DOE Office of Scientific and Technical Information (OSTI.GOV)
Papajak, Ewa; Truhlar, Donald G.
We present sets of convergent, partially augmented basis set levels corresponding to subsets of the augmented “aug-cc-pV(n+d)Z” basis sets of Dunning and co-workers. We show that for many molecular properties a basis set fully augmented with diffuse functions is computationally expensive and almost always unnecessary. On the other hand, unaugmented cc-pV(n+d)Z basis sets are insufficient for many properties that require diffuse functions. Therefore, we propose using intermediate basis sets. We developed an efficient strategy for partial augmentation, and in this article, we test it and validate it. Sequentially deleting diffuse basis functions from the “aug” basis sets yields the “jul”,more » “jun”, “may”, “apr”, etc. basis sets. Tests of these basis sets for Møller-Plesset second-order perturbation theory (MP2) show the advantages of using these partially augmented basis sets and allow us to recommend which basis sets offer the best accuracy for a given number of basis functions for calculations on large systems. Similar truncations in the diffuse space can be performed for the aug-cc-pVxZ, aug-cc-pCVxZ, etc. basis sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook
2015-03-07
We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less
NASA Astrophysics Data System (ADS)
Chmela, Jiří; Harding, Michael E.
2018-06-01
Optimised auxiliary basis sets for lanthanide atoms (Ce to Lu) for four basis sets of the Karlsruhe error-balanced segmented contracted def2 - series (SVP, TZVP, TZVPP and QZVPP) are reported. These auxiliary basis sets enable the use of the resolution-of-the-identity (RI) approximation in post Hartree-Fock methods - as for example, second-order perturbation theory (MP2) and coupled cluster (CC) theory. The auxiliary basis sets are tested on an enlarged set of about a hundred molecules where the test criterion is the size of the RI error in MP2 calculations. Our tests also show that the same auxiliary basis sets can be used together with different effective core potentials. With these auxiliary basis set calculations of MP2 and CC quality can now be performed efficiently on medium-sized molecules containing lanthanides.
Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures.
Papior, Nick R; Calogero, Gaetano; Brandbyge, Mads
2018-06-27
We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C 60 ). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.
Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures
NASA Astrophysics Data System (ADS)
Papior, Nick R.; Calogero, Gaetano; Brandbyge, Mads
2018-06-01
We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au
Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/ormore » second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.« less
NASA Astrophysics Data System (ADS)
Spackman, Peter R.; Karton, Amir
2015-05-01
Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol-1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol-1.
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
NASA Technical Reports Server (NTRS)
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
Varandas, A J C
2009-02-01
The potential energy surface for the C(20)-He interaction is extrapolated for three representative cuts to the complete basis set limit using second-order Møller-Plesset perturbation calculations with correlation consistent basis sets up to the doubly augmented variety. The results both with and without counterpoise correction show consistency with each other, supporting that extrapolation without such a correction provides a reliable scheme to elude the basis-set-superposition error. Converged attributes are obtained for the C(20)-He interaction, which are used to predict the fullerene dimer ones. Time requirements show that the method can be drastically more economical than the counterpoise procedure and even competitive with Kohn-Sham density functional theory for the title system.
NASA Astrophysics Data System (ADS)
Boffi, Nicholas M.; Jain, Manish; Natan, Amir
2016-02-01
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations.
No need for external orthogonality in subsystem density-functional theory.
Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R
2016-08-03
Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes.
Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies
Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung
2017-01-01
A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672
NASA Astrophysics Data System (ADS)
Goh, K. L.; Liew, S. C.; Hasegawa, B. H.
1997-12-01
Computer simulation results from our previous studies showed that energy dependent systematic errors exist in the values of attenuation coefficient synthesized using the basis material decomposition technique with acrylic and aluminum as the basis materials, especially when a high atomic number element (e.g., iodine from radiographic contrast media) was present in the body. The errors were reduced when a basis set was chosen from materials mimicking those found in the phantom. In the present study, we employed a basis material coefficients transformation method to correct for the energy-dependent systematic errors. In this method, the basis material coefficients were first reconstructed using the conventional basis materials (acrylic and aluminum) as the calibration basis set. The coefficients were then numerically transformed to those for a more desirable set materials. The transformation was done at the energies of the low and high energy windows of the X-ray spectrum. With this correction method using acrylic and an iodine-water mixture as our desired basis set, computer simulation results showed that accuracy of better than 2% could be achieved even when iodine was present in the body at a concentration as high as 10% by mass. Simulation work had also been carried out on a more inhomogeneous 2D thorax phantom of the 3D MCAT phantom. The results of the accuracy of quantitation were presented here.
On the basis set convergence of electron–electron entanglement measures: helium-like systems
Hofer, Thomas S.
2013-01-01
A systematic investigation of three different electron–electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li+ and Be2+ using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one–electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li+ and Be2+. In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used. PMID:24790952
On the basis set convergence of electron-electron entanglement measures: helium-like systems.
Hofer, Thomas S
2013-01-01
A systematic investigation of three different electron-electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li(+) and Be(2+) using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one-electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li(+) and Be(2+). In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used.
Orbital-Dependent Density Functionals for Chemical Catalysis
2014-10-17
noncollinear density functional theory to show that the low-spin state of Mn3 in a model of the oxygen -evolving complex of photosystem II avoids...DK, which denotes the cc-pV5Z-DK basis set for 3d metals and hydrogen and the ma-cc- pV5Z-DK basis set for oxygen ) and to nonrelativistic all...cc-pV5Z basis set for oxygen ). As compared to NCBS-DK results, all ECP calculations perform worse than def2-TZVP all-electron relativistic
Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.
Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung
2017-02-15
A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.
Atomization Energies of SO and SO2; Basis Set Extrapolation Revisted
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Arnold, James (Technical Monitor)
1998-01-01
The addition of tight functions to sulphur and extrapolation to the complete basis set limit are required to obtain accurate atomization energies. Six different extrapolation procedures are tried. The best atomization energies come from the series of basis sets that yield the most consistent results for all extrapolation techniques. In the variable alpha approach, alpha values larger than 4.5 or smaller than 3, appear to suggest that the extrapolation may not be reliable. It does not appear possible to determine a reliable basis set series using only the triple and quadruple zeta based sets. The scalar relativistic effects reduce the atomization of SO and SO2 by 0.34 and 0.81 kcal/mol, respectively, and clearly must be accounted for if a highly accurate atomization energy is to be computed. The magnitude of the core-valence (CV) contribution to the atomization is affected by missing diffuse valence functions. The CV contribution is much more stable if basis set superposition errors are accounted for. A similar study of SF, SF(+), and SF6 shows that the best family of basis sets varies with the nature of the S bonding.
Projected Hybrid Orbitals: A General QM/MM Method
2015-01-01
A projected hybrid orbital (PHO) method was described to model the covalent boundary in a hybrid quantum mechanical and molecular mechanical (QM/MM) system. The PHO approach can be used in ab initio wave function theory and in density functional theory with any basis set without introducing system-dependent parameters. In this method, a secondary basis set on the boundary atom is introduced to formulate a set of hybrid atomic orbtials. The primary basis set on the boundary atom used for the QM subsystem is projected onto the secondary basis to yield a representation that provides a good approximation to the electron-withdrawing power of the primary basis set to balance electronic interactions between QM and MM subsystems. The PHO method has been tested on a range of molecules and properties. Comparison with results obtained from QM calculations on the entire system shows that the present PHO method is a robust and balanced QM/MM scheme that preserves the structural and electronic properties of the QM region. PMID:25317748
Correlation consistent basis sets for actinides. I. The Th and U atoms.
Peterson, Kirk A
2015-02-21
New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc - pV nZ - PP and cc - pV nZ - DK3, as well as outer-core correlation (valence + 5s5p5d), cc - pwCV nZ - PP and cc - pwCV nZ - DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThFn (n = 2 - 4), ThO2, and UFn (n = 4 - 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF4, ThF3, ThF2, and ThO2 are all within their experimental uncertainties. Bond dissociation energies of ThF4 and ThF3, as well as UF6 and UF5, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF4 and ThO2. The DKH3 atomization energy of ThO2 was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.
NASA Astrophysics Data System (ADS)
Miliordos, Evangelos; Xantheas, Sotiris S.
2015-03-01
We report the variation of the binding energy of the Formic Acid Dimer with the size of the basis set at the Coupled Cluster with iterative Singles, Doubles and perturbatively connected Triple replacements [CCSD(T)] level of theory, estimate the Complete Basis Set (CBS) limit, and examine the validity of the Basis Set Superposition Error (BSSE)-correction for this quantity that was previously challenged by Kalescky, Kraka, and Cremer (KKC) [J. Chem. Phys. 140, 084315 (2014)]. Our results indicate that the BSSE correction, including terms that account for the substantial geometry change of the monomers due to the formation of two strong hydrogen bonds in the dimer, is indeed valid for obtaining accurate estimates for the binding energy of this system as it exhibits the expected decrease with increasing basis set size. We attribute the discrepancy between our current results and those of KKC to their use of a valence basis set in conjunction with the correlation of all electrons (i.e., including the 1s of C and O). We further show that the use of a core-valence set in conjunction with all electron correlation converges faster to the CBS limit as the BSSE correction is less than half than the valence electron/valence basis set case. The uncorrected and BSSE-corrected binding energies were found to produce the same (within 0.1 kcal/mol) CBS limits. We obtain CCSD(T)/CBS best estimates for De = - 16.1 ± 0.1 kcal/mol and for D0 = - 14.3 ± 0.1 kcal/mol, the later in excellent agreement with the experimental value of -14.22 ± 0.12 kcal/mol.
Mackie, Iain D; DiLabio, Gino A
2011-10-07
The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
van Hoeve, Miriam D.; Klobukowski, Mariusz
2018-03-01
Simulation of the electronic spectra of HRgF (Rg = Ar, Kr, Xe, Rn) was carried out using the time-dependent density functional method, with the CAMB3LYP functional and several basis sets augmented with even-tempered diffuse functions. A full spectral assignment for the HRgF systems was done. The effect of the rare gas matrix on the HRgF (Rg = Ar and Kr) spectra was investigated and it was found that the matrix blue-shifted the spectra. Scalar relativistic effects on the spectra were also studied and it was found that while the excitation energies of HArF and HKrF were insignificantly affected by relativistic effects, most of the excitation energies of HXeF and HRnF were red-shifted. Spin-orbit coupling was found to significantly affect excitation energies in HRnF. Analysis of performance of the model core potential basis set relative to all-electron (AE) basis sets showed that the former basis set increased computational efficiency and gave results similar to those obtained with the AE basis set.
Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland
2009-04-21
Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.
NASA Astrophysics Data System (ADS)
Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland
2009-04-01
Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
Zhang, Gaigong; Lin, Lin; Hu, Wei; ...
2017-01-27
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin; Hu, Wei
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman
2008-04-24
We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results insignificantly for iron(II) porphyrin coordinated with imidazole. Poor performance of a "locally dense" basis set with a large number of basis functions on the Fe center was observed in calculation of quintet-triplet gaps. Our results lead to a series of suggestions for density functional theory calculations of quintet-triplet energy gaps in ferrohemes with a single axial imidazole; these suggestions are potentially applicable for other transition-metal complexes.
Correlation consistent basis sets for actinides. I. The Th and U atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Kirk A., E-mail: kipeters@wsu.edu
New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc − pV nZ − PP and cc − pV nZ − DK3, as well as outer-core correlation (valence + 5s5p5d), cc − pwCV nZ − PP and cc − pwCV nZ − DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Bothmore » series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThF{sub n} (n = 2 − 4), ThO{sub 2}, and UF{sub n} (n = 4 − 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF{sub 4}, ThF{sub 3}, ThF{sub 2}, and ThO{sub 2} are all within their experimental uncertainties. Bond dissociation energies of ThF{sub 4} and ThF{sub 3}, as well as UF{sub 6} and UF{sub 5}, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF{sub 4} and ThO{sub 2}. The DKH3 atomization energy of ThO{sub 2} was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.« less
Zhu, Wuming; Trickey, S B
2017-12-28
In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.
NASA Astrophysics Data System (ADS)
Zhu, Wuming; Trickey, S. B.
2017-12-01
In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.
NASA Astrophysics Data System (ADS)
Martínez-Sánchez, Michael-Adán; Aquino, Norberto; Vargas, Rubicelia; Garza, Jorge
2017-12-01
The Schrödinger equation associated to the hydrogen atom confined by a dielectric continuum is solved exactly and suggests the appropriate basis set to be used when an atom is immersed in a dielectric continuum. Exact results show that this kind of confinement spread the electron density, which is confirmed through the Shannon entropy. The basis set suggested by the exact results is similar to Slater type orbitals and it was applied on two-electron atoms, where the H- ion ejects one electron for moderate confinements for distances much larger than those commonly used to generate cavities in solvent models.
Plasser, Felix; Mewes, Stefanie A; Dreuw, Andreas; González, Leticia
2017-11-14
High-level multireference computations on electronically excited and charged states of tetracene are performed, and the results are analyzed using an extensive wave function analysis toolbox that has been newly implemented in the Molcas program package. Aside from verifying the strong effect of dynamic correlation, this study reveals an unexpected critical influence of the atomic orbital basis set. It is shown that different polarized double-ζ basis sets produce significantly different results for energies, densities, and overall wave functions, with the best performance obtained for the atomic natural orbital (ANO) basis set by Pierloot et al. Strikingly, the ANO basis set not only reproduces the energies but also performs exceptionally well in terms of describing the diffuseness of the different states and of their attachment/detachment densities. This study, thus, not only underlines the fact that diffuse basis functions are needed for an accurate description of the electronic wave functions but also shows that, at least for the present example, it is enough to include them implicitly in the contraction scheme.
Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data
NASA Astrophysics Data System (ADS)
Reinscheid, F.; Reinscheid, U. M.
2016-02-01
Using limonene as test molecule, the success and the limitations of three chiroptical methods (optical rotatory dispersion (ORD), electronic and vibrational circular dichroism, ECD and VCD) could be demonstrated. At quite low levels of theory (mpw1pw91/cc-pvdz, IEFPCM (integral equation formalism polarizable continuum model)) the experimental ORD values differ by less than 10 units from the calculated values. The modelling in the condensed phase still represents a challenge so that experimental NMR data were used to test for aggregation and solvent-solute interactions. After establishing a reasonable structural model, only the ECD spectra prediction showed a decisive dependence on the basis set: only augmented (in the case of Dunning's basis sets) or diffuse (in the case of Pople's basis sets) basis sets predicted the position and shape of the ECD bands correctly. Based on these result we propose a procedure to assign the absolute configuration (AC) of an unknown compound using the comparison between experimental and calculated chiroptical data.
NASA Astrophysics Data System (ADS)
Romero, Angel H.
2017-10-01
The influence of ring puckering angle on the multipole moments of sixteen four-membered heterocycles (1-16) was theoretically estimated using MP2 and different DFTs in combination with the 6-31+G(d,p) basis set. To obtain an accurate evaluation, CCSD/cc-pVDZ level and, the MP2 and PBE1PBE methods in combination with the aug-cc-pVDZ and aug-cc-pVTZ basis sets were performed on the planar geometries of 1-16. In general, the DFT and MP2 approaches provided an identical dependence of the electrical properties with the puckering angle for 1-16. Quantitatively, the quality of the level of theory and basis sets affects significant the predictions of the multipole moments, in particular for the heterocycles containing C=O and C=S bonds. Convergence basis sets within the MP2 and PBE1PBE approximations are reached in the dipole moment calculations when the aug-cc-pVTZ basis set is used, while the quadrupole and octupole moment computations require a larger basis set than aug-cc-pVTZ. On the other hand, the multipole moments showed a strong dependence with the molecular geometry and the nature of the carbon-heteroatom bonds. Specifically, the C-X bond determines the behavior of the μ(ϕ), θ(ϕ) and Ώ(ϕ) functions, while the C=Y bond plays an important role in the magnitude of the studied properties.
An unbiased Hessian representation for Monte Carlo PDFs.
Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Latorre, José Ignacio; Rojo, Juan
We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (MC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the MC-H PDF set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandbyge, Mads, E-mail: mads.brandbyge@nanotech.dtu.dk
2014-05-07
In a recent paper Reuter and Harrison [J. Chem. Phys. 139, 114104 (2013)] question the widely used mean-field electron transport theories, which employ nonorthogonal localized basis sets. They claim these can violate an “implicit decoupling assumption,” leading to wrong results for the current, different from what would be obtained by using an orthogonal basis, and dividing surfaces defined in real-space. We argue that this assumption is not required to be fulfilled to get exact results. We show how the current/transmission calculated by the standard Greens function method is independent of whether or not the chosen basis set is nonorthogonal, andmore » that the current for a given basis set is consistent with divisions in real space. The ambiguity known from charge population analysis for nonorthogonal bases does not carry over to calculations of charge flux.« less
NASA Astrophysics Data System (ADS)
Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.
Locally dense basis sets (
Manna, Debashree; Kesharwani, Manoj K; Sylvetsky, Nitai; Martin, Jan M L
2017-07-11
Benchmark ab initio energies for BEGDB and WATER27 data sets have been re-examined at the MP2 and CCSD(T) levels with both conventional and explicitly correlated (F12) approaches. The basis set convergence of both conventional and explicitly correlated methods has been investigated in detail, both with and without counterpoise corrections. For the MP2 and CCSD-MP2 contributions, rapid basis set convergence observed with explicitly correlated methods is compared to conventional methods. However, conventional, orbital-based calculations are preferred for the calculation of the (T) term, since it does not benefit from F12. CCSD(F12*) converges somewhat faster with the basis set than CCSD-F12b for the CCSD-MP2 term. The performance of various DFT methods is also evaluated for the BEGDB data set, and results show that Head-Gordon's ωB97X-V and ωB97M-V functionals outperform all other DFT functionals. Counterpoise-corrected DSD-PBEP86 and raw DSD-PBEPBE-NL also perform well and are close to MP2 results. In the WATER27 data set, the anionic (deprotonated) water clusters exhibit unacceptably slow basis set convergence with the regular cc-pVnZ-F12 basis sets, which have only diffuse s and p functions. To overcome this, we have constructed modified basis sets, denoted aug-cc-pVnZ-F12 or aVnZ-F12, which have been augmented with diffuse functions on the higher angular momenta. The calculated final dissociation energies of BEGDB and WATER27 data sets are available in the Supporting Information. Our best calculated dissociation energies can be reproduced through n-body expansion, provided one pushes to the basis set and electron correlation limit for the two-body term; for the three-body term, post-MP2 contributions (particularly CCSD-MP2) are important for capturing the three-body dispersion effects. Terms beyond four-body can be adequately captured at the MP2-F12 level.
Basis sets for the calculation of core-electron binding energies
NASA Astrophysics Data System (ADS)
Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.
2018-05-01
Core-electron binding energies (CEBEs) computed within a Δ self-consistent field approach require large basis sets to achieve convergence with respect to the basis set limit. It is shown that supplementing a basis set with basis functions from the corresponding basis set for the element with the next highest nuclear charge (Z + 1) provides basis sets that give CEBEs close to the basis set limit. This simple procedure provides relatively small basis sets that are well suited for calculations where the description of a core-ionised state is important, such as time-dependent density functional theory calculations of X-ray emission spectroscopy.
Basis set study of classical rotor lattice dynamics.
Witkoskie, James B; Wu, Jianlan; Cao, Jianshu
2004-03-22
The reorientational relaxation of molecular systems is important in many phenomenon and applications. In this paper, we explore the reorientational relaxation of a model Brownian rotor lattice system with short range interactions in both the high and low temperature regimes. In this study, we use a basis set expansion to capture collective motions of the system. The single particle basis set is used in the high temperature regime, while the spin wave basis is used in the low temperature regime. The equations of motion derived in this approach are analogous to the generalized Langevin equation, but the equations render flexibility by allowing nonequilibrium initial conditions. This calculation shows that the choice of projection operators in the generalized Langevin equation (GLE) approach corresponds to defining a specific inner-product space, and this inner-product space should be chosen to reveal the important physics of the problem. The basis set approach corresponds to an inner-product and projection operator that maintain the orthogonality of the spherical harmonics and provide a convenient platform for analyzing GLE expansions. The results compare favorably with numerical simulations, and the formalism is easily extended to more complex systems. (c) 2004 American Institute of Physics
Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A
2016-06-15
We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G(**) basis set with up to 8100 basis functions show that PS-FLR-TDDFT CPU time scales as N(2.05) with the number of basis functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Graph-state formalism for mutually unbiased bases
NASA Astrophysics Data System (ADS)
Spengler, Christoph; Kraus, Barbara
2013-11-01
A pair of orthonormal bases is called mutually unbiased if all mutual overlaps between any element of one basis and an arbitrary element of the other basis coincide. In case the dimension, d, of the considered Hilbert space is a power of a prime number, complete sets of d+1 mutually unbiased bases (MUBs) exist. Here we present a method based on the graph-state formalism to construct such sets of MUBs. We show that for n p-level systems, with p being prime, one particular graph suffices to easily construct a set of pn+1 MUBs. In fact, we show that a single n-dimensional vector, which is associated with this graph, can be used to generate a complete set of MUBs and demonstrate that this vector can be easily determined. Finally, we discuss some advantages of our formalism regarding the analysis of entanglement structures in MUBs, as well as experimental realizations.
NASA Astrophysics Data System (ADS)
Zhang, Xing; Carter, Emily A.
2018-01-01
We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.
NASA Astrophysics Data System (ADS)
Resende, Stella M.; De Almeida, Wagner B.; van Duijneveldt-van de Rijdt, Jeanne G. C. M.; van Duijneveldt, Frans B.
2001-08-01
Geometrical parameters for the equilibrium (MIN) and lowest saddle-point (TS) geometries of the C2H4⋯SO2 dimer, and the corresponding binding energies, were calculated using the Hartree-Fock and correlated levels of ab initio theory, in basis sets ranging from the D95(d,p) double-zeta basis set to the aug-cc-pVQZ correlation consistent basis set. An assessment of the effect of the basis set superposition error (BSSE) on these results was made. The dissociation energy from the lowest vibrational state was estimated to be 705±100 cm-1 at the basis set limit, which is well within the range expected from experiment. The barrier to internal rotation was found to be 53±5 cm-1, slightly higher than the (revised) experimental result of 43 cm-1, probably due to zero-point vibrational effects. Our results clearly show that, in direct contrast with recent ideas, the BSSE correction affects differentially the MIN and TS binding energies and so has to be included in the calculation of small energy barriers such as that in the C2H4⋯SO2 dimer. Previous reports of positive MP2 frozen-core binding energies for this complex in basis D95(d,p) are confirmed. The anomalies are shown to be an artifact arising from an incorrect removal of virtual orbitals by the default frozen-core option in the GAUSSIAN program.
A new parallel algorithm of MP2 energy calculations.
Ishimura, Kazuya; Pulay, Peter; Nagase, Shigeru
2006-03-01
A new parallel algorithm has been developed for second-order Møller-Plesset perturbation theory (MP2) energy calculations. Its main projected applications are for large molecules, for instance, for the calculation of dispersion interaction. Tests on a moderate number of processors (2-16) show that the program has high CPU and parallel efficiency. Timings are presented for two relatively large molecules, taxol (C(47)H(51)NO(14)) and luciferin (C(11)H(8)N(2)O(3)S(2)), the former with the 6-31G* and 6-311G** basis sets (1,032 and 1,484 basis functions, 164 correlated orbitals), and the latter with the aug-cc-pVDZ and aug-cc-pVTZ basis sets (530 and 1,198 basis functions, 46 correlated orbitals). An MP2 energy calculation on C(130)H(10) (1,970 basis functions, 265 correlated orbitals) completed in less than 2 h on 128 processors.
Correlation consistent basis sets for the atoms In–Xe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahler, Andrew; Wilson, Angela K., E-mail: akwilson@unt.edu
In this work, the correlation consistent family of Gaussian basis sets has been expanded to include all-electron basis sets for In–Xe. The methodology for developing these basis sets is described, and several examples of the performance and utility of the new sets have been provided. Dissociation energies and bond lengths for both homonuclear and heteronuclear diatomics demonstrate the systematic convergence behavior with respect to increasing basis set quality expected by the family of correlation consistent basis sets in describing molecular properties. Comparison with recently developed correlation consistent sets designed for use with the Douglas-Kroll Hamiltonian is provided.
Neural-like computing with populations of superparamagnetic basis functions.
Mizrahi, Alice; Hirtzlin, Tifenn; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Grollier, Julie; Querlioz, Damien
2018-04-18
In neuroscience, population coding theory demonstrates that neural assemblies can achieve fault-tolerant information processing. Mapped to nanoelectronics, this strategy could allow for reliable computing with scaled-down, noisy, imperfect devices. Doing so requires that the population components form a set of basis functions in terms of their response functions to inputs, offering a physical substrate for computing. Such a population can be implemented with CMOS technology, but the corresponding circuits have high area or energy requirements. Here, we show that nanoscale magnetic tunnel junctions can instead be assembled to meet these requirements. We demonstrate experimentally that a population of nine junctions can implement a basis set of functions, providing the data to achieve, for example, the generation of cursive letters. We design hybrid magnetic-CMOS systems based on interlinked populations of junctions and show that they can learn to realize non-linear variability-resilient transformations with a low imprint area and low power.
Imaging Freeform Optical Systems Designed with NURBS Surfaces
2015-12-01
reflective, anastigmat 1 Introduction The imaging freeform optical systems described here are designed using non-uniform rational basis -spline (NURBS...from piecewise splines. Figure 1 shows a third degree NURBS surface which is formed from cubic basis splines. The surface is defined by the set of...with mathematical details covered by Piegl and Tiller7. Compare this with Gaussian basis functions8 where it is challenging to provide smooth
NASA Astrophysics Data System (ADS)
Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin
2016-05-01
With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jibben, Zechariah Joel; Herrmann, Marcus
Here, we present a Runge-Kutta discontinuous Galerkin method for solving conservative reinitialization in the context of the conservative level set method. This represents an extension of the method recently proposed by Owkes and Desjardins [21], by solving the level set equations on the refined level set grid and projecting all spatially-dependent variables into the full basis used by the discontinuous Galerkin discretization. By doing so, we achieve the full k+1 order convergence rate in the L1 norm of the level set field predicted for RKDG methods given kth degree basis functions when the level set profile thickness is held constantmore » with grid refinement. Shape and volume errors for the 0.5-contour of the level set, on the other hand, are found to converge between first and second order. We show a variety of test results, including the method of manufactured solutions, reinitialization of a circle and sphere, Zalesak's disk, and deforming columns and spheres, all showing substantial improvements over the high-order finite difference traditional level set method studied for example by Herrmann. We also demonstrate the need for kth order accurate normal vectors, as lower order normals are found to degrade the convergence rate of the method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Jonathon; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Neaton, Jeffrey B.
With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methodsmore » and systems examined, the most complete basis is Jensen’s pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.« less
29 CFR 1625.10 - Costs and benefits under employee benefit plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Cost data—Individual benefit basis and “benefit package” basis. Cost comparisons and adjustments under... are set forth below. (1) Cost data—general. Cost data used in justification of a benefit plan which... met where an employer has cost data which show the actual cost to it of providing the particular...
29 CFR 1625.10 - Costs and benefits under employee benefit plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Cost data—Individual benefit basis and “benefit package” basis. Cost comparisons and adjustments under... are set forth below. (1) Cost data—general. Cost data used in justification of a benefit plan which... met where an employer has cost data which show the actual cost to it of providing the particular...
29 CFR 1625.10 - Costs and benefits under employee benefit plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Cost data—Individual benefit basis and “benefit package” basis. Cost comparisons and adjustments under... are set forth below. (1) Cost data—general. Cost data used in justification of a benefit plan which... met where an employer has cost data which show the actual cost to it of providing the particular...
29 CFR 1625.10 - Costs and benefits under employee benefit plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Cost data—Individual benefit basis and “benefit package” basis. Cost comparisons and adjustments under... are set forth below. (1) Cost data—general. Cost data used in justification of a benefit plan which... met where an employer has cost data which show the actual cost to it of providing the particular...
Celeste, Ricardo; Maringolo, Milena P; Comar, Moacyr; Viana, Rommel B; Guimarães, Amanda R; Haiduke, Roberto L A; da Silva, Albérico B F
2015-10-01
Accurate Gaussian basis sets for atoms from H to Ba were obtained by means of the generator coordinate Hartree-Fock (GCHF) method based on a polynomial expansion to discretize the Griffin-Wheeler-Hartree-Fock equations (GWHF). The discretization of the GWHF equations in this procedure is based on a mesh of points not equally distributed in contrast with the original GCHF method. The results of atomic Hartree-Fock energies demonstrate the capability of these polynomial expansions in designing compact and accurate basis sets to be used in molecular calculations and the maximum error found when compared to numerical values is only 0.788 mHartree for indium. Some test calculations with the B3LYP exchange-correlation functional for N2, F2, CO, NO, HF, and HCN show that total energies within 1.0 to 2.4 mHartree compared to the cc-pV5Z basis sets are attained with our contracted bases with a much smaller number of polarization functions (2p1d and 2d1f for hydrogen and heavier atoms, respectively). Other molecular calculations performed here are also in very good accordance with experimental and cc-pV5Z results. The most important point to be mentioned here is that our generator coordinate basis sets required only a tiny fraction of the computational time when compared to B3LYP/cc-pV5Z calculations.
Optimization of selected molecular orbitals in group basis sets.
Ferenczy, György G; Adams, William H
2009-04-07
We derive a local basis equation which may be used to determine the orbitals of a group of electrons in a system when the orbitals of that group are represented by a group basis set, i.e., not the basis set one would normally use but a subset suited to a specific electronic group. The group orbitals determined by the local basis equation minimize the energy of a system when a group basis set is used and the orbitals of other groups are frozen. In contrast, under the constraint of a group basis set, the group orbitals satisfying the Huzinaga equation do not minimize the energy. In a test of the local basis equation on HCl, the group basis set included only 12 of the 21 functions in a basis set one might ordinarily use, but the calculated active orbital energies were within 0.001 hartree of the values obtained by solving the Hartree-Fock-Roothaan (HFR) equation using all 21 basis functions. The total energy found was just 0.003 hartree higher than the HFR value. The errors with the group basis set approximation to the Huzinaga equation were larger by over two orders of magnitude. Similar results were obtained for PCl(3) with the group basis approximation. Retaining more basis functions allows an even higher accuracy as shown by the perfect reproduction of the HFR energy of HCl with 16 out of 21 basis functions in the valence basis set. When the core basis set was also truncated then no additional error was introduced in the calculations performed for HCl with various basis sets. The same calculations with fixed core orbitals taken from isolated heavy atoms added a small error of about 10(-4) hartree. This offers a practical way to calculate wave functions with predetermined fixed core and reduced base valence orbitals at reduced computational costs. The local basis equation can also be used to combine the above approximations with the assignment of local basis sets to groups of localized valence molecular orbitals and to derive a priori localized orbitals. An appropriately chosen localization and basis set assignment allowed a reproduction of the energy of n-hexane with an error of 10(-5) hartree, while the energy difference between its two conformers was reproduced with a similar accuracy for several combinations of localizations and basis set assignments. These calculations include localized orbitals extending to 4-5 heavy atoms and thus they require to solve reduced dimension secular equations. The dimensions are not expected to increase with increasing system size and thus the local basis equation may find use in linear scaling electronic structure calculations.
Accurate Methods for Large Molecular Systems (Preprint)
2009-01-06
tensor, EFP calculations are basis set dependent. The smallest recommended basis set is 6- 31++G( d , p )52 The dependence of the computational cost of...and second order perturbation theory (MP2) levels with the 6-31G( d , p ) basis set. Additional SFM tests are presented for a small set of alpha...helices using the 6-31++G( d , p ) basis set. The larger 6-311++G(3df,2p) basis set is employed for creating all EFPs used for non- bonded interactions, since
Comparison of direct and flow integration based charge density population analyses.
Francisco, E; Martín Pendas, A; Blanco, M A; Costales, A
2007-12-06
Different exhaustive and fuzzy partitions of the molecular electron density (rho) into atomic densities (rho(A)) are used to compute the atomic charges (Q(A)) of a representative set of molecules. The Q(A)'s derived from a direct integration of rho(A) are compared to those obtained from integrating the deformation density rho(def) = rho - rho(0) within each atomic domain. Our analysis shows that the latter methods tend to give Q(A)'s similar to those of the (arbitrary) reference atomic densities rho(A)(0) used in the definition of the promolecular density, rho(0) = SigmaArho(A)(0). Moreover, we show that the basis set independence of these charges is a sign not of their intrinsic quality, as commonly stated, but of the practical insensitivity on the basis set of the atomic domains that are employed in this type of methods.
Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin
2011-06-07
The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics
Feller, David; Peterson, Kirk A
2013-08-28
The effectiveness of the recently developed, explicitly correlated coupled cluster method CCSD(T)-F12b is examined in terms of its ability to reproduce atomization energies derived from complete basis set extrapolations of standard CCSD(T). Most of the standard method findings were obtained with aug-cc-pV7Z or aug-cc-pV8Z basis sets. For a few homonuclear diatomic molecules it was possible to push the basis set to the aug-cc-pV9Z level. F12b calculations were performed with the cc-pVnZ-F12 (n = D, T, Q) basis set sequence and were also extrapolated to the basis set limit using a Schwenke-style, parameterized formula. A systematic bias was observed in the F12b method with the (VTZ-F12/VQZ-F12) basis set combination. This bias resulted in the underestimation of reference values associated with small molecules (valence correlation energies <0.5 E(h)) and an even larger overestimation of atomization energies for bigger systems. Consequently, caution should be exercised in the use of F12b for high accuracy studies. Root mean square and mean absolute deviation error metrics for this basis set combination were comparable to complete basis set values obtained with standard CCSD(T) and the aug-cc-pVDZ through aug-cc-pVQZ basis set sequence. However, the mean signed deviation was an order of magnitude larger. Problems partially due to basis set superposition error were identified with second row compounds which resulted in a weak performance for the smaller VDZ-F12/VTZ-F12 combination of basis sets.
Jibben, Zechariah Joel; Herrmann, Marcus
2017-08-24
Here, we present a Runge-Kutta discontinuous Galerkin method for solving conservative reinitialization in the context of the conservative level set method. This represents an extension of the method recently proposed by Owkes and Desjardins [21], by solving the level set equations on the refined level set grid and projecting all spatially-dependent variables into the full basis used by the discontinuous Galerkin discretization. By doing so, we achieve the full k+1 order convergence rate in the L1 norm of the level set field predicted for RKDG methods given kth degree basis functions when the level set profile thickness is held constantmore » with grid refinement. Shape and volume errors for the 0.5-contour of the level set, on the other hand, are found to converge between first and second order. We show a variety of test results, including the method of manufactured solutions, reinitialization of a circle and sphere, Zalesak's disk, and deforming columns and spheres, all showing substantial improvements over the high-order finite difference traditional level set method studied for example by Herrmann. We also demonstrate the need for kth order accurate normal vectors, as lower order normals are found to degrade the convergence rate of the method.« less
Parameter and Structure Inference for Nonlinear Dynamical Systems
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark
2006-01-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.
Ab Initio Density Fitting: Accuracy Assessment of Auxiliary Basis Sets from Cholesky Decompositions.
Boström, Jonas; Aquilante, Francesco; Pedersen, Thomas Bondo; Lindh, Roland
2009-06-09
The accuracy of auxiliary basis sets derived by Cholesky decompositions of the electron repulsion integrals is assessed in a series of benchmarks on total ground state energies and dipole moments of a large test set of molecules. The test set includes molecules composed of atoms from the first three rows of the periodic table as well as transition metals. The accuracy of the auxiliary basis sets are tested for the 6-31G**, correlation consistent, and atomic natural orbital basis sets at the Hartree-Fock, density functional theory, and second-order Møller-Plesset levels of theory. By decreasing the decomposition threshold, a hierarchy of auxiliary basis sets is obtained with accuracies ranging from that of standard auxiliary basis sets to that of conventional integral treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Tuomas P., E-mail: tuomas.rossi@alumni.aalto.fi; Sakko, Arto; Puska, Martti J.
We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate thatmore » the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.« less
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
Zhang, Jun; Dolg, Michael
2013-07-09
An efficient way to obtain accurate CCSD and CCSD(T) energies for large systems, i.e., the third-order incremental dual-basis set zero-buffer approach (inc3-db-B0), has been developed and tested. This approach combines the powerful incremental scheme with the dual-basis set method, and along with the new proposed K-means clustering (KM) method and zero-buffer (B0) approximation, can obtain very accurate absolute and relative energies efficiently. We tested the approach for 10 systems of different chemical nature, i.e., intermolecular interactions including hydrogen bonding, dispersion interaction, and halogen bonding; an intramolecular rearrangement reaction; aliphatic and conjugated hydrocarbon chains; three compact covalent molecules; and a water cluster. The results show that the errors for relative energies are <1.94 kJ/mol (or 0.46 kcal/mol), for absolute energies of <0.0026 hartree. By parallelization, our approach can be applied to molecules of more than 30 atoms and more than 100 correlated electrons with high-quality basis set such as cc-pVDZ or cc-pVTZ, saving computational cost by a factor of more than 10-20, compared to traditional implementation. The physical reasons of the success of the inc3-db-B0 approach are also analyzed.
The any particle molecular orbital grid-based Hartree-Fock (APMO-GBHF) approach
NASA Astrophysics Data System (ADS)
Posada, Edwin; Moncada, Félix; Reyes, Andrés
2018-02-01
The any particle molecular orbital grid-based Hartree-Fock approach (APMO-GBHF) is proposed as an initial step to perform multi-component post-Hartree-Fock, explicitly correlated, and density functional theory methods without basis set errors. The method has been applied to a number of electronic and multi-species molecular systems. Results of these calculations show that the APMO-GBHF total energies are comparable with those obtained at the APMO-HF complete basis set limit. In addition, results reveal a considerable improvement in the description of the nuclear cusps of electronic and non-electronic densities.
NASA Astrophysics Data System (ADS)
Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin
2017-06-01
With the aim of mitigating the basis set error in density functional theory (DFT) calculations employing local basis sets, we herein develop two empirical corrections for basis set superposition error (BSSE) in the def2-SVPD basis, a basis which—when stripped of BSSE—is capable of providing near-complete-basis DFT results for non-covalent interactions. Specifically, we adapt the existing pairwise geometrical counterpoise (gCP) approach to the def2-SVPD basis, and we develop a beyond-pairwise approach, DFT-C, which we parameterize across a small set of intermolecular interactions. Both gCP and DFT-C are evaluated against the traditional Boys-Bernardi counterpoise correction across a set of 3402 non-covalent binding energies and isomerization energies. We find that the DFT-C method represents a significant improvement over gCP, particularly for non-covalently-interacting molecular clusters. Moreover, DFT-C is transferable among density functionals and can be combined with existing functionals—such as B97M-V—to recover large-basis results at a fraction of the cost.
Yao, Xiaojun; Zhang, Xiaoyun; Zhang, Ruisheng; Liu, Mancang; Hu, Zhide; Fan, Botao
2002-05-16
A new method for the prediction of retention indices for a diverse set of compounds from their physicochemical parameters has been proposed. The two used input parameters for representing molecular properties are boiling point and molar volume. Models relating relationships between physicochemical parameters and retention indices of compounds are constructed by means of radial basis function neural networks. To get the best prediction results, some strategies are also employed to optimize the topology and learning parameters of the RBFNNs. For the test set, a predictive correlation coefficient R=0.9910 and root mean squared error of 14.1 are obtained. Results show that radial basis function networks can give satisfactory prediction ability and its optimization is less-time consuming and easy to implement.
Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.
Saller, Maximilian A C; Habershon, Scott
2017-07-11
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
Polarization functions for the modified m6-31G basis sets for atoms Ga through Kr.
Mitin, Alexander V
2013-09-05
The 2df polarization functions for the modified m6-31G basis sets of the third-row atoms Ga through Kr (Int J Quantum Chem, 2007, 107, 3028; Int J. Quantum Chem, 2009, 109, 1158) are proposed. The performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets were examined in molecular calculations carried out by the density functional theory (DFT) method with B3LYP hybrid functional, Møller-Plesset perturbation theory of the second order (MP2), quadratic configuration interaction method with single and double substitutions and were compared with those for the known 6-31G basis sets as well as with the other similar 641 and 6-311G basis sets with and without polarization functions. Obtained results have shown that the performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets are better in comparison with the performances of the known 6-31G, 6-31G(d,p) and 6-31G(2df,p) basis sets. These improvements are mainly reached due to better approximations of different electrons belonging to the different atomic shells in the modified basis sets. Applicability of the modified basis sets in thermochemical calculations is also discussed. © 2013 Wiley Periodicals, Inc.
Hydrogen peroxide clusters: the role of open book motif in cage and helical structures.
Elango, M; Parthasarathi, R; Subramanian, V; Ramachandran, C N; Sathyamurthy, N
2006-05-18
Hartree-Fock (HF) calculations using 6-31G*, 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets show that hydrogen peroxide molecular clusters tend to form hydrogen-bonded cyclic and cage structures along the lines expected of a molecule which can act as a proton donor as well as an acceptor. These results are reiterated by density functional theoretic (DFT) calculations with B3LYP parametrization and also by second-order Møller-Plesset perturbation (MP2) theory using 6-31G* and 6-311++G(d,p) basis sets. Trends in stabilization energies and geometrical parameters obtained at the HF level using 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are similar to those obtained from HF/6-31G* calculation. In addition, the HF calculations suggest the formation of stable helical structures for larger clusters, provided the neighbors form an open book structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe
2016-07-28
Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set producesmore » <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, Simon A.; Clin, Lucien; Ochsenfeld, Christian, E-mail: christian.ochsenfeld@uni-muenchen.de
2014-06-14
Our recently developed QQR-type integral screening is introduced in our Cholesky-decomposed pseudo-densities Møller-Plesset perturbation theory of second order (CDD-MP2) method. We use the resolution-of-the-identity (RI) approximation in combination with efficient integral transformations employing sparse matrix multiplications. The RI-CDD-MP2 method shows an asymptotic cubic scaling behavior with system size and a small prefactor that results in an early crossover to conventional methods for both small and large basis sets. We also explore the use of local fitting approximations which allow to further reduce the scaling behavior for very large systems. The reliability of our method is demonstrated on test sets formore » interaction and reaction energies of medium sized systems and on a diverse selection from our own benchmark set for total energies of larger systems. Timings on DNA systems show that fast calculations for systems with more than 500 atoms are feasible using a single processor core. Parallelization extends the range of accessible system sizes on one computing node with multiple cores to more than 1000 atoms in a double-zeta basis and more than 500 atoms in a triple-zeta basis.« less
First-principle modelling of forsterite surface properties: Accuracy of methods and basis sets.
Demichelis, Raffaella; Bruno, Marco; Massaro, Francesco R; Prencipe, Mauro; De La Pierre, Marco; Nestola, Fabrizio
2015-07-15
The seven main crystal surfaces of forsterite (Mg2 SiO4 ) were modeled using various Gaussian-type basis sets, and several formulations for the exchange-correlation functional within the density functional theory (DFT). The recently developed pob-TZVP basis set provides the best results for all properties that are strongly dependent on the accuracy of the wavefunction. Convergence on the structure and on the basis set superposition error-corrected surface energy can be reached also with poorer basis sets. The effect of adopting different DFT functionals was assessed. All functionals give the same stability order for the various surfaces. Surfaces do not exhibit any major structural differences when optimized with different functionals, except for higher energy orientations where major rearrangements occur around the Mg sites at the surface or subsurface. When dispersions are not accounted for, all functionals provide similar surface energies. The inclusion of empirical dispersions raises the energy of all surfaces by a nearly systematic value proportional to the scaling factor s of the dispersion formulation. An estimation for the surface energy is provided through adopting C6 coefficients that are more suitable than the standard ones to describe O-O interactions in minerals. A 2 × 2 supercell of the most stable surface (010) was optimized. No surface reconstruction was observed. The resulting structure and surface energy show no difference with respect to those obtained when using the primitive cell. This result validates the (010) surface model here adopted, that will serve as a reference for future studies on adsorption and reactivity of water and carbon dioxide at this interface. © 2015 Wiley Periodicals, Inc.
Derivation of a formula for the resonance integral for a nonorthogonal basis set
Yim, Yung-Chang; Eyring, Henry
1981-01-01
In a self-consistent field calculation, a formula for the off-diagonal matrix elements of the core Hamiltonian is derived for a nonorthogonal basis set by a polyatomic approach. A set of parameters is then introduced for the repulsion integral formula of Mataga-Nishimoto to fit the experimental data. The matrix elements computed for the nonorthogonal basis set in the π-electron approximation are transformed to those for an orthogonal basis set by the Löwdin symmetrical orthogonalization. PMID:16593009
NASA Astrophysics Data System (ADS)
Simon, Sílvia; Duran, Miquel
1997-08-01
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed.
Čársky, Petr; Čurík, Roman; Varga, Štefan
2012-03-21
The objective of this paper is to show that the density fitting (resolution of the identity approximation) can also be applied to Coulomb integrals of the type (k(1)(1)k(2)(1)|g(1)(2)g(2)(2)), where k and g symbols refer to plane-wave functions and gaussians, respectively. We have shown how to achieve the accuracy of these integrals that is needed in wave-function MO and density functional theory-type calculations using mixed Gaussian and plane-wave basis sets. The crucial issues for achieving such a high accuracy are application of constraints for conservation of the number electrons and components of the dipole moment, optimization of the auxiliary basis set, and elimination of round-off errors in the matrix inversion. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.
2012-10-01
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T; Dannenberg, J J
2012-10-07
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.
2012-01-01
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states. PMID:23039587
Andrade, Xavier; Aspuru-Guzik, Alán
2013-10-08
We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.
NASA Astrophysics Data System (ADS)
Lee, Kyuho; Yu, Jaejun; Morikawa, Yoshitada
2007-01-01
Localized pseudoatomic orbitals (PAOs) are mainly optimized and tested for the strong chemical bonds within molecules and solids with their proven accuracy and efficiency, but are prone to significant basis set superposition error (BSSE) for weakly interacting systems. Here we test the accuracy of PAO basis in comparison with the BSSE-free plane-wave basis for the physisorption of pentacene molecule on Au (001) by calculating the binding energy, adsorption height, and energy level alignment. We show that both the large cutoff radius for localized PAOs and the counter-poise correction for BSSE are necessary to obtain well-converged physical properties. Thereby obtained results are as accurate as the plane-wave basis results. The comparison with experiment is given as well.
Dixit, Anant; Claudot, Julien; Lebègue, Sébastien; Rocca, Dario
2017-06-07
By using a formulation based on the dynamical polarizability, we propose a novel implementation of second-order Møller-Plesset perturbation (MP2) theory within a plane wave (PW) basis set. Because of the intrinsic properties of PWs, this method is not affected by basis set superposition errors. Additionally, results are converged without relying on complete basis set extrapolation techniques; this is achieved by using the eigenvectors of the static polarizability as an auxiliary basis set to compactly and accurately represent the response functions involved in the MP2 equations. Summations over the large number of virtual states are avoided by using a formalism inspired by density functional perturbation theory, and the Lanczos algorithm is used to include dynamical effects. To demonstrate this method, applications to three weakly interacting dimers are presented.
NASA Astrophysics Data System (ADS)
Martin, Jan M. L.; Sundermann, Andreas
2001-02-01
We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper.
The structure and energetics of Cr(CO)6 and Cr(CO)5
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.; Liu, Bowen; Lindh, Roland
1992-01-01
The geometric structure of Cr(CO)6 is optimized at the modified coupled pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD, and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD, and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used. Calculations using larger basis sets reduce the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. In the largest basis set, the total CO binding energy of Cr(CO)6 is estimated to be 140 kcal/mol at the CCSD(T) level of theory, or about 86 percent of the experimental value. The remaining discrepancy between the experimental and theoretical value is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive set (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.
Hybrid Grid and Basis Set Approach to Quantum Chemistry DMRG
NASA Astrophysics Data System (ADS)
Stoudenmire, Edwin Miles; White, Steven
We present a new approach for using DMRG for quantum chemistry that combines the advantages of a basis set with that of a grid approximation. Because DMRG scales linearly for quasi-one-dimensional systems, it is feasible to approximate the continuum with a fine grid in one direction while using a standard basis set approach for the transverse directions. Compared to standard basis set methods, we reach larger systems and achieve better scaling when approaching the basis set limit. The flexibility and reduced costs of our approach even make it feasible to incoporate advanced DMRG techniques such as simulating real-time dynamics. Supported by the Simons Collaboration on the Many-Electron Problem.
Renormalization, conformal ward identities and the origin of a conformal anomaly pole
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Maglio, Matteo Maria
2018-06-01
We investigate the emergence of a conformal anomaly pole in conformal field theories in the case of the TJJ correlator. We show how it comes to be generated in dimensional renormalization, using a basis of 13 form factors (the F-basis), where only one of them requires renormalization (F13), extending previous studies. We then combine recent results on the structure of the non-perturbative solutions of the conformal Ward identities (CWI's) for the TJJ in momentum space, expressed in terms of a minimal set of 4 form factors (A-basis), with the properties of the F-basis, and show how the singular behaviour of the corresponding form factors in both basis can be related. The result proves the centrality of such massless effective interactions induced by the anomaly, which have recently found realization in solid state, in the theory of topological insulators and of Weyl semimetals. This pattern is confirmed in massless abelian and nonabelian theories (QED and QCD) investigated at one-loop.
Eigenvector decomposition of full-spectrum x-ray computed tomography.
Gonzales, Brian J; Lalush, David S
2012-03-07
Energy-discriminated x-ray computed tomography (CT) data were projected onto a set of basis functions to suppress the noise in filtered back-projection (FBP) reconstructions. The x-ray CT data were acquired using a novel x-ray system which incorporated a single-pixel photon-counting x-ray detector to measure the x-ray spectrum for each projection ray. A matrix of the spectral response of different materials was decomposed using eigenvalue decomposition to form the basis functions. Projection of FBP onto basis functions created a de facto image segmentation of multiple contrast agents. Final reconstructions showed significant noise suppression while preserving important energy-axis data. The noise suppression was demonstrated by a marked improvement in the signal-to-noise ratio (SNR) along the energy axis for multiple regions of interest in the reconstructed images. Basis functions used on a more coarsely sampled energy axis still showed an improved SNR. We conclude that the noise-resolution trade off along the energy axis was significantly improved using the eigenvalue decomposition basis functions.
NASA Astrophysics Data System (ADS)
Kaneko, Masashi; Yasuhara, Hiroki; Miyashita, Sunao; Nakashima, Satoru
2017-11-01
The present study applies all-electron relativistic DFT calculation with Douglas-Kroll-Hess (DKH) Hamiltonian to each ten sets of Ru and Os compounds. We perform the benchmark investigation of three density functionals (BP86, B3LYP and B2PLYP) using segmented all-electron relativistically contracted (SARC) basis set with the experimental Mössbauer isomer shifts for 99Ru and 189Os nuclides. Geometry optimizations at BP86 theory of level locate the structure in a local minimum. We calculate the contact density to the wavefunction obtained by a single point calculation. All functionals show the good linear correlation with experimental isomer shifts for both 99Ru and 189Os. Especially, B3LYP functional gives a stronger correlation compared to BP86 and B2PLYP functionals. The comparison of contact density between SARC and well-tempered basis set (WTBS) indicated that the numerical convergence of contact density cannot be obtained, but the reproducibility is less sensitive to the choice of basis set. We also estimate the values of Δ R/ R, which is an important nuclear constant, for 99Ru and 189Os nuclides by using the benchmark results. The sign of the calculated Δ R/ R values is consistent with the predicted data for 99Ru and 189Os. We obtain computationally the Δ R/ R values of 99Ru and 189Os (36.2 keV) as 2.35×10-4 and -0.20×10-4, respectively, at B3LYP level for SARC basis set.
Localized basis sets for unbound electrons in nanoelectronics.
Soriano, D; Jacob, D; Palacios, J J
2008-02-21
It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of Gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weizhou, E-mail: wzw@lynu.edu.cn, E-mail: ybw@gzu.edu.cn; Zhang, Yu; Sun, Tao
High-level coupled cluster singles, doubles, and perturbative triples [CCSD(T)] computations with up to the aug-cc-pVQZ basis set (1924 basis functions) and various extrapolations toward the complete basis set (CBS) limit are presented for the sandwich, T-shaped, and parallel-displaced benzene⋯naphthalene complex. Using the CCSD(T)/CBS interaction energies as a benchmark, the performance of some newly developed wave function and density functional theory methods has been evaluated. The best performing methods were found to be the dispersion-corrected PBE0 functional (PBE0-D3) and spin-component scaled zeroth-order symmetry-adapted perturbation theory (SCS-SAPT0). The success of SCS-SAPT0 is very encouraging because it provides one method for energy componentmore » analysis of π-stacked complexes with 200 atoms or more. Most newly developed methods do, however, overestimate the interaction energies. The results of energy component analysis show that interaction energies are overestimated mainly due to the overestimation of dispersion energy.« less
Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions
Mester, Dávid
2017-01-01
A reduced-cost density fitting (DF) linear-response second-order coupled-cluster (CC2) method has been developed for the evaluation of excitation energies. The method is based on the simultaneous truncation of the molecular orbital (MO) basis and the auxiliary basis set used for the DF approximation. For the reduction of the size of the MO basis, state-specific natural orbitals (NOs) are constructed for each excited state using the average of the second-order Møller–Plesset (MP2) and the corresponding configuration interaction singles with perturbative doubles [CIS(D)] density matrices. After removing the NOs of low occupation number, natural auxiliary functions (NAFs) are constructed [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], and the NAF basis is also truncated. Our results show that, for a triple-zeta basis set, about 60% of the virtual MOs can be dropped, while the size of the fitting basis can be reduced by a factor of five. This results in a dramatic reduction of the computational costs of the solution of the CC2 equations, which are in our approach about as expensive as the evaluation of the MP2 and CIS(D) density matrices. All in all, an average speedup of more than an order of magnitude can be achieved at the expense of a mean absolute error of 0.02 eV in the calculated excitation energies compared to the canonical CC2 results. Our benchmark calculations demonstrate that the new approach enables the efficient computation of CC2 excitation energies for excited states of all types of medium-sized molecules composed of up to 100 atoms with triple-zeta quality basis sets. PMID:28527453
On the origin independence of the Verdet tensor†
NASA Astrophysics Data System (ADS)
Caputo, M. C.; Coriani, S.; Pelloni, S.; Lazzeretti, P.
2013-07-01
The condition for invariance under a translation of the coordinate system of the Verdet tensor and the Verdet constant, calculated via quantum chemical methods using gaugeless basis sets, is expressed by a vanishing sum rule involving a third-rank polar tensor. The sum rule is, in principle, satisfied only in the ideal case of optimal variational electronic wavefunctions. In general, it is not fulfilled in non-variational calculations and variational calculations allowing for the algebraic approximation, but it can be satisfied for reasons of molecular symmetry. Group-theoretical procedures have been used to determine (i) the total number of non-vanishing components and (ii) the unique components of both the polar tensor appearing in the sum rule and the axial Verdet tensor, for a series of symmetry groups. Test calculations at the random-phase approximation level of accuracy for water, hydrogen peroxide and ammonia molecules, using basis sets of increasing quality, show a smooth convergence to zero of the sum rule. Verdet tensor components calculated for the same molecules converge to limit values, estimated via large basis sets of gaugeless Gaussian functions and London orbitals.
Structure and energetics of InN and GaN dimers
NASA Astrophysics Data System (ADS)
Šimová, Lucia; Tzeli, Demeter; Urban, Miroslav; Černušák, Ivan; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D.
2008-06-01
Large-scale mapping of various dimers of indium nitride and gallium nitride in singlet and triplet electronic states is reported. Second-order perturbation theory with Møller-Plesset partitioning of the Hamiltonian (MP2) and coupled-cluster with single and double excitations corrected for the triple excitations (CCSD(T)) are used for the geometry determinations and evaluation of excitation and dissociation energies. For gallium and nitrogen we have used the singly augmented correlation-consistent triple-zeta basis set (aug-cc-pVTZ), for indium we have used the aug-cc-pVTZ-pseudopotential basis set. The dissociation energies are corrected for basis set superposition error (BBSE) including geometrical relaxation of the monomers. We compare and discuss the similarities and dissimilarities in the structural patterns and energetics of both groups of isomers, including the effect of the BSSE. Our computations show that there are not only different ground states for In 2N 2 and Ga 2N 2 but also different numbers of stable stationary points on their potential energy surface. We compare our results with the molecular data published so far for these systems.
Near Hartree-Fock quality GTO basis sets for the second-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry
1987-01-01
Energy optimized, near Hartree-Fock quality Gaussian basis sets ranging in size from (17s12p) to (20s15p) are presented for the ground states of the second-row atoms for Na(2P), Na(+), Na(-), Mg(3P), P(-), S(-), and Cl(-). In addition, optimized supplementary functions are given for the ground state basis sets to describe the negative ions, and the excited Na(2P) and Mg(3P) atomic states. The ratios of successive orbital exponents describing the inner part of the 1s and 2p orbitals are found to be nearly independent of both nuclear charge and basis set size. This provides a method of obtaining good starting estimates for other basis set optimizations.
Computational studies of metal-metal and metal-ligand interactions
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.
1992-01-01
The geometric structure of Cr(CO)6 is optimized at the modified coupled-pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. A detailed comparison of the properties of free CO is therefore given, at both the MCPF and CCSD/CCSD(T) levels of treatment, using a variety of basis sets. With very large one-particle basis sets, the SSCD(T) method gives excellent results for the bond distance, dipole moment and harmonic frequency of free CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used here and in a previous study. Calculations using larger basis sets reduced the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. The remaining discrepancy between the experimental and theoretical total binding energy of Cr(CO)6 is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive se (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.
Teodoro, Tiago Quevedo; Visscher, Lucas; da Silva, Albérico Borges Ferreira; Haiduke, Roberto Luiz Andrade
2017-03-14
The f-block elements are addressed in this third part of a series of prolapse-free basis sets of quadruple-ζ quality (RPF-4Z). Relativistic adapted Gaussian basis sets (RAGBSs) are used as primitive sets of functions while correlating/polarization (C/P) functions are chosen by analyzing energy lowerings upon basis set increments in Dirac-Coulomb multireference configuration interaction calculations with single and double excitations of the valence spinors. These function exponents are obtained by applying the RAGBS parameters in a polynomial expression. Moreover, through the choice of C/P characteristic exponents from functions of lower angular momentum spaces, a reduction in the computational demand is attained in relativistic calculations based on the kinetic balance condition. The present study thus complements the RPF-4Z sets for the whole periodic table (Z ≤ 118). The sets are available as Supporting Information and can also be found at http://basis-sets.iqsc.usp.br .
Combination of large and small basis sets in electronic structure calculations on large systems
NASA Astrophysics Data System (ADS)
Røeggen, Inge; Gao, Bin
2018-04-01
Two basis sets—a large and a small one—are associated with each nucleus of the system. Each atom has its own separate one-electron basis comprising the large basis set of the atom in question and the small basis sets for the partner atoms in the complex. The perturbed atoms in molecules and solids model is at core of the approach since it allows for the definition of perturbed atoms in a system. It is argued that this basis set approach should be particularly useful for periodic systems. Test calculations are performed on one-dimensional arrays of H and Li atoms. The ground-state energy per atom in the linear H array is determined versus bond length.
Quantum chemical calculations of glycine glutaric acid
NASA Astrophysics Data System (ADS)
Arioǧlu, ćaǧla; Tamer, Ömer; Avci, Davut; Atalay, Yusuf
2017-02-01
Density functional theory (DFT) calculations of glycine glutaric acid were performed by using B3LYP levels with 6-311++G(d,p) basis set. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. HOMO and LUMO energies were calculated, and the obtained energy gap shows that charge transfer occurs in the title compound. Vibrational frequencies were calculated and compare with experimental ones. 3D molecular surfaces of the title compound were simulated using the same level and basis set. Finally, the 13C and 1H NMR chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method.
NASA Astrophysics Data System (ADS)
Liu, Fenglai; Kong, Jing
2018-07-01
Unique technical challenges and their solutions for implementing semi-numerical Hartree-Fock exchange on the Phil Processor are discussed, especially concerning the single- instruction-multiple-data type of processing and small cache size. Benchmark calculations on a series of buckyball molecules with various Gaussian basis sets on a Phi processor and a six-core CPU show that the Phi processor provides as much as 12 times of speedup with large basis sets compared with the conventional four-center electron repulsion integration approach performed on the CPU. The accuracy of the semi-numerical scheme is also evaluated and found to be comparable to that of the resolution-of-identity approach.
On basis set superposition error corrected stabilization energies for large n-body clusters.
Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael
2011-10-07
In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. © 2011 American Institute of Physics
High quality Gaussian basis sets for fourth-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry; Faegri, Knut, Jr.
1992-01-01
Energy optimized Gaussian basis sets of triple-zeta quality for the atoms Rb-Xe have been derived. Two series of basis sets are developed: (24s 16p 10d) and (26s 16p 10d) sets which were expanded to 13d and 19p functions as the 4d and 5p shells become occupied. For the atoms lighter than Cd, the (24s 16p 10d) sets with triple-zeta valence distributions are higher in energy than the corresponding double-zeta distribution. To ensure a triple-zeta distribution and a global energy minimum, the (26s 16p 10d) sets were derived. Total atomic energies from the largest basis sets are between 198 and 284 (mu)E(sub H) above the numerical Hartree-Fock energies.
Relativistic well-tempered Gaussian basis sets for helium through mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, S.; Matsuoka, O.
1989-10-01
Exponent parameters of the nonrelativistically optimized well-tempered Gaussian basis sets of Huzinaga and Klobukowski have been employed for Dirac--Fock--Roothaan calculations without their reoptimization. For light atoms He (atomic number {ital Z}=2)--Rh ({ital Z}=45), the number of exponent parameters used has been the same as the nonrelativistic basis sets and for heavier atoms Pd ({ital Z}=46)--Hg({ital Z}=80), two 2{ital p} (and three 3{ital d}) Gaussian basis functions have been augmented. The scheme of kinetic energy balance and the uniformly charged sphere model of atomic nuclei have been adopted. The qualities of the calculated basis sets are close to the Dirac--Fock limit.
NASA Astrophysics Data System (ADS)
Wang, Feng; Pang, Wenning; Duffy, Patrick
2012-12-01
Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the calculated orbitals.
Plumley, Joshua A.; Dannenberg, J. J.
2011-01-01
We evaluate the performance of nine functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-DFT molecular orbital calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise corrected PES. The calculated ΔE's with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, due to error compensation, the smaller basis sets gave the best results (in comparison to experimental and high level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. Since many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: 1) D95(d,p) with B3LYP, B97D, M06 or MPWB1k; 2) 6-311G(d,p) with B3LYP; 3) D95++(d,p) with B3LYP, B97D or MPWB1K; 4)6-311++G(d,p) with B3LYP or B97D; and 5) aug-cc-pVDZ with M05-2X, M06-2X or X3LYP. PMID:21328398
Plumley, Joshua A; Dannenberg, J J
2011-06-01
We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardirossian, Narbe; Head-Gordon, Martin
2013-08-22
For a set of eight equilibrium intermolecular complexes, it is discovered in this paper that the basis set limit (BSL) cannot be reached by aug-cc-pV5Z for three of the Minnesota density functionals: M06-L, M06-HF, and M11-L. In addition, the M06 and M11 functionals exhibit substantial, but less severe, difficulties in reaching the BSL. By using successively finer grids, it is demonstrated that this issue is not related to the numerical integration of the exchange-correlation functional. In addition, it is shown that the difficulty in reaching the BSL is not a direct consequence of the structure of the augmented functions inmore » Dunning’s basis sets, since modified augmentation yields similar results. By using a very large custom basis set, the BSL appears to be reached for the HF dimer for all of the functionals. As a result, it is concluded that the difficulties faced by several of the Minnesota density functionals are related to an interplay between the form of these functionals and the structure of standard basis sets. It is speculated that the difficulty in reaching the basis set limit is related to the magnitude of the inhomogeneity correction factor (ICF) of the exchange functional. A simple modification of the M06-L exchange functional that systematically reduces the basis set superposition error (BSSE) for the HF dimer in the aug-cc-pVQZ basis set is presented, further supporting the speculation that the difficulty in reaching the BSL is caused by the magnitude of the exchange functional ICF. In conclusion, the BSSE is plotted with respect to the internuclear distance of the neon dimer for two of the examined functionals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.
We establish a new estimate for the binding energy between two benzene molecules in the parallel-displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum, (ii) the expansion of the orbital basis set, and (iii) the level of electron correlation. The calculations were performed at the second-order Møller–Plesset perturbation (MP2) and the coupled cluster including singles, doubles, and a perturbative estimate of triples replacement [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for basis set superposition error (BSSE), we have estimated the complete basis set (CBS) limit bymore » employing the family of Dunning’s correlation-consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2772 basis functions), whereas the largest CCSD(T) calculation was with the cc-pV5Z basis set (1752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-ζ quality, observing that both its intra- and intermolecular parts have practically converged with the triple-ζ quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [within <0.01 kcal/mol for MP2 and <0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSE-corrected binding energies was found to converge to the same CBS limit much faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (ΔE) and BSSE-corrected (ΔE cp) binding energies, their average value (ΔE ave), as well as the average of the latter over the plain and augmented sets (Δ~E ave) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the π–π binding energy in the PD benzene dimer is D e = -2.65 ± 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is -2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is -5.00 ± 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). Finally, the spin-component-scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while scaled opposite spin (SOS) MP2 yielded results that are too low when compared to CCSD(T).« less
ERIC Educational Resources Information Center
Bowen, J. Philip; Sorensen, Jennifer B.; Kirschner, Karl N.
2007-01-01
The analysis explains the basis set superposition error (BSSE) and fragment relaxation involved in calculating the interaction energies using various first principle theories. Interacting the correlated fragment and increasing the size of the basis set can help in decreasing the BSSE to a great extent.
Köhn, Andreas
2010-11-07
The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.
The effect of diffuse basis functions on valence bond structural weights
NASA Astrophysics Data System (ADS)
Galbraith, John Morrison; James, Andrew M.; Nemes, Coleen T.
2014-03-01
Structural weights and bond dissociation energies have been determined for H-F, H-X, and F-X molecules (-X = -OH, -NH2, and -CH3) at the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) levels of theory with the aug-cc-pVDZ and 6-31++G(d,p) basis sets. At the BOVB level, the aug-cc-pVDZ basis set yields a counterintuitive ordering of ionic structural weights when the initial heavy atom s-type basis functions are included. For H-F, H-OH, and F-X, the ordering follows chemical intuition when these basis functions are not included. These counterintuitive weights are shown to be a result of the diffuse polarisation function on one VB fragment being spatially located, in part, on the other VB fragment. Except in the case of F-CH3, this problem is corrected with the 6-31++G(d,p) basis set. The initial heavy atom s-type functions are shown to make an important contribution to the VB orbitals and bond dissociation energies and, therefore, should not be excluded. It is recommended to not use diffuse basis sets in valence bond calculations unless absolutely necessary. If diffuse basis sets are needed, the 6-31++G(d,p) basis set should be used with caution and the structural weights checked against VBSCF values which have been shown to follow the expected ordering in all cases.
On the effects of basis set truncation and electron correlation in conformers of 2-hydroxy-acetamide
NASA Astrophysics Data System (ADS)
Szarecka, A.; Day, G.; Grout, P. J.; Wilson, S.
Ab initio quantum chemical calculations have been used to study the differences in energy between two gas phase conformers of the 2-hydroxy-acetamide molecule that possess intramolecular hydrogen bonding. In particular, rotation around the central C-C bond has been considered as a factor determining the structure of the hydrogen bond and stabilization of the conformer. Energy calculations include full geometiy optimization using both the restricted matrix Hartree-Fock model and second-order many-body perturbation theory with a number of commonly used basis sets. The basis sets employed ranged from the minimal STO-3G set to [`]split-valence' sets up to 6-31 G. The effects of polarization functions were also studied. The results display a strong basis set dependence.
Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.
Varandas, A J C
2011-05-28
The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative stability to ΔE(ZPE) = (0.51 ± 0.08) kcal mol(-1). A scheme is also suggested to model the full-dimensional isomerization potential-energy surface using a quadratic expansion that is parametrically represented by a Fourier analysis in the torsion angle. The method illustrated at the raw and complete basis-set limit coupled-cluster levels can provide a valuable tool for a future analysis of the available (incomplete thus far) experimental rovibrational data. This journal is © the Owner Societies 2011
On the optimization of Gaussian basis sets
NASA Astrophysics Data System (ADS)
Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.
2003-01-01
A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.
Qudit-Basis Universal Quantum Computation Using χ^{(2)} Interactions.
Niu, Murphy Yuezhen; Chuang, Isaac L; Shapiro, Jeffrey H
2018-04-20
We prove that universal quantum computation can be realized-using only linear optics and χ^{(2)} (three-wave mixing) interactions-in any (n+1)-dimensional qudit basis of the n-pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ^{(2)} Hamiltonians and photon-number operators generate the full u(3) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ^{(2)} interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ^{(2)} interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.
Qudit-Basis Universal Quantum Computation Using χ(2 ) Interactions
NASA Astrophysics Data System (ADS)
Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.
2018-04-01
We prove that universal quantum computation can be realized—using only linear optics and χ(2 ) (three-wave mixing) interactions—in any (n +1 )-dimensional qudit basis of the n -pump-photon subspace. First, we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we demonstrate qutrit-basis universality by proving that χ(2 ) Hamiltonians and photon-number operators generate the full u (3 ) Lie algebra in the two-pump-photon subspace, and showing how the qutrit controlled-Z gate can be implemented with only linear optics and χ(2 ) interactions. We then use proof by induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or subtraction, a technique enabled by χ(2 ) interaction between the encoding modes and ancillary modes. Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to preparing high-photon-number Fock states from single-photon Fock states.
Quantal Response: Nonparametric Modeling
2017-01-01
DATES COVERED (From ‐ To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...creasing function as P(x) = G ( f (x) ) , where G is a monotone function such as the standard logistic, normal, or Cauchy CDF. Finite -dimensional...examples with dimension k = 5 where various colors distinguish the basis elements . Figure 3 shows logistic response estimates for these 3 basis sets
Combining Accuracy and Efficiency: An Incremental Focal-Point Method Based on Pair Natural Orbitals.
Fiedler, Benjamin; Schmitz, Gunnar; Hättig, Christof; Friedrich, Joachim
2017-12-12
In this work, we present a new pair natural orbitals (PNO)-based incremental scheme to calculate CCSD(T) and CCSD(T0) reaction, interaction, and binding energies. We perform an extensive analysis, which shows small incremental errors similar to previous non-PNO calculations. Furthermore, slight PNO errors are obtained by using T PNO = T TNO with appropriate values of 10 -7 to 10 -8 for reactions and 10 -8 for interaction or binding energies. The combination with the efficient MP2 focal-point approach yields chemical accuracy relative to the complete basis-set (CBS) limit. In this method, small basis sets (cc-pVDZ, def2-TZVP) for the CCSD(T) part are sufficient in case of reactions or interactions, while some larger ones (e.g., (aug)-cc-pVTZ) are necessary for molecular clusters. For these larger basis sets, we show the very high efficiency of our scheme. We obtain not only tremendous decreases of the wall times (i.e., factors >10 2 ) due to the parallelization of the increment calculations as well as of the total times due to the application of PNOs (i.e., compared to the normal incremental scheme) but also smaller total times with respect to the standard PNO method. That way, our new method features a perfect applicability by combining an excellent accuracy with a very high efficiency as well as the accessibility to larger systems due to the separation of the full computation into several small increments.
NASA Astrophysics Data System (ADS)
Choi, Chu Hwan
2002-09-01
Ab initio chemistry has shown great promise in reproducing experimental results and in its predictive power. The many complicated computational models and methods seem impenetrable to an inexperienced scientist, and the reliability of the results is not easily interpreted. The application of midbond orbitals is used to determine a general method for use in calculating weak intermolecular interactions, especially those involving electron-deficient systems. Using the criteria of consistency, flexibility, accuracy and efficiency we propose a supermolecular method of calculation using the full counterpoise (CP) method of Boys and Bernardi, coupled with Moller-Plesset (MP) perturbation theory as an efficient electron-correlative method. We also advocate the use of the highly efficient and reliable correlation-consistent polarized valence basis sets of Dunning. To these basis sets, we add a general set of midbond orbitals and demonstrate greatly enhanced efficiency in the calculation. The H2-H2 dimer is taken as a benchmark test case for our method, and details of the computation are elaborated. Our method reproduces with great accuracy the dissociation energies of other previous theoretical studies. The added efficiency of extending the basis sets with conventional means is compared with the performance of our midbond-extended basis sets. The improvement found with midbond functions is notably superior in every case tested. Finally, a novel application of midbond functions to the BH5 complex is presented. The system is an unusual van der Waals complex. The interaction potential curves are presented for several standard basis sets and midbond-enhanced basis sets, as well as for two popular, alternative correlation methods. We report that MP theory appears to be superior to coupled-cluster (CC) in speed, while it is more stable than B3LYP, a widely-used density functional theory (DFT). Application of our general method yields excellent results for the midbond basis sets. Again they prove superior to conventional extended basis sets. Based on these results, we recommend our general approach as a highly efficient, accurate method for calculating weakly interacting systems.
Yielding physically-interpretable emulators - A Sparse PCA approach
NASA Astrophysics Data System (ADS)
Galelli, S.; Alsahaf, A.; Giuliani, M.; Castelletti, A.
2015-12-01
Projection-based techniques, such as Principal Orthogonal Decomposition (POD), are a common approach to surrogate high-fidelity process-based models by lower order dynamic emulators. With POD, the dimensionality reduction is achieved by using observations, or 'snapshots' - generated with the high-fidelity model -, to project the entire set of input and state variables of this model onto a smaller set of basis functions that account for most of the variability in the data. While reduction efficiency and variance control of POD techniques are usually very high, the resulting emulators are structurally highly complex and can hardly be given a physically meaningful interpretation as each basis is a projection of the entire set of inputs and states. In this work, we propose a novel approach based on Sparse Principal Component Analysis (SPCA) that combines the several assets of POD methods with the potential for ex-post interpretation of the emulator structure. SPCA reduces the number of non-zero coefficients in the basis functions by identifying a sparse matrix of coefficients. While the resulting set of basis functions may retain less variance of the snapshots, the presence of a few non-zero coefficients assists in the interpretation of the underlying physical processes. The SPCA approach is tested on the reduction of a 1D hydro-ecological model (DYRESM-CAEDYM) used to describe the main ecological and hydrodynamic processes in Tono Dam, Japan. An experimental comparison against a standard POD approach shows that SPCA achieves the same accuracy in emulating a given output variable - for the same level of dimensionality reduction - while yielding better insights of the main process dynamics.
Basis set limit and systematic errors in local-orbital based all-electron DFT
NASA Astrophysics Data System (ADS)
Blum, Volker; Behler, Jörg; Gehrke, Ralf; Reuter, Karsten; Scheffler, Matthias
2006-03-01
With the advent of efficient integration schemes,^1,2 numeric atom-centered orbitals (NAO's) are an attractive basis choice in practical density functional theory (DFT) calculations of nanostructured systems (surfaces, clusters, molecules). Though all-electron, the efficiency of practical implementations promises to be on par with the best plane-wave pseudopotential codes, while having a noticeably higher accuracy if required: Minimal-sized effective tight-binding like calculations and chemically accurate all-electron calculations are both possible within the same framework; non-periodic and periodic systems can be treated on equal footing; and the localized nature of the basis allows in principle for O(N)-like scaling. However, converging an observable with respect to the basis set is less straightforward than with competing systematic basis choices (e.g., plane waves). We here investigate the basis set limit of optimized NAO basis sets in all-electron calculations, using as examples small molecules and clusters (N2, Cu2, Cu4, Cu10). meV-level total energy convergence is possible using <=50 basis functions per atom in all cases. We also find a clear correlation between the errors which arise from underconverged basis sets, and the system geometry (interatomic distance). ^1 B. Delley, J. Chem. Phys. 92, 508 (1990), ^2 J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002).
Petruzielo, F R; Toulouse, Julien; Umrigar, C J
2011-02-14
A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.
Hill, J Grant
2013-09-30
Auxiliary basis sets (ABS) specifically matched to the cc-pwCVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y-Pd at the second-order Møller-Plesset perturbation theory level. Calculation of the core-valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution-of-the-identity component of explicitly correlated calculations is also investigated, where it is shown that i-type functions are important to produce well-controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double-ζ calculations produce results close to conventional quadruple-ζ, and triple-ζ is within chemical accuracy of the complete basis set limit. Copyright © 2013 Wiley Periodicals, Inc.
Benchmark of Ab Initio Bethe-Salpeter Equation Approach with Numeric Atom-Centered Orbitals
NASA Astrophysics Data System (ADS)
Liu, Chi; Kloppenburg, Jan; Kanai, Yosuke; Blum, Volker
The Bethe-Salpeter equation (BSE) approach based on the GW approximation has been shown to be successful for optical spectra prediction of solids and recently also for small molecules. We here present an all-electron implementation of the BSE using numeric atom-centered orbital (NAO) basis sets. In this work, we present benchmark of BSE implemented in FHI-aims for low-lying excitation energies for a set of small organic molecules, the well-known Thiel's set. The difference between our implementation (using an analytic continuation of the GW self-energy on the real axis) and the results generated by a fully frequency dependent GW treatment on the real axis is on the order of 0.07 eV for the benchmark molecular set. We study the convergence behavior to the complete basis set limit for excitation spectra, using a group of valence correlation consistent NAO basis sets (NAO-VCC-nZ), as well as for standard NAO basis sets for ground state DFT with extended augmentation functions (NAO+aug). The BSE results and convergence behavior are compared to linear-response time-dependent DFT, where excellent numerical convergence is shown for NAO+aug basis sets.
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Faegri, Knut, Jr.
1990-01-01
The paper investigates bounds failure in calculations using Gaussian basis sets for the solution of the one-electron Dirac equation for the 2p1/2 state of Hg(79+). It is shown that bounds failure indicates inadequacies in the basis set, both in terms of the exponent range and the number of functions. It is also shown that overrepresentation of the small component space may lead to unphysical results. It is concluded that it is important to use matched large and small component basis sets with an adequate size and exponent range.
Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping
2006-03-09
Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less
On the performance of large Gaussian basis sets for the computation of total atomization energies
NASA Technical Reports Server (NTRS)
Martin, J. M. L.
1992-01-01
The total atomization energies of a number of molecules have been computed using an augmented coupled-cluster method and (5s4p3d2f1g) and 4s3p2d1f) atomic natural orbital (ANO) basis sets, as well as the correlation consistent valence triple zeta plus polarization (cc-pVTZ) correlation consistent valence quadrupole zeta plus polarization (cc-pVQZ) basis sets. The performance of ANO and correlation consistent basis sets is comparable throughout, although the latter can result in significant CPU time savings. Whereas the inclusion of g functions has significant effects on the computed Sigma D(e) values, chemical accuracy is still not reached for molecules involving multiple bonds. A Gaussian-1 (G) type correction lowers the error, but not much beyond the accuracy of the G1 model itself. Using separate corrections for sigma bonds, pi bonds, and valence pairs brings down the mean absolute error to less than 1 kcal/mol for the spdf basis sets, and about 0.5 kcal/mol for the spdfg basis sets. Some conclusions on the success of the Gaussian-1 and Gaussian-2 models are drawn.
NASA Astrophysics Data System (ADS)
Matias, J.; Mescia, F.; Ramon, M.; Virto, J.
2012-04-01
We present a complete and optimal set of observables for the exclusive 4-body overline B meson decay {overline B_d} to {overline {text{K}}^{{*0}}} (→ Kπ) ℓ + ℓ -in the low dilepton mass region, that contains a maximal number of clean observables. This basis of observables is built in a systematic way. We show that all the previously defined observables and any observable that one can construct, can be expressed as a function of this basis. This set of observables contains all the information that can be extracted from the angular distribution in the cleanest possible way. We provide explicit expressions for the full and the uniangular distributions in terms of this basis. The conclusions presented here can be easily extended to the large- q 2 region. We study the sensitivity of the observables to right-handed currents and scalars. Finally, we present for the first time all the symmetries of the full distribution including massive terms and scalar contributions.
Structural, vibrational spectroscopic and quantum chemical studies on indole-3-carboxaldehyde
NASA Astrophysics Data System (ADS)
Premkumar, R.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin
2017-05-01
The potential energy surface (PES) scan was performed for indole-3-carboxaldehyde (ICA) and the most stable optimized conformer was predicted using DFT/B3LYP method with 6-31G basis set. The vibrational frequencies of ICA were theoretically calculated by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The vibrational spectra were experimentally recorded by Fourier transform-infrared (FT-IR) and Fourier transform-Raman spectrometer (FT-Raman). The computed vibrational frequencies were scaled by scaling factors to yield a good agreement with observed vibrational frequencies. The theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of potential energy distribution (PED) calculation using VEDA 4.0 program. The molecular interaction, stability and intramolecular charge transfer of ICA were studied using frontier molecular orbitals (FMOs) analysis and Mulliken atomic charge distribution shows the distribution of the atomic charges. The presence of intramolecular charge transfer was studied using natural bond orbital (NBO) analysis.
A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.
Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F
2017-11-01
The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach. This spatial model constitutes an elegant alternative to voxel-based approaches in neuroimaging studies; not only are their atoms biologically informed, they are also adaptive to high resolutions, represent high dimensions efficiently, and capture long-range spatial dependencies, which are important and challenging objectives for neuroimaging data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Materials prediction via classification learning
Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; ...
2015-08-25
In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturallymore » uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. In conclusion, our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle.« less
Materials Prediction via Classification Learning
Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; Lookman, Turab
2015-01-01
In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturally uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. Our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle. PMID:26304800
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl
An ab initio intermolecular potential energy surface (PES) has been constructed for the benzene-krypton (BKr) van der Waals (vdW) complex. The interaction energy has been calculated at the coupled cluster level of theory with single, double, and perturbatively included triple excitations using different basis sets. As a result, a few analytical PESs of the complex have been determined. They allowed a prediction of the complex structure and its vibrational vdW states. The vibrational energy level pattern exhibits a distinct polyad structure. Comparison of the equilibrium structure, the dipole moment, and vibrational levels of BKr with their experimental counterparts has allowedmore » us to design an optimal basis set composed of a small Dunning’s basis set for the benzene monomer, a larger effective core potential adapted basis set for Kr and additional midbond functions. Such a basis set yields vibrational energy levels that agree very well with the experimental ones as well as with those calculated from the available empirical PES derived from the microwave spectra of the BKr complex. The basis proposed can be applied to larger complexes including Kr because of a reasonable computational cost and accurate results.« less
Polarized atomic orbitals for self-consistent field electronic structure calculations
NASA Astrophysics Data System (ADS)
Lee, Michael S.; Head-Gordon, Martin
1997-12-01
We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.
REVERSAL LEARNING SET AND FUNCTIONAL EQUIVALENCE IN CHILDREN WITH AND WITHOUT AUTISM
Lionello-DeNolf, Karen M.; McIlvane, William J.; Canovas, Daniela S.; de Souza, Deisy G.; Barros, Romariz S.
2009-01-01
To evaluate whether children with and without autism could exhibit (a) functional equivalence in the course of yoked repeated-reversal training and (b) reversal learning set, 6 children, in each of two experiments, were exposed to simple discrimination contingencies with three sets of stimuli. The discriminative functions of the set members were yoked and repeatedly reversed. In Experiment 1, all the children (of preschool age) showed gains in the efficiency of reversal learning across reversal problems and behavior that suggested formation of functional equivalence. In Experiment 2, 3 nonverbal children with autism exhibited strong evidence of reversal learning set and 2 showed evidence of functional equivalence. The data suggest a possible relationship between efficiency of reversal learning and functional equivalence test outcomes. Procedural variables may prove important in assessing the potential of young or nonverbal children to classify stimuli on the basis of shared discriminative functions. PMID:20186287
Multispectral processing without spectra.
Drew, Mark S; Finlayson, Graham D
2003-07-01
It is often the case that multiplications of whole spectra, component by component, must be carried out,for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work [J. Opt. Soc. Am. A 11, 1553 (1994)] we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 3 x 3 linear transform that results from a three-component finite-dimensional model [G. Healey and D. Slater, J. Opt. Soc. Am. A 11, 3003 (1994)]. We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting.
Multispectral processing without spectra
NASA Astrophysics Data System (ADS)
Drew, Mark S.; Finlayson, Graham D.
2003-07-01
It is often the case that multiplications of whole spectra, component by component, must be carried out, for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work J. Opt. Soc. Am. A 11 , 1553 (1994) we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 33 linear transform that results from a three-component finite-dimensional model G. Healey and D. Slater, J. Opt. Soc. Am. A 11 , 3003 (1994). We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting. 2003 Optical Society of America
Code of Federal Regulations, 2010 CFR
2010-10-01
... physician services in a teaching setting. 415.170 Section 415.170 Public Health CENTERS FOR MEDICARE... BY PHYSICIANS IN PROVIDERS, SUPERVISING PHYSICIANS IN TEACHING SETTINGS, AND RESIDENTS IN CERTAIN SETTINGS Physician Services in Teaching Settings § 415.170 Conditions for payment on a fee schedule basis...
A novel Gaussian-Sinc mixed basis set for electronic structure calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerke, Jonathan L.; Lee, Young; Tymczak, C. J.
2015-08-14
A Gaussian-Sinc basis set methodology is presented for the calculation of the electronic structure of atoms and molecules at the Hartree–Fock level of theory. This methodology has several advantages over previous methods. The all-electron electronic structure in a Gaussian-Sinc mixed basis spans both the “localized” and “delocalized” regions. A basis set for each region is combined to make a new basis methodology—a lattice of orthonormal sinc functions is used to represent the “delocalized” regions and the atom-centered Gaussian functions are used to represent the “localized” regions to any desired accuracy. For this mixed basis, all the Coulomb integrals are definablemore » and can be computed in a dimensional separated methodology. Additionally, the Sinc basis is translationally invariant, which allows for the Coulomb singularity to be placed anywhere including on lattice sites. Finally, boundary conditions are always satisfied with this basis. To demonstrate the utility of this method, we calculated the ground state Hartree–Fock energies for atoms up to neon, the diatomic systems H{sub 2}, O{sub 2}, and N{sub 2}, and the multi-atom system benzene. Together, it is shown that the Gaussian-Sinc mixed basis set is a flexible and accurate method for solving the electronic structure of atomic and molecular species.« less
Cha, Kihoon; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su
2015-01-01
It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation.
2015-01-01
Background It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. Results In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. Conclusions This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation. PMID:26043779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, J. Grant, E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu; Peterson, Kirk A., E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu
New correlation consistent basis sets, cc-pVnZ-PP-F12 (n = D, T, Q), for all the post-d main group elements Ga–Rn have been optimized for use in explicitly correlated F12 calculations. The new sets, which include not only orbital basis sets but also the matching auxiliary sets required for density fitting both conventional and F12 integrals, are designed for correlation of valence sp, as well as the outer-core d electrons. The basis sets are constructed for use with the previously published small-core relativistic pseudopotentials of the Stuttgart-Cologne variety. Benchmark explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)-F12b] calculations of themore » spectroscopic properties of numerous diatomic molecules involving 4p, 5p, and 6p elements have been carried out and compared to the analogous conventional CCSD(T) results. In general the F12 results obtained with a n-zeta F12 basis set were comparable to conventional aug-cc-pVxZ-PP or aug-cc-pwCVxZ-PP basis set calculations obtained with x = n + 1 or even x = n + 2. The new sets used in CCSD(T)-F12b calculations are particularly efficient at accurately recovering the large correlation effects of the outer-core d electrons.« less
Linear-scaling explicitly correlated treatment of solids: periodic local MP2-F12 method.
Usvyat, Denis
2013-11-21
Theory and implementation of the periodic local MP2-F12 method in the 3*A fixed-amplitude ansatz is presented. The method is formulated in the direct space, employing local representation for the occupied, virtual, and auxiliary orbitals in the form of Wannier functions (WFs), projected atomic orbitals (PAOs), and atom-centered Gaussian-type orbitals, respectively. Local approximations are introduced, restricting the list of the explicitly correlated pairs, as well as occupied, virtual, and auxiliary spaces in the strong orthogonality projector to the pair-specific domains on the basis of spatial proximity of respective orbitals. The 4-index two-electron integrals appearing in the formalism are approximated via the direct-space density fitting technique. In this procedure, the fitting orbital spaces are also restricted to local fit-domains surrounding the fitted densities. The formulation of the method and its implementation exploits the translational symmetry and the site-group symmetries of the WFs. Test calculations are performed on LiH crystal. The results show that the periodic LMP2-F12 method substantially accelerates basis set convergence of the total correlation energy, and even more so the correlation energy differences. The resulting energies are quite insensitive to the resolution-of-the-identity domain sizes and the quality of the auxiliary basis sets. The convergence with the orbital domain size is somewhat slower, but still acceptable. Moreover, inclusion of slightly more diffuse functions, than those usually used in the periodic calculations, improves the convergence of the LMP2-F12 correlation energy with respect to both the size of the PAO-domains and the quality of the orbital basis set. At the same time, the essentially diffuse atomic orbitals from standard molecular basis sets, commonly utilized in molecular MP2-F12 calculations, but problematic in the periodic context, are not necessary for LMP2-F12 treatment of crystals.
On the Use of a Mixed Gaussian/Finite-Element Basis Set for the Calculation of Rydberg States
NASA Technical Reports Server (NTRS)
Thuemmel, Helmar T.; Langhoff, Stephen (Technical Monitor)
1996-01-01
Configuration-interaction studies are reported for the Rydberg states of the helium atom using mixed Gaussian/finite-element (GTO/FE) one particle basis sets. Standard Gaussian valence basis sets are employed, like those, used extensively in quantum chemistry calculations. It is shown that the term values for high-lying Rydberg states of the helium atom can be obtained accurately (within 1 cm -1), even for a small GTO set, by augmenting the n-particle space with configurations, where orthonormalized interpolation polynomials are singly occupied.
Security of quantum key distribution with iterative sifting
NASA Astrophysics Data System (ADS)
Tamaki, Kiyoshi; Lo, Hoi-Kwong; Mizutani, Akihiro; Kato, Go; Lim, Charles Ci Wen; Azuma, Koji; Curty, Marcos
2018-01-01
Several quantum key distribution (QKD) protocols employ iterative sifting. After each quantum transmission round, Alice and Bob disclose part of their setting information (including their basis choices) for the detected signals. This quantum phase then ends when the basis dependent termination conditions are met, i.e., the numbers of detected signals per basis exceed certain pre-agreed threshold values. Recently, however, Pfister et al (2016 New J. Phys. 18 053001) showed that the basis dependent termination condition makes QKD insecure, especially in the finite key regime, and they suggested to disclose all the setting information after finishing the quantum phase. However, this protocol has two main drawbacks: it requires that Alice possesses a large memory, and she also needs to have some a priori knowledge about the transmission rate of the quantum channel. Here we solve these two problems by introducing a basis-independent termination condition to the iterative sifting in the finite key regime. The use of this condition, in combination with Azuma’s inequality, provides a precise estimation on the amount of privacy amplification that needs to be applied, thus leading to the security of QKD protocols, including the loss-tolerant protocol (Tamaki et al 2014 Phys. Rev. A 90 052314), with iterative sifting. Our analysis indicates that to announce the basis information after each quantum transmission round does not compromise the key generation rate of the loss-tolerant protocol. Our result allows the implementation of wider classes of classical post-processing techniques in QKD with quantified security.
[Ionization energies and infrared spectra studies of histidine using density functional theory].
Hu, Qiong; Wang, Guo-Ying; Liu, Gang; Ou, Jia-Ming; Wang, Rui-Li
2010-05-01
Histidines provide axial ligands to the primary electron donors in photosynthetic reaction centers (RCs) and play an important role in the protein environments of these donors. In this paper the authors present a systematic study of ionization energies and vibrational properties of histidine using hybrid density functional theory (DFT). All calculations were undertaken by using B3LYP method in combination with four basis sets: 6-31G(d), 6-31G(df, p), 6-31+G(d) and 6-311+G(2d, 2p) with the aim to investigate how the basis sets influence the calculation results. To investigate solvent effects and gain a detailed understanding of marker bands of histidine, the ionization energies of histidine and the vibrational frequencies of histidine which are unlabeled and 13C, 15N, and 2H labeled in the gas phase, CCl4, protein environment, THF and water solution, which span a wide range of dielectric constant, were also calculated. Our results showed that: (1) The main geometry parameters of histidine were impacted by basis sets and mediums, and C2-N3 and N3-C4 bond of imidazole ring of histidine side chain display the maximum bond lengths in the gas phase; (2) single point energies and frequencies calculated were decreased while ionization energies increased with the increasing level of basis sets and diffuse function applied in the same solvent; (3) with the same computational method, the higher the dielectric constant of the solvent used, the lower the ionization energy and vibrational frequency and the higher the intensity obtained. In addition, calculated ionization energy in the gas phase and marker bands of histidine as well as frequency shift upon 13C and 15N labeling at the computationally more expensive 6-311+G(2d, 2p) level are in good agreement with experimental observations available in literatures. All calculations indicated that the results calculated by using higher level basis set with diffuse function were more accurate and closer to the experimental value. In conclusion, the results provide useful information for the further studies of the functional and vibrational properties of chlorophyll-a ligated to histidine residue in photosynthetic reaction center.
Gaspari, Roberto; Rapallo, Arnaldo
2008-06-28
In this work a new method is proposed for the choice of basis functions in diffusion theory (DT) calculations. This method, named hybrid basis approach (HBA), combines the two previously adopted long time sorting procedure (LTSP) and maximum correlation approximation (MCA) techniques; the first emphasizing contributions from the long time dynamics, the latter being based on the local correlations along the chain. In order to fulfill this task, the HBA procedure employs a first order basis set corresponding to a high order MCA one and generates upper order approximations according to LTSP. A test of the method is made first on a melt of cis-1,4-polyisoprene decamers where HBA and LTSP are compared in terms of efficiency. Both convergence properties and numerical stability are improved by the use of the HBA basis set whose performance is evaluated on local dynamics, by computing the correlation times of selected bond vectors along the chain, and on global ones, through the eigenvalues of the diffusion operator L. Further use of the DT with a HBA basis set has been made on a 71-mer of syndiotactic trans-1,2-polypentadiene in toluene solution, whose dynamical properties have been computed with a high order calculation and compared to the "numerical experiment" provided by the molecular dynamics (MD) simulation in explicit solvent. The necessary equilibrium averages have been obtained by a vacuum trajectory of the chain where solvent effects on conformational properties have been reproduced with a proper screening of the nonbonded interactions, corresponding to a definite value of the mean radius of gyration of the polymer in vacuum. Results show a very good agreement between DT calculations and the MD numerical experiment. This suggests a further use of DT methods with the necessary input quantities obtained by the only knowledge of some experimental values, i.e., the mean radius of gyration of the chain and the viscosity of the solution, and by a suitable vacuum trajectory, with great savings in computational time required. This offers a theoretical bridge between the experimental static and dynamical properties of polymers.
Perturbation corrections to Koopmans' theorem. V - A study with large basis sets
NASA Technical Reports Server (NTRS)
Chong, D. P.; Langhoff, S. R.
1982-01-01
The vertical ionization potentials of N2, F2 and H2O were calculated by perturbation corrections to Koopmans' theorem using six different basis sets. The largest set used includes several sets of polarization functions. Comparison is made with measured values and with results of computations using Green's functions.
A new basis set for molecular bending degrees of freedom.
Jutier, Laurent
2010-07-21
We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range theta in [0:pi]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH(++), HCCH(+), and HCCS are presented.
Dou, Ying; Mi, Hong; Zhao, Lingzhi; Ren, Yuqiu; Ren, Yulin
2006-09-01
The application of the second most popular artificial neural networks (ANNs), namely, the radial basis function (RBF) networks, has been developed for quantitative analysis of drugs during the last decade. In this paper, the two components (aspirin and phenacetin) were simultaneously determined in compound aspirin tablets by using near-infrared (NIR) spectroscopy and RBF networks. The total database was randomly divided into a training set (50) and a testing set (17). Different preprocessing methods (standard normal variate (SNV), multiplicative scatter correction (MSC), first-derivative and second-derivative) were applied to two sets of NIR spectra of compound aspirin tablets with different concentrations of two active components and compared each other. After that, the performance of RBF learning algorithm adopted the nearest neighbor clustering algorithm (NNCA) and the criterion for selection used a cross-validation technique. Results show that using RBF networks to quantificationally analyze tablets is reliable, and the best RBF model was obtained by first-derivative spectra.
NASA Astrophysics Data System (ADS)
Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald; Werner, Hans-Joachim
2009-11-01
Accurate extrapolation to the complete basis set (CBS) limit of valence correlation energies calculated with explicitly correlated MP2-F12 and CCSD(T)-F12b methods have been investigated using a Schwenke-style approach for molecules containing both first and second row atoms. Extrapolation coefficients that are optimal for molecular systems containing first row elements differ from those optimized for second row analogs, hence values optimized for a combined set of first and second row systems are also presented. The new coefficients are shown to produce excellent results in both Schwenke-style and equivalent power-law-based two-point CBS extrapolations, with the MP2-F12/cc-pV(D,T)Z-F12 extrapolations producing an average error of just 0.17 mEh with a maximum error of 0.49 for a collection of 23 small molecules. The use of larger basis sets, i.e., cc-pV(T,Q)Z-F12 and aug-cc-pV(Q,5)Z, in extrapolations of the MP2-F12 correlation energy leads to average errors that are smaller than the degree of confidence in the reference data (˜0.1 mEh). The latter were obtained through use of very large basis sets in MP2-F12 calculations on small molecules containing both first and second row elements. CBS limits obtained from optimized coefficients for conventional MP2 are only comparable to the accuracy of the MP2-F12/cc-pV(D,T)Z-F12 extrapolation when the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets are used. The CCSD(T)-F12b correlation energy is extrapolated as two distinct parts: CCSD-F12b and (T). While the CCSD-F12b extrapolations with smaller basis sets are statistically less accurate than those of the MP2-F12 correlation energies, this is presumably due to the slower basis set convergence of the CCSD-F12b method compared to MP2-F12. The use of larger basis sets in the CCSD-F12b extrapolations produces correlation energies with accuracies exceeding the confidence in the reference data (also obtained in large basis set F12 calculations). It is demonstrated that the use of the 3C(D) Ansatz is preferred for MP2-F12 CBS extrapolations. Optimal values of the geminal Slater exponent are presented for the diagonal, fixed amplitude Ansatz in MP2-F12 calculations, and these are also recommended for CCSD-F12b calculations.
Fast and accurate 3D tensor calculation of the Fock operator in a general basis
NASA Astrophysics Data System (ADS)
Khoromskaia, V.; Andrae, D.; Khoromskij, B. N.
2012-11-01
The present paper contributes to the construction of a “black-box” 3D solver for the Hartree-Fock equation by the grid-based tensor-structured methods. It focuses on the calculation of the Galerkin matrices for the Laplace and the nuclear potential operators by tensor operations using the generic set of basis functions with low separation rank, discretized on a fine N×N×N Cartesian grid. We prove the Ch2 error estimate in terms of mesh parameter, h=O(1/N), that allows to gain a guaranteed accuracy of the core Hamiltonian part in the Fock operator as h→0. However, the commonly used problem adapted basis functions have low regularity yielding a considerable increase of the constant C, hence, demanding a rather large grid-size N of about several tens of thousands to ensure the high resolution. Modern tensor-formatted arithmetics of complexity O(N), or even O(logN), practically relaxes the limitations on the grid-size. Our tensor-based approach allows to improve significantly the standard basis sets in quantum chemistry by including simple combinations of Slater-type, local finite element and other basis functions. Numerical experiments for moderate size organic molecules show efficiency and accuracy of grid-based calculations to the core Hamiltonian in the range of grid parameter N3˜1015.
Ghanbari, Yasser; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini
2014-01-01
Diffusion tensor imaging (DTI) offers rich insights into the physical characteristics of white matter (WM) fiber tracts and their development in the brain, facilitating a network representation of brain’s traffic pathways. Such a network representation of brain connectivity has provided a novel means of investigating brain changes arising from pathology, development or aging. The high dimensionality of these connectivity networks necessitates the development of methods that identify the connectivity building blocks or sub-network components that characterize the underlying variation in the population. In addition, the projection of the subject networks into the basis set provides a low dimensional representation of it, that teases apart different sources of variation in the sample, facilitating variation-specific statistical analysis. We propose a unified framework of non-negative matrix factorization and graph embedding for learning sub-network patterns of connectivity by their projective non-negative decomposition into a reconstructive basis set, as well as, additional basis sets representing variational sources in the population like age and pathology. The proposed framework is applied to a study of diffusion-based connectivity in subjects with autism that shows localized sparse sub-networks which mostly capture the changes related to pathology and developmental variations. PMID:25037933
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present an alternate set of basis functions, each defined over a pair of planar triangular patches, for the method of moments solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped, closed, conducting surfaces. The present basis functions are point-wise orthogonal to the pulse basis functions previously defined. The prime motivation to develop the present set of basis functions is to utilize them for the electromagnetic solution of dielectric bodies using a surface integral equation formulation which involves both electric and magnetic cur- rents. However, in the present work, only the conducting body solution is presented and compared with other data.
Theories of justice and their implications for priority setting in health care.
Olsen, J A
1997-12-01
The paper aims to show how three theories of distributive justice; utilitarianism, egalitarianism and maximum, can provide a clearer understanding of the normative basis of different priority setting regimes in the health service. The paper starts with a brief presentation of the theories, followed by their prescriptions for distribution, as illustrated with their respective preferred points on a utility possibility frontier. After this general discussion, attention is shifted from utils to health. The paper discusses how the recent Norwegian guidelines for priority setting can be understood in the light of the theories.
Brandenburg, Jan Gerit; Grimme, Stefan
2014-01-01
We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.
Point Set Denoising Using Bootstrap-Based Radial Basis Function.
Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad
2016-01-01
This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.
Midbond basis functions for weakly bound complexes
NASA Astrophysics Data System (ADS)
Shaw, Robert A.; Hill, J. Grant
2018-06-01
Weakly bound systems present a difficult problem for conventional atom-centred basis sets due to large separations, necessitating the use of large, computationally expensive bases. This can be remedied by placing a small number of functions in the region between molecules in the complex. We present compact sets of optimised midbond functions for a range of complexes involving noble gases, alkali metals and small molecules for use in high accuracy coupled -cluster calculations, along with a more robust procedure for their optimisation. It is shown that excellent results are possible with double-zeta quality orbital basis sets when a few midbond functions are added, improving both the interaction energy and the equilibrium bond lengths of a series of noble gas dimers by 47% and 8%, respectively. When used in conjunction with explicitly correlated methods, near complete basis set limit accuracy is readily achievable at a fraction of the cost that using a large basis would entail. General purpose auxiliary sets are developed to allow explicitly correlated midbond function studies to be carried out, making it feasible to perform very high accuracy calculations on weakly bound complexes.
A partitioned correlation function interaction approach for describing electron correlation in atoms
NASA Astrophysics Data System (ADS)
Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.
2013-04-01
The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.
Newborn infants' sensitivity to perceptual cues to lexical and grammatical words.
Shi, R; Werker, J F; Morgan, J L
1999-09-30
In our study newborn infants were presented with lists of lexical and grammatical words prepared from natural maternal speech. The results show that newborns are able to categorically discriminate these sets of words based on a constellation of perceptual cues that distinguish them. This general ability to detect and categorically discriminate sets of words on the basis of multiple acoustic and phonological cues may provide a perceptual base that can help older infants bootstrap into the acquisition of grammatical categories and syntactic structure.
Exact exchange-correlation potentials of singlet two-electron systems
NASA Astrophysics Data System (ADS)
Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.
2017-10-01
We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.
SH c realization of minimal model CFT: triality, poset and Burge condition
NASA Astrophysics Data System (ADS)
Fukuda, M.; Nakamura, S.; Matsuo, Y.; Zhu, R.-D.
2015-11-01
Recently an orthogonal basis of {{W}}_N -algebra (AFLT basis) labeled by N-tuple Young diagrams was found in the context of 4D/2D duality. Recursion relations among the basis are summarized in the form of an algebra SH c which is universal for any N. We show that it has an {{S}}_3 automorphism which is referred to as triality. We study the level-rank duality between minimal models, which is a special example of the automorphism. It is shown that the nonvanishing states in both systems are described by N or M Young diagrams with the rows of boxes appropriately shuffled. The reshuffling of rows implies there exists partial ordering of the set which labels them. For the simplest example, one can compute the partition functions for the partially ordered set (poset) explicitly, which reproduces the Rogers-Ramanujan identities. We also study the description of minimal models by SH c . Simple analysis reproduces some known properties of minimal models, the structure of singular vectors and the N-Burge condition in the Hilbert space.
Electric dipole moment of diatomic molecules by configuration interaction. IV.
NASA Technical Reports Server (NTRS)
Green, S.
1972-01-01
The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2007-01-01
In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
Rural Stress: Myths and Realities.
ERIC Educational Resources Information Center
Hansen, Thomas D.; McIntire, Walter G.
A comparison between the common myths of "rural existence" and the documented realities of rural living explodes the myth that rural living is generally stress free, shows that life stress in rural settings can have deleterious effects on the function of individual and family, and provides a basis for exploring some implications of rural stress…
USDA-ARS?s Scientific Manuscript database
New cellobiose Phi-H/Si-H maps are rapidly generated using a mixed basis set DFT method, found to achieve a high level of confidence while reducing computer resources dramatically. Relaxed iso-potential maps are made for different conformational states of cellobiose, showing how glycosidic bond dihe...
Exploring metabolic pathways in genome-scale networks via generating flux modes.
Rezola, A; de Figueiredo, L F; Brock, M; Pey, J; Podhorski, A; Wittmann, C; Schuster, S; Bockmayr, A; Planes, F J
2011-02-15
The reconstruction of metabolic networks at the genome scale has allowed the analysis of metabolic pathways at an unprecedented level of complexity. Elementary flux modes (EFMs) are an appropriate concept for such analysis. However, their number grows in a combinatorial fashion as the size of the metabolic network increases, which renders the application of EFMs approach to large metabolic networks difficult. Novel methods are expected to deal with such complexity. In this article, we present a novel optimization-based method for determining a minimal generating set of EFMs, i.e. a convex basis. We show that a subset of elements of this convex basis can be effectively computed even in large metabolic networks. Our method was applied to examine the structure of pathways producing lysine in Escherichia coli. We obtained a more varied and informative set of pathways in comparison with existing methods. In addition, an alternative pathway to produce lysine was identified using a detour via propionyl-CoA, which shows the predictive power of our novel approach. The source code in C++ is available upon request.
D'Onofrio, Giuseppe; Ghosh, Tapash Chandra
2005-01-17
Fluctuations and increments of both C(3) and G(3) levels along the human coding sequences were investigated comparing two sets of Xenopus/human orthologous genes. The first set of genes shows minor differences of the GC(3) levels, the second shows considerable increments of the GC(3) levels in the human genes. In both data sets, the fluctuations of C(3) and G(3) levels along the coding sequences correlated with the secondary structures of the encoded proteins. The human genes that underwent the compositional transition showed a different increment of the C(3) and G(3) levels within and among the structural units of the proteins. The relative synonymous codon usage (RSCU) of several amino acids were also affected during the compositional transition, showing that there exists a correlation between RSCU and protein secondary structures in human genes. The importance of natural selection for the formation of isochore organization of the human genome has been discussed on the basis of these results.
NASA Astrophysics Data System (ADS)
Balabanov, Nikolai B.; Peterson, Kirk A.
2005-08-01
Sequences of basis sets that systematically converge towards the complete basis set (CBS) limit have been developed for the first-row transition metal elements Sc-Zn. Two families of basis sets, nonrelativistic and Douglas-Kroll-Hess (-DK) relativistic, are presented that range in quality from triple-ζ to quintuple-ζ. Separate sets are developed for the description of valence (3d4s) electron correlation (cc-pVnZ and cc-pVnZ-DK; n =T,Q, 5) and valence plus outer-core (3s3p3d4s) correlation (cc-pwCVnZ and cc-pwCVnZ-DK; n =T,Q, 5), as well as these sets augmented by additional diffuse functions for the description of negative ions and weak interactions (aug-cc-pVnZ and aug-cc-pVnZ-DK). Extensive benchmark calculations at the coupled cluster level of theory are presented for atomic excitation energies, ionization potentials, and electron affinities, as well as molecular calculations on selected hydrides (TiH, MnH, CuH) and other diatomics (TiF, Cu2). In addition to observing systematic convergence towards the CBS limits, both 3s3p electron correlation and scalar relativity are calculated to strongly impact many of the atomic and molecular properties investigated for these first-row transition metal species.
NASA Astrophysics Data System (ADS)
Hill, J. Grant; Peterson, Kirk A.
2017-12-01
New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.
NASA Astrophysics Data System (ADS)
Frisch, Michael J.; Binkley, J. Stephen; Schaefer, Henry F., III
1984-08-01
The relative energies of the stationary points on the FH2 and H2CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Møller-Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H2→FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol-1 of the experimental value using the largest basis set considered. The qualitative features of the H2CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended.
NASA Astrophysics Data System (ADS)
Varandas, António J. C.
2018-04-01
Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKemmish, Laura K., E-mail: laura.mckemmish@gmail.com; Research School of Chemistry, Australian National University, Canberra
Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RAMPITUP. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or verymore » large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.« less
Basis convergence of range-separated density-functional theory.
Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
An unscaled quantum mechanical harmonic force field for p-benzoquinone
NASA Astrophysics Data System (ADS)
Nonella, Marco; Tavan, Paul
1995-10-01
Structure and harmonic vibrational frequencies of p-benzoquinone have been calculated using quantum chemical ab initio and density functional methods. Our calculations show that a satisfactory description of fundamentals and normal mode compositions is achieved upon consideration of correlation effects by means of Møller-Plesset perturbation expansion (MP2) or by density functional theory (DFT). Furthermore, for correct prediction of CO bondlength and force constant, basis sets augmented by polarization functions are required. Applying such basis sets, MP2 and DFT calculations both give results which are generally in reasonable agreement with experimental data. The quantitatively better agreement, however, is achieved with the computationally less demanding DFT method. This method particularly allows very precise prediction of the experimentally important absorptions in the frequency region between 1500 and 1800 cm -1 and of the isotopic shifts of these vibrations due to 13C or 18O substitution.
NASA Astrophysics Data System (ADS)
Hamlaoui, Ikram; Bencheraiet, Reguia; Bensegueni, Rafik; Bencharif, Mustapha
2018-03-01
In this study, the antioxidant capacity of three chalcone derivatives was evaluated by DPPH free radical scavenging. Experimental data showed low antioxidant activity (IC50±SD) of these molecules in comparison with BHT. The mechanism of DPPH radical scavenging elucidated by means of density functional theory (DFT) calculations. The tested compounds and their corresponding radicals and anions were optimized using B3LYP functional with 6-31G (d,p) basis set in the gas phase. The C-PCM model was used to perform solvent medium calculations. On the basis of theoretical calculations, it was shown that HAT mechanism was predominant in the gas phase, whereas SET-PT and SPLET mechanisms were favored in the presence of the solvent. Moreover, the HOMO orbitals and spin density distribution was evaluated to predict the probable sites for free radical attack.
Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS.
Zaidan, A A; Zaidan, B B; Al-Haiqi, Ahmed; Kiah, M L M; Hussain, Muzammil; Abdulnabi, Mohamed
2015-02-01
Evaluating and selecting software packages that meet the requirements of an organization are difficult aspects of software engineering process. Selecting the wrong open-source EMR software package can be costly and may adversely affect business processes and functioning of the organization. This study aims to evaluate and select open-source EMR software packages based on multi-criteria decision-making. A hands-on study was performed and a set of open-source EMR software packages were implemented locally on separate virtual machines to examine the systems more closely. Several measures as evaluation basis were specified, and the systems were selected based a set of metric outcomes using Integrated Analytic Hierarchy Process (AHP) and TOPSIS. The experimental results showed that GNUmed and OpenEMR software can provide better basis on ranking score records than other open-source EMR software packages. Copyright © 2014 Elsevier Inc. All rights reserved.
Quantum Mechanical Calculations of Monoxides of Silicon Carbide Molecules
2003-03-01
Data for CO Final Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -112.6850703739 2.02121 -1 2 DVZ...Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -363.7341927429 0.617643 -1 2 DVZ -363.7114852831 0 3 DVZ...Input Geometry Output Geometry Basis Set Final Energy (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE -1 2 O-C-Si Linear O-C-Si Linear DZV -401.5363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, S.; Shinada, M.; Matsuoka, O.
1990-10-01
A systematic calculation of new relativistic Gaussian basis sets is reported. The new basis sets are similar to the previously reported ones (J. Chem. Phys. {bold 91}, 4193 (1989)), but, in the calculation, the Breit interaction has been explicitly included besides the Dirac--Coulomb Hamiltonian. They have been adopted for the calculation of the self-consistent field effect on the Breit interaction energies and are expected to be useful for the studies on higher-order effects such as the electron correlations and other quantum electrodynamical effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Jong, Wibe A.; Harrison, Robert J.; Dixon, David A.
A parallel implementation of the spin-free one-electron Douglas-Kroll(-Hess) Hamiltonian (DKH) in NWChem is discussed. An efficient and accurate method to calculate DKH gradients is introduced. It is shown that the use of standard (non-relativistic) contracted basis set can produce erroneous results for elements beyond the first row elements. The generation of DKH contracted cc-pVXZ (X = D, T, Q, 5) basis sets for H, He, B - Ne, Al - Ar, and Ga - Br will be discussed.
Near Hartree-Fock quality GTO basis sets for the first- and third-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry
1989-01-01
Energy-optimized Gaussian-type-orbital (GTO) basis sets of accuracy approaching that of numerical Hartree-Fock computations are compiled for the elements of the first and third rows of the periodic table. The methods employed in calculating the sets are explained; the applicability of the sets to electronic-structure calculations is discussed; and the results are presented in tables and briefly characterized.
Hahn, David K; RaghuVeer, Krishans; Ortiz, J V
2014-05-15
Time-dependent density functional theory (TD-DFT) and electron propagator theory (EPT) are used to calculate the electronic transition energies and ionization energies, respectively, of species containing phosphorus or sulfur. The accuracy of TD-DFT and EPT, in conjunction with various basis sets, is assessed with data from gas-phase spectroscopy. TD-DFT is tested using 11 prominent exchange-correlation functionals on a set of 37 vertical and 19 adiabatic transitions. For vertical transitions, TD-CAM-B3LYP calculations performed with the MG3S basis set are lowest in overall error, having a mean absolute deviation from experiment of 0.22 eV, or 0.23 eV over valence transitions and 0.21 eV over Rydberg transitions. Using a larger basis set, aug-pc3, improves accuracy over the valence transitions via hybrid functionals, but improved accuracy over the Rydberg transitions is only obtained via the BMK functional. For adiabatic transitions, all hybrid functionals paired with the MG3S basis set perform well, and B98 is best, with a mean absolute deviation from experiment of 0.09 eV. The testing of EPT used the Outer Valence Green's Function (OVGF) approximation and the Partial Third Order (P3) approximation on 37 vertical first ionization energies. It is found that OVGF outperforms P3 when basis sets of at least triple-ζ quality in the polarization functions are used. The largest basis set used in this study, aug-pc3, obtained the best mean absolute error from both methods -0.08 eV for OVGF and 0.18 eV for P3. The OVGF/6-31+G(2df,p) level of theory is particularly cost-effective, yielding a mean absolute error of 0.11 eV.
Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas
2015-08-07
A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust "high-speed" computational tool in theoretical chemistry and physics.
Friese, Daniel H; Ringholm, Magnus; Gao, Bin; Ruud, Kenneth
2015-10-13
We present theory, implementation, and applications of a recursive scheme for the calculation of single residues of response functions that can treat perturbations that affect the basis set. This scheme enables the calculation of nonlinear light absorption properties to arbitrary order for other perturbations than an electric field. We apply this scheme for the first treatment of two-photon circular dichroism (TPCD) using London orbitals at the Hartree-Fock level of theory. In general, TPCD calculations suffer from the problem of origin dependence, which has so far been solved by using the velocity gauge for the electric dipole operator. This work now enables comparison of results from London orbital and velocity gauge based TPCD calculations. We find that the results from the two approaches both exhibit strong basis set dependence but that they are very similar with respect to their basis set convergence.
Core-core and core-valence correlation
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.
The Role of Context in Third Graders' Learning of Area Measurement
ERIC Educational Resources Information Center
Haris, Denny; Ilma, Ratu
2011-01-01
Many researches showed that the most of students find the difficulty in measuring area. The formula of area tends to be taught directly without involving the conceptual basis and the area measurement are separated from children's daily experiences. For this reason, the teaching and learning of area measurement was designed and link to a set of…
Teaching and Learning Methodologies Supported by ICT Applied in Computer Science
ERIC Educational Resources Information Center
Capacho, Jose
2016-01-01
The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…
Atmospheric Sulfur Dioxide in the United States: Can the Standards be Justified or Afforded?
ERIC Educational Resources Information Center
Megonnell, William H.
1975-01-01
Recent reviews have concluded that there is no basis for changing the standards set by the EPA in 1971, even though the data base was insufficient then for a quantifiable, scientific definition of clean air. Examination of data shows that the United States does not have a sulfur dioxide problem. (Author/BT)
Numerical judgments by chimpanzees (Pan troglodytes) in a token economy.
Beran, Michael J; Evans, Theodore A; Hoyle, Daniel
2011-04-01
We presented four chimpanzees with a series of tasks that involved comparing two token sets or comparing a token set to a quantity of food. Selected tokens could be exchanged for food items on a one-to-one basis. Chimpanzees successfully selected the larger numerical set for comparisons of 1 to 5 items when both sets were visible and when sets were presented through one-by-one addition of tokens into two opaque containers. Two of four chimpanzees used the number of tokens and food items to guide responding in all conditions, rather than relying on token color, size, total amount, or duration of set presentation. These results demonstrate that judgments of simultaneous and sequential sets of stimuli are made by some chimpanzees on the basis of the numerousness of sets rather than other non-numerical dimensions. The tokens were treated as equivalent to food items on the basis of their numerousness, and the chimpanzees maximized reward by choosing the larger number of items in all situations.
Segmented all-electron Gaussian basis sets of double and triple zeta qualities for Fr, Ra, and Ac
NASA Astrophysics Data System (ADS)
Campos, C. T.; de Oliveira, A. Z.; Ferreira, I. B.; Jorge, F. E.; Martins, L. S. C.
2017-05-01
Segmented all-electron basis sets of valence double and triple zeta qualities plus polarization functions for the elements Fr, Ra, and Ac are generated using non-relativistic and Douglas-Kroll-Hess (DKH) Hamiltonians. The sets are augmented with diffuse functions with the purpose to describe appropriately the electrons far from the nuclei. At the DKH-B3LYP level, first atomic ionization energies and bond lengths, dissociation energies, and polarizabilities of a sample of diatomics are calculated. Comparison with theoretical and experimental data available in the literature is carried out. It is verified that despite the small sizes of the basis sets, they are yet reliable.
NASA Astrophysics Data System (ADS)
Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi
2005-03-01
The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.
Rational Density Functional Selection Using Game Theory.
McAnanama-Brereton, Suzanne; Waller, Mark P
2018-01-22
Theoretical chemistry has a paradox of choice due to the availability of a myriad of density functionals and basis sets. Traditionally, a particular density functional is chosen on the basis of the level of user expertise (i.e., subjective experiences). Herein we circumvent the user-centric selection procedure by describing a novel approach for objectively selecting a particular functional for a given application. We achieve this by employing game theory to identify optimal functional/basis set combinations. A three-player (accuracy, complexity, and similarity) game is devised, through which Nash equilibrium solutions can be obtained. This approach has the advantage that results can be systematically improved by enlarging the underlying knowledge base, and the deterministic selection procedure mathematically justifies the density functional and basis set selections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kersten, J. A. F., E-mail: jennifer.kersten@cantab.net; Alavi, Ali, E-mail: a.alavi@fkf.mpg.de; Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart
2016-08-07
The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses andmore » compares two contrasting “universal” explicitly correlated approaches that fit into the FCIQMC framework: the [2]{sub R12} method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mE{sub h} to 3-4 mE{sub h}. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Dmitry A.; Varganov, Sergey A., E-mail: svarganov@unr.edu; Derevianko, Andrei
2014-05-14
We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}Σ{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtainingmore » the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup −1} for LiNa and by no more than 114 cm{sup −1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup −1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup −1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.« less
Ajili, Yosra; Hammami, Kamel; Jaidane, Nejm Eddine; Lanza, Mathieu; Kalugina, Yulia N; Lique, François; Hochlaf, Majdi
2013-07-07
We closely compare the accuracy of multidimensional potential energy surfaces (PESs) generated by the recently developed explicitly correlated coupled cluster (CCSD(T)-F12) methods in connection with the cc-pVXZ-F12 (X = D, T) and aug-cc-pVTZ basis sets and those deduced using the well-established orbital-based coupled cluster techniques employing correlation consistent atomic basis sets (aug-cc-pVXZ, X = T, Q, 5) and extrapolated to the complete basis set (CBS) limit. This work is performed on the benchmark rare gas-hydrogen halide interaction (HCl-He) system. These PESs are then incorporated into quantum close-coupling scattering dynamical calculations in order to check the impact of the accuracy of the PES on the scattering calculations. For this system, we deduced inelastic collisional data including (de-)excitation collisional and pressure broadening cross sections. Our work shows that the CCSD(T)-F12/aug-cc-pVTZ PES describes correctly the repulsive wall, the van der Waals minimum and long range internuclear distances whereas cc-pVXZ-F12 (X = D,T) basis sets are not diffuse enough for that purposes. Interestingly, the collision cross sections deduced from the CCSD(T)-F12/aug-cc-pVTZ PES are in excellent agreement with those obtained with CCSD(T)/CBS methodology. The position of the resonances and the general shape of these cross sections almost coincide. Since the cost of the electronic structure computations is reduced by several orders of magnitude when using CCSD(T)-F12/aug-cc-pVTZ compared to CCSD(T)/CBS methodology, this approach can be recommended as an alternative for generation of PESs of molecular clusters and for the interpretation of accurate scattering experiments as well as for a wide production of collisional data to be included in astrophysical and atmospherical models.
Convergence of third order correlation energy in atoms and molecules.
Kahn, Kalju; Granovsky, Alex A; Noga, Jozef
2007-01-30
We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.
Sensitivity of the Properties of Ruthenium “Blue Dimer” to Method, Basis Set, and Continuum Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozkanlar, Abdullah; Clark, Aurora E.
2012-05-23
The ruthenium “blue dimer” [(bpy)2RuIIIOH2]2O4+ is best known as the first well-defined molecular catalyst for water oxidation. It has been subject to numerous computational studies primarily employing density functional theory. However, those studies have been limited in the functionals, basis sets, and continuum models employed. The controversy in the calculated electronic structure and the reaction energetics of this catalyst highlights the necessity of benchmark calculations that explore the role of density functionals, basis sets, and continuum models upon the essential features of blue-dimer reactivity. In this paper, we report Kohn-Sham complete basis set (KS-CBS) limit extrapolations of the electronic structuremore » of “blue dimer” using GGA (BPW91 and BP86), hybrid-GGA (B3LYP), and meta-GGA (M06-L) density functionals. The dependence of solvation free energy corrections on the different cavity types (UFF, UA0, UAHF, UAKS, Bondi, and Pauling) within polarizable and conductor-like polarizable continuum model has also been investigated. The most common basis sets of double-zeta quality are shown to yield results close to the KS-CBS limit; however, large variations are observed in the reaction energetics as a function of density functional and continuum cavity model employed.« less
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-09-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-05
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Huang, Xinchuan; Valeev, Edward F.; Lee, Timothy J.
2010-12-01
One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H2O, N2H+, NO2+, and C2H2 molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N2H+ where it is concluded that basis set extrapolation is still preferred. The differences for H2O and NO2+ are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C2H2, however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)R12, incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N2H+ and NO2+ were computed, including basis set extrapolation, core-correlation, scalar relativity, and higher-order correlation and then used to compute highly accurate spectroscopic data for all isotopologues. Agreement with high-resolution experiment for 14N2H+ and 14N2D+ was excellent, but for 14N16O2+ agreement for the two stretching fundamentals is outside the expected residual uncertainty in the theoretical values, and it is concluded that there is an error in the experimental quantities. It is hoped that the highly accurate spectroscopic data presented for the minor isotopologues of N2H+ and NO2+ will be useful in the interpretation of future laboratory or astronomical observations.
NASA Astrophysics Data System (ADS)
Savithiri, S.; Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Bharanidharan, S.; Saleem, H.
2015-02-01
In this study, the molecular structure and vibrational spectra of 3t-pentyl2r,6c-diphenylpiperidin-4-one thiosemicarbazone (PDPOTSC) were studied. The ground-state molecular geometry was ascertained by using the density functional theory (DFT)/B3LYP method using 6-31++G(d,p) as a basis set. The vibrational (FT-IR and FT-Raman) spectra of PDPOTSC were computed using DFT/B3LYP and HF methods with 6-31++G(d,p) basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED ⩾ 10%) of the vibrational modes, calculated with scaled quantum mechanics (SQM) methods PQS program. The electrical dipole moment (μ) and first hyperpolarizability (βo) values have been computed using DFT/B3LYP and HF methods. The calculated result (βo) shows that the title molecule might have nonlinear optical (NLO) behavior. Atomic charges of C, N, S and molecular electrostatic potential (MEP) were calculated using B3LYP/6-31G++(d,p). The HOMO-LUMO energies were calculated and natural bonding orbital (NBO) analysis has also been carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvetsky, Nitai, E-mail: gershom@weizmann.ac.il; Martin, Jan M. L., E-mail: gershom@weizmann.ac.il; Peterson, Kirk A., E-mail: kipeters@wsu.edu
2016-06-07
In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H–He, B–Ne, and Al–Ar, is shown to be very close to the basis setmore » limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl{sub 4}) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than “valence limit + CV correction” approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from CCSD-F12b/cc-pV{Q,5}Z-F12 calculations, but the (T) component from conventional CCSD(T)/aug’-cc-pV{Q,5}Z + d calculations using Schwenke’s extrapolation; post-CCSD(T), core-valence, and relativistic corrections are to be obtained as in the original W4 theory. W4-F12 is found to agree slightly better than W4 with ATcT (active thermochemical tables) data, at a substantial saving in computation time and especially I/O overhead. A W4-F12 calculation on benzene is presented as a proof of concept.« less
NASA Astrophysics Data System (ADS)
Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet
2015-02-01
In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.
Android malware detection based on evolutionary super-network
NASA Astrophysics Data System (ADS)
Yan, Haisheng; Peng, Lingling
2018-04-01
In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.
A Simulation Study Comparing Procedures for Assessing Individual Educational Growth. Report No. 182.
ERIC Educational Resources Information Center
Richards, James M., Jr.
A computer simulation procedure was developed to reproduce the overall pattern of results obtained in the Educational Testing Service Growth Study. Then simulated data for seven sets of 10,000 to 15,000 cases were analyzed, and findings compared on the basis of correlations between estimated and true growth scores. Findings showed that growth was…
A Study of the Role of Categories in a Thesaurus for Educational Documentation.
ERIC Educational Resources Information Center
Foskett, D. J.
The field of education serves as the basis for this discussion on the use of categories in a thesaurus for information processing and documentation purposes. The author briefly shows how a number of writers concerned with the structure of the field of education, as well as makers of classification schemes, have commented on the value of setting up…
Recommended coordinate systems for thin spherocylindrical lenses.
Deal, F C; Toop, J
1993-05-01
Because the set of thin spherocylindrical lenses forms a vector space, any such lens can be expressed in terms of its cartesian coordinates with respect to whatever set of basis lenses we may choose. Two types of cartesian coordinate systems have become prominent, those having coordinates associated with the lens power matrix and those having coordinates associated with the Humphrey Vision Analyzer. This paper emphasizes the value of a particular cartesian coordinate system of the latter type, and the cylindrical coordinate system related to it, by showing how it can simplify the trigonometry of adding lenses and how it preserves symmetry in depicting the sets of all spherical lenses, all Jackson crossed-cylinders, and all cylindrical lenses. It also discusses appropriate coordinates for keeping statistics on lenses and shows that an easy extension of the lens vector space to include general optical systems is not possible.
Muessig, L; Hauser, J; Wills, T J; Cacucci, F
2016-08-01
Place cells are hippocampal pyramidal cells that are active when an animal visits a restricted area of the environment, and collectively their activity constitutes a neural representation of space. Place cell populations in the adult rat hippocampus display fundamental properties consistent with an associative memory network: the ability to 1) generate new and distinct spatial firing patterns when encountering novel spatial contexts or changes in sensory input ("remapping") and 2) reinstate previously stored firing patterns when encountering a familiar context, including on the basis of an incomplete/degraded set of sensory cues ("pattern completion"). To date, it is unknown when these spatial memory responses emerge during brain development. Here, we show that, from the age of first exploration (postnatal day 16) onwards, place cell populations already exhibit these key features: they generate new representations upon exposure to a novel context and can reactivate familiar representations on the basis of an incomplete set of sensory cues. These results demonstrate that, as early as exploratory behaviors emerge, and despite the absence of an adult-like grid cell network, the developing hippocampus processes incoming sensory information as an associative memory network. © The Author 2016. Published by Oxford University Press.
Basis convergence of range-separated density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, Yoshifumi, E-mail: y.noguchi@issp.u-tokyo.ac.jp; Hiyama, Miyabi; Akiyama, Hidefumi
2014-07-28
The optical properties of an isolated firefly luciferin anion are investigated by using first-principles calculations, employing the many-body perturbation theory to take into account the excitonic effect. The calculated photoabsorption spectra are compared with the results obtained using the time-dependent density functional theory (TDDFT) employing the localized atomic orbital (AO) basis sets and a recent experiment in vacuum. The present method well reproduces the line shape at the photon energy corresponding to the Rydberg and resonance excitations but overestimates the peak positions by about 0.5 eV. However, the TDDFT-calculated positions of some peaks are closer to those of the experiment.more » We also investigate the basis set dependency in describing the free electron states above vacuum level and the excitons involving the transitions to the free electron states and conclude that AO-only basis sets are inaccurate for free electron states and the use of a plane wave basis set is required.« less
Theoretical study of the XP3 (X = Al, B, Ga) clusters
NASA Astrophysics Data System (ADS)
Ueno, Leonardo T.; Lopes, Cinara; Malaspina, Thaciana; Roberto-Neto, Orlando; Canuto, Sylvio; Machado, Francisco B. C.
2012-05-01
The lowest singlet and triplet states of AlP3, GaP3 and BP3 molecules with Cs, C2v and C3v symmetries were characterized using the B3LYP functional and the aug-cc-pVTZ and aug-cc-pVQZ correlated consistent basis sets. Geometrical parameters and vibrational frequencies were calculated and compared to existent experimental and theoretical data. Relative energies were obtained with single point CCSD(T) calculations using the aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z basis sets, and then extrapolating to the complete basis set (CBS) limit.
How to compute isomerization energies of organic molecules with quantum chemical methods.
Grimme, Stefan; Steinmetz, Marc; Korth, Martin
2007-03-16
The reaction energies for 34 typical organic isomerizations including oxygen and nitrogen heteroatoms are investigated with modern quantum chemical methods that have the perspective of also being applicable to large systems. The experimental reaction enthalpies are corrected for vibrational and thermal effects, and the thus derived "experimental" reaction energies are compared to corresponding theoretical data. A series of standard AO basis sets in combination with second-order perturbation theory (MP2, SCS-MP2), conventional density functionals (e.g., PBE, TPSS, B3-LYP, MPW1K, BMK), and new perturbative functionals (B2-PLYP, mPW2-PLYP) are tested. In three cases, obvious errors of the experimental values could be detected, and accurate coupled-cluster [CCSD(T)] reference values have been used instead. It is found that only triple-zeta quality AO basis sets provide results close enough to the basis set limit and that sets like the popular 6-31G(d) should be avoided in accurate work. Augmentation of small basis sets with diffuse functions has a notable effect in B3-LYP calculations that is attributed to intramolecular basis set superposition error and covers basic deficiencies of the functional. The new methods based on perturbation theory (SCS-MP2, X2-PLYP) are found to be clearly superior to many other approaches; that is, they provide mean absolute deviations of less than 1.2 kcal mol-1 and only a few (<10%) outliers. The best performance in the group of conventional functionals is found for the highly parametrized BMK hybrid meta-GGA. Contrary to accepted opinion, hybrid density functionals offer no real advantage over simple GGAs. For reasonably large AO basis sets, results of poor quality are obtained with the popular B3-LYP functional that cannot be recommended for thermochemical applications in organic chemistry. The results of this study are complementary to often used benchmarks based on atomization energies and should guide chemists in their search for accurate and efficient computational thermochemistry methods.
Systematic theoretical study of non-nuclear electron density maxima in some diatomic molecules.
Terrabuio, Luiz A; Teodoro, Tiago Q; Rachid, Marina G; Haiduke, Roberto L A
2013-10-10
First, exploratory calculations were performed to investigate the presence of non-nuclear maxima (NNMs) in ground-state electron densities of homonuclear diatomic molecules from hydrogen up to calcium at their equilibrium geometries. In a second stage, only for the cases in which these features were previously detected, a rigorous analysis was carried out by several combinations of theoretical methods and basis sets in order to ensure that they are not only calculation artifacts. Our best results support that Li2, B2, C2, and P2 are molecules that possess true NNMs. A NNM was found in values obtained from the largest basis sets for Na2, but it disappeared at the experimental geometry because optimized bond lengths are significantly inaccurate for this case (deviations of 0.10 Å). Two of these maxima are also observed in Si2 with CCSD and large basis sets, but they are no longer detected as core-valence correlation or multiconfigurational wave functions are taken into account. Therefore, the NNMs in Si2 can be considered unphysical features due to an incomplete treatment of electron correlation. Finally, we show that a NNM is encountered in LiNa, representing the first discovery of such electron density maxima in a heteronuclear diatomic system at its equilibrium geometry, to our knowledge. Some results for LiNa, found in variations in internuclear distances, suggest that molecular electric moments, such as dipole and quadrupole, are sensitive to the presence of NNMs.
NASA Astrophysics Data System (ADS)
Kosar, Naveen; Mahmood, Tariq; Ayub, Khurshid
2017-12-01
Benchmark study has been carried out to find a cost effective and accurate method for bond dissociation energy (BDE) of carbon halogen (Csbnd X) bond. BDE of C-X bond plays a vital role in chemical reactions, particularly for kinetic barrier and thermochemistry etc. The compounds (1-16, Fig. 1) with Csbnd X bond used for current benchmark study are important reactants in organic, inorganic and bioorganic chemistry. Experimental data of Csbnd X bond dissociation energy is compared with theoretical results. The statistical analysis tools such as root mean square deviation (RMSD), standard deviation (SD), Pearson's correlation (R) and mean absolute error (MAE) are used for comparison. Overall, thirty-one density functionals from eight different classes of density functional theory (DFT) along with Pople and Dunning basis sets are evaluated. Among different classes of DFT, the dispersion corrected range separated hybrid GGA class along with 6-31G(d), 6-311G(d), aug-cc-pVDZ and aug-cc-pVTZ basis sets performed best for bond dissociation energy calculation of C-X bond. ωB97XD show the best performance with less deviations (RMSD, SD), mean absolute error (MAE) and a significant Pearson's correlation (R) when compared to experimental data. ωB97XD along with Pople basis set 6-311g(d) has RMSD, SD, R and MAE of 3.14 kcal mol-1, 3.05 kcal mol-1, 0.97 and -1.07 kcal mol-1, respectively.
Quantum-mechanics-derived 13Cα chemical shift server (CheShift) for protein structure validation
Vila, Jorge A.; Arnautova, Yelena A.; Martin, Osvaldo A.; Scheraga, Harold A.
2009-01-01
A server (CheShift) has been developed to predict 13Cα chemical shifts of protein structures. It is based on the generation of 696,916 conformations as a function of the φ, ψ, ω, χ1 and χ2 torsional angles for all 20 naturally occurring amino acids. Their 13Cα chemical shifts were computed at the DFT level of theory with a small basis set and extrapolated, with an empirically-determined linear regression formula, to reproduce the values obtained with a larger basis set. Analysis of the accuracy and sensitivity of the CheShift predictions, in terms of both the correlation coefficient R and the conformational-averaged rmsd between the observed and predicted 13Cα chemical shifts, was carried out for 3 sets of conformations: (i) 36 x-ray-derived protein structures solved at 2.3 Å or better resolution, for which sets of 13Cα chemical shifts were available; (ii) 15 pairs of x-ray and NMR-derived sets of protein conformations; and (iii) a set of decoys for 3 proteins showing an rmsd with respect to the x-ray structure from which they were derived of up to 3 Å. Comparative analysis carried out with 4 popular servers, namely SHIFTS, SHIFTX, SPARTA, and PROSHIFT, for these 3 sets of conformations demonstrated that CheShift is the most sensitive server with which to detect subtle differences between protein models and, hence, to validate protein structures determined by either x-ray or NMR methods, if the observed 13Cα chemical shifts are available. CheShift is available as a web server. PMID:19805131
Some considerations about Gaussian basis sets for electric property calculations
NASA Astrophysics Data System (ADS)
Arruda, Priscilla M.; Canal Neto, A.; Jorge, F. E.
Recently, segmented contracted basis sets of double, triple, and quadruple zeta valence quality plus polarization functions (XZP, X = D, T, and Q, respectively) for the atoms from H to Ar were reported. In this work, with the objective of having a better description of polarizabilities, the QZP set was augmented with diffuse (s and p symmetries) and polarization (p, d, f, and g symmetries) functions that were chosen to maximize the mean dipole polarizability at the UHF and UMP2 levels, respectively. At the HF and B3LYP levels of theory, electric dipole moment and static polarizability for a sample of molecules were evaluated. Comparison with experimental data and results obtained with a similar size basis set, whose diffuse functions were optimized for the ground state energy of the anion, was done.
ERIC Educational Resources Information Center
Lee, Liangshiu
2010-01-01
The basis sets for symmetry operations of d[superscript 1] to d[superscript 9] complexes in an octahedral field and the resulting terms are derived for the ground states and spin-allowed excited states. The basis sets are of fundamental importance in group theory. This work addresses such a fundamental issue, and the results are pedagogically…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCEmore » allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.« less
Grammar of binding in the languages of the world: Unity versus diversity.
Reuland, Eric
2017-11-01
Cole, Hermon, and Yanti (2015) present a number of far-reaching conclusions about language universals on the basis of their study of the anaphoric systems of the Austronesian languages of Indonesia. The present contribution critically assesses these conclusions. It reports a further set of data, and shows that contra to what these authors argue, the systems they discuss can be straightforwardly accounted for by a simple set of universal principles plus properties of the vocabulary of the languages involved. I conclude this article with some remarks on acquisition. Copyright © 2016 Elsevier B.V. All rights reserved.
Yamagata, Tetsuo; Zanelli, Ugo; Gallemann, Dieter; Perrin, Dominique; Dolgos, Hugues; Petersson, Carl
2017-09-01
1. We compared direct scaling, regression model equation and the so-called "Poulin et al." methods to scale clearance (CL) from in vitro intrinsic clearance (CL int ) measured in human hepatocytes using two sets of compounds. One reference set comprised of 20 compounds with known elimination pathways and one external evaluation set based on 17 compounds development in Merck (MS). 2. A 90% prospective confidence interval was calculated using the reference set. This interval was found relevant for the regression equation method. The three outliers identified were justified on the basis of their elimination mechanism. 3. The direct scaling method showed a systematic underestimation of clearance in both the reference and evaluation sets. The "Poulin et al." and the regression equation methods showed no obvious bias in either the reference or evaluation sets. 4. The regression model equation was slightly superior to the "Poulin et al." method in the reference set and showed a better absolute average fold error (AAFE) of value 1.3 compared to 1.6. A larger difference was observed in the evaluation set were the regression method and "Poulin et al." resulted in an AAFE of 1.7 and 2.6, respectively (removing the three compounds with known issues mentioned above). A similar pattern was observed for the correlation coefficient. Based on these data we suggest the regression equation method combined with a prospective confidence interval as the first choice for the extrapolation of human in vivo hepatic metabolic clearance from in vitro systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus
2016-03-11
A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in twomore » variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.« less
Density Functional O(N) Calculations
NASA Astrophysics Data System (ADS)
Ordejón, Pablo
1998-03-01
We have developed a scheme for performing Density Functional Theory calculations with O(N) scaling.(P. Ordejón, E. Artacho and J. M. Soler, Phys. Rev. B, 53), 10441 (1996) The method uses arbitrarily flexible and complete Atomic Orbitals (AO) basis sets. This gives a wide range of choice, from extremely fast calculations with minimal basis sets, to greatly accurate calculations with complete sets. The size-efficiency of AO bases, together with the O(N) scaling of the algorithm, allow the application of the method to systems with many hundreds of atoms, in single processor workstations. I will present the SIESTA code,(D. Sanchez-Portal, P. Ordejón, E. Artacho and J. M. Soler, Int. J. Quantum Chem., 65), 453 (1997) in which the method is implemented, with several LDA, LSD and GGA functionals available, and using norm-conserving, non-local pseudopotentials (in the Kleinman-Bylander form) to eliminate the core electrons. The calculation of static properties such as energies, forces, pressure, stress and magnetic moments, as well as molecular dynamics (MD) simulations capabilities (including variable cell shape, constant temperature and constant pressure MD) are fully implemented. I will also show examples of the accuracy of the method, and applications to large-scale materials and biomolecular systems.
NASA Astrophysics Data System (ADS)
Sen, Sangita; Tellgren, Erik I.
2018-05-01
External non-uniform magnetic fields acting on molecules induce non-collinear spin densities and spin-symmetry breaking. This necessitates a general two-component Pauli spinor representation. In this paper, we report the implementation of a general Hartree-Fock method, without any spin constraints, for non-perturbative calculations with finite non-uniform fields. London atomic orbitals are used to ensure faster basis convergence as well as invariance under constant gauge shifts of the magnetic vector potential. The implementation has been applied to investigate the joint orbital and spin response to a field gradient—quantified through the anapole moments—of a set of small molecules. The relative contributions of orbital and spin-Zeeman interaction terms have been studied both theoretically and computationally. Spin effects are stronger and show a general paramagnetic behavior for closed shell molecules while orbital effects can have either direction. Basis set convergence and size effects of anapole susceptibility tensors have been reported. The relation of the mixed anapole susceptibility tensor to chirality is also demonstrated.
NASA Astrophysics Data System (ADS)
Förner, Wolfgang
1992-03-01
Ab initio investigations of the bond alternation in butadiene are presented. The atomic basis sets applied range from minimal to split valence plus polarization quality. With the latter one the Hartree-Fock limit for the bond alternation is reached. Correlation is considered on Møller-Plesset many-body perturbation theory of second order (MP2), linear coupled cluster doubles (L-CCD) and coupled cluster doubles (CCD) level. For the smaller basis sets it is shown that for the bond alternation π-π correlations are essential while the effects of σ-σ and σ-π correlations are, though large, nearly independent of bond alternation. On MP2 level the variation of σ-π correlation with bond alternation is surprisingly large. This is discussed as an artefact of MP2. Comparative Su-Schrieffer-Heeger (SSH) and Pariser-Parr-Pople (PPP) calculations show that these models in their usual parametrizations cannot reproduce the ab initio results.
NASA Astrophysics Data System (ADS)
Yang, Yue; Gao, Hongwei
2012-04-01
Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.
Xu, Xin; Huang, Zhenhua; Graves, Daniel; Pedrycz, Witold
2014-12-01
In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this paper, a clustering-based graph Laplacian framework is presented for feature representation and value function approximation (VFA) in RL. By making use of clustering-based techniques, that is, K-means clustering or fuzzy C-means clustering, a graph Laplacian is constructed by subsampling in Markov decision processes (MDPs) with continuous state spaces. The basis functions for VFA can be automatically generated from spectral analysis of the graph Laplacian. The clustering-based graph Laplacian is integrated with a class of approximation policy iteration algorithms called representation policy iteration (RPI) for RL in MDPs with continuous state spaces. Simulation and experimental results show that, compared with previous RPI methods, the proposed approach needs fewer sample points to compute an efficient set of basis functions and the learning control performance can be improved for a variety of parameter settings.
Nonlinear optical properties of curcumin: solvatochromism-based approach and computational study
NASA Astrophysics Data System (ADS)
Margar, Sachin N.; Sekar, Nagaiyan
2016-06-01
Nonlinear optical (NLO) properties of curcumin were studied using solvatochromic method and density functional theory (DFT). DFT calculations were performed to determine the static first hyperpolarisability (βο) and its related properties (μ, α0,Δα, β, ?) for curcumin, using B3LYP functional with 6-31G (d), 6-311+G (d) and 6-311+G (d,p) basis sets at the ground-state and excited-state geometries and with CAM-B3LYP using 6-311+G (d,p) basis sets at the ground-state geometry in different solvent environments. In polar solvent environment, the values are slightly lower as compared to the non-polar solvent environments. The results obtained are correlated with the polarisability parameter αCT, first hyperpolarisability parameter βCT and the solvatochromic descriptor of γSDobtained by the solvatochromic method. The static first hyperpolarisability (βο) and its related properties were compared with urea and dibenzoylmethane (β-diketonate) and it is observed that curcumin shows very large values for first hyperpolarisability and its components.
Energy levels of a hydrogenic impurity in a parabolic quantum well with a magnetic field
NASA Astrophysics Data System (ADS)
Zang, J. X.; Rustgi, M. L.
1993-07-01
In this paper, we present a calculation of the energy levels of a hydrogenic impurity (or a hydrogenic atom) at the bottom of a one-dimensional parabolic quantum well with a magnetic field normal to the plane of the well. The finite-basis-set variational method is used to calculate the ground state and the excited states with major quantum number less than or equal to 3. The limit of small radial distance and the limit of great radial distance are considered to choose a set of proper basis functions. The results in the limit that the parabolic parameter α=0 are compared with the data of Rösner et al. [J. Phys. B 17, 29 (1984)]. The comparison shows that the present calculation is quite accurate. It is found that the energy levels increase with increasing parabolic parameter α and increase with increasing normalized magnetic-field strength γ except those levels with magnetic quantum number m<0 at small γ.
Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav
2013-10-28
We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yi-Geng; Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088; Wu, Yong, E-mail: wu-yong@iapcm.ac.cn
2016-02-07
K-vacancy Auger states of N{sup q+} (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly inmore » the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future.« less
Radial rescaling approach for the eigenvalue problem of a particle in an arbitrarily shaped box.
Lijnen, Erwin; Chibotaru, Liviu F; Ceulemans, Arnout
2008-01-01
In the present work we introduce a methodology for solving a quantum billiard with Dirichlet boundary conditions. The procedure starts from the exactly known solutions for the particle in a circular disk, which are subsequently radially rescaled in such a way that they obey the new boundary conditions. In this way one constructs a complete basis set which can be used to obtain the eigenstates and eigenenergies of the corresponding quantum billiard to a high level of precision. Test calculations for several regular polygons show the efficiency of the method which often requires one or two basis functions to describe the lowest eigenstates with high accuracy.
Buryak, Ilya; Lokshtanov, Sergei; Vigasin, Andrey
2012-09-21
The present work aims at ab initio characterization of the integrated intensity temperature variation of collision-induced absorption (CIA) in N(2)-H(2)(D(2)). Global fits of potential energy surface (PES) and induced dipole moment surface (IDS) were made on the basis of CCSD(T) (coupled cluster with single and double and perturbative triple excitations) calculations with aug-cc-pV(T,Q)Z basis sets. Basis set superposition error correction and extrapolation to complete basis set (CBS) limit techniques were applied to both energy and dipole moment. Classical second cross virial coefficient calculations accounting for the first quantum correction were employed to prove the quality of the obtained PES. The CIA temperature dependence was found in satisfactory agreement with available experimental data.
Research on the system scheme and experiment for the active laser polarization imaging
NASA Astrophysics Data System (ADS)
Fu, Qiang; Duan, Jin; Zhao, Rui; Li, Zheng; Zhang, Su; Zhan, Juntong; Zhu, Yong; Jiang, Hui-Lin
2015-10-01
The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields. The research present and development trend of polarization imaging detection technology was introduce, the system scheme of the active polarization imaging detection was put forward, and the key technologies such as the polarization information detection, optical system design, polarization radiation calibration and image fusion approach was analyzed. On this basis, detection system by existing equipment of laboratory was set up, and on the different materials such as wood, metal, plastic and goal was detected by polarization imaging to realize the active polarization imaging detection. The results show that image contrast of the metal and man-made objects is higher, the polarization effect is better, which provided the basis on the better performance of the polarization imaging instruments.
A Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval
NASA Technical Reports Server (NTRS)
Solakiewicz, Richard; Attele, Rohan; Koshak, William
2011-01-01
A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function was minimized by a numerical method. In order to improve this optimization, we introduce a Grobner basis solution to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. Using the Grobner basis, we show that there are exactly 2 solutions involving the first 3 moments of the (exponentially distributed) data. When the mean of the ground flash optical characteristic (e.g., such as the Maximum Group Area, MGA) is larger than that for cloud flashes, then a unique solution can be obtained.
NASA Astrophysics Data System (ADS)
Bolte, Stephanie E.; Ooms, Kristopher J.; Polenova, Tatyana; Baruah, Bharat; Crans, Debbie C.; Smee, Jason J.
2008-02-01
V51 solid-state NMR and density functional theory (DFT) investigations are reported for a series of pentacoordinate dioxovanadium(V)-dipicolinate [V(V )O2-dipicolinate] and heptacoordinate aquahydroxylamidooxovanadium(V)-dipicolinate [V(V)O-dipicolinate] complexes. These compounds are of interest because of their potency as phosphatase inhibitors as well as their insulin enhancing properties and potential for the treatment of diabetes. Experimental solid-state NMR results show that the electric field gradient tensors in the V(V )O2-dipicolinate derivatives are affected significantly by substitution on the dipicolinate ring and range from 5.8to8.3MHz. The chemical shift anisotropies show less dramatic variations with respect to the ligand changes and range between -550 and -600ppm. To gain insights on the origins of the NMR parameters, DFT calculations were conducted for an extensive series of the V(V )O2- and V(V)O-dipicolinate complexes. To assess the level of theory required for the accurate calculation of the V51 NMR parameters, different functionals, basis sets, and structural models were explored in the DFT study. It is shown that the original x-ray crystallographic geometries, including all counterions and solvation water molecules within 5Å of the vanadium, lead to the most accurate results. The choice of the functional and the basis set at a high level of theory has a relatively minor impact on the outcome of the chemical shift anisotropy calculations; however, the use of large basis sets is necessary for accurate calculations of the quadrupole coupling constants for several compounds of the V(V )O2 series. These studies demonstrate that even though the vanadium compounds under investigations exhibit distorted trigonal bipyramidal coordination geometry, they have a "perfect" trigonal bipyramidal electronic environment. This observation could potentially explain why vanadate and vanadium(V) adducts are often recognized as potent transition state analogs.
Fragment approach to constrained density functional theory calculations using Daubechies wavelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan
2015-06-21
In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix ofmore » the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.« less
NASA Astrophysics Data System (ADS)
Wieferink, Jürgen; Krüger, Peter; Pollmann, Johannes
2006-11-01
We present an algorithm for DFT calculations employing Gaussian basis sets for the wave function and a Fourier basis for the potential representation. In particular, a numerically very efficient calculation of the local potential matrix elements and the charge density is described. Special emphasis is placed on the consequences of periodicity and explicit k -vector dependence. The algorithm is tested by comparison with more straightforward ones for the case of adsorption of ethylene on the silicon-rich SiC(001)-(3×2) surface clearly revealing its substantial advantages. A complete self-consistency cycle is speeded up by roughly one order of magnitude since the calculation of matrix elements and of the charge density are accelerated by factors of 10 and 80, respectively, as compared to their straightforward calculation. Our results for C2H4:SiC(001)-(3×2) show that ethylene molecules preferentially adsorb in on-top positions above Si dimers on the substrate surface saturating both dimer dangling bonds per unit cell. In addition, a twist of the molecules around a surface-perpendicular axis is slightly favored energetically similar to the case of a complete monolayer of ethylene adsorbed on the Si(001)-(2×1) surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varandas, A. J. C., E-mail: varandas@uc.pt; Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória; Pansini, F. N. N.
2014-12-14
A method previously suggested to calculate the correlation energy at the complete one-electron basis set limit by reassignment of the basis hierarchical numbers and use of the unified singlet- and triplet-pair extrapolation scheme is applied to a test set of 106 systems, some with up to 48 electrons. The approach is utilized to obtain extrapolated correlation energies from raw values calculated with second-order Møller-Plesset perturbation theory and the coupled-cluster singles and doubles excitations method, some of the latter also with the perturbative triples corrections. The calculated correlation energies have also been used to predict atomization energies within an additive scheme.more » Good agreement is obtained with the best available estimates even when the (d, t) pair of hierarchical numbers is utilized to perform the extrapolations. This conceivably justifies that there is no strong reason to exclude double-zeta energies in extrapolations, especially if the basis is calibrated to comply with the theoretical model.« less
NASA Astrophysics Data System (ADS)
Petersson, George A.; Malick, David K.; Frisch, Michael J.; Braunstein, Matthew
2006-07-01
Examination of the convergence of full valence complete active space self-consistent-field configuration interaction including all single and double excitation (CASSCF-CISD) energies with expansion of the one-electron basis set reveals a pattern very similar to the convergence of single determinant energies. Calculations on the lowest four singlet states and the lowest four triplet states of N2 with the sequence of n-tuple-ζ augmented polarized (nZaP) basis sets (n =2, 3, 4, 5, and 6) are used to establish the complete basis set limits. Full configuration-interaction (CI) and core electron contributions must be included for very accurate potential energy surfaces. However, a simple extrapolation scheme that has no adjustable parameters and requires nothing more demanding than CAS(10e -,8orb)-CISD/3ZaP calculations gives the Re, ωe, ωeXe, Te, and De for these eight states with rms errors of 0.0006Å, 4.43cm-1, 0.35cm-1, 0.063eV, and 0.018eV, respectively.
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American statute applies and the acquisition cannot be set aside for...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
IR and NMR spectroscopic correlation of enterobactin by DFT
NASA Astrophysics Data System (ADS)
Moreno, M.; Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E. K. U.
2018-06-01
Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097-6104], Enterobactin (H6EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H6EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections sbnd LC-PBEsbnd and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H6EB structures dependent of dihedral angles. The results show a significant difference between the Osbnd H and Nsbnd H bands, while the Cdbnd O amide and Osbnd (Cdbnd O)sbnd IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H6EB structure. Calculated 1H and 13C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H6EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H6EB is also reported of manner to enrich the knowledge about its reactivity.
The underlying pathway structure of biochemical reaction networks
Schilling, Christophe H.; Palsson, Bernhard O.
1998-01-01
Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712
NASA Astrophysics Data System (ADS)
Kruse, Holger; Grimme, Stefan
2012-04-01
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model chemistry yields MAD=0.68 kcal/mol, which represents a huge improvement over plain B3LYP/6-31G* (MAD=2.3 kcal/mol). Application of gCP-corrected B97-D3 and HF-D3 on a set of large protein-ligand complexes prove the robustness of the method. Analytical gCP gradients make optimizations of large systems feasible with small basis sets, as demonstrated for the inter-ring distances of 9-helicene and most of the complexes in Hobza's S22 test set. The method is implemented in a freely available FORTRAN program obtainable from the author's website.
Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamini, Vittorino
2010-02-15
Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less
Spectroscopic properties of Arx-Zn and Arx-Ag+ (x = 1,2) van der Waals complexes
NASA Astrophysics Data System (ADS)
Oyedepo, Gbenga A.; Peterson, Charles; Schoendorff, George; Wilson, Angela K.
2013-03-01
Potential energy curves have been constructed using coupled cluster with singles, doubles, and perturbative triple excitations (CCSD(T)) in combination with all-electron and pseudopotential-based multiply augmented correlation consistent basis sets [m-aug-cc-pV(n + d)Z; m = singly, doubly, triply, n = D,T,Q,5]. The effect of basis set superposition error on the spectroscopic properties of Ar-Zn, Ar2-Zn, Ar-Ag+, and Ar2-Ag+ van der Waals complexes was examined. The diffuse functions of the doubly and triply augmented basis sets have been constructed using the even-tempered expansion. The a posteriori counterpoise scheme of Boys and Bernardi and its generalized variant by Valiron and Mayer has been utilized to correct for basis set superposition error (BSSE) in the calculated spectroscopic properties for diatomic and triatomic species. It is found that even at the extrapolated complete basis set limit for the energetic properties, the pseudopotential-based calculations still suffer from significant BSSE effects unlike the all-electron basis sets. This indicates that the quality of the approximations used in the design of pseudopotentials could have major impact on a seemingly valence-exclusive effect like BSSE. We confirm the experimentally determined equilibrium internuclear distance (re), binding energy (De), harmonic vibrational frequency (ωe), and C1Π ← X1Σ transition energy for ArZn and also predict the spectroscopic properties for the low-lying excited states of linear Ar2-Zn (X1Σg, 3Πg, 1Πg), Ar-Ag+ (X1Σ, 3Σ, 3Π, 3Δ, 1Σ, 1Π, 1Δ), and Ar2-Ag+ (X1Σg, 3Σg, 3Πg, 3Δg, 1Σg, 1Πg, 1Δg) complexes, using the CCSD(T) and MR-CISD + Q methods, to aid in their experimental characterizations.
A projection-free method for representing plane-wave DFT results in an atom-centered basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu
2015-09-14
Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less
NASA Astrophysics Data System (ADS)
Maranzana, Andrea; Giordana, Anna; Indarto, Antonius; Tonachini, Glauco; Barone, Vincenzo; Causà, Mauro; Pavone, Michele
2013-12-01
Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB. Counterpoise-corrected interaction energies ΔEAB are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A-B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [EMP2/CBS] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔECC-MP, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔEAB with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol-1. The zero-point vibrational energy corrected estimates Δ(EAB+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D0 measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π-π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms).
Maranzana, Andrea; Giordana, Anna; Indarto, Antonius; Tonachini, Glauco; Barone, Vincenzo; Causà, Mauro; Pavone, Michele
2013-12-28
Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB. Counterpoise-corrected interaction energies ΔEAB are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A-B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [EMP2/CBS] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔECC-MP, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔEAB with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol(-1). The zero-point vibrational energy corrected estimates Δ(EAB+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D0 measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π-π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms).
Zhao, Chunyu; Burge, James H
2007-12-24
Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.
NASA Technical Reports Server (NTRS)
Lindh, Roland; Lee, Timothy J.; Bernhardsson, Anders; Persson, B. Joakim; Karlstroem, Gunnar; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The autoaromatization of (Z)-hex-3-ene-1,5-diyne to the singlet biradical para-benzyne has been reinvestigated by state of the art ab initio methods. Previous CCSD(T)/6-31G(d,p) and CASPT2[0]/ANO[C(5s4p2d1f)/H(3s2p)] calculations estimated the the reaction heat at 298 K to be 8-10 and 4.9 plus or minus 3.2 kcal/mol, respectively. Recent NO- and oxygen-dependent trapping experiments and collision-induced dissociation threshold energy experiments estimate the heat of reaction to be 8.5 plus or minus 1.0 at 470 K (recomputed to 9.5 plus or minus 1.0 at 298 K) and 8.4 plus or minus 3.0 kcal/mol at 298 K, respectively. New theoretical estimates at 298 K predict the values at the basis set limit for the CCSD(T) and CASPT2(g1) methods to be 12.7 plus or minus 2.0 and 5.4 plus or minus 2.0 kcal/mol, respectively. The experimentally predicted electronic contribution to the heat of activation is 28.6 kcal/mol. This can be compared with 25.5 and 29.8 kcal/mol from the CASPT2[g1] and the CCSD(T) methods, respectively. The new study has in particular improved on the one-particle basis set for the CCSD(T) method as compared to earlier studies. For the CASPT2 investigation the better suited CASPT2[g1] approximation is utilized. The original CASPT2 method, CASPT2[0], systematically favors open shell systems relative to closed shell systems. This was previously corrected empirically. The study shows that the energy difference between CCSD(T) and CASPT2[g1] at the basis set limit is estimated to be 7 plus or minus 2 kcal/mol. The study also demonstrates that the estimated heat of reaction is very sensitive to the quality of the basis set.
NASA Astrophysics Data System (ADS)
Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide; Christiansen, Ove
2018-02-01
We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.
Antigenic Competition Between and Endotoxic Adjuvant and a Protein Antigen
Leong, Daniel L. Y.; Rudbach, Jon A.
1971-01-01
Antigenic competition between bovine gamma globulin (BGG) and endotoxin from a smooth strain (S-ET) and a rough (R-ET) heptoseless mutant strain of Salmonella minnesota was studied in mice. Both endotoxins acted as adjuvants for enhancing the antibody response to BGG. However, other work showed that the R-ET had minimal antigenicity, and it was used as a control for the competition studies. Antigenic competition between BGG and endotoxin as expressed by a suppression of the antibody response to BGG could not be demonstrated when varying adjuvant doses of S-ET or R-ET were injected simultaneously with a small constant dose of BGG into normal mice. However, mice presensitized with S-ET several weeks before immunization with the S-ET and BGG combination produced anti-BGG levels which were four to eightfold lower than in normal mice. Nearly complete suppression of the anti-BGG response could be obtained in presensitized mice by reducing the BGG dose 10-fold or by increasing the adjuvant dose of endotoxin. Mice pretreated with R-ET and challenged with BGG plus S-ET or R-ET showed no depression of the anti-BGG response. These and other experiments confirmed the immunological basis of the competitive effect. PMID:16557970
NASA Astrophysics Data System (ADS)
Győrffy, Werner; Knizia, Gerald; Werner, Hans-Joachim
2017-12-01
We present the theory and algorithms for computing analytical energy gradients for explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12). The main difficulty in F12 gradient theory arises from the large number of two-electron integrals for which effective two-body density matrices and integral derivatives need to be calculated. For efficiency, the density fitting approximation is used for evaluating all two-electron integrals and their derivatives. The accuracies of various previously proposed MP2-F12 approximations [3C, 3C(HY1), 3*C(HY1), and 3*A] are demonstrated by computing equilibrium geometries for a set of molecules containing first- and second-row elements, using double-ζ to quintuple-ζ basis sets. Generally, the convergence of the bond lengths and angles with respect to the basis set size is strongly improved by the F12 treatment, and augmented triple-ζ basis sets are sufficient to closely approach the basis set limit. The results obtained with the different approximations differ only very slightly. This paper is the first step towards analytical gradients for coupled-cluster singles and doubles with perturbative treatment of triple excitations, which will be presented in the second part of this series.
Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D
2009-09-01
Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.
Simplified DFT methods for consistent structures and energies of large systems
NASA Astrophysics Data System (ADS)
Caldeweyher, Eike; Gerit Brandenburg, Jan
2018-05-01
Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.
A practical radial basis function equalizer.
Lee, J; Beach, C; Tepedelenlioglu, N
1999-01-01
A radial basis function (RBF) equalizer design process has been developed in which the number of basis function centers used is substantially fewer than conventionally required. The reduction of centers is accomplished in two-steps. First an algorithm is used to select a reduced set of centers that lie close to the decision boundary. Then the centers in this reduced set are grouped, and an average position is chosen to represent each group. Channel order and delay, which are determining factors in setting the initial number of centers, are estimated from regression analysis. In simulation studies, an RBF equalizer with more than 2000-to-1 reduction in centers performed as well as the RBF equalizer without reduction in centers, and better than a conventional linear equalizer.
NASA Astrophysics Data System (ADS)
Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2018-03-01
In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.
Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method
NASA Astrophysics Data System (ADS)
Fedorov, Dmitri G.; Kitaura, Kazuo
2014-03-01
We developed a dual basis approach within the fragment molecular orbital formalism enabling efficient and accurate use of large basis sets. The method was tested on water clusters and polypeptides and applied to perform geometry optimization of chignolin (PDB: 1UAO) in solution at the level of DFT/6-31++G∗∗, obtaining a structure in agreement with experiment (RMSD of 0.4526 Å). The polarization in polypeptides is discussed with a comparison of the α-helix and β-strand.
NASA Astrophysics Data System (ADS)
Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2018-06-01
In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5 D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.
Data sets for author name disambiguation: an empirical analysis and a new resource.
Müller, Mark-Christoph; Reitz, Florian; Roy, Nicolas
2017-01-01
Data sets of publication meta data with manually disambiguated author names play an important role in current author name disambiguation (AND) research. We review the most important data sets used so far, and compare their respective advantages and shortcomings. From the results of this review, we derive a set of general requirements to future AND data sets. These include both trivial requirements, like absence of errors and preservation of author order, and more substantial ones, like full disambiguation and adequate representation of publications with a small number of authors and highly variable author names. On the basis of these requirements, we create and make publicly available a new AND data set, SCAD-zbMATH. Both the quantitative analysis of this data set and the results of our initial AND experiments with a naive baseline algorithm show the SCAD-zbMATH data set to be considerably different from existing ones. We consider it a useful new resource that will challenge the state of the art in AND and benefit the AND research community.
Agenda Setting for Health Promotion: Exploring an Adapted Model for the Social Media Era.
Albalawi, Yousef; Sixsmith, Jane
2015-01-01
The foundation of best practice in health promotion is a robust theoretical base that informs design, implementation, and evaluation of interventions that promote the public's health. This study provides a novel contribution to health promotion through the adaptation of the agenda-setting approach in response to the contribution of social media. This exploration and proposed adaptation is derived from a study that examined the effectiveness of Twitter in influencing agenda setting among users in relation to road traffic accidents in Saudi Arabia. The proposed adaptations to the agenda-setting model to be explored reflect two levels of engagement: agenda setting within the social media sphere and the position of social media within classic agenda setting. This exploratory research aims to assess the veracity of the proposed adaptations on the basis of the hypotheses developed to test these two levels of engagement. To validate the hypotheses, we collected and analyzed data from two primary sources: Twitter activities and Saudi national newspapers. Keyword mentions served as indicators of agenda promotion; for Twitter, interactions were used to measure the process of agenda setting within the platform. The Twitter final dataset comprised 59,046 tweets and 38,066 users who contributed by tweeting, replying, or retweeting. Variables were collected for each tweet and user. In addition, 518 keyword mentions were recorded from six popular Saudi national newspapers. The results showed significant ratification of the study hypotheses at both levels of engagement that framed the proposed adaptions. The results indicate that social media facilitates the contribution of individuals in influencing agendas (individual users accounted for 76.29%, 67.79%, and 96.16% of retweet impressions, total impressions, and amplification multipliers, respectively), a component missing from traditional constructions of agenda-setting models. The influence of organizations on agenda setting is also highlighted (in the data of user interactions, organizational accounts registered 17% and 14.74% as source and target of interactions, respectively). In addition, 13 striking similarities showed the relationship between newspapers and Twitter on the mentions trends line. The effective use of social media platforms in health promotion intervention programs requires new strategies that consider the limitations of traditional communication channels. Conducting research is vital to establishing a strong basis for modifying, designing, and developing new health promotion strategies and approaches.
Agenda Setting for Health Promotion: Exploring an Adapted Model for the Social Media Era
2015-01-01
Background The foundation of best practice in health promotion is a robust theoretical base that informs design, implementation, and evaluation of interventions that promote the public’s health. This study provides a novel contribution to health promotion through the adaptation of the agenda-setting approach in response to the contribution of social media. This exploration and proposed adaptation is derived from a study that examined the effectiveness of Twitter in influencing agenda setting among users in relation to road traffic accidents in Saudi Arabia. Objective The proposed adaptations to the agenda-setting model to be explored reflect two levels of engagement: agenda setting within the social media sphere and the position of social media within classic agenda setting. This exploratory research aims to assess the veracity of the proposed adaptations on the basis of the hypotheses developed to test these two levels of engagement. Methods To validate the hypotheses, we collected and analyzed data from two primary sources: Twitter activities and Saudi national newspapers. Keyword mentions served as indicators of agenda promotion; for Twitter, interactions were used to measure the process of agenda setting within the platform. The Twitter final dataset comprised 59,046 tweets and 38,066 users who contributed by tweeting, replying, or retweeting. Variables were collected for each tweet and user. In addition, 518 keyword mentions were recorded from six popular Saudi national newspapers. Results The results showed significant ratification of the study hypotheses at both levels of engagement that framed the proposed adaptions. The results indicate that social media facilitates the contribution of individuals in influencing agendas (individual users accounted for 76.29%, 67.79%, and 96.16% of retweet impressions, total impressions, and amplification multipliers, respectively), a component missing from traditional constructions of agenda-setting models. The influence of organizations on agenda setting is also highlighted (in the data of user interactions, organizational accounts registered 17% and 14.74% as source and target of interactions, respectively). In addition, 13 striking similarities showed the relationship between newspapers and Twitter on the mentions trends line. Conclusions The effective use of social media platforms in health promotion intervention programs requires new strategies that consider the limitations of traditional communication channels. Conducting research is vital to establishing a strong basis for modifying, designing, and developing new health promotion strategies and approaches. PMID:27227139
Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates
NASA Astrophysics Data System (ADS)
Rodionov, Andrey
An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.
42 CFR 457.700 - Basis, scope, and applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Strategic Planning, Reporting, and Evaluation § 457.700 Basis, scope, and applicability. (a) Statutory basis... strategic planning, reports, and program budgets; and (2) Section 2108 of the Act, which sets forth... strategic planning, monitoring, reporting and evaluation under title XXI. (c) Applicability. The...
42 CFR 457.700 - Basis, scope, and applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Strategic Planning, Reporting, and Evaluation § 457.700 Basis, scope, and applicability. (a) Statutory basis... strategic planning, reports, and program budgets; and (2) Section 2108 of the Act, which sets forth... strategic planning, monitoring, reporting and evaluation under title XXI. (c) Applicability. The...
50 CFR 403.04 - Determinations and hearings under section 109(c) of the MMPA.
Code of Federal Regulations, 2010 CFR
2010-10-01
... management program the state must provide for a process, consistent with section 109(c) of the Act, to... must include the elements set forth below. (b) Basis, purpose, and scope. The process set forth in this... made solely on the basis of the record developed at the hearing. The state agency in making its final...
Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Nowara, Ewa; Johnson, Bruce
2015-03-01
The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.
Optimal resource states for local state discrimination
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somshubhro; Halder, Saronath; Nathanson, Michael
2018-02-01
We study the problem of locally distinguishing pure quantum states using shared entanglement as a resource. For a given set of locally indistinguishable states, we define a resource state to be useful if it can enhance local distinguishability and optimal if it can distinguish the states as well as global measurements and is also minimal with respect to a partial ordering defined by entanglement and dimension. We present examples of useful resources and show that an entangled state need not be useful for distinguishing a given set of states. We obtain optimal resources with explicit local protocols to distinguish multipartite Greenberger-Horne-Zeilinger and graph states and also show that a maximally entangled state is an optimal resource under one-way local operations and classical communication to distinguish any bipartite orthonormal basis which contains at least one entangled state of full Schmidt rank.
Shinsky, Stephen A; Monteith, Kelsey E; Viggiano, Susan; Cosgrove, Michael S
2015-03-06
Mixed lineage leukemia protein-1 (MLL1) is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases that are required for metazoan development. MLL1 is the best characterized human SET1 family member, which includes MLL1-4 and SETd1A/B. MLL1 assembles with WDR5, RBBP5, ASH2L, DPY-30 (WRAD) to form the MLL1 core complex, which is required for H3K4 dimethylation and transcriptional activation. Because all SET1 family proteins interact with WRAD in vivo, it is hypothesized they are regulated by similar mechanisms. However, recent evidence suggests differences among family members that may reflect unique regulatory inputs in the cell. Missing is an understanding of the intrinsic enzymatic activities of different SET1 family complexes under standard conditions. In this investigation, we reconstituted each human SET1 family core complex and compared subunit assembly and enzymatic activities. We found that in the absence of WRAD, all but one SET domain catalyzes at least weak H3K4 monomethylation. In the presence of WRAD, all SET1 family members showed stimulated monomethyltransferase activity but differed in their di- and trimethylation activities. We found that these differences are correlated with evolutionary lineage, suggesting these enzyme complexes have evolved to accomplish unique tasks within metazoan genomes. To understand the structural basis for these differences, we employed a "phylogenetic scanning mutagenesis" assay and identified a cluster of amino acid substitutions that confer a WRAD-dependent gain-of-function dimethylation activity on complexes assembled with the MLL3 or Drosophila trithorax proteins. These results form the basis for understanding how WRAD differentially regulates SET1 family complexes in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
The Population Structure and Diversity of Eggplant from Asia and the Mediterranean Basin
Cericola, Fabio; Portis, Ezio; Toppino, Laura; Barchi, Lorenzo; Acciarri, Nazareno; Ciriaci, Tommaso; Sala, Tea; Rotino, Giuseppe Leonardo; Lanteri, Sergio
2013-01-01
A collection of 238 eggplant breeding lines, heritage varieties and selections within local landraces provenanced from Asia and the Mediterranean Basin was phenotyped with respect to key plant and fruit traits, and genotyped using 24 microsatellite loci distributed uniformly throughout the genome. STRUCTURE analysis based on the genotypic data identified two major sub-groups, which to a large extent mirrored the provenance of the entries. With the goal to identify true-breeding types, 38 of the entries were discarded on the basis of microsatellite-based residual heterozygosity, along with a further nine which were not phenotypically uniform. The remaining 191 entries were scored for a set of 19 fruit and plant traits in a replicated experimental field trial. The phenotypic data were subjected to principal component and hierarchical principal component analyses, allowing three major morphological groups to be identified. All three morphological groups were represented in both the “Occidental” and the “Oriental” germplasm, so the correlation between the phenotypic and the genotypic data sets was quite weak. The relevance of these results for evolutionary studies and the further improvement of eggplant are discussed. The population structure of the core set of germplasm shows that it can be used as a basis for an association mapping approach. PMID:24040032
The population structure and diversity of eggplant from Asia and the Mediterranean Basin.
Cericola, Fabio; Portis, Ezio; Toppino, Laura; Barchi, Lorenzo; Acciarri, Nazareno; Ciriaci, Tommaso; Sala, Tea; Rotino, Giuseppe Leonardo; Lanteri, Sergio
2013-01-01
A collection of 238 eggplant breeding lines, heritage varieties and selections within local landraces provenanced from Asia and the Mediterranean Basin was phenotyped with respect to key plant and fruit traits, and genotyped using 24 microsatellite loci distributed uniformly throughout the genome. STRUCTURE analysis based on the genotypic data identified two major sub-groups, which to a large extent mirrored the provenance of the entries. With the goal to identify true-breeding types, 38 of the entries were discarded on the basis of microsatellite-based residual heterozygosity, along with a further nine which were not phenotypically uniform. The remaining 191 entries were scored for a set of 19 fruit and plant traits in a replicated experimental field trial. The phenotypic data were subjected to principal component and hierarchical principal component analyses, allowing three major morphological groups to be identified. All three morphological groups were represented in both the "Occidental" and the "Oriental" germplasm, so the correlation between the phenotypic and the genotypic data sets was quite weak. The relevance of these results for evolutionary studies and the further improvement of eggplant are discussed. The population structure of the core set of germplasm shows that it can be used as a basis for an association mapping approach.
Blind-type optical configuration for the high heat solar collectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasilyev, V.P.
1996-12-31
Blind approach in constructing high heat solar collectors with the one-stage light flux concentration is presented. Shown are diverse multielement optical configurations that can be built on the basis of a blind-type concept. Their two main versions using the set of concave parabolic reflecting elements are described. A preliminary estimation of the flux concentration level for a circle-blind collector shows it reaching up to half of the thermodynamic limit.
NASA Technical Reports Server (NTRS)
Arvidson, R. E. (Principal Investigator)
1981-01-01
Heat Capacity Mapping Mission (HCMM) in the form of an apparent thermal inertia image were merged with shaded relief maps and Bouguer gravity maps. The HCMM data show that the dominant structural grain in Missouri strikes in a northwesterly direction. The strike is the same as a major basement fault or flexure identified on the basis of gravity images.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method
NASA Astrophysics Data System (ADS)
Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.
2018-05-01
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method.
Symonds, C; Kattirtzi, J A; Shalashilin, D V
2018-05-14
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
NASA Astrophysics Data System (ADS)
Yockel, Scott; Mintz, Benjamin; Wilson, Angela K.
2004-07-01
Advanced ab initio [coupled cluster theory through quasiperturbative triple excitations (CCSD(T))] and density functional (B3LYP) computational chemistry approaches were used in combination with the standard and augmented correlation consistent polarized valence basis sets [cc-pVnZ and aug-cc-pVnZ, where n=D(2), T(3), Q(4), and 5] to investigate the energetic and structural properties of small molecules containing third-row (Ga-Kr) atoms. These molecules were taken from the Gaussian-2 (G2) extended test set for third-row atoms. Several different schemes were used to extrapolate the calculated energies to the complete basis set (CBS) limit for CCSD(T) and the Kohn-Sham (KS) limit for B3LYP. Zero point energy and spin orbital corrections were included in the results. Overall, CCSD(T) atomization energies, ionization energies, proton affinities, and electron affinities are in good agreement with experiment, within 1.1 kcal/mol when the CBS limit has been determined using a series of two basis sets of at least triple zeta quality. For B3LYP, the overall mean absolute deviation from experiment for the three properties and the series of molecules is more significant at the KS limit, within 2.3 and 2.6 kcal/mol for the cc-pVnZ and aug-cc-pVnZ basis set series, respectively.
NASA Astrophysics Data System (ADS)
Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.
2011-11-01
High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.
Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid
NASA Astrophysics Data System (ADS)
Alver, Özgur; Kaya, Mehmet Fatih
2014-11-01
Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Gurmeet; Nandi, Apurba; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in
2016-03-14
A pragmatic method based on the molecular tailoring approach (MTA) for estimating the complete basis set (CBS) limit at Møller-Plesset second order perturbation (MP2) theory accurately for large molecular clusters with limited computational resources is developed. It is applied to water clusters, (H{sub 2}O){sub n} (n = 7, 8, 10, 16, 17, and 25) optimized employing aug-cc-pVDZ (aVDZ) basis-set. Binding energies (BEs) of these clusters are estimated at the MP2/aug-cc-pVNZ (aVNZ) [N = T, Q, and 5 (whenever possible)] levels of theory employing grafted MTA (GMTA) methodology and are found to lie within 0.2 kcal/mol of the corresponding full calculationmore » MP2 BE, wherever available. The results are extrapolated to CBS limit using a three point formula. The GMTA-MP2 calculations are feasible on off-the-shelf hardware and show around 50%–65% saving of computational time. The methodology has a potential for application to molecular clusters containing ∼100 atoms.« less
On the ab initio evaluation of Hubbard parameters. II. The κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal
NASA Astrophysics Data System (ADS)
Fortunelli, Alessandro; Painelli, Anna
1997-05-01
A previously proposed approach for the ab initio evaluation of Hubbard parameters is applied to BEDT-TTF dimers. The dimers are positioned according to four geometries taken as the first neighbors from the experimental data on the κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal. RHF-SCF, CAS-SCF and frozen-orbital calculations using the 6-31G** basis set are performed with different values of the total charge, allowing us to derive all the relevant parameters. It is found that the electronic structure of the BEDT-TTF planes is adequately described by the standard Extended Hubbard Model, with the off-diagonal electron-electron interaction terms (X and W) of negligible size. The derived parameters are in good agreement with available experimental data. Comparison with previous theoretical estimates shows that the t values compare well with those obtained from Extended Hückel Theory (whereas the minimal basis set estimates are completely unreliable). On the other hand, the Uaeff values exhibit an appreciable dependence on the chemical environment.
Smolin, John A; Gambetta, Jay M; Smith, Graeme
2012-02-17
We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.
A machine learning approach for efficient uncertainty quantification using multiscale methods
NASA Astrophysics Data System (ADS)
Chan, Shing; Elsheikh, Ahmed H.
2018-02-01
Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.
Höfener, Sebastian; Bischoff, Florian A; Glöss, Andreas; Klopper, Wim
2008-06-21
In the recent years, Slater-type geminals (STGs) have been used with great success to expand the first-order wave function in an explicitly-correlated perturbation theory. The present work reports on this theory's implementation in the framework of the Turbomole suite of programs. A formalism is presented for evaluating all of the necessary molecular two-electron integrals by means of the Obara-Saika recurrence relations, which can be applied when the STG is expressed as a linear combination of a small number (n) of Gaussians (STG-nG geminal basis). In the Turbomole implementation of the theory, density fitting is employed and a complementary auxiliary basis set (CABS) is used for the resolution-of-the-identity (RI) approximation of explicitly-correlated theory. By virtue of this RI approximation, the calculation of molecular three- and four-electron integrals is avoided. An approximation is invoked to avoid the two-electron integrals over the commutator between the operators of kinetic energy and the STG. This approximation consists of computing commutators between matrices in place of operators. Integrals over commutators between operators would have occurred if the theory had been formulated and implemented as proposed originally. The new implementation in Turbomole was tested by performing a series of calculations on rotational conformers of the alkanols n-propanol through n-pentanol. Basis-set requirements concerning the orbital basis, the auxiliary basis set for density fitting and the CABS were investigated. Furthermore, various (constrained) optimizations of the amplitudes of the explicitly-correlated double excitations were studied. These amplitudes can be optimized in orbital-variant and orbital-invariant manners, or they can be kept fixed at the values governed by the rational generator approach, that is, by the electron cusp conditions. Electron-correlation effects beyond the level of second-order perturbation theory were accounted for by conventional coupled-cluster calculations with single, double and perturbative triple excitations [CCSD(T)]. The explicitly-correlated perturbation theory results were combined with CCSD(T) results and compared with literature data obtained by basis-set extrapolation.
Flener-Lovitt, Charity; Woon, David E; Dunning, Thom H; Girolami, Gregory S
2010-02-04
Density functional theory and ab initio methods have been used to calculate the structures and energies of minima and transition states for the reactions of methane coordinated to a transition metal. The reactions studied are reversible C-H bond activation of the coordinated methane ligand to form a transition metal methyl hydride complex and dissociation of the coordinated methane ligand. The reaction sequence can be summarized as L(x)M(CH(3))H <==> L(x)M(CH(4)) <==> L(x)M + CH(4), where L(x)M is the osmium-containing fragment (C(5)H(5))Os(R(2)PCH(2)PR(2))(+) and R is H or CH(3). Three-center metal-carbon-hydrogen interactions play an important role in this system. Both basis sets and functionals have been benchmarked in this work, including new correlation consistent basis sets for a third transition series element, osmium. Double zeta quality correlation consistent basis sets yield energies close to those from calculations with quadruple-zeta basis sets, with variations that are smaller than the differences between functionals. The energies of important species on the potential energy surface, calculated by using 10 DFT functionals, are compared both to experimental values and to CCSD(T) single point calculations. Kohn-Sham natural bond orbital descriptions are used to understand the differences between functionals. Older functionals favor electrostatic interactions over weak donor-acceptor interactions and, therefore, are not particularly well suited for describing systems--such as sigma-complexes--in which the latter are dominant. Newer kinetic and dispersion-corrected functionals such as MPW1K and M05-2X provide significantly better descriptions of the bonding interactions, as judged by their ability to predict energies closer to CCSD(T) values. Kohn-Sham and natural bond orbitals are used to differentiate between bonding descriptions. Our evaluations of these basis sets and DFT functionals lead us to recommend the use of dispersion corrected functionals in conjunction with double-zeta or larger basis sets with polarization functions for calculations involving weak interactions, such as those found in sigma-complexes with transition metals.
Liu, Yuan; Zhao, Jijun; Li, Fengyu; Chen, Zhongfang
2013-01-15
Accurate description of hydrogen-bonding energies between water molecules and van der Waals interactions between guest molecules and host water cages is crucial for study of methane hydrates (MHs). Using high-level ab initio MP2 and CCSD(T) results as the reference, we carefully assessed the performance of a variety of exchange-correlation functionals and various basis sets in describing the noncovalent interactions in MH. The functionals under investigation include the conventional GGA, meta-GGA, and hybrid functionals (PBE, PW91, TPSS, TPSSh, B3LYP, and X3LYP), long-range corrected functionals (ωB97X, ωB97, LC-ωPBE, CAM-B3LYP, and LC-TPSS), the newly developed Minnesota class functionals (M06-L, M06-HF, M06, and M06-2X), and the dispersion-corrected density functional theory (DFT) (DFT-D) methods (B97-D, ωB97X-D, PBE-TS, PBE-Grimme, and PW91-OBS). We found that the conventional functionals are not suitable for MH, notably, the widely used B3LYP functional even predicts repulsive interaction between CH(4) and (H(2)O)(6) cluster. M06-2X is the best among the M06-Class functionals. The ωB97X-D outperforms the other DFT-D methods and is recommended for accurate first-principles calculations of MH. B97-D is also acceptable as a compromise of computational cost and precision. Considering both accuracy and efficiency, B97-D, ωB97X-D, and M06-2X functional with 6-311++G(2d,2p) basis set without basis set superposition error (BSSE) correction are recommended. Though a fairly large basis set (e.g., aug-cc-pVTZ) and BSSE correction are necessary for a reliable MP2 calculation, DFT methods are less sensitive to the basis set and BSSE correction if the basis set is sufficient (e.g., 6-311++G(2d,2p)). These assessments provide useful guidance for choosing appropriate methodology of first-principles simulation of MH and related systems. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
47 CFR 4.1 - Scope, basis and purpose.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Scope, basis and purpose. 4.1 Section 4.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL DISRUPTIONS TO COMMUNICATIONS General § 4.1 Scope, basis and purpose. In this part, the Federal Communications Commission is setting forth requirements...
47 CFR 4.1 - Scope, basis and purpose.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Scope, basis and purpose. 4.1 Section 4.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL DISRUPTIONS TO COMMUNICATIONS General § 4.1 Scope, basis and purpose. In this part, the Federal Communications Commission is setting forth requirements...
Electronic and spectroscopic characterizations of SNP isomers
NASA Astrophysics Data System (ADS)
Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.
2018-02-01
High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.
Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory
NASA Astrophysics Data System (ADS)
Ohnishi, Yu-ya; Ten-no, Seiichiro
2013-09-01
The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.
The interval testing procedure: A general framework for inference in functional data analysis.
Pini, Alessia; Vantini, Simone
2016-09-01
We introduce in this work the Interval Testing Procedure (ITP), a novel inferential technique for functional data. The procedure can be used to test different functional hypotheses, e.g., distributional equality between two or more functional populations, equality of mean function of a functional population to a reference. ITP involves three steps: (i) the representation of data on a (possibly high-dimensional) functional basis; (ii) the test of each possible set of consecutive basis coefficients; (iii) the computation of the adjusted p-values associated to each basis component, by means of a new strategy here proposed. We define a new type of error control, the interval-wise control of the family wise error rate, particularly suited for functional data. We show that ITP is provided with such a control. A simulation study comparing ITP with other testing procedures is reported. ITP is then applied to the analysis of hemodynamical features involved with cerebral aneurysm pathology. ITP is implemented in the fdatest R package. © 2016, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Legler, C. R.; Brown, N. R.; Dunbar, R. A.; Harness, M. D.; Nguyen, K.; Oyewole, O.; Collier, W. B.
2015-06-01
The Scaled Quantum Mechanical (SQM) method of scaling calculated force constants to predict theoretically calculated vibrational frequencies is expanded to include a broad array of polarized and augmented basis sets based on the split valence 6-31G and 6-311G basis sets with the B3LYP density functional. Pulay's original choice of a single polarized 6-31G(d) basis coupled with a B3LYP functional remains the most computationally economical choice for scaled frequency calculations. But it can be improved upon with additional polarization functions and added diffuse functions for complex molecular systems. The new scale factors for the B3LYP density functional and the 6-31G, 6-31G(d), 6-31G(d,p), 6-31G+(d,p), 6-31G++(d,p), 6-311G, 6-311G(d), 6-311G(d,p), 6-311G+(d,p), 6-311G++(d,p), 6-311G(2d,p), 6-311G++(2d,p), 6-311G++(df,p) basis sets are shown. The double d polarized models did not perform as well and the source of the decreased accuracy was investigated. An alternate system of generating internal coordinates that uses the out-of plane wagging coordinate whenever it is possible; makes vibrational assignments via potential energy distributions more meaningful. Automated software to produce SQM scaled vibrational calculations from different molecular orbital packages is presented.
NASA Astrophysics Data System (ADS)
Aktan, Ebru; Gündüzalp, Ayla Balaban; Özmen, Ümmühan Özdemir
2017-01-01
The carboxamides; N,N‧-bis(thiophene-2-carboxamido)-1,3-diaminopropanol (L1) and N,N‧-bis(furan-2-carboxamido)-1,3-diaminopropanol (L2) were synthesized and characterized using 1H NMR, 13C NMR, LC-MS and FT-IR spectrum. The molecular geometries of these molecules were optimized by DFT/B3LYP method with 6-311G(d,p) basis set in Gaussian 09 software. The geometrical parameters, frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP) mapped surfaces were calculated by the same basis set. Dinuclear Cu(II) and Zn(II) complexes having general formula as [MLCl]2Cl2.nH2O (in which M = Cu(II),Zn(II); n = 0,2) were also synthesized and characterized using LC-MS and FT-IR spectrum, thermogravimetric analysis (TGA/DTA curves), magnetic moments and molar conductivities. Coordination was found to be through carbonyl oxygen and two chlorine atoms as bridging in distorted tetrahedral geometry. The optimized structures, geometrical parameters, frontier molecular orbitals (FMOs) and dipole moments of metal complexes were also obtained by DFT/B3LYP method with LanL2DZ basis set. Antibacterial activities of the compounds were screened against E. coli using microdilution method (MIC's in μg/mL). The activity results show that the corresponding compounds exhibit good to moderate antibacterial effects when compared with sulfamethoxazole and sulfisoxazole antibiotics as positive controls. Also, metal complexes have remarkable increase in their activities than parent ligands against E. coli which is mostly effected by [Cu(L2)Cl]2Cl2 complex as potential antibacterial agent.
Rizzo, Antonio; Vahtras, Olav
2011-06-28
A computational approach to the calculation of excited state electronic circular dichroism (ESECD) spectra of chiral molecules is discussed. Frequency dependent quadratic response theory is employed to compute the rotatory strength for transitions between excited electronic states, by employing both a magnetic gauge dependent and a (velocity-based) magnetic gauge independent approach. Application is made to the lowest excited states of two prototypical chiral molecules, propylene oxide, also known as 1,2-epoxypropane or methyl oxirane, and R-(+)-1,1'-bi(2-naphthol), or BINOL. The dependence of the rotatory strength for transitions between the lowest three excited states of methyl oxirane upon the quality and extension of the basis set is analyzed, by employing a hierarchy of correlation consistent basis sets. Once established that basis sets of at least triple zeta quality, and at least doubly augmented, are sufficient to ensure sufficiently converged results, at least at the Hartree-Fock self-consistent field (HF-SCF) level, the rotatory strengths for all transitions between the lowest excited electronic states of methyl oxirane are computed and analyzed, employing HF-SCF, and density functional theory (DFT) electronic structure models. For DFT, both the popular B3LYP and its recently highly successful CAM-B3LYP extension are exploited. The strong dependence of the spectra upon electron correlation is highlighted. A HF-SCF and DFT study is carried out also for BINOL, a system where excited states show the typical pairing structure arising from the interaction of the two monomeric moieties, and whose conformational changes following photoexcitation were studied recently with via time-resolved CD.
NASA Astrophysics Data System (ADS)
DeYonker, Nathan J.; Halfen, DeWayne T.; Allen, Wesley D.; Ziurys, Lucy M.
2014-11-01
Six electronic states (X 4Σ-, A 4Π, B 4Δ, 2Φ, 2Δ, 2Σ+) of the vanadium monochloride cation (VCl+) are described using large basis set coupled cluster theory. For the two lowest quartet states (X 4Σ- and A 4Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, bar De, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X 4Σ-), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state (2Γ) has a Te of ˜11 200 cm-1. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.
NASA Astrophysics Data System (ADS)
Rohmer, Jeremy
2016-04-01
Predicting the temporal evolution of landslides is typically supported by numerical modelling. Dynamic sensitivity analysis aims at assessing the influence of the landslide properties on the time-dependent predictions (e.g., time series of landslide displacements). Yet two major difficulties arise: 1. Global sensitivity analysis require running the landslide model a high number of times (> 1000), which may become impracticable when the landslide model has a high computation time cost (> several hours); 2. Landslide model outputs are not scalar, but function of time, i.e. they are n-dimensional vectors with n usually ranging from 100 to 1000. In this article, I explore the use of a basis set expansion, such as principal component analysis, to reduce the output dimensionality to a few components, each of them being interpreted as a dominant mode of variation in the overall structure of the temporal evolution. The computationally intensive calculation of the Sobol' indices for each of these components are then achieved through meta-modelling, i.e. by replacing the landslide model by a "costless-to-evaluate" approximation (e.g., a projection pursuit regression model). The methodology combining "basis set expansion - meta-model - Sobol' indices" is then applied to the La Frasse landslide to investigate the dynamic sensitivity analysis of the surface horizontal displacements to the slip surface properties during the pore pressure changes. I show how to extract information on the sensitivity of each main modes of temporal behaviour using a limited number (a few tens) of long running simulations. In particular, I identify the parameters, which trigger the occurrence of a turning point marking a shift between a regime of low values of landslide displacements and one of high values.
Low back pain in 17 countries, a Rasch analysis of the ICF core set for low back pain.
Røe, Cecilie; Bautz-Holter, Erik; Cieza, Alarcos
2013-03-01
Previous studies indicate that a worldwide measurement tool may be developed based on the International Classification of Functioning Disability and Health (ICF) Core Sets for chronic conditions. The aim of the present study was to explore the possibility of constructing a cross-cultural measurement of functioning for patients with low back pain (LBP) on the basis of the Comprehensive ICF Core Set for LBP and to evaluate the properties of the ICF Core Set. The Comprehensive ICF Core Set for LBP was scored by health professionals for 972 patients with LBP from 17 countries. Qualifier levels of the categories, invariance across age, sex and countries, construct validity and the ordering of the categories in the components of body function, body structure, activities and participation were explored by Rasch analysis. The item-trait χ2-statistics showed that the 53 categories in the ICF Core Set for LBP did not fit the Rasch model (P<0.001). The main challenge was the invariance in the responses according to country. Analysis of the four countries with the largest sample sizes indicated that the data from Germany fit the Rasch model, and the data from Norway, Serbia and Kuwait in terms of the components of body functions and activities and participation also fit the model. The component of body functions and activity and participation had a negative mean location, -2.19 (SD 1.19) and -2.98 (SD 1.07), respectively. The negative location indicates that the ICF Core Set reflects patients with a lower level of function than the present patient sample. The present results indicate that it may be possible to construct a clinical measure of function on the basis of the Comprehensive ICF Core Set for LBP by calculating country-specific scores before pooling the data.
CCSDT calculations of molecular equilibrium geometries
NASA Astrophysics Data System (ADS)
Halkier, Asger; Jørgensen, Poul; Gauss, Jürgen; Helgaker, Trygve
1997-08-01
CCSDT equilibrium geometries of CO, CH 2, F 2, HF, H 2O and N 2 have been calculated using the correlation-consistent cc-pVXZ basis sets. Similar calculations have been performed for SCF, CCSD and CCSD(T). In general, bond lengths decrease when improving the basis set and increase when improving the N-electron treatment. CCSD(T) provides an excellent approximation to CCSDT for bond lengths as the largest difference between CCSDT and CCSD(T) is 0.06 pm. At the CCSDT/cc-pVQZ level, basis set deficiencies, neglect of higher-order excitations, and incomplete treatment of core-correlation all give rise to errors of a few tenths of a pm, but to a large extent, these errors cancel. The CCSDT/cc-pVQZ bond lengths deviate on average only by 0.11 pm from experiment.
NASA Technical Reports Server (NTRS)
Almlof, Jan; Taylor, Peter R.
1990-01-01
A recently proposed scheme for using natural orbitals from atomic configuration interaction wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outermost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital sets.
The calculations of small molecular conformation energy differences by density functional method
NASA Astrophysics Data System (ADS)
Topol, I. A.; Burt, S. K.
1993-03-01
The differences in the conformational energies for the gauche (G) and trans(T) conformers of 1,2-difluoroethane and for myo-and scyllo-conformer of inositol have been calculated by local density functional method (LDF approximation) with geometry optimization using different sets of calculation parameters. It is shown that in the contrast to Hartree—Fock methods, density functional calculations reproduce the correct sign and value of the gauche effect for 1,2-difluoroethane and energy difference for both conformers of inositol. The results of normal vibrational analysis for1,2-difluoroethane showed that harmonic frequencies calculated in LDF approximation agree with experimental data with the accuracy typical for scaled large basis set Hartree—Fock calculations.
Ageing and the economic life cycle: The National Transfer Accounts approach.
Temple, Jeromey B; Rice, James M; McDonald, Peter F
2017-12-01
To illustrate the use of National Transfer Accounts (NTA) for understanding ageing and the economic life cycle in Australia. The NTA methodology is applied utilising a range of unit record, demographic and administrative data sets from 1981 to 2010. During early and later life, total consumption (public and private) is greater than labour income. On a time series and cohort basis, we show that each successive generation has improved their level of well-being (as measured by consumption) relative to the previous years or previous cohorts from 1981 to 1982 onwards. We also show a substantial increase in labour income earned by mature age workers over this period. International comparisons show Australia to have consumption and labour income age profiles very similar to those of Canada but dissimilar to many other countries, driven by differences in demographic and policy settings. The NTA approach provides a powerful framework to track differences in the economic life cycle across age groups, across time, across cohorts and across countries. © 2017 AJA Inc.
Economic communication model set
NASA Astrophysics Data System (ADS)
Zvereva, Olga M.; Berg, Dmitry B.
2017-06-01
This paper details findings from the research work targeted at economic communications investigation with agent-based models usage. The agent-based model set was engineered to simulate economic communications. Money in the form of internal and external currencies was introduced into the models to support exchanges in communications. Every model, being based on the general concept, has its own peculiarities in algorithm and input data set since it was engineered to solve the specific problem. Several and different origin data sets were used in experiments: theoretic sets were estimated on the basis of static Leontief's equilibrium equation and the real set was constructed on the basis of statistical data. While simulation experiments, communication process was observed in dynamics, and system macroparameters were estimated. This research approved that combination of an agent-based and mathematical model can cause a synergetic effect.
Low-molecular-weight heparins: pharmacologic profile and product differentiation.
Fareed, J; Jeske, W; Hoppensteadt, D; Clarizio, R; Walenga, J M
1998-09-10
The interchangeability of low-molecular-weight heparins (LMWHs) has been the subject of discussion since these products were first introduced for the prophylaxis of deep vein thrombosis. Experimental evidence now exists to show that LMWHs differ from each other in a number of characteristics. Products have been differentiated on the basis of molecular weight and biologic properties, but only limited information derived from the clinical setting is available. Potency has been described on the basis of anti-Factor Xa activity, but at equivalent anti-Xa activities, the anti-Factor IIa activity of different products shows marked variations. At the relatively small doses used for the management of postsurgical deep vein thrombosis, the effect of these interproduct differences may be relatively minor, but as LMWHs are developed for therapeutic use at much higher doses, such differences may become clinically important. Variations in safety and efficacy reported in clinical trials of LMWHs may reflect the known differences in their molecular composition and pharmacologic properties.
A Generalized Acoustic Analogy
NASA Technical Reports Server (NTRS)
Goldstein, M. E.
2003-01-01
The purpose of this article is to show that the Navier-Stokes equations can be rewritten as a set of linearized inhomogeneous Euler equations (in convective form) with source terms that are exactly the same as those that would result from externally imposed shear stress and energy flux perturbations. These results are used to develop a mathematical basis for some existing and potential new jet noise models by appropriately choosing the base flow about which the linearization is carried out.
Geminal embedding scheme for optimal atomic basis set construction in correlated calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorella, S., E-mail: sorella@sissa.it; Devaux, N.; Dagrada, M., E-mail: mario.dagrada@impmc.upmc.fr
2015-12-28
We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wavemore » function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.« less
NASA Astrophysics Data System (ADS)
Di Valentin, Cristiana
2007-10-01
In this work we present a simplified procedure to use hybrid functionals and localized atomic basis sets to simulate scanning tunneling microscopy (STM) images of stoichiometric, reduced and hydroxylated rutile (110) TiO2 surface. For the two defective systems it is necessary to introduce some exact Hartree-Fock exchange in the exchange functional in order to correctly describe the details of the electronic structure. Results are compared to the standard density functional theory and planewave basis set approach. Both methods have advantages and drawbacks that are analyzed in detail. In particular, for the localized basis set approach, it is necessary to introduce a number of Gaussian function in the vacuum region above the surface in order to correctly describe the exponential decay of the integrated local density of states from the surface. In the planewave periodic approach, a thick vacuum region is required to achieve correct results. Simulated STM images are obtained for both the reduced and hydroxylated surface which nicely compare with experimental findings. A direct comparison of the two defects as displayed in the simulated STM images indicates that the OH groups should appear brighter than oxygen vacancies in perfect agreement with the experimental STM data.
Electron correlation within the relativistic no-pair approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr; Knecht, Stefan
This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within themore » no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the underlying minmax principle and our theoretical analysis. We also show that the relativistic correlation energy, obtained from no-pair full MCSCF calculations, scales at worst as X{sup −2} with respect to the cardinal number X of our correlation-consistent basis sets optimized for the two-electron atoms. This is better than the X{sup −1} scaling suggested by previous studies, but worse than the X{sup −3} scaling observed in the nonrelativistic domain. The well-known 1/Z- expansion in nonrelativistic atomic theory follows from coordinate scaling. We point out that coordinate scaling for consistency should be accompanied by velocity scaling. In the nonrelativistic domain this comes about automatically, whereas in the relativistic domain an explicit scaling of the speed of light is required. This in turn explains why the relativistic correlation energy to the lowest order is not independent of nuclear charge, in contrast to nonrelativistic theory.« less
Neural network approach for the calculation of potential coefficients in quantum mechanics
NASA Astrophysics Data System (ADS)
Ossandón, Sebastián; Reyes, Camilo; Cumsille, Patricio; Reyes, Carlos M.
2017-05-01
A numerical method based on artificial neural networks is used to solve the inverse Schrödinger equation for a multi-parameter class of potentials. First, the finite element method was used to solve repeatedly the direct problem for different parametrizations of the chosen potential function. Then, using the attainable eigenvalues as a training set of the direct radial basis neural network a map of new eigenvalues was obtained. This relationship was later inverted and refined by training an inverse radial basis neural network, allowing the calculation of the unknown parameters and therefore estimating the potential function. Three numerical examples are presented in order to prove the effectiveness of the method. The results show that the method proposed has the advantage to use less computational resources without a significant accuracy loss.
Performance evaluation and clinical applications of 3D plenoptic cameras
NASA Astrophysics Data System (ADS)
Decker, Ryan; Shademan, Azad; Opfermann, Justin; Leonard, Simon; Kim, Peter C. W.; Krieger, Axel
2015-06-01
The observation and 3D quantification of arbitrary scenes using optical imaging systems is challenging, but increasingly necessary in many fields. This paper provides a technical basis for the application of plenoptic cameras in medical and medical robotics applications, and rigorously evaluates camera integration and performance in the clinical setting. It discusses plenoptic camera calibration and setup, assesses plenoptic imaging in a clinically relevant context, and in the context of other quantitative imaging technologies. We report the methods used for camera calibration, precision and accuracy results in an ideal and simulated surgical setting. Afterwards, we report performance during a surgical task. Test results showed the average precision of the plenoptic camera to be 0.90mm, increasing to 1.37mm for tissue across the calibrated FOV. The ideal accuracy was 1.14mm. The camera showed submillimeter error during a simulated surgical task.
Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.
Götz, Andreas W; Kollmar, Christian; Hess, Bernd A
2005-09-01
We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, J. C.
Performance metrics for evaluating commercial fixatives are often not readily available for important parameters that must be considered per the facility safety basis and the facility Basis for Interim Operations (BIO). One such parameter is the behavior of such materials in varied, “non-ideal” conditions where ideal is defined as 75 °F, 40% RH. Coupled with the inherent flammable nature of the fixative materials that can act to propagate flame along surfaces that are otherwise fireproof (concrete, sheet metal), much is left unknown when considering the safety basis implications for introducing these materials into nuclear facilities. Through SRNL’s efforts, three (3)more » fixatives, one (1) decontamination gel, and six (6) intumescent coatings were examined for their responses to environmental conditions to determine whether these materials were impervious to non-nominal temperatures and humidities that may be found in nuclear facilities. Characteristics that were examined included set-to-touch time, dust free time, and adhesion testing of the fully cured compounds. Of these ten materials, three were two-part epoxy materials while the other seven consisted of only one constituent. The results show that the epoxies tested are unable to cure in sub-freezing temperatures, with the low temperatures inhibiting crosslinking to a very significant degree. These efforts show significant inhibiting of performance for non-nominal environmental conditions, something that must be addressed both in the decision process for a fixative material to apply and per the safety basis to ensure the accurate flammability and material at risk is calculated.« less
Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.
Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei
2015-04-14
In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.
Quantum-Chemical Study of the Adsorption of DMMP and Sarin on gamma-Al2O3
2007-02-01
In this and in the following section, ∆Eads is not corrected for zero-point vibrational energy ( ZPE ); however, a counterpoise correction for basis set...Ångstroms and the bond angle is in degrees. Values in parentheses are BSSE-corrected (∆Eads C ) results. ∆Eads has not been corrected for ZPE . b 6-31G...sets. The ∆ Eads C values are given in parentheses. No ZPE corrections have been applied. e The basis sets used were 6-311G(df) for Sarin and for the Al
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Bardachenko, Vitaliy F.; Nikolsky, Alexander I.; Lazarev, Alexander A.
2007-04-01
In the paper we show that the biologically motivated conception of the use of time-pulse encoding gives the row of advantages (single methodological basis, universality, simplicity of tuning, training and programming et al) at creation and designing of sensor systems with parallel input-output and processing, 2D-structures of hybrid and neuro-fuzzy neurocomputers of next generations. We show principles of construction of programmable relational optoelectronic time-pulse coded processors, continuous logic, order logic and temporal waves processes, that lie in basis of the creation. We consider structure that executes extraction of analog signal of the set grade (order), sorting of analog and time-pulse coded variables. We offer optoelectronic realization of such base relational elements of order logic, which consists of time-pulse coded phototransformers (pulse-width and pulse-phase modulators) with direct and complementary outputs, sorting network on logical elements and programmable commutations blocks. We make estimations of basic technical parameters of such base devices and processors on their basis by simulation and experimental research: power of optical input signals - 0.200-20 μW, processing time - microseconds, supply voltage - 1.5-10 V, consumption power - hundreds of microwatts per element, extended functional possibilities, training possibilities. We discuss some aspects of possible rules and principles of training and programmable tuning on the required function, relational operation and realization of hardware blocks for modifications of such processors. We show as on the basis of such quasiuniversal hardware simple block and flexible programmable tuning it is possible to create sorting machines, neural networks and hybrid data-processing systems with the untraditional numerical systems and pictures operands.
42 CFR § 512.1 - Basis and scope.
Code of Federal Regulations, 2010 CFR
2017-10-01
...) HEALTH CARE INFRASTRUCTURE AND MODEL PROGRAMS EPISODE PAYMENT MODEL General Provisions § 512.1 Basis and scope. (a) Basis. This part implements the test of episode payment models under section 1115A of the Act... sets forth the following: (1) The participants in each episode payment model. (2) The episodes being...
Daubechies wavelets for linear scaling density functional theory.
Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.
IR and NMR spectroscopic correlation of enterobactin by DFT.
Moreno, M; Zacarias, A; Porzel, A; Velasquez, L; Gonzalez, G; Alegría-Arcos, M; Gonzalez-Nilo, F; Gross, E K U
2018-06-05
Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097-6104], Enterobactin (H 6 EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H 6 EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections LC-PBE and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H 6 EB structures dependent of dihedral angles. The results show a significant difference between the OH and NH bands, while the CO amide and O(CO) IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H 6 EB structure. Calculated 1 H and 13 C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H 6 EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H 6 EB is also reported of manner to enrich the knowledge about its reactivity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Chiang, Yi-Kun; Kuo, Ching-Chuan; Wu, Yu-Shan; Chen, Chung-Tong; Coumar, Mohane Selvaraj; Wu, Jian-Sung; Hsieh, Hsing-Pang; Chang, Chi-Yen; Jseng, Huan-Yi; Wu, Ming-Hsine; Leou, Jiun-Shyang; Song, Jen-Shin; Chang, Jang-Yang; Lyu, Ping-Chiang; Chao, Yu-Sheng; Wu, Su-Ying
2009-07-23
A pharmacophore model, Hypo1, was built on the basis of 21 training-set indole compounds with varying levels of antiproliferative activity. Hypo1 possessed important chemical features required for the inhibitors and demonstrated good predictive ability for biological activity, with high correlation coefficients of 0.96 and 0.89 for the training-set and test-set compounds, respectively. Further utilization of the Hypo1 pharmacophore model to screen chemical database in silico led to the identification of four compounds with antiproliferative activity. Among these four compounds, 43 showed potent antiproliferative activity against various cancer cell lines with the strongest inhibition on the proliferation of KB cells (IC(50) = 187 nM). Further biological characterization revealed that 43 effectively inhibited tubulin polymerization and significantly induced cell cycle arrest in G(2)-M phase. In addition, 43 also showed the in vivo-like anticancer effects. To our knowledge, 43 is the most potent antiproliferative compound with antitubulin activity discovered by computer-aided drug design. The chemical novelty of 43 and its anticancer activities make this compound worthy of further lead optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Brandenburg, Jan Gerit; Bannwarth, Christoph
A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design ofmore » the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust “high-speed” computational tool in theoretical chemistry and physics.« less
High-level ab initio studies of the complex formed between CO and O2
NASA Astrophysics Data System (ADS)
Grein, Friedrich
2017-05-01
The explicitly correlated CCSD(T)-F12 method with VXZ-F12 basis sets was used to find the most stable structures of the van der Waals CO-O2 complexes. With geometry optimizations performed up to the quadruple-zeta level and basis set extrapolation, the calculated interaction energies for the triplet complexes are 123 cm-1 for the H complex in Cs symmetry (slipped near-parallel structure), 118 cm-1 for the X complex, also in Cs symmetry (perpendicular alignment) and 116 cm-1 for the CO-O2 T complex in C2v symmetry. The corresponding CCSD(T)-F12 results using the aug-cc-pVXZ basis sets are nearly the same. Similar calculations were performed for the CO-O2 singlet complexes, which are shown to have much higher stabilization energies, the highest being 206 cm-1 for the X complex.
NASA Technical Reports Server (NTRS)
Almloef, Jan; Taylor, Peter R.
1989-01-01
A recently proposed scheme for using natural orbitals from atomic configuration interaction (CI) wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outmost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital (ANO) sets.
Fleig, Timo; Knecht, Stefan; Hättig, Christof
2007-06-28
We study the ground-state structures and singlet- and triplet-excited states of the nucleic acid bases by applying the coupled cluster model CC2 in combination with a resolution-of-the-identity approximation for electron interaction integrals. Both basis set effects and the influence of dynamic electron correlation on the molecular structures are elucidated; the latter by comparing CC2 with Hartree-Fock and Møller-Plesset perturbation theory to second order. Furthermore, we investigate basis set and electron correlation effects on the vertical excitation energies and compare our highest-level results with experiment and other theoretical approaches. It is shown that small basis sets are insufficient for obtaining accurate results for excited states of these molecules and that the CC2 approach to dynamic electron correlation is a reliable and efficient tool for electronic structure calculations on medium-sized molecules.
Polyatomic molecular Dirac-Hartree-Fock calculations with Gaussian basis sets
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Faegri, Knut, Jr.; Taylor, Peter R.
1990-01-01
Numerical methods have been used successfully in atomic Dirac-Hartree-Fock (DHF) calculations for many years. Some DHF calculations using numerical methods have been done on diatomic molecules, but while these serve a useful purpose for calibration, the computational effort in extending this approach to polyatomic molecules is prohibitive. An alternative more in line with traditional quantum chemistry is to use an analytical basis set expansion of the wave function. This approach fell into disrepute in the early 1980's due to problems with variational collapse and intruder states, but has recently been put on firm theoretical foundations. In particular, the problems of variational collapse are well understood, and prescriptions for avoiding the most serious failures have been developed. Consequently, it is now possible to develop reliable molecular programs using basis set methods. This paper describes such a program and reports results of test calculations to demonstrate the convergence and stability of the method.
A numerical fragment basis approach to SCF calculations.
NASA Astrophysics Data System (ADS)
Hinde, Robert J.
1997-11-01
The counterpoise method is often used to correct for basis set superposition error in calculations of the electronic structure of bimolecular systems. One drawback of this approach is the need to specify a ``reference state'' for the system; for reactive systems, the choice of an unambiguous reference state may be difficult. An example is the reaction F^- + HCl arrow HF + Cl^-. Two obvious reference states for this reaction are F^- + HCl and HF + Cl^-; however, different counterpoise-corrected interaction energies are obtained using these two reference states. We outline a method for performing SCF calculations which employs numerical basis functions; this method attempts to eliminate basis set superposition errors in an a priori fashion. We test the proposed method on two one-dimensional, three-center systems and discuss the possibility of extending our approach to include electron correlation effects.
48 CFR 19.502-2 - Total small business set-asides.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-2 Total small business set... contracting officer does not proceed with the small business set-aside and purchases on an unrestricted basis...
48 CFR 19.502-2 - Total small business set-asides.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-2 Total small business set... contracting officer does not proceed with the small business set-aside and purchases on an unrestricted basis...
48 CFR 19.502-2 - Total small business set-asides.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Total small business set... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-2 Total small business set... contracting officer does not proceed with the small business set-aside and purchases on an unrestricted basis...
Application of artificial neural networks to chemostratigraphy
NASA Astrophysics Data System (ADS)
Malmgren, BjöRn A.; Nordlund, Ulf
1996-08-01
Artificial neural networks, a branch of artificial intelligence, are computer systems formed by a number of simple, highly interconnected processing units that have the ability to learn a set of target vectors from a set of associated input signals. Neural networks learn by self-adjusting a set of parameters, using some pertinent algorithm to minimize the error between the desired output and network output. We explore the potential of this approach in solving a problem involving classification of geochemical data. The data, taken from the literature, are derived from four late Quaternary zones of volcanic ash of basaltic and rhyolithic origin from the Norwegian Sea. These ash layers span the oxygen isotope zones 1, 5, 7, and 11, respectively (last 420,000 years). The data consist of nine geochemical variables (oxides) determined in each of 183 samples. We employed a three-layer back propagation neural network to assess its efficiency to optimally differentiate samples from the four ash zones on the basis of their geochemical composition. For comparison, three statistical pattern recognition techniques, linear discriminant analysis, the k-nearest neighbor (k-NN) technique, and SIMCA (soft independent modeling of class analogy), were applied to the same data. All of these showed considerably higher error rates than the artificial neural network, indicating that the back propagation network was indeed more powerful in correctly classifying the ash particles to the appropriate zone on the basis of their geochemical composition.
Bozkaya, Uğur
2018-03-15
Efficient implementations of analytic gradients for the orbital-optimized MP3 and MP2.5 and their standard versions with the density-fitting approximation, which are denoted as DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5, are presented. The DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5 methods are applied to a set of alkanes and noncovalent interaction complexes to compare the computational cost with the conventional MP3, MP2.5, OMP3, and OMP2.5. Our results demonstrate that density-fitted perturbation theory (DF-MP) methods considered substantially reduce the computational cost compared to conventional MP methods. The efficiency of our DF-MP methods arise from the reduced input/output (I/O) time and the acceleration of gradient related terms, such as computations of particle density and generalized Fock matrices (PDMs and GFM), solution of the Z-vector equation, back-transformations of PDMs and GFM, and evaluation of analytic gradients in the atomic orbital basis. Further, application results show that errors introduced by the DF approach are negligible. Mean absolute errors for bond lengths of a molecular set, with the cc-pCVQZ basis set, is 0.0001-0.0002 Å. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Blank, L. Aaron; Sharma, Amit R.; Weeks, David E.
2018-03-01
The X
42 CFR 415.1 - Basis and scope.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROGRAM SERVICES FURNISHED BY PHYSICIANS IN PROVIDERS, SUPERVISING PHYSICIANS IN TEACHING SETTINGS, AND... beneficiaries in providers, physician services in teaching settings, and services of residents. ...
Basis for paraxial surface-plasmon-polariton packets
NASA Astrophysics Data System (ADS)
Martinez-Herrero, Rosario; Manjavacas, Alejandro
2016-12-01
We present a theoretical framework for the study of surface-plasmon polariton (SPP) packets propagating along a lossy metal-dielectric interface within the paraxial approximation. Using a rigorous formulation based on the plane-wave spectrum formalism, we introduce a set of modes that constitute a complete basis set for the solutions of Maxwell's equations for a metal-dielectric interface in the paraxial approximation. The use of this set of modes allows us to fully analyze the evolution of the transversal structure of SPP packets beyond the single plane-wave approximation. As a paradigmatic example, we analyze the case of a Gaussian SPP mode, for which, exploiting the analogy with paraxial optical beams, we introduce a set of parameters that characterize its propagation.
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-05-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.
Application of Hyperspectral Imaging to Detect Sclerotinia sclerotiorum on Oilseed Rape Stems
Kong, Wenwen; Zhang, Chu; Huang, Weihao
2018-01-01
Hyperspectral imaging covering the spectral range of 384–1034 nm combined with chemometric methods was used to detect Sclerotinia sclerotiorum (SS) on oilseed rape stems by two sample sets (60 healthy and 60 infected stems for each set). Second derivative spectra and PCA loadings were used to select the optimal wavelengths. Discriminant models were built and compared to detect SS on oilseed rape stems, including partial least squares-discriminant analysis, radial basis function neural network, support vector machine and extreme learning machine. The discriminant models using full spectra and optimal wavelengths showed good performance with classification accuracies of over 80% for the calibration and prediction set. Comparing all developed models, the optimal classification accuracies of the calibration and prediction set were over 90%. The similarity of selected optimal wavelengths also indicated the feasibility of using hyperspectral imaging to detect SS on oilseed rape stems. The results indicated that hyperspectral imaging could be used as a fast, non-destructive and reliable technique to detect plant diseases on stems. PMID:29300315
Groebner Basis Solutions to Satellite Trajectory Control by Pole Placement
NASA Astrophysics Data System (ADS)
Kukelova, Z.; Krsek, P.; Smutny, V.; Pajdla, T.
2013-09-01
Satellites play an important role, e.g., in telecommunication, navigation and weather monitoring. Controlling their trajectories is an important problem. In [1], an approach to the pole placement for the synthesis of a linear controller has been presented. It leads to solving five polynomial equations in nine unknown elements of the state space matrices of a compensator. This is an underconstrained system and therefore four of the unknown elements need to be considered as free parameters and set to some prior values to obtain a system of five equations in five unknowns. In [1], this system was solved for one chosen set of free parameters with the help of Dixon resultants. In this work, we study and present Groebner basis solutions to this problem of computation of a dynamic compensator for the satellite for different combinations of input free parameters. We show that the Groebner basis method for solving systems of polynomial equations leads to very simple solutions for all combinations of free parameters. These solutions require to perform only the Gauss-Jordan elimination of a small matrix and computation of roots of a single variable polynomial. The maximum degree of this polynomial is not greater than six in general but for most combinations of the input free parameters its degree is even lower. [1] B. Palancz. Application of Dixon resultant to satellite trajectory control by pole placement. Journal of Symbolic Computation, Volume 50, March 2013, Pages 79-99, Elsevier.
PAREMD: A parallel program for the evaluation of momentum space properties of atoms and molecules
NASA Astrophysics Data System (ADS)
Meena, Deep Raj; Gadre, Shridhar R.; Balanarayan, P.
2018-03-01
The present work describes a code for evaluating the electron momentum density (EMD), its moments and the associated Shannon information entropy for a multi-electron molecular system. The code works specifically for electronic wave functions obtained from traditional electronic structure packages such as GAMESS and GAUSSIAN. For the momentum space orbitals, the general expression for Gaussian basis sets in position space is analytically Fourier transformed to momentum space Gaussian basis functions. The molecular orbital coefficients of the wave function are taken as an input from the output file of the electronic structure calculation. The analytic expressions of EMD are evaluated over a fine grid and the accuracy of the code is verified by a normalization check and a numerical kinetic energy evaluation which is compared with the analytic kinetic energy given by the electronic structure package. Apart from electron momentum density, electron density in position space has also been integrated into this package. The program is written in C++ and is executed through a Shell script. It is also tuned for multicore machines with shared memory through OpenMP. The program has been tested for a variety of molecules and correlated methods such as CISD, Møller-Plesset second order (MP2) theory and density functional methods. For correlated methods, the PAREMD program uses natural spin orbitals as an input. The program has been benchmarked for a variety of Gaussian basis sets for different molecules showing a linear speedup on a parallel architecture.
Pavanello, Michele; Tung, Wei-Cheng; Adamowicz, Ludwik
2009-11-14
Efficient optimization of the basis set is key to achieving a very high accuracy in variational calculations of molecular systems employing basis functions that are explicitly dependent on the interelectron distances. In this work we present a method for a systematic enlargement of basis sets of explicitly correlated functions based on the iterative-complement-interaction approach developed by Nakatsuji [Phys. Rev. Lett. 93, 030403 (2004)]. We illustrate the performance of the method in the variational calculations of H(3) where we use explicitly correlated Gaussian functions with shifted centers. The total variational energy (-1.674 547 421 Hartree) and the binding energy (-15.74 cm(-1)) obtained in the calculation with 1000 Gaussians are the most accurate results to date.
Multi-level basis selection of wavelet packet decomposition tree for heart sound classification.
Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Abdullah Ramaiah, Asri Ranga
2013-10-01
Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study
NASA Astrophysics Data System (ADS)
Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.
2018-05-01
First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.
Bayesian anomaly detection in monitoring data applying relevance vector machine
NASA Astrophysics Data System (ADS)
Saito, Tomoo
2011-04-01
A method for automatically classifying the monitoring data into two categories, normal and anomaly, is developed in order to remove anomalous data included in the enormous amount of monitoring data, applying the relevance vector machine (RVM) to a probabilistic discriminative model with basis functions and their weight parameters whose posterior PDF (probabilistic density function) conditional on the learning data set is given by Bayes' theorem. The proposed framework is applied to actual monitoring data sets containing some anomalous data collected at two buildings in Tokyo, Japan, which shows that the trained models discriminate anomalous data from normal data very clearly, giving high probabilities of being normal to normal data and low probabilities of being normal to anomalous data.
Splendidly blended: a machine learning set up for CDU control
NASA Astrophysics Data System (ADS)
Utzny, Clemens
2017-06-01
As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.
Maas, Anne H; Rozendaal, Yvonne J W; van Pul, Carola; Hilbers, Peter A J; Cottaar, Ward J; Haak, Harm R; van Riel, Natal A W
2015-03-01
Current diabetes education methods are costly, time-consuming, and do not actively engage the patient. Here, we describe the development and verification of the physiological model for healthy subjects that forms the basis of the Eindhoven Diabetes Education Simulator (E-DES). E-DES shall provide diabetes patients with an individualized virtual practice environment incorporating the main factors that influence glycemic control: food, exercise, and medication. The physiological model consists of 4 compartments for which the inflow and outflow of glucose and insulin are calculated using 6 nonlinear coupled differential equations and 14 parameters. These parameters are estimated on 12 sets of oral glucose tolerance test (OGTT) data (226 healthy subjects) obtained from literature. The resulting parameter set is verified on 8 separate literature OGTT data sets (229 subjects). The model is considered verified if 95% of the glucose data points lie within an acceptance range of ±20% of the corresponding model value. All glucose data points of the verification data sets lie within the predefined acceptance range. Physiological processes represented in the model include insulin resistance and β-cell function. Adjusting the corresponding parameters allows to describe heterogeneity in the data and shows the capabilities of this model for individualization. We have verified the physiological model of the E-DES for healthy subjects. Heterogeneity of the data has successfully been modeled by adjusting the 4 parameters describing insulin resistance and β-cell function. Our model will form the basis of a simulator providing individualized education on glucose control. © 2014 Diabetes Technology Society.
Large-scale quantum transport calculations for electronic devices with over ten thousand atoms
NASA Astrophysics Data System (ADS)
Lu, Wenchang; Lu, Yan; Xiao, Zhongcan; Hodak, Miro; Briggs, Emil; Bernholc, Jerry
The non-equilibrium Green's function method (NEGF) has been implemented in our massively parallel DFT software, the real space multigrid (RMG) code suite. Our implementation employs multi-level parallelization strategies and fully utilizes both multi-core CPUs and GPU accelerators. Since the cost of the calculations increases dramatically with the number of orbitals, an optimal basis set is crucial for including a large number of atoms in the ``active device'' part of the simulations. In our implementation, the localized orbitals are separately optimized for each principal layer of the device region, in order to obtain an accurate and optimal basis set. As a large example, we calculated the transmission characteristics of a Si nanowire p-n junction. The nanowire is along (110) direction in order to minimize the number dangling bonds that are saturated by H atoms. Its diameter is 3 nm. The length of 24 nm is necessary because of the long-range screening length in Si. Our calculations clearly show the I-V characteristics of a diode, i.e., the current increases exponentially with forward bias and is near zero with backward bias. Other examples will also be presented, including three-terminal transistors and large sensor structures.
Optimizing structure of complex technical system by heterogeneous vector criterion in interval form
NASA Astrophysics Data System (ADS)
Lysenko, A. V.; Kochegarov, I. I.; Yurkov, N. K.; Grishko, A. K.
2018-05-01
The article examines the methods of development and multi-criteria choice of the preferred structural variant of the complex technical system at the early stages of its life cycle in the absence of sufficient knowledge of parameters and variables for optimizing this structure. The suggested methods takes into consideration the various fuzzy input data connected with the heterogeneous quality criteria of the designed system and the parameters set by their variation range. The suggested approach is based on the complex use of methods of interval analysis, fuzzy sets theory, and the decision-making theory. As a result, the method for normalizing heterogeneous quality criteria has been developed on the basis of establishing preference relations in the interval form. The method of building preferential relations in the interval form on the basis of the vector of heterogeneous quality criteria suggest the use of membership functions instead of the coefficients considering the criteria value. The former show the degree of proximity of the realization of the designed system to the efficient or Pareto optimal variants. The study analyzes the example of choosing the optimal variant for the complex system using heterogeneous quality criteria.
Coletti, Cecilia; Re, Nazzareno
2009-02-26
High level ab initio calculations were performed on the interaction of halide anions (F(-), Cl(-), Br(-), and I(-)) to benzene. For these systems recent experimental and theoretical data are rather scarce, in spite of their growingly acknowledged importance for binding in complex biological systems. We have thus explored the complete basis set limit and the effect of counterpoise basis set superposition error corrections on the minimum geometries and energies of benzene-halide adducts in their possible interaction modes. The binding energy and enthalpy values (ranging from -15.3 kcal/mol for fluoride to -6.1 kcal/mol for iodide) show that the hydrogen bonding occurring in these complexes cannot be described as a weak interaction. We have furthermore investigated the topology of the minima and of other selected sections of the potential energy surface, so to gain further insight on the nature of the halide-benzene interaction. In particular, the geometry corresponding to the C(6v) symmetry, although being overall repulsive, has displayed the unprecedented presence of a small flex (a minimum in C(6v) symmetry) with interaction energy close to zero or slightly attractive.
Proper Orthogonal Decomposition in Optimal Control of Fluids
NASA Technical Reports Server (NTRS)
Ravindran, S. S.
1999-01-01
In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.
Analysis of the influence of a metha-type metaphysical stem on biomechanical parameters.
Pozowski, Andrzej; Ścigała, Krzysztof; Kierzek, Andrzej; Paprocka-Borowicz, Małgorzata; Kuciel-Lewandowska, Jadwiga
2013-01-01
The full postoperative loading of the limb is possible if patients are properly selected and qualified for hip arthroplasty and the requirements as to the proper position of the metaphysial stem are met. The lack of precision, and patient qualification which does not satisfy the fixed criteria may result in stem setting inconsistent with the assumptions. An analysis based on the finite element method (FEM) will enable one to find out how to plan the magnitude of operated joint loading on the basis of the position of the stem in the postoperative radiograph. By analyzing the distribution of bone tissue deformations one can identify the zones where the spongy bone is overloaded and determine the strain level in comparison with the one determined for a model of the bone with the stem in proper position. On the basis of the results obtained one can estimate the range of loads for the operated limb, which will not result in the loss of the stem's primary stability prior to obtaining secondary stability through osteointegration. Moreover, an analysis of the formation of bone structures around the stem showed that the incorrect setting of a Metha-type stem may lead to the initiation of loosening.
NASA Astrophysics Data System (ADS)
Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin
2012-10-01
This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.
We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less
The leap-frog effect of ring currents in benzene.
Ligabue, Andrea; Soncini, Alessandro; Lazzeretti, Paolo
2002-03-06
Symmetry arguments show that the ring-current model proposed by Pauling, Lonsdale, and London to explain the enhanced diamagnetism of benzene is flawed by an intrinsic drawback. The minimal basis set of six atomic 2p orbitals taken into account to develop such a model is inherently insufficient to predict a paramagnetic contribution to the perpendicular component of magnetic susceptibility in planar ring systems such as benzene. Analogous considerations can be made for the hypothetical H(6) cyclic molecule. A model allowing for extended basis sets is necessary to rationalize the magnetism of aromatics. According to high-quality coupled Hartree-Fock calculations, the trajectories of the current density vector field induced by a magnetic field perpendicular to the skeletal plane of benzene in the pi electrons are noticeably different from those typical of a Larmor diamagnetic circulation, in that (i) significant deformation of the orbits from circular to hexagonal symmetry occurs, which is responsible for a paramagnetic contribution of pi electrons to the out-of-plane component of susceptibility, and (ii) a sizable component of the pi current density vector parallel to the inducing field is predicted. This causes a waving motion of pi electrons; streamlines are characterized by a "leap-frog effect".
[Density functional theory studies on structure and spectrum of Cu3 Ti cluster].
Wei, Yong-Hui; Cheng, Jian-Bo; Zhao, Bing; Lombardi, John R
2008-07-01
Bulk intermetallic Ti-Cu compounds have been found to possess special properties, including increased hardness, as well as displaying enhanced sound absorption and e shape memory. Since only one Raman progression is observed, there is not sufficient information to determine the structure of TiCu3. The different structures and vibrational frequencies of the Cu3 Ti cluster were studied by means of the density functional theory with SVWN5, B3LYP and BPW91 methods at basis sets of lanl2dz, 6-31g, 6-311g, 6-311g(d), 6-311 +/- g(2df) and 6-311 +/- g(3d2f). The calculated results show that the ground state of the Cu3 Ti cluster is a e-type structure with the C2v point group symmetry, and the bond lengths and vibrational frequencies of Cu3 T are considerably dependent on the variation of basis sets. We observed only a single Raman progression in approximately 300 cm(-1). This progression is most likely the totally symmetric stretch. The computed and observed Raman spectra were also compared with each other.
Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.; ...
2017-07-21
We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less
NASA Astrophysics Data System (ADS)
Huang, Jing; Zhou, Yanzi; Xie, Daiqian
2018-04-01
We report a new full-dimensional ab initio potential energy surface for the Ar-HF van der Waals complex at the level of coupled-cluster singles and doubles with noniterative inclusion of connected triples levels [CCSD(T)] using augmented correlation-consistent quintuple-zeta basis set (aV5Z) plus bond functions. Full counterpoise correction was employed to correct the basis-set superposition error. The hypersurface was fitted using artificial neural network method with a root mean square error of 0.1085 cm-1 for more than 8000 ab initio points. The complex was found to prefer a linear Ar-H-F equilibrium structure. The three-dimensional discrete variable representation method and the Lanczos propagation algorithm were then employed to calculate the rovibrational states without separating inter- and intra- molecular nuclear motions. The calculated vibrational energies of Ar-HF differ from the experiment values within about 1 cm-1 on the first four HF vibrational states, and the predicted pure rotational energies on (0000) and (1000) vibrational states are deviated from the observed value by about 1%, which shows the accuracy of our new PES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzminskii, M.B.; Bagator'yants, A.A.; Kazanskii, V.B.
1986-08-01
The authors perform ab-initio calculations, by the SCF MO LCAO method, of the electronic and geometric structure of the systems CuCO /SUP n+/ (n=0, 1) and potential curves of CO, depending on the charge state of the copper, with variation of all geometric parameters. The calculations of open-shell electronic states were performed by the unrestricted SCF method in a minimal basis set (I, STO-3G for the C and O, and MINI-1' for the Cu) and in a valence two-exponential basis set (II, MIDI-1 for the C and O, and MIDI'2' for the Cu). The principal results from the calculation inmore » the more flexible basis II are presented and the agreement between the results obtained in the minimal basis I and these data is then analyzed qualitatively.« less
NASA Technical Reports Server (NTRS)
Jasperson, W. H.; Nastrom, G. D.; Holdeman, J. D.
1984-01-01
A climatology of ozone for altitudes from FL190 to FL590 (19,000 to 59,000 ft) is presented. Climatological tables are given in two appendixes: one with d deg latitude resolution on a monthly basis, and one with 10 deg latitude resolution on a seasonal basis. Data were taken from 11,472 balloon-borne ozonesondes launched at 60 stations from 1963 to 1980 and from over 160,000 observations made by the Global Atmospheric Sampling Program on 4417 commercial airliner flights from 1975 to 1979. Case study and statistical comparisons of results from these two data sets showed that they are compatible and can be combined. Several examples of analyses that can be made by using the tabulated data are given and discussed.
Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa
NASA Technical Reports Server (NTRS)
Dalsted, K. J.; Harlan, J. C.
1983-01-01
Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.
Computational Architecture of the Granular Layer of Cerebellum-Like Structures.
Bratby, Peter; Sneyd, James; Montgomery, John
2017-02-01
In the adaptive filter model of the cerebellum, the granular layer performs a recoding which expands incoming mossy fibre signals into a temporally diverse set of basis signals. The underlying neural mechanism is not well understood, although various mechanisms have been proposed, including delay lines, spectral timing and echo state networks. Here, we develop a computational simulation based on a network of leaky integrator neurons, and an adaptive filter performance measure, which allows candidate mechanisms to be compared. We demonstrate that increasing the circuit complexity improves adaptive filter performance, and relate this to evolutionary innovations in the cerebellum and cerebellum-like structures in sharks and electric fish. We show how recurrence enables an increase in basis signal duration, which suggest a possible explanation for the explosion in granule cell numbers in the mammalian cerebellum.
NASA Astrophysics Data System (ADS)
Hamed, Samia; Rangel, Tonatiuh; Bruneval, Fabien; Neaton, Jeffrey B.
Quantitative understanding of charged and neutral excitations of organic molecules is critical in diverse areas of study that include astrophysics and the development of energy technologies that are clean and efficient. The recent use of local basis sets with ab initio many-body perturbation theory in the GW approximation and the Bethe-Saltpeter equation approach (BSE), methods traditionally applied to periodic condensed phases with a plane-wave basis, has opened the door to detailed study of such excitations for molecules, as well as accurate numerical benchmarks. Here, through a series of systematic benchmarks with a Gaussian basis, we report on the extent to which the predictive power and utility of this approach depend critically on interdependent underlying approximations and choices for molecules, including the mean-field starting point (eg optimally-tuned range separated hybrids, pure DFT functionals, and untuned hybrids), the GW scheme, and the Tamm Dancoff approximation. We demonstrate the effects of these choices in the context of Thiels' set while drawing analogies to linear-response time-dependent DFT and making comparisons to best theoretical estimates from higher-order wavefunction-based theories.
NASA Astrophysics Data System (ADS)
Sargent, Andrew Landman
Approximate molecular orbital and ab initio quantum chemical techniques are used to investigate the electronic structure, bonding and reactivity of several transition metal inorganic and organometallic complexes. Modest-sized basis sets are developed for the second-row transition metal atoms and are designed for use in geometry optimizations of inorganic and organometallic complexes incorporating these atoms. The basis sets produce optimized equilibrium geometries which are slightly better than those produced with standard 3-21G basis sets, and which are significantly better than those produced with effective core potential basis sets. Linear semibridging carbonyl ligands in heterobimetallic complexes which contain a coordinatively unsaturated late transition metal center are found to accept electron density from, rather than donate electron density to, these centers. Only when the secondary metal center is a coordinatively unsaturated early transition metal center does the semibridging ligand donate electron density to this center. Large holes in the d shell around the metal center are more prominent and prevalent in early than in late transition metal centers, and the importance of filling in these holes outweighs the importance of mitigating the charge imbalance due to the dative metal-metal interaction. Semibridging thiocarbonyl ligands are more effective donors of electron density than the carbonyl ligands since the occupied donor orbitals of pi symmetry are higher in energy. The stereoselectivity of H_2 addition to d^8 square-planar transition metal complexes is controlled by the interactions between the ligands in the plane of addition and the concentrations of electronic charge around the metal center as the complex evolves from a four-coordinate to a six-coordinate species. Electron -withdrawing ligands help stabilize the five-coordinate species while strong electron donor ligands contribute only to the destabilizing repulsive interactions. The relative thermodynamic stabilities of the final complexes can be predicted based on the relative orientations of the strongest sigma-donor ligands.
Vastine, Benjamin Alan; Webster, Charles Edwin; Hall, Michael B
2007-11-01
The reaction mechanism for the cycle beginning with the reductive elimination (RE) of methane from κ(3)-TpPt(IV)(CH3)2H (1) (Tp = hydridotris(pyrazolyl)borate) and subsequent oxidative addition (OA) of benzene to form finally κ(3)-TpPt(IV)(Ph)2H (19) was investigated by density functional theory (DFT). Two mechanistic steps are of particular interest, namely the barrier to C-H coupling (barrier 1 - Ba1) and the barrier to methane release (barrier 2 - Ba2). For 31 density functionals, the calculated values for Ba1 and Ba2 were benchmarked against the experimentally reported values of 26 (Ba1) and 35 (Ba2) kcal·mol(-1), respectively. Specifically, the values for Ba1 and Ba2, calculated at the B3LYP/double-ζ plus polarization level of theory, are 24.6 and 34.3 kcal·mol(-1), respectively. Overall, the best performing functional was BPW91 where the mae associated with the calculated values of the two barriers is 0.68 kcal·mol(-1). The calculated B3LYP values of Ba1 ranged between 20 and 26 kcal·mol(-1) for 12 effective core potential basis sets for platinum and 29 all-electron basis sets for the first row elements. Polarization functions for the first row elements were important for accurate values, but the addition of diffuse functions to non-hydrogen (+) and hydrogen atoms (++) had little effect on the calculated values. Basis set saturation was achieved with APNO basis sets utilized for first-row atoms. Bader's "Atoms in Molecules" was used to analyze the electron density of several complexes, and the electron density at the Pt-Nax bond critical point (trans to the active site for C-H coupling) varied over a wider range than any of the other Pt-N bonds.
Correlation consistent basis sets for lanthanides: The atoms La–Lu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Qing; Peterson, Kirk A., E-mail: kipeters@wsu.edu
Using the 3rd-order Douglas-Kroll-Hess (DKH3) Hamiltonian, all-electron correlation consistent basis sets of double-, triple-, and quadruple-zeta quality have been developed for the lanthanide elements La through Lu. Basis sets designed for the recovery of valence correlation (defined here as 4f5s5p5d6s), cc-pVnZ-DK3, and outer-core correlation (valence + 4s4p4d), cc-pwCVnZ-DK3, are reported (n = D, T, and Q). Systematic convergence of both Hartree-Fock and correlation energies towards their respective complete basis set (CBS) limits are observed. Benchmark calculations of the first three ionization potentials (IPs) of La through Lu are reported at the DKH3 coupled cluster singles and doubles with perturbative triples,more » CCSD(T), level of theory, including effects of correlation down through the 4s electrons. Spin-orbit coupling is treated at the 2-component HF level. After extrapolation to the CBS limit, the average errors with respect to experiment were just 0.52, 1.14, and 4.24 kcal/mol for the 1st, 2nd, and 3rd IPs, respectively, compared to the average experimental uncertainties of 0.03, 1.78, and 2.65 kcal/mol, respectively. The new basis sets are also used in CCSD(T) benchmark calculations of the equilibrium geometries, atomization energies, and heats of formation for Gd{sub 2}, GdF, and GdF{sub 3}. Except for the equilibrium geometry and harmonic frequency of GdF, which are accurately known from experiment, all other calculated quantities represent significant improvements compared to the existing experimental quantities. With estimated uncertainties of about ±3 kcal/mol, the 0 K atomization energies (298 K heats of formation) are calculated to be (all in kcal/mol): 33.2 (160.1) for Gd{sub 2}, 151.7 (−36.6) for GdF, and 447.1 (−295.2) for GdF{sub 3}.« less
Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A
2009-04-14
In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H2O)n, n = 2-8, 20), H3O(+)(H2O)n, n = 1-6, and OH(-)(H2O)n, n = 1-6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolated to the complete basis set limit of the second-order Møller-Plesset perturbation theory with the effects of higher order correlation estimated at the coupled-cluster theory with single, double, and perturbative triple excitations in the aug-cc-pVDZ basis set. We rank the accuracy of the functionals on the basis of the mean unsigned error (MUE) between calculated benchmark and density functional theory energies. The corresponding MUE (kcal/mol) for each functional is listed in parentheses. We find that M06-L (0.73) and M06 (0.84) give the most accurate binding energies using very extended basis sets such as aug-cc-pV5Z. For more affordable basis sets, the best methods for predicting the binding energies of water clusters are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), and M06/aug-cc-PVTZ (1.33). M06-L/aug-cc-pVTZ also gives more accurate energies for the neutralization reactions (1.38), whereas B3LYP/6-311++G(2d,2p) gives more accurate energies for the ion hydration reactions (1.69).
Reinforcement Learning with Orthonormal Basis Adaptation Based on Activity-Oriented Index Allocation
NASA Astrophysics Data System (ADS)
Satoh, Hideki
An orthonormal basis adaptation method for function approximation was developed and applied to reinforcement learning with multi-dimensional continuous state space. First, a basis used for linear function approximation of a control function is set to an orthonormal basis. Next, basis elements with small activities are replaced with other candidate elements as learning progresses. As this replacement is repeated, the number of basis elements with large activities increases. Example chaos control problems for multiple logistic maps were solved, demonstrating that the method for adapting an orthonormal basis can modify a basis while holding the orthonormality in accordance with changes in the environment to improve the performance of reinforcement learning and to eliminate the adverse effects of redundant noisy states.
New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion.
Pogosyan, George S; Wolf, Kurt Bernardo; Yakhno, Alexander
2017-10-01
The differential equation proposed by Frits Zernike to obtain a basis of polynomial orthogonal solutions on the unit disk to classify wavefront aberrations in circular pupils is shown to have a set of new orthonormal solution bases involving Legendre and Gegenbauer polynomials in nonorthogonal coordinates, close to Cartesian ones. We find the overlaps between the original Zernike basis and a representative of the new set, which turn out to be Clebsch-Gordan coefficients.
The Heats of Formation of GaCl3 and its Fragments
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)
1998-01-01
The heats of formation of GaC13 and its fragments are computed. The geometries and frequencies are obtained at the B3LYP level. The CCSD(T) approach is used to solve the correlation problem. The effect of Ga 3d correlation is studied, and found to affect the bond energies by up to 1 kcal/mol. Both basis set extrapolation and bond functions are considered as ways to approach the basis set limit. Spin-orbit and scalar relativistic effects are also considered.
A walk through the approximations of ab initio multiple spawning
NASA Astrophysics Data System (ADS)
Mignolet, Benoit; Curchod, Basile F. E.
2018-04-01
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
Removal of BCG artifacts using a non-Kirchhoffian overcomplete representation.
Dyrholm, Mads; Goldman, Robin; Sajda, Paul; Brown, Truman R
2009-02-01
We present a nonlinear unmixing approach for extracting the ballistocardiogram (BCG) from EEG recorded in an MR scanner during simultaneous acquisition of functional MRI (fMRI). First, an overcomplete basis is identified in the EEG based on a custom multipath EEG electrode cap. Next, the overcomplete basis is used to infer non-Kirchhoffian latent variables that are not consistent with a conservative electric field. Neural activity is strictly Kirchhoffian while the BCG artifact is not, and the representation can hence be used to remove the artifacts from the data in a way that does not attenuate the neural signals needed for optimal single-trial classification performance. We compare our method to more standard methods for BCG removal, namely independent component analysis and optimal basis sets, by looking at single-trial classification performance for an auditory oddball experiment. We show that our overcomplete representation method for removing BCG artifacts results in better single-trial classification performance compared to the conventional approaches, indicating that the derived neural activity in this representation retains the complex information in the trial-to-trial variability.
A walk through the approximations of ab initio multiple spawning.
Mignolet, Benoit; Curchod, Basile F E
2018-04-07
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
Evaluation of Environmental Conditions on the Curing Of Commercial Fixative and Intumescent Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, J. C.
2016-09-26
Performance metrics for evaluating commercial fixatives are often not readily available for important parameters that must be considered per the facility safety basis and the facility Basis for Interim Operations (BIO). One such parameter is the behavior of such materials in varied, “non-ideal” conditions where ideal is defined as 75 °F, 40% RH. Coupled with the inherent flammable nature of the fixative materials that can act to propagate flame along surfaces that are otherwise fireproof (concrete, sheet metal), much is left unknown when considering the safety basis implications for introducing these materials into nuclear facilities. Through SRNL’s efforts, three (3)more » fixatives, one (1) decontamination gel, and six (6) intumescent coatings were examined for their responses to environmental conditions to determine whether these materials were impervious to non-nominal temperatures and humidities that may be found in nuclear facilities. Characteristics that were examined included set-to-touch time, dust free time, and adhesion testing of the fully cured compounds. Of these ten materials, three were two-part epoxy materials while the other seven consisted of only one constituent. The results show that the epoxies tested are unable to cure in sub-freezing temperatures, with the low temperatures inhibiting crosslinking to a very significant degree. These efforts show significant inhibiting of performance for non-nominal environmental conditions, something that must be addressed both in the decision process for a fixative material to apply and per the safety basis to ensure the accurate flammability and material at risk is calculated.« less
Fourier spatial frequency analysis for image classification: training the training set
NASA Astrophysics Data System (ADS)
Johnson, Timothy H.; Lhamo, Yigah; Shi, Lingyan; Alfano, Robert R.; Russell, Stewart
2016-04-01
The Directional Fourier Spatial Frequencies (DFSF) of a 2D image can identify similarity in spatial patterns within groups of related images. A Support Vector Machine (SVM) can then be used to classify images if the inter-image variance of the FSF in the training set is bounded. However, if variation in FSF increases with training set size, accuracy may decrease as the size of the training set increases. This calls for a method to identify a set of training images from among the originals that can form a vector basis for the entire class. Applying the Cauchy product method we extract the DFSF spectrum from radiographs of osteoporotic bone, and use it as a matched filter set to eliminate noise and image specific frequencies, and demonstrate that selection of a subset of superclassifiers from within a set of training images improves SVM accuracy. Central to this challenge is that the size of the search space can become computationally prohibitive for all but the smallest training sets. We are investigating methods to reduce the search space to identify an optimal subset of basis training images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reuter, Matthew G., E-mail: mgreuter@u.northwestern.edu; Harrison, Robert J.
2014-05-07
The thesis of Brandbyge's comment [J. Chem. Phys. 140, 177103 (2014)] is that our operator decoupling condition is immaterial to transport theories, and it appeals to discussions of nonorthogonal basis sets in transport calculations in its arguments. We maintain that the operator condition is to be preferred over the usual matrix conditions and subsequently detail problems in the existing approaches. From this operator perspective, we conclude that nonorthogonal projectors cannot be used and that the projectors must be selected to satisfy the operator decoupling condition. Because these conclusions pertain to operators, the choice of basis set is not germane.
NASA Astrophysics Data System (ADS)
Langhoff, P. W.; Winstead, C. L.
Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.
NASA Astrophysics Data System (ADS)
Hübener, H.; Pérez-Osorio, M. A.; Ordejón, P.; Giustino, F.
2012-09-01
We present a systematic study of the performance of numerical pseudo-atomic orbital basis sets in the calculation of dielectric matrices of extended systems using the self-consistent Sternheimer approach of [F. Giustino et al., Phys. Rev. B 81, 115105 (2010)]. In order to cover a range of systems, from more insulating to more metallic character, we discuss results for the three semiconductors diamond, silicon, and germanium. Dielectric matrices of silicon and diamond calculated using our method fall within 1% of reference planewaves calculations, demonstrating that this method is promising. We find that polarization orbitals are critical for achieving good agreement with planewaves calculations, and that only a few additional ζ's are required for obtaining converged results, provided the split norm is properly optimized. Our present work establishes the validity of local orbital basis sets and the self-consistent Sternheimer approach for the calculation of dielectric matrices in extended systems, and prepares the ground for future studies of electronic excitations using these methods.
Accurate ab initio binding energies of the benzene dimer.
Park, Young Choon; Lee, Jae Shin
2006-04-20
Accurate binding energies of the benzene dimer at the T and parallel displaced (PD) configurations were determined using the single- and double-coupled cluster method with perturbative triple correction (CCSD(T)) with correlation-consistent basis sets and an effective basis set extrapolation scheme recently devised. The difference between the estimated CCSD(T) basis set limit electronic binding energies for the T and PD shapes appears to amount to more than 0.3 kcal/mol, indicating the PD shape is a more stable configuration than the T shape for this dimer in the gas phase. This conclusion is further strengthened when a vibrational zero-point correction to the electronic binding energies of this dimer is made, which increases the difference between the two configurations to 0.4-0.5 kcal/mol. The binding energies of 2.4 and 2.8 kcal/mol for the T and PD configurations are in good accord with the previous experimental result from ionization potential measurement.
Sure, Rebecca; Brandenburg, Jan Gerit
2015-01-01
Abstract In quantum chemical computations the combination of Hartree–Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double‐zeta quality is still widely used, for example, in the popular B3LYP/6‐31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean‐field methods. PMID:27308221
NASA Astrophysics Data System (ADS)
Tsogbayar, Tsednee; Yeager, Danny L.
2017-01-01
We further apply the complex scaled multiconfigurational spin-tensor electron propagator method (CMCSTEP) for the theoretical determination of resonance parameters with electron-atom systems including open-shell and highly correlated (non-dynamical correlation) atoms and molecules. The multiconfigurational spin-tensor electron propagator method (MCSTEP) developed and implemented by Yeager and his coworkers for real space gives very accurate and reliable ionization potentials and electron affinities. CMCSTEP uses a complex scaled multiconfigurational self-consistent field (CMCSCF) state as an initial state along with a dilated Hamiltonian where all of the electronic coordinates are scaled by a complex factor. CMCSTEP is designed for determining resonances. We apply CMCSTEP to get the lowest 2P (Be-, Mg-) and 2D (Mg-, Ca-) shape resonances using several different basis sets each with several complete active spaces. Many of these basis sets we employ have been used by others with different methods. Hence, we can directly compare results with different methods but using the same basis sets.
Nagata, Takeshi; Iwata, Suehiro
2004-02-22
The locally projected self-consistent field molecular orbital method for molecular interaction (LP SCF MI) is reformulated for multifragment systems. For the perturbation expansion, two types of the local excited orbitals are defined; one is fully local in the basis set on a fragment, and the other has to be partially delocalized to the basis sets on the other fragments. The perturbation expansion calculations only within single excitations (LP SE MP2) are tested for water dimer, hydrogen fluoride dimer, and colinear symmetric ArM+ Ar (M = Na and K). The calculated binding energies of LP SE MP2 are all close to the corresponding counterpoise corrected SCF binding energy. By adding the single excitations, the deficiency in LP SCF MI is thus removed. The results suggest that the exclusion of the charge-transfer effects in LP SCF MI might indeed be the cause of the underestimation for the binding energy. (c) 2004 American Institute of Physics.
Computing single step operators of logic programming in radial basis function neural networks
NASA Astrophysics Data System (ADS)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-07-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Rajamani, T; Muthu, S; Karabacak, M
2013-05-01
In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-100 cm(-1) and 4000-400 cm(-1), respectively, for N-(4-nitro-2-phenoxyphenyl) methanesulfonamide molecule. Theoretical calculations were performed by ab initio RHF and density functional theory (DFT) method using 6-31G(d,p) and 6-311G(d,p) basis sets. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The frontier orbital energy gap and dipole moment illustrates the high reactivity of the title molecule. The first order hyperpolarizability (β0) and related properties (μ, α and Δα) of the molecule were also calculated. Stability of the molecule arising from hyperconjugative interactions and charge delocalization were analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) anti-bonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded in the region 200-500 nm in ethanol and electronic properties such as excitation energies, oscillator strength and wavelength were calculated by TD-DFT/B3LYP, CIS and TD-HF methods using 6-31G(d,p) basis set. Molecular electrostatic potential (MEP) and HOMO-LUMO energy levels are also constructed. The thermodynamic properties of the title compound were calculated at different temperatures and the results reveals the heat capacity (C), and entropy (S) increases with rise in temperature. Copyright © 2013 Elsevier B.V. All rights reserved.
Steerable Principal Components for Space-Frequency Localized Images*
Landa, Boris; Shkolnisky, Yoel
2017-01-01
As modern scientific image datasets typically consist of a large number of images of high resolution, devising methods for their accurate and efficient processing is a central research task. In this paper, we consider the problem of obtaining the steerable principal components of a dataset, a procedure termed “steerable PCA” (steerable principal component analysis). The output of the procedure is the set of orthonormal basis functions which best approximate the images in the dataset and all of their planar rotations. To derive such basis functions, we first expand the images in an appropriate basis, for which the steerable PCA reduces to the eigen-decomposition of a block-diagonal matrix. If we assume that the images are well localized in space and frequency, then such an appropriate basis is the prolate spheroidal wave functions (PSWFs). We derive a fast method for computing the PSWFs expansion coefficients from the images' equally spaced samples, via a specialized quadrature integration scheme, and show that the number of required quadrature nodes is similar to the number of pixels in each image. We then establish that our PSWF-based steerable PCA is both faster and more accurate then existing methods, and more importantly, provides us with rigorous error bounds on the entire procedure. PMID:29081879
[Integrated health information system based on Resident Assessment Instruments].
Frijters, D; Achterberg, W; Hirdes, J P; Fries, B E; Morris, J N; Steel, K
2001-02-01
The paper explores the meaning of Resident Assessment Instruments. It gives a summary of existing RAI instruments and derived applications. It argues how all of these form the basis for an integrated health information system for "chain care" (home care, home for the elderly care, nursing home care, mental health care and acute care). The primary application of RAI systems is the assessment of client care needs, followed by an analysis of the required and administered care with the objective to make an optimal individual care plan. On the basis of RAI, however, applications have been derived for reimbursement systems, quality improvement programs, accreditation, benchmarking, best practice comparison and care eligibility systems. These applications have become possible by the development on the basis of the Minimum Data Set of RAI of outcome measures (item scores, scales and indices), case-mix classifications and quality indicators. To illustrate the possibilities of outcome measures of RAI we present a table and a figure with data of six Dutch nursing homes which shows how social engagement is related to ADL and cognition. We argue that RAI/MDS assessment instruments comprise an integrated health information system because they have consistent terminology, common core items, and a common conceptual basis in a clinical approach that emphasizes the identification of functional problems.
Nitrogen oxides/sulfur oxides (NOx/SOx) Secondary NAAQS ...
This document assesses the policy basis for setting the secondary NOx/SOx NAAQS. To provide the policy assessment information for the Administrator to make a more informed decision about the basis for retaining or revising the secondary NOx/SOx NAAQS.
Correlation consistent basis sets for actinides. II. The atoms Ac and Np-Lr
NASA Astrophysics Data System (ADS)
Feng, Rulin; Peterson, Kirk A.
2017-08-01
New correlation consistent basis sets optimized using the all-electron third-order Douglas-Kroll-Hess (DKH3) scalar relativistic Hamiltonian are reported for the actinide elements Ac and Np through Lr. These complete the series of sets reported previously for Th-U [K. A. Peterson, J. Chem. Phys. 142, 074105 (2015); M. Vasiliu et al., J. Phys. Chem. A 119, 11422 (2015)]. The new sets range in size from double- to quadruple-zeta and encompass both those optimized for valence (6s6p5f7s6d) and outer-core electron correlations (valence + 5s5p5d). The final sets have been contracted for both the DKH3 and eXact 2-component (X2C) Hamiltonians, yielding cc-pVnZ-DK3/cc-pVnZ-X2C sets for valence correlation and cc-pwCVnZ-DK3/cc-pwCVnZ-X2C sets for outer-core correlation (n = D, T, Q in each case). In order to test the effectiveness of the new basis sets, both atomic and molecular benchmark calculations have been carried out. In the first case, the first three atomic ionization potentials (IPs) of all the actinide elements Ac-Lr have been calculated using the Feller-Peterson-Dixon (FPD) composite approach, primarily with the multireference configuration interaction (MRCI) method. Excellent convergence towards the respective complete basis set (CBS) limits is achieved with the new sets, leading to good agreement with experiment, where these exist, after accurately accounting for spin-orbit effects using the 4-component Dirac-Hartree-Fock method. For a molecular test, the IP and atomization energy (AE) of PuO2 have been calculated also using the FPD method but using a coupled cluster approach with spin-orbit coupling accounted for using the 4-component MRCI. The present calculations yield an IP0 for PuO2 of 159.8 kcal/mol, which is in excellent agreement with the experimental electron transfer bracketing value of 162 ± 3 kcal/mol. Likewise, the calculated 0 K AE of 305.6 kcal/mol is in very good agreement with the currently accepted experimental value of 303.1 ± 5 kcal/mol. The ground state of PuO2 is predicted to be the 0 g +5Σ state.
Correlation consistent basis sets for actinides. II. The atoms Ac and Np-Lr.
Feng, Rulin; Peterson, Kirk A
2017-08-28
New correlation consistent basis sets optimized using the all-electron third-order Douglas-Kroll-Hess (DKH3) scalar relativistic Hamiltonian are reported for the actinide elements Ac and Np through Lr. These complete the series of sets reported previously for Th-U [K. A. Peterson, J. Chem. Phys. 142, 074105 (2015); M. Vasiliu et al., J. Phys. Chem. A 119, 11422 (2015)]. The new sets range in size from double- to quadruple-zeta and encompass both those optimized for valence (6s6p5f7s6d) and outer-core electron correlations (valence + 5s5p5d). The final sets have been contracted for both the DKH3 and eXact 2-component (X2C) Hamiltonians, yielding cc-pVnZ-DK3/cc-pVnZ-X2C sets for valence correlation and cc-pwCVnZ-DK3/cc-pwCVnZ-X2C sets for outer-core correlation (n = D, T, Q in each case). In order to test the effectiveness of the new basis sets, both atomic and molecular benchmark calculations have been carried out. In the first case, the first three atomic ionization potentials (IPs) of all the actinide elements Ac-Lr have been calculated using the Feller-Peterson-Dixon (FPD) composite approach, primarily with the multireference configuration interaction (MRCI) method. Excellent convergence towards the respective complete basis set (CBS) limits is achieved with the new sets, leading to good agreement with experiment, where these exist, after accurately accounting for spin-orbit effects using the 4-component Dirac-Hartree-Fock method. For a molecular test, the IP and atomization energy (AE) of PuO 2 have been calculated also using the FPD method but using a coupled cluster approach with spin-orbit coupling accounted for using the 4-component MRCI. The present calculations yield an IP 0 for PuO 2 of 159.8 kcal/mol, which is in excellent agreement with the experimental electron transfer bracketing value of 162 ± 3 kcal/mol. Likewise, the calculated 0 K AE of 305.6 kcal/mol is in very good agreement with the currently accepted experimental value of 303.1 ± 5 kcal/mol. The ground state of PuO 2 is predicted to be the Σ0g+5 state.
A Study on Gröbner Basis with Inexact Input
NASA Astrophysics Data System (ADS)
Nagasaka, Kosaku
Gröbner basis is one of the most important tools in recent symbolic algebraic computations. However, computing a Gröbner basis for the given polynomial ideal is not easy and it is not numerically stable if polynomials have inexact coefficients. In this paper, we study what we should get for computing a Gröbner basis with inexact coefficients and introduce a naive method to compute a Gröbner basis by reduced row echelon form, for the ideal generated by the given polynomial set having a priori errors on their coefficients.
Ferenczy, György G
2013-04-05
The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.
Modeling the weak hydrogen bonding of pyrrole and dichloromethane through Raman and DFT study.
Singh, Dheeraj Kumar; Asthana, Birendra Pratap; Srivastava, Sunil Kumar
2012-08-01
Raman spectra of neat pyrrole (C(4)H(5)N) and its binary mixtures with dichloromethane (CH(2)Cl(2), DCM) with varying mole fractions of C(4)H(5)N from 0.1 to 0.9 were recorded in order to monitor the influence of molecular interaction on spectral features of selected vibrational bands of pyrrole in the region 600-1600 cm(-1). Only 1369 cm(-1) vibrational band of pyrrole shows a significant change in its peak position in going from neat pyrrole to the complexes. The 1369 cm(-1) band shows (∼6 cm(-1)) blue shift upon dilution and the corresponding linewidth shows the maximum shift at C = 0.5 mole fraction of pyrrole upon dilution which clearly indicates that the concentration fluctuation model plays major role. Quantum chemical calculation using density functional theory (DFT) and ab-initio (MP2 and HF) methods were performed employing high level basis set, 6-311++G(d,p) to obtain the ground state geometry of neat pyrrole and its complexes with DCM in gas phase. Basis set superimpose error (BSSE) correction was also introduced by using the counterpoise method. In order to account for the solvent effect on vibrational features and changes in optimized structural parameters of pyrrole, polarizable continuum model (PCM) (bulk solvations) and PCM (specific plus bulk solvations) calculations were performed. Two possible configurations of pyrrole + DCM complex have been predicted by B3LYP and HF methods, whereas the MP2 method gave only single configuration in which H atom of DCM is bonded to π ring of the pyrrole molecule. This affects significantly the ring vibrations of pyrrole molecule, which was also observed in our experimental results.
NASA Astrophysics Data System (ADS)
Verdebout, S.; Jönsson, P.; Gaigalas, G.; Godefroid, M.; Froese Fischer, C.
2010-04-01
Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree-Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.
Özdemir Tarı, Gonca; Gümüş, Sümeyye; Ağar, Erbil
2015-04-15
The title compound, 2-[((3-iodo-4-methyl)phenylimino)methyl]-5-nitrothiophene, C12H9O2N2I1S1, was synthesized and characterized by IR, UV-Vis and single-crystal X-ray diffraction technique. The molecular structure was optimized at the B3LYP, B3PW91 and PBEPBE levels of the density functional method (DFT) with the 6-311G+(d,p) basis set. Using the TD-DFT method, the electronic absorption spectra of the title compound was computed in both the gas phase and ethanol solvent. The harmonic vibrational frequencies of the title compound were calculated using the same methods with the 6-311G+(d,p) basis set. The calculated results were compared with the experimental determination results of the compound. The energetic behavior such as the total energy, atomic charges, dipole moment of the title compound in solvent media were examined using the B3LYP, B3PW91 and PBEPBE methods with the 6-311G+(d,p) basis set by applying the Onsager and the polarizable continuum model (PCM). The molecular orbitals (FMOs) analysis, the molecular electrostatic potential map (MEP) and the nonlinear optical properties (NLO) for the title compound were obtained with the same levels of theory. And then thermodynamic properties for the title compound were obtained using the same methods with the 6-311G(d,p) basis set. Copyright © 2015 Elsevier B.V. All rights reserved.
Kolmann, Stephen J; Jordan, Meredith J T
2010-02-07
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
NASA Astrophysics Data System (ADS)
Kolmann, Stephen J.; Jordan, Meredith J. T.
2010-02-01
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
Highly correlated configuration interaction calculations on water with large orbital bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almora-Díaz, César X., E-mail: xalmora@fisica.unam.mx
2014-05-14
A priori selected configuration interaction (SCI) with truncation energy error [C. F. Bunge, J. Chem. Phys. 125, 014107 (2006)] and CI by parts [C. F. Bunge and R. Carbó-Dorca, J. Chem. Phys. 125, 014108 (2006)] are used to approximate the total nonrelativistic electronic ground state energy of water at fixed experimental geometry with CI up to sextuple excitations. Correlation-consistent polarized core-valence basis sets (cc-pCVnZ) up to sextuple zeta and augmented correlation-consistent polarized core-valence basis sets (aug-cc-pCVnZ) up to quintuple zeta quality are employed. Truncation energy errors range between less than 1 μhartree, and 100 μhartree for the largest orbital set. Coupledmore » cluster CCSD and CCSD(T) calculations are also obtained for comparison. Our best upper bound, −76.4343 hartree, obtained by SCI with up to sextuple excitations with a cc-pCV6Z basis recovers more than 98.8% of the correlation energy of the system, and it is only about 3 kcal/mol above the “experimental” value. Despite that the present energy upper bounds are far below all previous ones, comparatively large dispersion errors in the determination of the extrapolated energies to the complete basis set do not allow to determine a reliable estimation of the full CI energy with an accuracy better than 0.6 mhartree (0.4 kcal/mol)« less
Thapa, Bishnu; Schlegel, H Bernhard
2016-07-21
The pKa's of substituted thiols are important for understanding their properties and reactivities in applications in chemistry, biochemistry, and material chemistry. For a collection of 175 different density functionals and the SMD implicit solvation model, the average errors in the calculated pKa's of methanethiol and ethanethiol are almost 10 pKa units higher than for imidazole. A test set of 45 substituted thiols with pKa's ranging from 4 to 12 has been used to assess the performance of 8 functionals with 3 different basis sets. As expected, the basis set needs to include polarization functions on the hydrogens and diffuse functions on the heavy atoms. Solvent cavity scaling was ineffective in correcting the errors in the calculated pKa's. Inclusion of an explicit water molecule that is hydrogen bonded with the H of the thiol group (in neutral) or S(-) (in thiolates) lowers error by an average of 3.5 pKa units. With one explicit water and the SMD solvation model, pKa's calculated with the M06-2X, PBEPBE, BP86, and LC-BLYP functionals are found to deviate from the experimental values by about 1.5-2.0 pKa units whereas pKa's with the B3LYP, ωB97XD and PBEVWN5 functionals are still in error by more than 3 pKa units. The inclusion of three explicit water molecules lowers the calculated pKa further by about 4.5 pKa units. With the B3LYP and ωB97XD functionals, the calculated pKa's are within one unit of the experimental values whereas most other functionals used in this study underestimate the pKa's. This study shows that the ωB97XD functional with the 6-31+G(d,p) and 6-311++G(d,p) basis sets, and the SMD solvation model with three explicit water molecules hydrogen bonded to the sulfur produces the best result for the test set (average error -0.11 ± 0.50 and +0.15 ± 0.58, respectively). The B3LYP functional also performs well (average error -1.11 ± 0.82 and -0.78 ± 0.79, respectively).
An ab initio benchmark study of the H + CO --> HCO reaction
NASA Technical Reports Server (NTRS)
Woon, D. E.
1996-01-01
The H + CO --> HCO reaction has been characterized with correlation consistent basis sets at five levels of theory in order to benchmark the sensitivities of the barrier height and reaction ergicity to the one-electron and n-electron expansions of the electronic wave function. Single and multireference methods are compared and contrasted. The coupled cluster method RCCSD(T) was found to be in very good agreement with Davidson-corrected internally-contracted multireference configuration interaction (MRCI+Q). Second-order Moller-Plesset perturbation theory (MP2) was also employed. The estimated complete basis set (CBS) limits for the barrier height (in kcal/mol) for the five methods, including harmonic zero-point energy corrections, are MP2, 4.66; RCCSD, 4.78; RCCSD(T), 4.15; MRCI, 5.10; and MRCI+Q, 4.07. Similarly, the estimated CBS limits for the ergicity of the reaction are: MP2, -17.99; RCCSD, -13.34; RCCSD(T), -13.79; MRCI, -11.46; and MRCI+Q, -13.70. Additional basis set explorations for the RCCSD(T) method demonstrate that aug-cc-pVTZ sets, even with some functions removed, are sufficient to reproduce the CBS limits to within 0.1-0.3 kcal/mol.
NASA Astrophysics Data System (ADS)
Barranco, Joseph
2006-03-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.
A 3D spectral anelastic hydrodynamic code for shearing, stratified flows
NASA Astrophysics Data System (ADS)
Barranco, Joseph A.; Marcus, Philip S.
2006-11-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.
Tamura, Koichiro; Tao, Qiqing; Kumar, Sudhir
2018-01-01
Abstract RelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of data sets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary rates in sister lineages with the principle of minimum rate change between evolutionary lineages and their respective descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime will be useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and biochemical traits. PMID:29893954
Fletcher, Timothy L; Popelier, Paul L A
2016-06-14
A machine learning method called kriging is applied to the set of all 20 naturally occurring amino acids. Kriging models are built that predict electrostatic multipole moments for all topological atoms in any amino acid based on molecular geometry only. These models then predict molecular electrostatic interaction energies. On the basis of 200 unseen test geometries for each amino acid, no amino acid shows a mean prediction error above 5.3 kJ mol(-1), while the lowest error observed is 2.8 kJ mol(-1). The mean error across the entire set is only 4.2 kJ mol(-1) (or 1 kcal mol(-1)). Charged systems are created by protonating or deprotonating selected amino acids, and these show no significant deviation in prediction error over their neutral counterparts. Similarly, the proposed methodology can also handle amino acids with aromatic side chains, without the need for modification. Thus, we present a generic method capable of accurately capturing multipolar polarizable electrostatics in amino acids.
ERIC Educational Resources Information Center
Muijs, Daniel; Dunne, Mairead
2010-01-01
Background: Grouping students into classes by ability on a subject-by-subject basis, also known as setting, is a common practice in many educational systems. An important issue is therefore the way in which setting decisions are made. While educators and policy-makers favouring setting claim that ability or achievement is the sole criterion used,…
NASA Astrophysics Data System (ADS)
Ackley, Kendall; Eikenberry, Stephen; Klimenko, Sergey; LIGO Team
2017-01-01
We present a false-alarm rate for a joint detection of gravitational wave (GW) events and associated electromagnetic (EM) counterparts for Advanced LIGO and Virgo (LV) observations during the first years of operation. Using simulated GW events and their recostructed probability skymaps, we tile over the error regions using sets of archival wide-field telescope survey images and recover the number of astrophysical transients to be expected during LV-EM followup. With the known GW event injection coordinates we inject artificial electromagnetic (EM) sources at that site based on theoretical and observational models on a one-to-one basis. We calculate the EM false-alarm probability using an unsupervised machine learning algorithm based on shapelet analysis which has shown to be a strong discriminator between astrophysical transients and image artifacts while reducing the set of transients to be manually vetted by five orders of magnitude. We also show the performance of our method in context with other machine-learned transient classification and reduction algorithms, showing comparability without the need for a large set of training data opening the possibility for next-generation telescopes to take advantage of this pipeline for LV-EM followup missions.
The use of an integrated variable fuzzy sets in water resources management
NASA Astrophysics Data System (ADS)
Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang
2018-06-01
Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeYonker, Nathan J., E-mail: ndyonker@memphis.edu; Halfen, DeWayne T.; Ziurys, Lucy M.
Six electronic states (X {sup 4}Σ{sup −}, A {sup 4}Π, B {sup 4}Δ, {sup 2}Φ, {sup 2}Δ, {sup 2}Σ{sup +}) of the vanadium monochloride cation (VCl{sup +}) are described using large basis set coupled cluster theory. For the two lowest quartet states (X {sup 4}Σ{sup −} and A {sup 4}Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T{sub 0}) and spectroscopic constants (r{sub e}, r{sub 0}, B{sub e}, B{sub 0}, D{sup ¯}{sub e}, H{sub e},more » ω{sub e}, v{sub 0}, α{sub e}, ω{sub e}x{sub e}) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X {sup 4}Σ{sup −}), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state ({sup 2}Γ) has a T{sub e} of ∼11 200 cm{sup −1}. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.« less
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-07
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The parallelization efficiency for the Coulomb terms can be somewhat smaller (speedup ~15-25 for 30 processors), but their contribution to the total calculation time is small. Thus, the parallel program completes a Becke3-Lee-Yang-Parr energy and gradient calculation on the Ag-TB2-helicate in less than 4 h on 30 processors. We also present the necessary extension of the Lagrangian formalism, which enables the calculation of the TDDFT excited state properties in the frozen-core approximation. The algorithms described in this work are implemented into the ORCA electronic structure system.
Long-range analysis of density fitting in extended systems
NASA Astrophysics Data System (ADS)
Varga, Scarontefan
Density fitting scheme is analyzed for the Coulomb problem in extended systems from the correctness of long-range behavior point of view. We show that for the correct cancellation of divergent long-range Coulomb terms it is crucial for the density fitting scheme to reproduce the overlap matrix exactly. It is demonstrated that from all possible fitting metric choices the Coulomb metric is the only one which inherently preserves the overlap matrix for infinite systems with translational periodicity. Moreover, we show that by a small additional effort any non-Coulomb metric fit can be made overlap-preserving as well. The problem is analyzed for both ordinary and Poisson basis set choices.
Determination of Phobos' rotational parameters by an inertial frame bundle block adjustment
NASA Astrophysics Data System (ADS)
Burmeister, Steffi; Willner, Konrad; Schmidt, Valentina; Oberst, Jürgen
2018-01-01
A functional model for a bundle block adjustment in the inertial reference frame was developed, implemented and tested. This approach enables the determination of rotation parameters of planetary bodies on the basis of photogrammetric observations. Tests with a self-consistent synthetic data set showed that the implementation converges reliably toward the expected values of the introduced unknown parameters of the adjustment, e.g., spin pole orientation, and that it can cope with typical observational errors in the data. We applied the model to a data set of Phobos using images from the Mars Express and the Viking mission. With Phobos being in a locked rotation, we computed a forced libration amplitude of 1.14^circ ± 0.03^circ together with a control point network of 685 points.
On designing a new cumulative sum Wilcoxon signed rank chart for monitoring process location
Nazir, Hafiz Zafar; Tahir, Muhammad; Riaz, Muhammad
2018-01-01
In this paper, ranked set sampling is used for developing a non-parametric location chart which is developed on the basis of Wilcoxon signed rank statistic. The average run length and some other characteristics of run length are used as the measures to assess the performance of the proposed scheme. Some selective distributions including Laplace (or double exponential), logistic, normal, contaminated normal and student’s t-distributions are considered to examine the performance of the proposed Wilcoxon signed rank control chart. It has been observed that the proposed scheme shows superior shift detection ability than some of the competing counterpart schemes covered in this study. Moreover, the proposed control chart is also implemented and illustrated with a real data set. PMID:29664919
Optimization of a Biometric System Based on Acoustic Images
Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano
2014-01-01
On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643
The procedure for isolation of neoplasms on the retina of the eye
NASA Astrophysics Data System (ADS)
Komkova, S. V.
2018-01-01
In operation, a computer diagnostic procedure on the human retina neoplasms. The use of this technique in medical institutions in the operation of the ophthalmic practitioner allows earlv detection of the disease, at periodic inspection of a pictorial pattern of disease progression. The test procedure is performed on a set of real human retinal photographs taken from international STARE database with known diagnoses. Given the numerous experiments which show the possibility of using this technique, developed on the basis of the diagnostic system in a doctor’s office-ophthalmic.
Charge transport and trapping in organic field effect transistors exposed to polar analytes
NASA Astrophysics Data System (ADS)
Duarte, Davianne; Sharma, Deepak; Cobb, Brian; Dodabalapur, Ananth
2011-03-01
Pentacene based organic thin-film transistors were used to study the effects of polar analytes on charge transport and trapping behavior during vapor sensing. Three sets of devices with differing morphology and mobility (0.001-0.5 cm2/V s) were employed. All devices show enhanced trapping upon exposure to analyte molecules. The organic field effect transistors with different mobilities also provide evidence for morphology dependent partition coefficients. This study helps provide a physical basis for many reports on organic transistor based sensor response.
Patts, J.R.; Colinet, J.F.; Janisko, S.J.; Barone, T.L.; Patts, L.D.
2016-01-01
Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber. PMID:28018004
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2014-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.
Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach
NASA Astrophysics Data System (ADS)
Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.
NASA Astrophysics Data System (ADS)
Shahab, Siyamak; Kumar, Rakesh; Darroudi, Mahdieh; Yousefzadeh Borzehandani, Mostafa
2015-03-01
Quantum-chemical calculations using the Density Functional Theory (DFT) approach for structural analysis of new azodye sodium(E)-2-hydroxy-5-((4-sulfonatophenyl)diazenyl) (trans isomer) is carried out using B3LYP methods with 6-31G∗ basis set. The comparison of measured UV-Vis data, IR and NMR spectra of the molecule with the experimental data were also described which allowed assignment of major spectral features of title molecule. The optimized geometrical parameters obtained by B3LYP methods show a good agreement with experimental data. On the basis of polyvinyl alcohol (PVA) and the dichroic synthesized dye polarizer absorbing in the UV region of the spectrum (λmax = 353 nm) with the effect of polarization in the absorption maximum 96% was developed. The spectral-polarization parameters of stretched PVA-films were calculated.
The non-obvious basis of ownership: Preschool children trace the history and value of owned objects
Gelman, Susan A.; Manczak, Erika M.; Noles, Nicholaus S.
2012-01-01
For adults, ownership is non-obvious: (a) determining ownership depends more on an object’s history than on perceptual cues, and (b) ownership confers special value on an object (“endowment effect”). This study examined these concepts in preschoolers (2.0–4.4) and adults (N=112). Participants saw toy-sets in which one toy was designated as the participant’s, and one as the researcher’s. Toys were then scrambled and participants were asked to identify their toy and the researcher’s toy. By three years of age, participants used object history to determine ownership, and identified even undesirable toys as their own. Furthermore, participants at all ages showed an endowment effect (greater liking of items designated as their own). Thus, even 2-year-olds appreciate the non-obvious basis of ownership. PMID:22716967
NASA Astrophysics Data System (ADS)
Pan, Andrew; Burnett, Benjamin A.; Chui, Chi On; Williams, Benjamin S.
2017-08-01
We derive a density matrix (DM) theory for quantum cascade lasers (QCLs) that describes the influence of scattering on coherences through a generalized scattering superoperator. The theory enables quantitative modeling of QCLs, including localization and tunneling effects, using the well-defined energy eigenstates rather than the ad hoc localized basis states required by most previous DM models. Our microscopic approach to scattering also eliminates the need for phenomenological transition or dephasing rates. We discuss the physical interpretation and numerical implementation of the theory, presenting sets of both energy-resolved and thermally averaged equations, which can be used for detailed or compact device modeling. We illustrate the theory's applications by simulating a high performance resonant-phonon terahertz (THz) QCL design, which cannot be easily or accurately modeled using conventional DM methods. We show that the theory's inclusion of coherences is crucial for describing localization and tunneling effects consistent with experiment.
NASA Astrophysics Data System (ADS)
Ouasri, A.; El-Adel, L.; Zouihri, H.; Rhandour, A.; Jalbout, A. F.
2018-04-01
Diethylammonium hexachloroplumbate [(C2H5)2NH2]2PbCl6 was found to be monoclinic with P21/n (Z = 2) as space group at room temperature. The TGA analysis shows that this compound is slightly hygroscopic and presents moisture in itself. The Raman spectrum (50-4000 cm-1) of this compound recorded at room temperature was discussed on the basis of the factor group analysis using the structural data obtained recently [5]. The experimental frequencies are compared to those obtained by Density Functional Theory (DFT) by using the B3LYP functional and the 6-31G(d) (SDD) basis set. The thermodynamic properties and geometries of this compound have been determinated and characterized. The significant intermolecular interactions in the crystal structure are identified and analyzed using the Hirshfeld surface and fingerprint plots computational methods.
Hung, Linda; Bruneval, Fabien; Baishya, Kopinjol; ...
2017-04-07
Energies from the GW approximation and the Bethe–Salpeter equation (BSE) are benchmarked against the excitation energies of transition-metal (Cu, Zn, Ag, and Cd) single atoms and monoxide anions. We demonstrate that best estimates of GW quasiparticle energies at the complete basis set limit should be obtained via extrapolation or closure relations, while numerically converged GW-BSE eigenvalues can be obtained on a finite basis set. Calculations using real-space wave functions and pseudopotentials are shown to give best-estimate GW energies that agree (up to the extrapolation error) with calculations using all-electron Gaussian basis sets. We benchmark the effects of a vertex approximationmore » (ΓLDA) and the mean-field starting point in GW and the BSE, performing computations using a real-space, transition-space basis and scalar-relativistic pseudopotentials. Here, while no variant of GW improves on perturbative G0W0 at predicting ionization energies, G0W0Γ LDA-BSE computations give excellent agreement with experimental absorption spectra as long as off-diagonal self-energy terms are included. We also present G0W0 quasiparticle energies for the CuO –, ZnO –, AgO –, and CdO – anions, in comparison to available anion photoelectron spectra.« less
NASA Astrophysics Data System (ADS)
Maltz, Jonathan S.
2000-11-01
We present an algorithm of reduced computational cost which is able to estimate kinetic model parameters directly from dynamic ECT sinograms made up of temporally inconsistent projections. The algorithm exploits the extreme degree of parameter redundancy inherent in linear combinations of the exponential functions which represent the modes of first-order compartmental systems. The singular value decomposition is employed to find a small set of orthogonal functions, the linear combinations of which are able to accurately represent all modes within the physiologically anticipated range in a given study. The reduced-dimension basis is formed as the convolution of this orthogonal set with a measured input function. The Moore-Penrose pseudoinverse is used to find coefficients of this basis. Algorithm performance is evaluated at realistic count rates using MCAT phantom and clinical 99mTc-teboroxime myocardial study data. Phantom data are modelled as originating from a Poisson process. For estimates recovered from a single slice projection set containing 2.5×105 total counts, recovered tissue responses compare favourably with those obtained using more computationally intensive methods. The corresponding kinetic parameter estimates (coefficients of the new basis) exhibit negligible bias, while parameter variances are low, falling within 30% of the Cramér-Rao lower bound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Linda; Bruneval, Fabien; Baishya, Kopinjol
Energies from the GW approximation and the Bethe–Salpeter equation (BSE) are benchmarked against the excitation energies of transition-metal (Cu, Zn, Ag, and Cd) single atoms and monoxide anions. We demonstrate that best estimates of GW quasiparticle energies at the complete basis set limit should be obtained via extrapolation or closure relations, while numerically converged GW-BSE eigenvalues can be obtained on a finite basis set. Calculations using real-space wave functions and pseudopotentials are shown to give best-estimate GW energies that agree (up to the extrapolation error) with calculations using all-electron Gaussian basis sets. We benchmark the effects of a vertex approximationmore » (ΓLDA) and the mean-field starting point in GW and the BSE, performing computations using a real-space, transition-space basis and scalar-relativistic pseudopotentials. Here, while no variant of GW improves on perturbative G0W0 at predicting ionization energies, G0W0Γ LDA-BSE computations give excellent agreement with experimental absorption spectra as long as off-diagonal self-energy terms are included. We also present G0W0 quasiparticle energies for the CuO –, ZnO –, AgO –, and CdO – anions, in comparison to available anion photoelectron spectra.« less
Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; ...
2015-10-09
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Finally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less
NASA Astrophysics Data System (ADS)
Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.
2015-11-01
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.
Banerjee, Amartya S.; Lin, Lin; Hu, Wei; ...
2016-10-21
The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A central issue for large-scale calculations, however, is the computation of the electron density (and subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) canmore » be used to address this issue and push the envelope in large-scale materials simulations in a discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The on-the-fly nature of the ALB functions requires additional care in carrying out the subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale twodimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. In conclusion, employing 55 296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D electrolyte containing 8586 atoms is 90 s, and the time for a graphene sheet containing 11 520 atoms is 75 s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Finally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less
Shrestha, Uttam M; Seo, Youngho; Botvinick, Elias H; Gullberg, Grant T
2015-11-07
Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.
NASA Astrophysics Data System (ADS)
van Mourik, Tanja
1999-02-01
The potential energy curves of the rare gas dimers He2, Ne2, and Ar2 have been computed using correlation consistent basis sets ranging from singly augmented aug-cc-pVDZ sets through triply augmented t-aug-cc-pV6Z sets, with the augmented sextuple basis sets being reported herein. Several methods for including electron correlation were investigated, namely Moller-Plesset perturbation theory (MP2, MP3 and MP4) and coupled cluster theory [CCSD and CCSD(T)]. For He2CCSD(T)/d-aug-cc-pV6Z calculations yield a well depth of 7.35cm-1 (10.58K), with an estimated complete basis set (CBS) limit of 7.40cm-1 (10.65K). The latter is smaller than the 'exact' well depth (Aziz, R. A., Janzen, A. R., and Moldover, M. R., 1995, Phys. Rev. Lett., 74, 1586) by about 0.2cm-1 (0.35K). The Ne well depth, computed with the CCSD(T)/d-aug-cc-pV6Z method, is 28.31cm-1 and the estimated CBS limit is 28.4cm-1, approximately 1cm-1 smaller than the empirical potential of Aziz, R. A., and Slaman, M., J., 1989, Chem. Phys., 130, 187. Inclusion of core and core-valence correlation effects has a negligible effect on the Ne well depth, decreasing it by only 0.04cm-1. For Ar2, CCSD(T)/ d-aug-cc-pV6Z calculations yield a well depth of 96.2cm-1. The corresponding HFDID potential of Aziz, R. A., 1993, J. chem. Phys., 99, 4518 predicts of D of 99.7cm-1. Inclusion of core and core-valence effects in Ar increases the well depth and decreases the discrepancy by approximately 1cm-1.
NASA Astrophysics Data System (ADS)
Castillo, María V.; Iramain, Maximiliano A.; Davies, Lilian; Manzur, María E.; Brandán, Silvia Antonia
2018-02-01
Dieldrin was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet-Visible (UV-Visible) spectroscopies. The structural and vibrational properties for dieldrin in gas phase and in aqueous solution were computed combining those experimental spectra with hybrids B3LYP and WB97XD calculations by using the 6-31G* and 6-311++G** basis sets. Here, the experimental available Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) for dieldrin were also used and compared with those predicted by calculations. The B3LYP/6-311++G** method generates the most stable structures while the results have demonstrated certain dependence of the volume and dipole moment values with the method, size of the basis set and, with the studied media. The lower solvation energy for dieldrin (-32.94 kJ/mol) is observed for the higher contraction volume (-2.4 Å3) by using the B3LYP/6-31G* method. The NBO studies suggest a high stability of dieldrin in gas phase by using the WB97XD/6-31G* method due to the n→π* and n*→π* interactions while the AIM analyses support this high stability by the C18⋯H26 and C14⋯O7 contacts. The different topological properties observed in the R5 ring suggest that probably this ring plays a very important role in the toxics properties of dieldrin. The frontier orbitals show that when dieldrin is compared with other toxics substances the reactivity increases in the following order: CO < STX < dieldrin < C6Cl6
Context-sensitive autoassociative memories as expert systems in medical diagnosis
Pomi, Andrés; Olivera, Fernando
2006-01-01
Background The complexity of our contemporary medical practice has impelled the development of different decision-support aids based on artificial intelligence and neural networks. Distributed associative memories are neural network models that fit perfectly well to the vision of cognition emerging from current neurosciences. Methods We present the context-dependent autoassociative memory model. The sets of diseases and symptoms are mapped onto a pair of basis of orthogonal vectors. A matrix memory stores the associations between the signs and symptoms, and their corresponding diseases. A minimal numerical example is presented to show how to instruct the memory and how the system works. In order to provide a quick appreciation of the validity of the model and its potential clinical relevance we implemented an application with real data. A memory was trained with published data of neonates with suspected late-onset sepsis in a neonatal intensive care unit (NICU). A set of personal clinical observations was used as a test set to evaluate the capacity of the model to discriminate between septic and non-septic neonates on the basis of clinical and laboratory findings. Results We show here that matrix memory models with associations modulated by context can perform automatic medical diagnosis. The sequential availability of new information over time makes the system progress in a narrowing process that reduces the range of diagnostic possibilities. At each step the system provides a probabilistic map of the different possible diagnoses to that moment. The system can incorporate the clinical experience, building in that way a representative database of historical data that captures geo-demographical differences between patient populations. The trained model succeeds in diagnosing late-onset sepsis within the test set of infants in the NICU: sensitivity 100%; specificity 80%; percentage of true positives 91%; percentage of true negatives 100%; accuracy (true positives plus true negatives over the totality of patients) 93,3%; and Cohen's kappa index 0,84. Conclusion Context-dependent associative memories can operate as medical expert systems. The model is presented in a simple and tutorial way to encourage straightforward implementations by medical groups. An application with real data, presented as a primary evaluation of the validity and potentiality of the model in medical diagnosis, shows that the model is a highly promising alternative in the development of accuracy diagnostic tools. PMID:17121675
Li, Wenhuan; Zhu, Xiaolian; Li, Jing; Peng, Cheng; Chen, Nan; Qi, Zhigang; Yang, Qi; Gao, Yan; Zhao, Yang; Sun, Kai; Li, Kuncheng
2014-12-01
The sensitivity and specificity of 5 different image sets of dual-energy computed tomography (DECT) for the detection of first-pass myocardial perfusion defects have not systematically been compared using positron emission tomography (PET) as a reference standard. Forty-nine consecutive patients, with known or strongly suspected of coronary artery disease, were prospectively enrolled in our study. Cardiac DECT was performed at rest state using a second-generation 128-slice dual-source CT. The DECT data were reconstructed to iodine maps, monoenergetic images, 100 kV images, nonlinearly blended images, and linearly blended images by different postprocessing techniques. The myocardial perfusion defects on DECT images were visually assessed by 5 observers, using standard 17-segment model. Diagnostic accuracy of 5 image sets was assessed using nitrogen-13 ammonia PET as the gold standard. Discrimination was quantified using the area under the receiver operating characteristic curve (AUC), and AUCs were compared using the method of DeLong. The DECT and PET examinations were successfully completed in 30 patients and a total of 90 territories and 510 segments were analyzed. Cardiac PET revealed myocardial perfusion defects in 56 territories (62%) and 209 segments (41%). The AUC of iodine maps, monoenergetic images, 100 kV images, nonlinearly blended images, and linearly blended images were 0.986, 0.934, 0.913, 0.881, and 0.871, respectively, on a per-territory basis. These values were 0.922, 0.813, 0.779, 0.763, and 0.728, respectively, on a per-segment basis. DECT iodine maps shows high sensitivity and specificity, and is superior to other DECT image sets for the detection of myocardial perfusion defects in the first-pass myocardial perfusion.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)
1999-01-01
The atomization energy of Mg4 is determined using the MP2 and CCSD(T) levels of theory. Basis set incompleteness, basis set extrapolation, and core-valence effects are discussed. Our best atomization energy, including the zero-point energy and scalar relativistic effects, is 24.6+/-1.6 kcal per mol. Our computed and extrapolated values are compared with previous results, where it is observed that our extrapolated MP2 value is good agreement with the MP2-R12 value. The CCSD(T) and MP2 core effects are found to have the opposite signs.
Evaluation of Density Functionals and Basis Sets for Carbohydrates
USDA-ARS?s Scientific Manuscript database
Correlated ab initio wave function calculations using MP2/aug-cc-pVTZ model chemistry have been performed for three test sets of gas phase saccharide conformations to provide reference values for their relative energies. The test sets consist of 15 conformers of alpha and beta-D-allopyranose, 15 of ...
Liu, Yu-Qing; Keane, Michael; Ensell, Mang; Miller, William; Kashon, Michael; Ong, Tong-man; Mauderly, Joe; Lawson, Doug; Gautam, Mridul; Zielinska, Barbara; Whitney, Kevin; Eberhardt, James; Wallace, William
2005-01-01
Acetone extracts of engine exhaust particulate matter (PM) and of vapor-phase semi-volatile organic compounds (SVOCs) collected from a set of 1998-2000 model year normal emitter diesel engine automobile or light trucks and from a set of 1982-1996 normal emitter gasoline engine automobiles or light trucks operated on the California Unified Driving Cycle at 22 [degree]C were assayed for in vitro genotoxic activities. Gasoline and diesel PM were comparably positive mutagens for Salmonella typhimurium strains YG1024 and YG1029 on a mass of PM extract basis with diesel higher on a mileage basis; gasoline SVOC was more active than diesel on an extracted-mass basis, with diesel SVOC more active on a mileage basis. For chromosomal damage indicated by micronucleus induction in Chinese hamster lung fibroblasts (V79 cells), diesel PM expressed about one-tenth that of gasoline PM on a mass of extract basis, but was comparably active on a mileage basis; diesel SVOC was inactive. For DNA damage in V79 cells indicated by the single cell gel electrophoresis (SCGE) assay, gasoline PM was positive while diesel PM was active at the higher doses; gasoline SVOC was active with toxicity preventing measurement at high doses, while diesel SVOC was inactive at all but the highest dose.
NASA Technical Reports Server (NTRS)
Almloef, Jan; Deleeuw, Bradley J.; Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Siegbahn, Per
1989-01-01
The requirements for very accurate ab initio quantum chemical prediction of dissociation energies are examined using a detailed investigation of the nitrogen molecule. Although agreement with experiment to within 1 kcal/mol is not achieved even with the most elaborate multireference CI (configuration interaction) wave functions and largest basis sets currently feasible, it is possible to obtain agreement to within about 2 kcal/mol, or 1 percent of the dissociation energy. At this level it is necessary to account for core-valence correlation effects and to include up to h-type functions in the basis. The effect of i-type functions, the use of different reference configuration spaces, and basis set superposition error were also investigated. After discussing these results, the remaining sources of error in our best calculations are examined.
System and method for optical fiber based image acquisition suitable for use in turbine engines
Baleine, Erwan; A V, Varun; Zombo, Paul J.; Varghese, Zubin
2017-05-16
A system and a method for image acquisition suitable for use in a turbine engine are disclosed. Light received from a field of view in an object plane is projected onto an image plane through an optical modulation device and is transferred through an image conduit to a sensor array. The sensor array generates a set of sampled image signals in a sensing basis based on light received from the image conduit. Finally, the sampled image signals are transformed from the sensing basis to a representation basis and a set of estimated image signals are generated therefrom. The estimated image signals are used for reconstructing an image and/or a motion-video of a region of interest within a turbine engine.
42 CFR 421.300 - Basis, applicability, and scope.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 3 2011-10-01 2011-10-01 false Basis, applicability, and scope. 421.300 Section 421.300 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... organizational conflicts of interest. (5) Prescribes responsibilities. (6) Sets forth limitations on contractor...
42 CFR 412.400 - Basis and scope of subpart.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Inpatient Hospital Services of Inpatient Psychiatric Facilities § 412.400 Basis and scope of subpart. (a... psychiatric facilities. (b) Scope. This subpart sets forth the framework for the prospective payment system for the inpatient hospital services of inpatient psychiatric facilities, including the methodology...
42 CFR 493.1 - Basis and scope.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND CERTIFICATION LABORATORY REQUIREMENTS General Provisions § 493.1 Basis and scope. This part sets forth the conditions that all laboratories must meet to be certified to perform testing on human specimens under the Clinical Laboratory Improvement Amendments of 1988 (CLIA). It implements sections 1861...
42 CFR 493.1 - Basis and scope.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND CERTIFICATION LABORATORY REQUIREMENTS General Provisions § 493.1 Basis and scope. This part sets forth the conditions that all laboratories must meet to be certified to perform testing on human specimens under the Clinical Laboratory Improvement Amendments of 1988 (CLIA). It implements sections 1861...
40 CFR 35.162 - Basis for allotment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Pollution Control (section 106) § 35.162 Basis for allotment. (a) Allotments. Each fiscal year funds appropriated for Water Pollution Control... for States under the Water Pollution Control grant program will be set aside for allotment to eligible...
Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis
NASA Astrophysics Data System (ADS)
Schäfer, Tobias; Ramberger, Benjamin; Kresse, Georg
2017-03-01
We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order Møller-Plesset (MP2) perturbation theory. In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, O ( N 4 ) , with respect to the system size N and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is eased by an internal basis set extrapolation. The key concept to reduce the scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved in the Laplace transformed MP2 formulation using plane wave basis sets and fast Fourier transforms. Analogously, this approach could allow us to calculate second order screened exchange as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.
NASA Astrophysics Data System (ADS)
Johanson, I. A.; Miklius, A.; Poland, M. P.
2016-12-01
A sequence of magmatic events in April-May 2015 at Kīlauea Volcano produced a complex deformation pattern that can be described by multiple deforming sources, active simultaneously. The 2015 intrusive sequence began with inflation in the volcano's summit caldera near Halema`uma`u (HMM) Crater, which continued over a few weeks, followed by rapid deflation of the HMM source and inflation of a source in the south caldera region during the next few days. In Kīlauea Volcano's summit area, multiple deformation centers are active at varying times, and all contribute to the overall pattern observed with GPS, tiltmeters, and InSAR. Isolating the contribution of different signals related to each source is a challenge and complicates the determination of optimal source geometry for the underlying magma bodies. We used principle component analysis of continuous GPS time series from the 2015 intrusion sequence to determine three basis vectors which together account for 83% of the variance in the data set. The three basis vectors are non-orthogonal and not strictly the principle components of the data set. In addition to separating deformation sources in the continuous GPS data, the basis vectors provide a means to scale the contribution of each source in a given interferogram. This provides an additional constraint in a joint model of GPS and InSAR data (COSMO-SkyMed and Sentinel-1A) to determine source geometry. The first basis vector corresponds with inflation in the south caldera region, an area long recognized as the location of a long-term storage reservoir. The second vector represents deformation of the HMM source, which is in the same location as a previously modeled shallow reservoir, however InSAR data suggest a more complicated source. Preliminary modeling of the deformation attributed to the third basis vector shows that it is consistent with inflation of a steeply dipping ellipsoid centered below Keanakāko`i crater, southeast of HMM. Keanakāko`i crater is the locus of a known, intermittently active deformation source, which was not previously recognized to have been active during the 2015 event.
Document Set Differentiability Analyzer v. 0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Thor D.
Software is a JMP Scripting Language (JSL) script designed to evaluate the differentiability of a set of documents that exhibit some conceptual commonalities but are expected to describe substantially different – thus differentiable – categories. The script imports the document set, a subset of which may be partitioned into an additions pool. The bulk of the documents form a basis pool. Text analysis is applied to the basis pool to extract a mathematical representation of its conceptual content, referred to as the document concept space. A bootstrapping approach is applied to that mathematical representation in order to generate a representationmore » of a large population of randomly designed documents that could be written within the concept space, notably without actually writing the text of those documents.The Kolmogorov-Smirnov test is applied to determine whether the basis pool document set exhibits superior differentiation relative to the randomly designed virtual documents produced by bootstrapping. If an additions pool exists, the documents are incrementally added to the basis pool, choosing the best differentiated remaining document at each step. In this manner the impact of additional categories to overall document set differentiability may be assessed.The software was developed to assess the differentiability of job description document sets. Differentiability is key to meaningful categorization. Poor job differentiation may have economic, ethical, and/or legal implications for an organization. Job categories are used in the assignment of market-based salaries; consequently, poor differentiation of job duties may set the stage for legal challenges if very similar jobs pay differently depending on title, a circumstance that also invites economic waste.The software can be applied to ensure job description set differentiability, reducing legal, economic, and ethical risks to an organization and its people. The extraction of the conceptual space to a mathematical representation enables identification of exceedingly similar documents. In the event of redundancy, two jobs may be collapsed into one. If in the judgment of the subject matter experts the jobs are truly different, the conceptual similarities are highlighted, inviting inclusion of appropriate descriptive content to explicitly characterize those differences. When additional job categories may be needed as the organization changes, the software enables evaluation of proposed additions to ensure that the resulting document set remains adequately differentiated.« less
Comparison of human anxiety based on different cultural backgrounds.
Kalwar, Santosh Kumar
2010-08-01
This work conceptualizes human behavior on the Internet. The study was conducted with 10 university participants representing two different cultural backgrounds, Asian and Western. The participants were asked to visit any Web page on the Internet for 15 minutes, for 30 minutes, and for 1 hour. The results showed that participants displayed no signs of anxiousness during the 15-minute task and very little anxiousness during the 30-minute task. Western participants showed overall more anxiousness than Asian participants. However, all participants showed anxiousness during the 1-hour task. Data on comparative human anxiety were collected on the basis of a literature review of social fun, online belonging, and community on the Internet. Only the limited set of data of the participant is discussed in this article.
Decomposability and convex structure of thermal processes
NASA Astrophysics Data System (ADS)
Mazurek, Paweł; Horodecki, Michał
2018-05-01
We present an example of a thermal process (TP) for a system of d energy levels, which cannot be performed without an instant access to the whole energy space. This TP is uniquely connected with a transition between some states of the system, that cannot be performed without access to the whole energy space even when approximate transitions are allowed. Pursuing the question about the decomposability of TPs into convex combinations of compositions of processes acting non-trivially on smaller subspaces, we investigate transitions within the subspace of states diagonal in the energy basis. For three level systems, we determine the set of extremal points of these operations, as well as the minimal set of operations needed to perform an arbitrary TP, and connect the set of TPs with thermomajorization criterion. We show that the structure of the set depends on temperature, which is associated with the fact that TPs cannot increase deterministically extractable work from a state—the conclusion that holds for arbitrary d level system. We also connect the decomposability problem with detailed balance symmetry of an extremal TPs.
NASA Astrophysics Data System (ADS)
Gray, Darcy L.; Canessa, Rosaline; Rollins, Rick; Keller, C. Peter; Dearden, Philip
2010-08-01
Marine protected areas (MPAs) and zoning plans require an understanding of stakeholders if they are to be successful at achieving social and biological objectives. This study examines recreational boaters in a proposed MPA in British Columbia, Canada, using the recreation opportunity spectrum (ROS) and models of recreation conflict as a basis for investigation. Boaters ( n = 543) visiting the region during the summer completed face-to-face surveys. Results show variability in boater setting preferences, supporting an ROS-based approach to MPA planning and zoning. While boaters as a whole placed the greatest importance on natural settings, sailboat operators expressed stronger preferences for natural and quiet settings relative to motorboats, and motorboat operators expressed stronger preferences for settings characterized by built facilities and extractive activities relative to sailboats. Several marine activities emerged as sources of perceived conflict for boaters, including personal watercraft, commercial whale watching vessels, and shellfish aquaculture. Our analysis indicates that while some of these may be addressed through zoning, others are better addressed through education and communication. Recommendations for both MPA management and future research are made.
Institute for Defense Analysis. Annual Report 1995.
1995-01-01
staff have been involved in the community-wide development of MPI as well as in its application to specific NSA problems. 35 Parallel Groebner ...Basis Code — Symbolic Computing on Parallel Machines The Groebner basis method is a set of algorithms for reformulating very complex algebraic expres
NASA Astrophysics Data System (ADS)
de Jong, G. Theodoor; Geerke, Daan P.; Diefenbach, Axel; Matthias Bickelhaupt, F.
2005-06-01
We have evaluated the performance of 24 popular density functionals for describing the potential energy surface (PES) of the archetypal oxidative addition reaction of the methane C-H bond to the palladium atom by comparing the results with our recent ab initio [CCSD(T)] benchmark study of this reaction. The density functionals examined cover the local density approximation (LDA), the generalized gradient approximation (GGA), meta-GGAs as well as hybrid density functional theory. Relativistic effects are accounted for through the zeroth-order regular approximation (ZORA). The basis-set dependence of the density-functional-theory (DFT) results is assessed for the Becke-Lee-Yang-Parr (BLYP) functional using a hierarchical series of Slater-type orbital (STO) basis sets ranging from unpolarized double-ζ (DZ) to quadruply polarized quadruple-ζ quality (QZ4P). Stationary points on the reaction surface have been optimized using various GGA functionals, all of which yield geometries that differ only marginally. Counterpoise-corrected relative energies of stationary points are converged to within a few tenths of a kcal/mol if one uses the doubly polarized triple-ζ (TZ2P) basis set and the basis-set superposition error (BSSE) drops to 0.0 kcal/mol for our largest basis set (QZ4P). Best overall agreement with the ab initio benchmark PES is achieved by functionals of the GGA, meta-GGA, and hybrid-DFT type, with mean absolute errors of 1.3-1.4 kcal/mol and errors in activation energies ranging from +0.8 to -1.4 kcal/mol. Interestingly, the well-known BLYP functional compares very reasonably with an only slightly larger mean absolute error of 2.5 kcal/mol and an underestimation by -1.9 kcal/mol of the overall barrier (i.e., the difference in energy between the TS and the separate reactants). For comparison, with B3LYP we arrive at a mean absolute error of 3.8 kcal/mol and an overestimation of the overall barrier by 4.5 kcal/mol.
Antony, Jens; Grimme, Stefan; Liakos, Dimitrios G; Neese, Frank
2011-10-20
With dispersion-corrected density functional theory (DFT-D3) intermolecular interaction energies for a diverse set of noncovalently bound protein-ligand complexes from the Protein Data Bank are calculated. The focus is on major contacts occurring between the drug molecule and the binding site. Generalized gradient approximation (GGA), meta-GGA, and hybrid functionals are used. DFT-D3 interaction energies are benchmarked against the best available wave function based results that are provided by the estimated complete basis set (CBS) limit of the local pair natural orbital coupled-electron pair approximation (LPNO-CEPA/1) and compared to MP2 and semiempirical data. The size of the complexes and their interaction energies (ΔE(PL)) varies between 50 and 300 atoms and from -1 to -65 kcal/mol, respectively. Basis set effects are considered by applying extended sets of triple- to quadruple-ζ quality. Computed total ΔE(PL) values show a good correlation with the dispersion contribution despite the fact that the protein-ligand complexes contain many hydrogen bonds. It is concluded that an adequate, for example, asymptotically correct, treatment of dispersion interactions is necessary for the realistic modeling of protein-ligand binding. Inclusion of the dispersion correction drastically reduces the dependence of the computed interaction energies on the density functional compared to uncorrected DFT results. DFT-D3 methods provide results that are consistent with LPNO-CEPA/1 and MP2, the differences of about 1-2 kcal/mol on average (<5% of ΔE(PL)) being on the order of their accuracy, while dispersion-corrected semiempirical AM1 and PM3 approaches show a deviating behavior. The DFT-D3 results are found to depend insignificantly on the choice of the short-range damping model. We propose to use DFT-D3 as an essential ingredient in a QM/MM approach for advanced virtual screening approaches of protein-ligand interactions to be combined with similarly "first-principle" accounts for the estimation of solvation and entropic effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidtlein, CR; Hwang, S; Veeraraghavan, H
Purpose: This study demonstrates a methodology for tracking changes in metastatic bone disease using trajectories in material basis space in serial dual energy computed tomography (DECT) studies. Methods: This study includes patients with bone metastases from breast cancer that had clinical surveillance CT scans using a General Electric CT750HD in dual energy mode. A radiologist defined regions-of-interested (ROI) for bone metastasis, normal bone, and marrow across the serial DECT scans. Our approach employs a Radon transform to forward-projection the basis images, namely, water and iodine, into sinogram space. This data is then repartitioned into fat/bone and effective density/Z image pairsmore » using assumed energy spectrums for the x-ray energies. This approach both helps remove negative material densities and avoids adding spectrum-hardening artifacts. These new basis data sets were then reconstructed via filtered back-projection to create new material basis pair images. The trajectories of these pairs were then plotted in the new basis space providing a means to both visualize and quantitatively measure changes in the material properties of the tumors. Results: ROI containing radiologist defined metastatic bone disease showed well-defined trajectories in both fat/bone and effective density/Z space. ROI that contained radiologist defined normal bone and marrow did not exhibit any discernible trajectories and were stable from scan to scan. Conclusions: The preliminary results show that changes in material composition and effective density/Z image pairs were seen primarily in metastasis and not in normal tissue. This study indicates that by using routine clinical DECT it may be possible to monitor therapy response of bone metastases because healing or worsening bone metastases change material composition of bone. Additional studies are needed to further validate these results and to test for their correlation with outcome.« less
Compressive Detection of Highly Overlapped Spectra Using Walsh-Hadamard-Based Filter Functions.
Corcoran, Timothy C
2018-03-01
In the chemometric context in which spectral loadings of the analytes are already known, spectral filter functions may be constructed which allow the scores of mixtures of analytes to be determined in on-the-fly fashion directly, by applying a compressive detection strategy. Rather than collecting the entire spectrum over the relevant region for the mixture, a filter function may be applied within the spectrometer itself so that only the scores are recorded. Consequently, compressive detection shrinks data sets tremendously. The Walsh functions, the binary basis used in Walsh-Hadamard transform spectroscopy, form a complete orthonormal set well suited to compressive detection. A method for constructing filter functions using binary fourfold linear combinations of Walsh functions is detailed using mathematics borrowed from genetic algorithm work, as a means of optimizing said functions for a specific set of analytes. These filter functions can be constructed to automatically strip the baseline from analysis. Monte Carlo simulations were performed with a mixture of four highly overlapped Raman loadings and with ten excitation-emission matrix loadings; both sets showed a very high degree of spectral overlap. Reasonable estimates of the true scores were obtained in both simulations using noisy data sets, proving the linearity of the method.
How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles?
Steinmann, Zoran J N; Schipper, Aafke M; Hauck, Mara; Huijbregts, Mark A J
2016-04-05
Numerous indicators are currently available for environmental impact assessments, especially in the field of Life Cycle Impact Assessment (LCIA). Because decision-making on the basis of hundreds of indicators simultaneously is unfeasible, a nonredundant key set of indicators representative of the overall environmental impact is needed. We aimed to find such a nonredundant set of indicators based on their mutual correlations. We have used Principal Component Analysis (PCA) in combination with an optimization algorithm to find an optimal set of indicators out of 135 impact indicators calculated for 976 products from the ecoinvent database. The first four principal components covered 92% of the variance in product rankings, showing the potential for indicator reduction. The same amount of variance (92%) could be covered by a minimal set of six indicators, related to climate change, ozone depletion, the combined effects of acidification and eutrophication, terrestrial ecotoxicity, marine ecotoxicity, and land use. In comparison, four commonly used resource footprints (energy, water, land, materials) together accounted for 84% of the variance in product rankings. We conclude that the plethora of environmental indicators can be reduced to a small key set, representing the major part of the variation in environmental impacts between product life cycles.
Onuk, A. Emre; Akcakaya, Murat; Bardhan, Jaydeep P.; Erdogmus, Deniz; Brooks, Dana H.; Makowski, Lee
2015-01-01
In this paper, we describe a model for maximum likelihood estimation (MLE) of the relative abundances of different conformations of a protein in a heterogeneous mixture from small angle X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or unknown conformations, we develop a subset selection method based on k-means clustering and the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that represents the space spanned by the measured SAXS intensities of the known conformations of a protein. Then, using the selected basis set and the assumptions on the model for the intensity measurements, we show that the MLE model can be expressed as a constrained convex optimization problem. Employing the adenylate kinase (ADK) protein and its known conformations as an example, and using Monte Carlo simulations, we demonstrate the performance of the proposed estimation scheme. Here, although we use 45 crystallographically determined experimental structures and we could generate many more using, for instance, molecular dynamics calculations, the clustering technique indicates that the data cannot support the determination of relative abundances for more than 5 conformations. The estimation of this maximum number of conformations is intrinsic to the methodology we have used here. PMID:26924916
Self-compression of spatially limited laser pulses in a system of coupled light-guides
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.
2018-04-01
The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P < 10 P_cr , slightly exceeding the critical one for self-focusing. At higher powers, the wave beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.
NASA Astrophysics Data System (ADS)
Wahnón, P.; Tablero, C.
2002-04-01
A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.
WALLCRAFT, JAN; AMERING, MICHAELA; FREIDIN, JULIAN; DAVAR, BHARGAVI; FROGGATT, DIANE; JAFRI, HUSSAIN; JAVED, AFZAL; KATONTOKA, SYLVESTER; RAJA, SHOBA; RATAEMANE, SOLOMON; STEFFEN, SIGRID; TYANO, SAM; UNDERHILL, CHRISTPHER; WAHLBERG, HENRIK; WARNER, RICHARD; HERRMAN, HELEN
2011-01-01
WPA President M. Maj established the Task Force on Best Practice in Working with Service Users and Carers in 2008, chaired by H. Herrman. The Task Force had the remit to create recommendations for the international mental health community on how to develop successful partnership working. The work began with a review of literature on service user and carer involvement and partnership. This set out a range of considerations for good practice, including choice of appropriate terminology, clarifying the partnership process and identifying and reducing barriers to partnership working. Based on the literature review and on the shared knowledge in the Task Force, a set of ten recommendations for good practice was developed. These recommendations were the basis for a worldwide consultation of stakeholders with expertise as service users, families and carers, and the WPA Board and Council. The results showed a strong consensus across the international mental health community on the ten recommendations, with the strongest agreement coming from service users and carers. This general consensus gives a basis for Task Force plans to seek support for activities to promote shared work worldwide to identify best practice examples and create a resource to assist others to begin successful collaboration. PMID:21991284
Human striatal activation during adjustment of the response criterion in visual word recognition.
Kuchinke, Lars; Hofmann, Markus J; Jacobs, Arthur M; Frühholz, Sascha; Tamm, Sascha; Herrmann, Manfred
2011-02-01
Results of recent computational modelling studies suggest that a general function of the striatum in human cognition is related to shifting decision criteria in selection processes. We used functional magnetic resonance imaging (fMRI) in 21 healthy subjects to examine the hemodynamic responses when subjects shift their response criterion on a trial-by-trial basis in the lexical decision paradigm. Trial-by-trial criterion setting is obtained when subjects respond faster in trials following a word trial than in trials following nonword trials - irrespective of the lexicality of the current trial. Since selection demands are equally high in the current trials, we expected to observe neural activations that are related to response criterion shifting. The behavioural data show sequential effects with faster responses in trials following word trials compared to trials following nonword trials, suggesting that subjects shifted their response criterion on a trial-by-trial basis. The neural responses revealed a signal increase in the striatum only in trials following word trials. This striatal activation is therefore likely to be related to response criterion setting. It demonstrates a role of the striatum in shifting decision criteria in visual word recognition, which cannot be attributed to pure error-related processing or the selection of a preferred response. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Ye; Esler, Kenneth; Kent, Paul; Shulenburger, Luke
Quantum Monte Carlo (QMC) calculations of giant molecules, surface and defect properties of solids have been feasible recently due to drastically expanding computational resources. However, with the most computationally efficient basis set, B-splines, these calculations are severely restricted by the memory capacity of compute nodes. The B-spline coefficients are shared on a node but not distributed among nodes, to ensure fast evaluation. A hybrid representation which incorporates atomic orbitals near the ions and B-spline ones in the interstitial regions offers a more accurate and less memory demanding description of the orbitals because they are naturally more atomic like near ions and much smoother in between, thus allowing coarser B-spline grids. We will demonstrate the advantage of hybrid representation over pure B-spline and Gaussian basis sets and also show significant speed-up like computing the non-local pseudopotentials with our new scheme. Moreover, we discuss a new algorithm for atomic orbital initialization which used to require an extra workflow step taking a few days. With this work, the highly efficient hybrid representation paves the way to simulate large size even in-homogeneous systems using QMC. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Computational Materials Sciences Program.
Sparsity based target detection for compressive spectral imagery
NASA Astrophysics Data System (ADS)
Boada, David Alberto; Arguello Fuentes, Henry
2016-09-01
Hyperspectral imagery provides significant information about the spectral characteristics of objects and materials present in a scene. It enables object and feature detection, classification, or identification based on the acquired spectral characteristics. However, it relies on sophisticated acquisition and data processing systems able to acquire, process, store, and transmit hundreds or thousands of image bands from a given area of interest which demands enormous computational resources in terms of storage, computationm, and I/O throughputs. Specialized optical architectures have been developed for the compressed acquisition of spectral images using a reduced set of coded measurements contrary to traditional architectures that need a complete set of measurements of the data cube for image acquisition, dealing with the storage and acquisition limitations. Despite this improvement, if any processing is desired, the image has to be reconstructed by an inverse algorithm in order to be processed, which is also an expensive task. In this paper, a sparsity-based algorithm for target detection in compressed spectral images is presented. Specifically, the target detection model adapts a sparsity-based target detector to work in a compressive domain, modifying the sparse representation basis in the compressive sensing problem by means of over-complete training dictionaries and a wavelet basis representation. Simulations show that the presented method can achieve even better detection results than the state of the art methods.
Shukla, Vikas K; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Sachan, Alok K; Pathak, Shilendra K; Kumar, Amarendra; Prasad, Onkar; Bishnoi, Abha; Sinha, Leena
2014-12-10
Quantum chemical calculations of ground state energy, geometrical structure and vibrational wavenumbers of 1-acetylindole were carried out using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. The FT-IR and FT-Raman spectra were recorded in the condensed state. The fundamental vibrational wavenumbers were calculated and a good correlation between experimental and scaled calculated wavenumbers has been accomplished. Electric dipole moment, polarizability and first static hyperpolarizability values of 1-acetylindole have been calculated at the same level of theory and basis set. The results show that the 1-acetylindole molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the molecule was recorded in the region 200-500nm and the electronic properties like HOMO and LUMO energies and composition were obtained using TD-DFT method. The calculated energies and oscillator strengths are in good correspondence with the experimental data. The thermodynamic properties of the compound under investigation were calculated at different temperatures. Copyright © 2014 Elsevier B.V. All rights reserved.
Rusakov, Yury Yu; Krivdin, Leonid B; Østerstrøm, Freja F; Sauer, Stephan P A; Potapov, Vladimir A; Amosova, Svetlana V
2013-08-21
This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.
Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu(II) and Hg(II) complexes
NASA Astrophysics Data System (ADS)
Sagdinc, Seda; Pir, Hacer
2009-07-01
The vibrational study in the solid state of flurbiprofen and its Cu(II) and Hg(II) complexes was performed by IR and Raman spectroscopy. The changes observed between the IR and Raman spectra of the ligand and of the complexes allowed us to establish the coordination mode of the metal in both complexes. The comparative vibrational analysis of the free ligand and its complexes gave evidence that flurbiprofen binds metal (II) through the carboxylate oxygen. The fully optimized equilibrium structure of flurbiprofen and its metal complexes was obtained by density functional B3LYP method by using LanL2DZ and 6-31 G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of flurbiprofen were calculated by density functional B3LYP methods by using 6-31G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The electronic properties of the free molecule and its complexes were also performed at B3LYP/6-31G(d,p) level of theory. Detailed interpretations of the infrared and Raman spectra of flurbiprofen are reported. The UV-vis spectra of flurbiprofen and its metal complexes were also investigated in organic solvents.
NASA Astrophysics Data System (ADS)
Duer, Stanisław; Wrzesień, Paweł; Duer, Radosław
2017-10-01
This article describes rules and conditions for making a structure (a set) of facts for an expert knowledge base of the intelligent system to diagnose Wind Power Plants' equipment. Considering particular operational conditions of a technical object, that is a set of Wind Power Plant's equipment, this is a significant issue. A structural model of Wind Power Plant's equipment is developed. Based on that, a functional - diagnostic model of Wind Power Plant's equipment is elaborated. That model is a basis for determining primary elements of the object structure, as well as for interpreting a set of diagnostic signals and their reference signals. The key content of this paper is a description of rules for building of facts on the basis of developed analytical dependence. According to facts, their dependence is described by rules for transferring of a set of pieces of diagnostic information into a specific set of facts. The article consists of four chapters that concern particular issues on the subject.
NASA Astrophysics Data System (ADS)
Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim
2017-04-01
Four new ternary complexes, [ZnL (2,2‧-bipy)] (1), Zn2L2(4,4‧-bipy)] (2), [ZnL(Imd)]·H2O (3) and [ZnL3(MeImd)] (4), have been synthesized from the reaction of Zn(II) acetate with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2L) in the presence of a heterocyclic base, 2,2‧-bipyridine, 4,4‧-bipyridine, imidazole or 2-methylimidazole, as an auxiliary ligand. The complexes have been investigated by elemental analysis and FT-IR, UV-Vis and 1HNMR spectroscopy. These data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination sphere was completed by the nitrogen atom(s) of the secondary ligand. The structure of 1 was also confirmed by X-ray crystallography and shown to be a five coordinate complex with coordination geometry between the square-pyramidal and trigonal-bipyramidal. Density functional theory (DFT) calculations including geometry optimization, vibrational frequencies and electronic absorptions have been performed for 1 with the B3LYP functional at the TZP(6-311G*) basis set using the Gaussian 03 or ADF 2009 packages. The optimization calculation showed that the crystallographically determined geometry parameters can be reproduced with that basis set. Experimental IR frequencies and calculated vibration frequencies also support each other. The in vitro antibacterial activities of the ligand and complexes have been evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and compared with the standard antibacterial drugs. The results reveal that all of the complexes show much better activity in comparison to the individual thiosemoicarbazone ligand (H2L), against all bacterial strains used, with complex 3 showing the most promising results.
Ab initio molecular simulations with numeric atom-centered orbitals
NASA Astrophysics Data System (ADS)
Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias
2009-11-01
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.
Probabilistic Open Set Recognition
NASA Astrophysics Data System (ADS)
Jain, Lalit Prithviraj
Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary support vector machines. Building from the success of statistical EVT based recognition methods such as PI-SVM and W-SVM on the open set problem, we present a new general supervised learning algorithm for multi-class classification and multi-class open set recognition called the Extreme Value Local Basis (EVLB). The design of this algorithm is motivated by the observation that extrema from known negative class distributions are the closest negative points to any positive sample during training, and thus should be used to define the parameters of a probabilistic decision model. In the EVLB, the kernel distribution for each positive training sample is estimated via an EVT distribution fit over the distances to the separating hyperplane between positive training sample and closest negative samples, with a subset of the overall positive training data retained to form a probabilistic decision boundary. Using this subset as a frame of reference, the probability of a sample at test time decreases as it moves away from the positive class. Possessing this property, the EVLB is well-suited to open set recognition problems where samples from unknown or novel classes are encountered at test. Our experimental evaluation shows that the EVLB provides a substantial improvement in scalability compared to standard radial basis function kernel machines, as well as P I-SVM and W-SVM, with improved accuracy in many cases. We evaluate our algorithm on open set variations of the standard visual learning benchmarks, as well as with an open subset of classes from Caltech 256 and ImageNet. Our experiments show that PI-SVM, WSVM and EVLB provide significant advances over the previous state-of-the-art solutions for the same tasks.
NASA Astrophysics Data System (ADS)
Miatto, F. M.; Brougham, T.; Yao, A. M.
2012-07-01
We derive an analytical form of the Schmidt modes of spontaneous parametric down-conversion (SPDC) biphotons in both Cartesian and polar coordinates. We show that these correspond to Hermite-Gauss (HG) or Laguerre-Gauss (LG) modes only for a specific value of their width, and we show how such value depends on the experimental parameters. The Schmidt modes that we explicitly derive allow one to set up an optimised projection basis that maximises the mutual information gained from a joint measurement. The possibility of doing so with LG modes makes it possible to take advantage of the properties of orbital angular momentum eigenmodes. We derive a general entropic entanglement measure using the Rényi entropy as a function of the Schmidt number, K, and then retrieve the von Neumann entropy, S. Using the relation between S and K we show that, for highly entangled states, a non-ideal measurement basis does not degrade the number of shared bits by a large extent. More specifically, given a non-ideal measurement which corresponds to the loss of a fraction of the total number of modes, we can quantify the experimental parameters needed to generate an entangled SPDC state with a sufficiently high dimensionality to retain any given fraction of shared bits.
Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method
NASA Astrophysics Data System (ADS)
Muthu, S.; Prabhakaran, A.
2014-08-01
In this work, we reported the vibrational spectra of tranexamic acid (TA) by experimental and quantum chemical calculation. The solid phase FT-Raman and FT-IR spectra of the title compound were recorded in the region 4000 cm-1 to 100 cm-1 and 4000 cm-1 to 400 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of TA in the ground state have been calculated by using density functional theory (DFT) B3LYP method with standard 6-31G(d,p) basis set. The scaled theoretical wavenumber showed very good agreement with the experimental values. The vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The results show that ED in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electrostatic potential mapped onto an isodensity surface has been obtained. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.
Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms.
Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S
2006-12-21
The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H(+)(H(2)O)(7). For H(+)(H(2)O)(7) the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Moller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H(+)(H(2)O)(7) [though nearly isoenergetic to the 3D structure for D(+)(D(2)O)(7)]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.
Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms
NASA Astrophysics Data System (ADS)
Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S.
2006-12-01
The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H+(H2O)7. For H+(H2O)7 the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Møller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H+(H2O)7 [though nearly isoenergetic to the 3D structure for D+(D2O)7]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.
Tikhonov, Denis S; Sharapa, Dmitry I; Otlyotov, Arseniy A; Solyankin, Peter M; Rykov, Anatolii N; Shkurinov, Alexander P; Grikina, Olga E; Khaikin, Leonid S
2018-02-15
The conformational properties of the nitro group in nitroxoline (8-hydroxy-5-nitroquinoline, NXN) were investigated in the gas phase by means of gas electron diffraction (GED) and quantum chemical calculations, and also with solid-state analysis performed using terahertz time-domain spectroscopy (THz-TDS). The results of the GED refinement show that in the equilibrium structure the NO 2 group is twisted by angle ϕ = 8 ± 3° with respect to the 8-hydroxyoquinoline plane. This is the result of interatomic repulsion of oxygen in the NO 2 group from the closest hydrogen, which overcomes the energy gain from the π-π conjugation of the nitro group and aromatic system of 8-hydroxyoquinoline. The computation of equilibrium geometry using MP2/cc-pVXZ (X = T, Q) shows a large overestimation of the ϕ value, while DFT with the cc-pVTZ basis set performs reasonably well. On the other hand, DFT computations with double-ζ basis sets yield a planar structure of NXN. The refined potential energy surface of the torsion vibration the of nitro group in the condensed phase derived from the THz-TDS data indicates the NXN molecule to be planar. This result stays in good agreement with the previous X-ray structure determination. The strength of the π-system conjugation for the NO 2 group and 8-hydroxyoquinoline is discussed using NBO analysis, being further supported by comparison of the refined semiexperimental gas-phase structure of NXN from GED with other nitrocompounds.
Mendlinger, Sheryl; Cwikel, Julie
2008-02-01
A double helix spiral model is presented which demonstrates how to combine qualitative and quantitative methods of inquiry in an interactive fashion over time. Using findings on women's health behaviors (e.g., menstruation, breast-feeding, coping strategies), we show how qualitative and quantitative methods highlight the theory of knowledge acquisition in women's health decisions. A rich data set of 48 semistructured, in-depth ethnographic interviews with mother-daughter dyads from six ethnic groups (Israeli, European, North African, Former Soviet Union [FSU], American/Canadian, and Ethiopian), plus seven focus groups, provided the qualitative sources for analysis. This data set formed the basis of research questions used in a quantitative telephone survey of 302 Israeli women from the ages of 25 to 42 from four ethnic groups. We employed multiple cycles of data analysis from both data sets to produce a more detailed and multidimensional picture of women's health behavior decisions through a spiraling process.
Sparse approximation of currents for statistics on curves and surfaces.
Durrleman, Stanley; Pennec, Xavier; Trouvé, Alain; Ayache, Nicholas
2008-01-01
Computing, processing, visualizing statistics on shapes like curves or surfaces is a real challenge with many applications ranging from medical image analysis to computational geometry. Modelling such geometrical primitives with currents avoids feature-based approach as well as point-correspondence method. This framework has been proved to be powerful to register brain surfaces or to measure geometrical invariants. However, if the state-of-the-art methods perform efficiently pairwise registrations, new numerical schemes are required to process groupwise statistics due to an increasing complexity when the size of the database is growing. Statistics such as mean and principal modes of a set of shapes often have a heavy and highly redundant representation. We propose therefore to find an adapted basis on which mean and principal modes have a sparse decomposition. Besides the computational improvement, this sparse representation offers a way to visualize and interpret statistics on currents. Experiments show the relevance of the approach on 34 sets of 70 sulcal lines and on 50 sets of 10 meshes of deep brain structures.
NASA Astrophysics Data System (ADS)
Zara, Zeenat; Iqbal, Javed; Ayub, Khurshid; Irfan, Muhammad; Mahmood, Athar; Khera, Rasheed Ahmad; Eliasson, Bertil
2017-12-01
A comparative study of UV/Visible spectra of carboline and carbazole derivatives was conducted by employing the Density Functional Theory (DFT) approach. In this study, the geometries of ground and excited states, excitation energy and absorption spectra were estimated by using seven different DFT functional; CAM-B3LYP, B3LYP, MPW1PW91, PBE, B3PW91, WB97XD and HSE06 with 6-31G basis set. Moreover, five different basis sets 3-21G, 6-31G, DGDZVP, DGTZVP and SDD were also investigated with the CAM-B3LYP and WB97XD functional to take out the best combination of functional and basis set. CAM-B3LYP/6-31G and WB97XD/DGDZVP combination were found to have closest agreement with the experimental values of β-carboline derivatives and carbazole derivatives, respectively. This study provided an insight about the electronic characteristics of the selected compounds and provided an effective tool for developing and designing the better UV absorber compounds.
Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L
2015-03-05
We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.
Srinivasan, Aravind; Ray, Asok K
2006-01-01
Silicon fullerene like nanostructures with six carbon atoms on the surface of Si60 cages by substitution, as well as inside the cage at various symmetry orientations have been studied within the generalized gradient approximation to density functional theory. Full geometry optimizations have been performed without any symmetry constraints using the Gaussian 03 suite of programs and the LANL2DZ basis set. Thus, for the silicon atom, the Hay-Wadt pseudopotential with the associated basis set are used for the core electrons and the valence electrons, respectively. For the carbon atom, the Dunning/Huzinaga double zeta basis set is employed. Electronic and geometric properties of the nanostructures are presented and discussed in detail. It was found that optimized silicon-carbon fullerene like nanostructures have increased stability compared to bare Si60 cage and the stability depends on the orientation of carbon atoms, as well as on the nature of bonding between silicon and carbon atoms and also on the carbon-carbon bonding.
The torsional energy profile of 1,2-diphenylethane: an ab initio study
NASA Astrophysics Data System (ADS)
Ivanov, Petko M.
1997-08-01
Ab initio molecular orbital calculations were carried out for the antiperiplanar (ap), the synclinal (sc), phenyl/phenyl eclipsed (syn barrier), and phenyl/H eclipsed (ap/sc barrier) conformations of 1,2-diphenylethane, and the energy ordering of conformations thus obtained was compared with the torsional energy profile estimated with the MM2 and MM3 molecular mechanics force fields. The basis set effect on the results was studied at the restricted Hartree-Fock (RHF) self-consistent field (SCF) level of theory, and the electron correlation energies were corrected by the second-order (MP2) Møller-Plesset perturbation treatment using the 6-31G * basis set. The performance of a DFT model (Becke-style three-parameter hybrid method using the correlation functional of Lee, Yang and Parr, B3LYP) was also tested to assess relative energies of the conformations using two basis sets, 6-31G * and 6-311G **. The RHF and B3LYP results are qualitatively the same, while the MP2 calculations produced significant differences in the geometries and reversed the order of preference for the antiperiplanar and the synclinal conformations.
Vibrational spectra, DFT quantum chemical calculations and conformational analysis of P-iodoanisole.
Arivazhagan, M; Anitha Rexalin, D; Geethapriya, J
2013-09-01
The solid phase FT-IR and FT-Raman spectra of P-iodoanisole (P-IA) have been recorded in the regions 400-4000 and 50-4000 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by ab initio (HF) and density functional theory (B3LYP) methods with LanL2DZ as basis set. The potential energy surface scan for the selected dihedral angle of P-IA has been performed to identify stable conformer. The optimized structure parameters and vibrational wavenumbers of stable conformer have been predicted by density functional B3LYP method with LanL2DZ (with effective core potential representations of electrons near the nuclei for post-third row atoms) basis set. The nucleophilic and electrophilic sites obtained from the molecular electrostatic potential (MEP) surface were calculated. The temperature dependence of thermodynamic properties has been analyzed. Several thermodynamic parameters have been calculated using B3LYP with LanL2DZ basis set. Copyright © 2013 Elsevier B.V. All rights reserved.
Shukla, Manoj K; Poda, Aimee
2016-06-01
This manuscript reports results of an integrated theoretical and experimental investigation of adsorption of two emerging contaminants (DNAN and FOX-7) and legacy compound TNT on cellulose surface. Cellulose was modeled as trimeric form of the linear chain of 1 → 4 linked of β-D-glucopyranos in (4)C1 chair conformation. Geometries of modeled cellulose, munitions compounds and their complexes were optimized at the M06-2X functional level of Density Functional Theory using the 6-31G(d,p) basis set in gas phase and in water solution. The effect of water solution was modeled using the CPCM approach. Nature of potential energy surfaces was ascertained through harmonic vibrational frequency analysis. Interaction energies were corrected for basis set superposition error and the 6-311G(d,p) basis set was used. Molecular electrostatic potential mapping was performed to understand the reactivity of the investigated systems. It was predicted that adsorbates will be weakly adsorbed on the cellulose surface in water solution than in the gas phase.
NASA Technical Reports Server (NTRS)
Wasson, J. T.; Kallemeyn, G. W.
2002-01-01
We present new data or iron meteorites that are members of group IAB or are closely related to this large group, and we have also reevaluated some of our earlier data for these irons. In the past it was not possible to distinguish IAB and IIICD irons on the basis of their positions on element-Ni diagrams. We now find that plotting, the new and revised data yields six sets of compact fields on element-Au diagrams, each set corresponding to a compositional group. The largest set includes the majority (approximately equal to 70) of irons previously designated IA: We christened this set the IAB main group. The remaining five sets we designate subgroups within the IAB complex. Three of these subgroups have Au contents similar to the main group, and form parallel trends in most element-Ni diagrams. The groups originally designated IIIC and IIID are two of these subgroups: they are now well resolved from each other and from the main group. The other low-Au subgroup has Ni contents just above the main group. Two other IAB subgroups have appreciably higher Au contents than the main group and show weaker compositional links to it. We have named these five subgroups on the basis of their Au and Ni contents. The three subgroups having Au contents similar to the main group are the low-Au (L) subgroups the two others the high-Au (H) subgroups. The Ni contents are designated high (H), medium (M), or low (L). Thus the old group IIID is now the sLH subgroup. the old group IIIC is the sLM subgroup. In addition, eight irons assigned to two grouplets plot between sLL and sLM on most element-Au diagrams. A large number (27) of related irons plot outside these compact fields but nonetheless appear to be sufficiently related to also be included in the IAB complex.
Ventura, Cristina; Latino, Diogo A R S; Martins, Filomena
2013-01-01
The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Anharmonic Vibrational Spectroscopy of the F-(H20)n, complexes, n=1,2
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Xantheas, Sotiris; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2003-01-01
We report anharmonic vibrational spectra (fundamentals, first overtones) for the F-(H(sub 2)O) and F-(H(sub 2)O)2 clusters computed at the MP2 and CCSD(T) levels of theory with basis sets of triple zeta quality. Anharmonic corrections were estimated via the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The CC-VSCF anharmonic spectra obtained on the potential energy surfaces evaluated at the CCSD(T) level of theory are the first ones reported at a correlated level beyond MP2. We have found that the average basis set effect (TZP vs. aug-cc-pVTZ) is on the order of 30-40 cm(exp -1), whereas the effects of different levels of electron correlation [MP2 vs. CCSD(T)] are smaller, 20-30 cm(exp -1). However, the basis set effect is much larger in the case of the H-bonded O-H stretch of the F-(H(sub 2)O) cluster amounting to 100 cm(exp -1) for the fundamentals and 200 cm (exp -1) for the first overtones. Our calculations are in agreement with the limited available set of experimental data for the F-(H(sub 2)O) and F-(H(sub 2)O)2 systems and provide additional information that can guide further experimental studies.
NASA Astrophysics Data System (ADS)
Eshuis, Henk; Yarkony, Julian; Furche, Filipp
2010-06-01
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.
Eshuis, Henk; Yarkony, Julian; Furche, Filipp
2010-06-21
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N(4) log N) operations and O(N(3)) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield muH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.
The Biological Basis of Learning and Individuality.
ERIC Educational Resources Information Center
Kandel, Eric R.; Hawkins, Robert D.
1992-01-01
Describes the biological basis of learning and individuality. Presents an overview of recent discoveries that suggest learning engages a simple set of rules that modify the strength of connection between neurons in the brain. The changes are cited as playing an important role in making each individual unique. (MCO)
ERIC Educational Resources Information Center
Dockrell, William B.
Scotland, like many countries, has a system of externally-administered syllabus-based examinations, set at two points: the end of compulsory schooling, which serves as a basis for entry to junior college "non-advanced further education" (mainly vocationally oriented); and at the end of grade 12, which serves as a basis for admission to…
45 CFR 402.30 - Basis of awards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 2 2010-10-01 2010-10-01 false Basis of awards. 402.30 Section 402.30 Public Welfare Regulations Relating to Public Welfare OFFICE OF REFUGEE RESETTLEMENT, ADMINISTRATION FOR CHILDREN... award constitutes the authority to draw and expend funds for the purposes set forth in the Act and this...
An auxiliary-field quantum Monte Carlo study of the chromium dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwanto, Wirawan, E-mail: wirawan0@gmail.com; Zhang, Shiwei; Krakauer, Henry
2015-02-14
The chromium dimer (Cr{sub 2}) presents an outstanding challenge for many-body electronic structure methods. Its complicated nature of binding, with a formal sextuple bond and an unusual potential energy curve (PEC), is emblematic of the competing tendencies and delicate balance found in many strongly correlated materials. We present an accurate calculation of the PEC and ground state properties of Cr{sub 2}, using the auxiliary-field quantum Monte Carlo (AFQMC) method. Unconstrained, exact AFQMC calculations are first carried out for a medium-sized but realistic basis set. Elimination of the remaining finite-basis errors and extrapolation to the complete basis set limit are thenmore » achieved with a combination of phaseless and exact AFQMC calculations. Final results for the PEC and spectroscopic constants are in excellent agreement with experiment.« less
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Sutliff, Daniel L.
2007-01-01
A technique is presented for the analysis of measured data obtained from a rotating microphone rake system. The system is designed to measure the interaction modes of ducted fans. A Fourier analysis of the data from the rotating system results in a set of circumferential mode levels at each radial location of a microphone inside the duct. Radial basis functions are then least-squares fit to this data to obtain the radial mode amplitudes. For ducts with soft walls and mean flow, the radial basis functions must be numerically computed. The linear companion matrix method is used to obtain both the eigenvalues of interest, without an initial guess, and the radial basis functions. The governing equations allow for the mean flow to have a boundary layer at the wall. In addition, a nonlinear least-squares method is used to adjust the wall impedance to best fit the data in an attempt to use the rotating system as an in-duct wall impedance measurement tool. Simulated and measured data are used to show the effects of wall impedance and mean flow on the computed results.
NASA Astrophysics Data System (ADS)
Drescher, A. C.; Gadgil, A. J.; Price, P. N.; Nazaroff, W. W.
Optical remote sensing and iterative computed tomography (CT) can be applied to measure the spatial distribution of gaseous pollutant concentrations. We conducted chamber experiments to test this combination of techniques using an open path Fourier transform infrared spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). Although ART converged to solutions that showed excellent agreement with the measured ray-integral concentrations, the solutions were inconsistent with simultaneously gathered point-sample concentration measurements. A new CT method was developed that combines (1) the superposition of bivariate Gaussians to represent the concentration distribution and (2) a simulated annealing minimization routine to find the parameters of the Gaussian basis functions that result in the best fit to the ray-integral concentration data. This method, named smooth basis function minimization (SBFM), generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present an analysis of two sets of experimental data that compares the performance of ART and SBFM. We conclude that SBFM is a superior CT reconstruction method for practical indoor and outdoor air monitoring applications.
12 CFR 505.1 - Basis and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... obtain decisions, and the forms available or the places at which forms and instructions as to the scope... Reading Room is set forth in § 505.2 of this part. Procedures for requests for records are set forth in...
12 CFR 505.1 - Basis and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... obtain decisions, and the forms available or the places at which forms and instructions as to the scope... Reading Room is set forth in § 505.2 of this part. Procedures for requests for records are set forth in...
NASA Astrophysics Data System (ADS)
Camilo, Joseph A.; Malof, Jordan M.; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D.
2015-05-01
Forward-looking ground penetrating radar (FLGPR) is a remote sensing modality that has recently been investigated for buried threat detection. FLGPR offers greater standoff than other downward-looking modalities such as electromagnetic induction and downward-looking GPR, but it suffers from high false alarm rates due to surface and ground clutter. A stepped frequency FLGPR system consists of multiple radars with varying polarizations and bands, each of which interacts differently with subsurface materials and therefore might potentially be able to discriminate clutter from true buried targets. However, it is unclear which combinations of bands and polarizations would be most useful for discrimination or how to fuse them. This work applies sparse structured basis pursuit, a supervised statistical model which searches for sets of bands that are collectively effective for discriminating clutter from targets. The algorithm works by trying to minimize the number of selected items in a dictionary of signals; in this case the separate bands and polarizations make up the dictionary elements. A structured basis pursuit algorithm is employed to gather groups of modes together in collections to eliminate whole polarizations or sensors. The approach is applied to a large collection of FLGPR data for data around emplaced target and non-target clutter. The results show that a sparse structure basis pursuits outperforms a conventional CFAR anomaly detector while also pruning out unnecessary bands of the FLGPR sensor.