choloyl) conjugates were synthesized and fully characterized on the basis of NMR ((1)H and (13)C) and ESI MS (LR and HR) data. Their transmembrane anionophoric activity was investigated in detail by means of chloride ion selective electrode technique and pyranine assay. The data indicate that this set of compounds is capable of promoting the transmembrane transport of anions presumably via proton/anion symport and anion exchange processes, and that lipophilicity in terms of clog P from 3.90 to 8.32 affects the apparent ion transport rate in a concentration-dependent fashion. Detailed kinetic analysis on the data obtained from both the chloride efflux and pH discharge experiments reveals that there may exist an optimum clog P range for the intrinsic ion transport rate. However, lipophilicity exhibits little effect on the effectiveness of this set of compounds in terms of either k2/Kdiss or EC50 values.
NASA Astrophysics Data System (ADS)
Schlueter-Kuck, Kristy; Dabiri, John
2017-11-01
In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Economic communication model set
NASA Astrophysics Data System (ADS)
Zvereva, Olga M.; Berg, Dmitry B.
2017-06-01
This paper details findings from the research work targeted at economic communications investigation with agent-based models usage. The agent-based model set was engineered to simulate economic communications. Money in the form of internal and external currencies was introduced into the models to support exchanges in communications. Every model, being based on the general concept, has its own peculiarities in algorithm and input data set since it was engineered to solve the specific problem. Several and different origin data sets were used in experiments: theoretic sets were estimated on the basis of static Leontief's equilibrium equation and the real set was constructed on the basis of statistical data. While simulation experiments, communication process was observed in dynamics, and system macroparameters were estimated. This research approved that combination of an agent-based and mathematical model can cause a synergetic effect.
Rapid Radiofrequency Field Mapping In Vivo Using Single-Shot STEAM MRI
Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter
2008-01-01
Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60° and 100° instead of 90°, inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T2-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods. Magn Reson Med 60:739–743, 2008. © 2008 Wiley-Liss, Inc. PMID:18727090
Alternatives for discounting in the analysis of noninferiority trials.
Snapinn, Steven M
2004-05-01
Determining the efficacy of an experimental therapy relative to placebo on the basis of an active-control noninferiority trial requires reference to historical placebo-controlled trials. The validity of the resulting comparison depends on two key assumptions: assay sensitivity and constancy. Since the truth of these assumptions cannot be verified, it seems logical to raise the standard of evidence required to declare efficacy; this concept is referred to as discounting. It is not often recognized that two common design and analysis approaches, setting a noninferiority margin and requiring preservation of a fraction of the standard therapy's effect, are forms of discounting. The noninferiority margin is a particularly poor approach, since its degree of discounting depends on an irrelevant factor. Preservation of effect is more reasonable, but it addresses only the constancy assumption, not the issue of assay sensitivity. Gaining consensus on the most appropriate approach to the design and analysis of noninferiority trials will require a common understanding of the concept of discounting.
Mathematical modeling of control subsystems for CELSS: Application to diet
NASA Technical Reports Server (NTRS)
Waleh, Ahmad; Nguyen, Thoi K.; Kanevsky, Valery
1991-01-01
The dynamic control of a Closed Ecological Life Support System (CELSS) in a closed space habitat is of critical importance. The development of a practical method of control is also a necessary step for the selection and design of realistic subsystems and processors for a CELSS. Diet is one of the dynamic factors that strongly influences, and is influenced, by the operational states of all major CELSS subsystems. The problems of design and maintenance of a stable diet must be obtained from well characterized expert subsystems. The general description of a mathematical model that forms the basis of an expert control program for a CELSS is described. The formulation is expressed in terms of a complete set of time dependent canonical variables. System representation is dynamic and includes time dependent storage buffers. The details of the algorithm are described. The steady state results of the application of the method for representative diets made from wheat, potato, and soybean are presented.
Sight over sound in the judgment of music performance.
Tsay, Chia-Jung
2013-09-03
Social judgments are made on the basis of both visual and auditory information, with consequential implications for our decisions. To examine the impact of visual information on expert judgment and its predictive validity for performance outcomes, this set of seven experiments in the domain of music offers a conservative test of the relative influence of vision versus audition. People consistently report that sound is the most important source of information in evaluating performance in music. However, the findings demonstrate that people actually depend primarily on visual information when making judgments about music performance. People reliably select the actual winners of live music competitions based on silent video recordings, but neither musical novices nor professional musicians were able to identify the winners based on sound recordings or recordings with both video and sound. The results highlight our natural, automatic, and nonconscious dependence on visual cues. The dominance of visual information emerges to the degree that it is overweighted relative to auditory information, even when sound is consciously valued as the core domain content.
Sight over sound in the judgment of music performance
Tsay, Chia-Jung
2013-01-01
Social judgments are made on the basis of both visual and auditory information, with consequential implications for our decisions. To examine the impact of visual information on expert judgment and its predictive validity for performance outcomes, this set of seven experiments in the domain of music offers a conservative test of the relative influence of vision versus audition. People consistently report that sound is the most important source of information in evaluating performance in music. However, the findings demonstrate that people actually depend primarily on visual information when making judgments about music performance. People reliably select the actual winners of live music competitions based on silent video recordings, but neither musical novices nor professional musicians were able to identify the winners based on sound recordings or recordings with both video and sound. The results highlight our natural, automatic, and nonconscious dependence on visual cues. The dominance of visual information emerges to the degree that it is overweighted relative to auditory information, even when sound is consciously valued as the core domain content. PMID:23959902
Structural Mechanism of Voltage-Dependent Gating in an Isolated Voltage-Sensing Domain
Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos; Hulse, Raymond E.; Roux, Benoit; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo
2014-01-01
SUMMARY The transduction of transmembrane electric fields into protein motion plays an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSD) carry out these functions through reorientations of S4 helix with discrete gating charges. Here, crystal structures of the VSD from Ci-VSP were determined in both, active (Up) and resting (Down) conformations. The S4 undergoes a ~5 Å displacement along its main axis accompanied by a ~60o rotation, consistent with the helix-screw gating mechanism. This movement is stabilized by a change in countercharge partners in helices S1 and S3, generating an estimated net charge transfer of ~1 eo. Gating charges move relative to a “hydrophobic gasket” that electrically divides intra and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent cellular activities. PMID:24487958
Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks
Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho
2015-01-01
Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952
Node-Based Learning of Multiple Gaussian Graphical Models
Mohan, Karthik; London, Palma; Fazel, Maryam; Witten, Daniela; Lee, Su-In
2014-01-01
We consider the problem of estimating high-dimensional Gaussian graphical models corresponding to a single set of variables under several distinct conditions. This problem is motivated by the task of recovering transcriptional regulatory networks on the basis of gene expression data containing heterogeneous samples, such as different disease states, multiple species, or different developmental stages. We assume that most aspects of the conditional dependence networks are shared, but that there are some structured differences between them. Rather than assuming that similarities and differences between networks are driven by individual edges, we take a node-based approach, which in many cases provides a more intuitive interpretation of the network differences. We consider estimation under two distinct assumptions: (1) differences between the K networks are due to individual nodes that are perturbed across conditions, or (2) similarities among the K networks are due to the presence of common hub nodes that are shared across all K networks. Using a row-column overlap norm penalty function, we formulate two convex optimization problems that correspond to these two assumptions. We solve these problems using an alternating direction method of multipliers algorithm, and we derive a set of necessary and sufficient conditions that allows us to decompose the problem into independent subproblems so that our algorithm can be scaled to high-dimensional settings. Our proposal is illustrated on synthetic data, a webpage data set, and a brain cancer gene expression data set. PMID:25309137
Geminal embedding scheme for optimal atomic basis set construction in correlated calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorella, S., E-mail: sorella@sissa.it; Devaux, N.; Dagrada, M., E-mail: mario.dagrada@impmc.upmc.fr
2015-12-28
We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wavemore » function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.« less
NASA Astrophysics Data System (ADS)
Di Valentin, Cristiana
2007-10-01
In this work we present a simplified procedure to use hybrid functionals and localized atomic basis sets to simulate scanning tunneling microscopy (STM) images of stoichiometric, reduced and hydroxylated rutile (110) TiO2 surface. For the two defective systems it is necessary to introduce some exact Hartree-Fock exchange in the exchange functional in order to correctly describe the details of the electronic structure. Results are compared to the standard density functional theory and planewave basis set approach. Both methods have advantages and drawbacks that are analyzed in detail. In particular, for the localized basis set approach, it is necessary to introduce a number of Gaussian function in the vacuum region above the surface in order to correctly describe the exponential decay of the integrated local density of states from the surface. In the planewave periodic approach, a thick vacuum region is required to achieve correct results. Simulated STM images are obtained for both the reduced and hydroxylated surface which nicely compare with experimental findings. A direct comparison of the two defects as displayed in the simulated STM images indicates that the OH groups should appear brighter than oxygen vacancies in perfect agreement with the experimental STM data.
Zhang, Jun; Dolg, Michael
2013-07-09
An efficient way to obtain accurate CCSD and CCSD(T) energies for large systems, i.e., the third-order incremental dual-basis set zero-buffer approach (inc3-db-B0), has been developed and tested. This approach combines the powerful incremental scheme with the dual-basis set method, and along with the new proposed K-means clustering (KM) method and zero-buffer (B0) approximation, can obtain very accurate absolute and relative energies efficiently. We tested the approach for 10 systems of different chemical nature, i.e., intermolecular interactions including hydrogen bonding, dispersion interaction, and halogen bonding; an intramolecular rearrangement reaction; aliphatic and conjugated hydrocarbon chains; three compact covalent molecules; and a water cluster. The results show that the errors for relative energies are <1.94 kJ/mol (or 0.46 kcal/mol), for absolute energies of <0.0026 hartree. By parallelization, our approach can be applied to molecules of more than 30 atoms and more than 100 correlated electrons with high-quality basis set such as cc-pVDZ or cc-pVTZ, saving computational cost by a factor of more than 10-20, compared to traditional implementation. The physical reasons of the success of the inc3-db-B0 approach are also analyzed.
Volkov basis for simulation of interaction of strong laser pulses and solids
NASA Astrophysics Data System (ADS)
Kidd, Daniel; Covington, Cody; Li, Yonghui; Varga, Kálmán
2018-01-01
An efficient and accurate basis comprised of Volkov states is implemented and tested for time-dependent simulations of interactions between strong laser pulses and crystalline solids. The Volkov states are eigenstates of the free electron Hamiltonian in an electromagnetic field and analytically represent the rapidly oscillating time-dependence of the orbitals, allowing significantly faster time propagation than conventional approaches. The Volkov approach can be readily implemented in plane-wave codes by multiplying the potential energy matrix elements with a simple time-dependent phase factor.
Quantum-Chemical Study of the Adsorption of DMMP and Sarin on gamma-Al2O3
2007-02-01
In this and in the following section, ∆Eads is not corrected for zero-point vibrational energy ( ZPE ); however, a counterpoise correction for basis set...Ångstroms and the bond angle is in degrees. Values in parentheses are BSSE-corrected (∆Eads C ) results. ∆Eads has not been corrected for ZPE . b 6-31G...sets. The ∆ Eads C values are given in parentheses. No ZPE corrections have been applied. e The basis sets used were 6-311G(df) for Sarin and for the Al
Gerrodette, Tim; Olson, Robert; Reilly, Stephen; Watters, George; Perrin, William
2012-04-01
An ecosystem approach to fisheries management is a widely recognized goal, but describing and measuring the effects of a fishery on an ecosystem is difficult. Ecological information on the entire catch (all animals removed, whether retained or discarded) of both species targeted by the fishery and nontarget species (i.e., bycatch) is required. We used data from the well-documented purse-seine fishery for tunas (Thunnus albacares, T. obesus, and Katsuwonus pelamis) in the eastern tropical Pacific Ocean to examine the fishery's ecological effects. Purse-seine fishing in the eastern tropical Pacific is conducted in 3 ways that differ in the amount and composition of target species and bycatch. The choice of method depends on whether the tunas are swimming alone (unassociated sets), associated with dolphins (dolphin sets), or associated with floating objects (floating-object sets). Among the fishing methods, we compared catch on the basis of weight, number of individuals, trophic level, replacement time, and diversity. Floating-object sets removed 2-3 times as much biomass as the other 2 methods, depending on how removal was measured. Results of previous studies suggest the ecological effects of floating-object sets are thousands of times greater than the effects of other methods, but these results were derived from only numbers of discarded animals. Management of the fishery has been driven to a substantial extent by a focus on reducing bycatch, although discards are currently 4.8% of total catch by weight, compared with global averages of 7.5% for tuna longline fishing and 30.0% for midwater trawling. An ecosystem approach to fisheries management requires that ecological effects of fishing on all animals removed by a fishery, not just bycatch or discarded catch, be measured with a variety of metrics. ©2012 Society for Conservation Biology.
Block-localized wavefunction (BLW) method at the density functional theory (DFT) level.
Mo, Yirong; Song, Lingchun; Lin, Yuchun
2007-08-30
The block-localized wavefunction (BLW) approach is an ab initio valence bond (VB) method incorporating the efficiency of molecular orbital (MO) theory. It can generate the wavefunction for a resonance structure or diabatic state self-consistently by partitioning the overall electrons and primitive orbitals into several subgroups and expanding each block-localized molecular orbital in only one subspace. Although block-localized molecular orbitals in the same subspace are constrained to be orthogonal (a feature of MO theory), orbitals between different subspaces are generally nonorthogonal (a feature of VB theory). The BLW method is particularly useful in the quantification of the electron delocalization (resonance) effect within a molecule and the charge-transfer effect between molecules. In this paper, we extend the BLW method to the density functional theory (DFT) level and implement the BLW-DFT method to the quantum mechanical software GAMESS. Test applications to the pi conjugation in the planar allyl radical and ions with the basis sets of 6-31G(d), 6-31+G(d), 6-311+G(d,p), and cc-pVTZ show that the basis set dependency is insignificant. In addition, the BLW-DFT method can also be used to elucidate the nature of intermolecular interactions. Examples of pi-cation interactions and solute-solvent interactions will be presented and discussed. By expressing each diabatic state with one BLW, the BLW method can be further used to study chemical reactions and electron-transfer processes whose potential energy surfaces are typically described by two or more diabatic states.
Ovchinnikov, Vasily A; Sundholm, Dage
2014-04-21
The 0-0 transitions of the electronic excitation spectra of the lowest tautomers of the four nucleotide (DNA) bases have been studied using linear-response approximate coupled-cluster singles and doubles (CC2) calculations. Excitation energies have also been calculated at the linear-response time-dependent density functional theory (TDDFT) level using the B3LYP functional. Large basis sets have been employed for ensuring that the obtained excitation energies are close to the basis-set limit. Zero-point vibrational energy corrections have been calculated at the B3LYP and CC2 levels for the ground and excited states rendering direct comparisons with high-precision spectroscopy measurements feasible. The obtained excitation energies for the 0-0 transitions of the first excited states of guanine tautomers are in good agreement with experimental values confirming the experimental assignment of the energetic order of the tautomers of the DNA bases. For the experimentally detected guanine tautomers, the first excited state corresponds to a π→π* transition, whereas for the tautomers of adenine, thymine, and the lowest tautomer of cytosine the transition to the first excited state has n →π* character. The calculations suggest that the 0-0 transitions of adenine, thymine, and cytosine are not observed in the absorption spectrum due to the weak oscillator strength of the formally symmetry-forbidden transitions, while 0-0 transitions of thymine have been detected in fluorescence excitation spectra.
42 CFR § 512.1 - Basis and scope.
Code of Federal Regulations, 2010 CFR
2017-10-01
...) HEALTH CARE INFRASTRUCTURE AND MODEL PROGRAMS EPISODE PAYMENT MODEL General Provisions § 512.1 Basis and scope. (a) Basis. This part implements the test of episode payment models under section 1115A of the Act... sets forth the following: (1) The participants in each episode payment model. (2) The episodes being...
Daubechies wavelets for linear scaling density functional theory.
Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.
Relative stabilities and the spectral signatures of stacked and hydrogen-bonded dimers of serotonin
NASA Astrophysics Data System (ADS)
Dev, S.; Giri, K.; Majumder, M.; Sathyamurthy, N.
2015-10-01
The O-HṡṡṡN hydrogen-bonded dimer of serotonin is shown to be more stable than the stacked dimer in its ground electronic state, by using the Møller-Plesset second-order perturbation theory (MP2) and the 6-31g** basis set. The vertical excitation energy for the lowest π → π* transition for the monomer as well as the dimer is predicted by time-dependent density functional theory. The experimentally observed red shift of excitation wavelength on oligomerisation is explained in terms of the change in the HOMO-LUMO energy gap due to complex formation. The impact of dimer formation on the proton magnetic resonance spectrum of serotonin monomer is also examined.
Two-photon double ionization of helium in the region of photon energies 42-50eV
NASA Astrophysics Data System (ADS)
Ivanov, I. A.; Kheifets, A. S.
2007-03-01
We report the total integrated cross section (TICS) of two-photon double ionization of helium in the photon energy range from 42to50eV . Our computational procedure relies on a numerical solution of the time-dependent Schrödinger equation on a square-integrable basis and subsequent projection of this solution on a set of final field-free states describing correlation in the two-electron continuum. Our results suggest that the TICS grows monotonically as a function of photon energy in the region of 42-50eV , possibly reaching a maximum in the vicinity of 50eV . We also present fully resolved triple-differential cross sections for selected photon energies.
Abu-Melha, Sraa
2018-02-15
A new series of 2-amino-5-arylazothiazole derivatives has been designed and synthesized in 61-78% yields and screened as potential antibacterial drug candidates against the Gram negative bacterium Escherichia coli. The geometry of the title compounds were being studied using the Material Studio package and semi-core pseudopods calculations (dspp) were performed with the double numerica basis sets plus polarization functional (DNP) to predict the properties of materials using the hybrid FT/B3LYP method. Modeling calculations, especially the (E H -E L ) difference and the energetic parameters revealed that some of the title compounds may be promising tools for further research work and the activity is structure dependent.
Ganymede - A relationship between thermal history and crater statistics
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Malin, M. C.
1980-01-01
An approach for factoring the effects of a planetary thermal history into a predicted set of crater statistics for an icy satellite is developed and forms the basis for subsequent data inversion studies. The key parameter is a thermal evolution-dependent critical time for which craters of a particular size forming earlier do not contribute to present-day statistics. An example is given for the satellite Ganymede and the effect of the thermal history is easily seen in the resulting predicted crater statistics. A preliminary comparison with the data, subject to the uncertainties in ice rheology and impact flux history, suggests a surface age of 3.8 x 10 to the 9th years and a radionuclide abundance of 0.3 times the chondritic value.
Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.
Liger-Belair, Gérard
2016-04-21
Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.
Atomistic Modeling of Surface and Bulk Properties of Cu, Pd and the Cu-Pd System
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Garces, Jorge E.; Noebe, Ronald D.; Abel, Phillip; Mosca, Hugo O.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The BFS (Bozzolo-Ferrante-Smith) method for alloys is applied to the study of the Cu-Pd system. A variety of issues are analyzed and discussed, including the properties of pure Cu or Pd crystals (surface energies, surface relaxations), Pd/Cu and Cu/Pd surface alloys, segregation of Pd (or Cu) in Cu (or Pd), concentration dependence of the lattice parameter of the high temperature fcc CuPd solid solution, the formation and properties of low temperature ordered phases, and order-disorder transition temperatures. Emphasis is made on the ability of the method to describe these properties on the basis of a minimum set of BFS universal parameters that uniquely characterize the Cu-Pd system.
Coupled cluster calculations for static and dynamic polarizabilities of C60
NASA Astrophysics Data System (ADS)
Kowalski, Karol; Hammond, Jeff R.; de Jong, Wibe A.; Sadlej, Andrzej J.
2008-12-01
New theoretical predictions for the static and frequency dependent polarizabilities of C60 are reported. Using the linear response coupled cluster approach with singles and doubles and a basis set especially designed to treat the molecular properties in external electric field, we obtained 82.20 and 83.62 Å3 for static and dynamic (λ =1064 nm) polarizabilities. These numbers are in a good agreement with experimentally inferred data of 76.5±8 and 79±4 Å3 [R. Antoine et al., J. Chem. Phys.110, 9771 (1999); A. Ballard et al., J. Chem. Phys.113, 5732 (2000)]. The reported results were obtained with the highest wave function-based level of theory ever applied to the C60 system.
Deep Learning with Hierarchical Convolutional Factor Analysis
Chen, Bo; Polatkan, Gungor; Sapiro, Guillermo; Blei, David; Dunson, David; Carin, Lawrence
2013-01-01
Unsupervised multi-layered (“deep”) models are considered for general data, with a particular focus on imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis, that explicitly exploit the convolutional nature of the expansion. In order to address large-scale and streaming data, an online version of VB is also developed. The number of basis functions or dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature. PMID:23787342
Kinetic and equilibrium lithium acidities of arenes: theory and experiment.
Streitwieser, Andrew; Shah, Kamesh; Reyes, Julius R; Zhang, Xingyue; Davis, Nicole R; Wu, Eric C
2010-08-26
Kinetic acidities of arenes, ArH, measured some time ago by hydrogen isotope exchange kinetics with lithium cyclohexylamide (LiCHA) in cyclohexylamine (CHA) show a wide range of reactivities that involve several electronic mechanisms. These experimental reactivities give an excellent Brønsted correlation with equilibrium lithium ion pair acidities (pK(Li)) derived as shown recently from computations of ArLi.2E (E = dimethyl ether). The various electronic mechanisms are well modeled by ab initio HF calculations with modest basis sets. Additional calculations using NH(3) as a model for CHA further characterize the TS of the exchange reactions. The slopes of Brønsted correlations of ion pair systems can vary depending on the nature of the ion pairs.
NASA Astrophysics Data System (ADS)
De Caro, Mattia; Crosta, Giovanni B.; Frattini, Paolo
2017-04-01
Although aquifers in densely populated and industrialized areas are extremely valuable and sensitive to contamination, an estimate of the groundwater quality status relative to baseline conditions is lacking for many of them. This paper provides a hydrogeochemical characterization of the groundwater in the Milan metropolitan area, one of the most densely populated areas in Europe. First, a conceptual model of the study area based on the analysis of the spatial distribution of natural chemical species and indicator contaminants is presented. The hydrochemical facies of the study area depend on the lithology of catchments drained by the main contributing rivers and on the aquifer settings. The anthropogenic influence on the groundwater quality of superficial aquifers is studied by means of probability plots, concentration versus depth plots and spatial-temporal plots for nitrate, sulfate and chloride. These allow differentiation of contaminated superficial aquifers from deep confined aquifers with baseline water quality. Natural Background Levels (NBL) of selected species (Cl, Na, NH4, SO4, NO3, As, Fe, Mn and Zn) are estimated by means of the pre-selection (PS) and the component separation (CS) statistical approaches. The NBLs depend on hydrogeological settings of the study area; sodium, chloride, sulfate and zinc NBL values never exceed the environmental water quality standards. NBL values of ammonium, iron, arsenic and manganese exceed the environmental water quality standards in the anaerobic portion of the aquifers. On the basis of observations, a set of criteria and precautions are suggested for adoption with both PS and CS methods in the aquifer characterization of highly urbanized areas.
Gaass, Thomas; Schneider, Moritz Jörg; Dietrich, Olaf; Ingrisch, Michael; Dinkel, Julien
2017-04-01
Variability across devices, patients, and time still hinders widespread recognition of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as quantitative biomarker. The purpose of this work was to introduce and characterize a dedicated microchannel phantom as a model for quantitative DCE-MRI measurements. A perfusable, MR-compatible microchannel network was constructed on the basis of sacrificial melt-spun sugar fibers embedded in a block of epoxy resin. Structural analysis was performed on the basis of light microscopy images before DCE-MRI experiments. During dynamic acquisition the capillary network was perfused with a standard contrast agent injection system. Flow-dependency, as well as inter- and intrascanner reproducibility of the computed DCE parameters were evaluated using a 3.0 T whole-body MRI. Semi-quantitative and quantitative flow-related parameters exhibited the expected proportionality to the set flow rate (mean Pearson correlation coefficient: 0.991, P < 2.5e-5). The volume fraction was approximately independent from changes of the applied flow rate through the phantom. Repeatability and reproducibility experiments yielded maximum intrascanner coefficients of variation (CV) of 4.6% for quantitative parameters. All evaluated parameters were well in the range of known in vivo results for the applied flow rates. The constructed phantom enables reproducible, flow-dependent, contrast-enhanced MR measurements with the potential to facilitate standardization and comparability of DCE-MRI examinations. © 2017 American Association of Physicists in Medicine.
Extensive goniometric spectral measurements at desert sites for military engineering
NASA Astrophysics Data System (ADS)
Berry, T. E.; Morgan, J. C.; Furey, J. S.; DeMoss, T. A.; Kelley, J. R.; McKenna, J. R.
2012-10-01
Remote-sensing technology designed to exploit disturbed earth signatures has become extremely useful in the detection of disturbed soil in military areas of operation. Soil reflectance can be exploited for this purpose and is dependent on atmospheric conditions. An understanding of the in situ soil background is vital to any type of change detection. Researchers from the Engineering Research and Development Center (ERDC) conducted OCONUS soil spectral measurements at ten sites in Afghanistan from July to November, 2011. Sampling sites were chosen on the basis of geomorphic setting, surface-soil characteristics, and field-expedient conditions. Goniometric spectral measurements at these sites have provided high quality bi-directional reflectance data, and their analyses are presented in the context of threat recognition and discrimination. These data can also provide the basis for BDRF model validation. Most spectral data were acquired under ambient solar lighting, but other data were collected at night and under artificial illumination conditions. Bidirectional measurements of soil reflectance in the VIS/NIR and SWIR were taken using the University of Lethbridge Goniometer System (ULGS) at dawn, mid-day, dusk and after sunset with a light. Soil surface roughness and reflectance varied, depending on the presence of desert varnish and desert pavement at some sites. Sun angle and dust and smoke in the atmosphere impacted soil reflectance and noise in the SWIR part of the light spectrum, in particular. The presence of minerals such as calcium carbonate, gypsum, and oxidized iron in the subsurface directly impacted reflectance measurements in disturbed soil.
Practical auxiliary basis implementation of Rung 3.5 functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janesko, Benjamin G., E-mail: b.janesko@tcu.edu; Scalmani, Giovanni; Frisch, Michael J.
2014-07-21
Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r{sup -vector},r{sup -vector}′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r{sup -vector},r{sup -vector} ′) onto a semilocal model density matrix γ{sub SL}(ρ(r{sup -vector}),∇ρ(r{sup -vector}),r{sup -vector}−r{sup -vector} ′). γ{sub SL} depends on the electron density ρ(r{sup -vector}) at reference point r{sup -vector}, and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expandingmore » the r{sup -vector}−r{sup -vector} ′ dependence of γ{sub SL} in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ{sub SL} yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms.« less
High-level ab initio studies of the complex formed between CO and O2
NASA Astrophysics Data System (ADS)
Grein, Friedrich
2017-05-01
The explicitly correlated CCSD(T)-F12 method with VXZ-F12 basis sets was used to find the most stable structures of the van der Waals CO-O2 complexes. With geometry optimizations performed up to the quadruple-zeta level and basis set extrapolation, the calculated interaction energies for the triplet complexes are 123 cm-1 for the H complex in Cs symmetry (slipped near-parallel structure), 118 cm-1 for the X complex, also in Cs symmetry (perpendicular alignment) and 116 cm-1 for the CO-O2 T complex in C2v symmetry. The corresponding CCSD(T)-F12 results using the aug-cc-pVXZ basis sets are nearly the same. Similar calculations were performed for the CO-O2 singlet complexes, which are shown to have much higher stabilization energies, the highest being 206 cm-1 for the X complex.
NASA Technical Reports Server (NTRS)
Almloef, Jan; Taylor, Peter R.
1989-01-01
A recently proposed scheme for using natural orbitals from atomic configuration interaction (CI) wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outmost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital (ANO) sets.
Fleig, Timo; Knecht, Stefan; Hättig, Christof
2007-06-28
We study the ground-state structures and singlet- and triplet-excited states of the nucleic acid bases by applying the coupled cluster model CC2 in combination with a resolution-of-the-identity approximation for electron interaction integrals. Both basis set effects and the influence of dynamic electron correlation on the molecular structures are elucidated; the latter by comparing CC2 with Hartree-Fock and Møller-Plesset perturbation theory to second order. Furthermore, we investigate basis set and electron correlation effects on the vertical excitation energies and compare our highest-level results with experiment and other theoretical approaches. It is shown that small basis sets are insufficient for obtaining accurate results for excited states of these molecules and that the CC2 approach to dynamic electron correlation is a reliable and efficient tool for electronic structure calculations on medium-sized molecules.
Polyatomic molecular Dirac-Hartree-Fock calculations with Gaussian basis sets
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Faegri, Knut, Jr.; Taylor, Peter R.
1990-01-01
Numerical methods have been used successfully in atomic Dirac-Hartree-Fock (DHF) calculations for many years. Some DHF calculations using numerical methods have been done on diatomic molecules, but while these serve a useful purpose for calibration, the computational effort in extending this approach to polyatomic molecules is prohibitive. An alternative more in line with traditional quantum chemistry is to use an analytical basis set expansion of the wave function. This approach fell into disrepute in the early 1980's due to problems with variational collapse and intruder states, but has recently been put on firm theoretical foundations. In particular, the problems of variational collapse are well understood, and prescriptions for avoiding the most serious failures have been developed. Consequently, it is now possible to develop reliable molecular programs using basis set methods. This paper describes such a program and reports results of test calculations to demonstrate the convergence and stability of the method.
A numerical fragment basis approach to SCF calculations.
NASA Astrophysics Data System (ADS)
Hinde, Robert J.
1997-11-01
The counterpoise method is often used to correct for basis set superposition error in calculations of the electronic structure of bimolecular systems. One drawback of this approach is the need to specify a ``reference state'' for the system; for reactive systems, the choice of an unambiguous reference state may be difficult. An example is the reaction F^- + HCl arrow HF + Cl^-. Two obvious reference states for this reaction are F^- + HCl and HF + Cl^-; however, different counterpoise-corrected interaction energies are obtained using these two reference states. We outline a method for performing SCF calculations which employs numerical basis functions; this method attempts to eliminate basis set superposition errors in an a priori fashion. We test the proposed method on two one-dimensional, three-center systems and discuss the possibility of extending our approach to include electron correlation effects.
Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.
Varandas, A J C
2011-05-28
The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative stability to ΔE(ZPE) = (0.51 ± 0.08) kcal mol(-1). A scheme is also suggested to model the full-dimensional isomerization potential-energy surface using a quadratic expansion that is parametrically represented by a Fourier analysis in the torsion angle. The method illustrated at the raw and complete basis-set limit coupled-cluster levels can provide a valuable tool for a future analysis of the available (incomplete thus far) experimental rovibrational data. This journal is © the Owner Societies 2011
Time-dependent quantum chemistry of laser driven many-electron molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy
2014-12-28
A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied tomore » calculate the detailed, sub-cycle electronic dynamics of BeH{sub 2}, treated in a 3–21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10{sup 15} W/cm{sup 2}), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics.« less
Geometry-dependent distributed polarizability models for the water molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loboda, Oleksandr; Ingrosso, Francesca; Ruiz-López, Manuel F.
2016-01-21
Geometry-dependent distributed polarizability models have been constructed by fits to ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set for the water molecule in the field of a point charge. The investigated models include (i) charge-flow polarizabilities between chemically bonded atoms, (ii) isotropic or anisotropic dipolar polarizabilities on oxygen atom or on all atoms, and (iii) combinations of models (i) and (ii). For each model, the polarizability parameters have been optimized to reproduce the induction energy of a water molecule polarized by a point charge successivelymore » occupying a grid of points surrounding the molecule. The quality of the models is ascertained by examining their ability to reproduce these induction energies as well as the molecular dipolar and quadrupolar polarizabilities. The geometry dependence of the distributed polarizability models has been explored by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For each considered model, the distributed polarizability components have been fitted as a function of the geometry by a Taylor expansion in monomer coordinate displacements up to the sum of powers equal to 4.« less
Race, C P; Mason, D R; Sutton, A P
2009-03-18
Using time-dependent tight-binding simulations of radiation damage cascades in a model metal we directly investigate the nature of the excitations of a system of quantum mechanical electrons in response to the motion of a set of classical ions. We furthermore investigate the effect of these excitations on the attractive electronic forces between the ions. We find that the electronic excitations are well described by a Fermi-Dirac distribution at some elevated temperature, even in the absence of the direct electron-electron interactions that would be required in order to thermalize a non-equilibrium distribution. We explain this result in terms of the spectrum of characteristic frequencies of the ionic motion. Decomposing the electronic force into four well-defined components within the basis of instantaneous electronic eigenstates, we find that the effect of accumulated excitations in weakening the interionic bonds is mostly (95%) accounted for by a thermal model for the electronic excitations. This result justifies the use of the simplifying assumption of a thermalized electron system in simulations of radiation damage with an electronic temperature dependence and in the development of temperature-dependent classical potentials.
Gauge-origin dependence in electronic g-tensor calculations
NASA Astrophysics Data System (ADS)
Glasbrenner, Michael; Vogler, Sigurd; Ochsenfeld, Christian
2018-06-01
We present a benchmark study on the gauge-origin dependence of the electronic g-tensor using data from unrestricted density functional theory calculations with the spin-orbit mean field ansatz. Our data suggest in accordance with previous studies that g-tensor calculations employing a common gauge-origin are sufficiently accurate for small molecules; however, for extended molecules, the introduced errors can become relevant and significantly exceed the basis set error. Using calculations with the spin-orbit mean field ansatz and gauge-including atomic orbitals as a reference, we furthermore show that the accuracy and reliability of common gauge-origin approaches in larger molecules depends strongly on the locality of the spin density distribution. We propose a new pragmatic ansatz for choosing the gauge-origin which takes the spin density distribution into account and gives reasonably accurate values for molecules with a single localized spin center. For more general cases like molecules with several spatially distant spin centers, common gauge-origin approaches are shown to be insufficient for consistently achieving high accuracy. Therefore the computation of g-tensors using distributed gauge-origin methods like gauge-including atomic orbitals is considered as the ideal approach and is recommended for larger molecular systems.
A new time dependent density functional algorithm for large systems and plasmons in metal clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baseggio, Oscar; Fronzoni, Giovanna; Stener, Mauro, E-mail: stener@univ.trieste.it
2015-07-14
A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the space of the density fitting auxiliary basis set has been developed and implemented. The method extracts the spectrum from the imaginary part of the polarizability at any given photon energy, avoiding the bottleneck of Davidson diagonalization. The original idea which made the present scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear combination of constant matrices with photon energy dependent coefficients. The methodmore » has been applied to very different systems in nature and size (from H{sub 2} to [Au{sub 147}]{sup −}). In all cases, the maximum deviations found for the excitation energies with respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob plasmon scaling factor, and induced density analysis, which have been all implemented.« less
48 CFR 19.502-2 - Total small business set-asides.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-2 Total small business set... contracting officer does not proceed with the small business set-aside and purchases on an unrestricted basis...
48 CFR 19.502-2 - Total small business set-asides.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-2 Total small business set... contracting officer does not proceed with the small business set-aside and purchases on an unrestricted basis...
48 CFR 19.502-2 - Total small business set-asides.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-2 Total small business set... contracting officer does not proceed with the small business set-aside and purchases on an unrestricted basis...
NASA Astrophysics Data System (ADS)
Blank, L. Aaron; Sharma, Amit R.; Weeks, David E.
2018-03-01
The X
42 CFR 415.1 - Basis and scope.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROGRAM SERVICES FURNISHED BY PHYSICIANS IN PROVIDERS, SUPERVISING PHYSICIANS IN TEACHING SETTINGS, AND... beneficiaries in providers, physician services in teaching settings, and services of residents. ...
NASA Astrophysics Data System (ADS)
Guo, W. C.; Yang, J. D.; Chen, J. P.; Peng, Z. Y.; Zhang, Y.; Chen, C. C.
2016-11-01
Load rejection test is one of the essential tests that carried out before the hydroelectric generating set is put into operation formally. The test aims at inspecting the rationality of the design of the water diversion and power generation system of hydropower station, reliability of the equipment of generating set and the dynamic characteristics of hydroturbine governing system. Proceeding from different accident conditions of hydroelectric generating set, this paper presents the transient processes of load rejection corresponding to different accident conditions, and elaborates the characteristics of different types of load rejection. Then the numerical simulation method of different types of load rejection is established. An engineering project is calculated to verify the validity of the method. Finally, based on the numerical simulation results, the relationship among the different types of load rejection and their functions on the design of hydropower station and the operation of load rejection test are pointed out. The results indicate that: The load rejection caused by the accident within the hydroelectric generating set is realized by emergency distributing valve, and it is the basis of the optimization for the closing law of guide vane and the calculation of regulation and guarantee. The load rejection caused by the accident outside the hydroelectric generating set is realized by the governor. It is the most efficient measure to inspect the dynamic characteristics of hydro-turbine governing system, and its closure rate of guide vane set in the governor depends on the optimization result in the former type load rejection.
32 CFR 1642.3 - Basis for classification in Class 3-A.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Basis for classification in Class 3-A. 1642.3... CLASSIFICATION OF REGISTRANTS DEFERRED BECAUSE OF HARDSHIP TO DEPENDENTS § 1642.3 Basis for classification in... registrant for classification in Class 3-A, the board will first determine whether the registrant's wife...
Basis for paraxial surface-plasmon-polariton packets
NASA Astrophysics Data System (ADS)
Martinez-Herrero, Rosario; Manjavacas, Alejandro
2016-12-01
We present a theoretical framework for the study of surface-plasmon polariton (SPP) packets propagating along a lossy metal-dielectric interface within the paraxial approximation. Using a rigorous formulation based on the plane-wave spectrum formalism, we introduce a set of modes that constitute a complete basis set for the solutions of Maxwell's equations for a metal-dielectric interface in the paraxial approximation. The use of this set of modes allows us to fully analyze the evolution of the transversal structure of SPP packets beyond the single plane-wave approximation. As a paradigmatic example, we analyze the case of a Gaussian SPP mode, for which, exploiting the analogy with paraxial optical beams, we introduce a set of parameters that characterize its propagation.
NASA Technical Reports Server (NTRS)
Huang, S.; Ingber, D. E.
2000-01-01
Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or clusters of genes with common activity profiles may overlook the most critical features of cellular information processing which normally determine how signal specificity is established and maintained in living cells. Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-05-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.
Multi-level basis selection of wavelet packet decomposition tree for heart sound classification.
Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Abdullah Ramaiah, Asri Ranga
2013-10-01
Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions
Mester, Dávid
2017-01-01
A reduced-cost density fitting (DF) linear-response second-order coupled-cluster (CC2) method has been developed for the evaluation of excitation energies. The method is based on the simultaneous truncation of the molecular orbital (MO) basis and the auxiliary basis set used for the DF approximation. For the reduction of the size of the MO basis, state-specific natural orbitals (NOs) are constructed for each excited state using the average of the second-order Møller–Plesset (MP2) and the corresponding configuration interaction singles with perturbative doubles [CIS(D)] density matrices. After removing the NOs of low occupation number, natural auxiliary functions (NAFs) are constructed [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], and the NAF basis is also truncated. Our results show that, for a triple-zeta basis set, about 60% of the virtual MOs can be dropped, while the size of the fitting basis can be reduced by a factor of five. This results in a dramatic reduction of the computational costs of the solution of the CC2 equations, which are in our approach about as expensive as the evaluation of the MP2 and CIS(D) density matrices. All in all, an average speedup of more than an order of magnitude can be achieved at the expense of a mean absolute error of 0.02 eV in the calculated excitation energies compared to the canonical CC2 results. Our benchmark calculations demonstrate that the new approach enables the efficient computation of CC2 excitation energies for excited states of all types of medium-sized molecules composed of up to 100 atoms with triple-zeta quality basis sets. PMID:28527453
Cohen-Mansfield, Jiska; Libin, Alexander; Lipson, Steven
2003-06-01
Decisions concerning end-of-life care depend on information contained in advance directives that are documented in residents' charts in the nursing home. The availability of that information depends on the quality of the chart and on the location of the information in the chart. No research was found that compared directives by the manner in which they are collected and summarized in the chart. The goal of the proposed study was to clarify how advance directives are summarized in the patient's record and to clarify how physicians perceive the same advance directives and formal orders. The study involved 122 elderly persons who reside in one large (587 beds) nursing home. The authors collected data regarding the advance directives from three sources-Minimum Data Set (MDS), the front cover of the resident's chart, and from inside the chart. The rates of documented advance directives found in this study are higher than those reported in the literature. Agreement rates between sources varied as a function of which sources were compared, as well as on the basis of which directive was examined. More specifically, the authors found higher rates of agreement between the information inside the chart and on the cover of the chart than between the MDS and the other two sources. The reasons for discrepancies may lie in the different functions and procedures pertaining to these source documents.
Whiting, Mark
2013-03-01
Parenting a child with complex needs or disabilities is a challenging proposition. This study, which drew upon of the experiences of the parents of 34 children (in 33 families), set out to explore the themes of impact, need for help and support and meaning/sense-making as they were related by parents. Data were collected using semi-structured interviews, and an emerging theoretical framework was validated through the use of a series of mind-maps(®) which were presented to individual parents as the basis for a second round (verificational) interview. Parents were nominated into the study by health care professions who were asked to identify the subject children to one of three separate sub-groups: children with a disability; children with a life-limiting/life-threatening illness or children with a technology dependence. Comparisons were made between the three study sub-groups in order to identify areas of consistency and of inconsistency. A fourth study theme - 'battleground' emerged from entirely within the data set. Sense-making occupied a central position within the overall theoretical framework for the study and parental perception of 'battleground' presented as significant element of parental sense-making, particularly in the context of their relationships with professional staff. © The Author(s) 2012.
NASA Astrophysics Data System (ADS)
Baranowska, Angelika; Rizzo, Antonio; Coriani, Sonia
2006-07-01
A computational analysis of the effects (intensity-dependent change in the refractive index and the optical Faraday effect, OFE) induced in an achiral fluid by circularly polarized, linearly polarized or unpolarized light is presented. The connection between the molecular parameters appearing in the expression of the observable, as derived by Woźniak in the 1990s, and the appropriate linear and cubic frequency dependent response functions is made for the general case of both chiral and non-chiral fluid. The parameters which are non-vanishing in the case of achiral systems are then computed employing a coupled cluster singles and doubles wave function model and a wide choice of correlation consistent basis sets, for a set of reference systems, including a rare gas (neon), a non-dipolar (N2) and a dipolar (CO) molecule. Contributions due to magnetic and quadrupolar interactions between the fields and the gases are neglected, since they are in principle of much less importance than the purely electric dipolar interactions. Nevertheless a rough estimate of their size is given. The aim of the study is to assess the detectability of OFE. To this end, the ab initio results are compared with those obtained in this work for the closely related optical Kerr effect (OKE) and with those yielded by the classical Faraday effect.
An unbiased Hessian representation for Monte Carlo PDFs.
Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Latorre, José Ignacio; Rojo, Juan
We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (MC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the MC-H PDF set.
NASA Astrophysics Data System (ADS)
Kaneko, Masashi; Yasuhara, Hiroki; Miyashita, Sunao; Nakashima, Satoru
2017-11-01
The present study applies all-electron relativistic DFT calculation with Douglas-Kroll-Hess (DKH) Hamiltonian to each ten sets of Ru and Os compounds. We perform the benchmark investigation of three density functionals (BP86, B3LYP and B2PLYP) using segmented all-electron relativistically contracted (SARC) basis set with the experimental Mössbauer isomer shifts for 99Ru and 189Os nuclides. Geometry optimizations at BP86 theory of level locate the structure in a local minimum. We calculate the contact density to the wavefunction obtained by a single point calculation. All functionals show the good linear correlation with experimental isomer shifts for both 99Ru and 189Os. Especially, B3LYP functional gives a stronger correlation compared to BP86 and B2PLYP functionals. The comparison of contact density between SARC and well-tempered basis set (WTBS) indicated that the numerical convergence of contact density cannot be obtained, but the reproducibility is less sensitive to the choice of basis set. We also estimate the values of Δ R/ R, which is an important nuclear constant, for 99Ru and 189Os nuclides by using the benchmark results. The sign of the calculated Δ R/ R values is consistent with the predicted data for 99Ru and 189Os. We obtain computationally the Δ R/ R values of 99Ru and 189Os (36.2 keV) as 2.35×10-4 and -0.20×10-4, respectively, at B3LYP level for SARC basis set.
NASA Astrophysics Data System (ADS)
Sargent, Andrew Landman
Approximate molecular orbital and ab initio quantum chemical techniques are used to investigate the electronic structure, bonding and reactivity of several transition metal inorganic and organometallic complexes. Modest-sized basis sets are developed for the second-row transition metal atoms and are designed for use in geometry optimizations of inorganic and organometallic complexes incorporating these atoms. The basis sets produce optimized equilibrium geometries which are slightly better than those produced with standard 3-21G basis sets, and which are significantly better than those produced with effective core potential basis sets. Linear semibridging carbonyl ligands in heterobimetallic complexes which contain a coordinatively unsaturated late transition metal center are found to accept electron density from, rather than donate electron density to, these centers. Only when the secondary metal center is a coordinatively unsaturated early transition metal center does the semibridging ligand donate electron density to this center. Large holes in the d shell around the metal center are more prominent and prevalent in early than in late transition metal centers, and the importance of filling in these holes outweighs the importance of mitigating the charge imbalance due to the dative metal-metal interaction. Semibridging thiocarbonyl ligands are more effective donors of electron density than the carbonyl ligands since the occupied donor orbitals of pi symmetry are higher in energy. The stereoselectivity of H_2 addition to d^8 square-planar transition metal complexes is controlled by the interactions between the ligands in the plane of addition and the concentrations of electronic charge around the metal center as the complex evolves from a four-coordinate to a six-coordinate species. Electron -withdrawing ligands help stabilize the five-coordinate species while strong electron donor ligands contribute only to the destabilizing repulsive interactions. The relative thermodynamic stabilities of the final complexes can be predicted based on the relative orientations of the strongest sigma-donor ligands.
Vastine, Benjamin Alan; Webster, Charles Edwin; Hall, Michael B
2007-11-01
The reaction mechanism for the cycle beginning with the reductive elimination (RE) of methane from κ(3)-TpPt(IV)(CH3)2H (1) (Tp = hydridotris(pyrazolyl)borate) and subsequent oxidative addition (OA) of benzene to form finally κ(3)-TpPt(IV)(Ph)2H (19) was investigated by density functional theory (DFT). Two mechanistic steps are of particular interest, namely the barrier to C-H coupling (barrier 1 - Ba1) and the barrier to methane release (barrier 2 - Ba2). For 31 density functionals, the calculated values for Ba1 and Ba2 were benchmarked against the experimentally reported values of 26 (Ba1) and 35 (Ba2) kcal·mol(-1), respectively. Specifically, the values for Ba1 and Ba2, calculated at the B3LYP/double-ζ plus polarization level of theory, are 24.6 and 34.3 kcal·mol(-1), respectively. Overall, the best performing functional was BPW91 where the mae associated with the calculated values of the two barriers is 0.68 kcal·mol(-1). The calculated B3LYP values of Ba1 ranged between 20 and 26 kcal·mol(-1) for 12 effective core potential basis sets for platinum and 29 all-electron basis sets for the first row elements. Polarization functions for the first row elements were important for accurate values, but the addition of diffuse functions to non-hydrogen (+) and hydrogen atoms (++) had little effect on the calculated values. Basis set saturation was achieved with APNO basis sets utilized for first-row atoms. Bader's "Atoms in Molecules" was used to analyze the electron density of several complexes, and the electron density at the Pt-Nax bond critical point (trans to the active site for C-H coupling) varied over a wider range than any of the other Pt-N bonds.
Correlation consistent basis sets for lanthanides: The atoms La–Lu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Qing; Peterson, Kirk A., E-mail: kipeters@wsu.edu
Using the 3rd-order Douglas-Kroll-Hess (DKH3) Hamiltonian, all-electron correlation consistent basis sets of double-, triple-, and quadruple-zeta quality have been developed for the lanthanide elements La through Lu. Basis sets designed for the recovery of valence correlation (defined here as 4f5s5p5d6s), cc-pVnZ-DK3, and outer-core correlation (valence + 4s4p4d), cc-pwCVnZ-DK3, are reported (n = D, T, and Q). Systematic convergence of both Hartree-Fock and correlation energies towards their respective complete basis set (CBS) limits are observed. Benchmark calculations of the first three ionization potentials (IPs) of La through Lu are reported at the DKH3 coupled cluster singles and doubles with perturbative triples,more » CCSD(T), level of theory, including effects of correlation down through the 4s electrons. Spin-orbit coupling is treated at the 2-component HF level. After extrapolation to the CBS limit, the average errors with respect to experiment were just 0.52, 1.14, and 4.24 kcal/mol for the 1st, 2nd, and 3rd IPs, respectively, compared to the average experimental uncertainties of 0.03, 1.78, and 2.65 kcal/mol, respectively. The new basis sets are also used in CCSD(T) benchmark calculations of the equilibrium geometries, atomization energies, and heats of formation for Gd{sub 2}, GdF, and GdF{sub 3}. Except for the equilibrium geometry and harmonic frequency of GdF, which are accurately known from experiment, all other calculated quantities represent significant improvements compared to the existing experimental quantities. With estimated uncertainties of about ±3 kcal/mol, the 0 K atomization energies (298 K heats of formation) are calculated to be (all in kcal/mol): 33.2 (160.1) for Gd{sub 2}, 151.7 (−36.6) for GdF, and 447.1 (−295.2) for GdF{sub 3}.« less
Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S
2014-06-10
We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good agreement with experiments. Spectroscopic features are computed using a unified velocity/flux autocorrelation function and include vibrational fundamentals and combination bands. These agree well with experiments and other theories.
NASA Astrophysics Data System (ADS)
Abeln, Brant Anthony
The study of metastable electronic resonances, anion or neutral states of finite lifetime, in molecules is an important area of research where currently no theoretical technique is generally applicable. The role of theory is to calculate both the position and width, which is proportional to the inverse of the lifetime, of these resonances and how they vary with respect to nuclear geometry in order to generate potential energy surfaces. These surfaces are the basis of time-dependent models of the molecular dynamics where the system moves towards vibrational excitation or fragmentation. Three fundamental electronic processes that can be modeled this way are dissociative electronic attachment, vibrational excitation through electronic impact and autoionization. Currently, experimental investigation into these processes is being preformed on polyatomic molecules while theoreticians continue their fifty-year-old search for robust methods to calculate them. The separable insertion method, investigated in this thesis, seeks to tackle the problem of calculating metastable resonances by using existing quantum chemistry tools along with a grid-based method employing exterior complex scaling (ECS). Modern quantum chemistry methods are extremely efficient at calculating ground and (bound) excited electronic states of atoms and molecules by utilizing Gaussian basis functions. These functions provide both a numerically fast and analytic solution to the necessary two-electron, six-dimensional integrals required in structure calculations. However, these computer programs, based on analytic Gaussian basis sets, cannot construct solutions that are not square-integrable, such as resonance wavefunctions. ECS, on the other hand, can formally calculate resonance solutions by rotating the asymptotic electronic coordinates into the complex plane. The complex Siegert energies for resonances, Eres = ER - iGamma/2 where ER is the real-valued position of the resonance and Gamma is the width of the resonance, can be found directly as an isolated pole in the complex energy plane. Unlike the straight complex scaling, ECS on the electronic coordinates overcomes the non-analytic behavior of the nuclear attraction potential, as a function of complex [special characters omitted] where the sum is over each nucleus in a molecular system. Discouragingly, the Gaussian basis functions, which are computationally well-suited for bound electronic structure, fail at forming an effective basis set for ECS due to the derivative discontinuity generated by the complex coordinate rotation and the piecewise defined contour. This thesis seeks to explore methods for implementing ECS indirectly without losing the numerical simplicity and power of Gaussian basis sets. The separable insertion method takes advantage of existing software by constructing a N2-term separable potential of the target system using Gaussian functions to be inserted into a finite-element discrete variable representation (FE-DVR) grid that implements ECS. This work reports an exhaustive investigation into this approach for calculating resonances. This thesis shows that this technique is successful at describing an anion shape resonance of a closed-shell atom or molecule in the static-exchange approximation. This method is applied to the 2P Be-, 2pig N2- and 2pi u CO2- shape resonances to calculate their complex Seigert energies. Additionally, many details on the exact construction of the separable potential and of the expansion basis are explored. The future work considers methods for faster convergence of the resonance energy, moving beyond the static-exchange approximation and applying this technique to polyatomic systems of interest.
Gravel Transport Measured With Bedload Traps in Mountain Streams: Field Data Sets to be Published
NASA Astrophysics Data System (ADS)
Bunte, K.; Swingle, K. W.; Abt, S. R.; Ettema, R.; Cenderelli, D. A.
2017-12-01
Direct, accurate measurements of coarse bedload transport exist for only a few streams worldwide, because the task is laborious and requires a suitable device. However, sets of accurate field data would be useful for reference with unsampled sites and as a basis for model developments. The authors have carefully measured gravel transport and are compiling their data sets for publication. To ensure accurate measurements of gravel bedload in wadeable flow, the designed instrument consisted of an unflared aluminum frame (0.3 x 0.2 m) large enough for entry of cobbles. The attached 1 m or longer net with a 4 mm mesh held large bedload volumes. The frame was strapped onto a ground plate anchored onto the channel bed. This setup avoided involuntary sampler particle pick-up and enabled long sampling times, integrating over fluctuating transport. Beveled plates and frames facilitated easy particle entry. Accelerating flow over smooth plates compensated for deceleration within the net. Spacing multiple frames by 1 m enabled sampling much of the stream width. Long deployment, and storage of sampled bedload away from the frame's entrance, were attributes of traps rather than samplers; hence the name "bedload traps". The authors measured gravel transport with 4-6 bedload traps per cross-section at 10 mountain streams in CO, WY, and OR, accumulating 14 data sets (>1,350 samples). In 10 data sets, measurements covered much of the snowmelt high-flow season yielding 50-200 samples. Measurement time was typically 1 hour but ranged from 3 minutes to 3 hours, depending on transport intensity. Measuring back-to-back provided 6 to 10 samples over a 6 to 10-hour field day. Bedload transport was also measured with a 3-inch Helley-Smith sampler. The data set provides fractional (0.5 phi) transport rates in terms of particle mass and number for each bedload trap in the cross-section, the largest particle size, as well as total cross-sectional gravel transport rates. Ancillary field data include stage, discharge, long-term flow records if available, surface and subsurface sediment sizes, as well as longitudinal and cross-sectional site surveys. Besides transport relations, incipient motion conditions, hysteresis, and lateral variation, the data provide a reliable modeling basis to test insights and hypotheses regarding bedload transport.
Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A
2009-04-14
In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H2O)n, n = 2-8, 20), H3O(+)(H2O)n, n = 1-6, and OH(-)(H2O)n, n = 1-6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolated to the complete basis set limit of the second-order Møller-Plesset perturbation theory with the effects of higher order correlation estimated at the coupled-cluster theory with single, double, and perturbative triple excitations in the aug-cc-pVDZ basis set. We rank the accuracy of the functionals on the basis of the mean unsigned error (MUE) between calculated benchmark and density functional theory energies. The corresponding MUE (kcal/mol) for each functional is listed in parentheses. We find that M06-L (0.73) and M06 (0.84) give the most accurate binding energies using very extended basis sets such as aug-cc-pV5Z. For more affordable basis sets, the best methods for predicting the binding energies of water clusters are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), and M06/aug-cc-PVTZ (1.33). M06-L/aug-cc-pVTZ also gives more accurate energies for the neutralization reactions (1.38), whereas B3LYP/6-311++G(2d,2p) gives more accurate energies for the ion hydration reactions (1.69).
Reinforcement Learning with Orthonormal Basis Adaptation Based on Activity-Oriented Index Allocation
NASA Astrophysics Data System (ADS)
Satoh, Hideki
An orthonormal basis adaptation method for function approximation was developed and applied to reinforcement learning with multi-dimensional continuous state space. First, a basis used for linear function approximation of a control function is set to an orthonormal basis. Next, basis elements with small activities are replaced with other candidate elements as learning progresses. As this replacement is repeated, the number of basis elements with large activities increases. Example chaos control problems for multiple logistic maps were solved, demonstrating that the method for adapting an orthonormal basis can modify a basis while holding the orthonormality in accordance with changes in the environment to improve the performance of reinforcement learning and to eliminate the adverse effects of redundant noisy states.
New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion.
Pogosyan, George S; Wolf, Kurt Bernardo; Yakhno, Alexander
2017-10-01
The differential equation proposed by Frits Zernike to obtain a basis of polynomial orthogonal solutions on the unit disk to classify wavefront aberrations in circular pupils is shown to have a set of new orthonormal solution bases involving Legendre and Gegenbauer polynomials in nonorthogonal coordinates, close to Cartesian ones. We find the overlaps between the original Zernike basis and a representative of the new set, which turn out to be Clebsch-Gordan coefficients.
The Heats of Formation of GaCl3 and its Fragments
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)
1998-01-01
The heats of formation of GaC13 and its fragments are computed. The geometries and frequencies are obtained at the B3LYP level. The CCSD(T) approach is used to solve the correlation problem. The effect of Ga 3d correlation is studied, and found to affect the bond energies by up to 1 kcal/mol. Both basis set extrapolation and bond functions are considered as ways to approach the basis set limit. Spin-orbit and scalar relativistic effects are also considered.
Fourier spatial frequency analysis for image classification: training the training set
NASA Astrophysics Data System (ADS)
Johnson, Timothy H.; Lhamo, Yigah; Shi, Lingyan; Alfano, Robert R.; Russell, Stewart
2016-04-01
The Directional Fourier Spatial Frequencies (DFSF) of a 2D image can identify similarity in spatial patterns within groups of related images. A Support Vector Machine (SVM) can then be used to classify images if the inter-image variance of the FSF in the training set is bounded. However, if variation in FSF increases with training set size, accuracy may decrease as the size of the training set increases. This calls for a method to identify a set of training images from among the originals that can form a vector basis for the entire class. Applying the Cauchy product method we extract the DFSF spectrum from radiographs of osteoporotic bone, and use it as a matched filter set to eliminate noise and image specific frequencies, and demonstrate that selection of a subset of superclassifiers from within a set of training images improves SVM accuracy. Central to this challenge is that the size of the search space can become computationally prohibitive for all but the smallest training sets. We are investigating methods to reduce the search space to identify an optimal subset of basis training images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reuter, Matthew G., E-mail: mgreuter@u.northwestern.edu; Harrison, Robert J.
2014-05-07
The thesis of Brandbyge's comment [J. Chem. Phys. 140, 177103 (2014)] is that our operator decoupling condition is immaterial to transport theories, and it appeals to discussions of nonorthogonal basis sets in transport calculations in its arguments. We maintain that the operator condition is to be preferred over the usual matrix conditions and subsequently detail problems in the existing approaches. From this operator perspective, we conclude that nonorthogonal projectors cannot be used and that the projectors must be selected to satisfy the operator decoupling condition. Because these conclusions pertain to operators, the choice of basis set is not germane.
NASA Astrophysics Data System (ADS)
Langhoff, P. W.; Winstead, C. L.
Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.
Parameter and Structure Inference for Nonlinear Dynamical Systems
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark
2006-01-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.
Thermo-solutal growth of an anisotropic dendrite with six-fold symmetry
NASA Astrophysics Data System (ADS)
Alexandrov, D. V.; Galenko, P. K.
2018-03-01
A stable growth of dendritic crystal with the six-fold crystalline anisotropy is analyzed in a binary nonisothermal mixture. A selection criterion representing a relationship between the dendrite tip velocity and its tip diameter is derived on the basis of morphological stability analysis and solvability theory. A complete set of nonlinear equations, consisting of the selection criterion and undercooling balance condition, which determines implicit dependencies of the dendrite tip velocity and tip diameter as functions of the total undercooling, is formulated. Exact analytical solutions of these nonlinear equations are found in a parametric form. Asymptotic solutions describing the crystal growth at small Péclet numbers are determined. Theoretical predictions are compared with experimental data obtained for ice dendrites growing in binary water-ethylenglycol solutions as well as in pure water.
An ABC estimate of pedigree error rate: application in dog, sheep and cattle breeds.
Leroy, G; Danchin-Burge, C; Palhiere, I; Baumung, R; Fritz, S; Mériaux, J C; Gautier, M
2012-06-01
On the basis of correlations between pairwise individual genealogical kinship coefficients and allele sharing distances computed from genotyping data, we propose an approximate Bayesian computation (ABC) approach to assess pedigree file reliability through gene-dropping simulations. We explore the features of the method using simulated data sets and show precision increases with the number of markers. An application is further made with five dog breeds, four sheep breeds and one cattle breed raised in France and displaying various characteristics and population sizes, using microsatellite or SNP markers. Depending on the breeds, pedigree error estimations range between 1% and 9% in dog breeds, 1% and 10% in sheep breeds and 4% in cattle breeds. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.
The optimal design of UAV wing structure
NASA Astrophysics Data System (ADS)
Długosz, Adam; Klimek, Wiktor
2018-01-01
The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.
Fuzzy logic and causal reasoning with an 'n' of 1 for diagnosis and treatment of the stroke patient.
Helgason, Cathy M; Jobe, Thomas H
2004-03-01
The current scientific model for clinical decision-making is founded on binary or Aristotelian logic, classical set theory and probability-based statistics. Evidence-based medicine has been established as the basis for clinical recommendations. There is a problem with this scientific model when the physician must diagnose and treat the individual patient. The problem is a paradox, which is that the scientific model of evidence-based medicine is based upon a hypothesis aimed at the group and therefore, any conclusions cannot be extrapolated but to a degree to the individual patient. This extrapolation is dependent upon the expertise of the physician. A fuzzy logic multivalued-based scientific model allows this expertise to be numerically represented and solves the clinical paradox of evidence-based medicine.
NASA Astrophysics Data System (ADS)
Sprung, Detlev; van Eijk, Alexander M. J.; Sucher, Erik; Eisele, Christian; Seiffer, Dirk; Stein, Karin
2016-10-01
The experiment FESTER (First European South African Transmission ExpeRiment) took place in 2015 to investigate the atmospheric influence on electro-optical systems performance across False Bay / South Africa on a long term basis. Several permanent stations for monitoring electro-optical propagation and atmospheric parameters were set up around the Bay. Additional intensive observation periods (IOPs) allowed for boat runs to assess the inhomogeneous atmospheric propagation conditions over water. In this paper we focus on the distribution of optical turbulence over the Bay. The different impact of water masses originating from the Indian Ocean and the Benguela current on the development of optical turbulence is discussed. The seasonal behavior of optical turbulence is presented and its effect on electro-optical system performance examined.
Conformational analysis of cellobiose by electronic structure theories.
French, Alfred D; Johnson, Glenn P; Cramer, Christopher J; Csonka, Gábor I
2012-03-01
Adiabatic Φ/ψ maps for cellobiose were prepared with B3LYP density functional theory. A mixed basis set was used for minimization, followed with 6-31+G(d) single-point calculations, with and without SMD continuum solvation. Different arrangements of the exocyclic groups (38 starting geometries) were considered for each Φ/ψ point. The vacuum calculations agreed with earlier computational and experimental results on the preferred gas phase conformation (anti-Φ(H), syn-ψ(H)), and the results from the solvated calculations were consistent with the (syn Φ(H)/ψ(H) conformations from condensed phases (crystals or solutions). Results from related studies were compared, and there is substantial dependence on the solvation model as well as arrangements of exocyclic groups. New stabilizing interactions were revealed by Atoms-In-Molecules theory. Published by Elsevier Ltd.
Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism.
Spanu, Pietro D; Abbott, James C; Amselem, Joelle; Burgis, Timothy A; Soanes, Darren M; Stüber, Kurt; Ver Loren van Themaat, Emiel; Brown, James K M; Butcher, Sarah A; Gurr, Sarah J; Lebrun, Marc-Henri; Ridout, Christopher J; Schulze-Lefert, Paul; Talbot, Nicholas J; Ahmadinejad, Nahal; Ametz, Christian; Barton, Geraint R; Benjdia, Mariam; Bidzinski, Przemyslaw; Bindschedler, Laurence V; Both, Maike; Brewer, Marin T; Cadle-Davidson, Lance; Cadle-Davidson, Molly M; Collemare, Jerome; Cramer, Rainer; Frenkel, Omer; Godfrey, Dale; Harriman, James; Hoede, Claire; King, Brian C; Klages, Sven; Kleemann, Jochen; Knoll, Daniela; Koti, Prasanna S; Kreplak, Jonathan; López-Ruiz, Francisco J; Lu, Xunli; Maekawa, Takaki; Mahanil, Siraprapa; Micali, Cristina; Milgroom, Michael G; Montana, Giovanni; Noir, Sandra; O'Connell, Richard J; Oberhaensli, Simone; Parlange, Francis; Pedersen, Carsten; Quesneville, Hadi; Reinhardt, Richard; Rott, Matthias; Sacristán, Soledad; Schmidt, Sarah M; Schön, Moritz; Skamnioti, Pari; Sommer, Hans; Stephens, Amber; Takahara, Hiroyuki; Thordal-Christensen, Hans; Vigouroux, Marielle; Wessling, Ralf; Wicker, Thomas; Panstruga, Ralph
2010-12-10
Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.
A multi-standard approach for GIAO (13)C NMR calculations.
Sarotti, Ariel M; Pellegrinet, Silvina C
2009-10-02
The influence of the reference standard employed in the calculation of (13)C NMR chemical shifts was investigated over a large variety of known organic compounds, using different quantum chemistry methods and basis sets. After detailed analysis of the collected data, we found that methanol and benzene are excellent reference standards for computing NMR shifts of sp(3)- and sp-sp(2)-hybridized carbon atoms, respectively. This multi-standard approach (MSTD) performs better than TMS in terms of accuracy and precision and also displays much lower dependence on the level of theory employed. The use of mPW1PW91/6-31G(d)//mPW1PW91/6-31G(d) level is recommended for accurate (13)C NMR chemical shift prediction at low computational cost.
An ab initio study on MgX 3- and CaX 3- superhalogen anions (X=F, Cl, Br)
NASA Astrophysics Data System (ADS)
Anusiewicz, Iwona; Sobczyk, Monika; Dąbkowska, Iwona; Skurski, Piotr
2003-06-01
The vertical electron detachment energies (VDEs) of twenty MX 3- (M=Mg, Ca; X=F, Cl, Br) anions were calculated at the OVGF level with the 6-311++G(3df) basis sets. The largest vertical electron binding energy was found for MgF 3- system (8.793 eV). All negatively charged species possess the VDEs that are larger than 5.9 eV and thus may be termed superhalogen anions. The strong dependence of the VDE of the MX 3- species on the ligand-central atom (M-X) distance and on the partial atomic charge localized on Mg or Ca was observed and discussed, as well as the other factors that may influence the electronic stability of such anions.
NASA Astrophysics Data System (ADS)
Sharonov, M. A.; Sharonova, O. V.; Sharonova, V. P.
2018-03-01
The article is an attempt to create a model built using Eulerian circles (Venn diagrams) to illustrate the methodological impact of recent Federal Law 283-FZ “On the independent evaluation of qualifications” and new Federal State Educational Standards of higher education of generation 3++ on educational process in Russia. In modern economic conditions, the ability to correctly assess the role of professional standards, as a matter of fact, some set, the degree of intersection with the approximate basic educational program and the Federal State Educational Standards becomes an important factor on which in the future will depend not only the demand of graduates in the labor market, but also the possibility of passing the professional and public accreditation of the proposed program.
Order-disorder phase transition in the peroxidovanadium complex NH4[VO(O2)2(NH3)].
Schwendt, Peter; Gyepes, Róbert; Chrappová, Jana; Němec, Ivan; Vaněk, Přemysl
2018-07-05
Complex NH 4 [VO(O 2 ) 2 (NH 3 )] (1) undergoes an order-disorder phase transition at T c ~258K. This transition is accompanied by change in the space group of the orthorhombic lattice and also by significant structural rearrangements of the constituent molecules, which are pertinent mostly to their NH 4 + ions and their ammonia ligands. The low-temperature solid state IR and Raman spectra of 1 were corroborated by solid-state computations that employed Gaussian functions as the basis set. Results of these computations yielded excellent agreement with experimental data. On the curves of temperature dependence of vibrational modes, the phase transition is expressed by an abrupt change of the slope above T c . Copyright © 2018 Elsevier B.V. All rights reserved.
Hydrogen peroxide clusters: the role of open book motif in cage and helical structures.
Elango, M; Parthasarathi, R; Subramanian, V; Ramachandran, C N; Sathyamurthy, N
2006-05-18
Hartree-Fock (HF) calculations using 6-31G*, 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets show that hydrogen peroxide molecular clusters tend to form hydrogen-bonded cyclic and cage structures along the lines expected of a molecule which can act as a proton donor as well as an acceptor. These results are reiterated by density functional theoretic (DFT) calculations with B3LYP parametrization and also by second-order Møller-Plesset perturbation (MP2) theory using 6-31G* and 6-311++G(d,p) basis sets. Trends in stabilization energies and geometrical parameters obtained at the HF level using 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are similar to those obtained from HF/6-31G* calculation. In addition, the HF calculations suggest the formation of stable helical structures for larger clusters, provided the neighbors form an open book structure.