Sample records for basis set implementation

  1. Communication: A novel implementation to compute MP2 correlation energies without basis set superposition errors and complete basis set extrapolation.

    PubMed

    Dixit, Anant; Claudot, Julien; Lebègue, Sébastien; Rocca, Dario

    2017-06-07

    By using a formulation based on the dynamical polarizability, we propose a novel implementation of second-order Møller-Plesset perturbation (MP2) theory within a plane wave (PW) basis set. Because of the intrinsic properties of PWs, this method is not affected by basis set superposition errors. Additionally, results are converged without relying on complete basis set extrapolation techniques; this is achieved by using the eigenvectors of the static polarizability as an auxiliary basis set to compactly and accurately represent the response functions involved in the MP2 equations. Summations over the large number of virtual states are avoided by using a formalism inspired by density functional perturbation theory, and the Lanczos algorithm is used to include dynamical effects. To demonstrate this method, applications to three weakly interacting dimers are presented.

  2. Benchmark of Ab Initio Bethe-Salpeter Equation Approach with Numeric Atom-Centered Orbitals

    NASA Astrophysics Data System (ADS)

    Liu, Chi; Kloppenburg, Jan; Kanai, Yosuke; Blum, Volker

    The Bethe-Salpeter equation (BSE) approach based on the GW approximation has been shown to be successful for optical spectra prediction of solids and recently also for small molecules. We here present an all-electron implementation of the BSE using numeric atom-centered orbital (NAO) basis sets. In this work, we present benchmark of BSE implemented in FHI-aims for low-lying excitation energies for a set of small organic molecules, the well-known Thiel's set. The difference between our implementation (using an analytic continuation of the GW self-energy on the real axis) and the results generated by a fully frequency dependent GW treatment on the real axis is on the order of 0.07 eV for the benchmark molecular set. We study the convergence behavior to the complete basis set limit for excitation spectra, using a group of valence correlation consistent NAO basis sets (NAO-VCC-nZ), as well as for standard NAO basis sets for ground state DFT with extended augmentation functions (NAO+aug). The BSE results and convergence behavior are compared to linear-response time-dependent DFT, where excellent numerical convergence is shown for NAO+aug basis sets.

  3. Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe

    2016-07-28

    Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set producesmore » <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.« less

  4. Detailed Wave Function Analysis for Multireference Methods: Implementation in the Molcas Program Package and Applications to Tetracene.

    PubMed

    Plasser, Felix; Mewes, Stefanie A; Dreuw, Andreas; González, Leticia

    2017-11-14

    High-level multireference computations on electronically excited and charged states of tetracene are performed, and the results are analyzed using an extensive wave function analysis toolbox that has been newly implemented in the Molcas program package. Aside from verifying the strong effect of dynamic correlation, this study reveals an unexpected critical influence of the atomic orbital basis set. It is shown that different polarized double-ζ basis sets produce significantly different results for energies, densities, and overall wave functions, with the best performance obtained for the atomic natural orbital (ANO) basis set by Pierloot et al. Strikingly, the ANO basis set not only reproduces the energies but also performs exceptionally well in terms of describing the diffuseness of the different states and of their attachment/detachment densities. This study, thus, not only underlines the fact that diffuse basis functions are needed for an accurate description of the electronic wave functions but also shows that, at least for the present example, it is enough to include them implicitly in the contraction scheme.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKemmish, Laura K., E-mail: laura.mckemmish@gmail.com; Research School of Chemistry, Australian National University, Canberra

    Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RAMPITUP. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or verymore » large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.« less

  6. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements.

    PubMed

    Höfener, Sebastian; Bischoff, Florian A; Glöss, Andreas; Klopper, Wim

    2008-06-21

    In the recent years, Slater-type geminals (STGs) have been used with great success to expand the first-order wave function in an explicitly-correlated perturbation theory. The present work reports on this theory's implementation in the framework of the Turbomole suite of programs. A formalism is presented for evaluating all of the necessary molecular two-electron integrals by means of the Obara-Saika recurrence relations, which can be applied when the STG is expressed as a linear combination of a small number (n) of Gaussians (STG-nG geminal basis). In the Turbomole implementation of the theory, density fitting is employed and a complementary auxiliary basis set (CABS) is used for the resolution-of-the-identity (RI) approximation of explicitly-correlated theory. By virtue of this RI approximation, the calculation of molecular three- and four-electron integrals is avoided. An approximation is invoked to avoid the two-electron integrals over the commutator between the operators of kinetic energy and the STG. This approximation consists of computing commutators between matrices in place of operators. Integrals over commutators between operators would have occurred if the theory had been formulated and implemented as proposed originally. The new implementation in Turbomole was tested by performing a series of calculations on rotational conformers of the alkanols n-propanol through n-pentanol. Basis-set requirements concerning the orbital basis, the auxiliary basis set for density fitting and the CABS were investigated. Furthermore, various (constrained) optimizations of the amplitudes of the explicitly-correlated double excitations were studied. These amplitudes can be optimized in orbital-variant and orbital-invariant manners, or they can be kept fixed at the values governed by the rational generator approach, that is, by the electron cusp conditions. Electron-correlation effects beyond the level of second-order perturbation theory were accounted for by conventional coupled-cluster calculations with single, double and perturbative triple excitations [CCSD(T)]. The explicitly-correlated perturbation theory results were combined with CCSD(T) results and compared with literature data obtained by basis-set extrapolation.

  7. Parallel Douglas-Kroll Energy and Gradients in NWChem. Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Jong, Wibe A.; Harrison, Robert J.; Dixon, David A.

    A parallel implementation of the spin-free one-electron Douglas-Kroll(-Hess) Hamiltonian (DKH) in NWChem is discussed. An efficient and accurate method to calculate DKH gradients is introduced. It is shown that the use of standard (non-relativistic) contracted basis set can produce erroneous results for elements beyond the first row elements. The generation of DKH contracted cc-pVXZ (X = D, T, Q, 5) basis sets for H, He, B - Ne, Al - Ar, and Ga - Br will be discussed.

  8. 42 CFR § 512.1 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ...) HEALTH CARE INFRASTRUCTURE AND MODEL PROGRAMS EPISODE PAYMENT MODEL General Provisions § 512.1 Basis and scope. (a) Basis. This part implements the test of episode payment models under section 1115A of the Act... sets forth the following: (1) The participants in each episode payment model. (2) The episodes being...

  9. DOE Waste Treatability Group Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less

  10. 42 CFR 493.1 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND CERTIFICATION LABORATORY REQUIREMENTS General Provisions § 493.1 Basis and scope. This part sets forth the conditions that all laboratories must meet to be certified to perform testing on human specimens under the Clinical Laboratory Improvement Amendments of 1988 (CLIA). It implements sections 1861...

  11. 42 CFR 493.1 - Basis and scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND CERTIFICATION LABORATORY REQUIREMENTS General Provisions § 493.1 Basis and scope. This part sets forth the conditions that all laboratories must meet to be certified to perform testing on human specimens under the Clinical Laboratory Improvement Amendments of 1988 (CLIA). It implements sections 1861...

  12. Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods.

    PubMed

    Andrade, Xavier; Aspuru-Guzik, Alán

    2013-10-08

    We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.

  13. An efficient implementation of semi-numerical computation of the Hartree-Fock exchange on the Intel Phi processor

    NASA Astrophysics Data System (ADS)

    Liu, Fenglai; Kong, Jing

    2018-07-01

    Unique technical challenges and their solutions for implementing semi-numerical Hartree-Fock exchange on the Phil Processor are discussed, especially concerning the single- instruction-multiple-data type of processing and small cache size. Benchmark calculations on a series of buckyball molecules with various Gaussian basis sets on a Phi processor and a six-core CPU show that the Phi processor provides as much as 12 times of speedup with large basis sets compared with the conventional four-center electron repulsion integration approach performed on the CPU. The accuracy of the semi-numerical scheme is also evaluated and found to be comparable to that of the resolution-of-identity approach.

  14. Open-ended recursive calculation of single residues of response functions for perturbation-dependent basis sets.

    PubMed

    Friese, Daniel H; Ringholm, Magnus; Gao, Bin; Ruud, Kenneth

    2015-10-13

    We present theory, implementation, and applications of a recursive scheme for the calculation of single residues of response functions that can treat perturbations that affect the basis set. This scheme enables the calculation of nonlinear light absorption properties to arbitrary order for other perturbations than an electric field. We apply this scheme for the first treatment of two-photon circular dichroism (TPCD) using London orbitals at the Hartree-Fock level of theory. In general, TPCD calculations suffer from the problem of origin dependence, which has so far been solved by using the velocity gauge for the electric dipole operator. This work now enables comparison of results from London orbital and velocity gauge based TPCD calculations. We find that the results from the two approaches both exhibit strong basis set dependence but that they are very similar with respect to their basis set convergence.

  15. Neural-like computing with populations of superparamagnetic basis functions.

    PubMed

    Mizrahi, Alice; Hirtzlin, Tifenn; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Grollier, Julie; Querlioz, Damien

    2018-04-18

    In neuroscience, population coding theory demonstrates that neural assemblies can achieve fault-tolerant information processing. Mapped to nanoelectronics, this strategy could allow for reliable computing with scaled-down, noisy, imperfect devices. Doing so requires that the population components form a set of basis functions in terms of their response functions to inputs, offering a physical substrate for computing. Such a population can be implemented with CMOS technology, but the corresponding circuits have high area or energy requirements. Here, we show that nanoscale magnetic tunnel junctions can instead be assembled to meet these requirements. We demonstrate experimentally that a population of nine junctions can implement a basis set of functions, providing the data to achieve, for example, the generation of cursive letters. We design hybrid magnetic-CMOS systems based on interlinked populations of junctions and show that they can learn to realize non-linear variability-resilient transformations with a low imprint area and low power.

  16. Basis set limit and systematic errors in local-orbital based all-electron DFT

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Behler, Jörg; Gehrke, Ralf; Reuter, Karsten; Scheffler, Matthias

    2006-03-01

    With the advent of efficient integration schemes,^1,2 numeric atom-centered orbitals (NAO's) are an attractive basis choice in practical density functional theory (DFT) calculations of nanostructured systems (surfaces, clusters, molecules). Though all-electron, the efficiency of practical implementations promises to be on par with the best plane-wave pseudopotential codes, while having a noticeably higher accuracy if required: Minimal-sized effective tight-binding like calculations and chemically accurate all-electron calculations are both possible within the same framework; non-periodic and periodic systems can be treated on equal footing; and the localized nature of the basis allows in principle for O(N)-like scaling. However, converging an observable with respect to the basis set is less straightforward than with competing systematic basis choices (e.g., plane waves). We here investigate the basis set limit of optimized NAO basis sets in all-electron calculations, using as examples small molecules and clusters (N2, Cu2, Cu4, Cu10). meV-level total energy convergence is possible using <=50 basis functions per atom in all cases. We also find a clear correlation between the errors which arise from underconverged basis sets, and the system geometry (interatomic distance). ^1 B. Delley, J. Chem. Phys. 92, 508 (1990), ^2 J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002).

  17. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.

    PubMed

    Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A

    2016-06-15

    We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G(**) basis set with up to 8100 basis functions show that PS-FLR-TDDFT CPU time scales as N(2.05) with the number of basis functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    NASA Astrophysics Data System (ADS)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, David

    2018-05-01

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.

  19. Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers

    NASA Astrophysics Data System (ADS)

    Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi

    2018-03-01

    Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, John; Jacobson, Noah Tobias; Baczewski, Andrew

    EMTpY is an implementation of effective mass theory in python. It is designed to simulate semiconductor qubits within a non-perturbative, multi-valley effective mass theory framework using robust Gaussian basis sets.

  1. Implementation on a nonlinear concrete cracking algorithm in NASTRAN

    NASA Technical Reports Server (NTRS)

    Herting, D. N.; Herendeen, D. L.; Hoesly, R. L.; Chang, H.

    1976-01-01

    A computer code for the analysis of reinforced concrete structures was developed using NASTRAN as a basis. Nonlinear iteration procedures were developed for obtaining solutions with a wide variety of loading sequences. A direct access file system was used to save results at each load step to restart within the solution module for further analysis. A multi-nested looping capability was implemented to control the iterations and change the loads. The basis for the analysis is a set of mutli-layer plate elements which allow local definition of materials and cracking properties.

  2. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    DOE PAGES

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; ...

    2018-02-07

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less

  3. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less

  4. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Derevianko, Andrei

    2008-09-01

    The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.

  5. Nutrition Tips Revisited: On a Daily Basis, Do We Implement What We Know?

    ERIC Educational Resources Information Center

    Rothlein, Liz

    1989-01-01

    Answers questions about nutrition. Presents guidelines for providing nutritious breakfasts, lunches, and snacks, and for encouraging good eating habits in young children in early childhood educational settings. (BB)

  6. Implementing an Integrated Commitment Management System at the Savannah River Site Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    1999-06-16

    Recently, the Savannah River Site Tank Farms have been transitioning from pre-1990 Authorization Basis requirements to new 5480.22/.23 requirements. Implementation of the new Authorization Basis has resulted in more detailed requirements, a completely new set of implementing procedures, and the expectation of even more disciplined operations. Key to the success of this implementation has been the development of an Integrated Commitment Management System (ICMS) by Westinghouse Safety Management Solutions. The ICMS has two elements: the Authorization Commitment Matrix (ACM), and a Procedure Consistency Review methodology. The Authorization Commitment Matrix is a linking database, which ties requirements and implementing documents together.more » The associated Procedure Consistency Review process ensures that the procedures to be credited in the ACM do in fact correctly and completely meet all intended commitments. This Integrated Commitment Management System helps Westinghouse Safety Management Solutions and the facility operations and engineering organizations take ownership in the implementation of the requirements that have been developed.« less

  7. Authorization basis requirements comparison report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantley, W.M.

    The TWRS Authorization Basis (AB) consists of a set of documents identified by TWRS management with the concurrence of DOE-RL. Upon implementation of the TWRS Basis for Interim Operation (BIO) and Technical Safety Requirements (TSRs), the AB list will be revised to include the BIO and TSRs. Some documents that currently form part of the AB will be removed from the list. This SD identifies each - requirement from those documents, and recommends a disposition for each to ensure that necessary requirements are retained when the AB is revised to incorporate the BIO and TSRs. This SD also identifies documentsmore » that will remain part of the AB after the BIO and TSRs are implemented. This document does not change the AB, but provides guidance for the preparation of change documentation.« less

  8. Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuev, Dmitry; Jagau, Thomas-C.; Krylov, Anna I.

    2014-07-14

    A production-level implementation of equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) for electron attachment and excitation energies augmented by a complex absorbing potential (CAP) is presented. The new method enables the treatment of metastable states within the EOM-CC formalism in a similar manner as bound states. The numeric performance of the method and the sensitivity of resonance positions and lifetimes to the CAP parameters and the choice of one-electron basis set are investigated. A protocol for studying molecular shape resonances based on the use of standard basis sets and a universal criterion for choosing the CAP parameters are presented. Our resultsmore » for a variety of π{sup *} shape resonances of small to medium-size molecules demonstrate that CAP-augmented EOM-CCSD is competitive relative to other theoretical approaches for the treatment of resonances and is often able to reproduce experimental results.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCEmore » allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.« less

  10. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.

    PubMed

    Ilias, Miroslav; Saue, Trond

    2007-02-14

    The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.

  11. Periodic boundary conditions for QM/MM calculations: Ewald summation for extended Gaussian basis sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Zachary C.; Richard, Ryan M.; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu

    2013-12-28

    An implementation of Ewald summation for use in mixed quantum mechanics/molecular mechanics (QM/MM) calculations is presented, which builds upon previous work by others that was limited to semi-empirical electronic structure for the QM region. Unlike previous work, our implementation describes the wave function's periodic images using “ChElPG” atomic charges, which are determined by fitting to the QM electrostatic potential evaluated on a real-space grid. This implementation is stable even for large Gaussian basis sets with diffuse exponents, and is thus appropriate when the QM region is described by a correlated wave function. Derivatives of the ChElPG charges with respect tomore » the QM density matrix are a potentially serious bottleneck in this approach, so we introduce a ChElPG algorithm based on atom-centered Lebedev grids. The ChElPG charges thus obtained exhibit good rotational invariance even for sparse grids, enabling significant cost savings. Detailed analysis of the optimal choice of user-selected Ewald parameters, as well as timing breakdowns, is presented.« less

  12. molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters

    DOE PAGES

    Bruneval, Fabien; Rangel, Tonatiuh; Hamed, Samia M.; ...

    2016-07-12

    Here, we summarize the MOLGW code that implements density-functional theory and many-body perturbation theory in a Gaussian basis set. The code is dedicated to the calculation of the many-body self-energy within the GW approximation and the solution of the Bethe–Salpeter equation. These two types of calculations allow the user to evaluate physical quantities that can be compared to spectroscopic experiments. Quasiparticle energies, obtained through the calculation of the GW self-energy, can be compared to photoemission or transport experiments, and neutral excitation energies and oscillator strengths, obtained via solution of the Bethe–Salpeter equation, are measurable by optical absorption. The implementation choicesmore » outlined here have aimed at the accuracy and robustness of calculated quantities with respect to measurements. Furthermore, the algorithms implemented in MOLGW allow users to consider molecules or clusters containing up to 100 atoms with rather accurate basis sets, and to choose whether or not to apply the resolution-of-the-identity approximation. Finally, we demonstrate the parallelization efficacy of the MOLGW code over several hundreds of processors.« less

  13. Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudin, Pablo, E-mail: baudin.pablo@gmail.com; qLEAP – Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C; Marín, José Sánchez

    2014-03-14

    A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well asmore » the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.« less

  14. Linear-scaling explicitly correlated treatment of solids: periodic local MP2-F12 method.

    PubMed

    Usvyat, Denis

    2013-11-21

    Theory and implementation of the periodic local MP2-F12 method in the 3*A fixed-amplitude ansatz is presented. The method is formulated in the direct space, employing local representation for the occupied, virtual, and auxiliary orbitals in the form of Wannier functions (WFs), projected atomic orbitals (PAOs), and atom-centered Gaussian-type orbitals, respectively. Local approximations are introduced, restricting the list of the explicitly correlated pairs, as well as occupied, virtual, and auxiliary spaces in the strong orthogonality projector to the pair-specific domains on the basis of spatial proximity of respective orbitals. The 4-index two-electron integrals appearing in the formalism are approximated via the direct-space density fitting technique. In this procedure, the fitting orbital spaces are also restricted to local fit-domains surrounding the fitted densities. The formulation of the method and its implementation exploits the translational symmetry and the site-group symmetries of the WFs. Test calculations are performed on LiH crystal. The results show that the periodic LMP2-F12 method substantially accelerates basis set convergence of the total correlation energy, and even more so the correlation energy differences. The resulting energies are quite insensitive to the resolution-of-the-identity domain sizes and the quality of the auxiliary basis sets. The convergence with the orbital domain size is somewhat slower, but still acceptable. Moreover, inclusion of slightly more diffuse functions, than those usually used in the periodic calculations, improves the convergence of the LMP2-F12 correlation energy with respect to both the size of the PAO-domains and the quality of the orbital basis set. At the same time, the essentially diffuse atomic orbitals from standard molecular basis sets, commonly utilized in molecular MP2-F12 calculations, but problematic in the periodic context, are not necessary for LMP2-F12 treatment of crystals.

  15. Prediction of gas chromatographic retention indices by the use of radial basis function neural networks.

    PubMed

    Yao, Xiaojun; Zhang, Xiaoyun; Zhang, Ruisheng; Liu, Mancang; Hu, Zhide; Fan, Botao

    2002-05-16

    A new method for the prediction of retention indices for a diverse set of compounds from their physicochemical parameters has been proposed. The two used input parameters for representing molecular properties are boiling point and molar volume. Models relating relationships between physicochemical parameters and retention indices of compounds are constructed by means of radial basis function neural networks. To get the best prediction results, some strategies are also employed to optimize the topology and learning parameters of the RBFNNs. For the test set, a predictive correlation coefficient R=0.9910 and root mean squared error of 14.1 are obtained. Results show that radial basis function networks can give satisfactory prediction ability and its optimization is less-time consuming and easy to implement.

  16. 7 CFR 625.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Health Forests Reserve Program (HFRP) is to assist landowners, on a voluntary basis, in restoring... regulations in this part set forth the policies, procedures, and requirements for the HFRP as administered by the Natural Resources Conservation Service (NRCS) for program implementation and processing...

  17. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Derevianko, Andrei

    2008-05-01

    The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.

  18. The complex-scaled multiconfigurational spin-tensor electron propagator method for low-lying shape resonances in Be-, Mg- and Ca-

    NASA Astrophysics Data System (ADS)

    Tsogbayar, Tsednee; Yeager, Danny L.

    2017-01-01

    We further apply the complex scaled multiconfigurational spin-tensor electron propagator method (CMCSTEP) for the theoretical determination of resonance parameters with electron-atom systems including open-shell and highly correlated (non-dynamical correlation) atoms and molecules. The multiconfigurational spin-tensor electron propagator method (MCSTEP) developed and implemented by Yeager and his coworkers for real space gives very accurate and reliable ionization potentials and electron affinities. CMCSTEP uses a complex scaled multiconfigurational self-consistent field (CMCSCF) state as an initial state along with a dilated Hamiltonian where all of the electronic coordinates are scaled by a complex factor. CMCSTEP is designed for determining resonances. We apply CMCSTEP to get the lowest 2P (Be-, Mg-) and 2D (Mg-, Ca-) shape resonances using several different basis sets each with several complete active spaces. Many of these basis sets we employ have been used by others with different methods. Hence, we can directly compare results with different methods but using the same basis sets.

  19. An unbiased Hessian representation for Monte Carlo PDFs.

    PubMed

    Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Latorre, José Ignacio; Rojo, Juan

    We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (MC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the MC-H PDF set.

  20. Accurate evaluation of exchange fields in finite element micromagnetic solvers

    NASA Astrophysics Data System (ADS)

    Chang, R.; Escobar, M. A.; Li, S.; Lubarda, M. V.; Lomakin, V.

    2012-04-01

    Quadratic basis functions (QBFs) are implemented for solving the Landau-Lifshitz-Gilbert equation via the finite element method. This involves the introduction of a set of special testing functions compatible with the QBFs for evaluating the Laplacian operator. The results by using QBFs are significantly more accurate than those via linear basis functions. QBF approach leads to significantly more accurate results than conventionally used approaches based on linear basis functions. Importantly QBFs allow reducing the error of computing the exchange field by increasing the mesh density for structured and unstructured meshes. Numerical examples demonstrate the feasibility of the method.

  1. Non-perturbative calculation of orbital and spin effects in molecules subject to non-uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Sen, Sangita; Tellgren, Erik I.

    2018-05-01

    External non-uniform magnetic fields acting on molecules induce non-collinear spin densities and spin-symmetry breaking. This necessitates a general two-component Pauli spinor representation. In this paper, we report the implementation of a general Hartree-Fock method, without any spin constraints, for non-perturbative calculations with finite non-uniform fields. London atomic orbitals are used to ensure faster basis convergence as well as invariance under constant gauge shifts of the magnetic vector potential. The implementation has been applied to investigate the joint orbital and spin response to a field gradient—quantified through the anapole moments—of a set of small molecules. The relative contributions of orbital and spin-Zeeman interaction terms have been studied both theoretically and computationally. Spin effects are stronger and show a general paramagnetic behavior for closed shell molecules while orbital effects can have either direction. Basis set convergence and size effects of anapole susceptibility tensors have been reported. The relation of the mixed anapole susceptibility tensor to chirality is also demonstrated.

  2. Fast function-on-scalar regression with penalized basis expansions.

    PubMed

    Reiss, Philip T; Huang, Lei; Mennes, Maarten

    2010-01-01

    Regression models for functional responses and scalar predictors are often fitted by means of basis functions, with quadratic roughness penalties applied to avoid overfitting. The fitting approach described by Ramsay and Silverman in the 1990 s amounts to a penalized ordinary least squares (P-OLS) estimator of the coefficient functions. We recast this estimator as a generalized ridge regression estimator, and present a penalized generalized least squares (P-GLS) alternative. We describe algorithms by which both estimators can be implemented, with automatic selection of optimal smoothing parameters, in a more computationally efficient manner than has heretofore been available. We discuss pointwise confidence intervals for the coefficient functions, simultaneous inference by permutation tests, and model selection, including a novel notion of pointwise model selection. P-OLS and P-GLS are compared in a simulation study. Our methods are illustrated with an analysis of age effects in a functional magnetic resonance imaging data set, as well as a reanalysis of a now-classic Canadian weather data set. An R package implementing the methods is publicly available.

  3. Large-scale quantum transport calculations for electronic devices with over ten thousand atoms

    NASA Astrophysics Data System (ADS)

    Lu, Wenchang; Lu, Yan; Xiao, Zhongcan; Hodak, Miro; Briggs, Emil; Bernholc, Jerry

    The non-equilibrium Green's function method (NEGF) has been implemented in our massively parallel DFT software, the real space multigrid (RMG) code suite. Our implementation employs multi-level parallelization strategies and fully utilizes both multi-core CPUs and GPU accelerators. Since the cost of the calculations increases dramatically with the number of orbitals, an optimal basis set is crucial for including a large number of atoms in the ``active device'' part of the simulations. In our implementation, the localized orbitals are separately optimized for each principal layer of the device region, in order to obtain an accurate and optimal basis set. As a large example, we calculated the transmission characteristics of a Si nanowire p-n junction. The nanowire is along (110) direction in order to minimize the number dangling bonds that are saturated by H atoms. Its diameter is 3 nm. The length of 24 nm is necessary because of the long-range screening length in Si. Our calculations clearly show the I-V characteristics of a diode, i.e., the current increases exponentially with forward bias and is near zero with backward bias. Other examples will also be presented, including three-terminal transistors and large sensor structures.

  4. Third-Order Incremental Dual-Basis Set Zero-Buffer Approach: An Accurate and Efficient Way To Obtain CCSD and CCSD(T) Energies.

    PubMed

    Zhang, Jun; Dolg, Michael

    2013-07-09

    An efficient way to obtain accurate CCSD and CCSD(T) energies for large systems, i.e., the third-order incremental dual-basis set zero-buffer approach (inc3-db-B0), has been developed and tested. This approach combines the powerful incremental scheme with the dual-basis set method, and along with the new proposed K-means clustering (KM) method and zero-buffer (B0) approximation, can obtain very accurate absolute and relative energies efficiently. We tested the approach for 10 systems of different chemical nature, i.e., intermolecular interactions including hydrogen bonding, dispersion interaction, and halogen bonding; an intramolecular rearrangement reaction; aliphatic and conjugated hydrocarbon chains; three compact covalent molecules; and a water cluster. The results show that the errors for relative energies are <1.94 kJ/mol (or 0.46 kcal/mol), for absolute energies of <0.0026 hartree. By parallelization, our approach can be applied to molecules of more than 30 atoms and more than 100 correlated electrons with high-quality basis set such as cc-pVDZ or cc-pVTZ, saving computational cost by a factor of more than 10-20, compared to traditional implementation. The physical reasons of the success of the inc3-db-B0 approach are also analyzed.

  5. Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis

    NASA Astrophysics Data System (ADS)

    Schäfer, Tobias; Ramberger, Benjamin; Kresse, Georg

    2017-03-01

    We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order Møller-Plesset (MP2) perturbation theory. In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, O ( N 4 ) , with respect to the system size N and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is eased by an internal basis set extrapolation. The key concept to reduce the scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved in the Laplace transformed MP2 formulation using plane wave basis sets and fast Fourier transforms. Analogously, this approach could allow us to calculate second order screened exchange as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.

  6. Density Functional O(N) Calculations

    NASA Astrophysics Data System (ADS)

    Ordejón, Pablo

    1998-03-01

    We have developed a scheme for performing Density Functional Theory calculations with O(N) scaling.(P. Ordejón, E. Artacho and J. M. Soler, Phys. Rev. B, 53), 10441 (1996) The method uses arbitrarily flexible and complete Atomic Orbitals (AO) basis sets. This gives a wide range of choice, from extremely fast calculations with minimal basis sets, to greatly accurate calculations with complete sets. The size-efficiency of AO bases, together with the O(N) scaling of the algorithm, allow the application of the method to systems with many hundreds of atoms, in single processor workstations. I will present the SIESTA code,(D. Sanchez-Portal, P. Ordejón, E. Artacho and J. M. Soler, Int. J. Quantum Chem., 65), 453 (1997) in which the method is implemented, with several LDA, LSD and GGA functionals available, and using norm-conserving, non-local pseudopotentials (in the Kleinman-Bylander form) to eliminate the core electrons. The calculation of static properties such as energies, forces, pressure, stress and magnetic moments, as well as molecular dynamics (MD) simulations capabilities (including variable cell shape, constant temperature and constant pressure MD) are fully implemented. I will also show examples of the accuracy of the method, and applications to large-scale materials and biomolecular systems.

  7. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.

    PubMed

    Lau, Hoi-Kwan; Plenio, Martin B

    2016-09-02

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  8. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding

    NASA Astrophysics Data System (ADS)

    Lau, Hoi-Kwan; Plenio, Martin B.

    2016-09-01

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  9. Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.

    PubMed

    Temel, Burcin; Mills, Greg; Metiu, Horia

    2008-03-27

    We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.

  10. For all the right reasons. Approaching CPOE from a patient safety and care quality perspective is the first critical step toward success.

    PubMed

    Hagland, Mark

    2009-09-01

    True CPOE success is about facilitating improved patient safety, care quality, and efficiency in a multidisciplinar environment, and on an ongoing basis. CPOE implementation forces clinician leaders to examine and rework long-ingrained care delivery processes, especially as they build or adapt order sets. The likelihood that CPOE will be a requirement of meaningful use could compel a rapid acceleration in implementation.

  11. Space law information system design, phase 2

    NASA Technical Reports Server (NTRS)

    Morenoff, J.; Roth, D. L.; Singleton, J. W.

    1973-01-01

    Design alternatives were defined for the implementation of a Space Law Information System for the Office of the General Counsel, NASA. A thesaurus of space law terms was developed and a selected document sample indexed on the basis of that thesaurus. Abstracts were also prepared for the sample document set.

  12. Cost Benefit Analysis and Other Fun and Games.

    ERIC Educational Resources Information Center

    White, Herbert S.

    1985-01-01

    Discussion of application of cost benefit analysis (CBA) accounting techniques to libraries highlights user willingness to be charged for services provided, reasons why CBA will not work in library settings, libraries and budgets, cost distribution on basis of presumed or expected use, implementation of information-seeking behavior control, and…

  13. SSMNG Software Service Manager: A Scalable Building Blocks Architecture for PUS Services & FDIR Management

    NASA Astrophysics Data System (ADS)

    Lisio, Giovanni; Candia, Sante; Campolo, Giovanni; Pascucci, Dario

    2011-08-01

    Thales Alenia Space Italy has carried out the definition of a configurable (on mission basis) PUS ECSS-E_70- 41A see [3] Centralised Services Layer, characterised by:- a mission-independent set of 'classes' implementing the services logic.- a mission-dependent set of configuration data and selection flags.The software components belonging to this layer implement the PUS standard services ECSS-E_70-41A and a set of mission-specific services. The design of this layer has been performed by separating the services mechanisms (mission-independent execution logic) from the services configuration information (mission-dependent data). Once instantiated for a specific mission, the PUS Centralised Services Layer offers a large set of capabilities available to the CSCI's Applications Layer. This paper describes the building blocks PUS architectural solution developed by Thales Alenia Space Italy, emphasizing the mechanisms which allow easy configuration of the Scalable PUS library to fulfill the requirements of different missions. This paper also focus the Thales Alenia Space solution to automatically generate the mission-specific "PUS Services" flight software based on mission specific requirements. Building the PUS services mechanisms, which are configurable on mission basis is part of the PRIMA (Multipurpose Spacecraft Bus ) 'missionisation' process improvement. PRIMA Platform Avionics Software (ASW) is continuously evolving to improve modularity and standardization of interfaces and of SW components (see references in [1]).

  14. Finding harmony so the music plays on: pragmatic trial design considerations to promote organizational sustainment of an empirically-supported behavior therapy.

    PubMed

    Hartzler, Bryan; Peavy, K Michelle; Jackson, T Ron; Carney, Molly

    2016-01-22

    Pragmatic trials of empirically-supported behavior therapies may inform clinical and policy decisions concerning therapy sustainment. This retrospective trial design paper describes and discusses pragmatic features of a hybrid type III implementation/effectiveness trial of a contingency management (CM) intervention at an opioid treatment program. Prior reporting (Hartzler et al., J Subst Abuse Treat 46:429-438, 2014; Hartzler, Subst Abuse Treat Prev Policy 10:30, 2015) notes success in recruiting program staff for voluntary participation, durable impacts of CM training on staff-level outcomes, provisional setting implementation of the intervention, documentation of clinical effectiveness, and post-trial sustainment of CM. Six pragmatic design features, and both scientific and practical bases for their inclusion in the trial, are presented: (1) a collaborative intervention design process, (2) voluntary recruitment of program staff for therapy training and implementation, (3) serial training outcome assessments, with quasi-experimental staff randomization to either single or multiple baseline assessment conditions, (4) designation of a 90-day period immediately after training in which the setting implemented the intervention on a provisional basis, (5) inclusive patient eligibility for receipt of the CM intervention, and (6) designation of two staff as local implementation leaders to oversee clinical/administrative issues in provisional implementation. Each pragmatic trial design feature is argued to have contributed to sustainment of CM. Contributions implicate the building of setting proprietorship for the CM intervention, culling of internal staff expertise in its delivery, iterative use of assessment methods that limited setting burden, documentation of setting-specific clinical effectiveness, expanded penetration of CM among staff during provisional implementation, and promotion of setting self-reliance in the oversight of sustainable implementation procedures. It is hoped this discussion offers ideas for how to impact local clinical and policy decisions via effective behavior therapy dissemination.

  15. Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs.

    PubMed

    Losilla, Sergio A; Watson, Mark A; Aspuru-Guzik, Alán; Sundholm, Dage

    2015-05-12

    We present a GPGPU implementation of the construction of the Fock matrix in the molecular orbital basis using the fully numerical, grid-based bubbles representation. For a test set of molecules containing up to 90 electrons, the total Hartree-Fock energies obtained from reference GTO-based calculations are reproduced within 10(-4) Eh to 10(-8) Eh for most of the molecules studied. Despite the very large number of arithmetic operations involved, the high performance obtained made the calculations possible on a single Nvidia Tesla K40 GPGPU card.

  16. Mapped grid methods for long-range molecules and cold collisions

    NASA Astrophysics Data System (ADS)

    Willner, K.; Dulieu, O.; Masnou-Seeuws, F.

    2004-01-01

    The paper discusses ways of improving the accuracy of numerical calculations for vibrational levels of diatomic molecules close to the dissociation limit or for ultracold collisions, in the framework of a grid representation. In order to avoid the implementation of very large grids, Kokoouline et al. [J. Chem. Phys. 110, 9865 (1999)] have proposed a mapping procedure through introduction of an adaptive coordinate x subjected to the variation of the local de Broglie wavelength as a function of the internuclear distance R. Some unphysical levels ("ghosts") then appear in the vibrational series computed via a mapped Fourier grid representation. In the present work the choice of the basis set is reexamined, and two alternative expansions are discussed: Sine functions and Hardy functions. It is shown that use of a basis set with fixed nodes at both grid ends is efficient to eliminate "ghost" solutions. It is further shown that the Hamiltonian matrix in the sine basis can be calculated very accurately by using an auxiliary basis of cosine functions, overcoming the problems arising from numerical calculation of the Jacobian J(x) of the R→x coordinate transformation.

  17. A four stage approach for ontology-based health information system design.

    PubMed

    Kuziemsky, Craig E; Lau, Francis

    2010-11-01

    To describe and illustrate a four stage methodological approach to capture user knowledge in a biomedical domain area, use that knowledge to design an ontology, and then implement and evaluate the ontology as a health information system (HIS). A hybrid participatory design-grounded theory (GT-PD) method was used to obtain data and code them for ontology development. Prototyping was used to implement the ontology as a computer-based tool. Usability testing evaluated the computer-based tool. An empirically derived domain ontology and set of three problem-solving approaches were developed as a formalized model of the concepts and categories from the GT coding. The ontology and problem-solving approaches were used to design and implement a HIS that tested favorably in usability testing. The four stage approach illustrated in this paper is useful for designing and implementing an ontology as the basis for a HIS. The approach extends existing ontology development methodologies by providing an empirical basis for theory incorporated into ontology design. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. An integral-factorized implementation of the driven similarity renormalization group second-order multireference perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannon, Kevin P.; Li, Chenyang; Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu

    2016-05-28

    We report an efficient implementation of a second-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT2) [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)]. Our implementation employs factorized two-electron integrals to avoid storage of large four-index intermediates. It also exploits the block structure of the reference density matrices to reduce the computational cost to that of second-order Møller–Plesset perturbation theory. Our new DSRG-MRPT2 implementation is benchmarked on ten naphthyne isomers using basis sets up to quintuple-ζ quality. We find that the singlet-triplet splittings (Δ{sub ST}) of the naphthyne isomers strongly depend onmore » the equilibrium structures. For a consistent set of geometries, the Δ{sub ST} values predicted by the DSRG-MRPT2 are in good agreements with those computed by the reduced multireference coupled cluster theory with singles, doubles, and perturbative triples.« less

  19. Systems antecedents for dissemination and implementation: a review and analysis of measures.

    PubMed

    Emmons, Karen M; Weiner, Bryan; Fernandez, Maria Eulalia; Tu, Shin-Ping

    2012-02-01

    There is a growing emphasis on the role of organizations as settings for dissemination and implementation. Only recently has the field begun to consider features of organizations that affect dissemination and implementation of evidence-based interventions. This manuscript identifies and evaluates available measures for five key organizational-level constructs: (a) leadership, (b) vision, (c) managerial relations, (d) climate, and (e) absorptive capacity. Overall the picture was the same across the five constructs--no measure was used in more than one study, many studies did not report the psychometric properties of the measures, some assessments were based on a single response per unit, and the level of the instrument and analysis did not always match. One must seriously consider the development and evaluation of a robust set of measures that will serve as the basis of building the field, allow for comparisons across organizational types and intervention topics, and allow a robust area of dissemination and implementation research to develop.

  20. Systems Antecedents for Dissemination and Implementation: A Review and Analysis of Measures

    PubMed Central

    Emmons, Karen M.; Weiner, Bryan; Fernandez, Maria; Tu, Shin-Ping

    2011-01-01

    There is a growing emphasis on the role of organizations as settings for dissemination and implementation. Only recently has the field begun to consider features of organizations that impact on dissemination and implementation of evidence-based interventions. This manuscript identifies and evaluates available measures for 5 key organizational-level constructs: (1) leadership; (2) vision; (3) managerial relations; (4) climate; and (5) absorptive capacity. Overall the picture was the same across the five constructs—no measure was used in more than one study, many studies did not report the psychometric properties of the measures, some assessments were based on a single response per unit, and the level of the instrument and analysis did not always match. We must seriously consider the development and evaluation of a robust set of measures that will serve as the basis of building the field, allow for comparisons across organizational types and intervention topics, and allow a robust area of dissemination and implementation research to develop. PMID:21724933

  1. Designing an activity-based costing model for a non-admitted prisoner healthcare setting.

    PubMed

    Cai, Xiao; Moore, Elizabeth; McNamara, Martin

    2013-09-01

    To design and deliver an activity-based costing model within a non-admitted prisoner healthcare setting. Key phases from the NSW Health clinical redesign methodology were utilised: diagnostic, solution design and implementation. The diagnostic phase utilised a range of strategies to identify issues requiring attention in the development of the costing model. The solution design phase conceptualised distinct 'building blocks' of activity and cost based on the speciality of clinicians providing care. These building blocks enabled the classification of activity and comparisons of costs between similar facilities. The implementation phase validated the model. The project generated an activity-based costing model based on actual activity performed, gained acceptability among clinicians and managers, and provided the basis for ongoing efficiency and benchmarking efforts.

  2. Horizontal vectorization of electron repulsion integrals.

    PubMed

    Pritchard, Benjamin P; Chow, Edmond

    2016-10-30

    We present an efficient implementation of the Obara-Saika algorithm for the computation of electron repulsion integrals that utilizes vector intrinsics to calculate several primitive integrals concurrently in a SIMD vector. Initial benchmarks display a 2-4 times speedup with AVX instructions over comparable scalar code, depending on the basis set. Speedup over scalar code is found to be sensitive to the level of contraction of the basis set, and is best for (lAlB|lClD) quartets when lD  = 0 or lB=lD=0, which makes such a vectorization scheme particularly suitable for density fitting. The basic Obara-Saika algorithm, how it is vectorized, and the performance bottlenecks are analyzed and discussed. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Kenny S K; Lee, Louis K Y; Xing, L

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis,more » which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.« less

  4. Demystifying Data: Designing and Implementing Data-Driven Systems and Practices for Continuous Quality Improvement

    ERIC Educational Resources Information Center

    Krugly, Andrew; Stein, Amanda; Centeno, Maribel G.

    2014-01-01

    Data-based decision making should be the driving force in any early care and education setting. Data usage compels early childhood practitioners and leaders to make decisions on the basis of more than just professional instinct. This article explores why early childhood schools should be using data for continuous quality improvement at various…

  5. 76 FR 38293 - Risk Management Controls for Brokers or Dealers With Market Access

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... securities to give broker- dealers with market access additional time to develop, test, and implement the... that exceed appropriate pre-set credit or capital thresholds,\\5\\ or that appear to be erroneous.\\6\\ The... satisfied on a pre-order entry basis,\\7\\ prevent the entry of orders that the broker- dealers or customer is...

  6. Tempest in a Therapeutic Community: Implementation and Evaluation Issues for Faith-Based Programming

    ERIC Educational Resources Information Center

    Scott, Diane L.; Crow, Matthew S.; Thompson, Carla J.

    2010-01-01

    The therapeutic community (TC) is an increasingly utilized intervention model in corrections settings. Rarely do these TCs include faith-based curriculum other than that included in Alcoholics Anonymous or Narcotics Anonymous programs as does the faith-based TC that serves as the basis for this article. Borrowing from the successful TC model, the…

  7. Extended polarization in 3rd order SCC-DFTB from chemical potential equilization

    PubMed Central

    Kaminski, Steve; Giese, Timothy J.; Gaus, Michael; York, Darrin M.; Elstner, Marcus

    2012-01-01

    In this work we augment the approximate density functional method SCC-DFTB (DFTB3) with the chemical potential equilization (CPE) approach in order to improve the performance for molecular electronic polarizabilities. The CPE method, originally implemented for NDDO type methods by Giese and York, has been shown to emend minimal basis methods wrt response properties significantly, and has been applied to SCC-DFTB recently. CPE allows to overcome this inherent limitation of minimal basis methods by supplying an additional response density. The systematic underestimation is thereby corrected quantitatively without the need to extend the atomic orbital basis, i.e. without increasing the overall computational cost significantly. Especially the dependency of polarizability as a function of molecular charge state was significantly improved from the CPE extension of DFTB3. The empirical parameters introduced by the CPE approach were optimized for 172 organic molecules in order to match the results from density functional methods (DFT) methods using large basis sets. However, the first order derivatives of molecular polarizabilities, as e.g. required to compute Raman activities, are not improved by the current CPE implementation, i.e. Raman spectra are not improved. PMID:22894819

  8. [Evidence basis of psychotherapy for schizophrenia patients in Germany].

    PubMed

    Puschner, B; Vauth, R; Jacobi, F; Becker, T

    2006-11-01

    Little is known about the degree of implementation of evidence-based psychotherapy in routine care of people with schizophrenia in Germany. First, results of studies on the efficacy of psychotherapy in the treatment of schizophrenia are summarised. Second, the degree of implementation of psychotherapeutic practices in the routine care of schizophrenics is assessed through a systematic literature search and analyses of several data sets. There is substantial evidence for the efficacy of cognitive-behavioural interventions in the treatment of schizophrenia. The paucity of data on the degree of implementation suggests a wide gap between evidence and practice. Barriers to implementation are outlined and discussed. There is a need for more studies on epidemiological and long-term effectiveness of health care.

  9. An Official American Thoracic Society Research Statement: Implementation Science in Pulmonary, Critical Care, and Sleep Medicine

    PubMed Central

    Krishnan, Jerry A.; Au, David H.; Bender, Bruce G.; Carson, Shannon S.; Cattamanchi, Adithya; Cloutier, Michelle M.; Cooke, Colin R.; Erickson, Karen; George, Maureen; Gerald, Joe K.; Gerald, Lynn B.; Goss, Christopher H.; Gould, Michael K.; Hyzy, Robert; Kahn, Jeremy M.; Mittman, Brian S.; Mosesón, Erika M.; Mularski, Richard A.; Parthasarathy, Sairam; Patel, Sanjay R.; Rand, Cynthia S.; Redeker, Nancy S.; Reiss, Theodore F.; Riekert, Kristin A.; Rubenfeld, Gordon D.; Tate, Judith A.; Wilson, Kevin C.; Thomson, Carey C.

    2016-01-01

    Background: Many advances in health care fail to reach patients. Implementation science is the study of novel approaches to mitigate this evidence-to-practice gap. Methods: The American Thoracic Society (ATS) created a multidisciplinary ad hoc committee to develop a research statement on implementation science in pulmonary, critical care, and sleep medicine. The committee used an iterative consensus process to define implementation science and review the use of conceptual frameworks to guide implementation science for the pulmonary, critical care, and sleep community and to explore how professional medical societies such as the ATS can promote implementation science. Results: The committee defined implementation science as the study of the mechanisms by which effective health care interventions are either adopted or not adopted in clinical and community settings. The committee also distinguished implementation science from the act of implementation. Ideally, implementation science should include early and continuous stakeholder involvement and the use of conceptual frameworks (i.e., models to systematize the conduct of studies and standardize the communication of findings). Multiple conceptual frameworks are available, and we suggest the selection of one or more frameworks on the basis of the specific research question and setting. Professional medical societies such as the ATS can have an important role in promoting implementation science. Recommendations for professional societies to consider include: unifying implementation science activities through a single organizational structure, linking front-line clinicians with implementation scientists, seeking collaborations to prioritize and conduct implementation science studies, supporting implementation science projects through funding opportunities, working with research funding bodies to set the research agenda in the field, collaborating with external bodies responsible for health care delivery, disseminating results of implementation science through scientific journals and conferences, and teaching the next generation about implementation science through courses and other media. Conclusions: Implementation science plays an increasingly important role in health care. Through support of implementation science, the ATS and other professional medical societies can work with other stakeholders to lead this effort. PMID:27739895

  10. An Official American Thoracic Society Research Statement: Implementation Science in Pulmonary, Critical Care, and Sleep Medicine.

    PubMed

    Weiss, Curtis H; Krishnan, Jerry A; Au, David H; Bender, Bruce G; Carson, Shannon S; Cattamanchi, Adithya; Cloutier, Michelle M; Cooke, Colin R; Erickson, Karen; George, Maureen; Gerald, Joe K; Gerald, Lynn B; Goss, Christopher H; Gould, Michael K; Hyzy, Robert; Kahn, Jeremy M; Mittman, Brian S; Mosesón, Erika M; Mularski, Richard A; Parthasarathy, Sairam; Patel, Sanjay R; Rand, Cynthia S; Redeker, Nancy S; Reiss, Theodore F; Riekert, Kristin A; Rubenfeld, Gordon D; Tate, Judith A; Wilson, Kevin C; Thomson, Carey C

    2016-10-15

    Many advances in health care fail to reach patients. Implementation science is the study of novel approaches to mitigate this evidence-to-practice gap. The American Thoracic Society (ATS) created a multidisciplinary ad hoc committee to develop a research statement on implementation science in pulmonary, critical care, and sleep medicine. The committee used an iterative consensus process to define implementation science and review the use of conceptual frameworks to guide implementation science for the pulmonary, critical care, and sleep community and to explore how professional medical societies such as the ATS can promote implementation science. The committee defined implementation science as the study of the mechanisms by which effective health care interventions are either adopted or not adopted in clinical and community settings. The committee also distinguished implementation science from the act of implementation. Ideally, implementation science should include early and continuous stakeholder involvement and the use of conceptual frameworks (i.e., models to systematize the conduct of studies and standardize the communication of findings). Multiple conceptual frameworks are available, and we suggest the selection of one or more frameworks on the basis of the specific research question and setting. Professional medical societies such as the ATS can have an important role in promoting implementation science. Recommendations for professional societies to consider include: unifying implementation science activities through a single organizational structure, linking front-line clinicians with implementation scientists, seeking collaborations to prioritize and conduct implementation science studies, supporting implementation science projects through funding opportunities, working with research funding bodies to set the research agenda in the field, collaborating with external bodies responsible for health care delivery, disseminating results of implementation science through scientific journals and conferences, and teaching the next generation about implementation science through courses and other media. Implementation science plays an increasingly important role in health care. Through support of implementation science, the ATS and other professional medical societies can work with other stakeholders to lead this effort.

  11. Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements

    PubMed Central

    2015-01-01

    We present an implementation of single residues for response functions to arbitrary order using a recursive approach. Explicit expressions in terms of density-matrix-based response theory for the single residues of the linear, quadratic, cubic, and quartic response functions are also presented. These residues correspond to one-, two-, three- and four-photon transition matrix elements. The newly developed code is used to calculate the one-, two-, three- and four-photon absorption cross sections of para-nitroaniline and para-nitroaminostilbene, making this the first treatment of four-photon absorption in the framework of response theory. We find that the calculated multiphoton absorption cross sections are not very sensitive to the size of the basis set as long as a reasonably large basis set with diffuse functions is used. The choice of exchange–correlation functional, however, significantly affects the calculated cross sections of both charge-transfer transitions and other transitions, in particular, for the larger para-nitroaminostilbene molecule. We therefore recommend the use of a range-separated exchange–correlation functional in combination with the augmented correlation-consistent double-ζ basis set aug-cc-pVDZ for the calculation of multiphoton absorption properties. PMID:25821415

  12. Feasibility of implementing oral health guidelines in residential care settings: views of nursing staff and residential care workers.

    PubMed

    Hilton, Shaylee; Sheppard, Justine Joan; Hemsley, Bronwyn

    2016-05-01

    To determine the views of nurses and on the feasibility of implementing current evidence-based guidelines for oral care, examining barriers and facilitators to implementation. This mixed-methods study involved an online survey of 35 nurses and residential care workers, verified and expanded upon by one focus group of six residential care workers. Results reflected that nurses and residential care workers (a) have little or no training in recommended oral care techniques, and (b) lack access to the equipment and professional supports needed to provide adequate oral care. Basic oral care might be performed less than once per day in some settings and patients with problematic behaviours, dysphagia, or sensitivities associated with poor oral health might be less likely to receive oral care. While lack of time was highlighted as a barrier in the survey findings, focus group members considered that time should not be a barrier to prioritising oral care practices on a daily basis in residential care settings. There are several important discrepancies between the recommendations made in evidence-based guidelines for oral care and the implementation of such practices in residential care settings. Nursing and residential care staff considered adequate oral care to be feasible if access, funding and training barriers are removed and facilitators enhanced. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set

    NASA Astrophysics Data System (ADS)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-01

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  14. Determination of Phobos' rotational parameters by an inertial frame bundle block adjustment

    NASA Astrophysics Data System (ADS)

    Burmeister, Steffi; Willner, Konrad; Schmidt, Valentina; Oberst, Jürgen

    2018-01-01

    A functional model for a bundle block adjustment in the inertial reference frame was developed, implemented and tested. This approach enables the determination of rotation parameters of planetary bodies on the basis of photogrammetric observations. Tests with a self-consistent synthetic data set showed that the implementation converges reliably toward the expected values of the introduced unknown parameters of the adjustment, e.g., spin pole orientation, and that it can cope with typical observational errors in the data. We applied the model to a data set of Phobos using images from the Mars Express and the Viking mission. With Phobos being in a locked rotation, we computed a forced libration amplitude of 1.14^circ ± 0.03^circ together with a control point network of 685 points.

  15. The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: The DEC-RI-MP2 gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Dmytro; Kristensen, Kasper; Kjærgaard, Thomas

    We report an implementation of the molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory (DEC-RI-MP2). The new DEC-RI-MP2 gradient method combines the precision control as well as the linear-scaling and massively parallel features of the DEC scheme with efficient evaluations of the gradient contributions using the RI approximation. We further demonstrate that the DEC-RI-MP2 gradient method is capable of calculating molecular gradients for very large molecular systems. A test set of supramolecular complexes containing up to 158 atoms and 1960 contracted basis functions has been employed to demonstrate the general applicability of the DEC-RI-MP2 methodmore » and to analyze the errors of the DEC approximation. Moreover, the test set contains molecules of complicated electronic structures and is thus deliberately chosen to stress test the DEC-RI-MP2 gradient implementation. Additionally, as a showcase example the full molecular gradient for insulin (787 atoms and 7604 contracted basis functions) has been evaluated.« less

  16. Analytic energy gradients for orbital-optimized MP3 and MP2.5 with the density-fitting approximation: An efficient implementation.

    PubMed

    Bozkaya, Uğur

    2018-03-15

    Efficient implementations of analytic gradients for the orbital-optimized MP3 and MP2.5 and their standard versions with the density-fitting approximation, which are denoted as DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5, are presented. The DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5 methods are applied to a set of alkanes and noncovalent interaction complexes to compare the computational cost with the conventional MP3, MP2.5, OMP3, and OMP2.5. Our results demonstrate that density-fitted perturbation theory (DF-MP) methods considered substantially reduce the computational cost compared to conventional MP methods. The efficiency of our DF-MP methods arise from the reduced input/output (I/O) time and the acceleration of gradient related terms, such as computations of particle density and generalized Fock matrices (PDMs and GFM), solution of the Z-vector equation, back-transformations of PDMs and GFM, and evaluation of analytic gradients in the atomic orbital basis. Further, application results show that errors introduced by the DF approach are negligible. Mean absolute errors for bond lengths of a molecular set, with the cc-pCVQZ basis set, is 0.0001-0.0002 Å. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Priority-setting for achieving universal health coverage

    PubMed Central

    Chalkidou, Kalipso; Glassman, Amanda; Marten, Robert; Vega, Jeanette; Tritasavit, Nattha; Gyansa-Lutterodt, Martha; Seiter, Andreas; Kieny, Marie Paule; Hofman, Karen; Culyer, Anthony J

    2016-01-01

    Abstract Governments in low- and middle-income countries are legitimizing the implementation of universal health coverage (UHC), following a United Nation’s resolution on UHC in 2012 and its reinforcement in the sustainable development goals set in 2015. UHC will differ in each country depending on country contexts and needs, as well as demand and supply in health care. Therefore, fundamental issues such as objectives, users and cost–effectiveness of UHC have been raised by policy-makers and stakeholders. While priority-setting is done on a daily basis by health authorities – implicitly or explicitly – it has not been made clear how priority-setting for UHC should be conducted. We provide justification for explicit health priority-setting and guidance to countries on how to set priorities for UHC. PMID:27274598

  18. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems

    NASA Astrophysics Data System (ADS)

    Kruse, Holger; Grimme, Stefan

    2012-04-01

    A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model chemistry yields MAD=0.68 kcal/mol, which represents a huge improvement over plain B3LYP/6-31G* (MAD=2.3 kcal/mol). Application of gCP-corrected B97-D3 and HF-D3 on a set of large protein-ligand complexes prove the robustness of the method. Analytical gCP gradients make optimizations of large systems feasible with small basis sets, as demonstrated for the inter-ring distances of 9-helicene and most of the complexes in Hobza's S22 test set. The method is implemented in a freely available FORTRAN program obtainable from the author's website.

  19. Intelligent process mapping through systematic improvement of heuristics

    NASA Technical Reports Server (NTRS)

    Ieumwananonthachai, Arthur; Aizawa, Akiko N.; Schwartz, Steven R.; Wah, Benjamin W.; Yan, Jerry C.

    1992-01-01

    The present system for automatic learning/evaluation of novel heuristic methods applicable to the mapping of communication-process sets on a computer network has its basis in the testing of a population of competing heuristic methods within a fixed time-constraint. The TEACHER 4.1 prototype learning system implemented or learning new postgame analysis heuristic methods iteratively generates and refines the mappings of a set of communicating processes on a computer network. A systematic exploration of the space of possible heuristic methods is shown to promise significant improvement.

  20. Explicitly correlated coupled-cluster theory using cusp conditions. II. Treatment of connected triple excitations.

    PubMed

    Köhn, Andreas

    2010-11-07

    The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.

  1. Nondiscrimination in Health Programs and Activities. Final rule.

    PubMed

    2016-05-18

    This final rule implements Section 1557 of the Affordable Care Act (ACA) (Section 1557). Section 1557 prohibits discrimination on the basis of race, color, national origin, sex, age, or disability in certain health programs and activities. The final rule clarifies and codifies existing nondiscrimination requirements and sets forth new standards to implement Section 1557, particularly with respect to the prohibition of discrimination on the basis of sex in health programs other than those provided by educational institutions and the prohibition of various forms of discrimination in health programs administered by the Department of Health and Human Services (HHS or the Department) and entities established under Title I of the ACA. In addition, the Secretary is authorized to prescribe the Department's governance, conduct, and performance of its business, including, here, how HHS will apply the standards of Section 1557 to HHS-administered health programs and activities.

  2. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  3. Multipole moments in the effective fragment potential method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoni, Colleen; Slipchenko, Lyudmila V.; Misquitta, Alston J.

    In the effective fragment potential (EFP) method the Coulomb potential is represented using a set of multipole moments generated by the distributed multipole analysis (DMA) method. Misquitta, Stone, and Fazeli recently developed a basis space-iterated stockholder atom (BS-ISA) method to generate multipole moments. This study assesses the accuracy of the EFP interaction energies using sets of multipole moments generated from the BS-ISA method, and from several versions of the DMA method (such as analytic and numeric grid-based), with varying basis sets. Both methods lead to reasonable results, although using certain implementations of the DMA method can result in large errors.more » With respect to the CCSD(T)/CBS interaction energies, the mean unsigned error (MUE) of the EFP method for the S22 data set using BS-ISA–generated multipole moments and DMA-generated multipole moments (using a small basis set and the analytic DMA procedure) is 0.78 and 0.72 kcal/mol, respectively. Here, the MUE accuracy is on the same order as MP2 and SCS-MP2. The MUEs are lower than in a previous study benchmarking the EFP method without the EFP charge transfer term, demonstrating that the charge transfer term increases the accuracy of the EFP method. Regardless of the multipole moment method used, it is likely that much of the error is due to an insufficient short-range electrostatic term (i.e., charge penetration term), as shown by comparisons with symmetry-adapted perturbation theory.« less

  4. Multipole moments in the effective fragment potential method

    DOE PAGES

    Bertoni, Colleen; Slipchenko, Lyudmila V.; Misquitta, Alston J.; ...

    2017-02-17

    In the effective fragment potential (EFP) method the Coulomb potential is represented using a set of multipole moments generated by the distributed multipole analysis (DMA) method. Misquitta, Stone, and Fazeli recently developed a basis space-iterated stockholder atom (BS-ISA) method to generate multipole moments. This study assesses the accuracy of the EFP interaction energies using sets of multipole moments generated from the BS-ISA method, and from several versions of the DMA method (such as analytic and numeric grid-based), with varying basis sets. Both methods lead to reasonable results, although using certain implementations of the DMA method can result in large errors.more » With respect to the CCSD(T)/CBS interaction energies, the mean unsigned error (MUE) of the EFP method for the S22 data set using BS-ISA–generated multipole moments and DMA-generated multipole moments (using a small basis set and the analytic DMA procedure) is 0.78 and 0.72 kcal/mol, respectively. Here, the MUE accuracy is on the same order as MP2 and SCS-MP2. The MUEs are lower than in a previous study benchmarking the EFP method without the EFP charge transfer term, demonstrating that the charge transfer term increases the accuracy of the EFP method. Regardless of the multipole moment method used, it is likely that much of the error is due to an insufficient short-range electrostatic term (i.e., charge penetration term), as shown by comparisons with symmetry-adapted perturbation theory.« less

  5. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    We present a code implementing the linearized self-consistent quasiparticle GW method (QSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N 3more » scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method.« less

  6. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    DOE PAGES

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    2017-06-23

    We present a code implementing the linearized self-consistent quasiparticle GW method (QSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N 3more » scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method.« less

  7. Theoretical investigation of gas-surface interactions

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1990-01-01

    A Dirac-Hartree-Fock code was developed for polyatomic molecules. The program uses integrals over symmetry-adapted real spherical harmonic Gaussian basis functions generated by a modification of the MOLECULE integrals program. A single Gaussian function is used for the nuclear charge distribution, to ensure proper boundary conditions at the nuclei. The Gaussian primitive functions are chosen to satisfy the kinetic balance condition. However, contracted functions which do not necessarily satisfy this condition may be used. The Fock matrix is constructed in the scalar basis and transformed to a jj-coupled 2-spinor basis before diagonalization. The program was tested against numerical results for atoms with a Gaussian nucleus and diatomic molecules with point nuclei. The energies converge on the numerical values as the basis set size is increased. Full use of molecular symmetry (restricted to D sub 2h and subgroups) is yet to be implemented.

  8. Novel transform for image description and compression with implementation by neural architectures

    NASA Astrophysics Data System (ADS)

    Ben-Arie, Jezekiel; Rao, Raghunath K.

    1991-10-01

    A general method for signal representation using nonorthogonal basis functions that are composed of Gaussians are described. The Gaussians can be combined into groups with predetermined configuration that can approximate any desired basis function. The same configuration at different scales forms a set of self-similar wavelets. The general scheme is demonstrated by representing a natural signal employing an arbitrary basis function. The basic methodology is demonstrated by two novel schemes for efficient representation of 1-D and 2- D signals using Gaussian basis functions (BFs). Special methods are required here since the Gaussian functions are nonorthogonal. The first method employs a paradigm of maximum energy reduction interlaced with the A* heuristic search. The second method uses an adaptive lattice system to find the minimum-squared error of the BFs onto the signal, and a lateral-vertical suppression network to select the most efficient representation in terms of data compression.

  9. Clinical effort against secondhand smoke exposure: development of framework and intervention.

    PubMed

    Winickoff, Jonathan P; Park, Elyse R; Hipple, Bethany J; Berkowitz, Anna; Vieira, Cecilia; Friebely, Joan; Healey, Erica A; Rigotti, Nancy A

    2008-08-01

    The purpose of this work was to describe a novel process and present results of formative research to develop a pediatric office intervention that uses available systems of care for addressing parental smoking. The scientific development of the intervention occurred in 3 stages. In stage 1, we designed an office system for parental tobacco control in the pediatric outpatient setting on the basis of complementary conceptual frameworks of preventive services delivery, conceptualized for the child health care setting through a process of key interviews with leaders in the field of implementing practice change; existing Public Health Service guidelines that had been shown effective in adult practices; and adaptation of an evidence-based adult office system for tobacco control. This was an iterative process that yielded a theoretically framed intervention prototype. In stage 2, we performed focus-group testing in pediatric practices with pediatricians, nurses, clinical assistants, and key office staff. Using qualitative methods, we adapted the intervention prototype on the basis of this feedback to include 5 key implementation steps for the child health care setting. In stage 3, we presented the intervention to breakout groups at 2 national meetings of pediatric practitioners for additional refinements. The main result was a theoretically grounded intervention that was responsive to the barriers and suggestions raised in the focus groups and at the national meetings. The Clinical Effort Against Secondhand Smoke Exposure intervention was designed to be flexible and adaptable to the particular practices' staffing, resources, and physical configuration. Practice staff can choose materials relevant to their own particular systems of care (www.ceasetobacco.org). Conceptually grounded and focus-group-tested strategies for parental tobacco control are now available for implementation in the pediatric outpatient setting. The tobacco-control intervention-development process might have particular relevance for other chronic pediatric conditions that have a strong evidence base and have available treatments or resources that are underused.

  10. Basis sets for the calculation of core-electron binding energies

    NASA Astrophysics Data System (ADS)

    Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.

    2018-05-01

    Core-electron binding energies (CEBEs) computed within a Δ self-consistent field approach require large basis sets to achieve convergence with respect to the basis set limit. It is shown that supplementing a basis set with basis functions from the corresponding basis set for the element with the next highest nuclear charge (Z + 1) provides basis sets that give CEBEs close to the basis set limit. This simple procedure provides relatively small basis sets that are well suited for calculations where the description of a core-ionised state is important, such as time-dependent density functional theory calculations of X-ray emission spectroscopy.

  11. Solar Data and Tools: Resources for Researchers, Industry, and Developers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-04-01

    In partnership with the U.S. Department of Energy SunShot Initiative, the National Renewable Energy Laboratory (NREL) has created a suite of analytical tools and data that can inform decisions about implementing solar and that are increasingly forming the basis of private-sector tools and services to solar consumers. The following solar energy data sets and analytical tools are available free to the public.

  12. Accommodating non-market values in evaluation of wildfire management in the United States: Challenges and opportunities

    Treesearch

    Tyron J. Venn; David E. Calkin

    2011-01-01

    Forests in the United States generate many non-market benefits for society that can be enhanced and diminished by wildfire and wildfire management. The Federal Wildland Fire Management Policy (1995, updated 2001), and subsequent Guidance to the Implementation of that policy provided in 2009, require fire management priorities be set on the basis of values to be...

  13. The Number of Feedbacks Needed for Reliable Evaluation. A Multilevel Analysis of the Reliability, Stability and Generalisability of Students' Evaluation of Teaching

    ERIC Educational Resources Information Center

    Rantanen, Pekka

    2013-01-01

    A multilevel analysis approach was used to analyse students' evaluation of teaching (SET). The low value of inter-rater reliability stresses that any solid conclusions on teaching cannot be made on the basis of single feedbacks. To assess a teacher's general teaching effectiveness, one needs to evaluate four randomly chosen course implementations.…

  14. Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Datta, Dipayan; Kossmann, Simone; Neese, Frank

    2016-09-01

    The domain-based local pair-natural orbital coupled-cluster (DLPNO-CC) theory has recently emerged as an efficient and powerful quantum-chemical method for the calculation of energies of molecules comprised of several hundred atoms. It has been demonstrated that the DLPNO-CC approach attains the accuracy of a standard canonical coupled-cluster calculation to about 99.9% of the basis set correlation energy while realizing linear scaling of the computational cost with respect to system size. This is achieved by combining (a) localized occupied orbitals, (b) large virtual orbital correlation domains spanned by the projected atomic orbitals (PAOs), and (c) compaction of the virtual space through a truncated pair natural orbital (PNO) basis. In this paper, we report on the implementation of an analytic scheme for the calculation of the first derivatives of the DLPNO-CC energy for basis set independent perturbations within the singles and doubles approximation (DLPNO-CCSD) for closed-shell molecules. Perturbation-independent one-particle density matrices have been implemented in order to account for the response of the CC wave function to the external perturbation. Orbital-relaxation effects due to external perturbation are not taken into account in the current implementation. We investigate in detail the dependence of the computed first-order electrical properties (e.g., dipole moment) on the three major truncation parameters used in a DLPNO-CC calculation, namely, the natural orbital occupation number cutoff used for the construction of the PNOs, the weak electron-pair cutoff, and the domain size cutoff. No additional truncation parameter has been introduced for property calculation. We present benchmark calculations on dipole moments for a set of 10 molecules consisting of 20-40 atoms. We demonstrate that 98%-99% accuracy relative to the canonical CCSD results can be consistently achieved in these calculations. However, this comes with the price of tightening the threshold for the natural orbital occupation number cutoff by an order of magnitude compared to the DLPNO-CCSD energy calculations.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papajak, Ewa; Truhlar, Donald G.

    We present sets of convergent, partially augmented basis set levels corresponding to subsets of the augmented “aug-cc-pV(n+d)Z” basis sets of Dunning and co-workers. We show that for many molecular properties a basis set fully augmented with diffuse functions is computationally expensive and almost always unnecessary. On the other hand, unaugmented cc-pV(n+d)Z basis sets are insufficient for many properties that require diffuse functions. Therefore, we propose using intermediate basis sets. We developed an efficient strategy for partial augmentation, and in this article, we test it and validate it. Sequentially deleting diffuse basis functions from the “aug” basis sets yields the “jul”,more » “jun”, “may”, “apr”, etc. basis sets. Tests of these basis sets for Møller-Plesset second-order perturbation theory (MP2) show the advantages of using these partially augmented basis sets and allow us to recommend which basis sets offer the best accuracy for a given number of basis functions for calculations on large systems. Similar truncations in the diffuse space can be performed for the aug-cc-pVxZ, aug-cc-pCVxZ, etc. basis sets.« less

  16. Problem reporting and tracking system: a systems engineering challenge

    NASA Astrophysics Data System (ADS)

    Cortez, Vasco; Lopez, Bernhard; Whyborn, Nicholas; Price, Roberto; Hernandez, Octavio; Gairing, Stefan; Barrios, Emilio; Alarcon, Hector

    2016-08-01

    The problem reporting and tracking system (PRTS) is the ALMA system to register operational problems, track unplanned corrective operational maintenance activities and follow the investigations of all problems or possible issues arisen in operation activities. After the PRTS implementation appeared several issues that finally produced a lack in the management of the investigations, problems to produce KPIs, loss of information, among others. In order to improve PRTS, we carried out a process to review the status of system, define a set of modifications and implement a solution; all according to the stakeholder requirements. In this work, we shall present the methodology applied to define a set of concrete actions at the basis of understanding the complexity of the problem, which finally got to improve the interactions between different subsystems and enhance the communication at different levels.

  17. Multidimensional signaling via wavelet packets

    NASA Astrophysics Data System (ADS)

    Lindsey, Alan R.

    1995-04-01

    This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.

  18. Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS.

    PubMed

    Zaidan, A A; Zaidan, B B; Al-Haiqi, Ahmed; Kiah, M L M; Hussain, Muzammil; Abdulnabi, Mohamed

    2015-02-01

    Evaluating and selecting software packages that meet the requirements of an organization are difficult aspects of software engineering process. Selecting the wrong open-source EMR software package can be costly and may adversely affect business processes and functioning of the organization. This study aims to evaluate and select open-source EMR software packages based on multi-criteria decision-making. A hands-on study was performed and a set of open-source EMR software packages were implemented locally on separate virtual machines to examine the systems more closely. Several measures as evaluation basis were specified, and the systems were selected based a set of metric outcomes using Integrated Analytic Hierarchy Process (AHP) and TOPSIS. The experimental results showed that GNUmed and OpenEMR software can provide better basis on ranking score records than other open-source EMR software packages. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. An Australian casemix classification for palliative care: lessons and policy implications of a national study.

    PubMed

    Eagar, Kathy; Gordon, Robert; Green, Janette; Smith, Michael

    2004-04-01

    To provide a nontechnical discussion of the development of a palliative care casemix classification and some policy implications of its implementation. 3866 palliative care patients who, in a three month period, had 4596 episodes of care provided by 58 palliative care services in Australia and New Zealand. A detailed clinical and service utilization profile was collected on each patient with staff time and other resources measured on a daily basis. A statistical summary of the clinical variables was compiled as the first stage of the analysis. Palliative care phase was found to be a good predictor of resource use, with patients fairly evenly distributed across the five categories. Clients treated in an inpatient setting had poorer function and higher symptom severity scores than those treated in an ambulatory setting, a result that is not surprising in this Australian setting. Implementation of the resultant AN-SNAP classification has been proceeding since 1998 in some Australian jurisdictions. The development and implementation of a classification such as AN-SNAP provides the possibility of having a consistent approach to collecting palliative care data in Australia as well as a growing body of experience on how to progressively improve the classification over time.

  20. Workgroup report: developing environmental health indicators for European children: World Health Organization Working Group.

    PubMed

    Pond, Kathy; Kim, Rokho; Carroquino, Maria-Jose; Pirard, Philippe; Gore, Fiona; Cucu, Alexandra; Nemer, Leda; MacKay, Morag; Smedje, Greta; Georgellis, Antonis; Dalbokova, Dafina; Krzyzanowski, Michal

    2007-09-01

    A working group coordinated by the World Health Organization developed a set of indicators to protect children's health from environmental risks and to support current and future European policy needs. On the basis of identified policy needs, the group developed a core set of 29 indicators for implementation plus an extended set of eight additional indicators for future development, focusing on exposure, health effects, and action. As far as possible, the indicators were designed to use existing information and are flexible enough to be developed further to meet the needs of policy makers and changing health priorities. These indicators cover most of the priority topic areas specified in the Children's Environment and Health Action Plan for Europe (CEHAPE) as adopted in the Fourth Ministerial Conference on Health and Environment in 2004, and will be used to monitor the implementation of CEHAPE. This effort can be viewed as an integral part of the Global Initiative on Children's Environmental Health Indicators, launched at the World Summit on Sustainable Development in 2002.

  1. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/ormore » second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.« less

  2. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    NASA Astrophysics Data System (ADS)

    Spackman, Peter R.; Karton, Amir

    2015-05-01

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol-1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol-1.

  3. Scheme for Quantum Computing Immune to Decoherence

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.

  4. Security of quantum key distribution with iterative sifting

    NASA Astrophysics Data System (ADS)

    Tamaki, Kiyoshi; Lo, Hoi-Kwong; Mizutani, Akihiro; Kato, Go; Lim, Charles Ci Wen; Azuma, Koji; Curty, Marcos

    2018-01-01

    Several quantum key distribution (QKD) protocols employ iterative sifting. After each quantum transmission round, Alice and Bob disclose part of their setting information (including their basis choices) for the detected signals. This quantum phase then ends when the basis dependent termination conditions are met, i.e., the numbers of detected signals per basis exceed certain pre-agreed threshold values. Recently, however, Pfister et al (2016 New J. Phys. 18 053001) showed that the basis dependent termination condition makes QKD insecure, especially in the finite key regime, and they suggested to disclose all the setting information after finishing the quantum phase. However, this protocol has two main drawbacks: it requires that Alice possesses a large memory, and she also needs to have some a priori knowledge about the transmission rate of the quantum channel. Here we solve these two problems by introducing a basis-independent termination condition to the iterative sifting in the finite key regime. The use of this condition, in combination with Azuma’s inequality, provides a precise estimation on the amount of privacy amplification that needs to be applied, thus leading to the security of QKD protocols, including the loss-tolerant protocol (Tamaki et al 2014 Phys. Rev. A 90 052314), with iterative sifting. Our analysis indicates that to announce the basis information after each quantum transmission round does not compromise the key generation rate of the loss-tolerant protocol. Our result allows the implementation of wider classes of classical post-processing techniques in QKD with quantified security.

  5. Image processing via VLSI: A concept paper

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1982-01-01

    Implementing specific image processing algorithms via very large scale integrated systems offers a potent solution to the problem of handling high data rates. Two algorithms stand out as being particularly critical -- geometric map transformation and filtering or correlation. These two functions form the basis for data calibration, registration and mosaicking. VLSI presents itself as an inexpensive ancillary function to be added to almost any general purpose computer and if the geometry and filter algorithms are implemented in VLSI, the processing rate bottleneck would be significantly relieved. A set of image processing functions that limit present systems to deal with future throughput needs, translates these functions to algorithms, implements via VLSI technology and interfaces the hardware to a general purpose digital computer is developed.

  6. Integrated healthy workplace model: An experience from North Indian industry

    PubMed Central

    Thakur, Jarnail Singh; Bains, Puneet; Kar, Sitanshu Sekhar; Wadhwa, Sanjay; Moirangthem, Prabha; Kumar, Rajesh; Wadwalker, Sanjay; Sharma, Yashpal

    2012-01-01

    Background: Keeping in view of rapid industrialization and growing Indian economy, there has been a substantial increase in the workforce in India. Currently there is no organized workplace model for promoting health of industrial workers in India. Objective: To develop and implement a healthy workplace model in three industrial settings of North India. Materials and Methods: An operations research was conducted for 12 months in purposively selected three industries of Chandigarh. In phase I, a multi-stakeholder workshop was conducted to finalize the components and tools for the healthy workplace model. NCD risk factors were assessed in 947 employees in these three industries. In phase II, the healthy workplace model was implemented on pilot basis for a period of 12 months in these three industries to finalize the model. Findings: Healthy workplace committee with involvement of representatives of management, labor union and research organization was formed in three industries. Various tools like comprehensive and rapid healthy workplace assessment forms, NCD work-lite format for risk factors surveillance and monitoring and evaluation format were developed. The prevalence of tobacco use, ever alcoholics was found to be 17.8% and 47%, respectively. Around one-third (28%) of employees complained of back pain in the past 12 months. Healthy workplace model with focus on three key components (physical environment, psychosocial work environment, and promoting healthy habits) was developed, implemented on pilot basis, and finalized based on experience in participating industries. A stepwise approach for model with a core, expanded, and optional components were also suggested. An accreditation system is also required for promoting healthy workplace program. Conclusion: Integrated healthy workplace model is feasible, could be implemented in industrial setting in northern India and needs to be pilot tested in other parts of the country. PMID:23776318

  7. An implementation strategy to improve the guideline adherence of insurance physicians: an experiment in a controlled setting

    PubMed Central

    2011-01-01

    Background The aim of this study was to investigate the efficacy of a newly developed implementation strategy for the insurance medicine guidelines for depression in the Netherlands. We hypothesized that an educational intervention would increase the insurance physicians' (IPs) guideline adherence in a controlled setting. Methods Forty IPs were allocated in a randomised controlled trial (RCT) to an intervention group (IG) (n = 21) and a control group (CG) (n = 19). The IG received tailored training in applying the guidelines for depression, while the CG received an alternative programme. Baseline (T0) and follow-up (T1) measurements were conducted before and after the intervention within a period of two weeks. The intervention consisted of a workshop in which the evidence-based theory of the guidelines was translated for use in practice, with the help of various tools. The IPs had to write a case-report on the basis of video cases, two before and two after the training. Specially trained and blinded test IPs judged the case reports independently on the basis of six performance indicators. Primary outcome measure in the controlled setting of the trial was guideline adherence measured by six performance indicators on a scale of one to seven. Secondary outcome measure was knowledge of the guidelines for depression. Analyses were performed using Linear Mixed Models, and ANCOVA. Results We found significantly higher scores in the IG than in the CG at T1 for both outcomes. The interaction effect (standard error; p-value) of group crossed with time was 0.97 (0.19; p < 0.0005) for guideline adherence in the controlled setting. The group effect at T1 for the knowledge test was 0.86 (0.40; p = 0.038). Conclusions The newly developed implementation strategy for the insurance medicine guidelines for depression improved the guideline adherence of the trained IPs in disability assessments of clients with depression when performed in a controlled setting. Furthermore, the trained IPs showed gains in knowledge of the guidelines for depression. Trial registration Netherlands' Trial Register NTR1863. PMID:22188876

  8. Evidence-Based Best Practices for Outpatient Management of Warfarin.

    PubMed

    Rose, Adam J; Vaiana, Mary

    2018-06-01

    Many best practices have been described for organizing a clinic to manage warfarin. Although these practices may have face validity, they may not be based on empirical analysis. Here, we describe our decade-long effort to apply the Structure-Process-Outcome model of quality measurement as a basis for measuring and improving outpatient warfarin management in the Veterans Health Administration. The purpose of the article is to raise awareness of this body of work with pharmacists who could potentially incorporate the findings of this work into their own practice settings. We conclude with concrete suggestions for immediate implementation in clinical settings.

  9. Comparison of Modal to Nodal Approaches for Wavefront Correction,

    DTIC Science & Technology

    1986-02-01

    the influence function of the wavefront corrector. (Implicit here is the assumption that the influence function is the same for every node, which is...To implement a nodal correction, the wavefront to be corrected is -. .. decomposed using a basis which is determined by the nodal (actuator) influence ... function of the wavefront corrector. This decomposition results in a set of coefficients which correspond to the drive signal required at the

  10. [The challenges and perspectives of collaborative networking].

    PubMed

    Houver, Jacques

    2013-01-01

    The mental health action plan for Europe dates back to 2005 and sets out the terms for drawing up, implementing and strengthening global mental health policies in all European countries. While in the area of psychiatry, the advantages of working in a network must be emphasised, it can be developed on the level of the local community, the health care territory or the department as well as on a regional basis.

  11. Methods and means of diagnostics of oncological diseases on the basis of pattern recognition: intelligent morphological systems - problems and solutions

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.

    2017-01-01

    The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.

  12. Adolescent Learning in the Zoo: Embedding a Non-Formal Learning Environment to Teach Formal Aspects of Vertebrate Biology

    ERIC Educational Resources Information Center

    Randler, Christoph; Kummer, Barbara; Wilhelm, Christian

    2012-01-01

    The aim of this study was to assess the outcome of a zoo visit in terms of learning and retention of knowledge concerning the adaptations and behavior of vertebrate species. Basis of the work was the concept of implementing zoo visits as an out-of-school setting for formal, curriculum based learning. Our theoretical framework centers on the…

  13. Monte Carlo explicitly correlated second-order many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Johnson, Cole M.; Doran, Alexander E.; Zhang, Jinmei; Valeev, Edward F.; Hirata, So

    2016-10-01

    A stochastic algorithm is proposed and implemented that computes a basis-set-incompleteness (F12) correction to an ab initio second-order many-body perturbation energy as a short sum of 6- to 15-dimensional integrals of Gaussian-type orbitals, an explicit function of the electron-electron distance (geminal), and its associated excitation amplitudes held fixed at the values suggested by Ten-no. The integrals are directly evaluated (without a resolution-of-the-identity approximation or an auxiliary basis set) by the Metropolis Monte Carlo method. Applications of this method to 17 molecular correlation energies and 12 gas-phase reaction energies reveal that both the nonvariational and variational formulas for the correction give reliable correlation energies (98% or higher) and reaction energies (within 2 kJ mol-1 with a smaller statistical uncertainty) near the complete-basis-set limits by using just the aug-cc-pVDZ basis set. The nonvariational formula is found to be 2-10 times less expensive to evaluate than the variational one, though the latter yields energies that are bounded from below and is, therefore, slightly but systematically more accurate for energy differences. Being capable of using virtually any geminal form, the method confirms the best overall performance of the Slater-type geminal among 6 forms satisfying the same cusp conditions. Not having to precompute lower-dimensional integrals analytically, to store them on disk, or to transform them in a nonscalable dense-matrix-multiplication algorithm, the method scales favorably with both system size and computer size; the cost increases only as O(n4) with the number of orbitals (n), and its parallel efficiency reaches 99.9% of the ideal case on going from 16 to 4096 computer processors.

  14. The Harmonizing Outcome Measures for Eczema (HOME) roadmap: a methodological framework to develop core sets of outcome measurements in dermatology.

    PubMed

    Schmitt, Jochen; Apfelbacher, Christian; Spuls, Phyllis I; Thomas, Kim S; Simpson, Eric L; Furue, Masutaka; Chalmers, Joanne; Williams, Hywel C

    2015-01-01

    Core outcome sets (COSs) are consensus-derived minimum sets of outcomes to be assessed in a specific situation. COSs are being increasingly developed to limit outcome-reporting bias, allow comparisons across trials, and strengthen clinical decision making. Despite the increasing interest in outcomes research, methods to develop COSs have not yet been standardized. The aim of this paper is to present the Harmonizing Outcomes Measures for Eczema (HOME) roadmap for the development and implementation of COSs, which was developed on the basis of our experience in the standardization of outcome measurements for atopic eczema. Following the establishment of a panel representing all relevant stakeholders and a research team experienced in outcomes research, the scope and setting of the core set should be defined. The next steps are the definition of a core set of outcome domains such as symptoms or quality of life, followed by the identification or development and validation of appropriate outcome measurement instruments to measure these core domains. Finally, the consented COS needs to be disseminated, implemented, and reviewed. We believe that the HOME roadmap is a useful methodological framework to develop COSs in dermatology, with the ultimate goal of better decision making and promoting patient-centered health care.

  15. Intelligent Support System of Steel Technical Preparation in an Arc Furnace: Functional Scheme of Interactive Builder of the Multi Objective Optimization Problem

    NASA Astrophysics Data System (ADS)

    Logunova, O. S.; Sibileva, N. S.

    2017-12-01

    The purpose of the study is to increase the efficiency of the steelmaking process in large capacity arc furnace on the basis of implementation a new decision-making system about the composition of charge materials. The authors proposed an interactive builder for the formation of the optimization problem, taking into account the requirements of the customer, normative documents and stocks of charge materials in the warehouse. To implement the interactive builder, the sets of deterministic and stochastic model components are developed, as well as a list of preferences of criteria and constraints.

  16. Correlation consistent basis sets for the atoms In–Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahler, Andrew; Wilson, Angela K., E-mail: akwilson@unt.edu

    In this work, the correlation consistent family of Gaussian basis sets has been expanded to include all-electron basis sets for In–Xe. The methodology for developing these basis sets is described, and several examples of the performance and utility of the new sets have been provided. Dissociation energies and bond lengths for both homonuclear and heteronuclear diatomics demonstrate the systematic convergence behavior with respect to increasing basis set quality expected by the family of correlation consistent basis sets in describing molecular properties. Comparison with recently developed correlation consistent sets designed for use with the Douglas-Kroll Hamiltonian is provided.

  17. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation.

    PubMed

    McGrath, Susan P; Taenzer, Andreas H; Karon, Nancy; Blike, George

    2016-07-01

    The growing number of monitoring devices, combined with suboptimal patient monitoring and alarm management strategies, has increased "alarm fatigue," which have led to serious consequences. Most reported alarm man- agement approaches have focused on the critical care setting. Since 2007 Dartmouth-Hitchcock (Lebanon, New Hamp- shire) has developed a generalizable and effective design, implementation, and performance evaluation approach to alarm systems for continuous monitoring in general care settings (that is, patient surveillance monitoring). In late 2007, a patient surveillance monitoring system was piloted on the basis of a structured design and implementation approach in a 36-bed orthopedics unit. Beginning in early 2009, it was expanded to cover more than 200 inpatient beds in all medicine and surgical units, except for psychiatry and labor and delivery. Improvements in clinical outcomes (reduction of unplanned transfers by 50% and reduction of rescue events by more than 60% in 2008) and approximately two alarms per patient per 12-hour nursing shift in the original pilot unit have been sustained across most D-H general care units in spite of increasing patient acuity and unit occupancy. Sample analysis of pager notifications indicates that more than 85% of all alarm conditions are resolved within 30 seconds and that more than 99% are resolved before escalation is triggered. The D-H surveillance monitoring system employs several important, generalizable features to manage alarms in a general care setting: alarm delays, static thresholds set appropriately for the prevalence of events in this setting, directed alarm annunciation, and policy-driven customization of thresholds to allow clinicians to respond to needs of individual patients. The systematic approach to design, implementation, and performance management has been key to the success of the system.

  18. GRIL: genome rearrangement and inversion locator.

    PubMed

    Darling, Aaron E; Mau, Bob; Blattner, Frederick R; Perna, Nicole T

    2004-01-01

    GRIL is a tool to automatically identify collinear regions in a set of bacterial-size genome sequences. GRIL uses three basic steps. First, regions of high sequence identity are located. Second, some of these regions are filtered based on user-specified criteria. Finally, the remaining regions of sequence identity are used to define significant collinear regions among the sequences. By locating collinear regions of sequence, GRIL provides a basis for multiple genome alignment using current alignment systems. GRIL also provides a basis for using current inversion distance tools to infer phylogeny. GRIL is implemented in C++ and runs on any x86-based Linux or Windows platform. It is available from http://asap.ahabs.wisc.edu/gril

  19. The Impact of Law on Syndromic Disease Surveillance Implementation.

    PubMed

    Purtle, Jonathan; Field, Robert I; Hipper, Thomas; Nash-Arott, Jillian; Chernak, Esther; Buehler, James W

    Legal environments influence how health information technologies are implemented in public health practice settings. Syndromic disease surveillance (SyS) is a relatively new approach to surveillance that depends heavily on health information technologies to achieve rapid awareness of disease trends. Evidence suggests that legal concerns have impeded the optimization of SyS. To (1) understand the legal environments in which SyS is implemented, (2) determine the perceived legal basis for SyS, and (3) identify perceived legal barriers and facilitators to SyS implementation. Multisite case study in which 35 key informant interviews and 5 focus groups were conducted with 75 SyS stakeholders. Interviews and focus groups were audio recorded, transcribed, and analyzed by 3 coders using thematic content analysis. Legal documents were reviewed. Seven jurisdictions (5 states, 1 county, and 1 city) that were purposively selected on the basis of SyS capacity and legal environment. Health department directors, SyS system administrators, legal counsel, and hospital personnel. Federal (eg, HIPAA) and state (eg, notifiable disease reporting) laws that authorize traditional public health surveillance were perceived as providing a legal basis for SyS. Financial incentives for hospitals to satisfy Meaningful Use regulations have eased concerns about the legality of SyS and increased the number of hospitals reporting SyS data. Legal issues were perceived as barriers to BioSense 2.0 (the federal SyS program) participation but were surmountable. Major legal reforms are not needed to promote more widespread use of SyS. The current legal environment is perceived by health department and hospital officials as providing a firm basis for SyS practice. This is a shift from how law was perceived when SyS adoption began and has policy implications because it indicates that major legal reforms are not needed to promote more widespread use of the technology. Beyond SyS, our study suggests that federal monetary incentives can ameliorate legal concerns regarding novel health information technologies.

  20. New DMFT capabilities in CASTEP

    NASA Astrophysics Data System (ADS)

    Plekhanov, Evgeny; Sacksteder, Vincent; Hasnip, Phil; Probert, Matt; Clark, Stewart; Weber, Cedric; Refson, Keith

    We present the first implementation of Dynamical Mean-Field Theory in UK's major ab-initio code CASTEP. This implementation: i) is modular; ii) allows great flexibility in choosing local basis set for downfolding/upfolding of self-energy; iii) permits wide choice of impurity solvers (including external solver libraries); and iv) gives the user a possibility to use several self-consistency schemes and calculate total energy and forces. We explain in details the theoretical framework used. We benchmark our implementation on several strongly-correlated insulating systems with d- and f-shells: γ-Ce and Ce2O3 by using Hubbard I and CTHYB-QMC solvers. Our results appear to be in excellent agreement with the reference data published previously in the literature. EPSRC-funded project ''Strong Correlation meets Materials Modelling: DMFT and GW in CASTEP''.

  1. PISCES 2 users manual

    NASA Technical Reports Server (NTRS)

    Pratt, Terrence W.

    1987-01-01

    PISCES 2 is a programming environment and set of extensions to Fortran 77 for parallel programming. It is intended to provide a basis for writing programs for scientific and engineering applications on parallel computers in a way that is relatively independent of the particular details of the underlying computer architecture. This user's manual provides a complete description of the PISCES 2 system as it is currently implemented on the 20 processor Flexible FLEX/32 at NASA Langley Research Center.

  2. Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory

    NASA Astrophysics Data System (ADS)

    Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin

    2016-05-01

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.

  3. Qudit-Basis Universal Quantum Computation Using χ^{(2)} Interactions.

    PubMed

    Niu, Murphy Yuezhen; Chuang, Isaac L; Shapiro, Jeffrey H

    2018-04-20

    We prove that universal quantum computation can be realized-using only linear optics and χ^{(2)} (three-wave mixing) interactions-in any (n+1)-dimensional qudit basis of the n-pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ^{(2)} Hamiltonians and photon-number operators generate the full u(3) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ^{(2)} interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ^{(2)} interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.

  4. Qudit-Basis Universal Quantum Computation Using χ(2 ) Interactions

    NASA Astrophysics Data System (ADS)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-04-01

    We prove that universal quantum computation can be realized—using only linear optics and χ(2 ) (three-wave mixing) interactions—in any (n +1 )-dimensional qudit basis of the n -pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ(2 ) Hamiltonians and photon-number operators generate the full u (3 ) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ(2 ) interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ(2 ) interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.

  5. Ames Research Center FY 2000 Implementation Plan: Leading Technology into the New Millennium

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This document presents the implementation plan for Ames Research Center (ARC) within the overall framework of the NASA Strategic Plan. It describes how ARC intends to implement its Center of Excellence responsibilities, Agency assigned missions, Agency and Enterprise lead programs, and other roles in support of NASA's vision and mission. All Federal agencies are required by the 1993 Government Performance and Results Act to implement a long-term strategic planning process that includes measurable outcomes and strict accountability. At NASA, this planning process is shaped by the Space Act of 1958, annual appropriations, and other external mandates, as well as by customer requirements. The resulting Strategic Plan sets the overall architecture for what we do, identifies who our customers are, and directs where we are going and why. The Strategic Plan is the basis upon which decisions regarding program implementation and resource deployment are made. Whereas the strategic planning process examines the long-term direction of the organization and identifies a specific set of goals, the implementation planning process examines the detailed performance of the organization and allocates resources toward meeting these goals. It is the purpose of this implementation document to provide the connection between the NASA Strategic Plan and the specific programs and support functions that ARC employees perform. This connection flows from the NASA Strategic Plan, through the various Strategic Enterprise plans to the ARC Center of Excellence, primary missions, Lead Center programs, program support responsibilities, and ultimately, to the role of the individual ARC employee.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, Jonathon; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Neaton, Jeffrey B.

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methodsmore » and systems examined, the most complete basis is Jensen’s pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.« less

  7. Using computer decision support systems in NHS emergency and urgent care: ethnographic study using normalisation process theory

    PubMed Central

    2013-01-01

    Background Information and communication technologies (ICTs) are often proposed as ‘technological fixes’ for problems facing healthcare. They promise to deliver services more quickly and cheaply. Yet research on the implementation of ICTs reveals a litany of delays, compromises and failures. Case studies have established that these technologies are difficult to embed in everyday healthcare. Methods We undertook an ethnographic comparative analysis of a single computer decision support system in three different settings to understand the implementation and everyday use of this technology which is designed to deal with calls to emergency and urgent care services. We examined the deployment of this technology in an established 999 ambulance call-handling service, a new single point of access for urgent care and an established general practice out-of-hours service. We used Normalization Process Theory as a framework to enable systematic cross-case analysis. Results Our data comprise nearly 500 hours of observation, interviews with 64 call-handlers, and stakeholders and documents about the technology and settings. The technology has been implemented and is used distinctively in each setting reflecting important differences between work and contexts. Using Normalisation Process Theory we show how the work (collective action) of implementing the system and maintaining its routine use was enabled by a range of actors who established coherence for the technology, secured buy-in (cognitive participation) and engaged in on-going appraisal and adjustment (reflexive monitoring). Conclusions Huge effort was expended and continues to be required to implement and keep this technology in use. This innovation must be understood both as a computer technology and as a set of practices related to that technology, kept in place by a network of actors in particular contexts. While technologies can be ‘made to work’ in different settings, successful implementation has been achieved, and will only be maintained, through the efforts of those involved in the specific settings and if the wider context continues to support the coherence, cognitive participation, and reflective monitoring processes that surround this collective action. Implementation is more than simply putting technologies in place – it requires new resources and considerable effort, perhaps on an on-going basis. PMID:23522021

  8. Place prioritization for biodiversity content.

    PubMed

    Sarkar, Sahotra; Aggarwal, Anshu; Garson, Justin; Margules, Chris R; Zeidler, Juliane

    2002-07-01

    The prioritization of places on the basis of biodiversity content is part of any systematic biodiversity conservation planning process. The place prioritization procedure implemented in the ResNet software package is described. This procedure is primarily based on the principles of rarity and complementarity. Application of the procedure is demonstrated with two analyses, one data set consisting of the distributions of termite genera in Namibia, and the other consisting of the distributions of bird species in the Islas Malvinas/Falkland Islands. The attributes that data sets should have for the effective and reliable application of such procedures are discussed. The procedure used here is compared to some others that are also currently in use.

  9. Organizational issues in the implementation and adoption of health information technology innovations: an interpretative review.

    PubMed

    Cresswell, Kathrin; Sheikh, Aziz

    2013-05-01

    Implementations of health information technologies are notoriously difficult, which is due to a range of inter-related technical, social and organizational factors that need to be considered. In the light of an apparent lack of empirically based integrated accounts surrounding these issues, this interpretative review aims to provide an overview and extract potentially generalizable findings across settings. We conducted a systematic search and critique of the empirical literature published between 1997 and 2010. In doing so, we searched a range of medical databases to identify review papers that related to the implementation and adoption of eHealth applications in organizational settings. We qualitatively synthesized this literature extracting data relating to technologies, contexts, stakeholders, and their inter-relationships. From a total body of 121 systematic reviews, we identified 13 systematic reviews encompassing organizational issues surrounding health information technology implementations. By and large, the evidence indicates that there are a range of technical, social and organizational considerations that need to be deliberated when attempting to ensure that technological innovations are useful for both individuals and organizational processes. However, these dimensions are inter-related, requiring a careful balancing act of strategic implementation decisions in order to ensure that unintended consequences resulting from technology introduction do not pose a threat to patients. Organizational issues surrounding technology implementations in healthcare settings are crucially important, but have as yet not received adequate research attention. This may in part be due to the subjective nature of factors, but also due to a lack of coordinated efforts toward more theoretically-informed work. Our findings may be used as the basis for the development of best practice guidelines in this area. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook

    2015-03-07

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less

  11. Workgroup Report: Developing Environmental Health Indicators for European Children: World Health Organization Working Group

    PubMed Central

    Pond, Kathy; Kim, Rokho; Carroquino, Maria-Jose; Pirard, Philippe; Gore, Fiona; Cucu, Alexandra; Nemer, Leda; MacKay, Morag; Smedje, Greta; Georgellis, Antonis; Dalbokova, Dafina; Krzyzanowski, Michal

    2007-01-01

    A working group coordinated by the World Health Organization developed a set of indicators to protect children’s health from environmental risks and to support current and future European policy needs. On the basis of identified policy needs, the group developed a core set of 29 indicators for implementation plus an extended set of eight additional indicators for future development, focusing on exposure, health effects, and action. As far as possible, the indicators were designed to use existing information and are flexible enough to be developed further to meet the needs of policy makers and changing health priorities. These indicators cover most of the priority topic areas specified in the Children’s Environment and Health Action Plan for Europe (CEHAPE) as adopted in the Fourth Ministerial Conference on Health and Environment in 2004, and will be used to monitor the implementation of CEHAPE. This effort can be viewed as an integral part of the Global Initiative on Children’s Environmental Health Indicators, launched at the World Summit on Sustainable Development in 2002. PMID:17805431

  12. Development and implementation of an HSE management system in E and P companies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, P.D.; Mundhenk, D.L.; Jones, M.G.

    1995-01-01

    This paper describes the experience to date with safety management systems (SMS's) and describes their implementation after the Piper Alpha disaster and Lord Cullen's report. It also shows the gradual expansion of these systems toward fully integrated health, safety, and environment (HSE) management systems. The authors' company policy, which was clearly stated before publication of Lord Cullen's report, is that work should not start until the appropriate controls are in place. Work based on this policy and on objective-setting SMS's within Shell Intl. Petroleum Mij. (SIPM) E and P coordination started in earnest soon after the publication of the reportmore » in Nov. 1990 and has continued without interruption since that time. Objective-setting systems may be defined as systems where the company management sets its own objectives or goals on the basis of functional rather than prescriptive requirements and then goes on to demonstrate how such goals have been, or are being, met. The paper ends with a projection of what may be expected in the future.« less

  13. Optimization of selected molecular orbitals in group basis sets.

    PubMed

    Ferenczy, György G; Adams, William H

    2009-04-07

    We derive a local basis equation which may be used to determine the orbitals of a group of electrons in a system when the orbitals of that group are represented by a group basis set, i.e., not the basis set one would normally use but a subset suited to a specific electronic group. The group orbitals determined by the local basis equation minimize the energy of a system when a group basis set is used and the orbitals of other groups are frozen. In contrast, under the constraint of a group basis set, the group orbitals satisfying the Huzinaga equation do not minimize the energy. In a test of the local basis equation on HCl, the group basis set included only 12 of the 21 functions in a basis set one might ordinarily use, but the calculated active orbital energies were within 0.001 hartree of the values obtained by solving the Hartree-Fock-Roothaan (HFR) equation using all 21 basis functions. The total energy found was just 0.003 hartree higher than the HFR value. The errors with the group basis set approximation to the Huzinaga equation were larger by over two orders of magnitude. Similar results were obtained for PCl(3) with the group basis approximation. Retaining more basis functions allows an even higher accuracy as shown by the perfect reproduction of the HFR energy of HCl with 16 out of 21 basis functions in the valence basis set. When the core basis set was also truncated then no additional error was introduced in the calculations performed for HCl with various basis sets. The same calculations with fixed core orbitals taken from isolated heavy atoms added a small error of about 10(-4) hartree. This offers a practical way to calculate wave functions with predetermined fixed core and reduced base valence orbitals at reduced computational costs. The local basis equation can also be used to combine the above approximations with the assignment of local basis sets to groups of localized valence molecular orbitals and to derive a priori localized orbitals. An appropriately chosen localization and basis set assignment allowed a reproduction of the energy of n-hexane with an error of 10(-5) hartree, while the energy difference between its two conformers was reproduced with a similar accuracy for several combinations of localizations and basis set assignments. These calculations include localized orbitals extending to 4-5 heavy atoms and thus they require to solve reduced dimension secular equations. The dimensions are not expected to increase with increasing system size and thus the local basis equation may find use in linear scaling electronic structure calculations.

  14. Efficient parallel architecture for highly coupled real-time linear system applications

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo

    1988-01-01

    A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.

  15. Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method.

    PubMed

    Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav

    2013-10-28

    We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.

  16. NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Architecture

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    The theoretical basis and architecture of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are described. The principal tasks of NDARC are to design (or size) a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated. The aircraft attributes are obtained from the sum of the component attributes. NDARC provides a capability to model general rotorcraft configurations, and estimate the performance and attributes of advanced rotor concepts. The software has been implemented with low-fidelity models, typical of the conceptual design environment. Incorporation of higher-fidelity models will be possible, as the architecture of the code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis and optimization.

  17. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  18. Accurate Methods for Large Molecular Systems (Preprint)

    DTIC Science & Technology

    2009-01-06

    tensor, EFP calculations are basis set dependent. The smallest recommended basis set is 6- 31++G( d , p )52 The dependence of the computational cost of...and second order perturbation theory (MP2) levels with the 6-31G( d , p ) basis set. Additional SFM tests are presented for a small set of alpha...helices using the 6-31++G( d , p ) basis set. The larger 6-311++G(3df,2p) basis set is employed for creating all EFPs used for non- bonded interactions, since

  19. The International Classification of Functioning, Disability and Health and the version for children and youth as a tool in child habilitation/early childhood intervention--feasibility and usefulness as a common language and frame of reference for practice.

    PubMed

    Björck-Åkesson, Eva; Wilder, Jenny; Granlund, Mats; Pless, Mia; Simeonsson, Rune; Adolfsson, Margareta; Almqvist, Lena; Augustine, Lilly; Klang, Nina; Lillvist, Anne

    2010-01-01

    Early childhood intervention and habilitation services for children with disabilities operate on an interdisciplinary basis. It requires a common language between professionals, and a shared framework for intervention goals and intervention implementation. The International Classification of Functioning, Disability and Health (ICF) and the version for children and youth (ICF-CY) may serve as this common framework and language. This overview of studies implemented by our research group is based on three research questions: Do the ICF-CY conceptual model have a valid content and is it logically coherent when investigated empirically? Is the ICF-CY classification useful for documenting child characteristics in services? What difficulties and benefits are related to using ICF-CY model as a basis for intervention when it is implemented in services? A series of studies, undertaken by the CHILD researchers are analysed. The analysis is based on data sets from published studies or master theses. Results and conclusion show that the ICF-CY has a useful content and is logically coherent on model level. Professionals find it useful for documenting children's body functions and activities. Guidelines for separating activity and participation are needed. ICF-CY is a complex classification, implementing it in services is a long-term project.

  20. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    PubMed

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  1. An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies.

    PubMed

    Feller, David; Peterson, Kirk A

    2013-08-28

    The effectiveness of the recently developed, explicitly correlated coupled cluster method CCSD(T)-F12b is examined in terms of its ability to reproduce atomization energies derived from complete basis set extrapolations of standard CCSD(T). Most of the standard method findings were obtained with aug-cc-pV7Z or aug-cc-pV8Z basis sets. For a few homonuclear diatomic molecules it was possible to push the basis set to the aug-cc-pV9Z level. F12b calculations were performed with the cc-pVnZ-F12 (n = D, T, Q) basis set sequence and were also extrapolated to the basis set limit using a Schwenke-style, parameterized formula. A systematic bias was observed in the F12b method with the (VTZ-F12/VQZ-F12) basis set combination. This bias resulted in the underestimation of reference values associated with small molecules (valence correlation energies <0.5 E(h)) and an even larger overestimation of atomization energies for bigger systems. Consequently, caution should be exercised in the use of F12b for high accuracy studies. Root mean square and mean absolute deviation error metrics for this basis set combination were comparable to complete basis set values obtained with standard CCSD(T) and the aug-cc-pVDZ through aug-cc-pVQZ basis set sequence. However, the mean signed deviation was an order of magnitude larger. Problems partially due to basis set superposition error were identified with second row compounds which resulted in a weak performance for the smaller VDZ-F12/VTZ-F12 combination of basis sets.

  2. Category-theoretic models of algebraic computer systems

    NASA Astrophysics Data System (ADS)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  3. Optimized auxiliary basis sets for density fitted post-Hartree-Fock calculations of lanthanide containing molecules

    NASA Astrophysics Data System (ADS)

    Chmela, Jiří; Harding, Michael E.

    2018-06-01

    Optimised auxiliary basis sets for lanthanide atoms (Ce to Lu) for four basis sets of the Karlsruhe error-balanced segmented contracted def2 - series (SVP, TZVP, TZVPP and QZVPP) are reported. These auxiliary basis sets enable the use of the resolution-of-the-identity (RI) approximation in post Hartree-Fock methods - as for example, second-order perturbation theory (MP2) and coupled cluster (CC) theory. The auxiliary basis sets are tested on an enlarged set of about a hundred molecules where the test criterion is the size of the RI error in MP2 calculations. Our tests also show that the same auxiliary basis sets can be used together with different effective core potentials. With these auxiliary basis set calculations of MP2 and CC quality can now be performed efficiently on medium-sized molecules containing lanthanides.

  4. [Improving prevention activities of infectious diseases during preparation and holding of the XXII Olympic Winter Games and XI Paralympic Winter Games 2014 in Sochi].

    PubMed

    Onishchenko, G G; Bragina, I V; Ezhlova, E B; Demina, Iu V; Grechanaia, T V; Nikolaevich, P N; Balaeva, M I; Tesheva, S Ch; Biriukov, V A; Kulichenko, A N; Vasilenko, N F; Maletskaia, O V; Manin, E A; Orobeĭ, V G

    2015-01-01

    The article presents data on the implementation of a set of preventive activities to ensure sanitation and epidemiological welfare during the XXII Olympic Winter Games and XI Paralympic Winter Games 2014 in Sochi. The importance of monitoring and evaluation of epidemiological risk, as the basis of formation of preventive measures is noticed. The questions of specific, and nonspecific prevention of infectious diseases, especially the work done during the pre-Olympic period are considered. The importance of specifically developed regulatory basis, and health education are emphasized. The conclusion about the effectiveness of the measures taken, which led to a significant reduction of infectious diseases in the region is made.

  5. Model of a programmable quantum processing unit based on a quantum transistor effect

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Andrianov, Sergey; Fetisov, Danila; Moiseev, Sergey; Terentyev, Alexandr; Urmanchev, Andrey; Vasiliev, Alexander

    2018-02-01

    In this paper we propose a model of a programmable quantum processing device realizable with existing nano-photonic technologies. It can be viewed as a basis for new high performance hardware architectures. Protocols for physical implementation of device on the controlled photon transfer and atomic transitions are presented. These protocols are designed for executing basic single-qubit and multi-qubit gates forming a universal set. We analyze the possible operation of this quantum computer scheme. Then we formalize the physical architecture by a mathematical model of a Quantum Processing Unit (QPU), which we use as a basis for the Quantum Programming Framework. This framework makes it possible to perform universal quantum computations in a multitasking environment.

  6. Ab Initio Density Fitting: Accuracy Assessment of Auxiliary Basis Sets from Cholesky Decompositions.

    PubMed

    Boström, Jonas; Aquilante, Francesco; Pedersen, Thomas Bondo; Lindh, Roland

    2009-06-09

    The accuracy of auxiliary basis sets derived by Cholesky decompositions of the electron repulsion integrals is assessed in a series of benchmarks on total ground state energies and dipole moments of a large test set of molecules. The test set includes molecules composed of atoms from the first three rows of the periodic table as well as transition metals. The accuracy of the auxiliary basis sets are tested for the 6-31G**, correlation consistent, and atomic natural orbital basis sets at the Hartree-Fock, density functional theory, and second-order Møller-Plesset levels of theory. By decreasing the decomposition threshold, a hierarchy of auxiliary basis sets is obtained with accuracies ranging from that of standard auxiliary basis sets to that of conventional integral treatments.

  7. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.

    PubMed

    Petrenko, Taras; Kossmann, Simone; Neese, Frank

    2011-02-07

    In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The parallelization efficiency for the Coulomb terms can be somewhat smaller (speedup ~15-25 for 30 processors), but their contribution to the total calculation time is small. Thus, the parallel program completes a Becke3-Lee-Yang-Parr energy and gradient calculation on the Ag-TB2-helicate in less than 4 h on 30 processors. We also present the necessary extension of the Lagrangian formalism, which enables the calculation of the TDDFT excited state properties in the frozen-core approximation. The algorithms described in this work are implemented into the ORCA electronic structure system.

  8. Implementation of genetic conservation practices in a muskellunge propagation and stocking program

    USGS Publications Warehouse

    Jennings, Martin J.; Sloss, Brian L.; Hatzenbeler, Gene R.; Kampa, Jeffrey M.; Simonson, Timothy D.; Avelallemant, Steven P.; Lindenberger, Gary A.; Underwood, Bruce D.

    2010-01-01

    Conservation of genetic resources is a challenging issue for agencies managing popular sport fishes. To address the ongoing potential for genetic risks, we developed a comprehensive set of recommendations to conserve genetic diversity of muskellunge (Esox masquinongy) in Wisconsin, and evaluated the extent to which the recommendations can be implemented. Although some details are specific to Wisconsin's muskellunge propagation program, many of the practical issues affecting implementation are applicable to other species and production systems. We developed guidelines to restrict future broodstock collection operations to lakes with natural reproduction and to develop a set of brood lakes to use on a rotational basis within regional stock boundaries, but implementation will require considering lakes with variable stocking histories. Maintaining an effective population size sufficient to minimize the risk of losing alleles requires limiting broodstock collection to large lakes. Recommendations to better approximate the temporal distribution of spawning in hatchery operations and randomize selection of brood fish are feasible. Guidelines to modify rearing and distribution procedures face some logistic constraints. An evaluation of genetic diversity of hatchery-produced fish during 2008 demonstrated variable success representing genetic variation of the source population. Continued evaluation of hatchery operations will optimize operational efficiency while moving toward genetic conservation goals.

  9. Implementation of genetic conservation practices in a muskellunge propagation and stocking program

    USGS Publications Warehouse

    Jennings, Martin J.; Sloss, Brian L.; Hatzenbeler, Gene R.; Kampa, Jeffrey M.; Simonson, Timothy D.; Avelallemant, Steven P.; Lindenberger, Gary A.; Underwood, Bruce D.

    2010-01-01

    Conservation of genetic resources is a challenging issue for agencies managing popular sport fishes. To address the ongoing potential for genetic risks, we developed a comprehensive set of recommendations to conserve genetic diversity of muskellunge (Esox masquinongy) in Wisconsin, and evaluated the extent to which the recommendations can be implemented. Although some details are specific to Wisconsin's muskellunge propagation program, many of the practical issues affecting implementation are applicable to other species and production systems. We developed guidelines to restrict future brood stock collection operations to lakes with natural reproduction and to develop a set of brood lakes to use on a rotational basis within regional stock boundaries, but implementation will require considering lakes with variable stocking histories. Maintaining an effective population size sufficient to minimize the risk of losing alleles requires limiting brood stock collection to large lakes. Recommendations to better approximate the temporal distribution of spawning in hatchery operations and randomize selection of brood fish are feasible. Guidelines to modify rearing and distribution procedures face some logistic constraints. An evaluation of genetic diversity of hatchery-produced fish during 2008 demonstrated variable success representing genetic variation of the source population. Continued evaluation of hatchery operations will optimize operational efficiency while moving toward genetic conservation goals.

  10. Developing a data dictionary for the irish nursing minimum dataset.

    PubMed

    Henry, Pamela; Mac Neela, Pádraig; Clinton, Gerard; Scott, Anne; Treacy, Pearl; Butler, Michelle; Hyde, Abbey; Morris, Roisin; Irving, Kate; Byrne, Anne

    2006-01-01

    One of the challenges in health care in Ireland is the relatively slow acceptance of standardised clinical information systems. Yet the national Irish health reform programme indicates that an Electronic Health Care Record (EHCR) will be implemented on a phased basis. [3-5]. While nursing has a key role in ensuring the quality and comparability of health information, the so- called 'invisibility' of some nursing activities makes this a challenging aim to achieve [3-5]. Any integrated health care system requires the adoption of uniform standards for electronic data exchange [1-2]. One of the pre-requisites for uniform standards is the composition of a data dictionary. Inadequate definition of data elements in a particular dataset hinders the development of an integrated data depository or electronic health care record (EHCR). This paper outlines how work on the data dictionary for the Irish Nursing Minimum Dataset (INMDS) has addressed this issue. Data set elements were devised on the basis of a large scale empirical research programme. ISO 18104, the reference terminology for nursing [6], was used to cross-map the data set elements with semantic domains, categories and links and data set items were dissected.

  11. Getting past yes: negotiating as if implementation mattered.

    PubMed

    Ertel, Danny

    2004-11-01

    Many deals that look good on paper never materialize into value-creating endeavors. Often, the problem begins at the negotiating table. In fact, the very person everyone thinks is pivotal to a deal's success--the negotiator--is often the one who undermines it. That's because most negotiators have a deal maker mind-set: They see the signed contract as the final destination rather than the start of a cooperative venture. What's worse, most companies reward negotiators on the basis of the number and size of the deals they're signing, giving them no incentive to change. The author asserts that organizations and negotiators must transition from a deal maker mentality--which involves squeezing your counterpart for everything you can get--to an implementation mind-set--which sets the stage for a healthy working relationship long after the ink has dried. Achieving an implementation mind-set demands five new approaches. First, start with the end in mind: Negotiation teams should carry out a "benefit of hindsight" exercise to imagine what sorts of problems they'll have encountered 12 months down the road. Second, help your counterpart prepare. Surprise confers advantage only because the other side has no time to think through all the implications of a proposal. If they agree to something they can't deliver, it will affect you both. Third, treat alignment as a shared responsibility. After all, if the other side's interests aren't aligned, it's your problem, too. Fourth, send one unified message. Negotiators should brief implementation teams on both sides together so everyone has the same information. And fifth, manage the negotiation like a business exercise: Combine disciplined negotiation preparation with post-negotiation reviews. Above all, companies must remember that the best deals don't end at the negotiating table--they begin there.

  12. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Kowalski, Karol

    The representation and storage of two-electron integral tensors are vital in large- scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this paper, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition ofmore » the two-electron integral tensor in our implementation. For the size of atomic basis set N_b ranging from ~ 100 up to ~ 2, 000, the observed numerical scaling of our implementation shows O(N_b^{2.5~3}) versus O(N_b^{3~4}) of single CD in most of other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic-orbital (AO) two-electron integral tensor from O(N_b^4) to O(N_b^2 log_{10}(N_b)) with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled- cluster formalism employing single and double excitations (CCSD) on several bench- mark systems including the C_{60} molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10^{-4} to 10^{-3} to give acceptable compromise between efficiency and accuracy.« less

  13. Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins.

    PubMed

    Li Manni, Giovanni; Smart, Simon D; Alavi, Ali

    2016-03-08

    A novel stochastic Complete Active Space Self-Consistent Field (CASSCF) method has been developed and implemented in the Molcas software package. A two-step procedure is used, in which the CAS configuration interaction secular equations are solved stochastically with the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) approach, while orbital rotations are performed using an approximated form of the Super-CI method. This new method does not suffer from the strong combinatorial limitations of standard MCSCF implementations using direct schemes and can handle active spaces well in excess of those accessible to traditional CASSCF approaches. The density matrix formulation of the Super-CI method makes this step independent of the size of the CI expansion, depending exclusively on one- and two-body density matrices with indices restricted to the relatively small number of active orbitals. No sigma vectors need to be stored in memory for the FCIQMC eigensolver--a substantial gain in comparison to implementations using the Davidson method, which require three or more vectors of the size of the CI expansion. Further, no orbital Hessian is computed, circumventing limitations on basis set expansions. Like the parent FCIQMC method, the present technique is scalable on massively parallel architectures. We present in this report the method and its application to the free-base porphyrin, Mg(II) porphyrin, and Fe(II) porphyrin. In the present study, active spaces up to 32 electrons and 29 orbitals in orbital expansions containing up to 916 contracted functions are treated with modest computational resources. Results are quite promising even without accounting for the correlation outside the active space. The systems here presented clearly demonstrate that large CASSCF calculations are possible via FCIQMC-CASSCF without limitations on basis set size.

  14. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations.

    PubMed

    Peng, Bo; Kowalski, Karol

    2017-09-12

    The representation and storage of two-electron integral tensors are vital in large-scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this work, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of the atomic basis set, N b , ranging from ∼100 up to ∼2,000, the observed numerical scaling of our implementation shows [Formula: see text] versus [Formula: see text] cost of performing single CD on the two-electron integral tensor in most of the other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic orbital (AO) two-electron integral tensor from [Formula: see text] to [Formula: see text] with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled cluster formalism employing single and double excitations (CCSD) on several benchmark systems including the C 60 molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10 -4 to 10 -3 to give acceptable compromise between efficiency and accuracy.

  15. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package.

    PubMed

    Womack, James C; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-28

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  16. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package

    NASA Astrophysics Data System (ADS)

    Womack, James C.; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-01

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Tuomas P., E-mail: tuomas.rossi@alumni.aalto.fi; Sakko, Arto; Puska, Martti J.

    We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate thatmore » the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.« less

  18. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkaya, Uğur, E-mail: ugur.bozkaya@hacettepe.edu.tr; Department of Chemistry, Atatürk University, Erzurum 25240; Sherrill, C. David

    2016-05-07

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbitalmore » (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C{sub 10}H{sub 22}), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.« less

  19. Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkó, Zoltán, E-mail: Z.Perko@tudelft.nl; Gilli, Luca, E-mail: Gilli@nrg.eu; Lathouwers, Danny, E-mail: D.Lathouwers@tudelft.nl

    2014-03-01

    The demand for accurate and computationally affordable sensitivity and uncertainty techniques is constantly on the rise and has become especially pressing in the nuclear field with the shift to Best Estimate Plus Uncertainty methodologies in the licensing of nuclear installations. Besides traditional, already well developed methods – such as first order perturbation theory or Monte Carlo sampling – Polynomial Chaos Expansion (PCE) has been given a growing emphasis in recent years due to its simple application and good performance. This paper presents new developments of the research done at TU Delft on such Polynomial Chaos (PC) techniques. Our work ismore » focused on the Non-Intrusive Spectral Projection (NISP) approach and adaptive methods for building the PCE of responses of interest. Recent efforts resulted in a new adaptive sparse grid algorithm designed for estimating the PC coefficients. The algorithm is based on Gerstner's procedure for calculating multi-dimensional integrals but proves to be computationally significantly cheaper, while at the same it retains a similar accuracy as the original method. More importantly the issue of basis adaptivity has been investigated and two techniques have been implemented for constructing the sparse PCE of quantities of interest. Not using the traditional full PC basis set leads to further reduction in computational time since the high order grids necessary for accurately estimating the near zero expansion coefficients of polynomial basis vectors not needed in the PCE can be excluded from the calculation. Moreover the sparse PC representation of the response is easier to handle when used for sensitivity analysis or uncertainty propagation due to the smaller number of basis vectors. The developed grid and basis adaptive methods have been implemented in Matlab as the Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm and were tested on four analytical problems. These show consistent good performance both in terms of the accuracy of the resulting PC representation of quantities and the computational costs associated with constructing the sparse PCE. Basis adaptivity also seems to make the employment of PC techniques possible for problems with a higher number of input parameters (15–20), alleviating a well known limitation of the traditional approach. The prospect of larger scale applicability and the simplicity of implementation makes such adaptive PC algorithms particularly appealing for the sensitivity and uncertainty analysis of complex systems and legacy codes.« less

  20. Theories of behaviour change synthesised into a set of theoretical groupings: introducing a thematic series on the theoretical domains framework.

    PubMed

    Francis, Jill J; O'Connor, Denise; Curran, Janet

    2012-04-24

    Behaviour change is key to increasing the uptake of evidence into healthcare practice. Designing behaviour-change interventions first requires problem analysis, ideally informed by theory. Yet the large number of partly overlapping theories of behaviour makes it difficult to select the most appropriate theory. The need for an overarching theoretical framework of behaviour change was addressed in research in which 128 explanatory constructs from 33 theories of behaviour were identified and grouped. The resulting Theoretical Domains Framework (TDF) appears to be a helpful basis for investigating implementation problems. Research groups in several countries have conducted TDF-based studies. It seems timely to bring together the experience of these teams in a thematic series to demonstrate further applications and to report key developments. This overview article describes the TDF, provides a brief critique of the framework, and introduces this thematic series.In a brief review to assess the extent of TDF-based research, we identified 133 papers that cite the framework. Of these, 17 used the TDF as the basis for empirical studies to explore health professionals' behaviour. The identified papers provide evidence of the impact of the TDF on implementation research. Two major strengths of the framework are its theoretical coverage and its capacity to elicit beliefs that could signify key mediators of behaviour change. The TDF provides a useful conceptual basis for assessing implementation problems, designing interventions to enhance healthcare practice, and understanding behaviour-change processes. We discuss limitations and research challenges and introduce papers in this series.

  1. Theories of behaviour change synthesised into a set of theoretical groupings: introducing a thematic series on the theoretical domains framework

    PubMed Central

    2012-01-01

    Behaviour change is key to increasing the uptake of evidence into healthcare practice. Designing behaviour-change interventions first requires problem analysis, ideally informed by theory. Yet the large number of partly overlapping theories of behaviour makes it difficult to select the most appropriate theory. The need for an overarching theoretical framework of behaviour change was addressed in research in which 128 explanatory constructs from 33 theories of behaviour were identified and grouped. The resulting Theoretical Domains Framework (TDF) appears to be a helpful basis for investigating implementation problems. Research groups in several countries have conducted TDF-based studies. It seems timely to bring together the experience of these teams in a thematic series to demonstrate further applications and to report key developments. This overview article describes the TDF, provides a brief critique of the framework, and introduces this thematic series. In a brief review to assess the extent of TDF-based research, we identified 133 papers that cite the framework. Of these, 17 used the TDF as the basis for empirical studies to explore health professionals’ behaviour. The identified papers provide evidence of the impact of the TDF on implementation research. Two major strengths of the framework are its theoretical coverage and its capacity to elicit beliefs that could signify key mediators of behaviour change. The TDF provides a useful conceptual basis for assessing implementation problems, designing interventions to enhance healthcare practice, and understanding behaviour-change processes. We discuss limitations and research challenges and introduce papers in this series. PMID:22531601

  2. An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mese, Ali; Dvorkin, Jack; Shillinglaw, John

    2000-09-11

    This project include experimental data and a set of models for relating elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure relationships for unconsolidated sands and clayey sands. The results of the project should provide the industry with a basis for wider use of oil base drilling fluids in water sensitive formations by implementing drill cutting injection into existing wells at abandoned formations and controlling fracture geometry to prevent ground water contamination.

  3. A Dutch report on the ethics of neonatal care: a commentary.

    PubMed Central

    Rivers, RPA

    1995-01-01

    The moral arguments and the decision-making processes arising from them in the context of the dilemmas that arise in considering the appropriateness and implementation of withholding or withdrawing treatment in certain neonates form the basis of this commentary. It is concluded that the differing opinions on management of these babies by individual paediatricians results from their differing moral outlooks rather than from any incoherence in the moral arguments set out in the Dutch report. PMID:11644697

  4. A standard satellite control reference model

    NASA Technical Reports Server (NTRS)

    Golden, Constance

    1994-01-01

    This paper describes a Satellite Control Reference Model that provides the basis for an approach to identify where standards would be beneficial in supporting space operations functions. The background and context for the development of the model and the approach are described. A process for using this reference model to trace top level interoperability directives to specific sets of engineering interface standards that must be implemented to meet these directives is discussed. Issues in developing a 'universal' reference model are also identified.

  5. The Implementation of a Multi-Backend Database System (MDBS). Part I. Software Engineering Strategies and Efforts Towards a Prototype MDBS.

    DTIC Science & Technology

    1983-06-01

    for DEC PDPll systems. MAINSAIL was developed and is marketed with a set of integrated tools for program development. The syntax of the language is...stack, and to test for stack-full and stack-empty conditions. This technique is useful in enforcing data integrity and in con- trolling concurrent...and market MAINSAIL. The language is distinguished by its portability. The same compiler and runtime system, both written in MAINSAIL, are the basis

  6. Image 100 procedures manual development: Applications system library definition and Image 100 software definition

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Decell, H. P., Jr.

    1975-01-01

    An outline for an Image 100 procedures manual for Earth Resources Program image analysis was developed which sets forth guidelines that provide a basis for the preparation and updating of an Image 100 Procedures Manual. The scope of the outline was limited to definition of general features of a procedures manual together with special features of an interactive system. Computer programs were identified which should be implemented as part of an applications oriented library for the system.

  7. Improving the Effectiveness of Electronic Health Record-Based Referral Processes

    PubMed Central

    2012-01-01

    Electronic health records are increasingly being used to facilitate referral communication in the outpatient setting. However, despite support by technology, referral communication between primary care providers and specialists is often unsatisfactory and is unable to eliminate care delays. This may be in part due to lack of attention to how information and communication technology fits within the social environment of health care. Making electronic referral communication effective requires a multifaceted “socio-technical” approach. Using an 8-dimensional socio-technical model for health information technology as a framework, we describe ten recommendations that represent good clinical practices to design, develop, implement, improve, and monitor electronic referral communication in the outpatient setting. These recommendations were developed on the basis of our previous work, current literature, sound clinical practice, and a systems-based approach to understanding and implementing health information technology solutions. Recommendations are relevant to system designers, practicing clinicians, and other stakeholders considering use of electronic health records to support referral communication. PMID:22973874

  8. Discontinuous Galerkin algorithms for fully kinetic plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juno, J.; Hakim, A.; TenBarge, J.

    Here, we present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the costmore » while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.« less

  9. Discontinuous Galerkin algorithms for fully kinetic plasmas

    DOE PAGES

    Juno, J.; Hakim, A.; TenBarge, J.; ...

    2017-10-10

    Here, we present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the costmore » while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.« less

  10. Effective empirical corrections for basis set superposition error in the def2-SVPD basis: gCP and DFT-C

    NASA Astrophysics Data System (ADS)

    Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin

    2017-06-01

    With the aim of mitigating the basis set error in density functional theory (DFT) calculations employing local basis sets, we herein develop two empirical corrections for basis set superposition error (BSSE) in the def2-SVPD basis, a basis which—when stripped of BSSE—is capable of providing near-complete-basis DFT results for non-covalent interactions. Specifically, we adapt the existing pairwise geometrical counterpoise (gCP) approach to the def2-SVPD basis, and we develop a beyond-pairwise approach, DFT-C, which we parameterize across a small set of intermolecular interactions. Both gCP and DFT-C are evaluated against the traditional Boys-Bernardi counterpoise correction across a set of 3402 non-covalent binding energies and isomerization energies. We find that the DFT-C method represents a significant improvement over gCP, particularly for non-covalently-interacting molecular clusters. Moreover, DFT-C is transferable among density functionals and can be combined with existing functionals—such as B97M-V—to recover large-basis results at a fraction of the cost.

  11. Reduced Order Model Basis Vector Generation: Generates Basis Vectors fro ROMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrighi, Bill

    2016-03-03

    libROM is a library that implements order reduction via singular value decomposition (SVD) of sampled state vectors. It implements 2 parallel, incremental SVD algorithms and one serial, non-incremental algorithm. It also provides a mechanism for adaptive sampling of basis vectors.

  12. Fundamental energy limits of SET-based Brownian NAND and half-adder circuits. Preliminary findings from a physical-information-theoretic methodology

    NASA Astrophysics Data System (ADS)

    Ercan, İlke; Suyabatmaz, Enes

    2018-06-01

    The saturation in the efficiency and performance scaling of conventional electronic technologies brings about the development of novel computational paradigms. Brownian circuits are among the promising alternatives that can exploit fluctuations to increase the efficiency of information processing in nanocomputing. A Brownian cellular automaton, where signals propagate randomly and are driven by local transition rules, can be made computationally universal by embedding arbitrary asynchronous circuits on it. One of the potential realizations of such circuits is via single electron tunneling (SET) devices since SET technology enable simulation of noise and fluctuations in a fashion similar to Brownian search. In this paper, we perform a physical-information-theoretic analysis on the efficiency limitations in a Brownian NAND and half-adder circuits implemented using SET technology. The method we employed here establishes a solid ground that enables studying computational and physical features of this emerging technology on an equal footing, and yield fundamental lower bounds that provide valuable insights into how far its efficiency can be improved in principle. In order to provide a basis for comparison, we also analyze a NAND gate and half-adder circuit implemented in complementary metal oxide semiconductor technology to show how the fundamental bound of the Brownian circuit compares against a conventional paradigm.

  13. Resolution of identity approximation for the Coulomb term in molecular and periodic systems.

    PubMed

    Burow, Asbjörn M; Sierka, Marek; Mohamed, Fawzi

    2009-12-07

    A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 muhartree per atom, for both molecular and periodic systems.

  14. Resolution of identity approximation for the Coulomb term in molecular and periodic systems

    NASA Astrophysics Data System (ADS)

    Burow, Asbjörn M.; Sierka, Marek; Mohamed, Fawzi

    2009-12-01

    A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 μhartree per atom, for both molecular and periodic systems.

  15. Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree-Fock.

    PubMed

    Tamayo-Mendoza, Teresa; Kreisbeck, Christoph; Lindh, Roland; Aspuru-Guzik, Alán

    2018-05-23

    Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult , a Hartree-Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.

  16. The design and implementation of a parallel unstructured Euler solver using software primitives

    NASA Technical Reports Server (NTRS)

    Das, R.; Mavriplis, D. J.; Saltz, J.; Gupta, S.; Ponnusamy, R.

    1992-01-01

    This paper is concerned with the implementation of a three-dimensional unstructured grid Euler-solver on massively parallel distributed-memory computer architectures. The goal is to minimize solution time by achieving high computational rates with a numerically efficient algorithm. An unstructured multigrid algorithm with an edge-based data structure has been adopted, and a number of optimizations have been devised and implemented in order to accelerate the parallel communication rates. The implementation is carried out by creating a set of software tools, which provide an interface between the parallelization issues and the sequential code, while providing a basis for future automatic run-time compilation support. Large practical unstructured grid problems are solved on the Intel iPSC/860 hypercube and Intel Touchstone Delta machine. The quantitative effect of the various optimizations are demonstrated, and we show that the combined effect of these optimizations leads to roughly a factor of three performance improvement. The overall solution efficiency is compared with that obtained on the CRAY-YMP vector supercomputer.

  17. Everybody wants it done but nobody wants to do it: an exploration of the barrier and enablers of critical components towards creating a clinical pathway for anxiety and depression in cancer.

    PubMed

    Rankin, Nicole M; Butow, Phyllis N; Thein, Thida; Robinson, Tracy; Shaw, Joanne M; Price, Melanie A; Clover, Kerrie; Shaw, Tim; Grimison, Peter

    2015-01-22

    This study aimed to explore barriers to and enablers for future implementation of a draft clinical pathway for anxiety and depression in cancer patients in the Australian context. Health professionals reviewed a draft clinical pathway and participated in qualitative interviews about the delivery of psychosocial care in their setting, individual components of the draft pathway, and barriers and enablers for its future implementation. Five interrelated themes were identified: ownership; resources and responsibility; education and training; patient reluctance; and integration with health services beyond oncology. The five themes were perceived as both barriers and enablers and provide a basis for an implementation plan that includes strategies to overcome barriers. The next steps are to design and deliver the clinical pathway with specific implementation strategies that address team ownership, endorsement by leaders, education and training modules designed for health professionals and patients and identify ways to integrate the pathway into existing cancer services.

  18. Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree–Fock

    PubMed Central

    2018-01-01

    Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult, a Hartree–Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.

  19. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    PubMed

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  20. Polarization functions for the modified m6-31G basis sets for atoms Ga through Kr.

    PubMed

    Mitin, Alexander V

    2013-09-05

    The 2df polarization functions for the modified m6-31G basis sets of the third-row atoms Ga through Kr (Int J Quantum Chem, 2007, 107, 3028; Int J. Quantum Chem, 2009, 109, 1158) are proposed. The performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets were examined in molecular calculations carried out by the density functional theory (DFT) method with B3LYP hybrid functional, Møller-Plesset perturbation theory of the second order (MP2), quadratic configuration interaction method with single and double substitutions and were compared with those for the known 6-31G basis sets as well as with the other similar 641 and 6-311G basis sets with and without polarization functions. Obtained results have shown that the performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets are better in comparison with the performances of the known 6-31G, 6-31G(d,p) and 6-31G(2df,p) basis sets. These improvements are mainly reached due to better approximations of different electrons belonging to the different atomic shells in the modified basis sets. Applicability of the modified basis sets in thermochemical calculations is also discussed. © 2013 Wiley Periodicals, Inc.

  1. Deep Learning with Hierarchical Convolutional Factor Analysis

    PubMed Central

    Chen, Bo; Polatkan, Gungor; Sapiro, Guillermo; Blei, David; Dunson, David; Carin, Lawrence

    2013-01-01

    Unsupervised multi-layered (“deep”) models are considered for general data, with a particular focus on imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis, that explicitly exploit the convolutional nature of the expansion. In order to address large-scale and streaming data, an online version of VB is also developed. The number of basis functions or dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature. PMID:23787342

  2. Sobriety checkpoints in Thailand: a review of effectiveness and developments over time.

    PubMed

    Ditsuwan, Vallop; Veerman, J Lennert; Bertram, Melanie; Vos, Theo

    2015-03-01

    This review describes the legal basis for and implementation of sobriety checkpoints in Thailand and identifies factors that influenced their historical development and effectiveness. The first alcohol and traffic injury control law in Thailand was implemented in 1934. The 0.05 g/100 mL blood alcohol concentration limit was set in 1994. Currently, 3 types of sobriety checkpoints are used: general police checkpoints, selective breath testing, and special event sobriety checkpoints. The authors found few reports on the strategies, frequencies, and outcomes for any of these types of checkpoints, despite Thailand having devoted many resources to their implementation. In Thailand and other low-middle income countries, it is necessary to address the country-specific barriers to successful enforcement (including political and logistical issues, lack of equipment, and absence of other supportive alcohol harm reduction measures) before sobriety checkpoints can be expected to be as effective as reported in high-income countries. © 2011 APJPH.

  3. Producing approximate answers to database queries

    NASA Technical Reports Server (NTRS)

    Vrbsky, Susan V.; Liu, Jane W. S.

    1993-01-01

    We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.

  4. Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism

    PubMed Central

    Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich

    2010-01-01

    Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845

  5. Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures.

    PubMed

    Papior, Nick R; Calogero, Gaetano; Brandbyge, Mads

    2018-06-27

    We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C 60 ). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.

  6. Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Papior, Nick R.; Calogero, Gaetano; Brandbyge, Mads

    2018-06-01

    We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.

  7. Quality of implementation: developing measures crucial to understanding the diffusion of preventive interventions.

    PubMed

    Dusenbury, Linda; Brannigan, Rosalind; Hansen, William B; Walsh, John; Falco, Mathea

    2005-06-01

    As prevention programs become disseminated, the most serious threat to effectiveness is maintaining the quality of implementation intended by the developers. This paper proposes a methodology for measuring quality of implementation in school settings and presents data from a pilot study designed to test several of the proposed components. These methods included assessments of adherence, quality of process, the positive or negative valence of adaptations, teachers' attitudes and teachers' understanding of program content. This study was conducted with 11 teachers who had varying degrees of experience who taught Life Skills Training. Observation and interview data were collected during visits to schools. Results suggest that quality of implementation can be measured through observation and interview. Teachers varied in adherence and quality of program delivery. All teachers made adaptations to the program. Experienced teachers were more likely to adhere to the curriculum, deliver it in a way that was more interactive and engaging to students, communicate the goals and objectives better, and make positive adaptations. The field can use these findings as the basis for exploring strategies for measuring and improving quality of implementation.

  8. Describing teacher-student interactions: a qualitative assessment of teacher implementation of the 7th grade keepin' it REAL substance use intervention.

    PubMed

    Pettigrew, Jonathan; Miller-Day, Michelle; Shin, Youngju; Hecht, Michael L; Krieger, Janice L; Graham, John W

    2013-03-01

    Variations in the delivery of school-based substance use prevention curricula affect students' acquisition of the lesson content and program outcomes. Although adaptation is sometimes viewed as a lack of fidelity, it is unclear what types of variations actually occur in the classroom. This observational study investigated teacher and student behaviors during implementation of a middle school-based drug prevention curriculum in 25 schools across two Midwestern states. Trained observers coded videos of 276 lessons, reflecting a total of 31 predominantly Caucasian teachers (10 males and 21 females) in 73 different classes. Employing qualitative coding procedures, the study provides a working typology of implementation patterns based on varying levels of teacher control and student participation. These patterns are fairly consistent across lessons and across classes of students, suggesting a teacher-driven delivery model where teachers create a set of constraints within which students vary their engagement. Findings provide a descriptive basis grounded in observation of classroom implementation that can be used to test models of implementation fidelity and quality as well as impact training and other dissemination research.

  9. Constraint-Based Abstract Semantics for Temporal Logic: A Direct Approach to Design and Implementation

    NASA Astrophysics Data System (ADS)

    Banda, Gourinath; Gallagher, John P.

    interpretation provides a practical approach to verifying properties of infinite-state systems. We apply the framework of abstract interpretation to derive an abstract semantic function for the modal μ-calculus, which is the basis for abstract model checking. The abstract semantic function is constructed directly from the standard concrete semantics together with a Galois connection between the concrete state-space and an abstract domain. There is no need for mixed or modal transition systems to abstract arbitrary temporal properties, as in previous work in the area of abstract model checking. Using the modal μ-calculus to implement CTL, the abstract semantics gives an over-approximation of the set of states in which an arbitrary CTL formula holds. Then we show that this leads directly to an effective implementation of an abstract model checking algorithm for CTL using abstract domains based on linear constraints. The implementation of the abstract semantic function makes use of an SMT solver. We describe an implemented system for proving properties of linear hybrid automata and give some experimental results.

  10. The HSE management system in practice-implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primrose, M.J.; Bentley, P.D.; Sykes, R.M.

    1996-11-01

    This paper sets out the necessary strategic issues that must be dealt with when setting up a management system for HSE. It touches on the setting of objectives using a form of risk matrix and the establishment of corporate risk tolerability levels. Such issue management is vital but can be seen as yet another corporate HQ initiative. It must therefore be linked, and made relevant to those in middle management tasked with implementing the system and also to those at risk {open_quote}at the sharp end{close_quote} of the business. Setting acceptance criteria is aimed at demonstrating a necessary and sufficient levelmore » of control or coverage for those hazards considered as being within the objective setting of the Safety or HSE Case. Critical risk areas addressed via the Safety Case, within Shell companies at least, must show how this coverage is extended to critical health and environmental issues. Methods of achieving this are various ranging from specific Case deliverables (like the Hazard Register and Accountability Matrices) through to the incorporation of topics from the hazard analysis in toolbox talks and meetings. Risk analysis techniques are increasingly seen as complementary rather than separate with environmental assessments, health risk assessment sand safety risk analyses taking place together and results being considered jointly. The paper ends with some views on the way ahead regarding the linking of risk decisions to target setting at the workplace and views on how Case information may be retrieved and used on a daily basis.« less

  11. Twelve evidence-based principles for implementing self-management support in primary care.

    PubMed

    Battersby, Malcolm; Von Korff, Michael; Schaefer, Judith; Davis, Connie; Ludman, Evette; Greene, Sarah M; Parkerton, Melissa; Wagner, Edward H

    2010-12-01

    Recommendations to improve self-management support and health outcomes for people with chronic conditions in primary care settings are provided on the basis of expert opinion supported by evidence for practices and processes. Practices and processes that could improve self-management support in primary care were identified through a nominal group process. In a targeted search strategy, reviews and meta-analyses were then identifed using terms from a wide range of chronic conditions and behavioral risk factors in combination with Self-Care, Self-Management, and Primary Care. On the basis of these reviews, evidence-based principles for self-management support were developed. The evidence is organized within the framework of the Chronic Care Model. Evidence-based principles in 12 areas were associated with improved patient self-management and/or health outcomes: (1) brief targeted assessment, (2) evidence-based information to guide shared decision-making, (3) use of a nonjudgmental approach, (4) collaborative priority and goal setting, (5) collaborative problem solving, (6) self-management support by diverse providers, (7) self-management interventions delivered by diverse formats, (8) patient self-efficacy, (9) active followup, (10) guideline-based case management for selected patients, (11) linkages to evidence-based community programs, and (12) multifaceted interventions. A framework is provided for implementing these principles in three phases of the primary care visit: enhanced previsit assessment, a focused clinical encounter, and expanded postvisit options. There is a growing evidence base for how self-management support for chronic conditions can be integrated into routine health care.

  12. An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan, E-mail: weixuan.li@usc.edu; Lin, Guang, E-mail: guang.lin@pnnl.gov; Zhang, Dongxiao, E-mail: dxz@pku.edu.cn

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect—except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos basis functions in the expansion helps to capture uncertainty more accurately but increases computational cost. Selection of basis functionsmore » is particularly important for high-dimensional stochastic problems because the number of polynomial chaos basis functions required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE basis functions are pre-set based on users' experience. Also, for sequential data assimilation problems, the basis functions kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE basis functions for different problems and automatically adjusts the number of basis functions in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm was tested with different examples and demonstrated great effectiveness in comparison with non-adaptive PCKF and EnKF algorithms.« less

  13. Primary health care and general practice attachment: establishing an undergraduate teaching network in rural Greek health centers.

    PubMed

    Smyrnakis, Emmanouil; Gavana, Magda; Kondilis, Elias; Giannakopoulos, Stathis; Panos, Alexandros; Chainoglou, Athanasia; Stardeli, Thomai; Kavaka, Niki; Benos, Alexis

    2013-01-01

    Exposure of undergraduate medical students to general practice and community healthcare services is common practice in the international medical curricula. Nevertheless, proponents of the hospital and biotechnology based paradigm, which is still dominant within the medical academic environment, question both the scope and the setting of this training procedure. Regarding the latter, the quality of teaching is often questioned in settings such as rural primary health centers, where health professionals have neither incentives nor accredited training skills. Therefore, the success of community based medical education depends substantially on the procedures implemented to involve non-academic staff as clinical teachers. This report describes the steps taken by the Aristotle University of Thessaloniki (AUTH) Medical School to establish and maintain a Rural Primary Health Care (PHC) Teaching Network in order to implement community oriented PHC and GP undergraduate medical education. A multi-professional teachers' network of healthcare staff, working in Rural Primary Health Centers, has been chosen, in order to expose students to the holistic approach of PHC. The enrollment of teachers to the Teaching Network was solely on a voluntary basis. The novelty of this procedure is that each professional is approached personally, instead through the Health Center (HC) that usually offers this service as a package in similar activities. In an attempt to attract health professionals committed to medical education, a self-selection procedure was adopted. Collaboration with the medical school was established but it was characterized by the School's inability to compensate teachers. A series of 'Training the Trainers' seminars were completed during the first implementation period in order to enhance the awareness of health professionals regarding undergraduate teaching in PHC; to present the educational needs of medical students; to expose them to the principles of medical teaching; and to strengthen their communication skills. Setting up sustainable community oriented medical education activities in a more or less unfriendly environment is a difficult task that calls for wisely selected functional steps. Pilot educational activities determine the quality of the implemented programs by evaluating difficulties and constraints. Recruiting teachers on a voluntary basis proved to be critical in enhancing the quality of this educational activity, and overcoming distance constraints. The educational activities which were offered created a homogenous group of PHC teachers with explicit educational aims and objectives.

  14. Derivation of a formula for the resonance integral for a nonorthogonal basis set

    PubMed Central

    Yim, Yung-Chang; Eyring, Henry

    1981-01-01

    In a self-consistent field calculation, a formula for the off-diagonal matrix elements of the core Hamiltonian is derived for a nonorthogonal basis set by a polyatomic approach. A set of parameters is then introduced for the repulsion integral formula of Mataga-Nishimoto to fit the experimental data. The matrix elements computed for the nonorthogonal basis set in the π-electron approximation are transformed to those for an orthogonal basis set by the Löwdin symmetrical orthogonalization. PMID:16593009

  15. The interval testing procedure: A general framework for inference in functional data analysis.

    PubMed

    Pini, Alessia; Vantini, Simone

    2016-09-01

    We introduce in this work the Interval Testing Procedure (ITP), a novel inferential technique for functional data. The procedure can be used to test different functional hypotheses, e.g., distributional equality between two or more functional populations, equality of mean function of a functional population to a reference. ITP involves three steps: (i) the representation of data on a (possibly high-dimensional) functional basis; (ii) the test of each possible set of consecutive basis coefficients; (iii) the computation of the adjusted p-values associated to each basis component, by means of a new strategy here proposed. We define a new type of error control, the interval-wise control of the family wise error rate, particularly suited for functional data. We show that ITP is provided with such a control. A simulation study comparing ITP with other testing procedures is reported. ITP is then applied to the analysis of hemodynamical features involved with cerebral aneurysm pathology. ITP is implemented in the fdatest R package. © 2016, The International Biometric Society.

  16. The force on the flex: Global parallelism and portability

    NASA Technical Reports Server (NTRS)

    Jordan, H. F.

    1986-01-01

    A parallel programming methodology, called the force, supports the construction of programs to be executed in parallel by an unspecified, but potentially large, number of processes. The methodology was originally developed on a pipelined, shared memory multiprocessor, the Denelcor HEP, and embodies the primitive operations of the force in a set of macros which expand into multiprocessor Fortran code. A small set of primitives is sufficient to write large parallel programs, and the system has been used to produce 10,000 line programs in computational fluid dynamics. The level of complexity of the force primitives is intermediate. It is high enough to mask detailed architectural differences between multiprocessors but low enough to give the user control over performance. The system is being ported to a medium scale multiprocessor, the Flex/32, which is a 20 processor system with a mixture of shared and local memory. Memory organization and the type of processor synchronization supported by the hardware on the two machines lead to some differences in efficient implementations of the force primitives, but the user interface remains the same. An initial implementation was done by retargeting the macros to Flexible Computer Corporation's ConCurrent C language. Subsequently, the macros were caused to directly produce the system calls which form the basis for ConCurrent C. The implementation of the Fortran based system is in step with Flexible Computer Corporations's implementation of a Fortran system in the parallel environment.

  17. Visual feature extraction from voxel-weighted averaging of stimulus images in 2 fMRI studies.

    PubMed

    Hart, Corey B; Rose, William J

    2013-11-01

    Multiple studies have provided evidence for distributed object representation in the brain, with several recent experiments leveraging basis function estimates for partial image reconstruction from fMRI data. Using a novel combination of statistical decomposition, generalized linear models, and stimulus averaging on previously examined image sets and Bayesian regression of recorded fMRI activity during presentation of these data sets, we identify a subset of relevant voxels that appear to code for covarying object features. Using a technique we term "voxel-weighted averaging," we isolate image filters that these voxels appear to implement. The results, though very cursory, appear to have significant implications for hierarchical and deep-learning-type approaches toward the understanding of neural coding and representation.

  18. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.

    PubMed

    Mackie, Iain D; DiLabio, Gino A

    2011-10-07

    The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined. © 2011 American Institute of Physics

  19. Value for money in changing clinical practice: should decisions about guidelines and implementation strategies be made sequentially or simultaneously?

    PubMed

    Hoomans, Ties; Severens, Johan L; Evers, Silvia M A A; Ament, Andre J H A

    2009-01-01

    Decisions about clinical practice change, that is, which guidelines to adopt and how to implement them, can be made sequentially or simultaneously. Decision makers adopting a sequential approach first compare the costs and effects of alternative guidelines to select the best set of guideline recommendations for patient management and subsequently examine the implementation costs and effects to choose the best strategy to implement the selected guideline. In an integral approach, decision makers simultaneously decide about the guideline and the implementation strategy on the basis of the overall value for money in changing clinical practice. This article demonstrates that the decision to use a sequential v. an integral approach affects the need for detailed information and the complexity of the decision analytic process. More importantly, it may lead to different choices of guidelines and implementation strategies for clinical practice change. The differences in decision making and decision analysis between the alternative approaches are comprehensively illustrated using 2 hypothetical examples. We argue that, in most cases, an integral approach to deciding about change in clinical practice is preferred, as this provides more efficient use of scarce health-care resources.

  20. Recovery of sparse translation-invariant signals with continuous basis pursuit

    PubMed Central

    Ekanadham, Chaitanya; Tranchina, Daniel; Simoncelli, Eero

    2013-01-01

    We consider the problem of decomposing a signal into a linear combination of features, each a continuously translated version of one of a small set of elementary features. Although these constituents are drawn from a continuous family, most current signal decomposition methods rely on a finite dictionary of discrete examples selected from this family (e.g., shifted copies of a set of basic waveforms), and apply sparse optimization methods to select and solve for the relevant coefficients. Here, we generate a dictionary that includes auxiliary interpolation functions that approximate translates of features via adjustment of their coefficients. We formulate a constrained convex optimization problem, in which the full set of dictionary coefficients represents a linear approximation of the signal, the auxiliary coefficients are constrained so as to only represent translated features, and sparsity is imposed on the primary coefficients using an L1 penalty. The basis pursuit denoising (BP) method may be seen as a special case, in which the auxiliary interpolation functions are omitted, and we thus refer to our methodology as continuous basis pursuit (CBP). We develop two implementations of CBP for a one-dimensional translation-invariant source, one using a first-order Taylor approximation, and another using a form of trigonometric spline. We examine the tradeoff between sparsity and signal reconstruction accuracy in these methods, demonstrating empirically that trigonometric CBP substantially outperforms Taylor CBP, which in turn offers substantial gains over ordinary BP. In addition, the CBP bases can generally achieve equally good or better approximations with much coarser sampling than BP, leading to a reduction in dictionary dimensionality. PMID:24352562

  1. Acceptance of lean redesigns in primary care: A contextual analysis.

    PubMed

    Hung, Dorothy; Gray, Caroline; Martinez, Meghan; Schmittdiel, Julie; Harrison, Michael I

    Lean is a leading change strategy used in health care to achieve short-term efficiency and quality improvement while promising longer-term system transformation. Most research examines Lean intervention to address isolated problems, rather than to achieve broader systemic changes to care delivery. Moreover, no studies examine contextual influences on system-wide Lean implementation efforts in primary care. The aim of this study was to identify contextual factors most critical to implementing and scaling Lean redesigns across all primary care clinics in a large, ambulatory care delivery system. Over 100 interviews and focus groups were conducted with frontline physicians, clinical staff, and operational leaders. Data analysis was guided by a modified Consolidated Framework for Implementation Research (CFIR), a popular implementation science framework. On the basis of expert recommendations, the modified framework targets factors influencing the implementation of process redesigns. This modified framework, the CFIR-PR, informed our identification of contextual factors that most impacted Lean acceptance among frontline physicians and staff. Several domains identified by the CFIR-PR were critical to acceptance of Lean redesigns. Regarding the implementation process acceptance was influenced by time and intensity of exposure to changes, "top-down" versus "bottom-up" implementation styles, and degrees of employee engagement in developing new workflows. Important factors in the inner setting were the clinic's culture and style of leadership, along with availability of information about Lean's effectiveness. Last, implementation efforts were impacted by individual and team characteristics regarding changed work roles and related issues of professional identity, authority, and autonomy. This study underscores the need for change leaders to consider the contextual factors that surround efforts to implement Lean in primary care. As Lean redesigns are scaled across a system, special attention is warranted with respect to the implementation approach, internal clinic setting, and implications for professional roles and identities of physicians and staff.

  2. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe

    NASA Astrophysics Data System (ADS)

    Martin, Jan M. L.; Sundermann, Andreas

    2001-02-01

    We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper.

  3. Network models for solving the problem of multicriterial adaptive optimization of investment projects control with several acceptable technologies

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.; Butsenko, E. V.

    2017-10-01

    This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.

  4. The automated system for prevention of industrial-caused diseases

    NASA Astrophysics Data System (ADS)

    Varnavsky, A. N.

    2017-01-01

    The paper presents the automated system intended to prevent industrial-caused diseases of workers, the basis of which is represented by algorithms of preventing several negative functional conditions (stress, monotony). The emergence of such state shall be determined based on an analysis of bioelectric signals, in particular, skin-galvanic reactions. Proceeding from the dynamics of the functional state, the automated system offers to perform an optimized set of measures to restore the health of the worker. Implementation of an automated system is presented in Visual Programming system LabVIEW.

  5. State-Based Network Intrusion Detection Systems for SCADA Protocols: A Proof of Concept

    NASA Astrophysics Data System (ADS)

    Carcano, Andrea; Fovino, Igor Nai; Masera, Marcelo; Trombetta, Alberto

    We present a novel Intrusion Detection System able to detect complex attacks to SCADA systems. By complex attack, we mean a set of commands (carried in Modbus packets) that, while licit when considered in isolation on a single-packet basis, interfere with the correct behavior of the system. The proposed IDS detects such attacks thanks to an internal representation of the controlled SCADA system and a corresponding rule language, powerful enough to express the system's critical states. Furthermore, we detail the implementation and provide experimental comparative results.

  6. Particle-based and meshless methods with Aboria

    NASA Astrophysics Data System (ADS)

    Robinson, Martin; Bruna, Maria

    Aboria is a powerful and flexible C++ library for the implementation of particle-based numerical methods. The particles in such methods can represent actual particles (e.g. Molecular Dynamics) or abstract particles used to discretise a continuous function over a domain (e.g. Radial Basis Functions). Aboria provides a particle container, compatible with the Standard Template Library, spatial search data structures, and a Domain Specific Language to specify non-linear operators on the particle set. This paper gives an overview of Aboria's design, an example of use, and a performance benchmark.

  7. The potential contribution of the Queensland wet tropics region natural resource plan to river improvement and water quality.

    PubMed

    McDonald, G; Weston, N; Dorrington, B

    2003-01-01

    This paper reports on work in progress on the new Wet Tropics Regional Natural Resource Management Plan and its potential to deliver river management and water quality outcomes. The plan is being prepared in accordance with the guidelines of the Nation Action Plan for Salinity and Water Quality/Natural Heritage Trust (NAP/NHT2). In particular the paper discusses the technical basis for priorities, target setting and implementation and the most effective instruments for achieving river improvement and water quality outcomes in the region.

  8. Hybrid Grid and Basis Set Approach to Quantum Chemistry DMRG

    NASA Astrophysics Data System (ADS)

    Stoudenmire, Edwin Miles; White, Steven

    We present a new approach for using DMRG for quantum chemistry that combines the advantages of a basis set with that of a grid approximation. Because DMRG scales linearly for quasi-one-dimensional systems, it is feasible to approximate the continuum with a fine grid in one direction while using a standard basis set approach for the transverse directions. Compared to standard basis set methods, we reach larger systems and achieve better scaling when approaching the basis set limit. The flexibility and reduced costs of our approach even make it feasible to incoporate advanced DMRG techniques such as simulating real-time dynamics. Supported by the Simons Collaboration on the Many-Electron Problem.

  9. Models of evaluation of public joint-stock property management

    NASA Astrophysics Data System (ADS)

    Yakupova, N. M.; Levachkova, S.; Absalyamova, S. G.; Kvon, G.

    2017-12-01

    The paper deals with the models of evaluation of performance of both the management company and the individual subsidiaries on the basis of a combination of elements and multi-parameter and target approaches. The article shows that due to the power of multi-dimensional and multi-directional indicators of financial and economic activity it is necessary to assess the degree of achievement of the objectives with the use of multivariate ordinal model as a set of indicators, ordered by growth so that the maintenance of this order on a long interval of time will ensure the effective functioning of the enterprise in the long term. It is shown that these models can be regarded as the monitoring tools of implementation of strategies and guide the justification effectiveness of implementation of management decisions.

  10. Experimental Implementation of a Quantum Optical State Comparison Amplifier

    NASA Astrophysics Data System (ADS)

    Donaldson, Ross J.; Collins, Robert J.; Eleftheriadou, Electra; Barnett, Stephen M.; Jeffers, John; Buller, Gerald S.

    2015-03-01

    We present an experimental demonstration of a practical nondeterministic quantum optical amplification scheme that employs two mature technologies, state comparison and photon subtraction, to achieve amplification of known sets of coherent states with high fidelity. The amplifier uses coherent states as a resource rather than single photons, which allows for a relatively simple light source, such as a diode laser, providing an increased rate of amplification. The amplifier is not restricted to low amplitude states. With respect to the two key parameters, fidelity and the amplified state production rate, we demonstrate significant improvements over previous experimental implementations, without the requirement of complex photonic components. Such a system may form the basis of trusted quantum repeaters in nonentanglement-based quantum communications systems with known phase alphabets, such as quantum key distribution or quantum digital signatures.

  11. Meaning matters: a clinician's/student's guide to general sign theory and its applicability in clinical settings.

    PubMed

    Oller, Stephen D

    2005-01-01

    The pragmatic mapping process and its variants have proven effective in second language learning and teaching. The goal of this paper is to show that the same process applies in teaching and intervention with disordered populations. A secondary goal, ultimately more important, is to give clinicians, teachers, and other educators a tool-kit, or a framework, from which they can evaluate and implement interventions. What is offered is an introduction to a general theory of signs and some examples of how it can be applied in treating communication disorders. (1) Readers will be able to relate the three theoretical consistency requirements to language teaching and intervention. (2) Readers will be introduced to a general theory of signs that provides a basis for evaluating and implementing interventions.

  12. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    PubMed

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results insignificantly for iron(II) porphyrin coordinated with imidazole. Poor performance of a "locally dense" basis set with a large number of basis functions on the Fe center was observed in calculation of quintet-triplet gaps. Our results lead to a series of suggestions for density functional theory calculations of quintet-triplet energy gaps in ferrohemes with a single axial imidazole; these suggestions are potentially applicable for other transition-metal complexes.

  13. Efficient G0W0 using localized basis sets: a benchmark for molecules

    NASA Astrophysics Data System (ADS)

    Koval, Petr; Per Ljungberg, Mathias; Sanchez-Portal, Daniel

    Electronic structure calculations within Hedin's GW approximation are becoming increasingly accessible to the community. In particular, as it has been shown earlier and we confirm by calculations using our MBPT_LCAO package, the computational cost of the so-called G0W0 can be made comparable to the cost of a regular Hartree-Fock calculation. In this work, we study the performance of our new implementation of G0W0 to reproduce the ionization potentials of all 117 closed-shell molecules belonging to the G2/97 test set, using a pseudo-potential starting point provided by the popular density-functional package SIESTA. Moreover, the ionization potentials and electron affinities of a set of 24 acceptor molecules are compared to experiment and to reference all-electron calculations. PK: Guipuzcoa Fellow; PK,ML,DSP: Deutsche Forschungsgemeinschaft (SFB1083); PK,DSP: MINECO MAT2013-46593-C6-2-P.

  14. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study.

    PubMed

    Schneider, M; Soshnikov, D Yu; Holland, D M P; Powis, I; Antonsson, E; Patanen, M; Nicolas, C; Miron, C; Wormit, M; Dreuw, A; Trofimov, A B

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n(5) with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

  15. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, M.; Wormit, M.; Dreuw, A.

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n{sup 5} with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZmore » basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.« less

  16. Implementing service improvement projects within pre-registration nursing education: a multi-method case study evaluation.

    PubMed

    Baillie, Lesley; Bromley, Barbara; Walker, Moira; Jones, Rebecca; Mhlanga, Fortune

    2014-01-01

    Preparing healthcare students for quality and service improvement is important internationally. A United Kingdom (UK) initiative aims to embed service improvement in pre-registration education. A UK university implemented service improvement teaching for all nursing students. In addition, the degree pathway students conducted service improvement projects as the basis for their dissertations. The study aimed to evaluate the implementation of service improvement projects within a pre-registration nursing curriculum. A multi-method case study was conducted, using student questionnaires, focus groups with students and academic staff, and observation of action learning sets. Questionnaire data were analysed using SPSS v19. Qualitative data were analysed using Ritchie and Spencer's (1994) Framework Approach. Students were very positive about service improvement. The degree students, who conducted service improvement projects in practice, felt more knowledgeable than advanced diploma students. Selecting the project focus was a key issue and students encountered some challenges in practice. Support for student service improvement projects came from action learning sets, placement staff, and academic staff. Service improvement projects had a positive effect on students' learning. An effective partnership between the university and partner healthcare organisations, and support for students in practice, is essential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Localized basis sets for unbound electrons in nanoelectronics.

    PubMed

    Soriano, D; Jacob, D; Palacios, J J

    2008-02-21

    It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of Gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.

  18. Scalar relativistic computations of nuclear magnetic shielding and g-shifts with the zeroth-order regular approximation and range-separated hybrid density functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquino, Fredy W.; Govind, Niranjan; Autschbach, Jochen

    2011-10-01

    Density functional theory (DFT) calculations of NMR chemical shifts and molecular g-tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X=F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po), and Temore » chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F NMR shielding in UF6-nCln, n = 1 to 6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs. correlation. For the uranium halides, the results with the range-separated functionals are mixed.« less

  19. The emergency data set for the German Electronic Health Card--which benefits can be expected?

    PubMed

    Born, Judith; Albert, Jürgen; Butz, Norbert; Loos, Stefan; Schenkel, Johannes; Gipp, Christoph; Juhra, Christian

    2015-01-01

    In order to improve access to pre-existing patient information in case of emergency, the German Electronic Health Card (EHC) is supposed to hold emergency data. As a basis, the German Medical Association developed an emergency data set, which provides the possibility to store information on prior diagnoses, medications, allergies and other emergency-relevant information. One main objective of the study is to evaluate the usefulness of the emergency data in specific emergency situations. Within a two-phase exploratory study, a total of 64 paper-based emergency data sets were completed by primary care physicians, and then were evaluated by clinicians, emergency physicians, and paramedics. Clinicians, emergency physicians as well as paramedics rated the emergency data set in more than 70% of the reviewed cases as very useful or useful. The greatest benefit was attributed to the information on diagnoses and medication. The implementation of an emergency data on the EHC has the potential to improve safety, quality and efficiency of emergency care.

  20. Near Hartree-Fock quality GTO basis sets for the second-row atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry

    1987-01-01

    Energy optimized, near Hartree-Fock quality Gaussian basis sets ranging in size from (17s12p) to (20s15p) are presented for the ground states of the second-row atoms for Na(2P), Na(+), Na(-), Mg(3P), P(-), S(-), and Cl(-). In addition, optimized supplementary functions are given for the ground state basis sets to describe the negative ions, and the excited Na(2P) and Mg(3P) atomic states. The ratios of successive orbital exponents describing the inner part of the 1s and 2p orbitals are found to be nearly independent of both nuclear charge and basis set size. This provides a method of obtaining good starting estimates for other basis set optimizations.

  1. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.

    PubMed

    Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  2. Relativistic Prolapse-Free Gaussian Basis Sets of Quadruple-ζ Quality: (aug-)RPF-4Z. III. The f-Block Elements.

    PubMed

    Teodoro, Tiago Quevedo; Visscher, Lucas; da Silva, Albérico Borges Ferreira; Haiduke, Roberto Luiz Andrade

    2017-03-14

    The f-block elements are addressed in this third part of a series of prolapse-free basis sets of quadruple-ζ quality (RPF-4Z). Relativistic adapted Gaussian basis sets (RAGBSs) are used as primitive sets of functions while correlating/polarization (C/P) functions are chosen by analyzing energy lowerings upon basis set increments in Dirac-Coulomb multireference configuration interaction calculations with single and double excitations of the valence spinors. These function exponents are obtained by applying the RAGBS parameters in a polynomial expression. Moreover, through the choice of C/P characteristic exponents from functions of lower angular momentum spaces, a reduction in the computational demand is attained in relativistic calculations based on the kinetic balance condition. The present study thus complements the RPF-4Z sets for the whole periodic table (Z ≤ 118). The sets are available as Supporting Information and can also be found at http://basis-sets.iqsc.usp.br .

  3. Combination of large and small basis sets in electronic structure calculations on large systems

    NASA Astrophysics Data System (ADS)

    Røeggen, Inge; Gao, Bin

    2018-04-01

    Two basis sets—a large and a small one—are associated with each nucleus of the system. Each atom has its own separate one-electron basis comprising the large basis set of the atom in question and the small basis sets for the partner atoms in the complex. The perturbed atoms in molecules and solids model is at core of the approach since it allows for the definition of perturbed atoms in a system. It is argued that this basis set approach should be particularly useful for periodic systems. Test calculations are performed on one-dimensional arrays of H and Li atoms. The ground-state energy per atom in the linear H array is determined versus bond length.

  4. A comparison of VLSI architecture of finite field multipliers using dual, normal or standard basis

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Reed, I. S.

    1987-01-01

    Three different finite field multipliers are presented: (1) a dual basis multiplier due to Berlekamp; (2) a Massy-Omura normal basis multiplier; and (3) the Scott-Tavares-Peppard standard basis multiplier. These algorithms are chosen because each has its own distinct features which apply most suitably in different areas. Finally, they are implemented on silicon chips with nitride metal oxide semiconductor technology so that the multiplier most desirable for very large scale integration implementations can readily be ascertained.

  5. New payment model for rural health services in Mongolia.

    PubMed

    Hindle, Don; Khulan, Buyankhishig

    2006-01-01

    This article describes experiences in Mongolia in designing and implementing a new method of payment for rural health services. The new method involves using a formula that allocates 65% of available funding on the basis of risk-adjusted capitation, 20% on the basis of asset costs, 10% on the basis of variations in distance-related costs, and 5% on the basis of satisfactory attainment of quality of care targets. Rural populations have inferior health services in most countries, whether rich or poor. Their situation has deteriorated in most transition economies, including Mongolia since 1990. One factor has been the use of inappropriate methods of payment of care providers. Changes in payment methods have therefore been made in most transition economies with mixed success. One factor has been a tendency to over-simplify, for example, to introduce capitation without risk adjustment or to make per case payments that ignored casemix. In 2002, the Mongolian government decided that its crude funding formula for rural health services should be replaced. It had two main components. The first was payment of an annual grant by the local government from its general revenue on the basis of estimated service population, number of inpatient beds, and number of clinical staff. The second was an output-based payment per inpatient day from the National Health Insurance Fund. The model was administratively complicated, and widely believed to be unfair. The two funding agencies were giving conflicting types of financial incentives. Most important, the funding methods gave few incentives or rewards for service improvement. In some respects, the incentives were perverse (such as the encouragement of hospital admission by the National Health Insurance Fund). A new funding model was developed through statistical analysis of data from routine service reports and opinions questionnaires. As noted above, there are components relating to per capita needs for care, capital assets, distance, and quality of care. The risk-adjusted capitation component determines needs classes by use of age, gender, and family income. The model was accepted by all concerned parties, and steps are now being taken to implement it under transitional arrangements. Many of the data used to parameterize the model are inaccurate and will need to be updated in the near future. However, the model is inherently valid, and procedures have been set in place that will ensure accuracy is improved on a continuing basis. An important reason why the government strongly supported implementation was its commitment to implement output-based budgeting across all government sectors. The new model provided a convenient way of applying output-based budgeting to one major component of the health sector.

  6. Cascade Back-Propagation Learning in Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2003-01-01

    The cascade back-propagation (CBP) algorithm is the basis of a conceptual design for accelerating learning in artificial neural networks. The neural networks would be implemented as analog very-large-scale integrated (VLSI) circuits, and circuits to implement the CBP algorithm would be fabricated on the same VLSI circuit chips with the neural networks. Heretofore, artificial neural networks have learned slowly because it has been necessary to train them via software, for lack of a good on-chip learning technique. The CBP algorithm is an on-chip technique that provides for continuous learning in real time. Artificial neural networks are trained by example: A network is presented with training inputs for which the correct outputs are known, and the algorithm strives to adjust the weights of synaptic connections in the network to make the actual outputs approach the correct outputs. The input data are generally divided into three parts. Two of the parts, called the "training" and "cross-validation" sets, respectively, must be such that the corresponding input/output pairs are known. During training, the cross-validation set enables verification of the status of the input-to-output transformation learned by the network to avoid over-learning. The third part of the data, termed the "test" set, consists of the inputs that are required to be transformed into outputs; this set may or may not include the training set and/or the cross-validation set. Proposed neural-network circuitry for on-chip learning would be divided into two distinct networks; one for training and one for validation. Both networks would share the same synaptic weights.

  7. Describing different brain computer interface systems through a unique model: a UML implementation.

    PubMed

    Quitadamo, Lucia Rita; Marciani, Maria Grazia; Cardarilli, Gian Carlo; Bianchi, Luigi

    2008-01-01

    All the protocols currently implemented in brain computer interface (BCI) experiments are characterized by different structural and temporal entities. Moreover, due to the lack of a unique descriptive model for BCI systems, there is not a standard way to define the structure and the timing of a BCI experimental session among different research groups and there is also great discordance on the meaning of the most common terms dealing with BCI, such as trial, run and session. The aim of this paper is to provide a unified modeling language (UML) implementation of BCI systems through a unique dynamic model which is able to describe the main protocols defined in the literature (P300, mu-rhythms, SCP, SSVEP, fMRI) and demonstrates to be reasonable and adjustable according to different requirements. This model includes a set of definitions of the typical entities encountered in a BCI, diagrams which explain the structural correlations among them and a detailed description of the timing of a trial. This last represents an innovation with respect to the models already proposed in the literature. The UML documentation and the possibility of adapting this model to the different BCI systems built to date, make it a basis for the implementation of new systems and a mean for the unification and dissemination of resources. The model with all the diagrams and definitions reported in the paper are the core of the body language framework, a free set of routines and tools for the implementation, optimization and delivery of cross-platform BCI systems.

  8. A pair natural orbital based implementation of CCSD excitation energies within the framework of linear response theory

    NASA Astrophysics Data System (ADS)

    Frank, Marius S.; Hättig, Christof

    2018-04-01

    We present a pair natural orbital (PNO)-based implementation of coupled cluster singles and doubles (CCSD) excitation energies that builds upon the previously proposed state-specific PNO approach to the excited state eigenvalue problem. We construct the excited state PNOs for each state separately in a truncated orbital specific virtual basis and use a local density-fitting approximation to achieve an at most quadratic scaling of the computational costs for the PNO construction. The earlier reported excited state PNO construction is generalized such that a smooth convergence of the results for charge transfer states is ensured for general coupled cluster methods. We investigate the accuracy of our implementation by applying it to a large and diverse test set comprising 153 singlet excitations in organic molecules. Already moderate PNO thresholds yield mean absolute errors below 0.01 eV. The performance of the implementation is investigated through the calculations on alkene chains and reveals an at most cubic cost-scaling for the CCSD iterations with the system size.

  9. Quantum information processing by weaving quantum Talbot carpets

    NASA Astrophysics Data System (ADS)

    Farías, Osvaldo Jiménez; de Melo, Fernando; Milman, Pérola; Walborn, Stephen P.

    2015-06-01

    Single-photon interference due to passage through a periodic grating is considered in a novel proposal for processing D -dimensional quantum systems (quDits) encoded in the spatial degrees of freedom of light. We show that free-space propagation naturally implements basic single-quDit gates by means of the Talbot effect: an intricate time-space carpet of light in the near-field diffraction regime. By adding a diagonal phase gate, we show that a complete set of single-quDit gates can be implemented. We then introduce a spatially dependent beam splitter that allows for projective measurements in the computational basis and can be used for the implementation of controlled operations between two quDits. Universal quantum information processing can then be implemented with linear optics and ancilla photons via postselection and feed-forward following the original proposal of Knill-Laflamme and Milburn. Although we consider photons, our scheme should be directly applicable to a number of other physical systems. Interpretation of the Talbot effect as a quantum logic operation provides a beautiful and interesting way to visualize quantum computation through wave propagation and interference.

  10. Implementation of facial recognition with Microsoft Kinect v2 sensor for patient verification.

    PubMed

    Silverstein, Evan; Snyder, Michael

    2017-06-01

    The aim of this study was to present a straightforward implementation of facial recognition using the Microsoft Kinect v2 sensor for patient identification in a radiotherapy setting. A facial recognition system was created with the Microsoft Kinect v2 using a facial mapping library distributed with the Kinect v2 SDK as a basis for the algorithm. The system extracts 31 fiducial points representing various facial landmarks which are used in both the creation of a reference data set and subsequent evaluations of real-time sensor data in the matching algorithm. To test the algorithm, a database of 39 faces was created, each with 465 vectors derived from the fiducial points, and a one-to-one matching procedure was performed to obtain sensitivity and specificity data of the facial identification system. ROC curves were plotted to display system performance and identify thresholds for match determination. In addition, system performance as a function of ambient light intensity was tested. Using optimized parameters in the matching algorithm, the sensitivity of the system for 5299 trials was 96.5% and the specificity was 96.7%. The results indicate a fairly robust methodology for verifying, in real-time, a specific face through comparison from a precollected reference data set. In its current implementation, the process of data collection for each face and subsequent matching session averaged approximately 30 s, which may be too onerous to provide a realistic supplement to patient identification in a clinical setting. Despite the time commitment, the data collection process was well tolerated by all participants and most robust when consistent ambient light conditions were maintained across both the reference recording session and subsequent real-time identification sessions. A facial recognition system can be implemented for patient identification using the Microsoft Kinect v2 sensor and the distributed SDK. In its present form, the system is accurate-if time consuming-and further iterations of the method could provide a robust, easy to implement, and cost-effective supplement to traditional patient identification methods. © 2017 American Association of Physicists in Medicine.

  11. Describing Teacher–Student Interactions: A Qualitative Assessment of Teacher Implementation of the 7th Grade keepin’ it REAL Substance Use Intervention

    PubMed Central

    Miller-Day, Michelle; Shin, Young Ju; Hecht, Michael L.; Krieger, Janice L.; Graham, John W.

    2014-01-01

    Variations in the delivery of school-based substance use prevention curricula affect students’ acquisition of the lesson content and program outcomes. Although adaptation is sometimes viewed as a lack of fidelity, it is unclear what types of variations actually occur in the classroom. This observational study investigated teacher and student behaviors during implementation of a middle school-based drug prevention curriculum in 25 schools across two Midwestern states. Trained observers coded videos of 276 lessons, reflecting a total of 31 predominantly Caucasian teachers (10 males and 21 females) in 73 different classes. Employing qualitative coding procedures, the study provides a working typology of implementation patterns based on varying levels of teacher control and student participation. These patterns are fairly consistent across lessons and across classes of students, suggesting a teacher-driven delivery model where teachers create a set of constraints within which students vary their engagement. Findings provide a descriptive basis grounded in observation of classroom implementation that can be used to test models of implementation fidelity and quality as well as impact training and other dissemination research. PMID:22739791

  12. Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory

    NASA Technical Reports Server (NTRS)

    Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.

    1990-01-01

    New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.

  13. On basis set superposition error corrected stabilization energies for large n-body clusters.

    PubMed

    Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael

    2011-10-07

    In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. © 2011 American Institute of Physics

  14. Toolpack mathematical software development environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterweil, L.

    1982-07-21

    The purpose of this research project was to produce a well integrated set of tools for the support of numerical computation. The project entailed the specification, design and implementation of both a diversity of tools and an innovative tool integration mechanism. This large configuration of tightly integrated tools comprises an environment for numerical software development, and has been named Toolpack/IST (Integrated System of Tools). Following the creation of this environment in prototype form, the environment software was readied for widespread distribution by transitioning it to a development organization for systematization, documentation and distribution. It is expected that public release ofmore » Toolpack/IST will begin imminently and will provide a basis for evaluation of the innovative software approaches taken as well as a uniform set of development tools for the numerical software community.« less

  15. On designing a new cumulative sum Wilcoxon signed rank chart for monitoring process location

    PubMed Central

    Nazir, Hafiz Zafar; Tahir, Muhammad; Riaz, Muhammad

    2018-01-01

    In this paper, ranked set sampling is used for developing a non-parametric location chart which is developed on the basis of Wilcoxon signed rank statistic. The average run length and some other characteristics of run length are used as the measures to assess the performance of the proposed scheme. Some selective distributions including Laplace (or double exponential), logistic, normal, contaminated normal and student’s t-distributions are considered to examine the performance of the proposed Wilcoxon signed rank control chart. It has been observed that the proposed scheme shows superior shift detection ability than some of the competing counterpart schemes covered in this study. Moreover, the proposed control chart is also implemented and illustrated with a real data set. PMID:29664919

  16. Design of a fragment library that maximally represents available chemical space.

    PubMed

    Schulz, M N; Landström, J; Bright, K; Hubbard, R E

    2011-07-01

    Cheminformatics protocols have been developed and assessed that identify a small set of fragments which can represent the compounds in a chemical library for use in fragment-based ligand discovery. Six different methods have been implemented and tested on Input Libraries of compounds from three suppliers. The resulting Fragment Sets have been characterised on the basis of computed physico-chemical properties and their similarity to the Input Libraries. A method that iteratively identifies fragments with the maximum number of similar compounds in the Input Library (Nearest Neighbours) produces the most diverse library. This approach could increase the success of experimental ligand discovery projects, by providing fragments that can be progressed rapidly to larger compounds through access to available similar compounds (known as SAR by Catalog).

  17. High quality Gaussian basis sets for fourth-row atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Faegri, Knut, Jr.

    1992-01-01

    Energy optimized Gaussian basis sets of triple-zeta quality for the atoms Rb-Xe have been derived. Two series of basis sets are developed: (24s 16p 10d) and (26s 16p 10d) sets which were expanded to 13d and 19p functions as the 4d and 5p shells become occupied. For the atoms lighter than Cd, the (24s 16p 10d) sets with triple-zeta valence distributions are higher in energy than the corresponding double-zeta distribution. To ensure a triple-zeta distribution and a global energy minimum, the (26s 16p 10d) sets were derived. Total atomic energies from the largest basis sets are between 198 and 284 (mu)E(sub H) above the numerical Hartree-Fock energies.

  18. Implications in dosimetry of the implementation of the revised dose limit to the lens of the eye.

    PubMed

    Broughton, J; Cantone, M C; Ginjaume, M; Shah, B; Czarwinski, R

    2015-04-01

    In 2012, International Radiation Protection Association (IRPA) established a Task Group to provide an assessment of the impact of the implementation of the ICRP-revised dose limit for the lens of the eye for occupational exposure. Associated Societies (ASs) of IRPA were asked to provide views and comments on the basis of a questionnaire addressing three principal topics: (i) implications for dosimetry, (ii) implications for methods of protection and (iii) wider implications of implementing the revised limits. A summary of the collated responses regarding dosimetry is presented and discussed. There is large agreement on the most critical aspects and difficulties in setting up an appropriate monitoring programme for the lens of the eyes. The recent international standards and technical documents provide guidance for some of the concerns but other challenges remain in terms of awareness, acceptance and practicalities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. TAKING IT TO THE PEWS: A CBPR-GUIDED HIV AWARENESS AND SCREENING PROJECT WITH BLACK CHURCHES

    PubMed Central

    Berkley-Patton, Jannette; Bowe-Thompson, Carole; Bradley-Ewing, Andrea; Hawes, Starlyn; Moore, Erin; Williams, Eric; Martinez, David; Goggin, Kathy

    2014-01-01

    Utilizing a community-based participatory research (CBPR) approach is a potentially effective strategy for exploring the development, implementation, and evaluation of HIV interventions in African American churches. This CBPR-guided study describes a church-based HIV awareness and screening intervention (Taking It to the Pews [TIPS]) that fully involved African American church leaders in all phases of the research project. Findings from the implementation and evaluation phases indicated that church leaders delivered TIPS Tool Kit activities on an ongoing basis (about twice a month) over a 9-month period. TIPS church members were highly exposed to TIPS activities (e.g., 91% reported receiving HIV educational brochures, 84% heard a sermon about HIV). Most (87%) believed that the church should talk about HIV, and 77% believed that the church should offer HIV screening. These findings suggest that implementing an HIV intervention in Black church settings is achievable, particularly when a CBPR approach is used. PMID:20528130

  20. Earthquake behavior of steel cushion-implemented reinforced concrete frames

    NASA Astrophysics Data System (ADS)

    Özkaynak, Hasan

    2018-04-01

    The earthquake performance of vulnerable structures can be increased by the implementation of supplementary energy-dissipative metallic elements. The main aim of this paper is to describe the earthquake behavior of steel cushion-implemented reinforced concrete frames (SCI-RCFR) in terms of displacement demands and energy components. Several quasi-static experiments were performed on steel cushions (SC) installed in reinforced concrete (RC) frames. The test results served as the basis of the analytical models of SCs and a bare reinforced concrete frame (B-RCFR). These models were integrated in order to obtain the resulting analytical model of the SCI-RCFR. Nonlinear-time history analyses (NTHA) were performed on the SCI-RCFR under the effects of the selected earthquake data set. According to the NTHA, SC application is an effective technique for increasing the seismic performance of RC structures. The main portion of the earthquake input energy was dissipated through SCs. SCs succeeded in decreasing the plastic energy demand on structural elements by almost 50% at distinct drift levels.

  1. Patient participation as dialogue: setting research agendas

    PubMed Central

    Abma, Tineke A.; Broerse, Jacqueline E. W.

    2010-01-01

    Abstract Background  Collaboration with patients in healthcare and medical research is an emerging development. We aimed to develop a methodology for health research agenda setting processes grounded in the notion of participation as dialogue. Methods  We conducted seven case studies between 2003 and 2007 to develop and validate a Dialogue Model for patient participation in health research agenda setting. The case studies related to spinal cord injury, neuromuscular diseases, renal failure, asthma/chronic obstructive pulmonary disease, burns, diabetes and intellectual disabilities. Results  The Dialogue Model is grounded in participatory and interactive approaches and has been adjusted on the basis of pilot work. It has six phases: exploration; consultation; prioritization; integration; programming; and implementation. These phases are discussed and illustrated with a case description of research agenda setting relating to burns. Conclusions  The dialogue model appeared relevant and feasible to structure the process of collaboration between stakeholders in several research agenda setting processes. The phase of consultation enables patients to develop their own voice and agenda, and prepares them for the broader collaboration with other stakeholder groups. Challenges include the stimulation of more permanent changes in research, and institutional transitions. PMID:20536537

  2. Relativistic well-tempered Gaussian basis sets for helium through mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, S.; Matsuoka, O.

    1989-10-01

    Exponent parameters of the nonrelativistically optimized well-tempered Gaussian basis sets of Huzinaga and Klobukowski have been employed for Dirac--Fock--Roothaan calculations without their reoptimization. For light atoms He (atomic number {ital Z}=2)--Rh ({ital Z}=45), the number of exponent parameters used has been the same as the nonrelativistic basis sets and for heavier atoms Pd ({ital Z}=46)--Hg({ital Z}=80), two 2{ital p} (and three 3{ital d}) Gaussian basis functions have been augmented. The scheme of kinetic energy balance and the uniformly charged sphere model of atomic nuclei have been adopted. The qualities of the calculated basis sets are close to the Dirac--Fock limit.

  3. Performance assessment of density functional methods with Gaussian and Slater basis sets using 7σ orbital momentum distributions of N2O

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Pang, Wenning; Duffy, Patrick

    2012-12-01

    Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the calculated orbitals.

  4. A Comparison of the Behavior of Functional/Basis Set Combinations for Hydrogen-Bonding in the Water Dimer with Emphasis on Basis Set Superposition Error

    PubMed Central

    Plumley, Joshua A.; Dannenberg, J. J.

    2011-01-01

    We evaluate the performance of nine functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-DFT molecular orbital calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise corrected PES. The calculated ΔE's with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, due to error compensation, the smaller basis sets gave the best results (in comparison to experimental and high level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. Since many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: 1) D95(d,p) with B3LYP, B97D, M06 or MPWB1k; 2) 6-311G(d,p) with B3LYP; 3) D95++(d,p) with B3LYP, B97D or MPWB1K; 4)6-311++G(d,p) with B3LYP or B97D; and 5) aug-cc-pVDZ with M05-2X, M06-2X or X3LYP. PMID:21328398

  5. A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error.

    PubMed

    Plumley, Joshua A; Dannenberg, J J

    2011-06-01

    We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP. Copyright © 2011 Wiley Periodicals, Inc.

  6. On the validity of the basis set superposition error and complete basis set limit extrapolations for the binding energy of the formic acid dimer

    NASA Astrophysics Data System (ADS)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-03-01

    We report the variation of the binding energy of the Formic Acid Dimer with the size of the basis set at the Coupled Cluster with iterative Singles, Doubles and perturbatively connected Triple replacements [CCSD(T)] level of theory, estimate the Complete Basis Set (CBS) limit, and examine the validity of the Basis Set Superposition Error (BSSE)-correction for this quantity that was previously challenged by Kalescky, Kraka, and Cremer (KKC) [J. Chem. Phys. 140, 084315 (2014)]. Our results indicate that the BSSE correction, including terms that account for the substantial geometry change of the monomers due to the formation of two strong hydrogen bonds in the dimer, is indeed valid for obtaining accurate estimates for the binding energy of this system as it exhibits the expected decrease with increasing basis set size. We attribute the discrepancy between our current results and those of KKC to their use of a valence basis set in conjunction with the correlation of all electrons (i.e., including the 1s of C and O). We further show that the use of a core-valence set in conjunction with all electron correlation converges faster to the CBS limit as the BSSE correction is less than half than the valence electron/valence basis set case. The uncorrected and BSSE-corrected binding energies were found to produce the same (within 0.1 kcal/mol) CBS limits. We obtain CCSD(T)/CBS best estimates for De = - 16.1 ± 0.1 kcal/mol and for D0 = - 14.3 ± 0.1 kcal/mol, the later in excellent agreement with the experimental value of -14.22 ± 0.12 kcal/mol.

  7. Characterizing and Understanding the Remarkably Slow Basis Set Convergence of Several Minnesota Density Functionals for Intermolecular Interaction Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    2013-08-22

    For a set of eight equilibrium intermolecular complexes, it is discovered in this paper that the basis set limit (BSL) cannot be reached by aug-cc-pV5Z for three of the Minnesota density functionals: M06-L, M06-HF, and M11-L. In addition, the M06 and M11 functionals exhibit substantial, but less severe, difficulties in reaching the BSL. By using successively finer grids, it is demonstrated that this issue is not related to the numerical integration of the exchange-correlation functional. In addition, it is shown that the difficulty in reaching the BSL is not a direct consequence of the structure of the augmented functions inmore » Dunning’s basis sets, since modified augmentation yields similar results. By using a very large custom basis set, the BSL appears to be reached for the HF dimer for all of the functionals. As a result, it is concluded that the difficulties faced by several of the Minnesota density functionals are related to an interplay between the form of these functionals and the structure of standard basis sets. It is speculated that the difficulty in reaching the basis set limit is related to the magnitude of the inhomogeneity correction factor (ICF) of the exchange functional. A simple modification of the M06-L exchange functional that systematically reduces the basis set superposition error (BSSE) for the HF dimer in the aug-cc-pVQZ basis set is presented, further supporting the speculation that the difficulty in reaching the BSL is caused by the magnitude of the exchange functional ICF. In conclusion, the BSSE is plotted with respect to the internuclear distance of the neon dimer for two of the examined functionals.« less

  8. Third-order Douglas-Kroll Relativistic Coupled-Cluster Theory through Connected Single, Double, Triple, and Quadruple Substitutions: Applications to Diatomic and Triatomic Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, So; Yanai, Takeshi; De Jong, Wibe A.

    Coupled-cluster methods including through and up to the connected single, double, triple, and quadruple substitutions (CCSD, CCSDT, and CCSDTQ) have been automatically derived and implemented for sequential and parallel executions for use in conjunction with a one-component third-order Douglas-Kroll (DK3) approximation for relativistic corrections. A combination of the converging electron-correlation methods, the accurate relativistic reference wave functions, and the use of systematic basis sets tailored to the relativistic approximation has been shown to predict the experimental singlet-triplet separations within 0.02 eV (0.5 kcal/mol) for five triatomic hydrides (CH2, NH2+, SiH2, PH2+, and AsH2+), the experimental bond lengths within 0.002 angstroms,more » rotational constants within 0.02 cm-1, vibration-rotation constants within 0.01 cm-1, centrifugal distortion constants within 2 %, harmonic vibration frequencies within 9 cm-1 (0.4 %), anharmonic vibrational constants within 2 cm-1, and dissociation energies within 0.03 eV (0.8 kcal/mol) for twenty diatomic hydrides (BH, CH, NH, OH, FH, AlH, SiH, PH, SH, ClH, GaH, GeH, AsH, SeH, BrH, InH, SnH, SbH, TeH, and IH) containing main-group elements across the second through fifth periods of the periodic table. In these calculations, spin-orbit effects on dissociation energies, which were assumed to be additive, were estimated from the measured spin-orbit coupling constants of atoms and diatomic molecules, and an electronic energy in the complete-basis-set, complete-electron-correlation limit has been extrapolated by the formula which was in turn based on the exponential-Gaussian extrapolation formula of the basis set dependence.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.

    We establish a new estimate for the binding energy between two benzene molecules in the parallel-displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum, (ii) the expansion of the orbital basis set, and (iii) the level of electron correlation. The calculations were performed at the second-order Møller–Plesset perturbation (MP2) and the coupled cluster including singles, doubles, and a perturbative estimate of triples replacement [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for basis set superposition error (BSSE), we have estimated the complete basis set (CBS) limit bymore » employing the family of Dunning’s correlation-consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2772 basis functions), whereas the largest CCSD(T) calculation was with the cc-pV5Z basis set (1752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-ζ quality, observing that both its intra- and intermolecular parts have practically converged with the triple-ζ quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [within <0.01 kcal/mol for MP2 and <0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSE-corrected binding energies was found to converge to the same CBS limit much faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (ΔE) and BSSE-corrected (ΔE cp) binding energies, their average value (ΔE ave), as well as the average of the latter over the plain and augmented sets (Δ~E ave) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the π–π binding energy in the PD benzene dimer is D e = -2.65 ± 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is -2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is -5.00 ± 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). Finally, the spin-component-scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while scaled opposite spin (SOS) MP2 yielded results that are too low when compared to CCSD(T).« less

  10. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  11. Proper Orthogonal Decomposition in Optimal Control of Fluids

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.

  12. European union standards for tuberculosis care.

    PubMed

    Migliori, G B; Zellweger, J P; Abubakar, I; Ibraim, E; Caminero, J A; De Vries, G; D'Ambrosio, L; Centis, R; Sotgiu, G; Menegale, O; Kliiman, K; Aksamit, T; Cirillo, D M; Danilovits, M; Dara, M; Dheda, K; Dinh-Xuan, A T; Kluge, H; Lange, C; Leimane, V; Loddenkemper, R; Nicod, L P; Raviglione, M C; Spanevello, A; Thomsen, V Ø; Villar, M; Wanlin, M; Wedzicha, J A; Zumla, A; Blasi, F; Huitric, E; Sandgren, A; Manissero, D

    2012-04-01

    The European Centre for Disease Prevention and Control (ECDC) and the European Respiratory Society (ERS) jointly developed European Union Standards for Tuberculosis Care (ESTC) aimed at providing European Union (EU)-tailored standards for the diagnosis, treatment and prevention of tuberculosis (TB). The International Standards for TB Care (ISTC) were developed in the global context and are not always adapted to the EU setting and practices. The majority of EU countries have the resources and capacity to implement higher standards to further secure quality TB diagnosis, treatment and prevention. On this basis, the ESTC were developed as standards specifically tailored to the EU setting. A panel of 30 international experts, led by a writing group and the ERS and ECDC, identified and developed the 21 ESTC in the areas of diagnosis, treatment, HIV and comorbid conditions, and public health and prevention. The ISTCs formed the basis for the 21 standards, upon which additional EU adaptations and supplements were developed. These patient-centred standards are targeted to clinicians and public health workers, providing an easy-to-use resource, guiding through all required activities to ensure optimal diagnosis, treatment and prevention of TB. These will support EU health programmes to identify and develop optimal procedures for TB care, control and elimination.

  13. Communication: Density functional theory embedding with the orthogonality constrained basis set expansion procedure

    NASA Astrophysics Data System (ADS)

    Culpitt, Tanner; Brorsen, Kurt R.; Hammes-Schiffer, Sharon

    2017-06-01

    Density functional theory (DFT) embedding approaches have generated considerable interest in the field of computational chemistry because they enable calculations on larger systems by treating subsystems at different levels of theory. To circumvent the calculation of the non-additive kinetic potential, various projector methods have been developed to ensure the orthogonality of molecular orbitals between subsystems. Herein the orthogonality constrained basis set expansion (OCBSE) procedure is implemented to enforce this subsystem orbital orthogonality without requiring a level shifting parameter. This scheme is a simple alternative to existing parameter-free projector-based schemes, such as the Huzinaga equation. The main advantage of the OCBSE procedure is that excellent convergence behavior is attained for DFT-in-DFT embedding without freezing any of the subsystem densities. For the three chemical systems studied, the level of accuracy is comparable to or higher than that obtained with the Huzinaga scheme with frozen subsystem densities. Allowing both the high-level and low-level DFT densities to respond to each other during DFT-in-DFT embedding calculations provides more flexibility and renders this approach more generally applicable to chemical systems. It could also be useful for future extensions to embedding approaches combining wavefunction theories and DFT.

  14. The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature

    PubMed Central

    Lindquist, Kristen A.; Satpute, Ajay B.; Wager, Tor D.; Weber, Jochen; Barrett, Lisa Feldman

    2016-01-01

    The ability to experience pleasant or unpleasant feelings or to represent objects as “positive” or “negative” is known as representing hedonic “valence.” Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions. PMID:25631056

  15. Atomization Energies of SO and SO2; Basis Set Extrapolation Revisted

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Arnold, James (Technical Monitor)

    1998-01-01

    The addition of tight functions to sulphur and extrapolation to the complete basis set limit are required to obtain accurate atomization energies. Six different extrapolation procedures are tried. The best atomization energies come from the series of basis sets that yield the most consistent results for all extrapolation techniques. In the variable alpha approach, alpha values larger than 4.5 or smaller than 3, appear to suggest that the extrapolation may not be reliable. It does not appear possible to determine a reliable basis set series using only the triple and quadruple zeta based sets. The scalar relativistic effects reduce the atomization of SO and SO2 by 0.34 and 0.81 kcal/mol, respectively, and clearly must be accounted for if a highly accurate atomization energy is to be computed. The magnitude of the core-valence (CV) contribution to the atomization is affected by missing diffuse valence functions. The CV contribution is much more stable if basis set superposition errors are accounted for. A similar study of SF, SF(+), and SF6 shows that the best family of basis sets varies with the nature of the S bonding.

  16. Ab initio multiple cloning simulations of pyrrole photodissociation: TKER spectra and velocity map imaging

    DOE PAGES

    Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.; ...

    2014-12-11

    In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less

  17. Ab initio multiple cloning simulations of pyrrole photodissociation: TKER spectra and velocity map imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.

    In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less

  18. Application of the exact exchange potential method for half metallic intermediate band alloy semiconductor.

    PubMed

    Fernández, J J; Tablero, C; Wahnón, P

    2004-06-08

    In this paper we present an analysis of the convergence of the band structure properties, particularly the influence on the modification of the bandgap and bandwidth values in half metallic compounds by the use of the exact exchange formalism. This formalism for general solids has been implemented using a localized basis set of numerical functions to represent the exchange density. The implementation has been carried out using a code which uses a linear combination of confined numerical pseudoatomic functions to represent the Kohn-Sham orbitals. The application of this exact exchange scheme to a half-metallic semiconductor compound, in particular to Ga(4)P(3)Ti, a promising material in the field of high efficiency solar cells, confirms the existence of the isolated intermediate band in this compound. (c) 2004 American Institute of Physics.

  19. Calculating Interaction Energies Using First Principle Theories: Consideration of Basis Set Superposition Error and Fragment Relaxation

    ERIC Educational Resources Information Center

    Bowen, J. Philip; Sorensen, Jennifer B.; Kirschner, Karl N.

    2007-01-01

    The analysis explains the basis set superposition error (BSSE) and fragment relaxation involved in calculating the interaction energies using various first principle theories. Interacting the correlated fragment and increasing the size of the basis set can help in decreasing the BSSE to a great extent.

  20. Density matrix modeling of quantum cascade lasers without an artificially localized basis: A generalized scattering approach

    NASA Astrophysics Data System (ADS)

    Pan, Andrew; Burnett, Benjamin A.; Chui, Chi On; Williams, Benjamin S.

    2017-08-01

    We derive a density matrix (DM) theory for quantum cascade lasers (QCLs) that describes the influence of scattering on coherences through a generalized scattering superoperator. The theory enables quantitative modeling of QCLs, including localization and tunneling effects, using the well-defined energy eigenstates rather than the ad hoc localized basis states required by most previous DM models. Our microscopic approach to scattering also eliminates the need for phenomenological transition or dephasing rates. We discuss the physical interpretation and numerical implementation of the theory, presenting sets of both energy-resolved and thermally averaged equations, which can be used for detailed or compact device modeling. We illustrate the theory's applications by simulating a high performance resonant-phonon terahertz (THz) QCL design, which cannot be easily or accurately modeled using conventional DM methods. We show that the theory's inclusion of coherences is crucial for describing localization and tunneling effects consistent with experiment.

  1. The effect of diffuse basis functions on valence bond structural weights

    NASA Astrophysics Data System (ADS)

    Galbraith, John Morrison; James, Andrew M.; Nemes, Coleen T.

    2014-03-01

    Structural weights and bond dissociation energies have been determined for H-F, H-X, and F-X molecules (-X = -OH, -NH2, and -CH3) at the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) levels of theory with the aug-cc-pVDZ and 6-31++G(d,p) basis sets. At the BOVB level, the aug-cc-pVDZ basis set yields a counterintuitive ordering of ionic structural weights when the initial heavy atom s-type basis functions are included. For H-F, H-OH, and F-X, the ordering follows chemical intuition when these basis functions are not included. These counterintuitive weights are shown to be a result of the diffuse polarisation function on one VB fragment being spatially located, in part, on the other VB fragment. Except in the case of F-CH3, this problem is corrected with the 6-31++G(d,p) basis set. The initial heavy atom s-type functions are shown to make an important contribution to the VB orbitals and bond dissociation energies and, therefore, should not be excluded. It is recommended to not use diffuse basis sets in valence bond calculations unless absolutely necessary. If diffuse basis sets are needed, the 6-31++G(d,p) basis set should be used with caution and the structural weights checked against VBSCF values which have been shown to follow the expected ordering in all cases.

  2. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration

    NASA Astrophysics Data System (ADS)

    Eshuis, Henk; Yarkony, Julian; Furche, Filipp

    2010-06-01

    The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.

  3. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.

    PubMed

    Eshuis, Henk; Yarkony, Julian; Furche, Filipp

    2010-06-21

    The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N(4) log N) operations and O(N(3)) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield muH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.

  4. Implementation of an international short-term dental mission.

    PubMed

    O'Callaghan, Michael G

    2012-01-01

    Dental professionals serve across the globe, working to alleviate the pain and suffering caused by dental disease. Many dental professionals serve on international mission trips, yet little has been published in the professional literature to guide dentists in establishing and operating a volunteer dental clinic in an international mission setting on a short-term basis. This article reports on multiple aspects of planning a short-term dental mission trip, including considerations in the selection of an indigenous national partner, concerns regarding the safety of patients and participants, scope of care decision-making, and the requisite equipment and supplies.

  5. Pathway to social justice: research on human rights and gender-based violence in a Rwandan refugee cAMP.

    PubMed

    Pavlish, Carol; Ho, Anita

    2009-01-01

    Gender-based violence persists in postconflict settings. Implementing an ethnographic study with Congolese refugees in Rwanda, we investigated community perspectives on justice and human rights. As core concepts, participants described the right to equal value as human beings and the corresponding responsibility to respect human rights as the basis for justice. Three factors that impede human rights include cultural ideology, social distance, and lack of a rights-enabling environment. Men described gender similarities while women emphasized gender differences in human rights. Ecological perspectives and rights-based approaches to achieving social justice seem warranted.

  6. Rigorous Characterisation of a Novel, Statistically-Based Ocean Colour Algorithm for the PACE Mission

    NASA Astrophysics Data System (ADS)

    Craig, S. E.; Lee, Z.; Du, K.; Lin, J.

    2016-02-01

    An approach based on empirical orthogonal function (EOF) analysis of ocean colour spectra has been shown to accurately derive inherent optical properties (IOPs) and chlorophyll concentration in scenarios, such as optically complex waters, where standard algorithms often perform poorly. The algorithm has been successfully used in a number of regional applications, and has also shown promise in a global implementation based on the NASA NOMAD data set. Additionally, it has demonstrated the unique ability to derive ocean colour products from top of atmosphere (TOA) signals with either no or minimal atmospheric correction applied. Due to its high potential for use over coastal and inland waters, the EOF approach is currently being rigorously characterised as part of a suite of approaches that will be used to support the new NASA ocean colour mission, PACE (Pre-Aerosol, Clouds and ocean Ecosystem). A major component in this model characterisation is the generation of a synthetic TOA data set using a coupled ocean-atmosphere radiative transfer model, which has been run to mimic PACE spectral resolution, and under a wide range of geographical locations, water constituent concentrations, and sea surface and atmospheric conditions. The resulting multidimensional data set will be analysed, and results presented on the sensitivity of the model to various combinations of parameters, and preliminary conclusions made regarding the optimal implementation strategy of this promising approach (e.g. on a global, optical water type or regional basis). This will provide vital guidance for operational implementation of the model for both existing satellite ocean colour sensors and the upcoming PACE mission.

  7. Patient data management systems in intensive care--the situation in Europe.

    PubMed

    Metnitz, P G; Lenz, K

    1995-09-01

    Computerized Patient Data Management Systems (PDMS) have been developed for handling the enormous increase in data collection in ICUs. This study tries to evaluate the functionality of such systems installed in Europe. Criteria reflecting usefulness and practicality formed the basis of a questionnaire to be answered accurately by the vendors. We then examined functions provided and their implementation in European ICUs. Next, an "Information Delivery Test" evaluated variations in performance, taking questions arising from daily routine work and measured time of information delivery. ICUs located in Vienna (Austria), Antwerp (Belgium), Dortmund (Germany), Kuopio (Finland). 5 PDMS were selected on the basis of our inclusion criteria: commercial availability with at least one installation in Europe, bedside-based design, realization of international standards and a prescribed minimum of functionality. The "Table of Functions" shows an overview of functions and their implementation. "System analyses" indicates predominant differences in properties and functions found between the systems. Results of the "Information Delivery Tests" are shown in the graphic charts. Systems with graphical data presentation have advantages over systems presenting data mainly in numerical format. Time has come to form a medical establishment powerful enough to set standards and thus communicate with industrial partners as well as with hospital management responsible for planning, purchasing and implementing PDMS. Overall, communication between clinicians, nurses, computer scientists and PDMS vendors must be enhanced to achieve the common goal: useful and practical data management systems at ICUs.

  8. On the effects of basis set truncation and electron correlation in conformers of 2-hydroxy-acetamide

    NASA Astrophysics Data System (ADS)

    Szarecka, A.; Day, G.; Grout, P. J.; Wilson, S.

    Ab initio quantum chemical calculations have been used to study the differences in energy between two gas phase conformers of the 2-hydroxy-acetamide molecule that possess intramolecular hydrogen bonding. In particular, rotation around the central C-C bond has been considered as a factor determining the structure of the hydrogen bond and stabilization of the conformer. Energy calculations include full geometiy optimization using both the restricted matrix Hartree-Fock model and second-order many-body perturbation theory with a number of commonly used basis sets. The basis sets employed ranged from the minimal STO-3G set to [`]split-valence' sets up to 6-31 G. The effects of polarization functions were also studied. The results display a strong basis set dependence.

  9. Mechanisms for integration of information models across related domains

    NASA Astrophysics Data System (ADS)

    Atkinson, Rob

    2010-05-01

    It is well recognised that there are opportunities and challenges in cross-disciplinary data integration. A significant barrier, however, is creating a conceptual model of the combined domains and the area of integration. For example, a groundwater domain application may require information from several related domains: geology, hydrology, water policy, etc. Each domain may have its own data holdings and conceptual models, but these will share various common concepts (eg. The concept of an aquifer). These areas of semantic overlap present significant challenges, firstly to choose a single representation (model) of a concept that appears in multiple disparate models,, then to harmonise these other models with the single representation. In addition, models may exist at different levels of abstraction depending on how closely aligned they are with a particular implementation. This makes it hard for modellers in one domain to introduce elements from another domain without either introducing a specific style of implementation, or conversely dealing with a set of abstract patterns that are hard to integrate with existing implementations. Models are easier to integrate if they are broken down into small units, with common concepts implemented using common models from well-known, and predictably managed shared libraries. This vision however requires development of a set of mechanisms (tools and procedures) for implementing and exploiting libraries of model components. These mechanisms need to handle publication, discovery, subscription, versioning and implementation of models in different forms. In this presentation a coherent suite of such mechanisms is proposed, using a scenario based on re-use of geosciences models. This approach forms the basis of a comprehensive strategy to empower domain modellers to create more interoperable systems. The strategy address a range of concerns and practice, and includes methodologies, an accessible toolkit, improvements to available modelling software, a community of practice and design of model registries. These mechanisms have been used to decouple the generation of simplified data products from a data and metadata maintenance environment, where the simplified products conform to implementation styles, and the data maintenance environment is a modular, extensible implementation of a more complete set of related domain models. Another case study is the provisioning of authoritative place names (a gazetteer) from more complex multi-lingual and historical archives of related place name usage.

  10. A Separable Insertion Method to Calculate Atomic and Molecular Resonances on a FE-DVR Grid using Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Abeln, Brant Anthony

    The study of metastable electronic resonances, anion or neutral states of finite lifetime, in molecules is an important area of research where currently no theoretical technique is generally applicable. The role of theory is to calculate both the position and width, which is proportional to the inverse of the lifetime, of these resonances and how they vary with respect to nuclear geometry in order to generate potential energy surfaces. These surfaces are the basis of time-dependent models of the molecular dynamics where the system moves towards vibrational excitation or fragmentation. Three fundamental electronic processes that can be modeled this way are dissociative electronic attachment, vibrational excitation through electronic impact and autoionization. Currently, experimental investigation into these processes is being preformed on polyatomic molecules while theoreticians continue their fifty-year-old search for robust methods to calculate them. The separable insertion method, investigated in this thesis, seeks to tackle the problem of calculating metastable resonances by using existing quantum chemistry tools along with a grid-based method employing exterior complex scaling (ECS). Modern quantum chemistry methods are extremely efficient at calculating ground and (bound) excited electronic states of atoms and molecules by utilizing Gaussian basis functions. These functions provide both a numerically fast and analytic solution to the necessary two-electron, six-dimensional integrals required in structure calculations. However, these computer programs, based on analytic Gaussian basis sets, cannot construct solutions that are not square-integrable, such as resonance wavefunctions. ECS, on the other hand, can formally calculate resonance solutions by rotating the asymptotic electronic coordinates into the complex plane. The complex Siegert energies for resonances, Eres = ER - iGamma/2 where ER is the real-valued position of the resonance and Gamma is the width of the resonance, can be found directly as an isolated pole in the complex energy plane. Unlike the straight complex scaling, ECS on the electronic coordinates overcomes the non-analytic behavior of the nuclear attraction potential, as a function of complex [special characters omitted] where the sum is over each nucleus in a molecular system. Discouragingly, the Gaussian basis functions, which are computationally well-suited for bound electronic structure, fail at forming an effective basis set for ECS due to the derivative discontinuity generated by the complex coordinate rotation and the piecewise defined contour. This thesis seeks to explore methods for implementing ECS indirectly without losing the numerical simplicity and power of Gaussian basis sets. The separable insertion method takes advantage of existing software by constructing a N2-term separable potential of the target system using Gaussian functions to be inserted into a finite-element discrete variable representation (FE-DVR) grid that implements ECS. This work reports an exhaustive investigation into this approach for calculating resonances. This thesis shows that this technique is successful at describing an anion shape resonance of a closed-shell atom or molecule in the static-exchange approximation. This method is applied to the 2P Be-, 2pig N2- and 2pi u CO2- shape resonances to calculate their complex Seigert energies. Additionally, many details on the exact construction of the separable potential and of the expansion basis are explored. The future work considers methods for faster convergence of the resonance energy, moving beyond the static-exchange approximation and applying this technique to polyatomic systems of interest.

  11. On the optimization of Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.

    2003-01-01

    A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.

  12. Acute sensory responses of nonsmokers at very low environmental tobacco smoke concentrations in controlled laboratory settings.

    PubMed

    Junker, M H; Danuser, B; Monn, C; Koller, T

    2001-10-01

    The objective of this study was to provide a basis for effectively protecting nonsmokers from acute sensory impacts and for preventing deterioration of indoor air quality caused by environmental tobacco smoke (ETS) emissions. With an olfactory experiment we determined odor detection thresholds (OT) of sidestream ETS (sETS), and with a full-body exposure experiment we investigated sensory symptoms at very low sETS exposure concentrations. OT concentrations for sETS are three and more orders of magnitude lower than ETS concentrations measured in field settings and correspond to a fresh air dilution volume of > 19,000 m(3) per cigarette, over 100 times more than had previously been suggested for acceptable indoor air conditions. Eye and nasal irritations were observed at one order of magnitude lower sETS concentrations than previously reported, corresponding to a fresh air dilution volume of > 3,000 m(3) per cigarette. These findings have great practical implications for defining indoor air quality standards in indoor compartments where ETS emissions occur. Our study strongly supports the implementation and control of smoking policies such as segregating smoking areas from areas where smoking is not permitted or instituting smoking bans in public buildings.

  13. Implementation of integrated dual disorders treatment: a qualitative analysis of facilitators and barriers.

    PubMed

    Brunette, Mary F; Asher, Dianne; Whitley, Rob; Lutz, Wilma J; Wieder, Barbara L; Jones, Amanda M; McHugo, Gregory J

    2008-09-01

    Approximately half of the people who have serious mental illnesses experience a co-occurring substance use disorder at some point in their lifetime. Integrated dual disorders treatment, a program to treat persons with co-occurring disorders, improves outcomes but is not widely available in public mental health settings. This report describes the extent to which this intervention was implemented by 11 community mental health centers participating in a large study of practice implementation. Facilitators and barriers to implementation are described. Trained implementation monitors conducted regular site visits over two years. During visits, monitors interviewed key informants, conducted ethnographic observations of implementation efforts, and assessed fidelity to the practice model. These data were coded and used as a basis for detailed site reports summarizing implementation processes. The authors reviewed the reports and distilled the three top facilitators and barriers for each site. The most prominent cross-site facilitators and barriers were identified. Two sites reached high fidelity, six sites reached moderate fidelity, and three sites remained at low fidelity over the two years. Prominent facilitators and barriers to implementation with moderate to high fidelity were administrative leadership, consultation and training, supervisor mastery and supervision, chronic staff turnover, and finances. Common facilitators and barriers to implementation of integrated dual disorders treatment emerged across sites. The results confirmed the importance of the use of the consultant-trainer in the model of implementation, as well as the need for intensive activities at multiple levels to facilitate implementation. Further research on service implementation is needed, including but not limited to clarifying strategies to overcome barriers.

  14. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    PubMed

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  15. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  16. The application of midbond basis sets in efficient and accurate ab initio calculations on electron-deficient systems

    NASA Astrophysics Data System (ADS)

    Choi, Chu Hwan

    2002-09-01

    Ab initio chemistry has shown great promise in reproducing experimental results and in its predictive power. The many complicated computational models and methods seem impenetrable to an inexperienced scientist, and the reliability of the results is not easily interpreted. The application of midbond orbitals is used to determine a general method for use in calculating weak intermolecular interactions, especially those involving electron-deficient systems. Using the criteria of consistency, flexibility, accuracy and efficiency we propose a supermolecular method of calculation using the full counterpoise (CP) method of Boys and Bernardi, coupled with Moller-Plesset (MP) perturbation theory as an efficient electron-correlative method. We also advocate the use of the highly efficient and reliable correlation-consistent polarized valence basis sets of Dunning. To these basis sets, we add a general set of midbond orbitals and demonstrate greatly enhanced efficiency in the calculation. The H2-H2 dimer is taken as a benchmark test case for our method, and details of the computation are elaborated. Our method reproduces with great accuracy the dissociation energies of other previous theoretical studies. The added efficiency of extending the basis sets with conventional means is compared with the performance of our midbond-extended basis sets. The improvement found with midbond functions is notably superior in every case tested. Finally, a novel application of midbond functions to the BH5 complex is presented. The system is an unusual van der Waals complex. The interaction potential curves are presented for several standard basis sets and midbond-enhanced basis sets, as well as for two popular, alternative correlation methods. We report that MP theory appears to be superior to coupled-cluster (CC) in speed, while it is more stable than B3LYP, a widely-used density functional theory (DFT). Application of our general method yields excellent results for the midbond basis sets. Again they prove superior to conventional extended basis sets. Based on these results, we recommend our general approach as a highly efficient, accurate method for calculating weakly interacting systems.

  17. Hospital protocols for targeted glycemic control: Development, implementation, and models for cost justification.

    PubMed

    Magee, Michelle F

    2007-05-15

    Evolving elements of best practices for providing targeted glycemic control in the hospital setting, clinical performance measurement, basal-bolus plus correction-dose insulin regimens, components of standardized subcutaneous (s.c.) insulin order sets, and strategies for implementation and cost justification of glycemic control initiatives are discussed. Best practices for targeted glycemic control should address accurate documentation of hyperglycemia, initial patient assessment, management plan, target blood glucose range, blood glucose monitoring frequency, maintenance of glycemic control, criteria for glucose management consultations, and standardized insulin order sets and protocols. Establishing clinical performance measures, including desirable processes and outcomes, can help ensure the success of targeted hospital glycemic control initiatives. The basal-bolus plus correction-dose regimen for insulin administration will be used to mimic the normal physiologic pattern of endogenous insulin secretion. Standardized insulin order sets and protocols are being used to minimize the risk of error in insulin therapy. Components of standardized s.c. insulin order sets include specification of the hyperglycemia diagnosis, finger stick blood glucose monitoring frequency and timing, target blood glucose concentration range, cutoff values for excessively high or low blood glucose concentrations that warrant alerting the physician, basal and prandial or nutritional (i.e., bolus) insulin, correction doses, hypoglycemia treatment, and perioperative or procedural dosage adjustments. The endorsement of hospital administrators and key physician and nursing leaders is needed for glycemic control initiatives. Initiatives may be cost justified on the basis of the billings for clinical diabetes management services and/or the return- on-investment accrued to reductions in hospital length of stay, readmissions, and accurate documentation and coding of unrecognized or uncontrolled diabetes, and diabetes complications. Standardized insulin order sets and protocols may minimize risk of insulin errors. The endorsement of these protocols by administrators, physicians, nurses, and pharmacists is also needed for success.

  18. From kidnapping to corruption: some trials and tribulations in the implementation of rapid assessment studies.

    PubMed

    Fazey

    2000-03-01

    In between the description of the methodology and the discussion of assessment results, lies a crucial area, namely that of implementation. If assessment methods cannot be implemented, there will be no assessment report, and no recommendations for intervention or policy development. Implementation is a critical, yet neglected, area of drug policy delivery. This paper describes some of the problems associated with the implementation of rapid assessment studies commissioned by the United Nations International Drug Control Programme (UNDCP) over the last 5 years. Drawing on the author's experience of commissioning rapid assessments on the extent and nature of drug use in a variety of international settings and political contexts, the paper draws eight main lessons for rapid assessments commissioned within the context of international development programmes. These are: (1) the need to get high level political support; (2) the need to employ competent social scientists to run the assessment; (3) the need to define exactly the object of the assessment; (4) the necessity of spelling out the methodology and the time scale; (5) the careful establishment of the financial framework; (6) the importance of cultivating contacts; (7) the necessity of actually getting a report; and (8) the danger of accepting an unseen or unread consultant's report as the basis for programme implementation. The paper emphasises the critical importance of planning prior to implementation and flexibility during it.

  19. Basis set construction for molecular electronic structure theory: natural orbital and Gauss-Slater basis for smooth pseudopotentials.

    PubMed

    Petruzielo, F R; Toulouse, Julien; Umrigar, C J

    2011-02-14

    A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.

  20. Employee's perceived exposure to environmental tobacco smoke, passive smoking risk beliefs and attitudes towards smoking: a case study in a university setting.

    PubMed

    Duaso, M J; De Irala, J; Canga, N

    2006-02-01

    Despite the growing literature on workplace smoking policies, few studies have focused on the implementation of such policies in university settings. Smoking in the workplace is still very common in many countries, including Spain. While the law is about to change and more non-smoking policies are to be implemented, it is not clear what kind of restrictions Spanish workers would find acceptable. This study investigated perceived exposure to environmental tobacco smoke (ETS), passive smoking risks beliefs and attitudes towards smoking at the University of Navarra (Spain). A questionnaire was sent by E-mail to 641 randomly selected employees and a response rate of 70.4% was obtained. The survey results suggest that 27.3% of the university employees were smokers and 26.6% were exposed to ETS on a daily basis. The majority of respondents (81.7%) supported a restrictive non-smoking policy. Acceptance among active smokers was significantly lower (59.2 versus 89.3%). Smoking prohibition with the provision of smoking areas was the most favored option (46.9%). Results suggest that employees are ready to restrict smoking in the university, but there was not enough support for a total ban. Employers considering adopting a ban on smoking should be encouraged to conduct a similar survey to identify potential barriers to policy implementation.

  1. Elaboration of the Gothenburg model of person-centred care.

    PubMed

    Britten, Nicky; Moore, Lucy; Lydahl, Doris; Naldemirci, Oncel; Elam, Mark; Wolf, Axel

    2017-06-01

    Person-centred care (PCC) is increasingly advocated as a new way of delivering health care, but there is little evidence that it is widely practised. The University of Gothenburg Centre for Person-Centred Care (GPCC) was set up in 2010 to develop and implement person-centred care in clinical practice on the basis of three routines. These routines are based on eliciting the patient's narrative to initiate a partnership; working the partnership to achieve commonly agreed goals; and using documentation to safeguard the partnership and record the person's narrative and shared goals. In this paper, we aimed to explore professionals' understanding of PCC routines as they implement the GPCC model in a range of different settings. We conducted a qualitative study and interviewed 18 clinician-researchers from five health-care professions who were working in seven diverse GPCC projects. Interviewees' accounts of PCC emphasized the ways in which persons are seen as different from patients; the variable emphasis placed on the person's goals; and the role of the person's own resources in building partnerships. This study illustrates what is needed for health-care professionals to implement PCC in everyday practice: the recognition of the person is as important as the specific practical routines. Interviewees described the need to change the clinical mindset and to develop the ways of integrating people's narratives with clinical practice. © 2016 The Authors. Health Expectations Published by John Wiley & Sons Ltd.

  2. Auxiliary basis sets for density-fitting second-order Møller-Plesset perturbation theory: weighted core-valence correlation consistent basis sets for the 4d elements Y-Pd.

    PubMed

    Hill, J Grant

    2013-09-30

    Auxiliary basis sets (ABS) specifically matched to the cc-pwCVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y-Pd at the second-order Møller-Plesset perturbation theory level. Calculation of the core-valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution-of-the-identity component of explicitly correlated calculations is also investigated, where it is shown that i-type functions are important to produce well-controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double-ζ calculations produce results close to conventional quadruple-ζ, and triple-ζ is within chemical accuracy of the complete basis set limit. Copyright © 2013 Wiley Periodicals, Inc.

  3. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  4. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE PAGES

    Zhang, Gaigong; Lin, Lin; Hu, Wei; ...

    2017-01-27

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  5. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin; Hu, Wei

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  6. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.

    2017-04-01

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.

  7. Instructional strategies in science classrooms of specialized secondary schools for the gifted

    NASA Astrophysics Data System (ADS)

    Poland, Donna Lorraine

    This study examined the extent to which science teachers in Academic Year Governor's Schools were adhering to the national standards for suggested science instruction and providing an appropriate learning environment for gifted learners. The study asked 13 directors, 54 instructors of advanced science courses, and 1190 students of advanced science courses in 13 Academic Year Governor's Schools in Virginia to respond to researcher-developed surveys and to participate in classroom observations. The surveys and classroom observations collected demographic data as well as instructors' and students' perceptions of the use of various instructional strategies related to national science reform and gifted education recommendations. Chi-square analyses were used to ascertain significant differences between instructors' and students' perceptions. Findings indicated that instructors of advanced science classes in secondary schools for the gifted are implementing nationally recognized gifted education and science education instructional strategies with less frequency than desired. Both students and instructors concur that these strategies are being implemented in the classroom setting, and both concur as to the frequency with which the implementation occurs. There was no significant difference between instructors' and students' perceptions of the frequency of implementation of instructional strategies. Unfortunately, there was not a single strategy that students and teachers felt was being implemented on a weekly or daily basis across 90% of the sampled classrooms. Staff development in gifted education was found to be minimal as an ongoing practice. While this study offers some insights into the frequency of strategy usage, the study needs more classroom observations to support findings; an area of needed future research. While this study was conducted at the secondary level, research into instructional practices at the middle school and elementary school gifted science classroom settings would be appropriate and warranted.

  8. Kinetic balance and variational bounds failure in the solution of the Dirac equation in a finite Gaussian basis set

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.

    1990-01-01

    The paper investigates bounds failure in calculations using Gaussian basis sets for the solution of the one-electron Dirac equation for the 2p1/2 state of Hg(79+). It is shown that bounds failure indicates inadequacies in the basis set, both in terms of the exponent range and the number of functions. It is also shown that overrepresentation of the small component space may lead to unphysical results. It is concluded that it is important to use matched large and small component basis sets with an adequate size and exponent range.

  9. Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping

    2006-03-09

    Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less

  10. On the performance of large Gaussian basis sets for the computation of total atomization energies

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.

    1992-01-01

    The total atomization energies of a number of molecules have been computed using an augmented coupled-cluster method and (5s4p3d2f1g) and 4s3p2d1f) atomic natural orbital (ANO) basis sets, as well as the correlation consistent valence triple zeta plus polarization (cc-pVTZ) correlation consistent valence quadrupole zeta plus polarization (cc-pVQZ) basis sets. The performance of ANO and correlation consistent basis sets is comparable throughout, although the latter can result in significant CPU time savings. Whereas the inclusion of g functions has significant effects on the computed Sigma D(e) values, chemical accuracy is still not reached for molecules involving multiple bonds. A Gaussian-1 (G) type correction lowers the error, but not much beyond the accuracy of the G1 model itself. Using separate corrections for sigma bonds, pi bonds, and valence pairs brings down the mean absolute error to less than 1 kcal/mol for the spdf basis sets, and about 0.5 kcal/mol for the spdfg basis sets. Some conclusions on the success of the Gaussian-1 and Gaussian-2 models are drawn.

  11. [Factors of successful integrated care settings for total knee and hip arthroplasty: findings of a qualitative process analysis].

    PubMed

    Bartel, S; Bethge, M; Streibelt, M; Thren, K; Lassahn, C

    2010-06-01

    In Germany, introduction of the law on Integrated Health Care (IC) (section sign 140a-d SGB V) opened up the possibility of cross-sectoral health care settings and new forms of remuneration, and improved the conditions for a closer cooperation between health care providers. However, cross-institutional and interdisciplinary work contexts demand new organizational structures in order to assure the coordination of different competences, resources and interests. This study aims at identifying factors of successful integrated care settings for total hip and knee arthroplasty. Using the example of an integrated care setting between an orthopaedic hospital and a rehabilitation clinic it will be examined which factors lead to successful implementation of the services and measures designed. A qualitative research design was developed comprising different methods of data assessment (participant observation, guided expert interviews, document analyses) enabling a comprehensive exploration. Overall, data were derived from six consultations with patients, two integrated care information sessions and various documents (17 patient files, information material, patient lists, etc.). First of all, the different phases of development and implementation of integrated care settings were described. In this context, clearly defined aims, structures and appropriate measures seem to be crucial for an ideal long-term cooperation. Furthermore, the staff perspective on the effects of the IC programme on their daily routines proved an essential basis for process reconstruction. The staff members pointed out four main aspects regarding IC settings, i. e., improved image, increased knowledge, intensity of relationship, and less and more work effort. Against this background, factors of successful IC settings could be generated such as the need for central coordination, a regular staff information systems as well as accompanying process monitoring. Several key factors of successful integrated care settings in arthroplasty could be generated which provide important clues for shaping future interdisciplinary and cross-sectoral cooperation settings in health care services in general. Georg Thieme Verlag KG Stuttgart New York.

  12. How Does Rumination Impact Cognition? A First Mechanistic Model.

    PubMed

    van Vugt, Marieke K; van der Velde, Maarten

    2018-01-01

    Rumination is a process of uncontrolled, narrowly focused negative thinking that is often self-referential, and that is a hallmark of depression. Despite its importance, little is known about its cognitive mechanisms. Rumination can be thought of as a specific, constrained form of mind-wandering. Here, we introduce a cognitive model of rumination that we developed on the basis of our existing model of mind-wandering. The rumination model implements the hypothesis that rumination is caused by maladaptive habits of thought. These habits of thought are modeled by adjusting the number of memory chunks and their associative structure, which changes the sequence of memories that are retrieved during mind-wandering, such that during rumination the same set of negative memories is retrieved repeatedly. The implementation of habits of thought was guided by empirical data from an experience sampling study in healthy and depressed participants. On the basis of this empirically derived memory structure, our model naturally predicts the declines in cognitive task performance that are typically observed in depressed patients. This study demonstrates how we can use cognitive models to better understand the cognitive mechanisms underlying rumination and depression. Copyright © 2018 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  13. Upper body push and pull strength ratio in recreationally active adults.

    PubMed

    Negrete, Rodney J; Hanney, William J; Pabian, Patrick; Kolber, Morey J

    2013-04-01

    Agonist to antagonist strength data is commonly analyzed due to its association with injury and performance. The purpose of this study was to examine the agonist to antagonist ratio of upper body strength using two simple field tests (timed push up/timed modified pull up) in recreationally active adults and to establish the basis for reference standards. One hundred eighty (180) healthy recreationally active adults (111 females and 69 males, aged 18-45 years) performed two tests of upper body strength in random order: 1. Push-ups completed during 3 sets of 15 seconds with a 45 second rest period between each set and 2. Modified pull-ups completed during 3 sets of 15 seconds with a 45 second rest period between each set. The push-up to modified pull-up ratio for the males was 1.57:1, whereas females demonstrated a ratio of 2.72:1. The results suggest that for our group of healthy recreationally active subjects, the upper body "pushing" musculature is approximately 1.5-2.7 times stronger than the musculature involved for pulling. In this study, these recreationally active adults displayed greater strength during the timed push-ups than the modified pull-ups. The relationship of these imbalances to one's performance and or injury risk requires further investigation. The reference values, however, may serve the basis for future comparison and prospective investigations. The field tests in this study can be easily implemented by clinicians and an agonist/antagonist ratio can be determined and compared to our findings. 2b.

  14. UPPER BODY PUSH AND PULL STRENGTH RATIO IN RECREATIONALLY ACTIVE ADULTS

    PubMed Central

    Hanney, William J.; Pabian, Patrick; Kolber, Morey J.

    2013-01-01

    Introduction: Agonist to antagonist strength data is commonly analyzed due to its association with injury and performance. The purpose of this study was to examine the agonist to antagonist ratio of upper body strength using two simple field tests (timed push up/timed modified pull up) in recreationally active adults and to establish the basis for reference standards. Methods: One hundred eighty (180) healthy recreationally active adults (111 females and 69 males, aged 18‐45 years) performed two tests of upper body strength in random order: 1. Push‐ups completed during 3 sets of 15 seconds with a 45 second rest period between each set and 2. Modified pull‐ups completed during 3 sets of 15 seconds with a 45 second rest period between each set. Results: The push‐up to modified pull‐up ratio for the males was 1.57:1, whereas females demonstrated a ratio of 2.72:1. The results suggest that for our group of healthy recreationally active subjects, the upper body “pushing” musculature is approximately 1.5–2.7 times stronger than the musculature involved for pulling. Conclusions: In this study, these recreationally active adults displayed greater strength during the timed push‐ups than the modified pull‐ups. The relationship of these imbalances to one's performance and or injury risk requires further investigation. The reference values, however, may serve the basis for future comparison and prospective investigations. The field tests in this study can be easily implemented by clinicians and an agonist/antagonist ratio can be determined and compared to our findings. Level of Evidence: 2b PMID:23593552

  15. Fast Electron Correlation Methods for Molecular Clusters without Basis Set Superposition Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Muneaki; Hirata, So; Valiev, Marat

    2008-02-19

    Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly-interacting molecular clusters [Hirata et al. Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine–water clusters with an excellent result for an initial performance assessment. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole–dipole approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of themore » cluster subunits as closely as possible and also self-consistently with one another in the cluster environment. They have been shown to lead to dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits like zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSE) known to plague direct evaluation of weak interactions have been eliminated by com-bining the Valiron–Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method in an economical fashion (quadratic scaling n2 with respect to the number of subunits n when n is small and linear scaling when n is large). A new variant of VMFC has also been proposed in which three-body and all higher-order Coulomb effects on BSSE are estimated approximately. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results of conventional electron correlation calculations within 0.1 kcal/mol. The proposed method is significantly more accurate and also efficient than conventional correlation methods uncorrected of BSSE.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl

    An ab initio intermolecular potential energy surface (PES) has been constructed for the benzene-krypton (BKr) van der Waals (vdW) complex. The interaction energy has been calculated at the coupled cluster level of theory with single, double, and perturbatively included triple excitations using different basis sets. As a result, a few analytical PESs of the complex have been determined. They allowed a prediction of the complex structure and its vibrational vdW states. The vibrational energy level pattern exhibits a distinct polyad structure. Comparison of the equilibrium structure, the dipole moment, and vibrational levels of BKr with their experimental counterparts has allowedmore » us to design an optimal basis set composed of a small Dunning’s basis set for the benzene monomer, a larger effective core potential adapted basis set for Kr and additional midbond functions. Such a basis set yields vibrational energy levels that agree very well with the experimental ones as well as with those calculated from the available empirical PES derived from the microwave spectra of the BKr complex. The basis proposed can be applied to larger complexes including Kr because of a reasonable computational cost and accurate results.« less

  17. Polarized atomic orbitals for self-consistent field electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Head-Gordon, Martin

    1997-12-01

    We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.

  18. Use of Simulation-Based Training to Aid in Implementing Complex Health Technology.

    PubMed

    Devers, Veffa

    2018-01-01

    Clinicians are adult learners in a complex environment that historically does not invest in training in a way that is conducive to these types of learners. Adult learners are independent, self-directed, and goal oriented. In today's fast-paced clinical setting, a practical need exists for nurses and clinicians to master the technology they use on a daily basis, especially as medical devices have become more interconnected and complex. As hospitals look to embrace new technologies, medical device companies must provide clinical end-user training. This should be a required part of the selection process when considering the purchase of any complex medical technology. However, training busy clinicians in a traditional classroom setting can be difficult and costly. A simple, less expensive solution is online simulation training. This interactive training provides a virtual, "hands-on" end-user experience in advance of implementing new equipment. Online simulation training ensures knowledge retention and comprehension and, most importantly, that the training leads to end-user satisfaction and the ability to confidently operate new equipment. A review of the literature revealed that online simulation, coupled with the use of adult learning principles and experiential learning, may enhance the experience of clinical end users.

  19. Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation

    PubMed Central

    Kazmi, S. M. Shams; Balial, Satyajit; Dunn, Andrew K.

    2014-01-01

    Improved Laser Speckle Contrast Imaging (LSCI) blood flow analyses that incorporate inverse models of the underlying laser-tissue interaction have been used to develop more quantitative implementations of speckle flowmetry such as Multi-Exposure Speckle Imaging (MESI). In this paper, we determine the optimal camera exposure durations required for obtaining flow information with comparable accuracy with the prevailing MESI implementation utilized in recent in vivo rodent studies. A looping leave-one-out (LOO) algorithm was used to identify exposure subsets which were analyzed for accuracy against flows obtained from analysis with the original full exposure set over 9 animals comprising n = 314 regional flow measurements. From the 15 original exposures, 6 exposures were found using the LOO process to provide comparable accuracy, defined as being no more than 10% deviant, with the original flow measurements. The optimal subset of exposures provides a basis set of camera durations for speckle flowmetry studies of the microcirculation and confers a two-fold faster acquisition rate and a 28% reduction in processing time without sacrificing accuracy. Additionally, the optimization process can be used to identify further reductions in the exposure subsets for tailoring imaging over less expansive flow distributions to enable even faster imaging. PMID:25071956

  20. The Diabetic Retinopathy Screening Workflow

    PubMed Central

    Bolster, Nigel M.; Giardini, Mario E.; Bastawrous, Andrew

    2015-01-01

    Complications of diabetes mellitus, namely diabetic retinopathy and diabetic maculopathy, are the leading cause of blindness in working aged people. Sufferers can avoid blindness if identified early via retinal imaging. Systematic screening of the diabetic population has been shown to greatly reduce the prevalence and incidence of blindness within the population. Many national screening programs have digital fundus photography as their basis. In the past 5 years several techniques and adapters have been developed that allow digital fundus photography to be performed using smartphones. We review recent progress in smartphone-based fundus imaging and discuss its potential for integration into national systematic diabetic retinopathy screening programs. Some systems have produced promising initial results with respect to their agreement with reference standards. However further multisite trialling of such systems’ use within implementable screening workflows is required if an evidence base strong enough to affect policy change is to be established. If this were to occur national diabetic retinopathy screening would, for the first time, become possible in low- and middle-income settings where cost and availability of trained eye care personnel are currently key barriers to implementation. As diabetes prevalence and incidence is increasing sharply in these settings, the impact on global blindness could be profound. PMID:26596630

  1. A whole body counting facility in a remote Enewetak Island setting.

    PubMed

    Bell, Thomas R; Hickman, David; Yamaguchi, Lance; Jackson, William; Hamilton, Terry

    2002-08-01

    The U.S. Department of Energy (DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection programs for resettled and resettling populations. As part of this new initiative, DOE agreed to design and construct a radiological laboratory on Enewetak Island, and help develop the necessary local resources to maintain and operate the facility. This cooperative effort was formalized in August 2000 between the DOE, the Republic of the Marshall Islands (RMI), and the Enewetak/Ujelang Local Atoll Government (EULGOV). The laboratory facility was completed in May 2001. The laboratory incorporates both a permanent whole body counting system to assess internal exposures to 137Cs, and clean living space for people providing 24-h void urine samples. DOE continues to provide on-going technical assistance, training, and data quality review while EULGOV provides manpower and infrastructure development to sustain facility operations on a full-time basis. This paper will detail the special construction, transportation and installation issues in establishing a whole body counting facility in an isolated, harsh environmental setting.

  2. A combined MOIP-MCDA approach to building and screening atmospheric pollution control strategies in urban regions.

    PubMed

    Mavrotas, George; Ziomas, Ioannis C; Diakouaki, Danae

    2006-07-01

    This article presents a methodological approach for the formulation of control strategies capable of reducing atmospheric pollution at the standards set by European legislation. The approach was implemented in the greater area of Thessaloniki and was part of a project aiming at the compliance with air quality standards in five major cities in Greece. The methodological approach comprises two stages: in the first stage, the availability of several measures contributing to a certain extent to reducing atmospheric pollution indicates a combinatorial problem and favors the use of Integer Programming. More specifically, Multiple Objective Integer Programming is used in order to generate alternative efficient combinations of the available policy measures on the basis of two conflicting objectives: public expenditure minimization and social acceptance maximization. In the second stage, these combinations of control measures (i.e., the control strategies) are then comparatively evaluated with respect to a wider set of criteria, using tools from Multiple Criteria Decision Analysis, namely, the well-known PROMETHEE method. The whole procedure is based on the active involvement of local and central authorities in order to incorporate their concerns and preferences, as well as to secure the adoption and implementation of the resulting solution.

  3. A Combined MOIP-MCDA Approach to Building and Screening Atmospheric Pollution Control Strategies in Urban Regions

    NASA Astrophysics Data System (ADS)

    Mavrotas, George; Ziomas, Ioannis C.; Diakouaki, Danae

    2006-07-01

    This article presents a methodological approach for the formulation of control strategies capable of reducing atmospheric pollution at the standards set by European legislation. The approach was implemented in the greater area of Thessaloniki and was part of a project aiming at the compliance with air quality standards in five major cities in Greece. The methodological approach comprises two stages: in the first stage, the availability of several measures contributing to a certain extent to reducing atmospheric pollution indicates a combinatorial problem and favors the use of Integer Programming. More specifically, Multiple Objective Integer Programming is used in order to generate alternative efficient combinations of the available policy measures on the basis of two conflicting objectives: public expenditure minimization and social acceptance maximization. In the second stage, these combinations of control measures (i.e., the control strategies) are then comparatively evaluated with respect to a wider set of criteria, using tools from Multiple Criteria Decision Analysis, namely, the well-known PROMETHEE method. The whole procedure is based on the active involvement of local and central authorities in order to incorporate their concerns and preferences, as well as to secure the adoption and implementation of the resulting solution.

  4. Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals

    NASA Astrophysics Data System (ADS)

    Liu, Junzi; Shen, Yue; Asthana, Ayush; Cheng, Lan

    2018-01-01

    A novel implementation of the two-component spin-orbit (SO) coupled-cluster singles and doubles (CCSD) method and the CCSD augmented with the perturbative inclusion of triple excitations [CCSD(T)] method using mean-field SO integrals is reported. The new formulation of SO-CCSD(T) features an atomic-orbital-based algorithm for the particle-particle ladder term in the CCSD equation, which not only removes the computational bottleneck associated with the large molecular-orbital integral file but also accelerates the evaluation of the particle-particle ladder term by around a factor of 4 by taking advantage of the spin-free nature of the instantaneous electron-electron Coulomb interaction. Benchmark calculations of the SO splittings for the thallium atom and a set of diatomic 2Π radicals as well as of the bond lengths and harmonic frequencies for a set of closed-shell diatomic molecules are presented. The basis-set and core-correlation effects in the calculations of these properties have been carefully analyzed.

  5. Data acquisition for a real time fault monitoring and diagnosis knowledge-based system for space power system

    NASA Technical Reports Server (NTRS)

    Wilhite, Larry D.; Lee, S. C.; Lollar, Louis F.

    1989-01-01

    The design and implementation of the real-time data acquisition and processing system employed in the AMPERES project is described, including effective data structures for efficient storage and flexible manipulation of the data by the knowledge-based system (KBS), the interprocess communication mechanism required between the data acquisition system and the KBS, and the appropriate data acquisition protocols for collecting data from the sensors. Sensor data are categorized as critical or noncritical data on the basis of the inherent frequencies of the signals and the diagnostic requirements reflected in their values. The critical data set contains 30 analog values and 42 digital values and is collected every 10 ms. The noncritical data set contains 240 analog values and is collected every second. The collected critical and noncritical data are stored in separate circular buffers. Buffers are created in shared memory to enable other processes, i.e., the fault monitoring and diagnosis process and the user interface process, to freely access the data sets.

  6. Using the framework of corporate culture in "mergers" to support the development of a cultural basis for integrative medicine - guidance for building an integrative medicine department or service.

    PubMed

    Witt, Claudia M; Pérard, Marion; Berman, Brian; Berman, Susan; Birdsall, Timothy C; Defren, Horst; Kümmel, Sherko; Deng, Gary; Dobos, Gustav; Drexler, Atje; Holmberg, Christine; Horneber, Markus; Jütte, Robert; Knutson, Lori; Kummer, Christopher; Volpers, Susanne; Schweiger, David

    2015-01-01

    An increasing number of clinics offer complementary or integrative medicine services; however, clear guidance about how complementary medicine could be successfully and efficiently integrated into conventional health care settings is still lacking. Combining conventional and complementary medicine into integrative medicine can be regarded as a kind of merger. In a merger, two or more organizations - usually companies - are combined into one in order to strengthen the companies financially and strategically. The corporate culture of both merger partners has an important influence on the integration. The aim of this project was to transfer the concept of corporate culture in mergers to the merging of two medical systems. A two-step approach (literature analyses and expert consensus procedure) was used to develop practical guidance for the development of a cultural basis for integrative medicine, based on the framework of corporate culture in "mergers," which could be used to build an integrative medicine department or integrative medicine service. Results include recommendations for general strategic dimensions (definition of the medical model, motivation for integration, clarification of the available resources, development of the integration team, and development of a communication strategy), and recommendations to overcome cultural differences (the clinic environment, the professional language, the professional image, and the implementation of evidence-based medicine). The framework of mergers in corporate culture provides an understanding of the difficulties involved in integrative medicine projects. The specific recommendations provide a good basis for more efficient implementation.

  7. Using the framework of corporate culture in “mergers” to support the development of a cultural basis for integrative medicine – guidance for building an integrative medicine department or service

    PubMed Central

    Witt, Claudia M; Pérard, Marion; Berman, Brian; Berman, Susan; Birdsall, Timothy C; Defren, Horst; Kümmel, Sherko; Deng, Gary; Dobos, Gustav; Drexler, Atje; Holmberg, Christine; Horneber, Markus; Jütte, Robert; Knutson, Lori; Kummer, Christopher; Volpers, Susanne; Schweiger, David

    2015-01-01

    Background An increasing number of clinics offer complementary or integrative medicine services; however, clear guidance about how complementary medicine could be successfully and efficiently integrated into conventional health care settings is still lacking. Combining conventional and complementary medicine into integrative medicine can be regarded as a kind of merger. In a merger, two or more organizations − usually companies − are combined into one in order to strengthen the companies financially and strategically. The corporate culture of both merger partners has an important influence on the integration. Purpose The aim of this project was to transfer the concept of corporate culture in mergers to the merging of two medical systems. Methods A two-step approach (literature analyses and expert consensus procedure) was used to develop practical guidance for the development of a cultural basis for integrative medicine, based on the framework of corporate culture in “mergers,” which could be used to build an integrative medicine department or integrative medicine service. Results Results include recommendations for general strategic dimensions (definition of the medical model, motivation for integration, clarification of the available resources, development of the integration team, and development of a communication strategy), and recommendations to overcome cultural differences (the clinic environment, the professional language, the professional image, and the implementation of evidence-based medicine). Conclusion The framework of mergers in corporate culture provides an understanding of the difficulties involved in integrative medicine projects. The specific recommendations provide a good basis for more efficient implementation. PMID:25632226

  8. Investigation of the effect of ambient conditions on the performance of solid desiccant cooling cycles

    NASA Astrophysics Data System (ADS)

    Panaras, G.; Mathioulakis, E.; Belessiotis, V.

    2018-01-01

    The operation of desiccant air-conditioning systems is characterised by processes implemented to the moist air of the environment; it is, thus, expected to be affected by ambient conditions. The present work aims at quantifying this influence on the basis of an easy-to-implement, steady-state model of the system, presenting an efficiency factors approach, which has been experimentally validated. The analysis examines the behaviour of the ventilation and the recirculation cycles, which constitute the marginal cases regarding the achieved values of the outside air fraction, given the ambient conditions, the desired regeneration temperature and the efficiency of the involved components. The fact of a desiccant cycle undergoing a set of changing ambient conditions by its actual operation is also considered in the analysis. The results provide useful information for the selection of the optimum configuration to the designer of a desiccant air-conditioning system.

  9. All-digital GPS receiver mechanization

    NASA Astrophysics Data System (ADS)

    Ould, P. C.; van Wechel, R. J.

    The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.

  10. Self-consistent continuum solvation for optical absorption of complex molecular systems in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timrov, Iurii; Biancardi, Alessandro; Andreussi, Oliviero

    2015-01-21

    We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem andmore » a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the QUANTUM ESPRESSO distribution of open-source codes.« less

  11. Instituting a music listening intervention for critically ill patients receiving mechanical ventilation: Exemplars from two patient cases

    PubMed Central

    Heiderscheit, Annie; Chlan, Linda; Donley, Kim

    2011-01-01

    Music is an ideal intervention to reduce anxiety and promote relaxation in critically ill patients receiving mechanical ventilatory support. This article reviews the basis for a music listening intervention and describes two case examples with patients utilizing a music listening intervention to illustrate the implementation and use of the music listening protocol in this dynamic environment. The case examples illustrate the importance and necessity of engaging a music therapist in not only assessing the music preferences of patients, but also for implementing a music listening protocol to manage the varied and challenging needs of patients in the critical care setting. Additionally, the case examples presented in this paper demonstrate the wide array of music patients prefer and how the ease of a music listening protocol allows mechanically ventilated patients to engage in managing their own anxiety during this distressful experience. PMID:22081788

  12. The greater snow goose Anser caerulescens atlanticus: Managing an overabundant population.

    PubMed

    Lefebvre, Josée; Gauthier, Gilles; Giroux, Jean-François; Reed, Austin; Reed, Eric T; Bélanger, Luc

    2017-03-01

    Between the early 1900s and the 1990s, the greater snow goose Anser caerulescens atlanticus population grew from 3000 individuals to more than 700 000. Because of concerns about Arctic degradation of natural habitats through overgrazing, a working group recommended the stabilization of the population. Declared overabundant in 1998, special management actions were then implemented in Canada and the United States. Meanwhile, a cost-benefit socioeconomic analysis was performed to set a target population size. Discussions aiming towards attaining a common vision were undertaken with stakeholders at multiple levels. The implemented measures have had varying success; but population size has been generally stable since 1999. To be effective and meet social acceptance, management actions must have a scientific basis, result from a consensus among stakeholders, and include an efficient monitoring programme. In this paper, historical changes in population size and management decisions along with past and current challenges encountered are discussed.

  13. Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans.

    PubMed

    Plessow, Philipp N

    2018-02-13

    This work explores how constrained linear combinations of bond lengths can be used to optimize transition states in periodic structures. Scanning of constrained coordinates is a standard approach for molecular codes with localized basis functions, where a full set of internal coordinates is used for optimization. Common plane wave-codes for periodic boundary conditions almost exlusively rely on Cartesian coordinates. An implementation of constrained linear combinations of bond lengths with Cartesian coordinates is described. Along with an optimization of the value of the constrained coordinate toward the transition states, this allows transition optimization within a single calculation. The approach is suitable for transition states that can be well described in terms of broken and formed bonds. In particular, the implementation is shown to be effective and efficient in the optimization of transition states in zeolite-catalyzed reactions, which have high relevance in industrial processes.

  14. Performance and Sizing Tool for Quadrotor Biplane Tailsitter UAS

    NASA Astrophysics Data System (ADS)

    Strom, Eric

    The Quadrotor-Biplane-Tailsitter (QBT) configuration is the basis for a mechanically simplistic rotorcraft capable of both long-range, high-speed cruise as well as hovering flight. This work presents the development and validation of a set of preliminary design tools built specifically for this aircraft to enable its further development, including: a QBT weight model, preliminary sizing framework, and vehicle analysis tools. The preliminary sizing tool presented here shows the advantage afforded by QBT designs in missions with aggressive cruise requirements, such as offshore wind turbine inspections, wherein transition from a quadcopter configuration to a QBT allows for a 5:1 trade of battery weight for wing weight. A 3D, unsteady panel method utilizing a nonlinear implementation of the Kutta-Joukowsky condition is also presented as a means of computing aerodynamic interference effects and, through the implementation of rotor, body, and wing geometry generators, is prepared for coupling with a comprehensive rotor analysis package.

  15. Health Reforms as Examples of Multilevel Interventions in Cancer Care

    PubMed Central

    Fennell, Mary L.; Devers, Kelly J.

    2012-01-01

    To increase access and improve system quality and efficiency, President Obama signed the Patient Protection and Affordable Care Act with sweeping changes to the nation’s health-care system. Although not intended to be specific to cancer, the act's implementation will profoundly impact cancer care. Its components will influence multiple levels of the health-care environment including states, communities, health-care organizations, and individuals seeking care. To illustrate these influences, two reforms are considered: 1) accountable care organizations and 2) insurance-based reforms to gather evidence about effectiveness. We discuss these reforms using three facets of multilevel interventions: 1) their intended and unintended consequences, 2) the importance of timing, and 3) their implications for cancer. The success of complex health reforms requires understanding the scientific basis and evidence for carrying out such multilevel interventions. Conversely and equally important, successful implementation of multilevel interventions depends on understanding the political setting and goals of health-care reform. PMID:22623600

  16. Health reforms as examples of multilevel interventions in cancer care.

    PubMed

    Flood, Ann B; Fennell, Mary L; Devers, Kelly J

    2012-05-01

    To increase access and improve system quality and efficiency, President Obama signed the Patient Protection and Affordable Care Act with sweeping changes to the nation's health-care system. Although not intended to be specific to cancer, the act's implementation will profoundly impact cancer care. Its components will influence multiple levels of the health-care environment including states, communities, health-care organizations, and individuals seeking care. To illustrate these influences, two reforms are considered: 1) accountable care organizations and 2) insurance-based reforms to gather evidence about effectiveness. We discuss these reforms using three facets of multilevel interventions: 1) their intended and unintended consequences, 2) the importance of timing, and 3) their implications for cancer. The success of complex health reforms requires understanding the scientific basis and evidence for carrying out such multilevel interventions. Conversely and equally important, successful implementation of multilevel interventions depends on understanding the political setting and goals of health-care reform.

  17. Image Reference Database in Teleradiology: Migrating to WWW

    NASA Astrophysics Data System (ADS)

    Pasqui, Valdo

    The paper presents a multimedia Image Reference Data Base (IRDB) used in Teleradiology. The application was developed at the University of Florence in the framework of the European Community TELEMED Project. TELEMED overall goals and IRDB requirements are outlined and the resulting architecture is described. IRDB is a multisite database containing radiological images, selected because their scientific interest, and their related information. The architecture consists of a set of IRDB Installations which are accessed from Viewing Stations (VS) located at different medical sites. The interaction between VS and IRDB Installations follows the client-server paradigm and uses an OSI level-7 protocol, named Telemed Communication Language. After reviewing Florence prototype implementation and experimentation, IRDB migration to World Wide Web (WWW) is discussed. A possible scenery to implement IRDB on the basis of WWW model is depicted in order to exploit WWW servers and browsers capabilities. Finally, the advantages of this conversion are outlined.

  18. Cytoscape tools for the web age: D3.js and Cytoscape.js exporters

    PubMed Central

    Ono, Keiichiro; Demchak, Barry; Ideker, Trey

    2014-01-01

    In this paper we present new data export modules for Cytoscape 3 that can generate network files for Cytoscape.js and D3.js. Cytoscape.js exporter is implemented as a core feature of Cytoscape 3, and D3.js exporter is available as a Cytoscape 3 app. These modules enable users to seamlessly export network and table data sets generated in Cytoscape to popular JavaScript library readable formats. In addition, we implemented template web applications for browser-based interactive network visualization that can be used as basis for complex data visualization applications for bioinformatics research. Example web applications created with these tools demonstrate how Cytoscape works in modern data visualization workflows built with traditional desktop tools and emerging web-based technologies. This interactivity enables researchers more flexibility than with static images, thereby greatly improving the quality of insights researchers can gain from them. PMID:25520778

  19. Cytoscape tools for the web age: D3.js and Cytoscape.js exporters.

    PubMed

    Ono, Keiichiro; Demchak, Barry; Ideker, Trey

    2014-01-01

    In this paper we present new data export modules for Cytoscape 3 that can generate network files for Cytoscape.js and D3.js. Cytoscape.js exporter is implemented as a core feature of Cytoscape 3, and D3.js exporter is available as a Cytoscape 3 app. These modules enable users to seamlessly export network and table data sets generated in Cytoscape to popular JavaScript library readable formats. In addition, we implemented template web applications for browser-based interactive network visualization that can be used as basis for complex data visualization applications for bioinformatics research. Example web applications created with these tools demonstrate how Cytoscape works in modern data visualization workflows built with traditional desktop tools and emerging web-based technologies. This interactivity enables researchers more flexibility than with static images, thereby greatly improving the quality of insights researchers can gain from them.

  20. Nanoscale multireference quantum chemistry: full configuration interaction on graphical processing units.

    PubMed

    Fales, B Scott; Levine, Benjamin G

    2015-10-13

    Methods based on a full configuration interaction (FCI) expansion in an active space of orbitals are widely used for modeling chemical phenomena such as bond breaking, multiply excited states, and conical intersections in small-to-medium-sized molecules, but these phenomena occur in systems of all sizes. To scale such calculations up to the nanoscale, we have developed an implementation of FCI in which electron repulsion integral transformation and several of the more expensive steps in σ vector formation are performed on graphical processing unit (GPU) hardware. When applied to a 1.7 × 1.4 × 1.4 nm silicon nanoparticle (Si72H64) described with the polarized, all-electron 6-31G** basis set, our implementation can solve for the ground state of the 16-active-electron/16-active-orbital CASCI Hamiltonian (more than 100,000,000 configurations) in 39 min on a single NVidia K40 GPU.

  1. Neuromorphic elements and systems as the basis for the physical implementation of artificial intelligence technologies

    NASA Astrophysics Data System (ADS)

    Demin, V. A.; Emelyanov, A. V.; Lapkin, D. A.; Erokhin, V. V.; Kashkarov, P. K.; Kovalchuk, M. V.

    2016-11-01

    The instrumental realization of neuromorphic systems may form the basis of a radically new social and economic setup, redistributing roles between humans and complex technical aggregates. The basic elements of any neuromorphic system are neurons and synapses. New memristive elements based on both organic (polymer) and inorganic materials have been formed, and the possibilities of instrumental implementation of very simple neuromorphic systems with different architectures on the basis of these elements have been demonstrated.

  2. Technical basis for implementation of remote reading capabilities for radiological control instruments at tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PIERSON, R.M.

    1999-10-27

    This document provides the technical basis for use of remote reading capabilities with radiological control instruments at River Protection Project facilities. The purpose of this document is to evaluate applications of remote reading capabilities with Radiological Control instrumentation to allow continuous monitoring of radiation dose rates at River Protection Project (RPP) facilities. In addition this document provides a technical basis and implementing guidelines for remote monitoring of dose rates and their potential contribution to maintaining radiation exposures ALARA.

  3. Experience measuring performance improvement in multiphase picture archiving and communications systems implementations.

    PubMed

    Reed, G; Reed, D H

    1999-05-01

    When planning a picture archiving and communications system (PACS) implementation and determining which equipment will be implemented in earlier and later phases, collection and analysis of selected data will aid in setting implementation priorities. If baseline data are acquired relative to performance objectives, the same information used for implementation planning can be used to measure performance improvement and outcomes. The main categories of data to choose from are: (1) financial data; (2) productivity data; (3) operational parameters; (4) clinical data; and (5) information about customer satisfaction. In the authors' experience, detailed workflow data have not proved valuable in measuring PACS performance and outcomes. Reviewing only one category of data in planning will not provide adequate basis for targeting operational improvements that will lead to the most significant gains. Quality improvement takes into account all factors in production: human capacity, materials, operating capital and assets. Once we have identified key areas of focus for quality improvement in each phase, we can translate objectives into implementation requirements and finally into detailed functional and performance requirements. Here, Integration Resources reports its experience measuring PACS performance relative to phased implementation strategies for three large medical centers. Each medical center had its own objectives for overcoming image management, physical/geographical, and functional/technical barriers. The report outlines (1) principal financial and nonfinancial measures used as performance indicators; (2) implementation strategies chosen by each of the three medical centers; and (3) the results of those strategies as compared with baseline data.

  4. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    NASA Astrophysics Data System (ADS)

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    2017-10-01

    We present a code implementing the linearized quasiparticle self-consistent GW method (LQSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N3 scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method. Program Files doi:http://dx.doi.org/10.17632/cpchkfty4w.1 Licensing provisions: GNU General Public License Programming language: Fortran 90 External routines/libraries: BLAS, LAPACK, MPI (optional) Nature of problem: Direct implementation of the GW method scales as N4 with the system size, which quickly becomes prohibitively time consuming even in the modern computers. Solution method: We implemented the GW approach using a method that switches between real space and momentum space representations. Some operations are faster in real space, whereas others are more computationally efficient in the reciprocal space. This makes our approach scale as N3. Restrictions: The limiting factor is usually the memory available in a computer. Using 10 GB/core of memory allows us to study the systems up to 15 atoms per unit cell.

  5. 42 CFR 413.330 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.330 Basis and scope. (a) Basis. This subpart implements section 1888(e) of the Act, which...

  6. 42 CFR 413.330 - Basis and scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.330 Basis and scope. (a) Basis. This subpart implements section 1888(e) of the Act, which...

  7. 42 CFR 413.330 - Basis and scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.330 Basis and scope. (a) Basis. This subpart implements section 1888(e) of the Act, which...

  8. 42 CFR 413.330 - Basis and scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.330 Basis and scope. (a) Basis. This subpart implements section 1888(e) of the Act, which...

  9. 42 CFR 413.330 - Basis and scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.330 Basis and scope. (a) Basis. This subpart implements section 1888(e) of the Act, which...

  10. 42 CFR 415.170 - Conditions for payment on a fee schedule basis for physician services in a teaching setting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... physician services in a teaching setting. 415.170 Section 415.170 Public Health CENTERS FOR MEDICARE... BY PHYSICIANS IN PROVIDERS, SUPERVISING PHYSICIANS IN TEACHING SETTINGS, AND RESIDENTS IN CERTAIN SETTINGS Physician Services in Teaching Settings § 415.170 Conditions for payment on a fee schedule basis...

  11. Projected Hybrid Orbitals: A General QM/MM Method

    PubMed Central

    2015-01-01

    A projected hybrid orbital (PHO) method was described to model the covalent boundary in a hybrid quantum mechanical and molecular mechanical (QM/MM) system. The PHO approach can be used in ab initio wave function theory and in density functional theory with any basis set without introducing system-dependent parameters. In this method, a secondary basis set on the boundary atom is introduced to formulate a set of hybrid atomic orbtials. The primary basis set on the boundary atom used for the QM subsystem is projected onto the secondary basis to yield a representation that provides a good approximation to the electron-withdrawing power of the primary basis set to balance electronic interactions between QM and MM subsystems. The PHO method has been tested on a range of molecules and properties. Comparison with results obtained from QM calculations on the entire system shows that the present PHO method is a robust and balanced QM/MM scheme that preserves the structural and electronic properties of the QM region. PMID:25317748

  12. A novel Gaussian-Sinc mixed basis set for electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerke, Jonathan L.; Lee, Young; Tymczak, C. J.

    2015-08-14

    A Gaussian-Sinc basis set methodology is presented for the calculation of the electronic structure of atoms and molecules at the Hartree–Fock level of theory. This methodology has several advantages over previous methods. The all-electron electronic structure in a Gaussian-Sinc mixed basis spans both the “localized” and “delocalized” regions. A basis set for each region is combined to make a new basis methodology—a lattice of orthonormal sinc functions is used to represent the “delocalized” regions and the atom-centered Gaussian functions are used to represent the “localized” regions to any desired accuracy. For this mixed basis, all the Coulomb integrals are definablemore » and can be computed in a dimensional separated methodology. Additionally, the Sinc basis is translationally invariant, which allows for the Coulomb singularity to be placed anywhere including on lattice sites. Finally, boundary conditions are always satisfied with this basis. To demonstrate the utility of this method, we calculated the ground state Hartree–Fock energies for atoms up to neon, the diatomic systems H{sub 2}, O{sub 2}, and N{sub 2}, and the multi-atom system benzene. Together, it is shown that the Gaussian-Sinc mixed basis set is a flexible and accurate method for solving the electronic structure of atomic and molecular species.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, J. Grant, E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu; Peterson, Kirk A., E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu

    New correlation consistent basis sets, cc-pVnZ-PP-F12 (n = D, T, Q), for all the post-d main group elements Ga–Rn have been optimized for use in explicitly correlated F12 calculations. The new sets, which include not only orbital basis sets but also the matching auxiliary sets required for density fitting both conventional and F12 integrals, are designed for correlation of valence sp, as well as the outer-core d electrons. The basis sets are constructed for use with the previously published small-core relativistic pseudopotentials of the Stuttgart-Cologne variety. Benchmark explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)-F12b] calculations of themore » spectroscopic properties of numerous diatomic molecules involving 4p, 5p, and 6p elements have been carried out and compared to the analogous conventional CCSD(T) results. In general the F12 results obtained with a n-zeta F12 basis set were comparable to conventional aug-cc-pVxZ-PP or aug-cc-pwCVxZ-PP basis set calculations obtained with x = n + 1 or even x = n + 2. The new sets used in CCSD(T)-F12b calculations are particularly efficient at accurately recovering the large correlation effects of the outer-core d electrons.« less

  14. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies

    PubMed Central

    Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-01-01

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672

  15. The promises and challenges of pre-exposure prophylaxis as part of the emerging paradigm of combination HIV prevention.

    PubMed

    Cáceres, Carlos F; Koechlin, Florence; Goicochea, Pedro; Sow, Papa-Salif; O'Reilly, Kevin R; Mayer, Kenneth H; Godfrey-Faussett, Peter

    2015-01-01

    Towards the end of the twentieth century, significant success was achieved in reducing incidence in several global HIV epidemics through ongoing prevention strategies. However, further progress in risk reduction was uncertain. For one thing, it was clear that social vulnerability had to be addressed, through research on interventions addressing health systems and other structural barriers. As soon as antiretroviral treatment became available, researchers started to conceive that antiretrovirals might play a role in decreasing either susceptibility in uninfected people or infectiousness among people living with HIV. In this paper we focus on the origin, present status, and potential contribution of pre-exposure prophylaxis (PrEP) within the combination HIV prevention framework. After a phase of controversy, PrEP efficacy trials took off. By 2015, daily oral PrEP, using tenofovir alone or in combination with emtricitabine, has been proven efficacious, though efficacy seems heavily contingent upon adherence to pill uptake. Initial demonstration projects after release of efficacy results have shown that PrEP can be implemented in real settings and adherence can be high, leading to high effectiveness. Despite its substantial potential, beliefs persist about unfeasibility in real-life settings due to stigma, cost, adherence, and potential risk compensation barriers. The strategic synergy of behavioural change communication, biomedical strategies (including PrEP), and structural programmes is providing the basis for the combination HIV prevention framework. If PrEP is to ever become a key component of that framework, several negative beliefs must be confronted based on emerging evidence; moreover, research gaps regarding PrEP implementation must be filled, and appropriate prioritization strategies must be set up. Those challenges are significant, proportional to the impact that PrEP implementation may have in the global response to HIV.

  16. The promises and challenges of pre-exposure prophylaxis as part of the emerging paradigm of combination HIV prevention

    PubMed Central

    Cáceres, Carlos F; Koechlin, Florence; Goicochea, Pedro; Sow, Papa-Salif; O'Reilly, Kevin R; Mayer, Kenneth H; Godfrey-Faussett, Peter

    2015-01-01

    Introduction Towards the end of the twentieth century, significant success was achieved in reducing incidence in several global HIV epidemics through ongoing prevention strategies. However, further progress in risk reduction was uncertain. For one thing, it was clear that social vulnerability had to be addressed, through research on interventions addressing health systems and other structural barriers. As soon as antiretroviral treatment became available, researchers started to conceive that antiretrovirals might play a role in decreasing either susceptibility in uninfected people or infectiousness among people living with HIV. In this paper we focus on the origin, present status, and potential contribution of pre-exposure prophylaxis (PrEP) within the combination HIV prevention framework. Discussion After a phase of controversy, PrEP efficacy trials took off. By 2015, daily oral PrEP, using tenofovir alone or in combination with emtricitabine, has been proven efficacious, though efficacy seems heavily contingent upon adherence to pill uptake. Initial demonstration projects after release of efficacy results have shown that PrEP can be implemented in real settings and adherence can be high, leading to high effectiveness. Despite its substantial potential, beliefs persist about unfeasibility in real-life settings due to stigma, cost, adherence, and potential risk compensation barriers. Conclusions The strategic synergy of behavioural change communication, biomedical strategies (including PrEP), and structural programmes is providing the basis for the combination HIV prevention framework. If PrEP is to ever become a key component of that framework, several negative beliefs must be confronted based on emerging evidence; moreover, research gaps regarding PrEP implementation must be filled, and appropriate prioritization strategies must be set up. Those challenges are significant, proportional to the impact that PrEP implementation may have in the global response to HIV. PMID:26198341

  17. Computer-Assisted Diabetes Risk Assessment and Education (CADRAE) for Medically Vulnerable Populations in the Middle East: a Novel and Practical Method for Prevention

    PubMed Central

    Rowther, Armaan A.; Dykzeul, Brad; Billimek, John; Abuhassan, Deyana; Anderson, Craig; Lotfipour, Shahram

    2016-01-01

    The prevalence of diabetes in the Middle East is increasing rapidly due to urbanization, reduced levels of physical activity, and a nutritional transition toward increased consumption of fats and refined carbohydrates. Preventive strategies are of paramount importance to stemming the tide. Portable touch-screen computer technology may hold an answer for alleviating the burdens of cost, time, and training that limit the implementation of diabetes risk screening and intervention, especially among refugees and other vulnerable populations. The Computer-Assisted Diabetes Risk Assessment and Education (CADRAE) Arabic-language intervention program is proposed as a model method for practicing proactive type 2 diabetes prevention in resource-limited settings of the Middle East that combines the efficiency of risk-score screening methods, the advantages of portable computer interface, and the spirit of brief motivational interviewing. This paper aims to describe the theory and novel design of CADRAE—introduced at the Noor Al Hussein Foundation's Institute of Family Health in January 2014—as well as discuss opportunities and challenges for its implementation and evaluation in primary or emergency care settings. Features of CADRAE are elucidated in detail, including development, translation, conceptual framework, theoretical basis, method of risk assessment, brief intervention style, definition of outcomes, requirements for implementation, and potential means of evaluation and quality improvement. CADRAE offers the first example of portable computer technology integrating diabetes risk screening with behavior change counseling tailored for an Arabic-speaking population of mostly refugees and could offer a valuable model for researchers and policy makers of the Middle East as well as other resource-limited settings. PMID:26835181

  18. Conventional and Explicitly Correlated ab Initio Benchmark Study on Water Clusters: Revision of the BEGDB and WATER27 Data Sets.

    PubMed

    Manna, Debashree; Kesharwani, Manoj K; Sylvetsky, Nitai; Martin, Jan M L

    2017-07-11

    Benchmark ab initio energies for BEGDB and WATER27 data sets have been re-examined at the MP2 and CCSD(T) levels with both conventional and explicitly correlated (F12) approaches. The basis set convergence of both conventional and explicitly correlated methods has been investigated in detail, both with and without counterpoise corrections. For the MP2 and CCSD-MP2 contributions, rapid basis set convergence observed with explicitly correlated methods is compared to conventional methods. However, conventional, orbital-based calculations are preferred for the calculation of the (T) term, since it does not benefit from F12. CCSD(F12*) converges somewhat faster with the basis set than CCSD-F12b for the CCSD-MP2 term. The performance of various DFT methods is also evaluated for the BEGDB data set, and results show that Head-Gordon's ωB97X-V and ωB97M-V functionals outperform all other DFT functionals. Counterpoise-corrected DSD-PBEP86 and raw DSD-PBEPBE-NL also perform well and are close to MP2 results. In the WATER27 data set, the anionic (deprotonated) water clusters exhibit unacceptably slow basis set convergence with the regular cc-pVnZ-F12 basis sets, which have only diffuse s and p functions. To overcome this, we have constructed modified basis sets, denoted aug-cc-pVnZ-F12 or aVnZ-F12, which have been augmented with diffuse functions on the higher angular momenta. The calculated final dissociation energies of BEGDB and WATER27 data sets are available in the Supporting Information. Our best calculated dissociation energies can be reproduced through n-body expansion, provided one pushes to the basis set and electron correlation limit for the two-body term; for the three-body term, post-MP2 contributions (particularly CCSD-MP2) are important for capturing the three-body dispersion effects. Terms beyond four-body can be adequately captured at the MP2-F12 level.

  19. A structured policy review of the principles of professional self-regulation.

    PubMed

    Benton, D C; González-Jurado, M A; Beneit-Montesinos, J V

    2013-03-01

    The International Council of Nurses (ICN) has, for many years, based its work on professional self-regulation on a set of 12 principles. These principles are research based and were identified nearly three decades ago. ICN has conducted a number of reviews of the principles; however, changes have been minimal. In the past 5-10 years, a number of authors and governments, often as part of the review of regulatory systems, have started to propose principles to guide the way regulatory frameworks are designed and implemented. These principles vary in number and content. This study examines the current policy literature on principle-based regulation and compares this with the set of principles advocated by the ICN. A systematic search of the literature on principle-based regulation is used as the basis for a qualitative thematic analysis to compare and contrast the 12 principles of self-regulation with more recently published work. A mapping of terms based on a detailed description of the principles used in the various research and policy documents was generated. This mapping forms the basis of a critique of the current ICN principles. A professional self-regulation advocated by the ICN were identified. A revised and extended set of 13 principles is needed if contemporary developments in the field of regulatory frameworks are to be accommodated. These revised principles should be considered for adoption by the ICN to underpin their advocacy work on professional self-regulation. © 2013 The Authors. International Nursing Review © 2013 International Council of Nurses.

  20. DCOMP Award Lecture (Metropolis): A 3D Spectral Anelastic Hydrodynamic Code for Shearing, Stratified Flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph

    2006-03-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.

  1. A 3D spectral anelastic hydrodynamic code for shearing, stratified flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph A.; Marcus, Philip S.

    2006-11-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.

  2. On the Use of a Mixed Gaussian/Finite-Element Basis Set for the Calculation of Rydberg States

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Langhoff, Stephen (Technical Monitor)

    1996-01-01

    Configuration-interaction studies are reported for the Rydberg states of the helium atom using mixed Gaussian/finite-element (GTO/FE) one particle basis sets. Standard Gaussian valence basis sets are employed, like those, used extensively in quantum chemistry calculations. It is shown that the term values for high-lying Rydberg states of the helium atom can be obtained accurately (within 1 cm -1), even for a small GTO set, by augmenting the n-particle space with configurations, where orthonormalized interpolation polynomials are singly occupied.

  3. Method of Implementing Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Stephens, Scott A. (Inventor); Thomas, J. Brooks (Inventor)

    1997-01-01

    In a new formulation for digital phase-locked loops, loop-filter constants are determined from loop roots that can each be selectively placed in the s-plane on the basis of a new set of parameters, each with simple and direct physical meaning in terms of loop noise bandwidth, root-specific decay rate, and root-specific damping. Loops of first to fourth order are treated in the continuous-update approximation (B(sub L)T approaches 0) and in a discrete-update formulation with arbitrary B(sub L)T. Deficiencies of the continuous-update approximation in large-B(sub L)T applications are avoided in the new discrete-update formulation.

  4. Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple

    NASA Astrophysics Data System (ADS)

    Pavošević, Fabijan; Neese, Frank; Valeev, Edward F.

    2014-08-01

    We present a production implementation of reduced-scaling explicitly correlated (F12) coupled-cluster singles and doubles (CCSD) method based on pair-natural orbitals (PNOs). A key feature is the reformulation of the explicitly correlated terms using geminal-spanning orbitals that greatly reduce the truncation errors of the F12 contribution. For the standard S66 benchmark of weak intermolecular interactions, the cc-pVDZ-F12 PNO CCSD F12 interaction energies reproduce the complete basis set CCSD limit with mean absolute error <0.1 kcal/mol, and at a greatly reduced cost compared to the conventional CCSD F12.

  5. Design and implementation of an experiment scheduling system for the ACTS satellite

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.

    1994-01-01

    The Advanced Communication Technology Satellite (ACTS) was launched on the 12th of September 1993 aboard STS-51. All events since that time have proceeded as planned with user operations commencing on December 6th, 1993. ACTS is a geosynchronous satellite designed to extend the state of the art in communication satellite design and is available to experimenters on a 'time/bandwidth available' basis. The ACTS satellite requires the advance scheduling of experimental activities based upon a complex set of resource, state, and activity constraints in order to ensure smooth operations. This paper describes the software system developed to schedule experiments for ACTS.

  6. A Portable Computer System for Auditing Quality of Ambulatory Care

    PubMed Central

    McCoy, J. Michael; Dunn, Earl V.; Borgiel, Alexander E.

    1987-01-01

    Prior efforts to effectively and efficiently audit quality of ambulatory care based on comprehensive process criteria have been limited largely by the complexity and cost of data abstraction and management. Over the years, several demonstration projects have generated large sets of process criteria and mapping systems for evaluating quality of care, but these paper-based approaches have been impractical to implement on a routine basis. Recognizing that portable microcomputers could solve many of the technical problems in abstracting data from medical records, we built upon previously described criteria and developed a microcomputer-based abstracting system that facilitates reliable and cost-effective data abstraction.

  7. A new computer code for discrete fracture network modelling

    NASA Astrophysics Data System (ADS)

    Xu, Chaoshui; Dowd, Peter

    2010-03-01

    The authors describe a comprehensive software package for two- and three-dimensional stochastic rock fracture simulation using marked point processes. Fracture locations can be modelled by a Poisson, a non-homogeneous, a cluster or a Cox point process; fracture geometries and properties are modelled by their respective probability distributions. Virtual sampling tools such as plane, window and scanline sampling are included in the software together with a comprehensive set of statistical tools including histogram analysis, probability plots, rose diagrams and hemispherical projections. The paper describes in detail the theoretical basis of the implementation and provides a case study in rock fracture modelling to demonstrate the application of the software.

  8. Grid-free density functional calculations on periodic systems.

    PubMed

    Varga, Stefan

    2007-09-21

    Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xalpha exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.

  9. Grid-free density functional calculations on periodic systems

    NASA Astrophysics Data System (ADS)

    Varga, Štefan

    2007-09-01

    Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xα exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.

  10. An additional "R": remembering the animals.

    PubMed

    Iliff, Susan A

    2002-01-01

    Relationships inevitably develop between humans and animals, regardless of the function or use of the animal partners. The need to recognize the existence of these human-animal bonds, as well as acknowledge the use of the animals, is widespread. Religious memorial services for animals in certain areas of the world provide an historical basis for such acknowledgment activities. The diversity of sacred and secular approaches to memorializing or acknowledging animals is illustrated by representative examples of such events. The need to establish such events, particularly in academic and research settings, is emphasized. The pros and cons of developing and establishing acknowledgment activities in addition to the benefits of implementing such events are discussed.

  11. Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification.

    PubMed

    Yang, Fan; Paindavoine, M

    2003-01-01

    This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.

  12. Perturbation corrections to Koopmans' theorem. V - A study with large basis sets

    NASA Technical Reports Server (NTRS)

    Chong, D. P.; Langhoff, S. R.

    1982-01-01

    The vertical ionization potentials of N2, F2 and H2O were calculated by perturbation corrections to Koopmans' theorem using six different basis sets. The largest set used includes several sets of polarization functions. Comparison is made with measured values and with results of computations using Green's functions.

  13. A new basis set for molecular bending degrees of freedom.

    PubMed

    Jutier, Laurent

    2010-07-21

    We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range theta in [0:pi]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH(++), HCCH(+), and HCCS are presented.

  14. From plane waves to local Gaussians for the simulation of correlated periodic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, George H., E-mail: george.booth@kcl.ac.uk; Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of themore » basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.« less

  15. HYPERDIRE-HYPERgeometric functions DIfferential REduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Lauricella function FC of three variables

    NASA Astrophysics Data System (ADS)

    Bytev, Vladimir V.; Kniehl, Bernd A.

    2016-09-01

    We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function FC of three variables. Catalogue identifier: AEPP_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPP_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 243461 No. of bytes in distributed program, including test data, etc.: 61610782 Distribution format: tar.gz Programming language: Mathematica. Computer: All computers running Mathematica. Operating system: Operating systems running Mathematica. Classification: 4.4. Does the new version supersede the previous version?: No, it significantly extends the previous version. Nature of problem: Reduction of hypergeometric function FC of three variables to a set of basis functions. Solution method: Differential reduction. Reasons for new version: The extension package allows the user to handle the Lauricella function FC of three variables. Summary of revisions: The previous version goes unchanged. Running time: Depends on the complexity of the problem.

  16. Data Requirements and the Basis for Designing Health Information Kiosks.

    PubMed

    Afzali, Mina; Ahmadi, Maryam; Mahmoudvand, Zahra

    2017-09-01

    Health kiosks are an innovative and cost-effective solution that organizations can easily implement to help educate people. To determine the data requirements and basis for designing health information kiosks as a new technology to maintain the health of society. By reviewing the literature, a list of information requirements was provided in 4 sections (demographic information, general information, diagnostic information and medical history), and questions related to the objectives, data elements, stakeholders, requirements, infrastructures and the applications of health information kiosks were provided. In order to determine the content validity of the designed set, the opinions of 2 physicians and 2 specialists in medical informatics were obtained. The test-retest method was used to measure its reliability. Data were analyzed using SPSS software. In the proposed model for Iran, 170 data elements in 6 sections were presented for experts' opinion, which ultimately, on 106 elements, a collective agreement was reached. To provide a model of health information kiosk, creating a standard data set is a critical point. According to a survey conducted on the various literature review studies related to the health information kiosk, the most important components of a health information kiosk include six categories; information needs, data elements, applications, stakeholders, requirements and infrastructure of health information kiosks that need to be considered when designing a health information kiosk.

  17. European Union Standards for Tuberculosis Care

    PubMed Central

    Migliori, G.B.; Zellweger, J.P.; Abubakar, I.; Ibraim, E.; Caminero, J.A.; De Vries, G.; D'Ambrosio, L.; Centis, R.; Sotgiu, G.; Menegale, O.; Kliiman, K.; Aksamit, T.; Cirillo, D.M.; Danilovits, M.; Dara, M.; Dheda, K.; Dinh-Xuan, A.T.; Kluge, H.; Lange, C.; Leimane, V.; Loddenkemper, R.; Nicod, L.P.; Raviglione, M.C.; Spanevello, A.; Thomsen, V.Ø.; Villar, M.; Wanlin, M.; Wedzicha, J.A.; Zumla, A.; Blasi, F.; Huitric, E.; Sandgren, A.; Manissero, D.

    2012-01-01

    The European Centre for Disease Prevention and Control (ECDC) and the European Respiratory Society (ERS) jointly developed European Union Standards for Tuberculosis Care (ESTC) aimed at providing European Union (EU)-tailored standards for the diagnosis, treatment and prevention of tuberculosis (TB). The International Standards for TB Care (ISTC) were developed in the global context and are not always adapted to the EU setting and practices. The majority of EU countries have the resources and capacity to implement higher standards to further secure quality TB diagnosis, treatment and prevention. On this basis, the ESTC were developed as standards specifically tailored to the EU setting. A panel of 30 international experts, led by a writing group and the ERS and ECDC, identified and developed the 21 ESTC in the areas of diagnosis, treatment, HIV and comorbid conditions, and public health and prevention. The ISTCs formed the basis for the 21 standards, upon which additional EU adaptations and supplements were developed. These patient-centred standards are targeted to clinicians and public health workers, providing an easy-to-use resource, guiding through all required activities to ensure optimal diagnosis, treatment and prevention of TB. These will support EU health programmes to identify and develop optimal procedures for TB care, control and elimination. PMID:22467723

  18. The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature.

    PubMed

    Lindquist, Kristen A; Satpute, Ajay B; Wager, Tor D; Weber, Jochen; Barrett, Lisa Feldman

    2016-05-01

    The ability to experience pleasant or unpleasant feelings or to represent objects as "positive" or "negative" is known as representing hedonic "valence." Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. [Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution].

    PubMed

    Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng

    2015-03-01

    Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.

  20. Health impact assessment in a network of European cities.

    PubMed

    Ison, Erica

    2013-10-01

    The methodology of health impact assessment (HIA) was introduced as one of four core themes for Phase IV (2003-2008) of the World Health Organization European Healthy Cities Network (WHO-EHCN). Four objectives for HIA were set at the beginning of the phase. We report on the results of the evaluation of introducing and implementing this methodology in cities from countries across Europe with widely differing economies and sociopolitical contexts. Two main sources of data were used: a general questionnaire designed for the Phase IV evaluation and the annual reporting template for 2007-2008. Sources of bias included the proportion of non-responders and the requirement to communicate in English. Main barriers to the introduction and implementation of HIA were a lack of skill, knowledge and experience of HIA, the newness of the concept, the lack of a legal basis for implementation and a lack of political support. Main facilitating factors were political support, training in HIA, collaboration with an academic/public health institution or local health agency, a pre-existing culture of intersectoral working, a supportive national policy context, access to WHO materials about or expertise in HIA and membership of the WHO-EHCN, HIA Sub-Network or a National Network. The majority of respondents did not feel that they had had the resources, knowledge or experience to achieve all of the objectives set for HIA in Phase IV. The cities that appear to have been most successful at introducing and implementing HIA had pre-existing experience of HIA, came from a country with a history of applying HIA, were HIA Sub-Network members or had made a commitment to implementing HIA during successive years of Phase IV. Although HIA was recognised as an important component of Healthy Cities' work, the experience in the WHO-EHCN underscores the need for political buy-in, capacity building and adequate resourcing for the introduction and implementation of HIA to be successful.

  1. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets

    NASA Astrophysics Data System (ADS)

    Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald; Werner, Hans-Joachim

    2009-11-01

    Accurate extrapolation to the complete basis set (CBS) limit of valence correlation energies calculated with explicitly correlated MP2-F12 and CCSD(T)-F12b methods have been investigated using a Schwenke-style approach for molecules containing both first and second row atoms. Extrapolation coefficients that are optimal for molecular systems containing first row elements differ from those optimized for second row analogs, hence values optimized for a combined set of first and second row systems are also presented. The new coefficients are shown to produce excellent results in both Schwenke-style and equivalent power-law-based two-point CBS extrapolations, with the MP2-F12/cc-pV(D,T)Z-F12 extrapolations producing an average error of just 0.17 mEh with a maximum error of 0.49 for a collection of 23 small molecules. The use of larger basis sets, i.e., cc-pV(T,Q)Z-F12 and aug-cc-pV(Q,5)Z, in extrapolations of the MP2-F12 correlation energy leads to average errors that are smaller than the degree of confidence in the reference data (˜0.1 mEh). The latter were obtained through use of very large basis sets in MP2-F12 calculations on small molecules containing both first and second row elements. CBS limits obtained from optimized coefficients for conventional MP2 are only comparable to the accuracy of the MP2-F12/cc-pV(D,T)Z-F12 extrapolation when the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets are used. The CCSD(T)-F12b correlation energy is extrapolated as two distinct parts: CCSD-F12b and (T). While the CCSD-F12b extrapolations with smaller basis sets are statistically less accurate than those of the MP2-F12 correlation energies, this is presumably due to the slower basis set convergence of the CCSD-F12b method compared to MP2-F12. The use of larger basis sets in the CCSD-F12b extrapolations produces correlation energies with accuracies exceeding the confidence in the reference data (also obtained in large basis set F12 calculations). It is demonstrated that the use of the 3C(D) Ansatz is preferred for MP2-F12 CBS extrapolations. Optimal values of the geminal Slater exponent are presented for the diagonal, fixed amplitude Ansatz in MP2-F12 calculations, and these are also recommended for CCSD-F12b calculations.

  2. Adjoint Sensitivity Method to Determine Optimal Set of Stations for Tsunami Source Inversion

    NASA Astrophysics Data System (ADS)

    Gusman, A. R.; Hossen, M. J.; Cummins, P. R.; Satake, K.

    2017-12-01

    We applied the adjoint sensitivity technique in tsunami science for the first time to determine an optimal set of stations for a tsunami source inversion. The adjoint sensitivity (AS) method has been used in numerical weather prediction to find optimal locations for adaptive observations. We implemented this technique to Green's Function based Time Reverse Imaging (GFTRI), which is recently used in tsunami source inversion in order to reconstruct the initial sea surface displacement, known as tsunami source model. This method has the same source representation as the traditional least square (LSQ) source inversion method where a tsunami source is represented by dividing the source region into a regular grid of "point" sources. For each of these, Green's function (GF) is computed using a basis function for initial sea surface displacement whose amplitude is concentrated near the grid point. We applied the AS method to the 2009 Samoa earthquake tsunami that occurred on 29 September 2009 in the southwest Pacific, near the Tonga trench. Many studies show that this earthquake is a doublet associated with both normal faulting in the outer-rise region and thrust faulting in the subduction interface. To estimate the tsunami source model for this complex event, we initially considered 11 observations consisting of 5 tide gauges and 6 DART bouys. After implementing AS method, we found the optimal set of observations consisting with 8 stations. Inversion with this optimal set provides better result in terms of waveform fitting and source model that shows both sub-events associated with normal and thrust faulting.

  3. Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA

    NASA Astrophysics Data System (ADS)

    Meyer, Christoph

    2018-01-01

    The integration of differential equations of Feynman integrals can be greatly facilitated by using a canonical basis. This paper presents the Mathematica package CANONICA, which implements a recently developed algorithm to automatize the transformation to a canonical basis. This represents the first publicly available implementation suitable for differential equations depending on multiple scales. In addition to the presentation of the package, this paper extends the description of some aspects of the algorithm, including a proof of the uniqueness of canonical forms up to constant transformations.

  4. QFD emphasis of IME design

    NASA Astrophysics Data System (ADS)

    Erickson, C. M.; Martinez, A.

    1993-06-01

    The 1992 Integrated Modular Engine (IME) design concept, proposed to the Air Force Space Systems Division as a candidate for a National Launch System (NLS) upper stage, emphasized a detailed Quality Functional Deployment (QFD) procedure which set the basis for its final selection. With a list of engine requirements defined and prioritized by the customer, a QFD procedure was implemented where the characteristics of a number of engine and component configurations were assessed for degree of requirement satisfaction. The QFD process emphasized operability, cost, reliability and performance, with relative importance specified by the customer. Existing technology and near-term advanced technology were surveyed to achieve the required design strategies. In the process, advanced nozzles, advanced turbomachinery, valves, controls, and operational procedures were evaluated. The integrated arrangement of three conventional bell nozzle thrust chambers with two advanced turbopump sets selected as the configuration meeting all requirements was rated significantly ahead of the other candidates, including the Aerospike and horizontal flow nozzle configurations.

  5. A Framework for Bounding Nonlocality of State Discrimination

    NASA Astrophysics Data System (ADS)

    Childs, Andrew M.; Leung, Debbie; Mančinska, Laura; Ozols, Maris

    2013-11-01

    We consider the class of protocols that can be implemented by local quantum operations and classical communication (LOCC) between two parties. In particular, we focus on the task of discriminating a known set of quantum states by LOCC. Building on the work in the paper Quantum nonlocality without entanglement (Bennett et al., Phys Rev A 59:1070-1091, 1999), we provide a framework for bounding the amount of nonlocality in a given set of bipartite quantum states in terms of a lower bound on the probability of error in any LOCC discrimination protocol. We apply our framework to an orthonormal product basis known as the domino states and obtain an alternative and simplified proof that quantifies its nonlocality. We generalize this result for similar bases in larger dimensions, as well as the “rotated” domino states, resolving a long-standing open question (Bennett et al., Phys Rev A 59:1070-1091, 1999).

  6. Effect of assistive technology in a public school setting.

    PubMed

    Watson, Anne H; Ito, Max; Smith, Roger O; Andersen, Lori T

    2010-01-01

    The Individuals With Disabilities Education Improvement Act of 2004 (IDEA) requires assistive technology (AT) be considered at the yearly individualized education program (IEP) meeting of every student in special education. IDEA also directs that AT be implemented on the basis of peer-reviewed literature despite a paucity of research on AT's effectiveness in the public schools. This repeated-measures quasi-experimental study explored AT's effect in a public school special education setting. Participants (N=13) were a heterogeneous group of students in 1 school system who had newly provided AT to address academic and communication goals in one school year. Results suggest that relative to other interventions, AT provided by a multidisciplinary team may have a significant effect on IEP goal improvement (t[12] = 5.54, p= .00) for students in special education (F[2] = 9.35, p= .00), which may support AT's use in special education by occupational therapists as directed by IDEA.

  7. Matching by linear programming and successive convexification.

    PubMed

    Jiang, Hao; Drew, Mark S; Li, Ze-Nian

    2007-06-01

    We present a novel convex programming scheme to solve matching problems, focusing on the challenging problem of matching in a large search range and with cluttered background. Matching is formulated as metric labeling with L1 regularization terms, for which we propose a novel linear programming relaxation method and an efficient successive convexification implementation. The unique feature of the proposed relaxation scheme is that a much smaller set of basis labels is used to represent the original label space. This greatly reduces the size of the searching space. A successive convexification scheme solves the labeling problem in a coarse to fine manner. Importantly, the original cost function is reconvexified at each stage, in the new focus region only, and the focus region is updated so as to refine the searching result. This makes the method well-suited for large label set matching. Experiments demonstrate successful applications of the proposed matching scheme in object detection, motion estimation, and tracking.

  8. An Alternate Set of Basis Functions for the Electromagnetic Solution of Arbitrarily-Shaped, Three-Dimensional, Closed, Conducting Bodies Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2008-01-01

    In this work, we present an alternate set of basis functions, each defined over a pair of planar triangular patches, for the method of moments solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped, closed, conducting surfaces. The present basis functions are point-wise orthogonal to the pulse basis functions previously defined. The prime motivation to develop the present set of basis functions is to utilize them for the electromagnetic solution of dielectric bodies using a surface integral equation formulation which involves both electric and magnetic cur- rents. However, in the present work, only the conducting body solution is presented and compared with other data.

  9. Risk assessment and economic impact analysis of the implementation of new European legislation on radiopharmaceuticals in Italy: the case of the new monograph chapter Compounding of Radiopharmaceuticals (PHARMEUROPA, Vol. 23, No. 4, October 2011).

    PubMed

    Chitto, Giuseppe; Di Domenico, Elvira; Gandolfo, Patrizia; Ria, Francesco; Tafuri, Chiara; Papa, Sergio

    2013-12-01

    An assessment of the new monograph chapter Compounding of Radiopharmaceuticals has been conducted on the basis of the first period of implementation of Italian legislation on Good Radiopharmaceuticals Practice (NBP) in the preparation of radiopharmaceuticals, in keeping with Decree by the Italian Ministry of Health dated March 30, 2005. This approach is well grounded in the several points of similarity between the two sets of regulations. The impact on patient risk, on staff risk, and on healthcare organization risk, has been assessed. At the same time, the actual costs of coming into compliance with regulations have been estimated. A change risk analysis has been performed through the identification of healthcare-associated risks, the analysis and measurement of the likelihood of occurrence and of the potential impact in terms of patient harm and staff harm, and the determination of the healthcare organization's controlling capability. In order to evaluate the economic impact, the expenses directly related to the implementation of the activities as per ministerial decree have been estimated after calculating the overall costs unrelated to NBP implementation. The resulting costs have then been averaged over the total number of patient services delivered. NBP implementation shows an extremely positive impact on risk management for both patients receiving Nuclear Medicine services and the healthcare organization. With regard to healthcare workers, instead, the implementation of these regulations has a negative effect on the risk for greater exposure and a positive effect on the defense against litigation. The economic impact analysis of NBP implementation shows a 34% increase in the costs for a single patient service. The implementation of the ministerial decree allows for greater detectability of and control over a number of critical elements, paving the way for risk management and minimization. We, therefore, believe that the proposed tool can provide basic criteria for analysis that could be used by other organizations setting about completing the same process.

  10. Correction of energy-dependent systematic errors in dual-energy X-ray CT using a basis material coefficients transformation method

    NASA Astrophysics Data System (ADS)

    Goh, K. L.; Liew, S. C.; Hasegawa, B. H.

    1997-12-01

    Computer simulation results from our previous studies showed that energy dependent systematic errors exist in the values of attenuation coefficient synthesized using the basis material decomposition technique with acrylic and aluminum as the basis materials, especially when a high atomic number element (e.g., iodine from radiographic contrast media) was present in the body. The errors were reduced when a basis set was chosen from materials mimicking those found in the phantom. In the present study, we employed a basis material coefficients transformation method to correct for the energy-dependent systematic errors. In this method, the basis material coefficients were first reconstructed using the conventional basis materials (acrylic and aluminum) as the calibration basis set. The coefficients were then numerically transformed to those for a more desirable set materials. The transformation was done at the energies of the low and high energy windows of the X-ray spectrum. With this correction method using acrylic and an iodine-water mixture as our desired basis set, computer simulation results showed that accuracy of better than 2% could be achieved even when iodine was present in the body at a concentration as high as 10% by mass. Simulation work had also been carried out on a more inhomogeneous 2D thorax phantom of the 3D MCAT phantom. The results of the accuracy of quantitation were presented here.

  11. Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction.

    PubMed

    Brandenburg, Jan Gerit; Grimme, Stefan

    2014-01-01

    We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.

  12. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.

    PubMed

    Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-02-15

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    PubMed

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  14. Computational study of the electronic spectra of the rare gas fluorohydrides HRgF (Rg = Ar, Kr, Xe, Rn)

    NASA Astrophysics Data System (ADS)

    van Hoeve, Miriam D.; Klobukowski, Mariusz

    2018-03-01

    Simulation of the electronic spectra of HRgF (Rg = Ar, Kr, Xe, Rn) was carried out using the time-dependent density functional method, with the CAMB3LYP functional and several basis sets augmented with even-tempered diffuse functions. A full spectral assignment for the HRgF systems was done. The effect of the rare gas matrix on the HRgF (Rg = Ar and Kr) spectra was investigated and it was found that the matrix blue-shifted the spectra. Scalar relativistic effects on the spectra were also studied and it was found that while the excitation energies of HArF and HKrF were insignificantly affected by relativistic effects, most of the excitation energies of HXeF and HRnF were red-shifted. Spin-orbit coupling was found to significantly affect excitation energies in HRnF. Analysis of performance of the model core potential basis set relative to all-electron (AE) basis sets showed that the former basis set increased computational efficiency and gave results similar to those obtained with the AE basis set.

  15. Midbond basis functions for weakly bound complexes

    NASA Astrophysics Data System (ADS)

    Shaw, Robert A.; Hill, J. Grant

    2018-06-01

    Weakly bound systems present a difficult problem for conventional atom-centred basis sets due to large separations, necessitating the use of large, computationally expensive bases. This can be remedied by placing a small number of functions in the region between molecules in the complex. We present compact sets of optimised midbond functions for a range of complexes involving noble gases, alkali metals and small molecules for use in high accuracy coupled -cluster calculations, along with a more robust procedure for their optimisation. It is shown that excellent results are possible with double-zeta quality orbital basis sets when a few midbond functions are added, improving both the interaction energy and the equilibrium bond lengths of a series of noble gas dimers by 47% and 8%, respectively. When used in conjunction with explicitly correlated methods, near complete basis set limit accuracy is readily achievable at a fraction of the cost that using a large basis would entail. General purpose auxiliary sets are developed to allow explicitly correlated midbond function studies to be carried out, making it feasible to perform very high accuracy calculations on weakly bound complexes.

  16. Seismic modeling with radial basis function-generated finite differences (RBF-FD) – a simplified treatment of interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Bradley, E-mail: brma7253@colorado.edu; Fornberg, Bengt, E-mail: Fornberg@colorado.edu

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy formore » the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.« less

  17. Influence of Silicon-Containing Additives on Concrete Waterproofness Property

    NASA Astrophysics Data System (ADS)

    Butakova, M. D.; Saribekyan, S. S.; Mikhaylov, A. V.

    2017-11-01

    The article studies the influence of silicon-containing additives on the property of the water resistance of concrete samples. It provides a review of the literature on common approaches and technologies improving concrete waterproofness and reinforced concrete structures. Normal hardening samples were obtained on the basis of concretes containing microsilica, aerosil or ash, or the combinations thereof. This research is aimed at the study of the complex modifier effect r on the basis of metakaolin, superplasticizer and silicon containing additives on the property of concrete water resistance. The need to use a superplasticizer to reduce the water-cement ratio and metakaolin as a hardening accelerator along with the set of strength is substantiated. This article describes a part of the results of the experiment conducted to find alternative options for colmatizing expensive additives used in the concreting foundations of private house-building. The implementation of the scientific work will not only clarify this area but will also broaden the knowledge of such additive as aerosol.

  18. Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments

    NASA Astrophysics Data System (ADS)

    Maschio, Lorenzo; Kirtman, Bernard; Rérat, Michel; Orlando, Roberto; Dovesi, Roberto

    2013-10-01

    In this work, we validate a new, fully analytical method for calculating Raman intensities of periodic systems, developed and presented in Paper I [L. Maschio, B. Kirtman, M. Rérat, R. Orlando, and R. Dovesi, J. Chem. Phys. 139, 164101 (2013)]. Our validation of this method and its implementation in the CRYSTAL code is done through several internal checks as well as comparison with experiment. The internal checks include consistency of results when increasing the number of periodic directions (from 0D to 1D, 2D, 3D), comparison with numerical differentiation, and a test of the sum rule for derivatives of the polarizability tensor. The choice of basis set as well as the Hamiltonian is also studied. Simulated Raman spectra of α-quartz and of the UiO-66 Metal-Organic Framework are compared with the experimental data.

  19. An Efficient Radial Basis Function Mesh Deformation Scheme within an Adjoint-Based Aerodynamic Optimization Framework

    NASA Astrophysics Data System (ADS)

    Poirier, Vincent

    Mesh deformation schemes play an important role in numerical aerodynamic optimization. As the aerodynamic shape changes, the computational mesh must adapt to conform to the deformed geometry. In this work, an extension to an existing fast and robust Radial Basis Function (RBF) mesh movement scheme is presented. Using a reduced set of surface points to define the mesh deformation increases the efficiency of the RBF method; however, at the cost of introducing errors into the parameterization by not recovering the exact displacement of all surface points. A secondary mesh movement is implemented, within an adjoint-based optimization framework, to eliminate these errors. The proposed scheme is tested within a 3D Euler flow by reducing the pressure drag while maintaining lift of a wing-body configured Boeing-747 and an Onera-M6 wing. As well, an inverse pressure design is executed on the Onera-M6 wing and an inverse span loading case is presented for a wing-body configured DLR-F6 aircraft.

  20. Human health improvement in Sub-Saharan Africa through integrated management of arthropod transmitted diseases and natural resources.

    PubMed

    Baumgärtner, J; Bieri, M; Buffoni, G; Gilioli, G; Gopalan, H; Greiling, J; Tikubet, G; Van Schayk, I

    2001-01-01

    A concept of an ecosystem approach to human health improvement in Sub-Saharan Africa is presented here. Three factors mainly affect the physical condition of the human body: the abiotic environment, vector-transmitted diseases, and natural resources. Our concept relies on ecological principles embedded in a social context and identifies three sets of subsystems for study and management: human disease subsystems, natural resource subsystems, and decision-support subsystems. To control human diseases and to secure food from resource subsystems including livestock or crops, integrated preventive approaches are preferred over exclusively curative and sectorial approaches. Environmental sustainability - the basis for managing matter and water flows - contributes to a healthy human environment and constitutes the basis for social sustainability. For planning and implementation of the human health improvement scheme, participatory decision-support subsystems adapted to the local conditions need to be designed through institutional arrangements. The applicability of this scheme is demonstrated in urban and rural Ethiopia.

  1. Seismic modeling with radial basis function-generated finite differences (RBF-FD) - a simplified treatment of interfaces

    NASA Astrophysics Data System (ADS)

    Martin, Bradley; Fornberg, Bengt

    2017-04-01

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy for the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.

  2. Data analytics approach to create waste generation profiles for waste management and collection.

    PubMed

    Niska, Harri; Serkkola, Ari

    2018-04-30

    Extensive monitoring data on waste generation is increasingly collected in order to implement cost-efficient and sustainable waste management operations. In addition, geospatial data from different registries of the society are opening for free usage. Novel data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. In this paper, a data-based approach based on the self-organizing map (SOM) and the k-means algorithm is developed for creating a set of waste generation type profiles. The approach is demonstrated using the extensive container-level waste weighting data collected in the metropolitan area of Helsinki, Finland. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information e.g. for the basis of tailored feedback services for waste producers and the planning and optimization of waste collection and recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. An implementation of the QMR method based on coupled two-term recurrences

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Nachtigal, Noeel M.

    1992-01-01

    The authors have proposed a new Krylov subspace iteration, the quasi-minimal residual algorithm (QMR), for solving non-Hermitian linear systems. In the original implementation of the QMR method, the Lanczos process with look-ahead is used to generate basis vectors for the underlying Krylov subspaces. In the Lanczos algorithm, these basis vectors are computed by means of three-term recurrences. It has been observed that, in finite precision arithmetic, vector iterations based on three-term recursions are usually less robust than mathematically equivalent coupled two-term vector recurrences. This paper presents a look-ahead algorithm that constructs the Lanczos basis vectors by means of coupled two-term recursions. Implementation details are given, and the look-ahead strategy is described. A new implementation of the QMR method, based on this coupled two-term algorithm, is described. A simplified version of the QMR algorithm without look-ahead is also presented, and the special case of QMR for complex symmetric linear systems is considered. Results of numerical experiments comparing the original and the new implementations of the QMR method are reported.

  4. Møller-Plesset perturbation energies and distances for HeC(20) extrapolated to the complete basis set limit.

    PubMed

    Varandas, A J C

    2009-02-01

    The potential energy surface for the C(20)-He interaction is extrapolated for three representative cuts to the complete basis set limit using second-order Møller-Plesset perturbation calculations with correlation consistent basis sets up to the doubly augmented variety. The results both with and without counterpoise correction show consistency with each other, supporting that extrapolation without such a correction provides a reliable scheme to elude the basis-set-superposition error. Converged attributes are obtained for the C(20)-He interaction, which are used to predict the fullerene dimer ones. Time requirements show that the method can be drastically more economical than the counterpoise procedure and even competitive with Kohn-Sham density functional theory for the title system.

  5. Exact exchange-correlation potentials of singlet two-electron systems

    NASA Astrophysics Data System (ADS)

    Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.

    2017-10-01

    We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.

  6. Real World Data and Service Integration: Demonstrations and Lessons Learnt from the GEOSS Architecture Implementation Pilot Phase Four

    NASA Astrophysics Data System (ADS)

    Simonis, I.; Alameh, N.; Percivall, G.

    2012-04-01

    The GEOSS Architecture Implementation Pilots (AIP) develop and pilot new process and infrastructure components for the GEOSS Common Infrastructure (GCI) and the broader GEOSS architecture through an evolutionary development process consisting of a set of phases. Each phase addresses a set of Societal Benefit Areas (SBA) and geoinformatic topics. The first three phases consisted of architecture refinements based on interactions with users; component interoperability testing; and SBA-driven demonstrations. The fourth phase (AIP-4) documented here focused on fostering interoperability arrangements and common practices for GEOSS by facilitating access to priority earth observation data sources and by developing and testing specific clients and mediation components to enable such access. Additionally, AIP-4 supported the development of a thesaurus for earth observation parameters and tutorials to guide data providers to make their data available through GEOSS. The results of AIP-4 are documented in two engineering reports and captured in a series of videos posted online. Led by the Open Geospatial Consortium (OGC), AIP-4 built on contributions from over 60 organizations. This wide portfolio helped testing interoperability arrangements in a highly heterogeneous environment. AIP-4 participants cooperated closely to test available data sets, access services, and client applications in multiple workflows and set ups. Eventually, AIP-4 improved the accessibility of GEOSS datasets identified as supporting Critical Earth Observation Priorities by the GEO User Interface Committee (UIC), and increased the use of the data through promoting availability of new data services, clients, and applications. During AIP-4, A number of key earth observation data sources have been made available online at standard service interfaces, discovered using brokered search approaches, and processed and visualized in generalized client applications. AIP-4 demonstrated the level of interoperability that can be achieved using currently available standards and corresponding products and implementations. The AIP-4 integration testing process proved that the integration of heterogeneous data resources available via interoperability arrangements such as WMS, WFS, WCS and WPS indeed works. However, the integration often required various levels of customizations on the client side to accommodate for variations in the service implementations. Those variations seem to be based on both malfunctioning service implementations as well as varying interpretations of or inconsistencies in existing standards. Other interoperability issues identified revolve around missing metadata or using unrecognized identifiers in the description of GEOSS resources. Once such issues are resolved, continuous compliance testing is necessary to ensure minimizing variability of implementations. Once data providers can choose from a set of enhanced implementations for offering their data using consistent interoperability arrangements, the barrier to client and decision support implementation developers will be lowered, leading to true leveraging of earth observation data through GEOSS. AIP-4 results, lessons learnt from previous AIPs 1-3 and close coordination with the Infrastructure Implementation Board (IIB), the successor of the Architecture and Data Committee (ADC), form the basis in the current preparation phase for the next Architecture Implementation Pilot, AIP-5. The Call For Participation will be launched in February and the pilot will be conducted from May to November 2012. The current planning foresees a scenario- oriented approach, with possible scenarios coming from the domains of disaster management, health (including air quality and waterborne diseases), water resource observations, energy, biodiversity and climate change, and agriculture.

  7. 45 CFR 79.1 - Basis and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Basis and purpose. 79.1 Section 79.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROGRAM FRAUD CIVIL REMEDIES § 79.1 Basis and purpose. (a) Basis. This part implements the Program Fraud Civil Remedies Act of 1986, Pub. L...

  8. Correlation consistent basis sets for actinides. I. The Th and U atoms.

    PubMed

    Peterson, Kirk A

    2015-02-21

    New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc - pV nZ - PP and cc - pV nZ - DK3, as well as outer-core correlation (valence + 5s5p5d), cc - pwCV nZ - PP and cc - pwCV nZ - DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThFn (n = 2 - 4), ThO2, and UFn (n = 4 - 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF4, ThF3, ThF2, and ThO2 are all within their experimental uncertainties. Bond dissociation energies of ThF4 and ThF3, as well as UF6 and UF5, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF4 and ThO2. The DKH3 atomization energy of ThO2 was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.

  9. Primary care physicians’ experiences with electronic medical records

    PubMed Central

    Ludwick, Dave; Manca, Donna; Doucette, John

    2010-01-01

    OBJECTIVE To understand how remuneration and care setting affect the implementation of electronic medical records (EMRs). DESIGN Semistructured interviews were used to illicit descriptions from community-based family physicians (paid on a fee-for-service basis) and from urban, hospital, and academic family physicians (remunerated via alternative payment models or sessional pay for activities pertaining to EMR implementation). SETTING Small suburban community and large urban-, hospital-, and academic-based family medicine clinics in Alberta. All participants were supported by a jurisdictional EMR certification funding mechanism. PARTICIPANTS Physicians who practised in 1 or a combination of the above settings and had experience implementing and using EMRs. METHODS Purposive and maximum variation sampling was used to obtain descriptive data from key informants through individually conducted semistructured interviews. The interview guide, which was developed from key findings of our previous literature review, was used in a previous study of community-based family physicians on this same topic. Field notes were analyzed to generate themes through a comparative immersion approach. MAIN FINDINGS Physicians in urban, hospital, and academic settings leverage professional working relationships to investigate EMRs, a resource not available to community physicians. Physicians in urban, hospital, and academic settings work in larger interdisciplinary teams with a greater need for interdisciplinary care coordination, EMR training, and technical support. These practices were able to support the cost of project management or technical support resources. These physicians followed a planned system rollout approach compared with community physicians who installed their systems quickly and required users to transition to the new system immediately. Electronic medical records did not increase, or decrease, patient throughput. Physicians developed ways of including patients in the note-taking process. CONCLUSION We studied physicians’ procurement approaches under various payment models. Our findings do not suggest that one remuneration approach supports EMR adoption any more than another. Rather, this study suggests that stronger physician professional networks used in information gathering, more complete training, and in-house technical support might be more influential than remuneration in facilitating the EMR adoption experience. PMID:20090083

  10. On the basis set convergence of electron–electron entanglement measures: helium-like systems

    PubMed Central

    Hofer, Thomas S.

    2013-01-01

    A systematic investigation of three different electron–electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li+ and Be2+ using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one–electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li+ and Be2+. In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used. PMID:24790952

  11. On the basis set convergence of electron-electron entanglement measures: helium-like systems.

    PubMed

    Hofer, Thomas S

    2013-01-01

    A systematic investigation of three different electron-electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li(+) and Be(2+) using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one-electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li(+) and Be(2+). In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used.

  12. Orbital-Dependent Density Functionals for Chemical Catalysis

    DTIC Science & Technology

    2014-10-17

    noncollinear density functional theory to show that the low-spin state of Mn3 in a model of the oxygen -evolving complex of photosystem II avoids...DK, which denotes the cc-pV5Z-DK basis set for 3d metals and hydrogen and the ma-cc- pV5Z-DK basis set for oxygen ) and to nonrelativistic all...cc-pV5Z basis set for oxygen ). As compared to NCBS-DK results, all ECP calculations perform worse than def2-TZVP all-electron relativistic

  13. Electric dipole moment of diatomic molecules by configuration interaction. IV.

    NASA Technical Reports Server (NTRS)

    Green, S.

    1972-01-01

    The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.

  14. Workflows in bioinformatics: meta-analysis and prototype implementation of a workflow generator.

    PubMed

    Garcia Castro, Alexander; Thoraval, Samuel; Garcia, Leyla J; Ragan, Mark A

    2005-04-07

    Computational methods for problem solving need to interleave information access and algorithm execution in a problem-specific workflow. The structures of these workflows are defined by a scaffold of syntactic, semantic and algebraic objects capable of representing them. Despite the proliferation of GUIs (Graphic User Interfaces) in bioinformatics, only some of them provide workflow capabilities; surprisingly, no meta-analysis of workflow operators and components in bioinformatics has been reported. We present a set of syntactic components and algebraic operators capable of representing analytical workflows in bioinformatics. Iteration, recursion, the use of conditional statements, and management of suspend/resume tasks have traditionally been implemented on an ad hoc basis and hard-coded; by having these operators properly defined it is possible to use and parameterize them as generic re-usable components. To illustrate how these operations can be orchestrated, we present GPIPE, a prototype graphic pipeline generator for PISE that allows the definition of a pipeline, parameterization of its component methods, and storage of metadata in XML formats. This implementation goes beyond the macro capacities currently in PISE. As the entire analysis protocol is defined in XML, a complete bioinformatic experiment (linked sets of methods, parameters and results) can be reproduced or shared among users. http://if-web1.imb.uq.edu.au/Pise/5.a/gpipe.html (interactive), ftp://ftp.pasteur.fr/pub/GenSoft/unix/misc/Pise/ (download). From our meta-analysis we have identified syntactic structures and algebraic operators common to many workflows in bioinformatics. The workflow components and algebraic operators can be assimilated into re-usable software components. GPIPE, a prototype implementation of this framework, provides a GUI builder to facilitate the generation of workflows and integration of heterogeneous analytical tools.

  15. New Basis Functions for the Electromagnetic Solution of Arbitrarily-shaped, Three Dimensional Conducting Bodies Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2007-01-01

    In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.

  16. New Basis Functions for the Electromagnetic Solution of Arbitrarily-shaped, Three Dimensional Conducting Bodies using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2008-01-01

    In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.

  17. Rapid insights from remote sensing in the geosciences

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio

    2015-03-01

    The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Admin. under Contract DE-AC04-94AL85000.

  18. Context-sensitive autoassociative memories as expert systems in medical diagnosis

    PubMed Central

    Pomi, Andrés; Olivera, Fernando

    2006-01-01

    Background The complexity of our contemporary medical practice has impelled the development of different decision-support aids based on artificial intelligence and neural networks. Distributed associative memories are neural network models that fit perfectly well to the vision of cognition emerging from current neurosciences. Methods We present the context-dependent autoassociative memory model. The sets of diseases and symptoms are mapped onto a pair of basis of orthogonal vectors. A matrix memory stores the associations between the signs and symptoms, and their corresponding diseases. A minimal numerical example is presented to show how to instruct the memory and how the system works. In order to provide a quick appreciation of the validity of the model and its potential clinical relevance we implemented an application with real data. A memory was trained with published data of neonates with suspected late-onset sepsis in a neonatal intensive care unit (NICU). A set of personal clinical observations was used as a test set to evaluate the capacity of the model to discriminate between septic and non-septic neonates on the basis of clinical and laboratory findings. Results We show here that matrix memory models with associations modulated by context can perform automatic medical diagnosis. The sequential availability of new information over time makes the system progress in a narrowing process that reduces the range of diagnostic possibilities. At each step the system provides a probabilistic map of the different possible diagnoses to that moment. The system can incorporate the clinical experience, building in that way a representative database of historical data that captures geo-demographical differences between patient populations. The trained model succeeds in diagnosing late-onset sepsis within the test set of infants in the NICU: sensitivity 100%; specificity 80%; percentage of true positives 91%; percentage of true negatives 100%; accuracy (true positives plus true negatives over the totality of patients) 93,3%; and Cohen's kappa index 0,84. Conclusion Context-dependent associative memories can operate as medical expert systems. The model is presented in a simple and tutorial way to encourage straightforward implementations by medical groups. An application with real data, presented as a primary evaluation of the validity and potentiality of the model in medical diagnosis, shows that the model is a highly promising alternative in the development of accuracy diagnostic tools. PMID:17121675

  19. Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency.

    PubMed

    Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland

    2009-04-21

    Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.

  20. Atomic Cholesky decompositions: A route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland

    2009-04-01

    Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.

  1. Visualization and Nowcasting for Aviation using online verified ensemble weather radar extrapolation.

    NASA Astrophysics Data System (ADS)

    Kaltenboeck, Rudolf; Kerschbaum, Markus; Hennermann, Karin; Mayer, Stefan

    2013-04-01

    Nowcasting of precipitation events, especially thunderstorm events or winter storms, has high impact on flight safety and efficiency for air traffic management. Future strategic planning by air traffic control will result in circumnavigation of potential hazardous areas, reduction of load around efficiency hot spots by offering alternatives, increase of handling capacity, anticipation of avoidance manoeuvres and increase of awareness before dangerous areas are entered by aircraft. To facilitate this rapid update forecasts of location, intensity, size, movement and development of local storms are necessary. Weather radar data deliver precipitation analysis of high temporal and spatial resolution close to real time by using clever scanning strategies. These data are the basis to generate rapid update forecasts in a time frame up to 2 hours and more for applications in aviation meteorological service provision, such as optimizing safety and economic impact in the context of sub-scale phenomena. On the basis of tracking radar echoes by correlation the movement vectors of successive weather radar images are calculated. For every new successive radar image a set of ensemble precipitation fields is collected by using different parameter sets like pattern match size, different time steps, filter methods and an implementation of history of tracking vectors and plausibility checks. This method considers the uncertainty in rain field displacement and different scales in time and space. By validating manually a set of case studies, the best verification method and skill score is defined and implemented into an online-verification scheme which calculates the optimized forecasts for different time steps and different areas by using different extrapolation ensemble members. To get information about the quality and reliability of the extrapolation process additional information of data quality (e.g. shielding in Alpine areas) is extrapolated and combined with an extrapolation-quality-index. Subsequently the probability and quality information of the forecast ensemble is available and flexible blending to numerical prediction model for each subarea is possible. Simultaneously with automatic processing the ensemble nowcasting product is visualized in a new innovative way which combines the intensity, probability and quality information for different subareas in one forecast image.

  2. Ancilla-driven quantum computation for qudits and continuous variables

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; Andersson, Erika; Kendon, Viv

    2017-05-01

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general "quantum variable" formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated "quantum memory" register and which may be applied to the setting of qubits, qudits (for d >2 ), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of a single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. Finally, we discuss settings in which these models may be of practical interest.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general “quantum variable” formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated “quantum memory” register and which may be applied to the setting of qubits, qudits (for d>2), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of amore » single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. In conclusion, we discuss settings in which these models may be of practical interest.« less

  4. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn

    NASA Astrophysics Data System (ADS)

    Balabanov, Nikolai B.; Peterson, Kirk A.

    2005-08-01

    Sequences of basis sets that systematically converge towards the complete basis set (CBS) limit have been developed for the first-row transition metal elements Sc-Zn. Two families of basis sets, nonrelativistic and Douglas-Kroll-Hess (-DK) relativistic, are presented that range in quality from triple-ζ to quintuple-ζ. Separate sets are developed for the description of valence (3d4s) electron correlation (cc-pVnZ and cc-pVnZ-DK; n =T,Q, 5) and valence plus outer-core (3s3p3d4s) correlation (cc-pwCVnZ and cc-pwCVnZ-DK; n =T,Q, 5), as well as these sets augmented by additional diffuse functions for the description of negative ions and weak interactions (aug-cc-pVnZ and aug-cc-pVnZ-DK). Extensive benchmark calculations at the coupled cluster level of theory are presented for atomic excitation energies, ionization potentials, and electron affinities, as well as molecular calculations on selected hydrides (TiH, MnH, CuH) and other diatomics (TiF, Cu2). In addition to observing systematic convergence towards the CBS limits, both 3s3p electron correlation and scalar relativity are calculated to strongly impact many of the atomic and molecular properties investigated for these first-row transition metal species.

  5. Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements

    NASA Astrophysics Data System (ADS)

    Hill, J. Grant; Peterson, Kirk A.

    2017-12-01

    New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.

  6. Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Frisch, Michael J.; Binkley, J. Stephen; Schaefer, Henry F., III

    1984-08-01

    The relative energies of the stationary points on the FH2 and H2CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Møller-Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H2→FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol-1 of the experimental value using the largest basis set considered. The qualitative features of the H2CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended.

  7. Calculations of molecular multipole electric moments of a series of exo-insaturated four-membered heterocycles, Y = CCH2CH2X

    NASA Astrophysics Data System (ADS)

    Romero, Angel H.

    2017-10-01

    The influence of ring puckering angle on the multipole moments of sixteen four-membered heterocycles (1-16) was theoretically estimated using MP2 and different DFTs in combination with the 6-31+G(d,p) basis set. To obtain an accurate evaluation, CCSD/cc-pVDZ level and, the MP2 and PBE1PBE methods in combination with the aug-cc-pVDZ and aug-cc-pVTZ basis sets were performed on the planar geometries of 1-16. In general, the DFT and MP2 approaches provided an identical dependence of the electrical properties with the puckering angle for 1-16. Quantitatively, the quality of the level of theory and basis sets affects significant the predictions of the multipole moments, in particular for the heterocycles containing C=O and C=S bonds. Convergence basis sets within the MP2 and PBE1PBE approximations are reached in the dipole moment calculations when the aug-cc-pVTZ basis set is used, while the quadrupole and octupole moment computations require a larger basis set than aug-cc-pVTZ. On the other hand, the multipole moments showed a strong dependence with the molecular geometry and the nature of the carbon-heteroatom bonds. Specifically, the C-X bond determines the behavior of the μ(ϕ), θ(ϕ) and Ώ(ϕ) functions, while the C=Y bond plays an important role in the magnitude of the studied properties.

  8. The Diabetic Retinopathy Screening Workflow: Potential for Smartphone Imaging.

    PubMed

    Bolster, Nigel M; Giardini, Mario E; Bastawrous, Andrew

    2015-11-23

    Complications of diabetes mellitus, namely diabetic retinopathy and diabetic maculopathy, are the leading cause of blindness in working aged people. Sufferers can avoid blindness if identified early via retinal imaging. Systematic screening of the diabetic population has been shown to greatly reduce the prevalence and incidence of blindness within the population. Many national screening programs have digital fundus photography as their basis. In the past 5 years several techniques and adapters have been developed that allow digital fundus photography to be performed using smartphones. We review recent progress in smartphone-based fundus imaging and discuss its potential for integration into national systematic diabetic retinopathy screening programs. Some systems have produced promising initial results with respect to their agreement with reference standards. However further multisite trialling of such systems' use within implementable screening workflows is required if an evidence base strong enough to affect policy change is to be established. If this were to occur national diabetic retinopathy screening would, for the first time, become possible in low- and middle-income settings where cost and availability of trained eye care personnel are currently key barriers to implementation. As diabetes prevalence and incidence is increasing sharply in these settings, the impact on global blindness could be profound. © 2015 Diabetes Technology Society.

  9. Translating epidemiology into policy to prevent childhood obesity: the case for promoting physical activity in school settings.

    PubMed

    Brownson, Ross C; Chriqui, Jamie F; Burgeson, Charlene R; Fisher, Megan C; Ness, Roberta B

    2010-06-01

    Childhood obesity is a serious public health problem resulting from energy imbalance (when the intake of energy is greater than the amount of energy expended through physical activity). Numerous health authorities have identified policy interventions as promising strategies for creating population-wide improvements in physical activity. This case study focuses on energy expenditure through physical activity (with a particular emphasis on school-based physical education [PE]). Policy-relevant evidence for promoting physical activity in youth may take numerous forms, including epidemiologic data and other supporting evidence (e.g., qualitative data). The implementation and evaluation of school PE interventions leads to a set of lessons related to epidemiology and evidence-based policy. These include the need to: (i) enhance the focus on external validity, (ii) develop more policy-relevant evidence on the basis of "natural experiments," (iii) understand that policy making is political, (iv) better articulate the factors that influence policy dissemination, (v) understand the real-world constraints when implementing policy in school environments, and (vi) build transdisciplinary teams for policy progress. The issues described in this case study provide leverage points for practitioners, policy makers, and researchers as they seek to translate epidemiology to policy. Copyright 2010 Elsevier Inc. All rights reserved.

  10. A dual indicator set to help farms achieve more sustainable crop protection.

    PubMed

    Wustenberghs, Hilde; Delcour, Ilse; D'Haene, Karoline; Lauwers, Ludwig; Marchand, Fleur; Steurbaut, Walter; Spanoghe, Pieter

    2012-08-01

    Farmers are being called to use plant protection products (PPPs) more consciously and adopt more sustainable crop protection strategies. Indicators will help farmers to monitor their progress towards sustainability and will support their learning process. Talking the indicators through in farmers' discussion groups and the resulting peer encouragement will foster knowledge acquirement and can lead to changes in attitudes, norms, perception and behaviour. Using a participatory approach, a conceptual framework for on-farm sustainable crop protection practices was created. The same participatory approach was used to design a dual indicator set, which pairs a pesticide impact assessment system (PIAS) with a farm inquiry. The PIAS measures the risk for human health and the environment exerted by chemical crop protection. The inquiry reveals the farmers' response to this risk, both in terms of the actions they take and their knowledge, awareness and attitude. The dual indicator set allows for implementation in four tiers, each representing increased potential for monitoring and social learning. The indicator set can be adjusted on the basis of new findings, and the participatory approach can be extrapolated to other situations. Copyright © 2012 Society of Chemical Industry.

  11. A logistic regression approach to model the willingness of consumers to adopt renewable energy sources

    NASA Astrophysics Data System (ADS)

    Ulkhaq, M. M.; Widodo, A. K.; Yulianto, M. F. A.; Widhiyaningrum; Mustikasari, A.; Akshinta, P. Y.

    2018-03-01

    The implementation of renewable energy in this globalization era is inevitable since the non-renewable energy leads to climate change and global warming; hence, it does harm the environment and human life. However, in the developing countries, such as Indonesia, the implementation of the renewable energy sources does face technical and social problems. For the latter, renewable energy sources implementation is only effective if the public is aware of its benefits. This research tried to identify the determinants that influence consumers’ intention in adopting renewable energy sources. In addition, this research also tried to predict the consumers who are willing to apply the renewable energy sources in their houses using a logistic regression approach. A case study was conducted in Semarang, Indonesia. The result showed that only eight variables (from fifteen) that are significant statistically, i.e., educational background, employment status, income per month, average electricity cost per month, certainty about the efficiency of renewable energy project, relatives’ influence to adopt the renewable energy sources, energy tax deduction, and the condition of the price of the non-renewable energy sources. The finding of this study could be used as a basis for the government to set up a policy towards an implementation of the renewable energy sources.

  12. Institutional framework for integrated Pharmaceutical Benefits Management: results from a systematic review

    PubMed Central

    Hermanowski, Tomasz Roman; Drozdowska, Aleksandra Krystyna; Kowalczyk, Marta

    2015-01-01

    Objectives In this paper, we emphasised that effective management of health plans beneficiaries access to reimbursed medicines requires proper institutional set-up. The main objective was to identify and recommend an institutional framework of integrated pharmaceutical care providing effective, safe and equitable access to medicines. Method The institutional framework of drug policy was derived on the basis of publications obtained by systematic reviews. A comparative analysis concerning adaptation of coordinated pharmaceutical care services in the USA, the UK, Poland, Italy, Denmark and Germany was performed. Results While most European Union Member States promote the implementation of selected e-Health tools, like e-Prescribing, these efforts do not necessarily implement an integrated package. There is no single agent who would manage an insured patients’ access to medicines and health care in a coordinated manner, thereby increasing the efficiency and safety of drug policy. More attention should be paid by European Union Member States as to how to integrate various e-Health tools to enhance benefits to both individuals and societies. One solution could be to implement an integrated “pharmacy benefit management” model, which is well established in the USA and Canada and provides an integrated package of cost-containment methods, implemented within a transparent institutional framework and powered by strong motivation of the agent. PMID:26528099

  13. Medicare program; hospital inpatient prospective payment systems for acute care hospitals and the long-term care hospital prospective payment system and FY 2012 rates; hospitals' FTE resident caps for graduate medical education payment. Final rules.

    PubMed

    2011-08-18

    We are revising the Medicare hospital inpatient prospective payment systems (IPPS) for operating and capital-related costs of acute care hospitals to implement changes arising from our continuing experience with these systems and to implement certain statutory provisions contained in the Patient Protection and Affordable Care Act and the Health Care and Education Reconciliation Act of 2010 (collectively known as the Affordable Care Act) and other legislation. We also are setting forth the update to the rate-of-increase limits for certain hospitals excluded from the IPPS that are paid on a reasonable cost basis subject to these limits. We are updating the payment policy and the annual payment rates for the Medicare prospective payment system (PPS) for inpatient hospital services provided by long-term care hospitals (LTCHs) and implementing certain statutory changes made by the Affordable Care Act. In addition, we are finalizing an interim final rule with comment period that implements section 203 of the Medicare and Medicaid Extenders Act of 2010 relating to the treatment of teaching hospitals that are members of the same Medicare graduate medical education affiliated groups for the purpose of determining possible full-time equivalent (FTE) resident cap reductions.

  14. 10 CFR 13.1 - Basis and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Basis and purpose. 13.1 Section 13.1 Energy NUCLEAR REGULATORY COMMISSION PROGRAM FRAUD CIVIL REMEDIES § 13.1 Basis and purpose. (a) Basis. This part implements the Program Fraud Civil Remedies Act of 1986, Public Law No. 99-509, §§ 6101-6104, 100 Stat. 1874...

  15. Leveraging workflow control patterns in the domain of clinical practice guidelines.

    PubMed

    Kaiser, Katharina; Marcos, Mar

    2016-02-10

    Clinical practice guidelines (CPGs) include recommendations describing appropriate care for the management of patients with a specific clinical condition. A number of representation languages have been developed to support executable CPGs, with associated authoring/editing tools. Even with tool assistance, authoring of CPG models is a labor-intensive task. We aim at facilitating the early stages of CPG modeling task. In this context, we propose to support the authoring of CPG models based on a set of suitable procedural patterns described in an implementation-independent notation that can be then semi-automatically transformed into one of the alternative executable CPG languages. We have started with the workflow control patterns which have been identified in the fields of workflow systems and business process management. We have analyzed the suitability of these patterns by means of a qualitative analysis of CPG texts. Following our analysis we have implemented a selection of workflow patterns in the Asbru and PROforma CPG languages. As implementation-independent notation for the description of patterns we have chosen BPMN 2.0. Finally, we have developed XSLT transformations to convert the BPMN 2.0 version of the patterns into the Asbru and PROforma languages. We showed that although a significant number of workflow control patterns are suitable to describe CPG procedural knowledge, not all of them are applicable in the context of CPGs due to their focus on single-patient care. Moreover, CPGs may require additional patterns not included in the set of workflow control patterns. We also showed that nearly all the CPG-suitable patterns can be conveniently implemented in the Asbru and PROforma languages. Finally, we demonstrated that individual patterns can be semi-automatically transformed from a process specification in BPMN 2.0 to executable implementations in these languages. We propose a pattern and transformation-based approach for the development of CPG models. Such an approach can form the basis of a valid framework for the authoring of CPG models. The identification of adequate patterns and the implementation of transformations to convert patterns from a process specification into different executable implementations are the first necessary steps for our approach.

  16. Coloc-stats: a unified web interface to perform colocalization analysis of genomic features.

    PubMed

    Simovski, Boris; Kanduri, Chakravarthi; Gundersen, Sveinung; Titov, Dmytro; Domanska, Diana; Bock, Christoph; Bossini-Castillo, Lara; Chikina, Maria; Favorov, Alexander; Layer, Ryan M; Mironov, Andrey A; Quinlan, Aaron R; Sheffield, Nathan C; Trynka, Gosia; Sandve, Geir K

    2018-06-05

    Functional genomics assays produce sets of genomic regions as one of their main outputs. To biologically interpret such region-sets, researchers often use colocalization analysis, where the statistical significance of colocalization (overlap, spatial proximity) between two or more region-sets is tested. Existing colocalization analysis tools vary in the statistical methodology and analysis approaches, thus potentially providing different conclusions for the same research question. As the findings of colocalization analysis are often the basis for follow-up experiments, it is helpful to use several tools in parallel and to compare the results. We developed the Coloc-stats web service to facilitate such analyses. Coloc-stats provides a unified interface to perform colocalization analysis across various analytical methods and method-specific options (e.g. colocalization measures, resolution, null models). Coloc-stats helps the user to find a method that supports their experimental requirements and allows for a straightforward comparison across methods. Coloc-stats is implemented as a web server with a graphical user interface that assists users with configuring their colocalization analyses. Coloc-stats is freely available at https://hyperbrowser.uio.no/coloc-stats/.

  17. NASA Human Health and Performance Center: Open innovation successes and collaborative projects

    NASA Astrophysics Data System (ADS)

    Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-11-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, setting the course for development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the successful execution of the strategy, driving organizational change through open innovation efforts and collaborative projects, including efforts of the NASA Human Health and Performance Center (NHHPC).

  18. Towards the discovery of drug-like RNA ligands?

    PubMed

    Foloppe, Nicolas; Matassova, Natalia; Aboul-Ela, Fareed

    2006-11-01

    Targeting RNA with small molecule drugs is an area of great potential for therapeutic treatment of infections and possibly genetic and autoimmune diseases. However, a mature set of precedents and established methodology is lacking. The physicochemical properties of RNA raise specific issues and obstacles to development, and contribute to explain the distinct characteristics of natural RNA ligands, including antibiotics. Yet, RNA-targeting strategies are being implemented to reinvigorate antibacterial discovery by using the ribosomal X-ray structures to modify known antibiotics. To exploit further these structures, we suggest the use of existing protein kinase-directed libraries of drug-like compounds to target the A-site of the bacterial ribosome, on the basis of a specific structural hypothesis.

  19. Medicare program; limit on the valuation of a depreciable asset recognized as an allowance for depreciation and interest on capital indebtedness after a change of ownership--HCFA. Final rule with comment period.

    PubMed

    1998-01-09

    This final rule with comment period revises the Medicare provider reimbursement regulations relative to allowable costs and sets a limit on the valuation of a depreciable asset that may be recognized in establishing an appropriate allowance for depreciation and for interest on capital indebtedness after a change of ownership that occurs on or after December 1, 1997. These provisions apply to providers that are reimbursed on the basis of reasonable costs. This change implements the mandate in section 4404 of the Balanced Budget Act of 1997 (Pub. L. 105-33).

  20. LQR Control of Thin Shell Dynamics: Formulation and Numerical Implementation

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A PDE-based feedback control method for thin cylindrical shells with surface-mounted piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and active piezoceramic patch contributions are used to model the system dynamics. The well-posedness of this model and the associated LQR problem with an unbounded input operator are established through analytic semigroup theory. The model is discretized using a Galerkin expansion with basis functions constructed from Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal, circumferential and transverse shell displacements is illustrated through a set of numerical examples.

  1. Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness.

    PubMed

    Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A

    2012-01-27

    Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%.

  2. Spin-orbit splitted excited states using explicitly-correlated equation-of-motion coupled-cluster singles and doubles eigenvectors

    NASA Astrophysics Data System (ADS)

    Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.

    2018-04-01

    An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.

  3. Objectives and metrics for wildlife monitoring

    USGS Publications Warehouse

    Sauer, J.R.; Knutson, M.G.

    2008-01-01

    Monitoring surveys allow managers to document system status and provide the quantitative basis for management decision-making, and large amounts of effort and funding are devoted to monitoring. Still, monitoring surveys often fall short of providing required information; inadequacies exist in survey designs, analyses procedures, or in the ability to integrate the information into an appropriate evaluation of management actions. We describe current uses of monitoring data, provide our perspective on the value and limitations of current approaches to monitoring, and set the stage for 3 papers that discuss current goals and implementation of monitoring programs. These papers were derived from presentations at a symposium at The Wildlife Society's 13th Annual Conference in Anchorage, Alaska, USA. [2006

  4. Straightening the Hierarchical Staircase for Basis Set Extrapolations: A Low-Cost Approach to High-Accuracy Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Varandas, António J. C.

    2018-04-01

    Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.

  5. 42 CFR 440.300 - Basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Basis. 440.300 Section 440.300 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL....300 Basis. This subpart implements section 1937 of the Act, which authorizes States to provide for...

  6. The Neural Correlates of Emotion Regulation by Implementation Intentions

    PubMed Central

    Hallam, Glyn P.; Webb, Thomas L.; Sheeran, Paschal; Miles, Eleanor; Wilkinson, Iain D.; Hunter, Michael D.; Barker, Anthony T.; Woodruff, Peter W. R.; Totterdell, Peter; Lindquist, Kristen A.; Farrow, Tom F. D.

    2015-01-01

    Several studies have investigated the neural basis of effortful emotion regulation (ER) but the neural basis of automatic ER has been less comprehensively explored. The present study investigated the neural basis of automatic ER supported by ‘implementation intentions’. 40 healthy participants underwent fMRI while viewing emotion-eliciting images and used either a previously-taught effortful ER strategy, in the form of a goal intention (e.g., try to take a detached perspective), or a more automatic ER strategy, in the form of an implementation intention (e.g., “If I see something disgusting, then I will think these are just pixels on the screen!”), to regulate their emotional response. Whereas goal intention ER strategies were associated with activation of brain areas previously reported to be involved in effortful ER (including dorsolateral prefrontal cortex), ER strategies based on an implementation intention strategy were associated with activation of right inferior frontal gyrus and ventro-parietal cortex, which may reflect the attentional control processes automatically captured by the cue for action contained within the implementation intention. Goal intentions were also associated with less effective modulation of left amygdala, supporting the increased efficacy of ER under implementation intention instructions, which showed coupling of orbitofrontal cortex and amygdala. The findings support previous behavioural studies in suggesting that forming an implementation intention enables people to enact goal-directed responses with less effort and more efficiency. PMID:25798822

  7. Quantum Mechanical Calculations of Monoxides of Silicon Carbide Molecules

    DTIC Science & Technology

    2003-03-01

    Data for CO Final Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -112.6850703739 2.02121 -1 2 DVZ...Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -363.7341927429 0.617643 -1 2 DVZ -363.7114852831 0 3 DVZ...Input Geometry Output Geometry Basis Set Final Energy (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE -1 2 O-C-Si Linear O-C-Si Linear DZV -401.5363

  8. Relativistic well-tempered Gaussian basis sets for helium through mercury. Breit interaction included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, S.; Shinada, M.; Matsuoka, O.

    1990-10-01

    A systematic calculation of new relativistic Gaussian basis sets is reported. The new basis sets are similar to the previously reported ones (J. Chem. Phys. {bold 91}, 4193 (1989)), but, in the calculation, the Breit interaction has been explicitly included besides the Dirac--Coulomb Hamiltonian. They have been adopted for the calculation of the self-consistent field effect on the Breit interaction energies and are expected to be useful for the studies on higher-order effects such as the electron correlations and other quantum electrodynamical effects.

  9. Implementation of an Industrial-Based Case Study as the Basis for a Design Project in an Introduction to Mechanical Design Course

    ERIC Educational Resources Information Center

    Lackey, Ellen

    2011-01-01

    The purpose of this paper is to discuss the implementation of an industrial-based case study as the basis for a design project for the Spring 2009 Introduction to Mechanical Design Course at the University of Mississippi. Course surveys documented the lack of student exposure in classes to the types of projects typically experienced by engineers…

  10. On the Usage of Locally Dense Basis Sets in the Calculation of NMR Indirect Nuclear Spin-Spin Coupling Constants

    NASA Astrophysics Data System (ADS)

    Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.

    Locally dense basis sets (

  11. Near Hartree-Fock quality GTO basis sets for the first- and third-row atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry

    1989-01-01

    Energy-optimized Gaussian-type-orbital (GTO) basis sets of accuracy approaching that of numerical Hartree-Fock computations are compiled for the elements of the first and third rows of the periodic table. The methods employed in calculating the sets are explained; the applicability of the sets to electronic-structure calculations is discussed; and the results are presented in tables and briefly characterized.

  12. Computational tests of quantum chemical models for excited and ionized states of molecules with phosphorus and sulfur atoms.

    PubMed

    Hahn, David K; RaghuVeer, Krishans; Ortiz, J V

    2014-05-15

    Time-dependent density functional theory (TD-DFT) and electron propagator theory (EPT) are used to calculate the electronic transition energies and ionization energies, respectively, of species containing phosphorus or sulfur. The accuracy of TD-DFT and EPT, in conjunction with various basis sets, is assessed with data from gas-phase spectroscopy. TD-DFT is tested using 11 prominent exchange-correlation functionals on a set of 37 vertical and 19 adiabatic transitions. For vertical transitions, TD-CAM-B3LYP calculations performed with the MG3S basis set are lowest in overall error, having a mean absolute deviation from experiment of 0.22 eV, or 0.23 eV over valence transitions and 0.21 eV over Rydberg transitions. Using a larger basis set, aug-pc3, improves accuracy over the valence transitions via hybrid functionals, but improved accuracy over the Rydberg transitions is only obtained via the BMK functional. For adiabatic transitions, all hybrid functionals paired with the MG3S basis set perform well, and B98 is best, with a mean absolute deviation from experiment of 0.09 eV. The testing of EPT used the Outer Valence Green's Function (OVGF) approximation and the Partial Third Order (P3) approximation on 37 vertical first ionization energies. It is found that OVGF outperforms P3 when basis sets of at least triple-ζ quality in the polarization functions are used. The largest basis set used in this study, aug-pc3, obtained the best mean absolute error from both methods -0.08 eV for OVGF and 0.18 eV for P3. The OVGF/6-31+G(2df,p) level of theory is particularly cost-effective, yielding a mean absolute error of 0.11 eV.

  13. Fault Management Design Strategies

    NASA Technical Reports Server (NTRS)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  14. Features and perspectives of automatized construction crane-manipulators

    NASA Astrophysics Data System (ADS)

    Stepanov, Mikhail A.; Ilukhin, Peter A.

    2018-03-01

    Modern construction industry still has a high percentage of manual labor, and the greatest prospects of improving the construction process are lying in the field of automatization. In this article automatized construction manipulator-cranes are being studied in order to achieve the most rational design scheme. This is done through formulating a list of general conditions necessary for such cranes and a set of specialized kinematical conditions. A variety of kinematical schemes is evaluated via these conditions, and some are taken for further dynamical analisys. The comparative dynamical analisys of taken schemes was made and the most rational scheme was defined. Therefore a basis for a more complex and practical research of manipulator-cranes design is given and ways to implement them on practical level can now be calculated properly. Also, the perspectives of implementation of automated control systems and informational networks on construction sites in order to boost the quality of construction works, safety of labour and ecological safety are shown.

  15. Real-time contaminant sensing and control in civil infrastructure systems

    NASA Astrophysics Data System (ADS)

    Rimer, Sara; Katopodes, Nikolaos

    2014-11-01

    A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.

  16. AUCTION MECHANISMS FOR IMPLEMENTING TRADABLE NETWORK PERMIT MARKETS

    NASA Astrophysics Data System (ADS)

    Wada, Kentaro; Akamatsu, Takashi

    This paper proposes a new auction mechanism for implementing the tradable network permit markets. Assuming that each user makes a trip from an origin to a destination along a path in a specific time period, we design an auction mechanism that enables each user to purchase a bundle of permits corresponding to a set of links in the user's preferred path. The objective of the proposed mechanism is to achieve a socially optimal state with minimal revelation of users' private information. In order to achieve this, the mechanism employs an evolutionary approach that has an auction phase and a path capacity adjustment phase, which are repeated on a day-to-day basis. We prove that the proposed mechanism has the following desirable properties: (1) truthful bidding is the dominant strategy for each user and (2) the proposed mechanism converges to an approximate socially optimal state in the sense that the achieved value of the social surplus reaches its maximum value when the number of users is large.

  17. GIS Application System Design Applied to Information Monitoring

    NASA Astrophysics Data System (ADS)

    Qun, Zhou; Yujin, Yuan; Yuena, Kang

    Natural environment information management system involves on-line instrument monitoring, data communications, database establishment, information management software development and so on. Its core lies in collecting effective and reliable environmental information, increasing utilization rate and sharing degree of environment information by advanced information technology, and maximizingly providing timely and scientific foundation for environmental monitoring and management. This thesis adopts C# plug-in application development and uses a set of complete embedded GIS component libraries and tools libraries provided by GIS Engine to finish the core of plug-in GIS application framework, namely, the design and implementation of framework host program and each functional plug-in, as well as the design and implementation of plug-in GIS application framework platform. This thesis adopts the advantages of development technique of dynamic plug-in loading configuration, quickly establishes GIS application by visualized component collaborative modeling and realizes GIS application integration. The developed platform is applicable to any application integration related to GIS application (ESRI platform) and can be as basis development platform of GIS application development.

  18. Analytical derivatives of the individual state energies in ensemble density functional theory method. I. General formalism

    DOE PAGES

    Filatov, Michael; Liu, Fang; Martínez, Todd J.

    2017-07-21

    The state-averaged (SA) spin restricted ensemble referenced Kohn-Sham (REKS) method and its state interaction (SI) extension, SI-SA-REKS, enable one to describe correctly the shape of the ground and excited potential energy surfaces of molecules undergoing bond breaking/bond formation reactions including features such as conical intersections crucial for theoretical modeling of non-adiabatic reactions. Until recently, application of the SA-REKS and SI-SA-REKS methods to modeling the dynamics of such reactions was obstructed due to the lack of the analytical energy derivatives. Here, the analytical derivatives of the individual SA-REKS and SI-SA-REKS energies are derived. The final analytic gradient expressions are formulated entirelymore » in terms of traces of matrix products and are presented in the form convenient for implementation in the traditional quantum chemical codes employing basis set expansions of the molecular orbitals. Finally, we will describe the implementation and benchmarking of the derived formalism in a subsequent article of this series.« less

  19. [Rabies contingency plan in Japan].

    PubMed

    Inoue, Satoshi

    2005-12-01

    In Japan, rabies has been culled out since 1957 thanks to the strong implementation of measures against rabies, such as vaccination of dogs, quarantine and control of wild dogs under the 'Rabies Prevention Law' enacted in 1950. Nevertheless one cannot deny the possibility of introduction of rabies into Japan in view of the recent increase in the international movements of people and animals. Should an outbreak of rabies be suspected now in Japan, the society would probably overreact due to a decreased awareness of risks and a lack of correct knowledge about this disease. Officials of the government and the municipalities, veterinarians and doctors should exchange correct information on rabies and on prevention control and raise their awareness, while providing also information to the public on a timely basis. Besides it is needless to say that it is important to set up a crisis management system allowing a quick and adequate response in case of an outbreak of rabies and to continue to implement appropriate prevention measures in normal times.

  20. No need for external orthogonality in subsystem density-functional theory.

    PubMed

    Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R

    2016-08-03

    Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes.

  1. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  2. Policy and public health recommendations to promote the initiation and duration of breast-feeding in developed country settings.

    PubMed

    Dyson, Lisa; Renfrew, Mary J; McFadden, Alison; McCormick, Felicia; Herbert, Gill; Thomas, James

    2010-01-01

    To develop policy and public health recommendations for implementation at all levels by individuals and organisations working in, or related to, the field of breast-feeding promotion in developed country settings, where breast-feeding rates remain low. Two research phases, comprising (i) an assessment of the formal evidence base in developed country settings and (ii) a consultation with UK-based practitioners, service managers and commissioners, and representatives of service users. The evidence base included three systematic reviews and an Evidence Briefing. One hundred and ten studies evaluating an intervention in developed country settings were assessed for quality and awarded an overall quality rating. Studies with a poor quality rating were excluded. The resulting seventy studies examined twenty-five types of intervention for breast-feeding promotion. These formed the basis of the second consultation phase to develop the evidence-based interventions into recommendations for practice, which comprised (i) pilot consultation, (ii) electronic consultation, (iii) fieldwork meetings and (iv) workshops. Draft findings were synthesised for two rounds of stakeholder review conducted by the National Institute for Health and Clinical Excellence. Twenty-five recommendations emerged within three complementary and necessary categories, i.e. public health policy, mainstream clinical practice and local interventions. The need for national policy directives was clearly identified as a priority to address many of the barriers experienced by practitioners when trying to work across sectors, organisations and professional groups. Routine implementation of the WHO/UNICEF Baby Friendly Initiative across hospital and community services was recommended as core to breast-feeding promotion in the UK. A local mix of complementary interventions is also required.

  3. The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO

    NASA Astrophysics Data System (ADS)

    de Dios, Angel C.; Jameson, Cynthia J.

    1997-09-01

    We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.

  4. Numerical judgments by chimpanzees (Pan troglodytes) in a token economy.

    PubMed

    Beran, Michael J; Evans, Theodore A; Hoyle, Daniel

    2011-04-01

    We presented four chimpanzees with a series of tasks that involved comparing two token sets or comparing a token set to a quantity of food. Selected tokens could be exchanged for food items on a one-to-one basis. Chimpanzees successfully selected the larger numerical set for comparisons of 1 to 5 items when both sets were visible and when sets were presented through one-by-one addition of tokens into two opaque containers. Two of four chimpanzees used the number of tokens and food items to guide responding in all conditions, rather than relying on token color, size, total amount, or duration of set presentation. These results demonstrate that judgments of simultaneous and sequential sets of stimuli are made by some chimpanzees on the basis of the numerousness of sets rather than other non-numerical dimensions. The tokens were treated as equivalent to food items on the basis of their numerousness, and the chimpanzees maximized reward by choosing the larger number of items in all situations.

  5. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.

    PubMed

    Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin

    2018-01-09

    Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

  6. Potential coastal impacts of contemporary changing climate on South Asian seas states

    NASA Astrophysics Data System (ADS)

    Gable, F. J.; Aubrey, D. G.

    1990-01-01

    The threat of man-induced global change on the nations of the South Asian seas region varies from place to place because of differences in exposure to monsoons and stoms, differences in local tectonics and subsidence, and variations in air and sea climates. Because several nations are involved, some having subsistence budgets, and given the cost of deriving independently a comprehensive response to global change, the similarities and differences between national settings must be identified soon. These comparisons will form the basis for local response strategies: the similarities provide a basis for responses similar to that of other nations and the differences provide for local adaptation. That climate change on the South Asian coastal region will have an impact is certain: its economics, environment, and coastal land uses are dominated to a certain extent by this marine influence. The extent of these impacts, however, is uncertain. Accompanying global change will be changes in sea level, differences in storm climate, and altered precipitation patterns; science cannot define today what pattern these changes will take. Because global change is inevitable—although its magnitude, timing, and geographic distribution are unknown—the South Asian seas region should begin the appropriate research and planning studies to set forth a reasoned response to global change, for implementation when scientific evidence for global change is more quantitative.

  7. Correlation consistent basis sets for actinides. I. The Th and U atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Kirk A., E-mail: kipeters@wsu.edu

    New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc − pV nZ − PP and cc − pV nZ − DK3, as well as outer-core correlation (valence + 5s5p5d), cc − pwCV nZ − PP and cc − pwCV nZ − DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Bothmore » series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThF{sub n} (n = 2 − 4), ThO{sub 2}, and UF{sub n} (n = 4 − 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF{sub 4}, ThF{sub 3}, ThF{sub 2}, and ThO{sub 2} are all within their experimental uncertainties. Bond dissociation energies of ThF{sub 4} and ThF{sub 3}, as well as UF{sub 6} and UF{sub 5}, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF{sub 4} and ThO{sub 2}. The DKH3 atomization energy of ThO{sub 2} was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.« less

  8. Large-Scale Cubic-Scaling Random Phase Approximation Correlation Energy Calculations Using a Gaussian Basis.

    PubMed

    Wilhelm, Jan; Seewald, Patrick; Del Ben, Mauro; Hutter, Jürg

    2016-12-13

    We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring [Formula: see text] operations and [Formula: see text] memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-ζ quality basis.

  9. Segmented all-electron Gaussian basis sets of double and triple zeta qualities for Fr, Ra, and Ac

    NASA Astrophysics Data System (ADS)

    Campos, C. T.; de Oliveira, A. Z.; Ferreira, I. B.; Jorge, F. E.; Martins, L. S. C.

    2017-05-01

    Segmented all-electron basis sets of valence double and triple zeta qualities plus polarization functions for the elements Fr, Ra, and Ac are generated using non-relativistic and Douglas-Kroll-Hess (DKH) Hamiltonians. The sets are augmented with diffuse functions with the purpose to describe appropriately the electrons far from the nuclei. At the DKH-B3LYP level, first atomic ionization energies and bond lengths, dissociation energies, and polarizabilities of a sample of diatomics are calculated. Comparison with theoretical and experimental data available in the literature is carried out. It is verified that despite the small sizes of the basis sets, they are yet reliable.

  10. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method

    NASA Astrophysics Data System (ADS)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-01

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500 times faster. The method performs best in conjunction with large and flexible basis sets. These results open the way for large-scale chemical applications.

  11. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method.

    PubMed

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-21

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Moller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol(-1). Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500 times faster. The method performs best in conjunction with large and flexible basis sets. These results open the way for large-scale chemical applications.

  12. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi

    2005-03-01

    The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.

  13. Rational Density Functional Selection Using Game Theory.

    PubMed

    McAnanama-Brereton, Suzanne; Waller, Mark P

    2018-01-22

    Theoretical chemistry has a paradox of choice due to the availability of a myriad of density functionals and basis sets. Traditionally, a particular density functional is chosen on the basis of the level of user expertise (i.e., subjective experiences). Herein we circumvent the user-centric selection procedure by describing a novel approach for objectively selecting a particular functional for a given application. We achieve this by employing game theory to identify optimal functional/basis set combinations. A three-player (accuracy, complexity, and similarity) game is devised, through which Nash equilibrium solutions can be obtained. This approach has the advantage that results can be systematically improved by enlarging the underlying knowledge base, and the deterministic selection procedure mathematically justifies the density functional and basis set selections.

  14. Reconception of mandatory-based corporate social and environmental responsibility in Indonesia

    NASA Astrophysics Data System (ADS)

    Yunari, S. B.; Suhariningsih, S.; Syafa'at, R.; Sihabudin, S.

    2018-01-01

    The Legal Concept of Corporate Social and Environmental Responsibility (CSER) in Law Number 40 Year 2007 (Company Law), as set forth in the general provision Article 1 (3) of Company Law evidently is a definition (begripsbepalingen) of voluntary basis, because it comes from the concept of CSR used by western countries based on World Bank’s guidelines. Hence, it is certainly contrary to the legal concept of CSER that is perceived to be mandatory in the Company Law. Therefore, the concept of CSER as an implementation of a legal principle in a norm, so as not to cause legal issue, at the normative level as well as at implementation level, must be consistent and need reconception.The purpose of this reconception of CSER is to find a new concept of mandatory-based CSER. The methodology of research used is legal research (doctrinal research), based on secondary legal material acquired analysed presciptively by statute, conseptual and comparative approach.The research outcome is resulting in a discussion of reconception of a legal responsibility-based Corporate Social Liability (CSL) with sustainable local community empowerment oriented, so as to create legal certainty at the normative level and implementation in Indonesia.

  15. Using trauma informed care as a nursing model of care in an acute inpatient mental health unit: A practice development process.

    PubMed

    Isobel, Sophie; Edwards, Clair

    2017-02-01

    Without agreeing on an explicit approach to care, mental health nurses may resort to problem focused, task oriented practice. Defining a model of care is important but there is also a need to consider the philosophical basis of any model. The use of Trauma Informed Care as a guiding philosophy provides a robust framework from which to review nursing practice. This paper describes a nursing workforce practice development process to implement Trauma Informed Care as an inpatient model of mental health nursing care. Trauma Informed Care is an evidence-based approach to care delivery that is applicable to mental health inpatient units; while there are differing strategies for implementation, there is scope for mental health nurses to take on Trauma Informed Care as a guiding philosophy, a model of care or a practice development project within all of their roles and settings in order to ensure that it has considered, relevant and meaningful implementation. The principles of Trauma Informed Care may also offer guidance for managing workforce stress and distress associated with practice change. © 2016 Australian College of Mental Health Nurses Inc.

  16. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, J. A. F., E-mail: jennifer.kersten@cantab.net; Alavi, Ali, E-mail: a.alavi@fkf.mpg.de; Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart

    2016-08-07

    The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses andmore » compares two contrasting “universal” explicitly correlated approaches that fit into the FCIQMC framework: the [2]{sub R12} method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mE{sub h} to 3-4 mE{sub h}. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.« less

  17. Impact of an interprofessional shared decision-making and goal-setting decision aid for patients with diabetes on decisional conflict--study protocol for a randomized controlled trial.

    PubMed

    Yu, Catherine H; Ivers, Noah M; Stacey, Dawn; Rezmovitz, Jeremy; Telner, Deanna; Thorpe, Kevin; Hall, Susan; Settino, Marc; Kaplan, David M; Coons, Michael; Sodhi, Sumeet; Sale, Joanna; Straus, Sharon E

    2015-06-27

    Competing health concerns present real obstacles to people living with diabetes and other chronic diseases as well as to their primary care providers. Guideline implementation interventions rarely acknowledge this, leaving both patients and providers feeling overwhelmed by the volume of recommended actions. Interprofessional (IP) shared decision-making (SDM) with the use of decision aids may help to set treatment priorities. We developed an evidence-based SDM intervention for patients with diabetes and other conditions that was framed by the IP-SDM model and followed a user-centered approach. Our objective in the present study is to pilot an IP-SDM and goal-setting toolkit following the Knowledge-to-Action Framework to assess (1) intervention fidelity and the feasibility of conducting a larger trial and (2) impact on decisional conflict, diabetes distress, health-related quality of life and patient assessment of chronic illness care. A two-step, parallel-group, clustered randomized controlled trial (RCT) will be conducted, with the primary goal being to assess intervention fidelity and the feasibility of conducting a larger RCT. The first step is a provider-directed implementation only; the second (after a 6-month delay) involves both provider- and patient-directed implementation. Half of the clusters will be assigned to receive the IP-SDM toolkit, and the other will be assigned to be mailed a diabetes guidelines summary. Individual interviews with patients, their family members and health care providers will be conducted upon trial completion to explore toolkit use. A secondary purpose of this trial is to gather estimates of the toolkit's impact on decisional conflict. Secondary outcomes include diabetes distress, quality of life and chronic illness care, which will be assessed on the basis of patient-completed questionnaires of validated scales at baseline and at 6 and 12 months. Multilevel hierarchical regression models will be used to account for the clustered nature of the data. An individualized approach to patients with multiple chronic conditions using SDM and goal setting is a desirable strategy for achieving guideline-concordant treatment in a patient-centered fashion. Our pilot trial will provide insights regarding strategies for the routine implementation of such interventions in clinical practice, and it will offer an assessment of the impact of this approach. Clinicaltrials.gov Identifier: NCT02379078. Date of Registration: 11 February 2015.

  18. State-mandated accountability as a constraint on teaching and learning science

    NASA Astrophysics Data System (ADS)

    Wood, Terry

    The purpose of this study is to examine the effect of state-mandated policy, emphasizing control through performance-based instruction and student test scores as the basis for determining school accreditation, on the teaching and learning of science. The intended consequence of instigating the rational theory of management by one state is to improve their current level of student literacy. However, some contend that the implementation of the policy has results that are not intended. The identification of the tension between the intended and unintended results of centralized policy making is the basis for examining a specific case in which the rational model is implemented. One hundred and sixty-five seventh-grade science students and four teachers are participants in the study. Qualitative analysis is the research methodology used as a means to provide detailed information about the contextual nature of the classroom processes. The intention is to identify and describe features of the behavior setting that influence the behavior of the teachers and their students. Three assertions generated during the field work were: Teachers redefine the goals of science instruction as the acquisition of facts and isolated skills, teachers alter their usual instructional behavior to implement uniform instructional procedures, and the teacher/student classroom interaction constrains students' opportunities to learn science. The implications of the study indicate that the state-mandated policy has results that are in opposition to the intended results. Instead of improving the practices of teachers, the implementation of the policy constrains and routinizes the teachers' behavior, causing them to violate their own standards of good teaching. They feel pressured to get through the materials so students will score well on tests. The classroom interaction is structured in such a way as to inhibit students from asking questions of their own. As a result, students' opportunity to express curiosity and inquiry - central processes in scientific thinking - are constrained. These unintended consequences of the implemented state policy, instead of improving science teaching and learning, continue to reduce science instruction to the literal comprehension of isolated facts and skills.

  19. The solitary wave solution of coupled Klein-Gordon-Zakharov equations via two different numerical methods

    NASA Astrophysics Data System (ADS)

    Dehghan, Mehdi; Nikpour, Ahmad

    2013-09-01

    In this research, we propose two different methods to solve the coupled Klein-Gordon-Zakharov (KGZ) equations: the Differential Quadrature (DQ) and Globally Radial Basis Functions (GRBFs) methods. In the DQ method, the derivative value of a function with respect to a point is directly approximated by a linear combination of all functional values in the global domain. The principal work in this method is the determination of weight coefficients. We use two ways for obtaining these coefficients: cosine expansion (CDQ) and radial basis functions (RBFs-DQ), the former is a mesh-based method and the latter categorizes in the set of meshless methods. Unlike the DQ method, the GRBF method directly substitutes the expression of the function approximation by RBFs into the partial differential equation. The main problem in the GRBFs method is ill-conditioning of the interpolation matrix. Avoiding this problem, we study the bases introduced in Pazouki and Schaback (2011) [44]. Some examples are presented to compare the accuracy and easy implementation of the proposed methods. In numerical examples, we concentrate on Inverse Multiquadric (IMQ) and second-order Thin Plate Spline (TPS) radial basis functions. The variable shape parameter (exponentially and random) strategies are applied in the IMQ function and the results are compared with the constant shape parameter.

  20. 42 CFR 455.200 - Basis and scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... scope. (a) Statutory basis. This subpart implements section 1936 of the Social Security Act that... contract under the Medicaid Integrity Program and to carry out the Medicaid integrity audit program...

  1. 42 CFR 455.200 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... scope. (a) Statutory basis. This subpart implements section 1936 of the Social Security Act that... contract under the Medicaid Integrity Program and to carry out the Medicaid integrity audit program...

  2. 45 CFR 79.1 - Basis and purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Welfare Department of Health and Human Services GENERAL ADMINISTRATION PROGRAM FRAUD CIVIL REMEDIES § 79.1 Basis and purpose. (a) Basis. This part implements the Program Fraud Civil Remedies Act of 1986, Pub. L... for imposing civil penalties and assessments against persons who make, submit, or present, or cause to...

  3. 45 CFR 79.1 - Basis and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROGRAM FRAUD CIVIL REMEDIES § 79.1 Basis and purpose. (a) Basis. This part implements the Program Fraud Civil Remedies Act of 1986, Pub. L... for imposing civil penalties and assessments against persons who make, submit, or present, or cause to...

  4. 45 CFR 79.1 - Basis and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROGRAM FRAUD CIVIL REMEDIES § 79.1 Basis and purpose. (a) Basis. This part implements the Program Fraud Civil Remedies Act of 1986, Pub. L... for imposing civil penalties and assessments against persons who make, submit, or present, or cause to...

  5. 45 CFR 79.1 - Basis and purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROGRAM FRAUD CIVIL REMEDIES § 79.1 Basis and purpose. (a) Basis. This part implements the Program Fraud Civil Remedies Act of 1986, Pub. L... for imposing civil penalties and assessments against persons who make, submit, or present, or cause to...

  6. 42 CFR 505.1 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Basis and scope. 505.1 Section 505.1 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) HEALTH CARE... Criteria § 505.1 Basis and scope. This part implements section 1016 of the Medicare Prescription Drug...

  7. 42 CFR 505.1 - Basis and scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Basis and scope. 505.1 Section 505.1 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) HEALTH CARE... Criteria § 505.1 Basis and scope. This part implements section 1016 of the Medicare Prescription Drug...

  8. 42 CFR 414.500 - Basis and scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Basis and scope. 414.500 Section 414.500 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Laboratory Tests § 414.500 Basis and scope. This subpart implements provisions of 1833(h)(8) of the Act...

  9. 42 CFR 414.500 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Basis and scope. 414.500 Section 414.500 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Laboratory Tests § 414.500 Basis and scope. This subpart implements provisions of 1833(h)(8) of the Act...

  10. Feasibility of modified surviving sepsis campaign guidelines in a resource-restricted setting based on a cohort study of severe S. aureus sepsis [corrected].

    PubMed

    Mahavanakul, Weera; Nickerson, Emma K; Srisomang, Pramot; Teparrukkul, Prapit; Lorvinitnun, Pichet; Wongyingsinn, Mingkwan; Chierakul, Wirongrong; Hongsuwan, Maliwan; West, T Eoin; Day, Nicholas P; Limmathurotsakul, Direk; Peacock, Sharon J

    2012-01-01

    The Surviving Sepsis Campaign (SSC) guidelines describe best practice for the management of severe sepsis and septic shock in developed countries, but most deaths from sepsis occur where healthcare is not sufficiently resourced to implement them. Our objective was to define the feasibility and basis for modified guidelines in a resource-restricted setting. We undertook a detailed assessment of sepsis management in a prospective cohort of patients with severe sepsis caused by a single pathogen in a 1,100-bed hospital in lower-middle income Thailand. We compared their management with the SSC guidelines to identify care bundles based on existing capabilities or additional activities that could be undertaken at zero or low cost. We identified 72 patients with severe sepsis or septic shock associated with S. aureus bacteraemia, 38 (53%) of who died within 28 days. One third of patients were treated in intensive care units (ICUs). Numerous interventions described by the SSC guidelines fell within existing capabilities, but their implementation was highly variable. Care available to patients on general wards covered the fundamental principles of sepsis management, including non-invasive patient monitoring, antimicrobial administration and intravenous fluid resuscitation. We described two additive care bundles, one for general wards and the second for ICUs, that if consistently performed would be predicted to improve outcome from severe sepsis. It is feasible to implement modified sepsis guidelines that are scaled to resource availability, and that could save lives prior to the publication of international guidelines for developing countries.

  11. Above, Beyond, and Over the Side rails: Evaluating the New Memorial Emergency Department Fall-Risk-Assessment Tool.

    PubMed

    Scott, Robin A; Oman, Kathleen S; Flarity, Kathleen; Comer, Jennifer L

    2018-03-06

    Patient falls are a significant issue in hospitalized patients and financially costly to hospitals. The Joint Commission requires that patients be assessed for fall risk and interventions in place to mitigate the risk of falls. It is imperative to have a patient population/setting specific fall risk assessment tool to identify patients at risk for falling. The purpose of this study was to evaluate the reliability and validity of the 2013 Memorial ED Fall Risk Assessment tool (MEDFRAT) specifically designed for the ED population. A two-phase prospective design was used for this study. Phase one determined the interrater reliability of the MEDFRAT. Phase two assessed the validity of the MEDFRAT in an emergency department (ED) within a 600-bed academic/teaching institution; Level II Trauma Center with >100,000 annual patient visits. The Memorial ED Fall Risk Assessment Tool was validated in this ED setting. The tool demonstrated positive interrater reliability (k=0.701) and when implemented with a falls prevention strategy and staff education demonstrated a 48% decrease in ED fall rate (0.57 falls/1000 patient visits) post implementation during the study period. The MEDFRAT, an evidenced based ED-specific fall risk tool was implemented on the basis of the risk factors consistently identified in the literature: prior fall history, impaired mobility, altered mental status, altered elimination, and the use of sedative medication. The Memorial ED Fall Risk Assessment Tool demonstrated to be a valid tool for this hospital system. Copyright © 2018 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.

  12. Use of antipsychotic medications for the management of delirium: an audit of current practice in the acute care setting.

    PubMed

    Tropea, J; Slee, J; Holmes, A C N; Gorelik, A; Brand, C A

    2009-02-01

    Despite delirium being common in older hospitalized people, little is known about its management. The aims of this study are (1) to describe the pharmacological management of delirium in an acute care setting as a baseline measure prior to the implementation of newly developed Australian guidelines; and (2) to determine what areas of delirium pharmacological management need to be targeted for future practical guideline implementation and quality improvement activities. A medical record audit was conducted using a structured audit form. All patients aged 65 years and over who were admitted to a general medical or orthopaedic unit of the Royal Melbourne Hospital between 1 March 2006 and 28 February 2007 and coded with delirium were included. Data on the use of antipsychotic medications for the management of delirium in relation to best practice recommendations were assessed. Overall 174 episodes of care were included in the analysis. Antipsychotic medications were used for the management of most patients with severe behavioral and or emotional disturbance associated with delirium. There was variation in the prescribing patterns of antipsychotic agents and the documentation of medication management plans. Less than a quarter of patients prescribed antipsychotic medication were started on a low dose and very few were reviewed on a regular basis. A wide range of practice is seen in the use of antipsychotic agents to manage older patients with severe symptoms associated with delirium. The findings highlight the need to implement evidence-based guideline recommendations with a focus on improving the consistency in the pharmacological management and documentation processes.

  13. Convergence of third order correlation energy in atoms and molecules.

    PubMed

    Kahn, Kalju; Granovsky, Alex A; Noga, Jozef

    2007-01-30

    We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.

  14. Sensitivity of the Properties of Ruthenium “Blue Dimer” to Method, Basis Set, and Continuum Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkanlar, Abdullah; Clark, Aurora E.

    2012-05-23

    The ruthenium “blue dimer” [(bpy)2RuIIIOH2]2O4+ is best known as the first well-defined molecular catalyst for water oxidation. It has been subject to numerous computational studies primarily employing density functional theory. However, those studies have been limited in the functionals, basis sets, and continuum models employed. The controversy in the calculated electronic structure and the reaction energetics of this catalyst highlights the necessity of benchmark calculations that explore the role of density functionals, basis sets, and continuum models upon the essential features of blue-dimer reactivity. In this paper, we report Kohn-Sham complete basis set (KS-CBS) limit extrapolations of the electronic structuremore » of “blue dimer” using GGA (BPW91 and BP86), hybrid-GGA (B3LYP), and meta-GGA (M06-L) density functionals. The dependence of solvation free energy corrections on the different cavity types (UFF, UA0, UAHF, UAKS, Bondi, and Pauling) within polarizable and conductor-like polarizable continuum model has also been investigated. The most common basis sets of double-zeta quality are shown to yield results close to the KS-CBS limit; however, large variations are observed in the reaction energetics as a function of density functional and continuum cavity model employed.« less

  15. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    PubMed

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  16. Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: Application to H2O, N2H+, NO2+, and C2H2

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Valeev, Edward F.; Lee, Timothy J.

    2010-12-01

    One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H2O, N2H+, NO2+, and C2H2 molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N2H+ where it is concluded that basis set extrapolation is still preferred. The differences for H2O and NO2+ are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C2H2, however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)R12, incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N2H+ and NO2+ were computed, including basis set extrapolation, core-correlation, scalar relativity, and higher-order correlation and then used to compute highly accurate spectroscopic data for all isotopologues. Agreement with high-resolution experiment for 14N2H+ and 14N2D+ was excellent, but for 14N16O2+ agreement for the two stretching fundamentals is outside the expected residual uncertainty in the theoretical values, and it is concluded that there is an error in the experimental quantities. It is hoped that the highly accurate spectroscopic data presented for the minor isotopologues of N2H+ and NO2+ will be useful in the interpretation of future laboratory or astronomical observations.

  17. Agenda Setting for Health Promotion: Exploring an Adapted Model for the Social Media Era.

    PubMed

    Albalawi, Yousef; Sixsmith, Jane

    2015-01-01

    The foundation of best practice in health promotion is a robust theoretical base that informs design, implementation, and evaluation of interventions that promote the public's health. This study provides a novel contribution to health promotion through the adaptation of the agenda-setting approach in response to the contribution of social media. This exploration and proposed adaptation is derived from a study that examined the effectiveness of Twitter in influencing agenda setting among users in relation to road traffic accidents in Saudi Arabia. The proposed adaptations to the agenda-setting model to be explored reflect two levels of engagement: agenda setting within the social media sphere and the position of social media within classic agenda setting. This exploratory research aims to assess the veracity of the proposed adaptations on the basis of the hypotheses developed to test these two levels of engagement. To validate the hypotheses, we collected and analyzed data from two primary sources: Twitter activities and Saudi national newspapers. Keyword mentions served as indicators of agenda promotion; for Twitter, interactions were used to measure the process of agenda setting within the platform. The Twitter final dataset comprised 59,046 tweets and 38,066 users who contributed by tweeting, replying, or retweeting. Variables were collected for each tweet and user. In addition, 518 keyword mentions were recorded from six popular Saudi national newspapers. The results showed significant ratification of the study hypotheses at both levels of engagement that framed the proposed adaptions. The results indicate that social media facilitates the contribution of individuals in influencing agendas (individual users accounted for 76.29%, 67.79%, and 96.16% of retweet impressions, total impressions, and amplification multipliers, respectively), a component missing from traditional constructions of agenda-setting models. The influence of organizations on agenda setting is also highlighted (in the data of user interactions, organizational accounts registered 17% and 14.74% as source and target of interactions, respectively). In addition, 13 striking similarities showed the relationship between newspapers and Twitter on the mentions trends line. The effective use of social media platforms in health promotion intervention programs requires new strategies that consider the limitations of traditional communication channels. Conducting research is vital to establishing a strong basis for modifying, designing, and developing new health promotion strategies and approaches.

  18. Agenda Setting for Health Promotion: Exploring an Adapted Model for the Social Media Era

    PubMed Central

    2015-01-01

    Background The foundation of best practice in health promotion is a robust theoretical base that informs design, implementation, and evaluation of interventions that promote the public’s health. This study provides a novel contribution to health promotion through the adaptation of the agenda-setting approach in response to the contribution of social media. This exploration and proposed adaptation is derived from a study that examined the effectiveness of Twitter in influencing agenda setting among users in relation to road traffic accidents in Saudi Arabia. Objective The proposed adaptations to the agenda-setting model to be explored reflect two levels of engagement: agenda setting within the social media sphere and the position of social media within classic agenda setting. This exploratory research aims to assess the veracity of the proposed adaptations on the basis of the hypotheses developed to test these two levels of engagement. Methods To validate the hypotheses, we collected and analyzed data from two primary sources: Twitter activities and Saudi national newspapers. Keyword mentions served as indicators of agenda promotion; for Twitter, interactions were used to measure the process of agenda setting within the platform. The Twitter final dataset comprised 59,046 tweets and 38,066 users who contributed by tweeting, replying, or retweeting. Variables were collected for each tweet and user. In addition, 518 keyword mentions were recorded from six popular Saudi national newspapers. Results The results showed significant ratification of the study hypotheses at both levels of engagement that framed the proposed adaptions. The results indicate that social media facilitates the contribution of individuals in influencing agendas (individual users accounted for 76.29%, 67.79%, and 96.16% of retweet impressions, total impressions, and amplification multipliers, respectively), a component missing from traditional constructions of agenda-setting models. The influence of organizations on agenda setting is also highlighted (in the data of user interactions, organizational accounts registered 17% and 14.74% as source and target of interactions, respectively). In addition, 13 striking similarities showed the relationship between newspapers and Twitter on the mentions trends line. Conclusions The effective use of social media platforms in health promotion intervention programs requires new strategies that consider the limitations of traditional communication channels. Conducting research is vital to establishing a strong basis for modifying, designing, and developing new health promotion strategies and approaches. PMID:27227139

  19. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvetsky, Nitai, E-mail: gershom@weizmann.ac.il; Martin, Jan M. L., E-mail: gershom@weizmann.ac.il; Peterson, Kirk A., E-mail: kipeters@wsu.edu

    2016-06-07

    In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H–He, B–Ne, and Al–Ar, is shown to be very close to the basis setmore » limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl{sub 4}) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than “valence limit + CV correction” approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from CCSD-F12b/cc-pV{Q,5}Z-F12 calculations, but the (T) component from conventional CCSD(T)/aug’-cc-pV{Q,5}Z + d calculations using Schwenke’s extrapolation; post-CCSD(T), core-valence, and relativistic corrections are to be obtained as in the original W4 theory. W4-F12 is found to agree slightly better than W4 with ATcT (active thermochemical tables) data, at a substantial saving in computation time and especially I/O overhead. A W4-F12 calculation on benzene is presented as a proof of concept.« less

  20. Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) HFBTHO (v3.00): A new version of the program

    NASA Astrophysics Data System (ADS)

    Perez, R. Navarro; Schunck, N.; Lasseri, R.-D.; Zhang, C.; Sarich, J.

    2017-11-01

    We describe the new version 3.00 of the code HFBTHO that solves the nuclear Hartree-Fock (HF) or Hartree-Fock-Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle-hole and particle-particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck, (iv) the regularization of zero-range pairing forces, (v) the calculation of localization functions, (vi) a MPI interface for large-scale mass table calculations. Program Files doi:http://dx.doi.org/10.17632/c5g2f92by3.1 Licensing provisions: GPL v3 Programming language: FORTRAN-95 Journal reference of previous version: M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013). Does the new version supersede the previous one: Yes Summary of revisions: 1. the Gogny force in both particle-hole and particle-particle channels was implemented; 2. the nuclear collective inertia at the perturbative cranking approximation was implemented; 3. fission fragment charge, mass and deformations were implemented based on the determination of the position of the neck between nascent fragments; 4. the regularization method of zero-range pairing forces was implemented; 5. the localization functions of the HFB solution were implemented; 6. a MPI interface for large-scale mass table calculations was implemented. Nature of problem:HFBTHO is a physics computer code that is used to model the structure of the nucleus. It is an implementation of the energy density functional (EDF) approach to atomic nuclei, where the energy of the nucleus is obtained by integration over space of some phenomenological energy density, which is itself a functional of the neutron and proton intrinsic densities. In the present version of HFBTHO, the energy density derives either from the zero-range Skyrme or the finite-range Gogny effective two-body interaction between nucleons. Nuclear super-fluidity is treated at the Hartree-Fock-Bogolyubov (HFB) approximation. Constraints on the nuclear shape allows probing the potential energy surface of the nucleus as needed e.g., for the description of shape isomers or fission. The implementation of a local scale transformation of the single-particle basis in which the HFB solutions are expanded provide a tool to properly compute the structure of weakly-bound nuclei. Solution method: The program uses the axial Transformed Harmonic Oscillator (THO) single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the Hartree-Fock-Bogolyubov Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interactions or the finite-range Gogny force until a self-consistent solution is found. A previous version of the program was presented in M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013) 1592-1604 with much of the formalism presented in the original paper M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167 (2005) 43-63. Additional comments: The user must have access to (i) the LAPACK subroutines DSYEEVR, DSYEVD, DSYTRF and DSYTRI, and their dependencies, which compute eigenvalues and eigenfunctions of real symmetric matrices, (ii) the LAPACK subroutines DGETRI and DGETRF, which invert arbitrary real matrices, and (iii) the BLAS routines DCOPY, DSCAL, DGEMM and DGEMV for double-precision linear algebra (or provide another set of subroutines that can perform such tasks). The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/.

  1. A converged calculation of the energy barrier to internal rotation in the ethylene-sulfur dioxide dimer

    NASA Astrophysics Data System (ADS)

    Resende, Stella M.; De Almeida, Wagner B.; van Duijneveldt-van de Rijdt, Jeanne G. C. M.; van Duijneveldt, Frans B.

    2001-08-01

    Geometrical parameters for the equilibrium (MIN) and lowest saddle-point (TS) geometries of the C2H4⋯SO2 dimer, and the corresponding binding energies, were calculated using the Hartree-Fock and correlated levels of ab initio theory, in basis sets ranging from the D95(d,p) double-zeta basis set to the aug-cc-pVQZ correlation consistent basis set. An assessment of the effect of the basis set superposition error (BSSE) on these results was made. The dissociation energy from the lowest vibrational state was estimated to be 705±100 cm-1 at the basis set limit, which is well within the range expected from experiment. The barrier to internal rotation was found to be 53±5 cm-1, slightly higher than the (revised) experimental result of 43 cm-1, probably due to zero-point vibrational effects. Our results clearly show that, in direct contrast with recent ideas, the BSSE correction affects differentially the MIN and TS binding energies and so has to be included in the calculation of small energy barriers such as that in the C2H4⋯SO2 dimer. Previous reports of positive MP2 frozen-core binding energies for this complex in basis D95(d,p) are confirmed. The anomalies are shown to be an artifact arising from an incorrect removal of virtual orbitals by the default frozen-core option in the GAUSSIAN program.

  2. Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA

    PubMed Central

    de Souza, Alisson C. D.; Fernandes, Marcelo A. C.

    2014-01-01

    This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA. PMID:25268918

  3. Barriers and facilitators to implementation of VA home-based primary care on American Indian reservations: a qualitative multi-case study.

    PubMed

    Kramer, B Josea; Cote, Sarah D; Lee, Diane I; Creekmur, Beth; Saliba, Debra

    2017-09-02

    Veterans Health Affairs (VA) home-based primary care (HBPC) is an evidence-based interdisciplinary approach to non-institutional long-term care that was developed in urban settings to provide longitudinal care for vulnerable older patients. Under the authority of a Memorandum of Understanding between VA and Indian Health Service (IHS) to improve access to healthcare, 14 VA medical centers (VAMC) independently initiated plans to expand HBPC programs to rural American Indian reservations and 12 VAMC successfully implemented programs. The purpose of this study is to describe barriers and facilitators to implementation in rural Native communities with the aim of informing planners and policy-makers for future program expansions. A qualitative comparative case study approach was used, treating each of the 14 VAMC as a case. Using the Consolidated Framework for Implementation Research (CFIR) to inform an open-ended interview guide, telephone interviews (n = 37) were conducted with HBPC staff and clinicians and local/regional managers, who participated or oversaw implementation. The interviews were transcribed, coded, and then analyzed using CFIR domains and constructs to describe and compare experiences and to identify facilitators, barriers, and adaptations that emerged in common across VAMC and HBPC programs. There was considerable variation in local contexts across VAMC. Nevertheless, implementation was typically facilitated by key individuals who were able to build trust and faith in VA healthcare among American Indian communities. Policy promoted clinical collaboration but collaborations generally occurred on an ad hoc basis between VA and IHS clinicians to optimize patient resources. All programs required some adaptations to address barriers in rural areas, such as distances, caseloads, or delays in hiring additional clinicians. VA funding opportunities facilitated expansion and sustainment of these programs. Since program expansion is a responsibility of the HBPC program director, there is little sharing of lessons learned across VA facilities. Opportunities for shared learning would benefit federal healthcare organizations to expand other medical services to additional American Indian communities and other rural and underserved communities, as well as to coordinate with other healthcare organizations. The CFIR structure was an effective analytic tool to compare programs addressing multiple inner and outer settings.

  4. 42 CFR 485.701 - Basis and scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Therapy and Speech-Language Pathology Services § 485.701 Basis and scope. This subpart implements section 1861(p)(4) of the Act, which— (a) Defines outpatient physical therapy and speech pathology services; (b...

  5. 42 CFR 405.701 - Basis, purpose and definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Basis, purpose and definitions. 405.701 Section 405... Medicare Part A § 405.701 Basis, purpose and definitions. (a) This subpart implements section 1869 of the... following matters, and section 1869(b) provides for a hearing for an individual who is dissatisfied with the...

  6. 42 CFR 436.2 - Basis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Basis. 436.2 Section 436.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS ELIGIBILITY IN GUAM, PUERTO RICO, AND THE VIRGIN ISLANDS General Provisions and Definitions § 436.2 Basis. This part implements the...

  7. 42 CFR 436.2 - Basis.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Basis. 436.2 Section 436.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS ELIGIBILITY IN GUAM, PUERTO RICO, AND THE VIRGIN ISLANDS General Provisions and Definitions § 436.2 Basis. This part implements the...

  8. 42 CFR 436.2 - Basis.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Basis. 436.2 Section 436.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS ELIGIBILITY IN GUAM, PUERTO RICO, AND THE VIRGIN ISLANDS General Provisions and Definitions § 436.2 Basis. This part implements the...

  9. 42 CFR 436.2 - Basis.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Basis. 436.2 Section 436.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS ELIGIBILITY IN GUAM, PUERTO RICO, AND THE VIRGIN ISLANDS General Provisions and Definitions § 436.2 Basis. This part implements the...

  10. 42 CFR 436.2 - Basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Basis. 436.2 Section 436.2 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS ELIGIBILITY IN GUAM, PUERTO RICO, AND THE VIRGIN ISLANDS General Provisions and Definitions § 436.2 Basis. This part implements the...

  11. 45 CFR 148.306 - Basis and scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Basis and scope. 148.306 Section 148.306 Public... FOR THE INDIVIDUAL HEALTH INSURANCE MARKET Grants to States for Operation of Qualified High Risk Pools § 148.306 Basis and scope. This subpart implements section 2745 of the Public Health Service Act (PHS...

  12. 45 CFR 148.306 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Basis and scope. 148.306 Section 148.306 Public... FOR THE INDIVIDUAL HEALTH INSURANCE MARKET Grants to States for Operation of Qualified High Risk Pools § 148.306 Basis and scope. This subpart implements section 2745 of the Public Health Service Act (PHS...

  13. Practical auxiliary basis implementation of Rung 3.5 functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janesko, Benjamin G., E-mail: b.janesko@tcu.edu; Scalmani, Giovanni; Frisch, Michael J.

    2014-07-21

    Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r{sup -vector},r{sup -vector}′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r{sup -vector},r{sup -vector} ′) onto a semilocal model density matrix γ{sub SL}(ρ(r{sup -vector}),∇ρ(r{sup -vector}),r{sup -vector}−r{sup -vector} ′). γ{sub SL} depends on the electron density ρ(r{sup -vector}) at reference point r{sup -vector}, and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expandingmore » the r{sup -vector}−r{sup -vector} ′ dependence of γ{sub SL} in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ{sub SL} yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms.« less

  14. Patient-reported outcomes to initiate a provider-patient dialog for the management of hip and knee osteoarthritis.

    PubMed

    Golightly, Yvonne M; Allen, Kelli D; Nyrop, Kirsten A; Nelson, Amanda E; Callahan, Leigh F; Jordan, Joanne M

    2015-10-01

    Although many treatment guidelines exist for hip and knee osteoarthritis (OA), uptake in clinical practice is typically low. Valid patient-reported outcome measures (PROs) that can be easily used in the clinic could aid implementation and evaluation of treatment recommendations, and the tracking of symptoms and function over time. This project responded to a 2012 Call to Action of the Chronic Osteoarthritis Management Initiative of the United States Bone and Joint Initiative; we aimed to develop a tiered list of recommended PROs that could be feasibly applied in common clinical settings, across four domains of pain, function, fatigue, and sleep. PROs were identified through a focused literature review. Clinicians and researchers with OA expertise evaluated each measure' feasibility for use in routine clinical practice, followed by meaningfulness in assessing OA outcomes. Eligible PROs were categorized by domain and ranked into Tiers One (very brief measures for initial use in clinical settings), Two (brief measures with more in-depth assessment), and Three (most detailed assessment). Total PROs identified were 172 for pain, 160 for function, 55 for fatigue, and 60 for sleep. Of these, 9 pain, 7 function, 7 fatigue, and 8 sleep PROs were ranked into one of three tiers. This three-tiered list of recommended PROs provides a basis for tools to systematically track outcomes, facilitate provider-patient dialog, and guide treatment for hip or knee OA. Research is needed to test the utility and feasibility of systematic implementation of these measures in primary care and specialty clinical settings. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Polarized High-Energy Photon Beam for Production of Exotic Mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senderovich, Igor

    2012-01-01

    This work describes design, prototyping and testing of various components of the Jefferson Lab Hall D photon beamline. These include coherent bremsstrahlung radiators to be used in this facility for generating the photon beam, a fine resolution hodoscope for the facility's tagging spectrometer, and a photon beam position sensor for stabilizing the beam on a collimator. The principal instrumentation project was the hodoscope: its design, implementation and beam testing will be thoroughly described. Studies of the coherent bremsstrahlung radiators involved X-ray characterization of diamond crystals to identify the appropriate line of manufactured radiators and the proper techniques for thinning themmore » to the desired specification of the beamline. The photon beam position sensor project involved completion of a designed detector and its beam test. The results of these shorter studies will also be presented. The second part of this work discusses a Monte Carlo study of a possible photo-production and decay channel in the GlueX experiment that will be housed in the Hall D facility. Specifically, the γ p → Xp → b 1 π → ω π +1 π -1 channel was studied including its Amplitude Analysis. This exercise attempted to generate a possible physics signal, complete with internal angular momentum states, and be able to reconstruct the signal in the detector and find the proper set of JPC quantum numbers through an amplitude fit. Derivation of the proper set of amplitudes in the helicity basis is described, followed by a discussion of the implementation, generation of the data sets, reconstruction techniques, the amplitude fit and results of this study.« less

  16. Managing emergency department overcrowding via ambulance diversion: a discrete event simulation model.

    PubMed

    Lin, Chih-Hao; Kao, Chung-Yao; Huang, Chong-Ye

    2015-01-01

    Ambulance diversion (AD) is considered one of the possible solutions to relieve emergency department (ED) overcrowding. Study of the effectiveness of various AD strategies is prerequisite for policy-making. Our aim is to develop a tool that quantitatively evaluates the effectiveness of various AD strategies. A simulation model and a computer simulation program were developed. Three sets of simulations were executed to evaluate AD initiating criteria, patient-blocking rules, and AD intervals, respectively. The crowdedness index, the patient waiting time for service, and the percentage of adverse patients were assessed to determine the effect of various AD policies. Simulation results suggest that, in a certain setting, the best timing for implementing AD is when the crowdedness index reaches the critical value, 1.0 - an indicator that ED is operating at its maximal capacity. The strategy to divert all patients transported by ambulance is more effective than to divert either high-acuity patients only or low-acuity patients only. Given a total allowable AD duration, implementing AD multiple times with short intervals generally has better effect than having a single AD with maximal allowable duration. An input-throughput-output simulation model is proposed for simulating ED operation. Effectiveness of several AD strategies on relieving ED overcrowding was assessed via computer simulations based on this model. By appropriate parameter settings, the model can represent medical resource providers of different scales. It is also feasible to expand the simulations to evaluate the effect of AD strategies on a community basis. The results may offer insights for making effective AD policies. Copyright © 2012. Published by Elsevier B.V.

  17. Ancilla-driven quantum computation for qudits and continuous variables

    DOE PAGES

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; ...

    2017-05-10

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general “quantum variable” formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated “quantum memory” register and which may be applied to the setting of qubits, qudits (for d>2), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of amore » single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. In conclusion, we discuss settings in which these models may be of practical interest.« less

  18. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    NASA Astrophysics Data System (ADS)

    Barlas, Thanasis; Pettas, Vasilis; Gertz, Drew; Madsen, Helge A.

    2016-09-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction.

  19. [The implementation of strategy of medicinal support in multi-type hospital].

    PubMed

    Ludupova, E Yu

    2016-01-01

    The article presents brief review of implementation of strategy of medicinal support of population of the Russian Federation and experience of application of at the level of regional hospital. The necessity and importance of implementation into practice of hospitals of methodology of pharmaco-economical management of medicinal care using modern technologies of XYZ-, ABC and VEN-analysis is demonstrated. The stages of development and implementation of process of medicinal support of multifield hospital applying principles of system of quality management (processing and systemic approaches, risk management) on the basis of standards ISO 9001 are described. The significance of monitoring of results ofprocess of medicinal support of the basis of implementation of priority target programs (prevention of venous thrombo-embolic complications, system od control of anti-bacterial therapy) are demonstrated in relation to multi-field hospital using technique of ATC/DDD-analysis for evaluating indices of effectiveness and efficiency.

  20. Small Engine Technology (SET) - Task 4, Regional Turboprop/Turbofan Engine Advanced Combustor Study

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert; Srinivasan, Ram; Myers, Geoffrey; Cardenas, Manuel; Penko, Paul F. (Technical Monitor)

    2003-01-01

    Under the SET Program Task 4 - Regional Turboprop/Turbofan Engine Advanced Combustor Study, a total of ten low-emissions combustion system concepts were evaluated analytically for three different gas turbine engine geometries and three different levels of oxides of nitrogen (NOx) reduction technology, using an existing AlliedSignal three-dimensional (3-D) Computational Fluid Dynamics (CFD) code to predict Landing and Takeoff (LTO) engine cycle emission values. A list of potential Barrier Technologies to the successful implementation of these low-NOx combustor designs was created and assessed. A trade study was performed that ranked each of the ten study configurations on the basis of a number of manufacturing and durability factors, in addition to emissions levels. The results of the trade study identified three basic NOx-emissions reduction concepts that could be incorporated in proposed follow-on combustor technology development programs aimed at demonstrating low-NOx combustor hardware. These concepts are: high-flow swirlers and primary orifices, fuel-preparation cans, and double-dome swirlers.

Top