Sample records for batch fermentation studies

  1. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    PubMed Central

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  2. Investigation of vinegar production using a novel shaken repeated batch culture system.

    PubMed

    Schlepütz, Tino; Büchs, Jochen

    2013-01-01

    Nowadays, bioprocesses are developed or optimized on small scale. Also, vinegar industry is motivated to reinvestigate the established repeated batch fermentation process. As yet, there is no small-scale culture system for optimizing fermentation conditions for repeated batch bioprocesses. Thus, the aim of this study is to propose a new shaken culture system for parallel repeated batch vinegar fermentation. A new operation mode - the flushing repeated batch - was developed. Parallel repeated batch vinegar production could be established in shaken overflow vessels in a completely automated operation with only one pump per vessel. This flushing repeated batch was first theoretically investigated and then empirically tested. The ethanol concentration was online monitored during repeated batch fermentation by semiconductor gas sensors. It was shown that the switch from one ethanol substrate quality to different ethanol substrate qualities resulted in prolonged lag phases and durations of the first batches. In the subsequent batches the length of the fermentations decreased considerably. This decrease in the respective lag phases indicates an adaptation of the acetic acid bacteria mixed culture to the specific ethanol substrate quality. Consequently, flushing repeated batch fermentations on small scale are valuable for screening fermentation conditions and, thereby, improving industrial-scale bioprocesses such as vinegar production in terms of process robustness, stability, and productivity. Copyright © 2013 American Institute of Chemical Engineers.

  3. Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy.

    PubMed

    Ji, Xiao-Jun; Zhang, Ai-Hui; Nie, Zhi-Kui; Wu, Wen-Jia; Ren, Lu-Jing; Huang, He

    2014-10-01

    Arachidonic acid (ARA)-rich oil production by Mortierella alpina is a long fermentation period needed process due to the low growth rate of the filamentous fungus used. This causes the low productivity of ARA-rich oil and hinders its industrial mass scale production. In the present study, different fed-batch strategies were conducted to shorten the fermentation period. The result showed that compared with the batch culture, the fermentation period was shortened from 7days to 5days with the productivity of ARA-rich oil increased from 0.9g/(L·d) to 1.3g/(L·d) by using the fed-batch fermentation strategy. Furthermore, repeated fed-batch fermentation strategy was adopted to achieve the purpose of continuous production. By using this strategy, the fermentation period was shortened from 40days to 26days in a four cycle repeated fed-batch fermentation. This strategy proved to be convenient and economical for ARA-rich oil commercial production process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Mechanistic simulation of batch acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™.

    PubMed

    Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L

    2018-05-22

    Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.

  5. Batch fermentation options for high titer bioethanol production from a SPORL pretreated Douglas-Fir forest residue without detoxification

    Treesearch

    Mingyan Yang; Hairui Ji; Junyong Zhu

    2016-01-01

    This study evaluated batch fermentation modes, namely, separate hydrolysis and fermentation (SHF), quasi-simultaneous saccharification and fermentation (Q-SSF), and simultaneous saccharification and fermentation (SSF), and fermentation conditions, i.e., enzyme and yeast loadings, nutrient supplementation and sterilization, on high titer bioethanol production from SPORL...

  6. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  7. High solid fed-batch butanol fermentation with simultaneous product recovery: part II - process integration.

    USDA-ARS?s Scientific Manuscript database

    In these studies liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed-batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level o...

  8. Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process.

    PubMed

    Khuat, Hoang Bao Truc; Kaboré, Abdoul Karim; Olmos, Eric; Fick, Michel; Boudrant, Joseph; Goergen, Jean-Louis; Delaunay, Stéphane; Guedon, Emmanuel

    2014-01-01

    The fermentative properties of thermo-sensitive strain Corynebacterium glutamicum 2262 were investigated in processes coupling aerobic cell growth and the anaerobic fermentation phase. In particular, the influence of two modes of fermentation on the production of lactate, the fermentation product model, was studied. In both processes, lactate was produced in significant amount, 27 g/L in batch culture, and up to 55.8 g/L in fed-batch culture, but the specific production rate in the fed-batch culture was four times lower than that in the batch culture. Compared to other investigated fermentation processes, our strategy resulted in the highest yield of lactic acid from biomass. Lactate production by C. glutamicum 2262 thus revealed the capability of the strain to produce various fermentation products from pyruvate.

  9. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition.

    PubMed

    Othman, Majdiah; Ariff, Arbakariya B; Wasoh, Helmi; Kapri, Mohd Rizal; Halim, Murni

    2017-11-27

    Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.015 L/h was 6.1 times higher with 1.6 times reduction in lactic acid accumulation compared to batch fermentation. Anion exchange resin, IRA 67 was found to have the highest selectivity towards lactic acid compared to other components studied. Fed-batch fermentation of P. acidilactici coupled with lactic acid removal system using IRA 67 resin showed 55.5 and 9.1 times of improvement in maximum viable cell concentration compared to fermentation without resin for batch and fed-batch mode respectively. The improvement of the P. acidilactici growth in the constant fed-batch fermentation indicated the use of minimal and simple process control equipment is an effective approach for reducing by-product inhibition. Further improvement in the cultivation performance of P. acidilactici in fed-bath fermentation with in situ addition of anion-exchange resin significantly helped to enhance the growth of P. acidilactici by reducing the inhibitory effect of lactic acid and thus increasing probiotic production.

  10. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    PubMed

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Integrated production of lactic acid and biomass on distillery stillage.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  12. 40 CFR 63.2192 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... follows: Batch means a single fermentation cycle in a single fermentation vessel (fermenter). Batch... exhaust. This correlation is specific to each fed-batch fermentation stage and is established while... additives during fermentation in the vessel. In contrast, carbohydrates and additives are added to “set...

  13. Fermentation and microflora of plaa-som, a thai fermented fish product prepared with different salt concentrations.

    PubMed

    Paludan-Müller, Christine; Madsen, Mette; Sophanodora, Pairat; Gram, Lone; Møller, Peter Lange

    2002-02-25

    Plaa-som is a Thai fermented fish product prepared from snakehead fish, salt, palm syrup and sometimes roasted rice. We studied the effects of different salt concentrations on decrease in pH and on microflora composition during fermentation. Two low-salt batches were prepared, containing 6% and 7% salt (w/w) as well as two high-salt batches, containing 9% and 11% salt. pH decreased rapidly from 6 to 4.5 in low-salt batches, whereas in high-salt batches, a slow or no decrease in pH was found. Lactic acid bacteria (LAB) and yeasts were isolated as the dominant microorganisms during fermentation. LAB counts increased to 10(8)-10(9) cfu g(-1) and yeast counts to 10(7)-5 x 10(7) cfu g(-1) in all batches, except in the 11% salt batch, where counts were 1-2 log lower. Phenotypic tests, ITS-PCR, carbohydrate fermentations and 16S rRNA gene sequencing identified LAB isolates as Pediococcus pentosaceus, Lactobacillus alimentarius/farciminis, Weisella confusa, L. plantarum and Lactococcus garviae. The latter species was only isolated from high-salt batches. Phenotypic characteristics, ITS-PCR and carbohydrate assimilation identified 95% of the yeasts as Zygosaccharomyces rouxii. It is concluded that the fermentation of plaa-som is delayed by a salt-level of 9% due to an inhibition of LAB growth. The growth of Z. rouxii has no influence on the fermentation rate, but may contribute positively to the flavour development of the product.

  14. Change of Monascus pigment metabolism and secretion in different extractive fermentation process.

    PubMed

    Chen, Gong; Tang, Rui; Tian, Xiaofei; Qin, Peng; Wu, Zhenqiang

    2017-06-01

    Monascus pigments that were generally produced intracellularly from Monascus spp. are important natural colorants in food industry. In this study, change of pigment metabolism and secretion was investigated through fed-batch extractive fermentation and continuous extractive fermentation. The biomass, secreting rate of pigment and total pigment yield closely correlated with the activated time of extractive fermentation as well as the composition of feeding nutrients. Metal ions played a key role in both the cell growth and pigment metabolism. Nitrogen source was necessary for a high productivity of biomass but not for high pigment yield. Furthermore, fermentation period for the fed-batch extractive fermentation could be reduced by 18.75% with a nitrogen source free feeding medium. Through a 30-day continuous extractive fermentation, the average daily productivity for total pigments reached 74.9 AU day -1 with an increase by 32.6 and 296.3% compared to that in a 6-day conventional batch fermentation and a 16-day fed-batch extractive fermentation, respectively. At the meantime, proportions of extracellular pigments increased gradually from 2.7 to 71.3%, and yellow pigments gradually became dominated in both intracellular and extracellular pigments in the end of continuous extractive fermentation. This findings showed that either fed-batch or continuous extractive fermentation acted as a promising method in the efficient production of Monascus pigments.

  15. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system.

    PubMed

    Kördikanlıoğlu, Burcu; Şimşek, Ömer; Saris, Per E J

    2015-01-01

    In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed-batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed-batch fermentation system with high fidelity (R(2) 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L(-1) h(-1) , 3 μg mL(-1) and 40%, respectively. While 1711 IU mL(-1) nisin was produced by L. lactis N8 in control fed-batch fermentation, 5410 IU mL(-1) nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed-batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed-batch fermentation. © 2015 American Institute of Chemical Engineers.

  16. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    PubMed

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    PubMed

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice.

    PubMed

    Choi, Minsung; Al-Zahrani, Saeed M; Lee, Sang Yup

    2014-06-01

    Arabic date is overproduced in Arabic countries such as Saudi Arabia and Iraq and is mostly composed of sugars (70-80 wt%). Here we developed a fed-batch fermentation process by using a kinetic model for the efficient production of lactic acid to a high concentration from Arabic date juice. First, a kinetic model of Lactobacillus rhamnosus grown on date juice in batch fermentation was constructed in EXCEL so that the estimation of parameters and simulation of the model can be easily performed. Then, several fed-batch fermentations were conducted by employing different feeding strategies including pulsed feeding, exponential feeding, and modified exponential feeding. Based on the results of fed-batch fermentations, the kinetic model for fed-batch fermentation was also developed. This new model was used to perform feed-forward controlled fed-batch fermentation, which resulted in the production of 171.79 g l(-1) of lactic acid with the productivity and yield of 1.58 and 0.87 g l(-1) h(-1), respectively.

  19. Enhancement of ε-poly-L-lysine synthesis in Streptomyces by exogenous glutathione.

    PubMed

    Yan, Peng; Sun, Haoben; Lu, Pengqi; Liu, Haili; Tang, Lei

    2018-01-01

    Our previous work indicated that the vigor of Streptomyces decreased at the later stage of ε-poly-L-lysine (ε-PL) fermentation. In this study, we observed that the level of reactive oxygen species (ROS) in vivo increased sharply after 24 h, and the addition of an antioxidant glutathione (GSH) before this increase in ROS stimulated ε-PL synthesis in shake-flask fermentation. The enhancement of ε-PL production by GSH was further verified in batch and fed-batch fermentations. On a 5-l fermenter scale, the highest increasement was 68.8% in batch fermentation and the highest ε-PL level was 46.5 g l - 1 in fed-batch fermentation. The RT-qPCR analysis showed that the transcriptional level of the catalase gene was down-regulated, and the decrease in cell activity was alleviated by the addition of GSH. The results revealed that exogenous antioxidant might maintain the cell vigor by reducing the excess ROS which provided a novel approach to regulate ε-PL synthesis.

  20. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing.

    PubMed

    Matano, Yuki; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-05-01

    The aim of this study is to develop a scheme of cell recycle batch fermentation (CRBF) of high-solid lignocellulosic materials. Two-phase separation consisting of rough removal of lignocellulosic residues by low-speed centrifugation and solid-liquid separation enabled effective collection of Saccharomyces cerevisiae cells with decreased lignin and ash. Five consecutive batch fermentation of 200 g/L rice straw hydrothermally pretreated led to an average ethanol titer of 34.5 g/L. Moreover, the display of cellulases on the recombinant yeast cell surface increased ethanol titer to 42.2 g/L. After, five-cycle fermentation, only 3.3 g/L sugar was retained in the fermentation medium, because cellulase displayed on the cell surface hydrolyzed cellulose that was not hydrolyzed by commercial cellulases or free secreted cellulases. Fermentation ability of the recombinant strain was successfully kept during a five-cycle repeated batch fermentation with 86.3% of theoretical yield based on starting biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar.

    PubMed

    Wang, Zong-Min; Lu, Zhen-Ming; Yu, Yong-Jian; Li, Guo-Quan; Shi, Jin-Song; Xu, Zheng-Hong

    2015-09-01

    Solid-state fermentation of traditional Chinese vinegar is a mixed-culture refreshment process that proceeds for many centuries without spoilage. Here, we investigated bacterial community succession and flavor formation in three batches of Zhenjiang aromatic vinegar using pyrosequencing and metabolomics approaches. Temporal patterns of bacterial succession in the Pei (solid-state vinegar culture) showed no significant difference (P > 0.05) among three batches of fermentation. In all the batches investigated, the average number of community operational taxonomic units (OTUs) decreased dramatically from 119 ± 11 on day 1 to 48 ± 16 on day 3, and then maintained in the range of 61 ± 9 from day 5 to the end of fermentation. We confirmed that, within a batch of fermentation process, the patterns of bacterial diversity between the starter (took from the last batch of vinegar culture on day 7) and the Pei on day 7 were similar (90%). The relative abundance dynamics of two dominant members, Lactobacillus and Acetobacter, showed high correlation (coefficient as 0.90 and 0.98 respectively) among different batches. Furthermore, statistical analysis revealed dynamics of 16 main flavor metabolites were stable among different batches. The findings validate the batch-to-batch uniformity of bacterial community succession and flavor formation accounts for the quality of Zhenjiang aromatic vinegar. Based on our understanding, this is the first study helps to explain the rationality of age-old artistry from a scientific perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Batch-batch stable microbial community in the traditional fermentation process of huyumei broad bean pastes.

    PubMed

    Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi

    2017-09-01

    During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.

  3. Fermentation of Saccharomyces cerevisiae - Combining kinetic modeling and optimization techniques points out avenues to effective process design.

    PubMed

    Scheiblauer, Johannes; Scheiner, Stefan; Joksch, Martin; Kavsek, Barbara

    2018-09-14

    A combined experimental/theoretical approach is presented, for improving the predictability of Saccharomyces cerevisiae fermentations. In particular, a mathematical model was developed explicitly taking into account the main mechanisms of the fermentation process, allowing for continuous computation of key process variables, including the biomass concentration and the respiratory quotient (RQ). For model calibration and experimental validation, batch and fed-batch fermentations were carried out. Comparison of the model-predicted biomass concentrations and RQ developments with the corresponding experimentally recorded values shows a remarkably good agreement for both batch and fed-batch processes, confirming the adequacy of the model. Furthermore, sensitivity studies were performed, in order to identify model parameters whose variations have significant effects on the model predictions: our model responds with significant sensitivity to the variations of only six parameters. These studies provide a valuable basis for model reduction, as also demonstrated in this paper. Finally, optimization-based parametric studies demonstrate how our model can be utilized for improving the efficiency of Saccharomyces cerevisiae fermentations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Continuous Cellulosic Bioethanol Fermentation by Cyclic Fed-Batch Cocultivation

    PubMed Central

    Jiang, He-Long; He, Qiang; He, Zhili; Hemme, Christopher L.; Wu, Liyou

    2013-01-01

    Cocultivation of cellulolytic and saccharolytic microbial populations is a promising strategy to improve bioethanol production from the fermentation of recalcitrant cellulosic materials. Earlier studies have demonstrated the effectiveness of cocultivation in enhancing ethanolic fermentation of cellulose in batch fermentation. To further enhance process efficiency, a semicontinuous cyclic fed-batch fermentor configuration was evaluated for its potential in enhancing the efficiency of cellulose fermentation using cocultivation. Cocultures of cellulolytic Clostridium thermocellum LQRI and saccharolytic Thermoanaerobacter pseudethanolicus strain X514 were tested in the semicontinuous fermentor as a model system. Initial cellulose concentration and pH were identified as the key process parameters controlling cellulose fermentation performance in the fixed-volume cyclic fed-batch coculture system. At an initial cellulose concentration of 40 g liter−1, the concentration of ethanol produced with pH control was 4.5-fold higher than that without pH control. It was also found that efficient cellulosic bioethanol production by cocultivation was sustained in the semicontinuous configuration, with bioethanol production reaching 474 mM in 96 h with an initial cellulose concentration of 80 g liter−1 and pH controlled at 6.5 to 6.8. These results suggested the advantages of the cyclic fed-batch process for cellulosic bioethanol fermentation by the cocultures. PMID:23275517

  5. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.

    PubMed

    Lee, Won-Heong; Chin, Young-Wook; Han, Nam Soo; Kim, Myoung-Dong; Seo, Jin-Ho

    2011-08-01

    Biosynthesis of guanosine 5'-diphosphate-L-fucose (GDP-L-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP(+)-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-L-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-L-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-L-fucose production. However, GDP-L-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-L-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-L-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-L-fucose concentration of 235.2 ± 3.3 mg l(-1), corresponding to a 21% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-L-fucose production in recombinant E. coli.

  6. Modelling of Batch Lactic Acid Fermentation in
the Presence of Anionic Clay

    PubMed Central

    Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa

    2014-01-01

    Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318

  7. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    PubMed

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  8. Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading.

    PubMed

    Li, Xin; Zhou, Jin; Ouyang, Shuiping; Ouyang, Jia; Yong, Qiang

    2017-02-01

    Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.

  9. Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation.

    PubMed

    Zhao, Bo; Wang, Limin; Li, Fengsong; Hua, Dongliang; Ma, Cuiqing; Ma, Yanhe; Xu, Ping

    2010-08-01

    D-lactic acid was produced by Sporolactobacillus sp. strain CASD in repeated batch fermentation with one- and two-reactor systems. The strain showed relatively high energy consumption in its growth-related metabolism in comparison with other lactic acid producers. When the fermentation was repeated with 10% (v/v) of previous culture to start a new batch, D-lactic acid production shifted from being cell-maintenance-dependent to cell-growth-dependent. In comparison with the one-reactor system, D-lactic acid production increased approximately 9% in the fourth batch of the two-reactor system. Strain CASD is an efficient D-lactic acid producer with increased growth rate at the early stage of repeated cycles, which explains the strain's physiological adaptation to repeated batch culture and improved performance in the two-reactor fermentation system. From a kinetic point of view, two-reactor fermentation system was shown to be an alternative for conventional one-reactor repeated batch operation. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    PubMed

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  11. Application of autochthonous mixed starter for controlled Kedong sufu fermentation in pilot plant tests.

    PubMed

    Feng, Zhen; Xu, Miao; Zhai, Shuang; Chen, Hong; Li, Ai-li; Lv, Xin-tong; Deng, Hong-ling

    2015-01-01

    Traditional sufu is fermented by back-slopping and back-slopping has many defects. The objective of this study was to apply autochthonous mixed starter to control Kedong sufu fermentation. Sufu was manufactured using back-slopping (batch A) and autochthonous mixed starter (batch B) with Kocuria kristinae F7, Micrococcus luteus KDF1, and Staphylococcus carnosus KDFR1676. Considering physicochemical properties of sufu, 150-day sufu samples from batch A and 90-day sufu samples from batch B met the standard requirements, respectively. Considering sensory characteristics of sufu, 150-day sufu samples from batch A and 90-day sufu samples from batch B showed no significant differences (P > 0.05). The maturation period of sufu was shortened by 60 d. Profiles of free amino acids and peptides partly revealed the mechanism of typical sensory quality and shorter ripening time of sufu manufactured by autochthonous mixed starter. In final products, content of total biogenic amines was reduced by 48%. Autochthonous mixed starter performed better than back-slopping. Fermentation had a positive influence on the quality, safety, and sensory properties of sufu. The application of autochthonous mixed starter does not change the sensory characteristics of traditional fermented sufu. In addition, it reduces maturation period and improves their homogeneity and safety. It is possible to substitute autochthonous mixed starter for back-slopping in the manufacture of sufu. © 2014 Institute of Food Technologists®

  12. Kinetic characterization and fed-batch fermentation for maximal simultaneous production of esterase and protease from Lysinibacillus fusiformis AU01.

    PubMed

    Divakar, K; Suryia Prabha, M; Nandhinidevi, G; Gautam, P

    2017-04-21

    The simultaneous production of intracellular esterase and extracellular protease from the strain Lysinibacillus fusiformis AU01 was studied in detail. The production was performed both under batch and fed-batch modes. The maximum yield of intracellular esterase and protease was obtained under full oxygen saturation at the beginning of the fermentation. The data were fitted to the Luedeking-Piret model and it was shown that the enzyme (both esterase and protease) production was growth associated. A decrease in intracellular esterase and increase in the extracellular esterase were observed during late stationary phase. The appearance of intracellular proteins in extracellular media and decrease in viable cell count and biomass during late stationary phase confirmed that the presence of extracellular esterase is due to cell lysis. Even though the fed-batch fermentation with different feeding strategies showed improved productivity, feeding yeast extract under DO-stat fermentation conditions showed highest intracellular esterase and protease production. Under DO-stat fed-batch cultivation, maximum intracellular esterase activity of 820 × 10 3 U/L and extracellular protease activity of 172 × 10 3 U/L were obtained at the 16th hr. Intracellular esterase and extracellular protease production were increased fivefold and fourfold, respectively, when compared to batch fermentation performed under shake flask conditions.

  13. High Solid Fed-batch Butanol Fermentation with Simultaneous Product Recovery: Part II - Process Integration.

    PubMed

    Qureshi, Nasib; Klasson, K Thomas; Saha, Badal C; Liu, Siqing

    2018-04-25

    In these studies liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed-batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level of toxic chemicals, in particular acetic acid released from SSB during the hydrolytic process. To be able to ferment the hydrolyzate I obtained from 250 gL -1 SSB hydrolysis, a fed-batch reactor with in-situ butanol recovery was devised. The process was started with the hydrolyzate II and when good cell growth and vigorous fermentation were observed, the hydrolyzate I was slowly fed to the reactor. In this manner the culture was able to ferment all the sugars present in both the hydrolyzates to acetone butanol ethanol (ABE). In a control batch reactor in which ABE was produced from glucose, ABE productivity and yield of 0.42 gL -1 h -1 and 0.36 were obtained, respectively. In the fed-batch reactor fed with SSB hydrolyzates these productivity and yield values were 0.44 gL -1 h -1 and 0.45, respectively. ABE yield in the integrated system was high due to utilization of acetic acid to convert to ABE. In summary we were able to utilize both the hydrolyzates obtained from LHW pretreated and enzymatically hydrolyzed SSB (250 gL -1 ) and convert them to ABE. Complete fermentation was possible due to simultaneous recovery of ABE by vacuum. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  14. D-lactic acid production by Sporolactobacillus inulinus Y2-8 immobilized in fibrous bed bioreactor using corn flour hydrolyzate.

    PubMed

    Zhao, Ting; Liu, Dong; Ren, Hengfei; Shi, Xinchi; Zhao, Nan; Chen, Yong; Ying, Hanjie

    2014-12-28

    In this study, a fibrous bed bioreactor (FBB) was used for D-lactic acid (D-LA) production by Sporolactobacillus inulinus Y2-8. Corn flour hydrolyzed with α-amylase and saccharifying enzyme was used as a cost-efficient and nutrient-rich substrate for D-LA production. A maximal starch conversion rate of 93.78% was obtained. The optimum pH for D-LA production was determined to be 6.5. Ammonia water was determined to be an ideal neutralizing agent, which improved the D-LA production and purification processes. Batch fermentation and fedbatch fermentation, with both free cells and immobilized cells, were compared to highlight the advantages of FBB fermentation. In batch mode, the D-LA production rate of FBB fermentation was 1.62 g/l/h, which was 37.29% higher than that of free-cell fermentation, and the D-LA optical purities of the two fermentation methods were above 99.00%. In fed-batch mode, the maximum D-LA concentration attained by FBB fermentation was 218.8 g/l, which was 37.67% higher than that of free-cell fermentation. Repeated-batch fermentation was performed to determine the long-term performance of the FBB system, and the data indicated that the average D-LA production rate was 1.62 g/l/h and the average yield was 0.98 g/g. Thus, hydrolyzed corn flour fermented by S. inulinus Y2-8 in a FBB may be used for improving D-LA fermentation by using ammonia water as the neutralizing agent.

  15. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.

    PubMed

    Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H

    2002-07-01

    Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.

  16. An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae.

    PubMed

    Fu, Yongqian; Sun, Xiaolong; Zhu, Huayue; Jiang, Ru; Luo, Xi; Yin, Longfei

    2018-05-21

    In previous work, we proposed a novel modified one-step fermentation fed-batch strategy to efficiently generate L-lactic acid (L-LA) using Rhizopus oryzae. In this study, to further enhance efficiency of L-LA production through one-step fermentation in fed-batch cultures, we systematically investigated the initial peptone- and glucose-feeding approaches, including different initial peptone and glucose concentrations and maintained residual glucose levels. Based on the results of this study, culturing R. oryzae with initial peptone and glucose concentrations of 3.0 and 50.0 g/l, respectively, using a fed-batch strategy is an effective approach of producing L-LA through one-step fermentation. Changing the residual glucose had no obvious effect on the generation of L-LA. We determined the maximum LA production and productivity to be 162 g/l and 6.23 g/(l·h), respectively, during the acid production stage. Compared to our previous work, there was almost no change in L-LA production or yield; however, the productivity of L-LA increased by 14.3%.

  17. Dextran Utilization During Its Synthesis by Weissella cibaria RBA12 Can Be Overcome by Fed-Batch Fermentation in a Bioreactor.

    PubMed

    Baruah, Rwivoo; Deka, Barsha; Kashyap, Niharika; Goyal, Arun

    2018-01-01

    Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K 2 HPO 4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.

  18. Nisin production in realkalized fed-batch cultures in whey with feeding with lactose- or glucose-containing substrates.

    PubMed

    Costas Malvido, Mónica; Alonso González, Elisa; Pérez Guerra, Nelson

    2016-09-01

    Nisin production by Lactococcus lactis CECT 539 was followed in batch cultures in whey supplemented with different concentrations of glucose and in two realkalized fed-batch fermentations in unsupplemented whey, which were fed, respectively, with concentrated solutions of lactose and glucose. In the batch fermentations, supplementation of whey with glucose inhibited both the growth and bacteriocin production. However, fed-batch cultures were characterized with high productions of biomass (1.34 and 1.51 g l(-1)) and nisin (50.6 and 60.3 BU ml(-1)) in comparison to the batch fermentations in unsupplemented whey (0.48 g l(-1) and 22.5 BU ml(-1)) and MRS broth (1.59 g l(-1) and 50.0 BU ml(-1)). In the two realkalized fed-batch fermentations, the increase in bacteriocin production parallels both the biomass production and pH drop generated in each realkalization and feeding cycle, suggesting that nisin was synthesized as a pH-dependent primary metabolite. A shift from homolactic to heterolactic fermentation was observed at the 108 h of incubation, and other metabolites (acetic acid and butane-2,3-diol) in addition to lactic acid accumulated in the medium. On the other hand, the feeding with glucose improved the efficiencies in glucose, nitrogen, and phosphorus consumption as compared to the batch cultures. The realkalized fed-batch fermentations showed to be an effective strategy to enhance nisin production in whey by using an appropriate feeding strategy to avoid the substrate inhibition.

  19. Significantly enhanced production of acarbose in fed-batch fermentation with the addition of S-adenosylmethionine.

    PubMed

    Sun, Li-Hui; Li, Ming-Gang; Wang, Yuan-Shan; Zheng, Yu-Guo

    2012-06-01

    Acarbose, a pseudo-oligosaccharide, is widely used clinically in therapies for non-insulin-dependent diabetes. In the present study, S-adenosylmethionine (SAM) was added to selected media in order to investigate its effect on acarbose fermentation by Actinoplanes utahensis ZJB- 08196. Acarbose titer was seen to increase markedly when concentrations of SAM were added over a period of time. The effects of glucose and maltose on the production of acarbose were investigated in both batch and fed-batch fermentation. Optimal acarbose production was observed at relatively low glucose levels and high maltose levels. Based on these results, a further fed-batch experiment was designed so as to enhance the production of acarbose. Fed-batch fermentation was carried out at an initial glucose level of 10 g/l and an initial maltose level of 60 g/l. Then, 12 h post inoculation, 100 micromol/l SAM was added. In addition, 8 g/l of glucose was added every 24 h, and 20 g/l of maltose was added at 96 h. By way of this novel feeding strategy, the maximum titer of acarbose achieved was 6,113 mg/l at 192 h. To our knowledge, the production level of acarbose achieved in this study is the highest ever reported.

  20. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.

    PubMed

    Kim, Soo Rin; Lee, Ki-Sung; Choi, Jin-Ho; Ha, Suk-Jin; Kweon, Dae-Hyuk; Seo, Jin-Ho; Jin, Yong-Su

    2010-11-01

    Xylose-fermenting Saccharomyces strains are needed for commercialization of ethanol production from lignocellulosic biomass. Engineered Saccharomyces cerevisiae strains expressing XYL1, XYL2 and XYL3 from Pichia stipitis, however, utilize xylose in an oxidative manner, which results in significantly lower ethanol yields from xylose as compared to glucose. As such, we hypothesized that reconfiguration of xylose metabolism from oxidative into fermentative manner might lead to efficient ethanol production from xylose. To this end, we generated a respiration-deficient (RD) mutant in order to enforce engineered S. cerevisiae to utilize xylose only through fermentative metabolic routes. Three different repeated-batch fermentations were performed to characterize characteristics of the respiration-deficient mutant. When fermenting glucose as a sole carbon source, the RD mutant exhibited near theoretical ethanol yields (0.46 g g(-1)) during repeated-batch fermentations by recycling the cells. As the repeated-batch fermentation progressed, the volumetric ethanol productivity increased (from 7.5 to 8.3 g L(-1)h(-1)) because of the increased biomass from previous cultures. On the contrary, the mutant showed decreasing volumetric ethanol productivities during the repeated-batch fermentations using xylose as sole carbon source (from 0.4 to 0.3 g L(-1)h(-1)). The mutant did not grow on xylose and lost fermenting ability gradually, indicating that the RD mutant cannot maintain a good fermenting ability on xylose as a sole carbon source. However, the RD mutant was capable of fermenting a mixture of glucose and xylose with stable yields (0.35 g g(-1)) and productivities (0.52 g L(-1)h(-1)) during the repeated-batch fermentation. In addition, ethanol yields from xylose during the mixed sugar fermentation (0.30 g g(-1)) were higher than ethanol yields from xylose as a sole carbon source (0.21 g g(-1)). These results suggest that a strategy for increasing ethanol yield through respiration-deficiency can be applied for the fermentation of lignocellulosic hydrolyzates containing glucose and xylose. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol.

    PubMed

    Wang, Ruifei; Koppram, Rakesh; Olsson, Lisbeth; Franzén, Carl Johan

    2014-11-01

    Fed-batch simultaneous saccharification and fermentation (SSF) is a feasible option for bioethanol production from lignocellulosic raw materials at high substrate concentrations. In this work, a segregated kinetic model was developed for simulation of fed-batch simultaneous saccharification and co-fermentation (SSCF) of steam-pretreated birch, using substrate, enzymes and cell feeds. The model takes into account the dynamics of the cellulase-cellulose system and the cell population during SSCF, and the effects of pre-cultivation of yeast cells on fermentation performance. The model was cross-validated against experiments using different feed schemes. It could predict fermentation performance and explain observed differences between measured total yeast cells and dividing cells very well. The reproducibility of the experiments and the cell viability were significantly better in fed-batch than in batch SSCF at 15% and 20% total WIS contents. The model can be used for simulation of fed-batch SSCF and optimization of feed profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Improved Mannanase Production from Penicillium occitanis by Fed-Batch Fermentation Using Acacia Seeds

    PubMed Central

    Blibech, Monia; Ellouz Ghorbel, Raoudha; Chaari, Fatma; Dammak, Ilyes; Bhiri, Fatma; Neifar, Mohamed; Ellouz Chaabouni, Semia

    2011-01-01

    By applying a fed-batch strategy, production of Penicillium occitanis mannanases could be almost doubled as compared to a batch cultivation on acacia seeds (76 versus 41 U/mL). Also, a 10-fold increase of enzyme activities was observed from shake flask fermentation to the fed-batch fermentation. These production levels were 3-fold higher than those obtained on coconut meal. The high mannanase production using acacia seeds powder as inducer substrate showed the suitability of this culture process for industrial-scale development. PMID:23724314

  3. Ethanol fermentation integrated with PDMS composite membrane: An effective process.

    PubMed

    Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-01-01

    The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Continuous production of butanol from starch-based packing peanuts.

    PubMed

    Ezeji, Thaddeus C; Groberg, Marisa; Qureshi, Nasib; Blaschek, Hans P

    2003-01-01

    Acetone, butanol, ethanol (ABE, or solvents) were produced from starch-based packing peanuts in batch and continuous reactors. In a batch reactor, 18.9 g/L of total ABE was produced from 80 g/L packing peanuts in 110 h of fermentation. The initial and final starch concentrations were 69.6 and 11.1 g/L, respectively. In this fermentation, ABE yield and productivity of 0.32 and 0.17 g/(L h) were obtained, respectively. Compared to the batch fermentation, continuous fermentation of 40 g/L of starchbased packing peanuts in P2 medium resulted in a maximum solvent production of 8.4 g/L at a dilution rate of 0.033 h-1. This resulted in a productivity of 0.27 g/(L h). However, the reactor was not stable and fermentation deteriorated with time. Continuous fermentation of 35 g/L of starch solution resulted in a similar performance. These studies were performed in a vertical column reactor using Clostridium beijerinckii BA101 and P2 medium. It is anticipated that prolonged exposure of culture to acrylamide, which is formed during boiling/autoclaving of starch, affects the fermentation negatively.

  5. [Enhanced ε-poly-L-lysine production through pH regulation and organic nitrogen addition in fed-batch fermentation].

    PubMed

    Sun, Qixing; Chen, Xusheng; Ren, Xidong; Zheng, Gencheng; Mao, Zhonggui

    2015-05-01

    During the production of ε-poly-L-lysine (ε-PL) in fed-batch fermentation, the decline of ε-PL synthesis often occurs at middle or late phase of the fermentation. To solve the problem, we adopted two strategies, namely pH shift and feeding yeast extract, to improve the productivity of ε-PL. ε-PL productivity in fermentation by pH shift and feeding yeast extract achieved 4.62 g/(L x d) and 5.16 g/(L x d), which were increased by 27.3% and 42.2% compared with the control ε-PL fed-batch fermentation, respectively. Meanwhile, ε-PL production enhanced 36.95 g/L and 41.32 g/L in 192 h with these two strategies, increased by 27.4% and 42.48% compared to the control, respectively. ε-PL production could be improved at middle or late phase of fed-batch fermentation by pH shift or feeding yeast extract.

  6. The Microbial Diversity of Traditional Spontaneously Fermented Lambic Beer

    PubMed Central

    Spitaels, Freek; Wieme, Anneleen D.; Janssens, Maarten; Aerts, Maarten; Daniel, Heide-Marie; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2014-01-01

    Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations in the microbiota between casks and batches and a considerable species diversity were found, a characteristic microbial succession was identified. This succession started with a dominance of Enterobacteriaceae in the first month, which were replaced at 2 months by Pediococcus damnosus and Saccharomyces spp., the latter being replaced by Dekkera bruxellensis at 6 months fermentation duration. PMID:24748344

  7. The microbial diversity of traditional spontaneously fermented lambic beer.

    PubMed

    Spitaels, Freek; Wieme, Anneleen D; Janssens, Maarten; Aerts, Maarten; Daniel, Heide-Marie; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2014-01-01

    Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations in the microbiota between casks and batches and a considerable species diversity were found, a characteristic microbial succession was identified. This succession started with a dominance of Enterobacteriaceae in the first month, which were replaced at 2 months by Pediococcus damnosus and Saccharomyces spp., the latter being replaced by Dekkera bruxellensis at 6 months fermentation duration.

  8. Modeling of Fusarium redolens Dzf2 mycelial growth kinetics and optimal fed-batch fermentation for beauvericin production.

    PubMed

    Xu, Li-Jian; Liu, Yuan-Shuai; Zhou, Li-Gang; Wu, Jian-Yong

    2011-09-01

    Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20-50 g l(-1) glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l(-1)) than in the batch culture (194 mg l(-1)). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.

  9. Improvement of l-lactic acid productivity from sweet sorghum juice by repeated batch fermentation coupled with membrane separation.

    PubMed

    Wang, Yong; Meng, Hongyu; Cai, Di; Wang, Bin; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    In order to efficiently produce l-lactic acid from non-food feedstocks, sweet sorghum juice (SSJ), which is rich of fermentable sugars, was directly used for l-lactic acid fermentation by Lactobacillus rhamnosus LA-04-1. A membrane integrated repeated batch fermentation (MIRB) was developed for productivity improvement. High-cell-density fermentation was achieved with a final cell density (OD620) of 42.3, and the CCR effect was overcomed. When SSJ (6.77gL(-1) glucose, 4.51gL(-1) fructose and 50.46gL(-1) sucrose) was used as carbon source in MIRB process, l-lactic acid productivity was increased significantly from 1.45gL(-1)h(-1) (batch 1) to 17.55gL(-1)h(-1) (batch 6). This process introduces an effective way to produce l-lactic acid from SSJ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Yang, S.T.

    1998-11-20

    Acetate was produced from whey lactose in batch and fed-batch fermentations using co-immobilized cells of Clostridium formicoaceticum and Lactococcus lactis. The cells were immobilized in a spirally wound fibrous sheet packed in a 0.45-L column reactor, with liquid circulated through a 5-L stirred-tank fermentor. Industrial-grade nitrogen sources, including corn steep liquor, casein hydrolysate, and yeast hydrolysate, were studied as inexpensive nutrient supplements to whey permeate and acid whey. Supplementation with either 2.5% (v/v) corn steep liquor or 1.5 g/L casein hydrolysate was adequate for the cocultured fermentation. The overall acetic acid yield from lactose was 0.9 g/g, and the productivitymore » was 0.25 g/(L h). Both lactate and acetate at high concentrations inhibited the homoacetic fermentation. To overcome these inhibitions, fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentation was 75 g/L, which was the highest acetate concentration ever produced by C. formicoaceticum. Even at this high acetate concentration, the overall productivity was 0.18 g/(L h) based on the total medium volume and 1.23 g/(L h) based on the fibrous-bed reactor volume. The cells isolated from the fibrous-bed bioreactor at the end of this study were more tolerant to acetic acid than the original culture used to seed the bioreactor, indicating that adaptation and natural selection of acetate-tolerant strains occurred. This cocultured fermentation process could be used to produce a low-cost acetate deicer from whey permeate and acid whey.« less

  11. Physiological mechanism of the overproduction of ε-poly-L-lysine by acidic pH shock in fed-batch fermentation.

    PubMed

    Ren, Xi-Dong; Chen, Xu-Sheng; Tang, Lei; Zeng, Xin; Wang, Liang; Mao, Zhong-Gui

    2015-11-01

    The introduction of an environmental stress of acidic pH shock had successfully solved the common deficiency existed in ε-PL production, viz. the distinct decline of ε-PL productivity in the feeding phase of the fed-batch fermentation. To unravel the underlying mechanism, we comparatively studied the physiological changes of Streptomyces sp. M-Z18 during fed-batch fermentations with the pH shock strategy (PS) and pH non-shock strategy (PNS). Morphology investigation showed that pellet-shape change was negligible throughout both fermentations. In addition, the distribution of pellet size rarely changed in the PS, whereas pellet size and number decreased substantially with time in the PNS. This was consistent with the performances of ε-PL productivity in both strategies, demonstrating that morphology could be used as a predictor of ε-PL productivity during fed-batch fermentation. Furthermore, a second growth phase happened in the PS after pH shock, followed by the re-appearance of live mycelia in the dead core of the pellets. Meanwhile, mycelia respiration and key enzymes in the central metabolic and ε-PL biosynthetic pathways were overall strengthened until the end of the fed-batch fermentation. As a result, the physiological changes induced by the acidic pH shock have synergistically and permanently contributed to the stimulation of ε-PL productivity. However, this second growth phase and re-appearance of live mycelia were absent in the PNS. These results indicated that the introduction of a short-term suppression on mycelia physiological metabolism would guarantee the long-term high ε-PL productivity.

  12. Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2.

    PubMed

    Reis, Vanda R; Bassi, Ana Paula G; Cerri, Bianca C; Almeida, Amanda R; Carvalho, Isis G B; Bastos, Reinaldo G; Ceccato-Antonini, Sandra R

    2018-02-16

    Even though contamination by bacteria and wild yeasts are frequently observed during fuel ethanol fermentation, our knowledge regarding the effects of both contaminants together is very limited, especially considering that the must composition can vary from exclusively sugarcane juice to a mixture of molasses and juice, affecting the microbial development. Here we studied the effects of the feedstock (sugarcane juice and molasses) and the co-culture of Lactobacillus fermentum and a wild Saccharomyces cerevisiae strain (rough colony and pseudohyphae) in single and multiple-batch fermentation trials with an industrial strain of S. cerevisiae (PE-2) as starter yeast. The results indicate that in multiple-cycle batch system, the feedstock had a minor impact on the fermentation than in single-cycle batch system, however the rough yeast contamination was more harmful than the bacterial contamination in multiple-cycle batch fermentation. The inoculation of both contaminants did not potentiate the detrimental effect in any substrate. The residual sugar concentration in the fermented broth had a higher concentration of fructose than glucose for all fermentations, but in the presence of the rough yeast, the discrepancy between fructose and glucose concentrations were markedly higher, especially in molasses. The biggest problem associated with incomplete fermentation seemed to be the lower consumption rate of sugar and the reduced fructose preference of the rough yeast rather than the lower invertase activity. Lower ethanol production, acetate production and higher residual sugar concentration are characteristics strongly associated with the rough yeast strain and they were not potentiated with the inoculation of L. fermentum.

  13. Development of Safe and Flavor-Rich Doenjang (Korean Fermented Soybean Paste) Using Autochthonous Mixed Starters at the Pilot Plant Scale.

    PubMed

    Lee, Eun Jin; Hyun, Jiye; Choi, Yong-Ho; Hurh, Byung-Serk; Choi, Sang-Ho; Lee, Inhyung

    2018-06-01

    Doenjang (Korean fermented soybean paste) with an improved flavor and safety was prepared by the simultaneous fermentation of autochthonous mixed starters at the pilot plan scale. First, whole soybean meju was fermented by coculturing safety-verified starters Aspergillus oryzae MJS14 and Bacillus amyloliquefaciens zip6 or Bacillus subtilis D119C. These fermented whole soybean meju were aged in a brine solution after the additional inoculation of Tetragenococcus halophilus 7BDE22 and Zygosaccharomyces rouxii SMY045 to yield doenjang. Four doenjang batches prepared using a combination of mold, bacilli, lactic acid bacteria, and yeast starters were free of safety issues and had the general properties of traditional doenjang, a rich flavor and taste. All doenjang batches received a high consumer acceptability score, especially the ABsT and ABsTZ batches. This study suggests that flavor-rich doenjang similar to traditional doenjang can be manufactured safely and reproducibly in industry by mimicking the simultaneous fermentation of autochthonous mixed starters as in traditional doenjang fermentation. The development of a pilot plant process for doenjang fermentation using safety-verified autochthonous mixed starter will facilitate the manufacture of flavor-rich doenjang similar to traditional doenjang safely and reproducibly in industry. © 2018 Institute of Food Technologists®.

  14. The development of an industrial-scale fed-batch fermentation simulation.

    PubMed

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  15. Growth rates of Dekkera/Brettanomyces yeasts hinder their ability to compete with Saccharomyces cerevisiae in batch corn mash fermentations.

    PubMed

    Abbott, D A; Hynes, S H; Ingledew, W M

    2005-03-01

    Growth rates determined by linear regression analysis revealed that Saccharomyces cerevisiae consistently grew more rapidly than Brettanomyces yeasts under a wide array of batch fermentative conditions, including acetic acid stress, in normal gravity (ca. 20 degrees Plato) mashes made from ground corn. Brettanomyces yeasts only grew more rapidly than S. cerevisiae when acetic acid concentrations were elevated to industrially irrelevant levels (>0.45%, w/v). Furthermore, the three Brettanomyces isolates used in this study failed to produce significant quantities of acetic acid under pure culture fermentative conditions. In fact, the small amounts of acetic acid which accumulated in pure culture fermentations of whole corn mash were below the concentration required to inhibit the growth and metabolism of S. cerevisiae. Acetic acid concentrations in pure culture Brettanomyces fermentations exceeded 0.05% (w/v) only in media containing low levels of glucose (<4%, w/v) or when aeration rates were elevated to at least 0.03 vol. air vol.-1 mash min-1. Consequently, it was concluded that Brettanomyces yeasts would not be capable of competing with S. cerevisiae in industrial batch fermentations of whole corn mash based solely on growth rates, nor would they be capable of producing inhibitory concentrations of acetic acid in such fermentations.

  16. Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation.

    PubMed

    Xia, Jun; Xu, Jiaxing; Hu, Lei; Liu, Xiaoyan

    2016-11-16

    Poly(L-malic acid) (PMA) is a natural polyester with many attractive properties for biomedical application. However, the cost of PMA production is high when glucose is used as a carbon source. To solve this problem, cane molasses as a low-cost feedstock was applied for the production of PMA. Six pretreatment methods were applied to cane molasses before fermentation. Pretreatment with combined tricalcium phosphate, potassium ferrocyanide, and sulfuric acid (TPFSA) removed significant amounts of metal ions from cane molasses. The PMA concentration increased from 5.4 g/L (untreated molasses) to 36.9 g/L (TPFSA-pretreated molasses) after fermentation in shake flasks. A fed-batch fermentation strategy was then developed. In this method, TPFSA-pretreated cane molasses solution was continuously fed into the fermentor to maintain the total sugar concentration at 20 g/L. This technique generated approximately 95.4 g/L PMA with a productivity of 0.57 g/L/hr. The present study indicated that fed-batch fermentation using pretreated cane molasses is a feasible technique for producing high amounts of PMA.

  17. Study of Sugarcane Pieces as Yeast Supports for Ethanol Production from Sugarcane Juice and Molasses Using Newly Isolated Yeast from Toddy Sap

    PubMed Central

    Satyanarayana, Botcha; Balakrishnan, Kesavapillai; Raghava Rao, Tamanam; Seshagiri Rao, Gudapaty

    2012-01-01

    A repeated batch fermentation system was used to produce ethanol using Saccharomyces cerevisiae strain (NCIM 3640) immobilized on sugarcane (Saccharum officinarum L.) pieces. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Scanning electron microscopy evidently showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 72.65~76.28 g/L in an average value) and ethanol productivities (about 2.27~2.36 g/L/hr in an average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.9~3.25 g/L) with conversions ranging from 98.03~99.43%, showing efficiency 91.57~95.43 and operational stability of biocatalyst for ethanol fermentation. The results of the work pertaining to the use of sugarcane as immobilized yeast support could be promising for industrial fermentations. PMID:22783132

  18. Effect of different fermentation strategies on β-mannanase production in fed-batch bioreactor system.

    PubMed

    Germec, Mustafa; Yatmaz, Ercan; Karahalil, Ercan; Turhan, İrfan

    2017-05-01

    Mannanases, one of the important enzyme group for industry, are produced by numerous filamentous fungi, especially Aspergillus species with different fermentation methods. The aim of this study was to show the best fermentation method of β-mannanase production for fungal growth in fermenter. Therefore, different fermentation strategies in fed-batch fermentation (suspended, immobilized cell, biofilm and microparticle-enhanced bioreactor) were applied for β-mannanase production from glucose medium (GM) and carob extract medium (CEM) by using recombinant Aspergillus sojae. The highest β-mannanase activities were obtained from microparticle-enhanced bioreactor strategy. It was found to be 347.47 U/mL by adding 10 g/L of Al 2 O 3 to GM and 439.13 U/mL by adding 1 g/L of talcum into CEM. The maximum β-mannanase activities for suspended, immobilization, and biofilm reactor remained at 72.55 U/mL in GM, 148.81 U/mL in CEM, and 194.09 U/mL in GM, respectively. The reason for that is the excessive, and irregular shaped growth and bulk formation, inadequate oxygen transfer or substrate diffusion in bioreactor. Consequently, the enzyme activity was significantly enhanced by addition of microparticles compared to other fed-batch fermentation strategies. Also, repeatable β-mannanase activities were obtained by controlling of the cell morphology by adding microparticle inside the fermenter.

  19. Contribution of the microbial and meat endogenous enzymes to the free amino acid and amine contents of dry fermented sausages.

    PubMed

    Hierro, E; de La Hoz, L; Ordóñez, J A

    1999-03-01

    The role of the starter culture and meat endogenous enzymes on the free amino acid and amine contents of dry fermented sausages was studied. Five batches of sausages were prepared. The control batch was manufactured with aseptic ingredients without microbial inoculation. The other four experimental batches were manufactured with aseptic ingredients inoculated with Lactobacillus plantarum 4045 or Micrococcus-12 or L. plantarum 4045 and Micrococcus-12 or L. plantarum 4045 and Staphylococcus sp. Their effects on pH, a(w), myofibrillar proteins, and free amino acid and amine contents were studied. Sausages inoculated only with L. plantarum 4045 or with this starter combined with a Micrococcaceae had the lowest pH as a result of carbohydrate fermentation. In all batches similar patterns were observed for myofibrillar proteins and free amino acids which could indicate that meat endogenous proteases play an important role in proteolytic phenomena. No changes were observed in the amine fraction, indicating that the strains used as starter cultures did not show amino acid decarboxylase activity.

  20. Optimization of the yield of dark microaerobic production of hydrogen from lactate by Rhodopseudomonas palustris.

    PubMed

    Lazaro, Carolina Zampol; Hitit, Zeynep Yilmazer; Hallenbeck, Patrick C

    2017-12-01

    Hydrogen yields of dark fermentation are limited due to the need to also produce reduced side products, and photofermentation, an alternative, is limited by the need for light. A relatively new strategy, dark microaerobic fermentation, could potentially overcome both these constraints. Here, application of this strategy demonstrated for the first time significant hydrogen production from lactate by a single organism in the dark. Response surface methodology (RSM) was used to optimize substrate and oxygen concentration as well as inoculum using both (1) regular batch and (2) O 2 fed batch cultures. The highest hydrogen yield (HY) was observed under regular batch (1.4±0.1molH 2 /mollactate) and the highest hydrogen production (HP) (173.5µmolH 2 ) was achieved using O 2 fed batch. This study has provided proof of principal for the ability of microaerobic fermentation to drive thermodynamically difficult reactions, such as the conversion of lactate to hydrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy.

    PubMed

    Souza, Augusto C M; Mousaviraad, Mohammad; Mapoka, Kenneth O M; Rosentrater, Kurt A

    2018-04-24

    While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae , at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.

  2. Application of gain scheduling to the control of batch bioreactors

    NASA Technical Reports Server (NTRS)

    Cardello, Ralph; San, Ka-Yiu

    1987-01-01

    The implementation of control algorithms to batch bioreactors is often complicated by the inherent variations in process dynamics during the course of fermentation. Such a wide operating range may render the performance of fixed gain PID controllers unsatisfactory. In this work, a detailed study on the control of batch fermentation is performed. Furthermore, a simple batch controller design is proposed which incorporates the concept of gain-scheduling, a subclass of adaptive control, with oxygen uptake rate as an auxiliary variable. The control of oxygen tension in the biorector is used as a vehicle to convey the proposed idea, analysis and results. Simulation experiments indicate significant improvement in controller performance can be achieved by the proposed approach even in the presence of measurement noise.

  3. Use of chemostat cultures mimicking different phases of wine fermentations as a tool for quantitative physiological analysis

    PubMed Central

    2014-01-01

    Background Saccharomyces cerevisiae is the most relevant yeast species conducting the alcoholic fermentation that takes place during winemaking. Although the physiology of this model organism has been extensively studied, systematic quantitative physiology studies of this yeast under winemaking conditions are still scarce, thus limiting the understanding of fermentative metabolism of wine yeast strains and the systematic description, modelling and prediction of fermentation processes. In this study, we implemented and validated the use of chemostat cultures as a tool to simulate different stages of a standard wine fermentation, thereby allowing to implement metabolic flux analyses describing the sequence of metabolic states of S. cerevisae along the wine fermentation. Results Chemostat cultures mimicking the different stages of standard wine fermentations of S. cerevisiae EC1118 were performed using a synthetic must and strict anaerobic conditions. The simulated stages corresponded to the onset of the exponential growth phase, late exponential growth phase and cells just entering stationary phase, at dilution rates of 0.27, 0.04, 0.007 h−1, respectively. Notably, measured substrate uptake and product formation rates at each steady state condition were generally within the range of corresponding conversion rates estimated during the different batch fermentation stages. Moreover, chemostat data were further used for metabolic flux analysis, where biomass composition data for each condition was considered in the stoichiometric model. Metabolic flux distributions were coherent with previous analyses based on batch cultivations data and the pseudo-steady state assumption. Conclusions Steady state conditions obtained in chemostat cultures reflect the environmental conditions and physiological states of S. cerevisiae corresponding to the different growth stages of a typical batch wine fermentation, thereby showing the potential of this experimental approach to systematically study the effect of environmental relevant factors such as temperature, sugar concentration, C/N ratio or (micro) oxygenation on the fermentative metabolism of wine yeast strains. PMID:24928139

  4. Multi-stage high cell continuous fermentation for high productivity and titer.

    PubMed

    Chang, Ho Nam; Kim, Nag-Jong; Kang, Jongwon; Jeong, Chang Moon; Choi, Jin-dal-rae; Fei, Qiang; Kim, Byoung Jin; Kwon, Sunhoon; Lee, Sang Yup; Kim, Jungbae

    2011-05-01

    We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.

  5. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.

    PubMed

    Ding, Lingkan; Cheng, Jun; Xia, Ao; Jacob, Amita; Voelklein, Markus; Murphy, Jerry D

    2016-10-01

    Aquatic micro-algae can be used as feedstocks for gaseous biofuel production via biological fermentation. However, micro-algae usually have low C/N ratios, which are not advantageous for fermentation. In this study, carbon-rich macro-algae (Laminaria digitata) mixed with nitrogen-rich micro-algae (Chlorella pyrenoidosa and Nannochloropsis oceanica) were used to maintain a suitable C/N ratio of 20 for a two-stage process combining hydrogen and methane fermentation. Co-fermentation of L. digitata and micro-algae facilitated hydrolysis and acidogenesis, resulting in hydrogen yields of 94.5-97.0mL/gVS; these values were 15.5-18.5% higher than mono-fermentation using L. digitata. Through the second stage of methane co-fermentation, a large portion of energy remaining in the hydrogenogenic effluents was recovered in the form of biomethane. The two-stage batch co-fermentation markedly increased the energy conversion efficiencies (ECEs) from 4.6-6.6% during the hydrogen fermentation to 57.0-70.9% in the combined hydrogen and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Intact cell mass spectrometry as a progress tracking tool for batch and fed-batch fermentation processes.

    PubMed

    Helmel, Michaela; Marchetti-Deschmann, Martina; Raus, Martin; Posch, Andreas E; Herwig, Christoph; Šebela, Marek; Allmaier, Günter

    2015-02-01

    Penicillin production during a fermentation process using industrial strains of Penicillium chrysogenum is a research topic permanently discussed since the accidental discovery of the antibiotic. Intact cell mass spectrometry (ICMS) can be a fast and novel monitoring tool for the fermentation progress during penicillin V production in a nearly real-time fashion. This method is already used for the characterization of microorganisms and the differentiation of fungal strains; therefore, the application of ICMS to samples directly harvested from a fermenter is a promising possibility to get fast information about the progress of fungal growth. After the optimization of the ICMS method to penicillin V fermentation broth samples, the obtained ICMS data were evaluated by hierarchical cluster analysis or an in-house software solution written especially for ICMS data comparison. Growth stages of a batch and fed-batch fermentation of Penicillium chrysogenum are differentiated by one of those statistical approaches. The application of two matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instruments in the linear positive ion mode from different vendors demonstrated the universal applicability of the developed ICMS method. The base for a fast and easy-to-use method for monitoring the fermentation progress of P. chrysogenum is created with this ICMS method developed especially for fermentation broth samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.

    PubMed

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M

    2012-05-01

    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  8. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams.

    PubMed

    Kim, Young Joo; Park, Sung Yong; Lee, Hong Chul; Yoo, Seung Seok; Oh, Sejong; Kim, Kwang Hyun; Chin, Koo Bok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham.

  9. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams

    PubMed Central

    Yoo, Seung Seok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham. PMID:27499673

  10. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  11. L-Lactic acid production by combined utilization of agricultural bioresources as renewable and economical substrates through batch and repeated-batch fermentation of Enterococcus faecalis RKY1.

    PubMed

    Reddy, Lebaka Veeranjaneya; Kim, Young-Min; Yun, Jong-Sun; Ryu, Hwa-Won; Wee, Young-Jung

    2016-06-01

    Enterococcus faecalis RKY1 was used to produce l-lactic acid from hydrol, soybean curd residues (SCR), and malt. Hydrol was efficiently metabolized to l-lactic acid with optical purity of >97.5%, though hydrol contained mixed sugars such as glucose, maltose, maltotriose, and maltodextrin. Combined utilization of hydrol, SCR, and malt was enough to sustain lactic acid fermentation by E. faecalis RKY1. In order to reduce the amount of nitrogen sources and product inhibition, cell-recycle repeated-batch fermentation was employed, where a high cell mass (26.3g/L) was obtained. Lactic acid productivity was improved by removal of lactic acid from fermentation broth by membrane filtration and by linearly increased cell density. When the total of 10 repeated-batch fermentations were carried out using 100g/L hydrol, 150g/L SCR hydrolyzate, and 20g/L malt hydrolyzate as the main nutrients, lactic acid productivity was increased significantly from 3.20g/L/h to 6.37g/L/h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.

    PubMed

    Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn

    2017-04-01

    The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics characterize the process. Biotechnol. Bioeng. 2017;114: 798-812. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Demonstration-Scale High-Cell-Density Fermentation of Pichia pastoris.

    PubMed

    Liu, Wan-Cang; Zhu, Ping

    2018-01-01

    Pichia pastoris has been one of the most successful heterologous overexpression systems in generating proteins for large-scale production through high-cell-density fermentation. However, optimizing conditions of the large-scale high-cell-density fermentation for biochemistry and industrialization is usually a laborious and time-consuming process. Furthermore, it is often difficult to produce authentic proteins in large quantities, which is a major obstacle for functional and structural features analysis and industrial application. For these reasons, we have developed a protocol for efficient demonstration-scale high-cell-density fermentation of P. pastoris, which employs a new methanol-feeding strategy-biomass-stat strategy and a strategy of increased air pressure instead of pure oxygen supplement. The protocol included three typical stages of glycerol batch fermentation (initial culture phase), glycerol fed-batch fermentation (biomass accumulation phase), and methanol fed-batch fermentation (induction phase), which allows direct online-monitoring of fermentation conditions, including broth pH, temperature, DO, anti-foam generation, and feeding of glycerol and methanol. Using this protocol, production of the recombinant β-xylosidase of Lentinula edodes origin in 1000-L scale fermentation can be up to ~900 mg/L or 9.4 mg/g cells (dry cell weight, intracellular expression), with the specific production rate and average specific production of 0.1 mg/g/h and 0.081 mg/g/h, respectively. The methodology described in this protocol can be easily transferred to other systems, and eligible to scale up for a large number of proteins used in either the scientific studies or commercial purposes.

  14. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059.

    PubMed

    Białkowska, Aneta M; Gromek, Ewa; Krysiak, Joanna; Sikora, Barbara; Kalinowska, Halina; Jędrzejczak-Krzepkowska, Marzena; Kubik, Celina; Lang, Siegmund; Schütt, Fokko; Turkiewicz, Marianna

    2015-12-01

    2,3-Butanediol (2,3-BD) synthesis by a nonpathogenic bacterium Bacillus licheniformis NCIMB 8059 from enzymatic hydrolysate of depectinized apple pomace and its blend with glucose was studied. In shake flasks, the maximum diol concentration in fed-batch fermentations was 113 g/L (in 163 h, from the hydrolysate, feedings with glucose) while in batch processes it was around 27 g/L (in 32 h, from the hydrolysate and glucose blend). Fed-batch fermentations in the 0.75 and 30 L fermenters yielded 87.71 g/L 2,3-BD in 160 h, and 72.39 g/L 2,3-BD in 94 h, respectively (from the hydrolysate and glucose blend, feedings with glucose). The hydrolysate of apple pomace, which was for the first time used for microbial 2,3-BD production is not only a source of sugars but also essential minerals.

  15. Repeated batch fermentation of immobilized E. coli expressing Vitreoscilla hemoglobin for long-term use

    PubMed Central

    Sar, Taner; Seker, Gamze; Erman, Ayse Gokce; Stark, Benjamin C.; Yesilcimen Akbas, Meltem

    2017-01-01

    ABSTRACT This study describes an efficient and reusable process for ethanol production from medium containing whey powder, using alginate immobilized ethanologenic E. coli strains either expressing (TS3) or not expressing (FBR5) Vitreoscilla hemoglobin. Reuseabilities of the FBR5 and TS3 strains were investigated regarding their ethanol production capacities over the course of 15 successive 96-h batch fermentations. The ethanol production was fairly stable over the entire duration of the experiment, with strain TS3 maintaining a substantial advantage over strain FBR5. Storage of both strains in 2 different solutions for up to 60 d resulted in only a modest loss of ethanol production, with strain TS3 consistently outperforming strain FBR5 by a substantial amount. Strains stored for 15 or 30 d maintained their abilities to produce ethanol without dimunition over the course of 8 successive batch fermentations; again strain TS3 maintained a substantial advantage over strain FBR5 throughout the entire experiment. Thus, immobilization is a useful strategy to maintain the advantage in ethanol productivity afforded by expression of Vitreoscilla hemoglobin over long periods of time and large numbers of repeated batch fermentations, including, as in this case, using media with food processing wastes as the carbon source. PMID:28394725

  16. Fed batch fermentation and purification strategy for high yield production of Brucella melitensis recombinant Omp 28 kDa protein and its application in disease diagnosis.

    PubMed

    Karothia, B S; Athmaram, T N; D, Thavaselvam; Ashu, Kumar; Tiwari, Sapna; Singh, Anil K; Sathyaseelan, K; Gopalan, N

    2013-07-01

    Brucellosis is a disease caused by bacteria belonging to the genus Brucella. It affects cattle, goat, sheep, dog and humans. The serodiagnosis of brucellosis involves detection of antibodies generated against the LPS or whole cell bacterial extracts, however these tests lack sensitivity and specificity. The present study was performed to optimize the culture condition for the production of recombinant Brucella melitensis outer membrane protein 28 kDa protein in E.coli via fed batch fermentation. Expression was induced with 1.5mM isopropyl β thiogalactoside and the expressed recombinant protein was purified using Ni-NTA affinity chromatography. After fed-batch fermentation the dry cell weight of 17.81 g/L and a purified protein yield of 210.10 mg/L was obtained. The purified Brucella melitensis recombinant Omp 28 kDa protein was analyzed through SDS- poly acrylamide gel electrophoresis and western blotting. The obtained recombinant protein was evaluated for its diagnostic application through Indirect ELISA using brucellosis suspected human sera samples. Our results clearly indicate that recombinant Omp28 produced via fed batch fermentation has immense potential as a diagnostic reagent that could be employed in sero monitoring of brucellosis.

  17. Repeated batch fermentation of immobilized E. coli expressing Vitreoscilla hemoglobin for long-term use.

    PubMed

    Sar, Taner; Seker, Gamze; Erman, Ayse Gokce; Stark, Benjamin C; Yesilcimen Akbas, Meltem

    2017-09-03

    This study describes an efficient and reusable process for ethanol production from medium containing whey powder, using alginate immobilized ethanologenic E. coli strains either expressing (TS3) or not expressing (FBR5) Vitreoscilla hemoglobin. Reuseabilities of the FBR5 and TS3 strains were investigated regarding their ethanol production capacities over the course of 15 successive 96-h batch fermentations. The ethanol production was fairly stable over the entire duration of the experiment, with strain TS3 maintaining a substantial advantage over strain FBR5. Storage of both strains in 2 different solutions for up to 60 d resulted in only a modest loss of ethanol production, with strain TS3 consistently outperforming strain FBR5 by a substantial amount. Strains stored for 15 or 30 d maintained their abilities to produce ethanol without dimunition over the course of 8 successive batch fermentations; again strain TS3 maintained a substantial advantage over strain FBR5 throughout the entire experiment. Thus, immobilization is a useful strategy to maintain the advantage in ethanol productivity afforded by expression of Vitreoscilla hemoglobin over long periods of time and large numbers of repeated batch fermentations, including, as in this case, using media with food processing wastes as the carbon source.

  18. Effect of chemical pretreatments on corn stalk bagasse as immobilizing carrier of Clostridium acetobutylicum in the performance of a fermentation-pervaporation coupled system.

    PubMed

    Cai, Di; Li, Ping; Chen, Changjing; Wang, Yong; Hu, Song; Cui, Caixia; Qin, Peiyong; Tan, Tianwei

    2016-11-01

    In this study, different pretreatment methods were evaluated for modified the corn stalk bagasse and further used the pretreated bagasse as immobilized carrier in acetone-butanol-ethanol fermentation process. Structural changes of the bagasses pretreated by different methods were analyzed by Fourier transform infrared, crystallinity index and scanning pictures by electron microscope. And the performances of batch fermentation using the corn stalk based carriers were evaluated. Results indicated that the highest ABE concentration of 23.86g/L was achieved using NaOH pretreated carrier in batch fermentation. Immobilized fermentation-pervaporation integration process was further carried out. The integration process showed long-term stability with 225-394g/L of ABE solvents on the permeate side of pervaporation membrane. This novel integration process was found to be an efficient method for biobutanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Analytical solution of Luedeking-Piret equation for a batch fermentation obeying Monod growth kinetics.

    PubMed

    Garnier, Alain; Gaillet, Bruno

    2015-12-01

    Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia. © 2015 Wiley Periodicals, Inc.

  20. The effects of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate on the production of 1,3-propanediol from crude glycerol by microbial consortium.

    PubMed

    Jiang, Lili; Dai, Jianying; Sun, Yaqin; Xiu, Zhilong

    2018-04-12

    Ionic liquids (ILs) as "green" solvents have been widely used owing to their excellent properties, e.g., for biodiesel production. Crude glycerol as a by-product in biodiesel production is an ideal feedstock for the microbial production of 1,3-propanediol (PDO), which is a versatile bulk chemical. PDO can be produced by microbial consortium with the advantages of high substrate tolerance and narrow by-product profile. In the present study, the effect of IL 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([Emim][TfO]) was evaluated on the capacity of PDO production from crude glycerol by microbial consortium DL38-BH. In the batch fermentation at 60 g/L crude glycerol and 10 g/L [Emim][TfO], the concentration and yield of PDO from glycerol increased from 23.14 g/L and 0.45 mol/mol to 31.17 g/L and 0.60 mol/mol, respectively. Our results showed that [Emim][TfO] decreased the ratio of intracellular NADH to NAD + and increased the concentration of 3-HPA during batch fermentation. The activities of three key enzymes in glycerol metabolism were stimulated by [Emim][TfO] during the batch fermentation by microbial consortium DL38-BH. Compared to the control, the proportion of Klebsiella genus which could convert glycerol to PDO increased significantly from 79.19% to 89.49% and the other genera that did not produce PDO were dramatically decreased (P < 0.05) at the end of batch fermentation. This work demonstrated that [Emim][TfO] significantly improved the concentration and yield of PDO from crude glycerol by adjusting microbial community during batch fermentation by microbial consortium.

  1. Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation.

    PubMed Central

    Ho, K L; Pometto, A L; Hinz, P N

    1997-01-01

    Four customized bioreactors, three with plastic composite supports (PCS) and one with suspended cells (control), were operated as repeated-batch fermentors for 66 days at pH 5 and 37 degrees C. The working volume of each customized reactor was 600 ml, and each reactor's medium was changed every 2 to 5 days for 17 batches. The performance of PCS bioreactors in long-term biofilm repeated-batch fermentation was compared with that of suspended-cell bioreactors in this research. PCS could stimulate biofilm formation, supply nutrients to attached and free suspended cells, and reduce medium channelling for lactic acid production. Compared with conventional repeated-batch fermentation, PCS bioreactors shortened the lag time by threefold (control, 11 h; PCS, 3.5 h) and sixfold (control, 9 h; PCS, 1.5 h) at yeast extract concentrations of 0.4 and 0.8% (wt/vol), respectively. They also increased the lactic acid productivity of Lactobacillus casei subsp. rhamnosus (ATCC 11443) by 40 to 70% and shortened the total fermentation time by 28 to 61% at all yeast extract concentrations. The fastest productivity of the PCS bioreactors (4.26 g/liter/h) was at a starting glucose concentration of 10% (wt/vol), whereas that of the control (2.78 g/liter/h) was at 8% (wt/vol). PCS biofilm lactic acid fermentation can drastically improve the fermentation rate with reduced complex-nutrient addition. PMID:9212403

  2. Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane.

    PubMed

    Wu, Hao; Chen, Xiao-Peng; Liu, Gong-Ping; Jiang, Min; Guo, Ting; Jin, Wan-Qin; Wei, Ping; Zhu, Da-Wei

    2012-09-01

    PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning.

  3. Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse.

    PubMed

    Zhang, Teng; Zhu, Ming-Jun

    2017-04-01

    A study on the fed-batch simultaneous saccharification and co-fermentation (SSCF) of Fenton reaction combined with NaOH pretreated sugarcane bagasse (SCB) at a high solid loading of 10-30% (w/v) was investigated. Enzyme feeding mode, substrate feeding mode and combination of both were compared with the batch mode under respective solid loadings. Ethanol concentrations of above 80g/L were obtained in batch and enzyme feeding modes at a solid loading of 30% (w/v). Enzyme feeding mode was found to increase ethanol productivity and reduce enzyme loading to a value of 1.23g/L/h and 9FPU/g substrate, respectively. The present study provides an economically feasible process for high concentration bioethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations

    PubMed Central

    Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino

    2015-01-01

    Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. PMID:26150457

  5. Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations.

    PubMed

    Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino; Verstrepen, Kevin J

    2015-09-01

    Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents.

    PubMed

    Kim, Sun-Ki; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2017-05-01

    Construction of robust and efficient yeast strains is a prerequisite for commercializing a biofuel production process. We have demonstrated that high intracellular spermidine (SPD) contents in Saccharomyces cerevisiae can lead to improved tolerance against various fermentation inhibitors, including furan derivatives and acetic acid. In this study, we examined the potential applicability of the S. cerevisiae strains with high SPD contents under two cases of ethanol fermentation: glucose fermentation in repeated-batch fermentations and xylose fermentation in the presence of fermentation inhibitors. During the sixteen times of repeated-batch fermentations using glucose as a sole carbon source, the S. cerevisiae strains with high SPD contents maintained higher cell viability and ethanol productivities than a control strain with lower SPD contents. Specifically, at the sixteenth fermentation, the ethanol productivity of a S. cerevisiae strain with twofold higher SPD content was 31% higher than that of the control strain. When the SPD content was elevated in an engineered S. cerevisiae capable of fermenting xylose, the resulting S. cerevisiae strain exhibited much 40-50% higher ethanol productivities than the control strain during the fermentations of synthetic hydrolysate containing high concentrations of fermentation inhibitors. These results suggest that the strain engineering strategy to increase SPD content is broadly applicable for engineering yeast strains for robust and efficient production of ethanol.

  7. Water reuse in the l-lysine fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, T.Y.; Glatz, C.E.

    1996-02-05

    L-Lysine is produced commercially by fermentation. As is typical for fermentation processes, a large amount of liquid waste is generated. To minimize the waste, which is mostly the broth effluent from the cation exchange column used for l-lysine recovery, the authors investigated a strategy of recycling a large fraction of this broth effluent to the subsequent fermentation. This was done on a lab-scale process with Corynebacterium glutamicum ATCC 21253 as the l-lysine-producing organisms. Broth effluent from a fermentation in a defined medium was able to replace 75% of the water for the subsequent batch; this recycle ratio was maintained formore » 3 sequential batches without affecting cell mass and l-lysine production. Broth effluent was recycled at 50% recycle ratio in a fermentation in a complex medium containing beet molasses. The first recycle batch had an 8% lower final l-lysine level, but 8% higher maximum cell mass. In addition to reducing the volume of liquid waste, this recycle strategy has the additional advantage of utilizing the ammonium desorbed from the ion-exchange column as a nitrogen source in the recycle fermentation. The major problem of recycling the effluent from the complex medium was in the cation-exchange operation, where column capacity was 17% lower for the recycle batch. The loss of column capacity probably results from the buildup of cations competing with l-lysine for binding.« less

  8. An In Vitro Approach to Study Effects of Prebiotics and Probiotics on the Faecal Microbiota and Selected Immune Parameters Relevant to the Elderly

    PubMed Central

    Liu, Yue; Gibson, Glenn R.; Walton, Gemma E.

    2016-01-01

    The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters. PMID:27612304

  9. An In Vitro Approach to Study Effects of Prebiotics and Probiotics on the Faecal Microbiota and Selected Immune Parameters Relevant to the Elderly.

    PubMed

    Liu, Yue; Gibson, Glenn R; Walton, Gemma E

    2016-01-01

    The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters.

  10. The effect of kimchi on the microbiological stability of fermented sausage.

    PubMed

    Park, Young-Seo; Lee, Joo-Yeon

    2012-12-01

    The effects of kimchi and freeze-dried kimchi-powder added to raw meat mixtures on the microbiological quality of fermented sausage were studied. The results clearly demonstrated that the lactic acid bacteria (LAB) integrated via the addition of kimchi as well as kimchi-powder were well adapted to the new habitat of fermenting sausage, reaching maximum numbers of 8.65-8.80 log₁₀ cfu/g after 1-2 days of fermentation. In all kimchi and kimchi-powder sausages, the growth of Enterobacteriaceae was completely inhibited throughout the processing period (<2 log₁₀ cfu/g). The sausage batches containing more than 10% kimchi and 2% kimchi-powder showed no growth of S. aureus, whereas the control and another kimchi sausage batch reflected the growth of S. aureus (3.68-4.72 log₁₀ cfu/g). As a result, the addition of kimchi (≥10%) and kimchi-powder to the sausage mixture prior to fermentation produced the microbiological stability required for fermented sausages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555.

    PubMed

    Kim, Seonghun; Park, Jang Min; Kim, Chul Ho

    2013-03-01

    Jerusalem artichoke is a low-requirement sugar crop containing cellulose and hemicellulose in the stalk and a high content of inulin in the tuber. However, the lignocellulosic component in Jerusalem artichoke stalk reduces the fermentability of the whole plant for efficient bioethanol production. In this study, Jerusalem artichoke stalk was pretreated sequentially with dilute acid and alkali, and then hydrolyzed enzymatically. During enzymatic hydrolysis, approximately 88 % of the glucan and xylan were converted to glucose and xylose, respectively. Batch and fed-batch simultaneous saccharification and fermentation of both pretreated stalk and tuber by Kluyveromyces marxianus CBS1555 were effectively performed, yielding 29.1 and 70.2 g/L ethanol, respectively. In fed-batch fermentation, ethanol productivity was 0.255 g ethanol per gram of dry Jerusalem artichoke biomass, or 0.361 g ethanol per gram of glucose, with a 0.924 g/L/h ethanol productivity. These results show that combining the tuber and the stalk hydrolysate is a useful strategy for whole biomass utilization in effective bioethanol fermentation from Jerusalem artichoke.

  12. Alcoholic fermentation with flocculant Saccharomyces cerevisiae in fed-batch process.

    PubMed

    Guidini, Carla Zanella; Marquez, Líbia Diniz Santos; de Almeida Silva, Helisângela; de Resende, Miriam Maria; Cardoso, Vicelma Luiz; Ribeiro, Eloízio Júlio

    2014-02-01

    Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40% (v/v), and a filling time of 6 h, which resulted in a 92.20% yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75% and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h(-1), with K(I) and K(s) values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h(-1).

  13. Fuel ethanol production from sweet sorghum using repeated-batch fermentation.

    PubMed

    Chohnan, Shigeru; Nakane, Megumi; Rahman, M Habibur; Nitta, Youji; Yoshiura, Takanori; Ohta, Hiroyuki; Kurusu, Yasurou

    2011-04-01

    Ethanol was efficiently produced from three varieties of sweet sorghum using repeated-batch fermentation without pasteurization or acidification. Saccharomyces cerevisiae cells could be recycled in 16 cycles of the fermentation process with good ethanol yields. This technique would make it possible to use a broader range of sweet sorghum varieties for ethanol production. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    PubMed

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

  15. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion.

    PubMed

    Liu, Zhi-Hua; Xie, Shangxian; Lin, Furong; Jin, Mingjie; Yuan, Joshua S

    2018-01-01

    Lignin valorization has recently been considered to be an essential process for sustainable and cost-effective biorefineries. Lignin represents a potential new feedstock for value-added products. Oleaginous bacteria such as Rhodococcus opacus can produce intracellular lipids from biodegradation of aromatic substrates. These lipids can be used for biofuel production, which can potentially replace petroleum-derived chemicals. However, the low reactivity of lignin produced from pretreatment and the underdeveloped fermentation technology hindered lignin bioconversion to lipids. In this study, combinatorial pretreatment with an optimized fermentation strategy was evaluated to improve lignin valorization into lipids using R. opacus PD630. As opposed to single pretreatment, combinatorial pretreatment produced a 12.8-75.6% higher lipid concentration in fermentation using lignin as the carbon source. Gas chromatography-mass spectrometry analysis showed that combinatorial pretreatment released more aromatic monomers, which could be more readily utilized by lignin-degrading strains. Three detoxification strategies were used to remove potential inhibitors produced from pretreatment. After heating detoxification of the lignin stream, the lipid concentration further increased by 2.9-9.7%. Different fermentation strategies were evaluated in scale-up lipid fermentation using a 2.0-l fermenter. With laccase treatment of the lignin stream produced from combinatorial pretreatment, the highest cell dry weight and lipid concentration were 10.1 and 1.83 g/l, respectively, in fed-batch fermentation, with a total soluble substrate concentration of 40 g/l. The improvement of the lipid fermentation performance may have resulted from lignin depolymerization by the combinatorial pretreatment and laccase treatment, reduced inhibition effects by fed-batch fermentation, adequate oxygen supply, and an accurate pH control in the fermenter. Overall, these results demonstrate that combinatorial pretreatment, together with fermentation optimization, favorably improves lipid production using lignin as the carbon source. Combinatorial pretreatment integrated with fed-batch fermentation was an effective strategy to improve the bioconversion of lignin into lipids, thus facilitating lignin valorization in biorefineries.

  16. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah

    2015-02-03

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  17. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    NASA Astrophysics Data System (ADS)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-01

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  18. Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs: (I). Production of laccase by batch and repeated-batch processes.

    PubMed

    Lin, Jian-Ping; Wei, Lian; Xia, Li-Ming; Cen, Pei-Lin

    2003-01-01

    The production of laccase by Coriolus versicolor was studied. The effect of cultivation conditions on laccase production by Coriolus versicolor was examined to obtain optimal medium and cultivation conditions. Both batch and repeated-batch processes were performed for laccase production. In repeated-batch fermentation with self-immobilized mycelia, total of 14 cycles were performed with laccase activity in the range between 3.4 and 14.8 U/ml.

  19. Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material.

    PubMed

    Ouyang, Jia; Ma, Rui; Zheng, Zhaojuan; Cai, Cong; Zhang, Min; Jiang, Ting

    2013-05-01

    Highly efficient L-lactate production by a thermophilic strain Bacillus sp. NL01 was demonstrated in this study. Lignocellulosic hydrolyzates containing a high content of glucose, which was prepared from corn stover, was used as substrate for L-lactic acid production. The fermentation was carried out under open condition without sterilization and used NaOH as alkaline neutralizing reagent. In batch fermentation, 56.37 g l(-1) L-lactic acid was obtained from lignocellulosic hydrolyzates which contained the solid residues produced in enzymatic saccharification. In fed-batch fermentation, 75.03 g l(-1) L-lactic acid was obtained from lignocellulosic hydrolyzates supernatant. The yield was 74.5% and the average productivity was 1.04 g l(-1) h(-1). Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors.

    PubMed

    Shi, Zhouming; Wei, Peilian; Zhu, Xiangcheng; Cai, Jin; Huang, Lei; Xu, Zhinan

    2012-10-10

    Hydrolysate of Jerusalem artichoke was applied for the production of l-lactic acid by immobilized Lactococcus lactis cells in a fibrous bed bioreactor system. Preliminary experiments had indicated that the high quality hydrolysate, which was derived from the 40 min acid treatment at 95 °C and pH 1.8, was sufficient to support the cell growth and synthesis of l-lactic acid. With the addition of 5 g/l yeast extract, the fermentative performance of free cell system was evidently improved. After the basal settlement of hydrolysate based fermentation, the batch mode and the fed-batch mode fermentation were carried out in the free cell system and the fibrous bed bioreactor system, respectively. In all cases the immobilized cells presented the superior ability to produce l-lactic acid. The comparison of batch mode and fed-batch mode also indicated that the growth-limiting feeding strategy could reduce the lag phase of fermentation process and enhance the production of l-lactic acid. The achieved maximum concentration of l-lactic acid was 142 g/l in the fed-batch mode. Subsequent repeated-batch fermentation of the fibrous bed bioreactor system had further exhibited the persistence and stability of this system for the high production of l-lactic acid in a long term. Our work suggested the great potential of the fibrous bed bioreactor system and hydrolysate of J. artichoke in the economical production of l-lactic acid at industrial scale. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis.

    PubMed

    Xiao, Zhiping; Cheng, Chu; Bao, Teng; Liu, Lujie; Wang, Bin; Tao, Wenjing; Pei, Xun; Yang, Shang-Tian; Wang, Minqi

    2018-01-01

    Butyric acid is an important chemical currently produced from petrochemical feedstocks. Its production from renewable, low-cost biomass in fermentation has attracted large attention in recent years. In this study, the feasibility of corn husk, an abundant agricultural residue, for butyric acid production by using Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was evaluated. Hydrolysis of corn husk (10% solid loading) with 0.4 M H 2 SO 4 at 110 °C for 6 h resulted in a hydrolysate containing ~ 50 g/L total reducing sugars (glucose:xylose = 1.3:1.0). The hydrolysate was used for butyric acid fermentation by C. tyrobutyricum in a FBB, which gave 42.6 and 53.0% higher butyric acid production from glucose and xylose, respectively, compared to free-cell fermentations. Fermentation with glucose and xylose mixture (1:1) produced 50.37 ± 0.04 g L -1 butyric acid with a yield of 0.38 ± 0.02 g g -1 and productivity of 0.34 ± 0.03 g L -1  h -1 . Batch fermentation with corn husk hydrolysate produced 21.80 g L -1 butyric acid with a yield of 0.39 g g -1 , comparable to those from glucose. Repeated-batch fermentations consistently produced 20.75 ± 0.65 g L -1 butyric acid with an average yield of 0.39 ± 0.02 g g -1 in three consecutive batches. An extractive fermentation process can be used to produce, separate, and concentrate butyric acid to > 30% (w/v) sodium butyrate at an economically attractive cost for application as an animal feed supplement. A high concentration of total reducing sugars at ~ 50% (w/w) yield was obtained from corn husk after acid hydrolysis. Stable butyric acid production from corn husk hydrolysate was achieved in repeated-batch fermentation with C. tyrobutyricum immobilized in a FBB, demonstrating that corn husk can be used as an economical substrate for butyric acid production.

  2. Sterilization of fermentation vessels by ethanol/water mixtures

    DOEpatents

    Wyman, Charles E.

    1999-02-09

    A method for sterilizing process fermentation vessels with a concentrated alcohol and water mixture integrated in a fuel alcohol or other alcohol production facility. Hot, concentrated alcohol is drawn from a distillation or other purification stage and sprayed into the empty fermentation vessels. This sterilizing alcohol/water mixture should be of a sufficient concentration, preferably higher than 12% alcohol by volume, to be toxic to undesirable microorganisms. Following sterilization, this sterilizing alcohol/water mixture can be recovered back into the same distillation or other purification stage from which it was withdrawn. The process of this invention has its best application in, but is not limited to, batch fermentation processes, wherein the fermentation vessels must be emptied, cleaned, and sterilized following completion of each batch fermentation process.

  3. Fermentation Kinetics and Continuous Process of L-Asparaginase Production

    PubMed Central

    Liu, F. S.; Zajic, J. E.

    1973-01-01

    For the purpose of obtaining L-asparaginase in quantities from Erwinia aroideae, cell growth and enzyme formation were investigated in both batch and continuous fermentation. Using yeast extract as a growth-limiting substrate, the relationship between specific growth rate and substrate concentration was found to fit the Monod equation. The optimum temperature for enzyme production was 24 C, although cell growth was higher at 28 C. The enzyme yield reached its maximum of 4 IU/ml during the negative acceleration growth phase which occurs just prior to stationary growth. Compared to batch fermentations, the continuous fermentation process gave a lower enzyme yield except when the fermentation was conducted at a dilution rate of 0.1 hr-1. The graphical method frequently used for prediction of continuous fermentation does not apply to L-asparaginase production by E. aroideae. The optimum temperature for enzyme production in continuous process was 24 C, which was the same as in batch process. Increasing the temperature from 24 to 28 C resulted in a 20% loss of enzyme yield. PMID:4568894

  4. Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol

    NASA Astrophysics Data System (ADS)

    Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.

    2017-04-01

    Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.

  5. Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield.

    PubMed

    Mimitsuka, Takashi; Sawai, Kenji; Kobayashi, Koji; Tsukada, Takeshi; Takeuchi, Norihiro; Yamada, Katsushige; Ogino, Hiroyasu; Yonehara, Tetsu

    2015-01-01

    Poly d-lactic acid is an important polymer because it improves the thermostability of poly l-lactic acid by stereo complex formation. To demonstrate potency of continuous fermentation using a membrane-integrated fermentation reactor (MFR) system, continuous fermentation using genetically modified Saccharomyces cerevisiae which produces d-lactic acid was performed at the low pH and microaerobic conditions. d-Lactic acid continuous fermentation using the MFR system by genetically modified yeast increased production rate by 11-fold compared with batch fermentation. In addition, the carbon yield of d-lactic acid in continuous fermentation was improved to 74.6 ± 2.3% compared to 39.0 ± 1.7% with batch fermentation. This dramatic improvement in carbon yield could not be explained by a reduction in carbon consumption to form cells compared to batch fermentation. Further detailed analysis at batch fermentation revealed that the carbon yield increased to 76.8% at late stationary phase. S. cerevisiae, which exhibits the Crabtree-positive effect, demonstrated significant changes in metabolic activities at low sugar concentrations (Rossignol et al., Yeast, 20, 1369-1385, 2003). Moreover, lactate-producing S. cerevisiae requires ATP supplied not only from the glycolytic pathway but also from the TCA cycle (van Maris et al., Appl. Environ. Microbiol., 70, 2898-2905, 2004). Our finding was revealed that continuous fermentation, which can maintain the conditions of both a low sugar concentration and air supply, results in Crabtree-positive and lactate-producing S. cerevisiae for suitable conditions of d-lactic acid production with respect to redox balance and ATP generation because of releasing the yeast from the Crabtree effect. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Linking microbial community structure and product spectrum of rice straw fermentation with undefined mixed culture

    NASA Astrophysics Data System (ADS)

    Ai, Binling; Chi, Xue; Meng, Jia; Sheng, Zhanwu; Zheng, Lili; Zheng, Xiaoyan; Li, Jianzheng

    2017-12-01

    Undefined mixed culture-based fermentation is an alternative strategy for biofuels and bioproducts production from lignocellulosic biomass without supplementary cellulolytic enzymes. Mixed culture produces mixed carboxylates. To estimate the relationship between microbial community structure and product spectrum, carboxylate production was initiated by mixed cultures with different microbial community structure. All the inoculum cultures were derived from the same enrichment culture from the combination of cattle manure, pig manure compost, corn field soil and rotten wood. Due to the differences in the preparation method and culture time, the inoculum cultures for batch fermentation had high similarity in microbial community structure, while the community structure of each inoculum culture for repeated batch fermentation differed from that of another. The inoculum cultures with similar community structure led to a similar product spectrum. In batch fermentation, the selectivity of main product butyric acid stabilized around 76%. The inoculum cultures with different community structures resulted in different product spectra. In repeated batch fermentation, the butyric acid content gradually decreased to 27%, and the by-product acetic acid content steadily increased to 56%. The other by-products including propionic, valeric and caproic acids were also increased. It is deduced that keeping the microbial community structure stable makes the basic and key precondition for steady production of specific carboxylic acid with undefined mixed culture.

  7. Valorization of crude glycerol and eggshell biowaste as media components for hydrogen production: A scale-up study using co-culture system.

    PubMed

    Pachapur, Vinayak Laxman; Das, Ratul Kumar; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo

    2017-02-01

    The properties of eggshells (EGS) as neutralizing and immobilizing agent were investigated for hydrogen (H 2 ) production using crude glycerol (CG) by co-culture system. Eggshells of different sizes and concentrations were used during batch and repeated-batch fermentation. For batch and repeated-batch fermentation, the maximum H 2 production (36.53±0.53 and 41.16±0.95mmol/L, respectively) was obtained with the EGS size of 33μm

  8. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    PubMed

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  9. Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage.

    PubMed

    Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi

    2010-02-01

    Anaerobic sludges, pretreated by chloroform, base, acid, heat and loading-shock, as well as untreated sludge were evaluated for their thermophilic fermentative hydrogen-producing characters from cassava stillage in both batch and continuous experiments. Results showed that the highest hydrogen production was obtained by untreated sludge and there were significant differences (p<0.05) in hydrogen yields (varied from 32.9 to 65.3mlH(2)/gVS) among the tested pretreatment methods in batch experiments. However, the differences in hydrogen yields disappeared in continuous experiments, which indicated the pretreatment methods had only short-term effects on the hydrogen production. Further study showed that alkalinity was a crucial parameter influencing the fermentation process. When the influent was adjusted to pH 6 by NaHCO(3) instead of NaOH, the hydrogen yield increased from about 40 to 52mlH(2)/gVS in all the experiments. Therefore, pretreatment of anaerobic sludge is unnecessary for practical thermophilic fermentative hydrogen production from cassava stillage.

  10. Use of autochthonous Pediococcus acidilactici and Staphylococcus vitulus starter cultures in the production of "chorizo" in 2 different traditional industries.

    PubMed

    Casquete, Rocío; Benito, María J; Martín, Alberto; Ruiz-Moyano, Santiago; Aranda, Emilio; Córdoba, María G

    2012-01-01

    The present study determined how the different ripening conditions affected the growth and development of 3 autochthonous starter cultures, and the physico-chemical and sensory characteristics of chorizo. Each of 3 strains of Pediococcus acidilactici (MC184, MS198, and MS200) and one of Staphylococcus vitulus (RS34) were associated to prepare the starter cultures, P184S34, P198S34, and P200S34. Then, chorizo was prepared following 2 manufacturing procedures. The autochthonous starter cultures were able to compete and colonize the sausages in both ripening procedures. The use of the starter cultures showed evident differences by the texture analysis, with the control batches being generally tougher than the starter culture batches. Also, the highest biogenic amine (BA) levels were found in control batches and the lowest in P200S34 batches. While the use of these starter cultures does not change the sensory characteristics of these traditional fermented sausages, it improves their homogeneity and safety, except for P184S34 batch in which more BAs are detected in industry 2. The 3 autochthonous starter cultures selected could be used in traditional industries because they are able to compete well and colonize the dry fermented sausages "chorizo." The use of these starter cultures improves the texture and homogeneity of traditional fermented sausages. Biogenic amines decreased in the starter cultures batches improving the safety. © 2011 Institute of Food Technologists®

  11. Bio-plasticizer production by hybrid acetone-butanol-ethanol fermentation with full cell catalysis of Candida sp. 99-125.

    PubMed

    Chen, Changjing; Cai, Di; Qin, Peiyong; Chen, Biqiang; Wang, Zheng; Tan, Tianwei

    2018-06-01

    Hybrid process that integrated fermentation, pervaporation and esterification was established aiming to improve the economic feasibility of the conventional acetone-butanol-ethanol (ABE) fermentation process. Candida sp 99-125 cells were used as full-cell catalyst. The feasibility of batch and fed-batch esterification using the ABE permeate of pervaporation (ranging from 286.9 g/L to 402.9 g/L) as substrate were compared. Valuable butyl oleate was produced along with ethyl oleate. For the batch esterification, due to severe inhibition of substrate to lipase, the yield of butyl oleate and ethyl oleate were only 24.9% and 3.3%, respectively. In contrast, 75% and 11.8% of butyl oleate and ethyl oleate were obtained, respectively, at the end of the fed-batch esterification. The novel integration process provides a promising strategy for in situ upgrading ABE products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Production of Mannitol from a High Concentration of Glucose by Candida parapsilosis SK26.001.

    PubMed

    Meng, Qing; Zhang, Tao; Wei, Wenting; Mu, Wanmeng; Miao, Ming

    2017-01-01

    A novel strain, SK26.001, which can produce mannitol from a high concentration of glucose without the addition of fructose, was isolated from sugarcane juice. This strain was identified as Candida parapsilosis based on 18S ribosomal RNA (rRNA) sequence analysis and the morphological and physiological-biochemical characteristics of the strain. Under optimized fermentation conditions, the mannitol concentration in shake flasks reached 68.5 g/L. When batch fermentation was performed, the fed glucose was completely consumed after 72 h, resulting in a final mannitol concentration of 80.3 g/L. Fed-batch fermentation was then performed with glucose feed. During the fed-batch process, ammonia water was added to maintain the pH at 4.0. The mannitol concentration in the fermenter reached 97.1 g/L after 120 h, with a total glucose consumption of 284 g/L.

  13. Sterilization of fermentation vessels by ethanol/water mixtures

    DOEpatents

    Wyman, C.E.

    1999-02-09

    A method is described for sterilizing process fermentation vessels with a concentrated alcohol and water mixture integrated in a fuel alcohol or other alcohol production facility. Hot, concentrated alcohol is drawn from a distillation or other purification stage and sprayed into the empty fermentation vessels. This sterilizing alcohol/water mixture should be of a sufficient concentration, preferably higher than 12% alcohol by volume, to be toxic to undesirable microorganisms. Following sterilization, this sterilizing alcohol/water mixture can be recovered back into the same distillation or other purification stage from which it was withdrawn. The process of this invention has its best application in, but is not limited to, batch fermentation processes, wherein the fermentation vessels must be emptied, cleaned, and sterilized following completion of each batch fermentation process. 2 figs.

  14. Enhanced production of bioethanol from waste of beer fermentation broth at high temperature through consecutive batch strategy by simultaneous saccharification and fermentation.

    PubMed

    Khattak, Waleed Ahmad; Khan, Taous; Ha, Jung Hwan; Ul-Islam, Mazhar; Kang, Min-Kyung; Park, Joong Kon

    2013-10-10

    Malt hydrolyzing enzymes and yeast glycolytic and fermentation enzymes in the waste from beer fermentation broth (WBFB) were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). A new 'one-pot consecutive batch strategy' was developed for efficient bio-ethanol production by simultaneous saccharification and fermentation (SSF) using WBFB without additional enzymes, microbial cells, or carbohydrates. Bio-ethanol production was conducted in batches using WBFB supernatant in the first phase at 25-67°C and 50rpm, followed by the addition of 3% WBFB solid residue to the existing culture broth in the second phase at 67°C. The ethanol production increased from 50 to 102.5g/L when bare supernatant was used in the first phase, and then to 219g ethanol/L in the second phase. The amount of ethanol obtained using this strategy was almost equal to that obtained using the original WBFB containing 25% solid residue at 33°C, and more than double that obtained when bare supernatant was used. Microscopic and gel electrophoresis studies revealed yeast cell wall degradation and secretion of cellular material into the surrounding medium. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) supported the existence of enzymes in WBFB involved in bioethanol production at elevated temperatures. The results of this study will provide insight for the development of new strategies for biofuel production. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Jokić, Bojan M; Nikolić, Svetlana B; Pejin, Jelena D

    2013-05-01

    In this study, lactic acid and biomass production on liquid distillery stillage from bioethanol production with Lactobacillus rhamnosus ATCC 7469 was studied. The cells were immobilized onto zeolite, a microporous aluminosilicate mineral and the lactic acid production with free and immobilized cells was compared. The immobilization allowed simple cell separation from the fermentation media and their reuse in repeated batch cycles. A number of viable cells of over 10(10) CFU g(-1) of zeolite was achieved at the end of fourth fermentation cycle. A maximal process productivity of 1.69 g L(-1), maximal lactic acid concentration of 42.19 g L(-1) and average yield coefficient of 0.96 g g(-1) were achieved in repeated batch fermentation on the liquid stillage without mineral or nitrogen supplementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Microbial production of mannitol by Lactobacillus brevis 3-A5 from concentrated extract of Jerusalem artichoke tubers.

    PubMed

    Cao, Hailong; Yue, Min; Liu, Gang; Du, Yuguang; Yin, Heng

    2018-05-01

    In the present study, the conversion of the extract of Jerusalem artichoke tubers for mannitol production by Lactobacillus brevis 3-A5 was investigated. When the bacterium utilized enzymatic hydrolysates of Jerusalem artichoke extract as the main substrates in batch fermentation, the significant decrease in mannitol productivity was observed when the initial concentration of reducing sugar increased. Then, a strategy of continuous fed-batch fermentation was adopted for improving mannitol production with enzymatic hydrolysates of Jerusalem artichoke extract as main substrates. Although the concentration of mannitol could reach 199.86 g/L at the end of the fermentation, the productivity for the overall process of the fermentation was only 1.67 g/L/H. To improve the mannitol productivity with both higher yield and concentration, the simultaneous enzymatic saccharification and fermentation (SSF) was studied. In SSF, the mannitol production reached 176.50 g/L in 28 H with a productivity of 6.30 g/L/H and a yield of 0.68 g/g total sugar. Our study provides a cost-effective and eco-friendly method for mannitol production from a cheap biomass. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  17. Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D-xylose.

    PubMed

    Slininger, P J; Dien, B S; Lomont, J M; Bothast, R J; Ladisch, M R; Okos, M R

    2014-08-01

    Scheffersomyces (formerly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol production as functions of ethanol, oxygen, and xylose concentrations for both growth and fermentation stages. The model was validated for various growth conditions including batch, cell recycle, batch with in situ ethanol removal and fed-batch. The model provides a summary of basic physiological yeast properties and is an important tool for simulating and optimizing various culture conditions and evaluating various bioreactor designs for ethanol production. © 2014 Wiley Periodicals, Inc.

  18. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature.

    PubMed

    Hao, Jiuxiao; Wang, Hui

    2015-01-01

    The volatile fatty acids (VFAs) productions, as well as hydrolases activities, microbial communities, and homoacetogens, of mesophilic and thermophilic sludge anaerobic fermentation were investigated to reveal the microbial responses to different fermentation temperatures. Thermophilic fermentation led to 10-fold more accumulation of VFAs compared to mesophilic fermentation. α-glucosidase and protease had much higher activities in thermophilic reactor, especially protease. Illumina sequencing manifested that raising fermentation temperature increased the abundances of Clostridiaceae, Microthrixaceae and Thermotogaceae, which could facilitate either hydrolysis or acidification. Real-time PCR analysis demonstrated that under thermophilic condition the relative abundance of homoacetogens increased in batch tests and reached higher level at stable fermentation, whereas under mesophilic condition it only increased slightly in batch tests. Therefore, higher fermentation temperature increased the activities of key hydrolases, raised the proportions of bacteria involved in hydrolysis and acidification, and promoted the relative abundance of homoacetogens, which all resulted in higher VFAs production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol.

    PubMed

    Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2012-09-01

    The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.

  20. Production of 2,3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4.

    PubMed

    Han, Sung-Hyuk; Lee, Jung-Eun; Park, Kyungmoon; Park, Yong-Cheol

    2013-01-25

    2,3-Butanediol (2,3-BDO) is a value-added chemical with great potential for the industrial production of synthetic rubber, plastic and solvent. For microbial production of 2,3-BDO, in this study, Klebsiella oxytoca NBRF4 was constructed by chemical mutation and screening against NaBr, NaBrO(3) and fluoroacetate. Among metabolic enzymes involved in the production of lactate, acetate and 2,3-BDO, K. oxytoca NBRF4 possessed 1.2 times lower specific activities of lactate dehydrogenase and phosphotransacetylase, and 22% higher specific acetoin reductase activity than the K. oxytoca ATCC43863 control strain. A series of batch fermentations in a defined medium and application of a statistical tool of response surface method led to the determination of optimal culture conditions: 10% dissolved oxygen level, pH 4.3 and 38°C. The actual results of batch fermentation at the optimal conditions using 44 g/L glucose were coincident with the predetermined values: 14.4 g/L 2,3-BDO concentration, 0.32 g/g yield. To increase 2,3-BDO titer, fed-batch fermentation of K. oxytoca NBRF4 was performed by an intermittent feeding of 800 g/L glucose to control its concentration around 5-20 g/L in the culture broth. Finally, 34.2g/L 2,3-BDO concentration and 0.35 g/g yield were obtained without organic acid production in 70 hours of the fed-batch culture, which were 2.4 and 1.2 times higher than those of the batch fermentation using 44 g/L glucose. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Process for the fermentative production of acetone, butanol and ethanol

    DOEpatents

    Glassner, David A.; Jain, Mahendra K.; Datta, Rathin

    1991-01-01

    A process including multistage continuous fermentation followed by batch fermentation with carefully chosen temperatures for each fermentation step, combined with an asporogenic strain of C. acetobutylicum and a high carbohydrate substrate concentration yields extraordinarily high butanol and total solvents concentrations.

  2. Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler.

    PubMed

    Shi, Xinchi; Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Zhao, Nan; Ying, Hanjie

    2014-12-01

    An immobilized fermentation system, using cassava bagasse hydrolysate (CBH) and mixed alkalis, was developed to achieve economical succinic acid production by Corynebacterium glutamicum. The C. glutamicum strains were immobilized in porous polyurethane filler (PPF). CBH was used efficiently as a carbon source instead of more expensive glucose. Moreover, as a novel method for regulating pH, the easily decomposing NaHCO3 was replaced by mixed alkalis (NaOH and Mg(OH)2) for succinic acid production by C. glutamicum. Using CBH and mixed alkalis in the immobilized batch fermentation system, succinic acid productivity of 0.42gL(-1)h(-1) was obtained from 35gL(-1) glucose of CBH, which is similar to that obtained with conventional free-cell fermentation with glucose and NaHCO3. In repeated batch fermentation, an average of 22.5gL(-1) succinic acid could be obtained from each batch, which demonstrated the enhanced stability of the immobilized C. glutamicum cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast.

    PubMed

    Soares, Jimmy; Demeke, Mekonnen M; Van de Velde, Miet; Foulquié-Moreno, Maria R; Kerstens, Dorien; Sels, Bert F; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2017-11-01

    The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Membrane-integrated fermentation system for improving the optical purity of D-lactic acid produced during continuous fermentation.

    PubMed

    Sawai, Hideki; Na, Kyungsu; Sasaki, Nanami; Mimitsuka, Takashi; Minegishi, Shin-ichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu

    2011-01-01

    This report describes the production of highly optically pure D-lactic acid by the continuous fermentation of Sporolactobacillus laevolacticus and S. inulinus, using a membrane-integrated fermentation (MFR) system. The optical purity of D-lactic acid produced by the continuous fermentation system was greater than that produced by batch fermentation; the maximum value for the optical purity of D-lactic acid reached 99.8% enantiomeric excess by continuous fermentation when S. leavolacticus was used. The volumetric productivity of the optically pure D-lactic acid was about 12 g/L/h, this being approximately 11-fold higher than that obtained by batch fermentation. An enzymatic analysis indicated that both S. laevolacticus and S. inulinus could convert L-lactic acid to D-lactic acid by isomerization after the late-log phase. These results provide evidence for an effective bio-process to produce D-lactic acid of greater optical purity than has conventionally been achieved to date.

  5. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae.

    PubMed

    Soliman, Ramadan M; Younis, Sherif A; El-Gendy, Nour Sh; Mostafa, Soha S M; El-Temtamy, Seham A; Hashim, Ahmed I

    2018-04-19

    Marine seaweeds (macroalgae) cause eutrophication problem and affects the touristic activities. The success of the production of the third generation bioethanol from marine macroalgae depends mainly on the development of an ecofriendly and eco-feasible pretreatment (i.e. hydrolysis) technique, a highly effective saccharification step and finally an efficient bioethanol fermentation step. Therefore, this study aimed to investigate the potentiality of different marine macroalgal strains, collected from Egyptian coasts, for bioethanol production via different saccharification processes. Different marine macroalgal strains; red Jania rubens, green Ulva lactuca. and brown Sargassum latifolium, have been collected from Egyptian Mediterranean and Red Sea shores. Different hydrolysis processes were evaluated to maximize the extraction of fermentable sugars; thermo-chemical hydrolysis with diluted acids (HCl and H 2 SO 4 ) and base (NaOH), hydrothermal hydrolysis followed by saccharification with different fungal strains and finally, thermo-chemical hydrolysis with diluted HCl, followed by fungal saccharification. The hydrothermal hydrolysis of Sargassum latifolium followed by biological saccharification using Trichoderma asperellum RM1 produced maximum total sugars of 510 mg g -1 macroalgal biomass. The integration of the hydrothermal and fungal hydrolyses of the macroalgal biomass with a separate batch fermentation of the produced sugars using two Saccharomyces cerevisiae strains, produced approximately 0.29 g bioethanol g -1 total reducing sugars. A simulated regression modeling for the batch bioethanol fermentation was also performed. This study, supported the possibility of using seaweeds as a renewable source of bioethanol, throughout a suggested integration of macroalgal biomass hydrothermal- and fungal- hydrolysis with a separate batch bioethanol fermentation process of the produced sugars. The usage of marine macroalgae (i.e. seaweeds) as feedstock for bioethanol; an alternative and/or complimentary to petro-fuel, would act as triple fact solution; bioremediation process for ecosystem, renewable energy source and economy savings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain.

    PubMed

    Coelho, Luciana Fontes; Beitel, Susan Michelz; Sass, Daiane Cristina; Neto, Paulo Marcelo Avila; Contiero, Jonas

    2018-04-01

    Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH) 2 . The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.

  7. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.

    PubMed

    Yamada, Ryosuke; Wakita, Kazuki; Mitsui, Ryosuke; Ogino, Hiroyasu

    2017-09-01

    Utilization of renewable feedstocks for the production of bio-based chemicals such as d-lactic acid by engineering metabolic pathways in the yeast Saccharomyces cerevisiae has recently become an attractive option. In this study, to realize efficient d-lactic acid production by S. cerevisiae, the expression of 12 glycolysis-related genes and the Leuconostoc mesenteroides d-LDH gene was optimized using a previously developed global metabolic engineering strategy, and repeated batch fermentation was carried out using the resultant strain YPH499/dPdA3-34/DLDH/1-18. Stable d-lactic acid production through 10 repeated batch fermentations was achieved using YPH499/dPdA3-34/DLDH/1-18. The average d-lactic acid production, productivity, and yield with 10 repeated batch fermentations were 60.3 g/L, 2.80 g/L/h, and 0.646, respectively. The present study is the first report of the application of a global metabolic engineering strategy for bio-based chemical production, and it shows the potential for efficient production of such chemicals by global metabolic engineering of the yeast S. cerevisiae. Biotechnol. Bioeng. 2017;114: 2075-2084. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation.

    PubMed

    Khiewwijit, Rungnapha; Temmink, Hardy; Labanda, Alvaro; Rijnaarts, Huub; Keesman, Karel J

    2015-12-01

    This study explored the potential of volatile fatty acids (VFA) production from sewage by a combined high-loaded membrane bioreactor and sequencing batch fermenter. VFA production was optimized with respect to SRT and alkaline pH (pH 8-10). Application of pH shock to a value of 9 at the start of a sequencing batch cycle, followed by a pH uncontrolled phase for 7days, gave the highest VFA yield of 440mgVFA-COD/g VSS. This yield was much higher than at fermentation without pH control or at a constant pH between 8 and 10. The high yield in the pH 9 shocked system could be explained by (1) a reduction of methanogenic activity, or (2) a high degree of solids degradation or (3) an enhanced protein hydrolysis and fermentation. VFA production can be further optimized by fine-tuning pH level and longer operation, possibly allowing enrichment of alkalophilic and alkali-tolerant fermenting microorganisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR).

    PubMed

    Yuan, Yue; Liu, Jinjin; Ma, Bin; Liu, Ye; Wang, Bo; Peng, Yongzhen

    2016-12-01

    This study presents a novel strategy to improve the removal efficiency of nitrogen and phosphorus from municipal wastewater by feeding sequencing batch reactor (SBR) with sludge alkaline fermentation products as carbon sources. The performances of two SBRs treating municipal wastewater (one was fed with sludge fermentation products; F-SBR, and the other without sludge fermentation products; B-SBR) were compared. The removal efficiencies of total nitrogen (TN) and phosphorus (PO 4 3- -P) were found to be 82.9% and 96.0% in F-SBR, while the corresponding values in B-SBR were 55.9% (TN) and -6.1% (PO 4 3- -P). Illumina MiSeq sequencing indicated that ammonium-oxidizing bacteria (Nitrosomonadaceae and Nitrosomonas) and denitrifying polyphosphate accumulating organisms (Dechloromonas) were enriched in F-SBR, which resulted in NO 2 - -N accumulation and denitrifying phosphorus removal via nitrite (DPRN). Moreover, feeding of sludge fermentation products reduced 862.1mg VSS/d of sludge in the F-SBR system (volume: 10L). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enzyme recycle and fed-batch addition for high-productivity soybean flour processing to produce enriched soy protein and concentrated hydrolysate of fermentable sugars.

    PubMed

    Loman, Abdullah Al; Islam, S M Mahfuzul; Li, Qian; Ju, Lu-Kwang

    2017-10-01

    Despite having high protein and carbohydrate, soybean flour utilization is limited to partial replacement of animal feed to date. Enzymatic process can be exploited to increase its value by enriching protein content and separating carbohydrate for utilization as fermentation feedstock. Enzyme hydrolysis with fed-batch and recycle designs were evaluated here for achieving this goal with high productivities. Fed-batch process improved carbohydrate conversion, particularly at high substrate loadings of 250-375g/L. In recycle process, hydrolysate retained a significant portion of the limiting enzyme α-galactosidase to accelerate carbohydrate monomerization rate. At single-pass retention time of 6h and recycle rate of 62.5%, reducing sugar concentration reached up to 120g/L using 4ml/g enzyme. When compared with batch and fed-batch processes, the recycle process increased the volumetric productivity of reducing sugar by 36% (vs. fed-batch) to 57% (vs. batch) and that of protein product by 280% (vs. fed-batch) to 300% (vs. batch). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Estimation of fundamental kinetic parameters of polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization.

    PubMed

    Gahlawat, Geeta; Srivastava, Ashok K

    2012-11-01

    Polyhydroxybutyrate or PHB is a biodegradable and biocompatible thermoplastic with many interesting applications in medicine, food packaging, and tissue engineering materials. The present study deals with the enhanced production of PHB by Azohydromonas australica using sucrose and the estimation of fundamental kinetic parameters of PHB fermentation process. The preliminary culture growth inhibition studies were followed by statistical optimization of medium recipe using response surface methodology to increase the PHB production. Later on batch cultivation in a 7-L bioreactor was attempted using optimum concentration of medium components (process variables) obtained from statistical design to identify the batch growth and product kinetics parameters of PHB fermentation. A. australica exhibited a maximum biomass and PHB concentration of 8.71 and 6.24 g/L, respectively in bioreactor with an overall PHB production rate of 0.75 g/h. Bioreactor cultivation studies demonstrated that the specific biomass and PHB yield on sucrose was 0.37 and 0.29 g/g, respectively. The kinetic parameters obtained in the present investigation would be used in the development of a batch kinetic mathematical model for PHB production which will serve as launching pad for further process optimization studies, e.g., design of several bioreactor cultivation strategies to further enhance the biopolymer production.

  12. Fed-batch hydrolysate addition and cell separation by settling in high cell density lignocellulosic ethanol fermentations on AFEX™ corn stover in the Rapid Bioconversion with Integrated recycling Technology process.

    PubMed

    Sarks, Cory; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2017-09-01

    The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.

  13. 40 CFR Table 4 to Subpart Cccc of... - Continuous Compliance With Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock... the applicable maximum concentration. 2. Each fed-batch fermenter producing yeast in a fermentation...

  14. 40 CFR Table 3 to Subpart Cccc of... - Initial Compliance With Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... demonstrated initial compliance if . . . 1. Each fed-batch fermenter producing yeast in a fermentation stage... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock...

  15. Effects of inoculation of commercial starter cultures on the quality and histamine accumulation in fermented sausages.

    PubMed

    Wang, Xinhui; Ren, Hongyang; Wang, Wei; Zhang, Yin; Bai, Ting; Li, Junxia; Zhu, Wenyou

    2015-02-01

    To meet the requirements of high-quality safe products, starter cultures are used to produce fermented sausages. The effects of 3 commercial starter cultures, namely SM-194, T-SPX, and SM-181, on histamine accumulation and quality parameters including microbial quality, pH, water activity, and total volatile base nitrogen, as well as the color and texture properties, were evaluated during the fermentation and ripening of fermented sausages. Although initial counts of Escherichia coli, Enterobacteriaceae, and Pseudomonas were similar in the 4 batches, the growth of these microorganisms was significantly inhibited (P < 0.05) in batches SM-194, T-SPX, and SM-181 throughout the fermentation and ripening period. The counts of E. coli, Enterobacteriaceae, and Pseudomonas increased to maximum levels of 3.89, 4.41, and 5.15 log10 colony forming units/g in the control sausages, respectively. At the end of ripening, the levels of histamine were 8.85, 0.32, 7.82, and 3.18 mg/kg for batches C, SM-194, T-SPX, and SM-181, respectively. The results revealed that commercial starter cultures, particularly starter cultures SM-194 and SM-181, made a great contribution to histamine reduction. In addition, batches inoculated with starter cultures showed a stronger acidification and lower level of total volatile base nitrogen than the control sample during production (P < 0.05). In conclusion, it seems that the inoculation of commercial starter cultures, particularly starter cultures SM-194 and SM-181, contributes to improving microbial quality, hygienic quality and food safety of fermented sausages. © 2015 Institute of Food Technologists®

  16. Study on Molasses Concentration from Sugarcanne Bagasse for Biohydrogen Production using Enriched Granular Activated Carbon (GAC) Immobilised Cells by Repeated Batch Cultivation

    NASA Astrophysics Data System (ADS)

    Idris, Norfatiha; Aminah Lutpi, Nabilah; Ruhaizul Che Ridzuan, Che Mohd; Shian, Wong Yee; Nuraiti Tengku Izhar, Tengku

    2018-03-01

    Repeated batch cultivation is known as most attractive method in improving hydrogen productivity, due to the facts that this approach could minimize the reuse of the cell and the inoculum preparation. In addition, with the combination of attach growth system during the fermentation processes to produce biohydrogen, the density of cells will be increased and the cell washout could be avoided. Therefore, this study aimed to examine the effectiveness of repeated batch cultivation for enrichment of anaerobic mixed culture onto granular activated carbon (GAC) and investigate the effect of molasses concentration during immobilization of mixed culture onto the GAC. The molasses concentration using 50 %, 40 %, 30 %, 20 % and 10 % of diluted molasses were used as feedstock in the fermentation process. The maximum hydrogen production of 60 ml was obtained at 30 % of molasses concentration with 831 ppm of hydrogen concentration. Thus, the kinetic parameter obtained from the batch profiling based on modified Gompertz equation are, Hm= 58 ml for the maximum hydrogen production and Rm= 2.02 ml/h representing the hydrogen production rate.

  17. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes.

    PubMed

    Tomás-Pejó, E; Ballesteros, M; Oliva, J M; Olsson, L

    2010-11-01

    An efficient fermenting microorganism for bioethanol production from lignocellulose is highly tolerant to the inhibitors released during pretreatment and is able to ferment efficiently both glucose and xylose. In this study, directed evolution was employed to improve the xylose fermenting Saccharomyces cerevisiae F12 strain for bioethanol production at high substrate loading. Adapted and parental strains were compared with respect to xylose consumption and ethanol production. Adaptation led to an evolved strain more tolerant to the toxic compounds present in the medium. When using concentrated prehydrolysate from steam-pretreated wheat straw with high inhibitor concentration, an improvement of 65 and 20% in xylose consumption and final ethanol concentration, respectively, were achieved using the adapted strain. To address the need of high substrate loadings, fed-batch SSF experiments were performed and an ethanol concentration as high as 27.4 g/l (61% of the theoretical) was obtained with 11.25% (w/w) of water insoluble solids (WIS).

  18. High bioethanol titre from Manihot glaziovii through fed-batch simultaneous saccharification and fermentation in Automatic Gas Potential Test System.

    PubMed

    Moshi, Anselm P; Crespo, Carla F; Badshah, Malik; Hosea, Kenneth M M; Mshandete, Anthony Manoni; Mattiasson, Bo

    2014-03-01

    A process for the production of high bioethanol titre was established through fed-batch and simultaneous saccharification and fermentation (FB-SSF) of wild, non-edible cassava Manihot glaziovii. FB-SSF allowed fermentation of up to 390g/L of starch-derived glucose achieving high bioethanol concentration of up to 190g/L (24% v/v) with yields of around 94% of the theoretical value. The wild cassava M. glaziovii starch is hydrolysable with a low dosage of amylolytic enzymes (0.1-0.15% v/w, Termamyl® and AMG®). The Automatic Gas Potential Test System (AMPTS) was adapted to yeast ethanol fermentation and demonstrated to be an accurate, reliable and flexible device for studying the kinetics of yeast in SSF and FB-SSF. The bioethanol derived stoichiometrically from the CO2 registered in the AMPTS software correlated positively with samples analysed by HPLC (R(2)=0.99). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1.

    PubMed

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-04-01

    Thin stillage (TS) is a waste residue that remains after bioethanol production, and its disposal reflects the high costs of bioethanol production. Thus, the development of cost-effective ways to process TS is a pending issue in bioethanol plants. The aim of this study was to evaluate the utilization of TS for the production of the valuable chemical, 1,3-propanediol (1,3-PDO), by Lactobacillus panis PM1. Different fermentation parameters, including temperature, pH and strains [wild-type and a recombinant strain expressing a NADPH-dependent aldehyde reductase (YqhD) gene] were tested in batch and fed-batch cultivations. The highest 1,3-PDO concentration (12.85 g/L) and yield (0.84 g/g) were achieved by batch fermentation at pH-4.5/30 °C by the YqhD recombinant strain. Furthermore, pH-controlled batch fermentation reduced the total fermentation period, resulting in the maximal 1,3-PDO concentration of 16.23 g/L and yield of 0.72 g/g in TS without an expensive nutrient or nitrogen (e.g., yeast extract, beef extract, and peptone) supplementation. The addition of two trace elements, Mg(2+) and Mn(2+), in TS increased 1,3-PDO yield (0.74 g/g) without 3-hydroxypropionaldehyde production, the only intermediate of 1,3-PDO biosynthetic pathway in L. panis PM1. Our results suggest that L. panis PM1 can offer a cost-effective process that utilizes the TS to produce a value-added chemical, 1,3-PDO.

  20. Bioprocess Intensification of Beer Fermentation Using Immobilised Cells

    NASA Astrophysics Data System (ADS)

    Verbelen, Pieter J.; Nedović, Viktor A.; Manojlović, Verica; Delvaux, Freddy R.; Laskošek-Čukalović, Ida; Bugarski, Branko; Willaert, Ronnie

    Beer production with immobilised yeast has been the subject of research for approximately 30 years but has so far found limited application in the brewing industry, due to engineering problems, unrealised cost advantages, microbial contaminations and an unbalanced beer flavor (Linko et al. 1998; Brányik et al. 2005; Willaert and Nedović 2006). The ultimate aim of this research is the production of beer of desired quality within 1-3 days. Traditional beer fermentation systems use freely suspended yeast cells to ferment wort in an unstirred batch reactor. The primary fermentation takes approximately 7 days with a subsequent secondary fermentation (maturation) of several weeks. A batch culture system employing immobilization could benefit from an increased rate of fermentation. However, it appears that in terms of increasing productivity, a continuous fermentation system with immobilization would be the best method (Verbelen et al. 2006). An important issue of the research area is whether beer can be produced by immobilised yeast in continuous culture with the same characteristic as the traditional method.

  1. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process.

    PubMed

    Jin, Huaiping; Chen, Xiangguang; Yang, Jianwen; Wu, Lei; Wang, Li

    2014-11-01

    The lack of accurate process models and reliable online sensors for substrate measurements poses significant challenges for controlling substrate feeding accurately, automatically and optimally in fed-batch fermentation industries. It is still a common practice to regulate the feeding rate based upon manual operations. To address this issue, a hybrid intelligent control method is proposed to enable automatic substrate feeding. The resulting control system consists of three modules: a presetting module for providing initial set-points; a predictive module for estimating substrate concentration online based on a new time interval-varying soft sensing algorithm; and a feedback compensator using expert rules. The effectiveness of the proposed approach is demonstrated through its successful applications to the industrial fed-batch chlortetracycline fermentation process. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Modeling and experimental studies on intermittent starch feeding and citrate addition in simultaneous saccharification and fermentation of starch to flavor compounds.

    PubMed

    Chavan, Abhijit R; Raghunathan, Anuradha; Venkatesh, K V

    2009-04-01

    Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process.

  3. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam.

    PubMed

    Yu, Bin; Zhang, Xin; Sun, Wenjun; Xi, Xun; Zhao, Nan; Huang, Zichun; Ying, Zhuojun; Liu, Li; Liu, Dong; Niu, Huanqing; Wu, Jinglan; Zhuang, Wei; Zhu, Chenjie; Chen, Yong; Ying, Hanjie

    2018-06-20

    The efficiency of current methods for industrial production of citric acid is limited. To achieve continuous citric acid production with enhanced yield and reduced cost, immobilized fermentation was employed in an Aspergillus niger 831 repeated fed-batch fermentation system. We developed a new type of material (PAF201), which was used as a carrier for the novel adsorption immobilization system. Hydrophobicity, pore size and concentration of carriers were researched in A. niger immobilization. The efficiency of the A. niger immobilization process was analyzed by scanning electron microscopy. Then eight-cycle repeated fed-batch cultures for citric acid production were carried out over 600 h, which showed stable production with maximum citric acid concentrations and productivity levels of 162.7 g/L and 2.26 g L -1  h -1 , respectively. Compared with some other literatures about citric acid yield, PAF201 immobilization system is 11.3% higher than previous results. These results indicated that use of the new adsorption immobilization system could greatly improve citric acid productivity in repeated fed-batch fermentation. Moreover, these results could provide a guideline for A.niger or other filamentous fungi immobilization in industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Butanol production by fermentation: efficient bioreactors

    USDA-ARS?s Scientific Manuscript database

    Energy security, environmental concerns, and business opportunities in the emerging bio-economy have generated strong interest in the production of n-butanol by fermentation. Acetone butanol ethanol (ABE or solvent) batch fermentation process is product limiting because butanol even at low concentra...

  5. 40 CFR Table 4 to Subpart Cccc of... - Continuous Compliance With Emission Limitations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 4 Table 4 to Subpart CCCC of Part 63—Continuous Compliance With... fermenter producing yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third... the applicable maximum concentration. 2. Each fed-batch fermenter producing yeast in a fermentation...

  6. 40 CFR Table 4 to Subpart Cccc of... - Continuous Compliance With Emission Limitations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 4 Table 4 to Subpart CCCC of Part 63—Continuous Compliance With... fermenter producing yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third... the applicable maximum concentration. 2. Each fed-batch fermenter producing yeast in a fermentation...

  7. 40 CFR Table 4 to Subpart Cccc of... - Continuous Compliance With Emission Limitations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 4 Table 4 to Subpart CCCC of Part 63—Continuous Compliance With... fermenter producing yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third... the applicable maximum concentration. 2. Each fed-batch fermenter producing yeast in a fermentation...

  8. Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation

    USDA-ARS?s Scientific Manuscript database

    In this study, plants (14) and essential oils (EO; 88) from plants that are naturalized to, or can be successfully grown in North America were evaluated in a batch culture in vitro screening experiments with ruminal fluid as potential anti-methanogenic additives for ruminant diets. Essential oils we...

  9. Consumer attitude towards sodium reduction in meat products and acceptability of fermented sausages with reduced sodium content.

    PubMed

    Guàrdia, M D; Guerrero, L; Gelabert, J; Gou, P; Arnau, J

    2006-07-01

    Lowering salt content in meat products is possible from a technological and sensorial point of view, although little information is available about the consumers' attitude and acceptance of these products. Attitude towards low salt meat products, following the Theory of Planned Behaviour (TPB) proposed by Ajzen, was evaluated by 392 consumers. Acceptability of small calibre fermented sausages with 50% molar substitution of NaCl by six different mixtures of KCl (0-50%) and K-lactate (0-50%) and the control (22g NaCl/kg) was determined by 98 consumers. The preference of the previous best two treatments was compared to the batch control by 279 consumers. In general consumers had a positive attitude towards low salt meat products, being higher for women than for men. Women showed stronger ideas and higher Perceived Control on the Behaviour towards reduced sodium meat products than men. Smokers showed lower intense beliefs than non-smokers. Consumers with a basic level of education were more affected by what other people important for them thought they should do. The final model obtained using the Theory of Planned Behaviour showed a good predictive capacity (R(2)=0.60) and a good internal consistency. Regarding the acceptability study, batches with substitution levels of 50% and 40% by K-lactate, showed lower overall acceptance than the control batch. Significant differences in acceptability were found regarding the gender and place of residence of the consumers. The preference study showed no differences between the batch control and batches with 50% KCl and 40% KCl + 10% of K-lactate substitution levels. According to these results and from a sensorial point of view, it is possible to reduce NaCl content in small calibre fermented sausages by 50% and obtain a product acceptable for consumers.

  10. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae.

    PubMed

    Meneghin, Maria Cristina; Bassi, Ana Paula Guarnieri; Codato, Carolina Brito; Reis, Vanda Renata; Ceccato-Antonini, Sandra Regina

    2013-08-01

    Dekkera bruxellensis is a multifaceted yeast present in the fermentative processes used for alcoholic beverage and fuel alcohol production - in the latter, normally regarded as a contaminant. We evaluated the fermentation and growth performance of a strain isolated from water in an alcohol-producing unit, in batch systems with/without cell recycling in pure and co-cultures with Saccharomyces cerevisiae. The ethanol resistance and aeration dependence for ethanol/acid production were verified. Ethanol had an effect on the growth of D. bruxellensis in that it lowered or inhibited growth depending on the concentration. Acid production was verified in agitated cultures either with glucose or sucrose, but more ethanol was produced with glucose in agitated cultures. Regardless of the batch system, low sugar consumption and alcohol production and expressive growth were found with D. bruxellensis. Despite a similar ethanol yield compared to S. cerevisiae in the batch system without cell recycling, ethanol productivity was approximately four times lower. However, with cell recycling, ethanol yield was almost half that of S. cerevisiae. At initial low cell counts of D. bruxellensis (10 and 1000 cells/ml) in co-cultures with S. cerevisiae, a decrease in fermentative efficiency and a substantial growth throughout the fermentative cycles were displayed by D. bruxellensis. Due to the peculiarity of cell repitching in Brazilian fermentation processes, D. bruxellensis is able to establish itself in the process, even when present in low numbers initially, substantially impairing bioethanol production due to the low ethanol productivity, in spite of comparable ethanol yields. Copyright © 2013 John Wiley & Sons, Ltd.

  11. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production.

    PubMed

    Park, Jong Myoung; Song, Hyohak; Lee, Hee Jong; Seung, Doyoung

    2013-09-01

    Klebsiella oxytoca naturally produces a large amount of 2,3-butanediol (2,3-BD), a promising bulk chemical with wide industrial applications, along with various byproducts. In this study, the in silico gene knockout simulation of K. oxytoca was carried out for 2,3-BD overproduction by inhibiting the formation of byproducts. The knockouts of ldhA and pflB genes were targeted with the criteria of maximization of 2,3-BD production and minimization of byproducts formation. The constructed K. oxytoca ΔldhA ΔpflB strain showed higher 2,3-BD yields and higher final concentrations than those obtained from the wild-type and ΔldhA strains. However, the simultaneous deletion of both genes caused about a 50 % reduction in 2,3-BD productivity compared with K. oxytoca ΔldhA strain. Based on previous studies and in silico investigation that the agitation speed during 2,3-BD fermentation strongly affected cell growth and 2,3-BD synthesis, the effect of agitation speed on 2,3-BD production was investigated from 150 to 450 rpm in 5-L bioreactors containing 3-L culture media. The highest 2,3-BD productivity (2.7 g/L/h) was obtained at 450 rpm in batch fermentation. Considering the inhibition of acetoin for 2,3-BD production, fed-batch fermentations were performed using K. oxytoca ΔldhA ΔpflB strain to enhance 2,3-BD production. Altering the agitation speed from 450 to 350 rpm at nearly 10 g/L of acetoin during the fed-batch fermentation allowed for the production of 113 g/L 2,3-BD, with a yield of 0.45 g/g, and for the production of 2.1 g/L/h of 2,3-BD.

  12. Genetically engineered Escherichia coli FBR5: Part II. Ethanol production from xylose and simultaneous product recovery

    USDA-ARS?s Scientific Manuscript database

    In these studies concentrated xylose solution was fermented to ethanol employing Escherichia coli FBR5 which can ferment both lignocellulosic sugars (hexoses and pentoses). E. coli FBR5 can produce 40-50 gL-1 ethanol from 100 gL-1 xylose in batch reactors. Increasing sugar concentration beyond this...

  13. Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers.

    PubMed

    Zhao, Xuebing; Dong, Lei; Chen, Liang; Liu, Dehua

    2013-05-01

    Formiline pretreatment pertains to a biomass fractionation process. In the present work, Formiline-pretreated sugarcane bagasse was hydrolyzed with cellulases by batch and multi-step fed-batch processes at 20% solid loading. For wet pulp, after 144 h incubation with cellulase loading of 10 FPU/g dry solid, fed-batch process obtained ~150 g/L glucose and ~80% glucan conversion, while batch process obtained ~130 g/L glucose with corresponding ~70% glucan conversion. Solid loading could be further increased to 30% for the acetone-dried pulp. By fed-batch hydrolysis of the dried pulp in pH 4.8 buffer solution, glucose concentration could be 247.3±1.6 g/L with corresponding 86.1±0.6% glucan conversion. The enzymatic hydrolyzates could be well converted to ethanol by a subsequent fermentation using Saccharomices cerevisiae with ethanol titer of 60-70 g/L. Batch and fed-batch SSF indicated that Formiline-pretreated substrate showed excellent fermentability. The final ethanol concentration was 80 g/L with corresponding 82.7% of theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    PubMed Central

    Maas, Ronald H. W.; Bakker, Robert R.; Jansen, Mickel L. A.; Visser, Diana; de Jong, Ed; Eggink, Gerrit

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314. Decrease in pH because of lactic acid formation was partially adjusted by automatic addition of the alkaline substrate. After 55 h of incubation, the polymeric glucan, xylan, and arabinan present in the lime-treated straw were hydrolyzed for 55%, 75%, and 80%, respectively. Lactic acid (40.7 g/l) indicated a fermentation efficiency of 81% and a chiral l(+)-lactic acid purity of 97.2%. In total, 711 g lactic acid was produced out of 2,706 g lime-treated straw, representing 43% of the overall theoretical maximum yield. Approximately half of the lactic acid produced was neutralized by fed-batch feeding of lime-treated straw, whereas the remaining half was neutralized during the batch phase with a Ca(OH)2 suspension. Of the lime added during the pretreatment of straw, 61% was used for the neutralization of lactic acid. This is the first demonstration of a process having a combined alkaline pretreatment of lignocellulosic biomass and pH control in fermentation resulting in a significant saving of lime consumption and avoiding the necessity to recycle lime. PMID:18247027

  15. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation.

    PubMed

    Reis, Vanda Renata; Bassi, Ana Paula Guarnieri; da Silva, Jessica Carolina Gomes; Ceccato-Antonini, Sandra Regina

    2013-12-01

    Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains ("52"--rough and "PE-02"--smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.

  16. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation

    PubMed Central

    Reis, Vanda Renata; Bassi, Ana Paula Guarnieri; da Silva, Jessica Carolina Gomes; Ceccato-Antonini, Sandra Regina

    2013-01-01

    Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains (“52” - rough and “PE-02” - smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone. PMID:24688501

  17. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    PubMed

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  18. Stress fermentation strategies for the production of hyperthermostable superoxide dismutase from Thermus thermophilus HB27: effects of ions.

    PubMed

    Zhu, Hu; Liu, Jianguo; Qu, Jianbo; Gao, Xinliang; Pan, Tao; Cui, Zhanfeng; Zhao, Xiubo; Lu, Jian R

    2013-11-01

    In this study, we explored how ammonium and metal ion stresses affected the production of recombinant hyperthermostable manganese superoxide dismutase (Mn-SOD). To improve Mn-SOD production, fed-batch culture in shake flasks and bioreactor fermentation were undertaken to examine the effects of [Formula: see text] and Mn(2+) feeding. Under the optimized feeding time and concentrations of [Formula: see text] and Mn(2+), the maximal SOD activity obtained from bioreactor fermentation reached some 480 U/ml, over 4 times higher than that in batch cultivation (113 U/ml), indicating a major enhancement of the concentration of Mn-SOD in the scale-up of hyperthermostable Mn-SOD production. In contrast, when the fed-batch culture with appropriate [Formula: see text] and Mn(2+) feeding was carried out in the same 5-L stirred tank bioreactor, a maximal SOD concentration of some 450 U/ml was obtained, again indicating substantial increase in SOD activity as a result of [Formula: see text] and Mn(2+) feeding. The isoelectric point (pI) of the sample was found to be 6.2. It was highly stable at 90 °C and circular dichroism measurements indicated a high α-helical content of 70 % as well, consistent with known SOD properties. This study indicates that [Formula: see text] and Mn(2+) play important roles in Mn-SOD expression. Stress fermentation strategies established in this study are useful for large-scale efficient production of hyperthermostable Mn-SOD and may also be valuable for the scale-up of other extremozymes.

  19. Modelling and properties of a nonlinear autonomous switching system in fed-batch culture of glycerol

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Sun, Qingying; Feng, Enmin

    2012-11-01

    A nonlinear autonomous switching system is proposed to describe the coupled fed-batch fermentation with the pH as the feedback parameter. We prove the non-Zeno behaviors of the switching system and some basic properties of its solution, including the existence, uniqueness, boundedness and regularity. Numerical simulation is also carried out, which reveals that the proposed system can describe the factual fermentation process properly.

  20. Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping.

    PubMed

    Ezeji, Thaddeus C; Qureshi, Nasib; Blaschek, Hans P

    2007-12-01

    A potential industrial substrate (liquefied corn starch; LCS) has been employed for successful acetone butanol ethanol (ABE) production. Fermentation of LCS (60 g l(-1)) in a batch process resulted in the production of 18.4 g l(-1) ABE, comparable to glucose: yeast extract based medium (control experiment, 18.6 g l(-1) ABE). A batch fermentation of LCS integrated with product recovery resulted in 92% utilization of sugars present in the feed. When ABE was recovered by gas stripping (to relieve inhibition) from the fed-batch reactor fed with saccharified liquefied cornstarch (SLCS), 81.3 g l(-1) ABE was produced compared to 18.6 g l(-1) (control). In this integrated system, 225.8 g l(-1) SLCS sugar (487 % of control) was consumed. In the absence of product removal, it is not possible for C. beijerinckii BA101 to utilize more than 46 g l(-1) glucose. A combination of fermentation of this novel substrate (LCS) to butanol together with product recovery by gas stripping may economically benefit this fermentation.

  1. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.

    PubMed

    Choi, Jeongdong; Ahn, Youngho

    2015-05-01

    Microbial fuel cells (MFCs) treating the food waste leachate produced from biohydrogen fermentation were examined to enhance power generation and energy recovery. In batch mode, the maximum voltage production was 0.56 V and the power density reached 1540 mW/m(2). The maximum Coulombic efficiency (CEmax) and energy efficiency (EE) in the batch mode were calculated to be 88.8% and 18.8%, respectively. When the organic loading rate in sequencing batch mode varied from 0.75 to 6.2 g COD/L-d (under CEmax), the maximum power density reached 769.2 mW/m(2) in OLR of 3.1 g COD/L-d, whereas higher energy recovery (CE=52.6%, 0.346 Wh/g CODrem) was achieved at 1.51 g COD/L-d. The results demonstrate that readily biodegradable substrates in biohydrogen fermentation can be effectively used for the enhanced bioelectricity harvesting of MFCs and a MFC coupled with biohydrogen fermentation is of great benefit on higher electricity generation and energy efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-06-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.

  3. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    PubMed Central

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 ± 0.06, 1.0 ± 0.13 and 0.4 ± 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation. PMID:24920064

  4. Modified ADM1 for modeling free ammonia inhibition in anaerobic acidogenic fermentation with high-solid sludge.

    PubMed

    Bai, Jie; Liu, He; Yin, Bo; Ma, Huijun; Chen, Xinchun

    2017-02-01

    Anaerobic acidogenic fermentation with high-solid sludge is a promising method for volatile fatty acid (VFA) production to realize resource recovery. In this study, to model inhibition by free ammonia in high-solid sludge fermentation, the anaerobic digestion model No. 1 (ADM1) was modified to simulate the VFA generation in batch, semi-continuous and full scale sludge. The ADM1 was operated on the platform AQUASIM 2.0. Three kinds of inhibition forms, e.g., simple inhibition, Monod and non-inhibition forms, were integrated into the ADM1 and tested with the real experimental data for batch and semi-continuous fermentation, respectively. The improved particle swarm optimization technique was used for kinetic parameter estimation using the software MATLAB 7.0. In the modified ADM1, the K s of acetate is 0.025, the k m,ac is 12.51, and the K I_NH3 is 0.02, respectively. The results showed that the simple inhibition model could simulate the VFA generation accurately while the Monod model was the better inhibition kinetics form in semi-continuous fermentation at pH10.0. Finally, the modified ADM1 could successfully describe the VFA generation and ammonia accumulation in a 30m 3 full-scale sludge fermentation reactor, indicating that the developed model can be applicable in high-solid sludge anaerobic fermentation. Copyright © 2016. Published by Elsevier B.V.

  5. Favouring butyrate production for a new generation biofuel by acidogenic glucose fermentation using cells immobilised on γ-alumina.

    PubMed

    Syngiridis, Kostas; Bekatorou, Argyro; Kandylis, Panagiotis; Larroche, Christian; Kanellaki, Maria; Koutinas, Athanasios A

    2014-06-01

    The effect of γ-alumina as a fermentation advancing tool and as carrier for culture immobilisation, regarding VFAs and ethanol production during acidogenic fermentation of glucose, was examined at various process conditions (sugar concentration, pH) and operation modes (continuous with and without effluent recirculation and batch). The results showed that at high initial pH (8.9) the continuous acidogenic fermentation of glucose led to high yields of VFAs and favoured the accumulation of butyric acid. The batch process on the other hand at pH 6.5, favoured the ethanol-type fermentation. The results indicate that in the frame of technology development for new generation biofuels, using γ-alumina as a process advancing tool at optimum process conditions (pH, initial glucose concentration and mode of operation), the produced VFAs profile and ethanol concentration may be manipulated. Copyright © 2014. Published by Elsevier Ltd.

  6. Stochastic growth logistic model with aftereffect for batch fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  7. Stochastic growth logistic model with aftereffect for batch fermentation process

    NASA Astrophysics Data System (ADS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  8. 40 CFR 63.2132 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., but is not limited to, fermentation vessels (fermenters). The collection of equipment used in the... fermentation stages in a production run, which may be referred to as “stock, first generation, and trade... subpart do not apply to flask, pure-culture, yeasting-tank, or any other set-batch fermentation, and they...

  9. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Ng, Chiam Yu; Song, Hyohak; Lee, Jinwon; Oh, Min-Kyu

    2012-07-01

    2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.

  10. Research on On-Line Modeling of Fed-Batch Fermentation Process Based on v-SVR

    NASA Astrophysics Data System (ADS)

    Ma, Yongjun

    The fermentation process is very complex and non-linear, many parameters are not easy to measure directly on line, soft sensor modeling is a good solution. This paper introduces v-support vector regression (v-SVR) for soft sensor modeling of fed-batch fermentation process. v-SVR is a novel type of learning machine. It can control the accuracy of fitness and prediction error by adjusting the parameter v. An on-line training algorithm is discussed in detail to reduce the training complexity of v-SVR. The experimental results show that v-SVR has low error rate and better generalization with appropriate v.

  11. High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei.

    PubMed

    Petrov, Kaloyan; Popova, Luiza; Petrova, Penka

    2017-06-01

    Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn 2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn 2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn 2+ -151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn 2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn 2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.

  12. Analysis of microbiota involved in the aged natural fermentation of indigo.

    PubMed

    Okamoto, Takahiro; Aino, Kenichi; Narihiro, Takashi; Matsuyama, Hidetoshi; Yumoto, Isao

    2017-04-01

    Although the indigo reduction process is performed via natural fermentation and maintained under open-air condition, the indigo-reducing reactions continue for 6 months (on average) or longer. Identifying the mechanism underlying the maintenance of this process could lead to the development of a novel, long-lasting, unsterilized bioprocesses. To determine the mechanisms underlying the maintenance of the indigo fermentation system microbiota for more than 6 months in a reduced state in an anaerobic alkaline environment, we examined changes in the microbiota in one early-phase batch and two aged batches of indigo fermentation fluid. The microbiota in the aged fermentation fluid consisted mainly of the genera Alkalibacterium, Amphibacillus, Anaerobacillus and Polygonibacillus and the family Proteinivoraceae. The genera Alkalibacterium, Amphibacillus and Polygonibacillus are known to include indigo-reducing bacteria. Although the transition speed was slower in the aged fermentation fluid than in the early-stage fluid, the microbiota in the aged fermentation fluid maintained for more than 6 months was drastically changed within a period of 3 months. The results of this study indicate that the bacterial consortia consisted of various indigo-reducing species that replace the previous group of indigo-reducing bacteria. The notable transitional changes may be concomitant with changes in the environmental conditions, such as the nutritional conditions, observed over 3 months. This flexibility may lead to important changes in the microbiota that allow for the maintenance of a fermentation-reducing state over a long period.

  13. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process.

    PubMed

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhang, Yuming; Su, Yi; Wan, Yinhua

    2014-10-01

    Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials.

    PubMed

    Brányik, Tomás; Silva, Daniel P; Vicente, António A; Lehnert, Radek; e Silva, João B Almeida; Dostálek, Pavel; Teixeira, José A

    2006-12-01

    Despite extensive research carried out in the last few decades, continuous beer fermentation has not yet managed to outperform the traditional batch technology. An industrial breakthrough in favour of continuous brewing using immobilized yeast could be expected only on achievement of the following process characteristics: simple design, low investment costs, flexible operation, effective process control and good product quality. The application of cheap carrier materials of by-product origin could significantly lower the investment costs of continuous fermentation systems. This work deals with a complete continuous beer fermentation system consisting of a main fermentation reactor (gas-lift) and a maturation reactor (packed-bed) containing yeast immobilized on spent grains and corncobs, respectively. The suitability of cheap carrier materials for long-term continuous brewing was proved. It was found that by fine tuning of process parameters (residence time, aeration) it was possible to adjust the flavour profile of the final product. Consumers considered the continuously fermented beer to be of a regular quality. Analytical and sensorial profiles of both continuously and batch fermented beers were compared.

  15. Towards the Integration of Dark- and Photo-Fermentative Waste Treatment. 4. Repeated Batch Sequential Dark- and Photofermentation using Starch as Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurinavichene, T. V.; Belokopytov, B. F.; Laurinavichius, K. S.

    In this study we demonstrated the technical feasibility of a prolonged, sequential two-stage integrated process under a repeated batch mode of starch fermentation. In this durable scheme, the photobioreactor with purple bacteria in the second stage was fed directly with dark culture from the first stage without centrifugation, filtration, or sterilization (not demonstrated previously). After preliminary optimization, both the dark- and the photo-stages were performed under repeated batch modes with different process parameters. Continuous H{sub 2} production in this system was observed at a H{sub 2} yield of up to 1.4 and 3.9 mole mole{sup -1} hexose during the dark-more » and photo-stage, respectively (for a total of 5.3 mole mole{sup -1} hexose), and rates of 0.9 and 0.5 L L{sup -1} d{sup -1}, respectively. Prolonged repeated batch H{sub 2} production was maintained for up to 90 days in each stage and was rather stable under non-aseptic conditions. Potential for improvements in these results are discussed.« less

  16. Bacteriocin Production with Lactobacillus amylovorus DCE 471 Is Improved and Stabilized by Fed-Batch Fermentation

    PubMed Central

    Callewaert, Raf; De Vuyst, Luc

    2000-01-01

    Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source. PMID:10653724

  17. Semi-industrial scale (30 m3) fed-batch fermentation for the production of D-lactate by Escherichia coli strain HBUT-D15.

    PubMed

    Fu, Xiangmin; Wang, Yongze; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde

    2017-02-01

    D(-)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale D-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L -1 of glucose, producing 184-191 g L -1 of D-lactic acid, with a volumetric productivity of 4.38 g L -1  h -1 , a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m 3 ) via fed-batch fermentation with up to 160 g L -1 of glucose, producing 146-150 g L -1 of D-lactic acid, with a volumetric productivity of 3.95-4.29 g L -1  h -1 , a yield of 91-94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale L(+)-lactic acid fermentation.

  18. Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis.

    PubMed

    Nakanishi, Simone C; Soares, Lauren B; Biazi, Luiz Eduardo; Nascimento, Viviane M; Costa, Aline C; Rocha, George Jackson M; Ienczak, Jaciane L

    2017-10-01

    Alcoholic fermentation of released sugars in pretreatment and enzymatic hydrolysis of biomass is a central feature for second generation ethanol (E2G) production. Saccharomyces cerevisiae used industrially in the production of first generation ethanol (E1G) convert sucrose, fructose, and glucose into ethanol. However, these yeasts have no ability to ferment pentose (xylose). Therefore, the present work has focused on E2G production by Scheffersomyces stipitis and Spathaspora passalidarum. The fermentation strategy with high pitch, cell recycle, fed-batch mode, and temperature decrease for each batch were performed in a hydrolyzate obtained from a pretreatment at 130°C with NaOH solution (1.5% w/v) added with 0.15% (w/w) of anthraquinone (AQ) and followed by enzymatic hydrolysis. The process strategy has increased volumetric productivity from 0.35 to 0.38 g · L -1  · h -1 (first to third batch) for S. stipitis and from 0.38 to 0.81 g · L -1  · h -1 for S. passalidarum (first to fourth batch). Mass balance for the process proposed in this work showed the production of 177.33 kg ethanol/ton of sugar cane bagasse for S. passalidarum compared to 124.13 kg ethanol/ton of sugar cane bagasse for S. stipitis fermentation. The strategy proposed in this work can be considered as a promising strategy in the production of second generation ethanol. Biotechnol. Bioeng. 2017;114: 2211-2221. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Environmentally Friendly Production of D(-) Lactic Acid by Sporolactobacillus nakayamae: Investigation of Fermentation Parameters and Fed-Batch Strategies.

    PubMed

    Michelz Beitel, Susan; Fontes Coelho, Luciana; Sass, Daiane Cristina; Contiero, Jonas

    2017-01-01

    The interest in the production of lactic acid has increased due to its wide range of applications. In the present study, the variables that affect fermentative D(-) lactic acid production were investigated: neutralizing agents, pH, temperature, inoculum percentage, agitation, and concentration of the medium components. An experimental design was applied to determine the optimal concentrations of the medium components and fermentation was studied using different feeding strategies. High production (122.41 g/L) and productivity (3.65 g/L·h) were efficiently achieved by Sporolactobacillus nakayamae in 54 h using a multipulse fed-batch technique with an initial medium containing 35 g/L of yeast extract (byproduct of alcohol production), 60 g/L of crystallized sugar, and 7.5 mL/L of salts. The fermentation process was conducted at 35°C and pH 6.0 controlled by NaOH with a 20% volume of inoculum and agitation at 125 rpm. The production of a high optically pure concentration of D(-) lactic acid combined with an environmentally friendly NaOH-based process demonstrates that S. nakayamae is a promising strain for D(-) lactic acid production.

  20. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition.

    PubMed

    Hu, Jinlong; Zhang, Zhenting; Lin, Yanxu; Zhao, Shumiao; Mei, Yuxia; Liang, Yunxiang; Peng, Nan

    2015-04-01

    Lactic acid (LA) is an important chemical with various industrial applications. Non-food feedstock is commercially attractive for use in LA production; however, efficient LA fermentation from lignocellulosic biomass resulting in both high yield and titer faces technical obstacles. In this study, the thermophilic bacterium Bacillus coagulans LA204 demonstrated considerable ability to ferment glucose, xylose, and cellobiose to LA. Importantly, LA204 produces LA from several NaOH-pretreated agro stovers, with remarkably high yields through simultaneous saccharification and fermentation (SSF). A fed-batch SSF process conducted at 50°C and pH 6.0, using a cellulase concentration of 30 FPU (filter paper unit)/g stover and 10 g/L yeast extract in a 5-L bioreactor, was developed to produce LA from 14.4% (w/w) NaOH-pretreated non-sterile corn stover. LA titer, yield, and average productivity reached 97.59 g/L, 0.68 g/g stover, and 1.63 g/L/h, respectively. This study presents a feasible process for lignocellulosic LA production from abundant agro stovers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Stimulation of electro-fermentation in single-chamber microbial electrolysis cells driven by genetically engineered anode biofilms

    NASA Astrophysics Data System (ADS)

    Awate, Bhushan; Steidl, Rebecca J.; Hamlischer, Thilo; Reguera, Gemma

    2017-07-01

    Unwanted metabolites produced during fermentations reduce titers and productivity and increase the cost of downstream purification of the targeted product. As a result, the economic feasibility of otherwise attractive fermentations is low. Using ethanol fermentation by the consolidated bioprocessing cellulolytic bacterium Cellulomonas uda, we demonstrate the effectiveness of anodic electro-fermentations at maximizing titers and productivity in a single-chamber microbial electrolysis cell (SCMEC) without the need for metabolic engineering of the fermentative microbe. The performance of the SCMEC platform relied on the genetic improvements of anode biofilms of the exoelectrogen Geobacter sulfurreducens that prevented the oxidation of cathodic hydrogen and improved lactate oxidation. Furthermore, a hybrid bioanode was designed that maximized the removal of organic acids in the fermentation broth. The targeted approach increased cellobiose consumption rates and ethanol titers, yields, and productivity three-fold or more, prevented pH imbalances and reduced batch-to-batch variability. In addition, the sugar substrate was fully consumed and ethanol was enriched in the broth during the electro-fermentation, simplifying its downstream purification. Such improvements and the possibility of scaling up SCMEC configurations highlight the potential of anodic electro-fermentations to stimulate fermentative bacteria beyond their natural capacity and to levels required for industrial implementation.

  2. Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid.

    PubMed

    Corona-González, Rosa Isela; Miramontes-Murillo, Ricardo; Arriola-Guevara, Enrique; Guatemala-Morales, Guadalupe; Toriz, Guillermo; Pelayo-Ortiz, Carlos

    2014-07-01

    The production of succinic acid was studied with entrapped and adsorbed Actinobacillus succinogenes. The adsorption of fermentation products (organic acids in the concentration range of 1-20 g/L) on different supports was evaluated. It was found that succinic acid was adsorbed in small quantities on diatomite and zeolite (12.6 mg/g support). The highest production of succinic acid was achieved with A. succinogenes entrapped in agar beads. Batch fermentations with immobilized cells were carried out with glucose concentrations ranging from 20 to 80 g/L. Succinic acid (43.4 g/L) was obtained from 78.3g/L glucose, and a high productivity (2.83 g/Lh) was obtained with a glucose concentration of 37.6g/L. For repeated batch fermentations (5 cycles in 72 h) with immobilized cells in agar, the total glucose consumed was 147.55 g/L, while the production of succinic acid was 107 g/L. Immobilized cells reduced significantly the fermentation time, yield, productivity and final concentration of succinic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient.

    PubMed

    Ma, Kedong; Maeda, Toshinari; You, Huiyan; Shirai, Yoshihito

    2014-01-01

    The development of a low-cost polymer-grade L-lactic acid production process was achieved in this study. Excess sludge hydrolyzate (ESH) was chosen as nutrient source for the objective of reducing nutrient cost in lactic acid production. 1% of ESH had high performance in lactic acid production relative to 2g/l yeast extract (YE) while the production cost of ESH was much lower than that of YE, indicating ESH was a promising substitute of YE. By employing a thermophilic strain of Bacillus coagulans (NBRC 12583), non-sterilized batch and repeated batch L-lactic acid fermentation was successfully performed, and the optical purity of L-lactic acid accumulated was more than 99%. Moreover, the factors associated with cell growth and lactic acid fermentation was investigated through a two-stage lactic acid production strategy. Oxygen played an important role in cell growth, and the optimal condition for cell growth and fermentation was pH 7.0 and 50°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Expanding a dynamic flux balance model of yeast fermentation to genome-scale

    PubMed Central

    2011-01-01

    Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Results Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. Conclusion A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations. PMID:21595919

  5. 40 CFR Table 3 to Subpart Cccc of... - Initial Compliance With Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Part... demonstrated initial compliance if . . . 1. Each fed-batch fermenter producing yeast in a fermentation stage... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock...

  6. 40 CFR Table 4 to Subpart Cccc of... - Continuous Compliance With Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Part... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock... the applicable maximum concentration. 2. Each fed-batch fermenter producing yeast in a fermentation...

  7. KINETICS OF GROWTH AND ETHANOL PRODUCTION ON DIFFERENT CARBON SUBSTRATES USING GENETICALLY ENGINEERED XYLOSE-FERMENTING YEAST

    EPA Science Inventory

    Saccharomyces cerevisiae 424A (LNH-ST) strain was used for fermentation of glucose and xylose. Growth kinetics and ethanol productivity were calculated for batch fermentation on media containing different combinations of glucose and xylose to give a final sugar concentra...

  8. Study on fermentation kinetics and extraction process of rhamnolipid production by papermaking wastewater

    NASA Astrophysics Data System (ADS)

    Yu, Keer

    2018-01-01

    Paper mill wastewater (PMW) is the outlet water generated during pulp and papermaking process in the paper industry. Fermentation by wastewater can lower the cost of production as well as alleviate the pressure of wastewater treatment. Rhamnolipids find broad placations as natural surfactants. This paper studied the rhamnolipids fermentation by employing Pseudomonas aeruginosa isolated by the laboratory, and determined to use wastewater which filtered by medium speed filter paper and strain Z2, the culture conditions were optimized, based on the flask shaking fermentation. On the basis of 5L tank fermentation, batch fermentation was carried out, the yield of fermentation reached 7.067g/L and the fermentation kinetics model of cell growth, product formation and substrate consumption was established by using origin software, and the fermentation process could be simulated well. And studied on the extraction process of rhamnolipids, through fermentation dynamic equation analysis can predict the in fill material yield can be further improved. Research on the extraction process of rhamnolipid simplifies the operation of extraction, and lays the foundation for the industrial extraction.

  9. Application of continuous substrate feeding to the ABE fermentation: Relief of product inhibition using extraction, perstraction, stripping, and pervaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, N.; Maddox, I.S.; Friedl, A.

    1992-09-01

    The technique of continuous substrate feeding has been applied to the batch fermentation process using freely suspended cells, for ABE (acetone-butanol-ethanol) production. To avoid the product inhibition which normally restricts ABE production to less than 20 g/L and sugar utilization to 60 g/L, a product removal technique has been integrated into the fermentation process. The techniques investigated were liquid-liquid extraction, perstraction, gas-stripping, and pervaporation. By using a substrate of whey permeate, the reactor productivity has been improved over that observed in a traditional batch fermentation, while equivalent lactose utilization and ABE production values of 180 g and 69 g, respectively,more » have been achieved in a 1-L culture volume. 17 refs., 14 figs., 5 tabs.« less

  10. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.

    PubMed

    Wang, F Z; Xie, T; Hui, M

    2011-01-01

    Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l(-1) of last medium. The obtained highest productivity was 2.07 g l-(1) h(-1), which was improved by 75.4% compared with that of 1.18 g l(-1) h(-1) in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g(-1). These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.

  11. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.

    PubMed

    Seong, Yeong-Je; Park, Haeseong; Yang, Jungwoo; Kim, Soo-Jung; Choi, Wonja; Kim, Kyoung Heon; Park, Yong-Cheol

    2017-05-01

    The SPT15 gene encodes a Saccharomyces cerevisiae TATA-binding protein, which is able to globally control the transcription levels of various metabolic and regulatory genes. In this study, a SPT15 gene mutant (S42N, S78R, S163P, and I212N) was expressed in S. cerevisiae BY4741 (BSPT15-M3), of which effects on fermentative yeast properties were evaluated in a series of culture types. By applying different nitrogen sources and air supply conditions in batch culture, organic nitrogen sources and microaerobic condition were decided to be more favorable for both cell growth and ethanol production of the BSPT15-M3 strain than the control S. cerevisiae BY4741 strain expressing the SPT15 gene (BSPT15wt). Microaerobic fed-batch cultures of BSPT15-M3 with glucose shock in the presence of high ethanol content resulted in a 9.5-13.4% higher glucose consumption rate and ethanol productivity than those for the BSPT15wt strain. In addition, BSPT15-M3 showed 4.5 and 3.9% increases in ethanol productivity from cassava hydrolysates and corn starch in simultaneous saccharification and fermentation processes, respectively. It was concluded that overexpression of the mutated SPT15 gene would be a potent strategy to develop robust S. cerevisiae strains with enhanced cell growth and ethanol production abilities.

  12. Lignocellulosic Fermentation of Wild Grass Employing Recombinant Hydrolytic Enzymes and Fermentative Microbes with Effective Bioethanol Recovery

    PubMed Central

    Das, Saprativ P.; Ghosh, Arabinda; Gupta, Ashutosh; Das, Debasish

    2013-01-01

    Simultaneous saccharification and fermentation (SSF) studies of steam exploded and alkali pretreated different leafy biomass were accomplished by recombinant Clostridium thermocellum hydrolytic enzymes and fermentative microbes for bioethanol production. The recombinant C. thermocellum GH5 cellulase and GH43 hemicellulase genes expressed in Escherichia coli cells were grown in repetitive batch mode, with the aim of enhancing the cell biomass production and enzyme activity. In batch mode, the cell biomass (A 600 nm) of E. coli cells and enzyme activities of GH5 cellulase and GH43 hemicellulase were 1.4 and 1.6 with 2.8 and 2.2 U·mg−1, which were augmented to 2.8 and 2.9 with 5.6 and 3.8 U·mg−1 in repetitive batch mode, respectively. Steam exploded wild grass (Achnatherum hymenoides) provided the best ethanol titres as compared to other biomasses. Mixed enzyme (GH5 cellulase, GH43 hemicellulase) mixed culture (Saccharomyces cerevisiae, Candida shehatae) system gave 2-fold higher ethanol titre than single enzyme (GH5 cellulase) single culture (Saccharomyces cerevisiae) system employing 1% (w/v) pretreated substrate. 5% (w/v) substrate gave 11.2 g·L−1 of ethanol at shake flask level which on scaling up to 2 L bioreactor resulted in 23 g·L−1 ethanol. 91.6% (v/v) ethanol was recovered by rotary evaporator with 21.2% purification efficiency. PMID:24089676

  13. Immobilized Kluyveromyces marxianus cells in carboxymethyl cellulose for production of ethanol from cheese whey: experimental and kinetic studies.

    PubMed

    Roohina, Fatemeh; Mohammadi, Maedeh; Najafpour, Ghasem D

    2016-09-01

    Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved.

  14. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, N.; Blaschek, H.P.

    1999-07-01

    A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88--68.32 and flux values of 158.7--215.4 g m{sup {minus}2} h{sup {minus}1} were achieved. Higher flux values were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation--recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, whilemore » in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2--3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol, it is suggested that distillation be used for further purification.« less

  15. Butanol productivity enhancers in wheat straw hydrolyzate: employing potential of enhanced reaction rate

    USDA-ARS?s Scientific Manuscript database

    Butanol production by fermentation is gaining momentum due to increased prices of fossil fuels. This biofuel is a major product of acetone-butanol-ethanol (ABE) fermentation that can be produced from hydrolyzed agricultural residues and/or corn. A control glucose (60 g/L) based batch fermentation us...

  16. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process.

    PubMed

    Oberoi, Harinder Singh; Vadlani, Praveen V; Saida, Lavudi; Bansal, Sunil; Hughes, Joshua D

    2011-07-01

    Dried and ground banana peel biomass (BP) after hydrothermal sterilization pretreatment was used for ethanol production using simultaneous saccharification and fermentation (SSF). Central composite design (CCD) was used to optimize concentrations of cellulase and pectinase, temperature and time for ethanol production from BP using SSF. Analysis of variance showed a high coefficient of determination (R(2)) value of 0.92 for ethanol production. On the basis of model graphs and numerical optimization, the validation was done in a laboratory batch fermenter with cellulase, pectinase, temperature and time of nine cellulase filter paper unit/gram cellulose (FPU/g-cellulose), 72 international units/gram pectin (IU/g-pectin), 37 °C and 15 h, respectively. The experiment using optimized parameters in batch fermenter not only resulted in higher ethanol concentration than the one predicted by the model equation, but also saved fermentation time. This study demonstrated that both hydrothermal pretreatment and SSF could be successfully carried out in a single vessel, and use of optimized process parameters helped achieve significant ethanol productivity, indicating commercial potential for the process. To the best of our knowledge, ethanol concentration and ethanol productivity of 28.2 g/l and 2.3 g/l/h, respectively from banana peels have not been reported to date. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Modeling and parameters identification of 2-keto-L-gulonic acid fed-batch fermentation.

    PubMed

    Wang, Tao; Sun, Jibin; Yuan, Jingqi

    2015-04-01

    This article presents a modeling approach for industrial 2-keto-L-gulonic acid (2-KGA) fed-batch fermentation by the mixed culture of Ketogulonicigenium vulgare (K. vulgare) and Bacillus megaterium (B. megaterium). A macrokinetic model of K. vulgare is constructed based on the simplified metabolic pathways. The reaction rates obtained from the macrokinetic model are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, e.g., the concentrations of the biomass, substrate and product, is constructed. A differential evolution algorithm using the Lozi map as the random number generator is utilized to perform the model parameters identification, with the industrial data of 2-KGA fed-batch fermentation. Validation results demonstrate that the model simulations of substrate and product concentrations are well in coincidence with the measurements. Furthermore, the model simulations of biomass concentrations reflect principally the growth kinetics of the two microbes in the mixed culture.

  18. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    PubMed Central

    Senedese, Ana Lívia Chemeli; Maciel Filho, Rubens; Maciel, Maria Regina Wolf

    2015-01-01

    Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid). L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses) and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v) inoculum). Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid. PMID:25922852

  19. Efficient calcium lactate production by fermentation coupled with crystallization-based in situ product removal.

    PubMed

    Xu, Ke; Xu, Ping

    2014-07-01

    Lactic acid is a platform chemical with various industrial applications, and its derivative, calcium lactate, is an important food additive. Fermentation coupled with in situ product removal (ISPR) can provide more outputs with high productivity. The method used in this study was based on calcium lactate crystallization. Three cycles of crystallization were performed during the fermentation course using a Bacillus coagulans strain H-1. As compared to fed-batch fermentation, this method showed 1.7 times higher average productivity considering seed culture, with 74.4% more L-lactic acid produced in the fermentation with ISPR. Thus, fermentation coupled with crystallization-based ISPR may be a biotechnological alternative that provides an efficient system for production of calcium lactate or lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tango, M.S.A.; Ghaly, A.E.

    1999-12-01

    A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentationmore » time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.« less

  1. Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.

    PubMed

    Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens

    2010-05-01

    Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.

  2. Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel.

    PubMed

    Varrone, C; Heggeset, T M B; Le, S B; Haugen, T; Markussen, S; Skiadas, I V; Gavala, H N

    2015-01-01

    Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia.

  3. Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene.

    PubMed

    Jiang, Ling; Wu, Qian; Xu, Qing; Zhu, Liying; Huang, He

    2017-08-11

    Clostridium tyrobutyricum ATCC25755 has been reported as being able to produce significant quantities of hydrogen. In this study, the exo-inulinase encoding gene cloned from Paenibacillus polymyxa SC-2 was into the expression plasmid pSY6 and expressed in the cells of C. tyrobutyricum. The engineered C. tyrobutyricum strain efficiently fermented the inulin-type carbohydrates from Jerusalem artichoke, without any pretreatment being necessary for the production of hydrogen. A comparatively high hydrogen yield (3.7 mol/mol inulin-type sugar) was achieved after 96 h in a batch process with simultaneous saccharification and fermentation (SSF), with an overall volumetric productivity rate of 620 ± 60 mL/h/L when the initial total sugar concentration of the inulin extract was increased to 100 g/L. Synthesis of inulinase in the batch SSF culture was closely associated with strain growth until the end of the exponential phase, reaching a maximum activity of 28.4 ± 0.26 U/mL. The overall results show that the highly productive and abundant biomass crop Jerusalem artichoke can be a good substrate for hydrogen production, and that the application of batch SSF for its conversion has the potential to become a cost-effective process in the near future.

  4. Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis.

    PubMed

    Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Sun, Xiaohong; Ren, Yuanyuan; Li, Yu-You

    2018-01-01

    This study investigates the effects of ethanol prefermentation (EP) on methane fermentation. Yeast was added to the substrate for EP in the sequencing batch methane fermentation of food waste. An Illumina MiSeq high-throughput sequencing system was used to analyze changes in the microbial community. Methane production in the EP group (254mL/g VS) was higher than in the control group (35mL/g VS) because EP not only increased the buffering capacity of the system, but also increased hydrolytic acidification. More carbon source was converted to ethanol in the EP group than in the control group, and neutral ethanol could be converted continuously to acetic acid, which promoted the growth of Methanobacterium and Methanosarcina. As a result, the relative abundance of methane-producing bacteria was significantly higher than that of the control group. Kinetic modeling indicated that the EP group had a higher hydrolysis efficiency and shorter lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: Kinetics and process economics.

    PubMed

    Wei, Peilian; Cheng, Chi; Lin, Meng; Zhou, Yipin; Yang, Shang-Tian

    2017-01-01

    Poly(β-l-malic acid) (PMA) is a biodegradable polymer with many potential biomedical applications. PMA can be readily hydrolyzed to malic acid (MA), which is widely used as an acidulant in foods and pharmaceuticals. PMA production from sucrose and sugarcane juice by Aureobasidium pullulans ZX-10 was studied in shake-flasks and bioreactors, confirming that sugarcane juice can be used as an economical substrate without any pretreatment or nutrients supplementation. A high PMA titer of 116.3g/L and yield of 0.41g/g were achieved in fed-batch fermentation. A high productivity of 0.66g/L·h was achieved in repeated-batch fermentation with cell recycle. These results compared favorably with those obtained from glucose and other biomass feedstocks. A process economic analysis showed that PMA could be produced from sugarcane juice at a cost of $1.33/kg, offering a cost-competitive bio-based PMA for industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sucrose fed-batch strategy enhanced biomass, polysaccharide, and ganoderic acids production in fermentation of Ganoderma lucidum 5.26.

    PubMed

    Wei, Zhen-hua; Liu, Lianliang; Guo, Xiao-feng; Li, Yan-jun; Hou, Bao-chao; Fan, Qiu-ling; Wang, Kai-xiang; Luo, Yingdi; Zhong, Jian-jiang

    2016-01-01

    Ganoderma, as a Chinese traditional medicine, has multiple bioactivities. However, industrial production was limited due to low yield during Ganoderma fermentation. In this work, sucrose was found to greatly enhance intracellular polysaccharide (IPS) content and specific extracellular polysaccharide (EPS) production rate. The mechanism was studied by analyzing the activities of enzymes related to polysaccharide biosynthesis. The results revealed that sucrose regulated the activities of phosphoglucomutase and phosphoglucose isomerase. When glucose and sucrose mixture was used as carbon source, biomass, polysaccharide and ganoderic acids (GAs) production was greatly enhanced. A sucrose fed-batch strategy was developed in 10-L bioreactor, and was scaled up to 300-L bioreactor. The biomass, EPS and IPS production was 25.5, 2.9 and 4.8 g/L, respectively, which was the highest biomass and IPS production in pilot scale. This study provides information for further understanding the regulation mechanism of Ganoderma polysaccharide biosynthesis. It demonstrates that sucrose fed-batch is a useful strategy for enhancing Ganoderma biomass, polysaccharide and GAs production.

  7. Production of pullulan by a thermotolerant aureobasidium pullulans strain in non-stirred fed batch fermentation process.

    PubMed

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-07-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42(o)C, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  8. Environmentally Friendly Production of D(−) Lactic Acid by Sporolactobacillus nakayamae: Investigation of Fermentation Parameters and Fed-Batch Strategies

    PubMed Central

    Michelz Beitel, Susan; Fontes Coelho, Luciana; Sass, Daiane Cristina

    2017-01-01

    The interest in the production of lactic acid has increased due to its wide range of applications. In the present study, the variables that affect fermentative D(−) lactic acid production were investigated: neutralizing agents, pH, temperature, inoculum percentage, agitation, and concentration of the medium components. An experimental design was applied to determine the optimal concentrations of the medium components and fermentation was studied using different feeding strategies. High production (122.41 g/L) and productivity (3.65 g/L·h) were efficiently achieved by Sporolactobacillus nakayamae in 54 h using a multipulse fed-batch technique with an initial medium containing 35 g/L of yeast extract (byproduct of alcohol production), 60 g/L of crystallized sugar, and 7.5 mL/L of salts. The fermentation process was conducted at 35°C and pH 6.0 controlled by NaOH with a 20% volume of inoculum and agitation at 125 rpm. The production of a high optically pure concentration of D(−) lactic acid combined with an environmentally friendly NaOH-based process demonstrates that S. nakayamae is a promising strain for D(−) lactic acid production. PMID:29081803

  9. Rate and yield relationships in the production of xanthan gum by batch fermentations using complex and chemically defined growth media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinches, A.; Pallent, L.J.

    1986-10-01

    Rate and yield information relating to biomass and product formation and to nitrogen, glucose and oxygen consumption are described for xanthan gum batch fermentations in which both chemically defined (glutamate nitrogen) and complex (peptone nitrogen) media are employed. Simple growth and product models are used for data interpretation. For both nitrogen sources, rate and yield parameter estimates are shown to be independent of initial nitrogen concentrations. For stationary phases, specific rates of gum production are shown to be independent of nitrogen source but dependent on initial nitrogen concentration. The latter is modeled empirically and suggests caution in applying simple productmore » models to xanthan gum fermentations. 13 references.« less

  10. An investigation into the preservation of microbial cell banks for α-amylase production during 5 l fed-batch Bacillus licheniformis fermentations.

    PubMed

    Hancocks, Nichola H; Thomas, Colin R; Stocks, Stuart M; Hewitt, Christopher J

    2010-10-01

    Fluorescent staining techniques were used for a systematic examination of methods used to cryopreserve microbial cell banks. The aim of cryopreservation here is to ensure subsequent reproducible fermentation performance rather than just post thaw viability. Bacillus licheniformis cell physiology post-thaw is dependent on the cryopreservant (either Tween 80, glycerol or dimethyl sulphoxide) and whilst this had a profound effect on the length of the lag phase, during subsequent 5 l fed-batch fermentations, it had little effect on maximum specific growth rate, final biomass concentration or α-amylase activity. Tween 80 not only protected the cells during freezing but also helped them recover post-thaw resulting in shorter process times.

  11. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae.

    PubMed

    El-Gendy, Nour Sh; Madian, Hekmat R; Nassar, Hussein N; Abu Amr, Salem S

    2015-01-01

    Worldwide nowadays, relying on the second generation bioethanol from the lignocellulosic feedstock is a mandatory aim. However, one of the major drawbacks for high ethanol yield is the physical and chemical pretreatment of this kind of feedstock. As the pretreatment is a crucial process operation that modifies the lignocellulosic structure and enhances its accessibility for the high cost hydrolytic enzymes in an attempt to maximize the yield of the fermentable sugars. The objective of this work was to optimize and integrate a physicochemical pretreatment of one of the major agricultural wastes in Egypt; the sugar beet pulp (SBP) and the enzymatic saccharification of the pretreated SBP using a whole fungal cells with a separate bioethanol fermentation batch processes to maximize the bioethanol yield. The response surface methodology was employed in this study to statistically evaluate and optimize the conditions for a thermal acid pretreatment of SBP. The significance and the interaction effects of the concentrations of HCl and SBP and the reaction temperature and time were studied using a three-level central composite design of experiments. A quadratic model equation was obtained to maximize the production of the total reducing sugars. The validity of the predicted model was confirmed. The thermally acid pretreated SBP was further subjected to a solid state fermentation batch process using Trichoderma viride F94. The thermal acid pretreatment and fungal hydrolyzes were integrated with two parallel batch fermentation processes of the produced hydrolyzates using Saccharomyces cerevisiae Y39, that yielded a total of ≈ 48 g/L bioethanol, at a conversion rate of ≈ 0.32 g bioethanol/ g SBP. Applying the proposed integrated process, approximately 97.5 gallon of ethanol would be produced from a ton (dry weight) of SBP.

  12. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae.

    PubMed

    El-Gendy, Nour Sh; Madian, Hekmat R; Nassar, Hussein N; Amr, Salem S Abu

    2015-09-15

    Worldwide nowadays, relying on the second generation bioethanol from the lignocellulosic feedstock is a mandatory aim. However, one of the major drawbacks for high ethanol yield is the physical and chemical pretreatment of this kind of feedstock. As the pretreatment is a crucial process operation that modifies the lignocellulosic structure and enhances its accessibility for the high cost hydrolytic enzymes in an attempt to maximize the yield of the fermentable sugars. The objective of this work was to optimize and integrate a physicochemical pretreatment of one of the major agricultural wastes in Egypt; the sugar beet pulp (SBP) and the enzymatic saccharification of the pretreated SBP using a whole fungal cells with a separate bioethanol fermentation batch processes to maximize the bioethanol yield. The response surface methodology was employed in this study to statistically evaluate and optimize the conditions for a thermal acid pretreatment of SBP. The significance and the interaction effects of the concentrations of HCl and SBP and the reaction temperature and time were studied using a three-level central composite design of experiments. A quadratic model equation was obtained to maximize the production of the total reducing sugars. The validity of the predicted model was confirmed. The thermally acid pretreated SBP was further subjected to a solid state fermentation batch process using Trichoderma viride F94. The thermal acid pretreatment and fungal hydrolyzes were integrated with two parallel batch fermentation processes of the produced hydrolyzates using Saccharomyces cerevisiae Y39, that yielded a total of ≈ 48 g/L bioethanol, at a conversion rate of ≈ 0.32 g bioethanol/ g SBP. Applying the proposed integrated process, approximately 97.5 gallon of ethanol would be produced from a ton (dry weight) of SBP.

  13. 40 CFR Table 3 to Subpart Cccc of... - Initial Compliance With Emission Limitations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 3 Table 3 to Subpart CCCC of Part 63—Initial Compliance With Emission... demonstrated initial compliance if . . . 1. Each fed-batch fermenter producing yeast in a fermentation stage... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock...

  14. 40 CFR Table 3 to Subpart Cccc of... - Initial Compliance With Emission Limitations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 3 Table 3 to Subpart CCCC of Part 63—Initial Compliance With Emission... demonstrated initial compliance if . . . 1. Each fed-batch fermenter producing yeast in a fermentation stage... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock...

  15. 40 CFR Table 3 to Subpart Cccc of... - Initial Compliance With Emission Limitations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Yeast Pt. 63, Subpart CCCC, Table 3 Table 3 to Subpart CCCC of Part 63—Initial Compliance With Emission... demonstrated initial compliance if . . . 1. Each fed-batch fermenter producing yeast in a fermentation stage... yeast in a fermentation stage (last (Trade), second-to-last (First Generation), or third-to-last (Stock...

  16. Screening of the five different wild, traditional and industrial Saccharomyces cerevisiae strains to overproduce bioethanol in the batch submerged fermentation.

    PubMed

    Shaghaghi-Moghaddam, Reza; Jafarizadeh-Malmiri, Hoda; Mehdikhani, Parviz; Jalalian, Sepide; Alijanianzadeh, Reza

    2017-12-28

    Efforts to produce bioethanol with higher productivity in a batch submerged fermentation were made by evaluating the bioethanol production of the five different strains of Saccharomyces cerevisiae, namely, NCYC 4109 (traditional bakery yeast), SFO6 (industrial yeast), TTCC 2956 (hybrid baking yeast) and two wild yeasts, PTCC 5052 and BY 4743. The bioethanol productivity and kinetic parameters for all five yeasts at constant fermentation conditions, during 72 h, were evaluated and monitored. The obtained results indicated that compared to the wild yeasts, both traditional bakery (NCYC 4109) and industrial (SFO6) yeasts had higher bioethanol productivity (0.9 g/L h). Significant (p<0.05) differences between biomass concentration of NCYC 4109 yeast and those of other yeasts 30 h after start of fermentation, and its high bioethanol concentration (59.19 g/L) and yield over consumed sugars (77.25%) were highlighted among all the studied yeasts. Minimum bioethanol productivity was obtained using yeasts PTCC 5052 (0.7 g/L h) and TTCC 2956 (0.86 g/L h). However, maximum yield over consumed sugar was obtained using the yeast TTCC 2956 (79.41%).

  17. Enhancement of n-butanol production by in situ butanol removal using permeating-heating-gas stripping in acetone-butanol-ethanol fermentation.

    PubMed

    Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Shi, Xinchi; Cheng, Hao; Zhao, Nan; Li, Zhenjian; Li, Bingbing; Niu, Huanqing; Zhuang, Wei; Xie, Jingjing; Chen, Xiaochun; Wu, Jinglan; Ying, Hanjie

    2014-07-01

    Butanol recovery from acetone-butanol-ethanol (ABE) fed-batch fermentation using permeating-heating-gas was determined in this study. Fermentation was performed with Clostridium acetobutylicum B3 in a fibrous bed bioreactor and permeating-heating-gas stripping was used to eliminate substrate and product inhibition, which normally restrict ABE production and sugar utilization to below 20 g/L and 60 g/L, respectively. In batch fermentation (without permeating-heating-gas stripping), C. acetobutylicum B3 utilized 60 g/L glucose and produced 19.9 g/L ABE and 12 g/L butanol, while in the integrated process 290 g/L glucose was utilized and 106.27 g/L ABE and 66.09 g/L butanol were produced. The intermittent gas stripping process generated a highly concentrated condensate containing approximately 15% (w/v) butanol, 4% (w/v) acetone, a small amount of ethanol (<1%), and almost no acids, resulting in a highly concentrated butanol solution [∼ 70% (w/v)] after phase separation. Butanol removal by permeating-heating-gas stripping has potential for commercial ABE production. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Acetone-butanol-ethanol from sweet sorghum juice by an immobilized fermentation-gas stripping integration process.

    PubMed

    Cai, Di; Wang, Yong; Chen, Changjing; Qin, Peiyong; Miao, Qi; Zhang, Changwei; Li, Ping; Tan, Tianwei

    2016-07-01

    In this study, sweet sorghum juice (SSJ) was used as the substrate in a simplified ABE fermentation-gas stripping integration process without nutrients supplementation. The sweet sorghum bagasse (SSB) after squeezing the fermentable juice was used as the immobilized carrier. The results indicated that the productivity of ABE fermentation process was improved by gas stripping integration. A total 24g/L of ABE solvents was obtained from 59.6g/L of initial sugar after 80h of fermentation with gas stripping. Then, long-term of fed-batch fermentation with continuous gas stripping was further performed. 112.9g/L of butanol, 44.1g/L of acetone, 9.5g/L of ethanol (total 166.5g/L of ABE) was produced in overall 312h of fermentation. At the same time, concentrated ABE product was obtained in the condensate of gas stripping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    PubMed

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  20. Metabolic Responses of Saccharomyces cerevisiae to Valine and Ammonium Pulses during Four-Stage Continuous Wine Fermentations

    PubMed Central

    Clement, T.; Perez, M.; Mouret, J. R.; Sanchez, I.; Sablayrolles, J. M.

    2013-01-01

    Nitrogen supplementation, which is widely used in winemaking to improve fermentation kinetics, also affects the products of fermentation, including volatile compounds. However, the mechanisms underlying the metabolic response of yeast to nitrogen additions remain unclear. We studied the consequences for Saccharomyces cerevisiae metabolism of valine and ammonium pulses during the stationary phase of four-stage continuous fermentation (FSCF). This culture technique provides cells at steady state similar to that of the stationary phase of batch wine fermentation. Thus, the FSCF device is an appropriate and reliable tool for individual analysis of the metabolic rerouting associated with nutrient additions, in isolation from the continuous evolution of the environment in batch processes. Nitrogen additions, irrespective of the nitrogen-containing compound added, substantially modified the formation of fermentation metabolites, including glycerol, succinate, isoamyl alcohol, propanol, and ethyl esters. This flux redistribution, fulfilling the requirements for precursors of amino acids, was consistent with increased protein synthesis resulting from increased nitrogen availability. Valine pulses, less efficient than ammonium addition in increasing the fermentation rate, were followed by a massive conversion of this amino acid in isobutanol and isobutyl acetate through the Ehrlich pathway. However, additional routes were involved in valine assimilation when added in stationary phase. Overall, we found that particular metabolic changes may be triggered according to the nature of the amino acid supplied, in addition to the common response. Both these shared and specific modifications should be considered when designing strategies to modulate the production of volatile compounds, a current challenge for winemakers. PMID:23417007

  1. Metabolic responses of Saccharomyces cerevisiae to valine and ammonium pulses during four-stage continuous wine fermentations.

    PubMed

    Clement, T; Perez, M; Mouret, J R; Sanchez, I; Sablayrolles, J M; Camarasa, C

    2013-04-01

    Nitrogen supplementation, which is widely used in winemaking to improve fermentation kinetics, also affects the products of fermentation, including volatile compounds. However, the mechanisms underlying the metabolic response of yeast to nitrogen additions remain unclear. We studied the consequences for Saccharomyces cerevisiae metabolism of valine and ammonium pulses during the stationary phase of four-stage continuous fermentation (FSCF). This culture technique provides cells at steady state similar to that of the stationary phase of batch wine fermentation. Thus, the FSCF device is an appropriate and reliable tool for individual analysis of the metabolic rerouting associated with nutrient additions, in isolation from the continuous evolution of the environment in batch processes. Nitrogen additions, irrespective of the nitrogen-containing compound added, substantially modified the formation of fermentation metabolites, including glycerol, succinate, isoamyl alcohol, propanol, and ethyl esters. This flux redistribution, fulfilling the requirements for precursors of amino acids, was consistent with increased protein synthesis resulting from increased nitrogen availability. Valine pulses, less efficient than ammonium addition in increasing the fermentation rate, were followed by a massive conversion of this amino acid in isobutanol and isobutyl acetate through the Ehrlich pathway. However, additional routes were involved in valine assimilation when added in stationary phase. Overall, we found that particular metabolic changes may be triggered according to the nature of the amino acid supplied, in addition to the common response. Both these shared and specific modifications should be considered when designing strategies to modulate the production of volatile compounds, a current challenge for winemakers.

  2. Immobilization of Streptomyces thermotolerans 11432 on polyurethane foam to improve production of acetylisovaleryltylosin.

    PubMed

    Zhu, Hongji; Wang, Weihua; Liu, Jiaheng; Caiyin, Qinggele; Qiao, Jianjun

    2015-01-01

    In this study, polyurethane foam (PUF) was chemically treated to immobilize Streptomyces thermotolerans 11432 for semi-continuous production of acetylisovaleryltylosin (AIV). Based on experimental results, positive cross-linked PUF (PCPUF) was selected as the most effective carrier according to immobilized cell mass. The effect of adsorption time on immobilized mass was investigated. AIV concentration (33.54 mg/l) in batch fermentations with immobilized cells was higher than with free cells (20.34 mg/l). In repeated batch fermentations with immobilized S. thermotolerans 11432 using PCPUF cubes, high AIV concentrations and conversion rates were attained, ranging from 25.56 to 34.37 mg/l and 79.93 to 86.31 %, respectively. Significantly, this method provides a feasible strategy for efficient AIV production and offers the potential for large-scale production.

  3. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation.

    PubMed

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-03-04

    Two mathematical models were developed for studying the effect of main fermentation temperature ( T MF ), immobilized cell mass ( M IC ) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model.

  4. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation

    PubMed Central

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-01-01

    Two mathematical models were developed for studying the effect of main fermentation temperature (T MF), immobilized cell mass (M IC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model. PMID:26019512

  5. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    PubMed

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  6. The operable modeling of simultaneous saccharification and fermentation of ethanol production from cellulose.

    PubMed

    Shen, Jiacheng; Agblevor, Foster A

    2010-03-01

    An operable batch model of simultaneous saccharification and fermentation (SSF) for ethanol production from cellulose has been developed. The model includes four ordinary differential equations that describe the changes of cellobiose, glucose, yeast, and ethanol concentrations with respect to time. These equations were used to simulate the experimental data of the four main components in the SSF process of ethanol production from microcrystalline cellulose (Avicel PH101). The model parameters at 95% confidence intervals were determined by a MATLAB program based on the batch experimental data of the SSF. Both experimental data and model simulations showed that the cell growth was the rate-controlling step at the initial period in a series of reactions of cellulose to ethanol, and later, the conversion of cellulose to cellobiose controlled the process. The batch model was extended to the continuous and fed-batch operating models. For the continuous operation in the SSF, the ethanol productivities increased with increasing dilution rate, until a maximum value was attained, and rapidly decreased as the dilution rate approached the washout point. The model also predicted a relatively high ethanol mass for the fed-batch operation than the batch operation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull, H.E.

    The objective of the project was to investigate the economic feasibility of converting potato waste to fuel alcohol. The source of potato starch was Troyer Farms Potato Chips. Experimental work was carried out at both the laboratory scale and the larger pilot scale batch operation at a decommissioned waste water treatment building on campus. The laboratory scale work was considerably more extensive than originally planned, resulting in a much improved scientific work. The pilot scale facility has been completed and operated successfully. In contrast, the analysis of the economic feasibility of commercial production has not yet been completed. The projectmore » was brought to a close with the successful demonstration of the fermentation and distillation using the large scale facilities described previously. Two batches of mash were cooked using the procedures established in support of the laboratory scale work. One of the batches was fermented using the optimum values of the seven controlled factors as predicted by the laboratory scale application of the Box-Wilson design. The other batch was fermented under conditions derived out of Mr. Rouse's interpretation of his long sequence of laboratory results. He was gratified to find that his commitment to the Box-Wilson experiments was justified. The productivity of the Box-Wilson design was greater. The difference between the performance of the two fermentors (one stirred, one not) has not been established yet. Both batches were then distilled together, demonstrating the satisfactory performance of the column still. 4 references.« less

  8. Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi.

    PubMed

    Tsakona, Sofia; Kopsahelis, Nikolaos; Chatzifragkou, Afroditi; Papanikolaou, Seraphim; Kookos, Ioannis K; Koutinas, Apostolis A

    2014-11-10

    Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90% (w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitrogen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava.

    PubMed

    Essers, A J; Jurgens, C M; Nout, M J

    1995-07-01

    The effect of six individual strains of the dominant microflora in solid substrate fermenting cassava on cyanogen levels was examined. Six out of eight batches of disinfected cassava root pieces were incubated for 72 h after inoculation with either of the fungi Geotrichum candidum, Mucor racemosus, Neurospora sitophila, Rhizopus oryzae and Rhizopus stolonifer, or a Bacillus sp., isolated from on-farm fermented cassava flours from Uganda. One non-inoculated batch was incubated as a reference. Levels of initial and final moisture and cyanogens were assayed. The experiment was done in quadruplicate. Incubation of disinfected root pieces reduced cyanogenic glucoside levels significantly to 62.7% (SD 2.8) of the initial value. Microbial growth resulted in significant additional reduction of the cyanogenic glucoside levels to 29.8% (SD 18.9) of the levels which were obtained after non-inoculated incubation. Among the tested strains, N. sitophila reduced cyanogenic glucoside levels most effectively, followed by R. stolonifer and R. oryzae. Of all fermented samples, both Rhizopus spp. showed highest proportion of residual cyanogens in the cyanohydrin form. Flours showed similar patterns of cyanogens as the batches they were prepared from. Cyanogenic glucoside level reduction was significantly correlated (r = 0.86) with the extent of root softening. It is concluded that both incubation and microbial activity are instrumental in reducing the potential toxicity of cassava during the solid substrate fermentation and that effectiveness varies considerably between the species of microorganisms applied.

  10. Applied in situ product recovery in ABE fermentation

    PubMed Central

    Lalander, Carl‐Axel; Lee, Jonathan G. M.; Davies, E. Timothy; Harvey, Adam P.

    2017-01-01

    The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid–liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed‐batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single‐stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563–579, 2017 PMID:28188696

  11. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.

    PubMed

    Cheng, Chi; Zhou, Yipin; Lin, Meng; Wei, Peilian; Yang, Shang-Tian

    2017-01-01

    Polymalic acid (PMA) production by Aureobasidium pullulans ZX-10 from soybean hull hydrolysate supplemented with corn steep liquor (CSL) gave a malic acid yield of ∼0.4g/g at a productivity of ∼0.5g/L·h. ZX-10 can also ferment soy molasses, converting all carbohydrates including the raffinose family oligosaccharides to PMA, giving a high titer (71.9g/L) and yield (0.69g/g) at a productivity of 0.29g/L·h in fed-batch fermentation under nitrogen limitation. A higher productivity of 0.64g/L·h was obtained in repeated batch fermentation with cell recycle and CSL supplementation. Cost analysis for a 5000 MT plant shows that malic acid can be produced at $1.10/kg from soy molasses, $1.37/kg from corn, and $1.74/kg from soybean hull. At the market price of $1.75/kg, malic acid production from soy molasses via PMA fermentation offers an economically competitive process for industrial production of bio-based malic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Production of pullulan by a thermotolerant aureobasidium pullulans strain in non-stirred fed batch fermentation process

    PubMed Central

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-01-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42oC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm. PMID:24031927

  13. Simultaneous fermentation and separation in an immobilized cell trickle bed reactor: Acetone-butanol-ethane (ABE) and ethanol fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, C.H.

    1989-01-01

    A novel process employing immobilized cells and in-situ product removal was studied for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum and ethanol fermentation by Saccharomyces cerevisiae. Experimental studies of ABE fermentation in a trickle bed reactor without product separation showed that solvent production could be improved by one order of magnitude compared to conventional batch fermentation. Control of effluent pH near 4.3 and feed glucose concentrations higher than 10 g/L were the necessary conditions for cell growth and solvent production. A mathematical model using an equilibrium staged model predicted efficient separation of butanol from the fermentation broth. Activity coefficients of multicomponentmore » system were estimated by Wilson's equation or the ASOG method. Inhibition by butanol and organic acids was incorporated into the kinetic expression. Experimental performance of simultaneous fermentation and separation in an immobilized cell trickle bed reactor showed that glucose conversion was improved as predicted by mathematical modeling and analysis. The effect of pH and temperature on ethanol fermentation by Saccharomyces cerevisiae was studied in free and immobilized cell reactors. Conditions for the highest glucose conversion, cell viability and least glycerol yield were determined.« less

  14. Corecovery of lipids and fermentable sugars from Rhodosporidium toruloides using ionic liquid cosolvents: application of recycle to batch fermentation.

    PubMed

    Severa, Godwin; Kumar, Guneet; Cooney, Michael J

    2014-01-01

    This work evaluates the ability of an ionic liquid-methanol cosolvent system to extract lipids and recycle fermentable sugars recovered from oil-bearing Rhodosporidium toruloides grown in batch culture on defined media using glucose and xylose as carbon sources. Growth on the recycled mixed carbon substrate was successful with glucose consumed before xylose and overall cell mass to lipid yields (YP/X ) between 57% and 61% (w/w relative to whole dried cell mass) achieved. Enzymatic hydrolysis of the delipified carbohydrate fraction recovered approximately 9%-11% (w/w) of the whole dried cell mass as fermentable sugars, which were successfully recycled as carbon sources without further purification. In total, up to 70% (w/w) of the whole dried cell mass was recovered as lipids and fermentable sugars and the substrate to lipid yields (YP/S ) was increased from 0.12 to 0.16 g lipid/g carbohydrate consumed, highlighting the promise of this approach to process lipid bearing cell biomass. © 2014 American Institute of Chemical Engineers.

  15. Enhanced anti-oxidative activity and lignocellulosic ethanol production by biotin addition to medium in Pichia guilliermondii fermentation.

    PubMed

    Qi, Kai; Xia, Xiao-Xia; Zhong, Jian-Jiang

    2015-01-01

    Commercialization of lignocellulosic ethanol fermentation requires its high titer, but the reactive oxygen species (ROS) accumulation during the bioprocess damaged the cells and compromised this goal. To improve the cellular anti-oxidative activity during non-detoxified corncob residue hydrolysate fermentation, seed cells were prepared to possess a higher level of intracellular biotin pool (IBP), which facilitated the biosyntheses of catalase and porphyrin. As a result, the catalase activity increased by 1.3-folds compared to control while the ROS level reduced by 50%. Cell viability in high-IBP cells was 1.7-folds of control and the final ethanol titer increased from 31.2 to 41.8 g L(-1) in batch fermentation. The high-IBP cells were further used for repeated-batch fermentation in the non-detoxified lignocellulosic hydrolysate, and the highest titer and average productivity of ethanol reached 63.7 g L(-1) and 1.2 g L(-1)h(-1). The results were favorable to future industrial application of this lignocellulosic bioethanol process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells.

    PubMed

    Nedovic; Durieuxb; Van Nedervelde L; Rosseels; Vandegans; Plaisant; Simon

    2000-06-01

    Ca-alginate matrix was used to co-immobilize Saccharomyces bayanus and Leuconostoc oenos in one integrated biocatalytic system in order to perform simultaneously alcoholic and malo-lactic fermentation of apple juice to produce cider, in a continuous packed bed bioreactor. The continuous process permitted much faster fermentation compared with the traditional batch process. The flavor formation was also better controlled. By adjusting the flow rate of feeding substrate through the bioreactor, i.e. its residence time, it was possible to obtain either "soft" or "dry" cider. However, the profile of volatile compounds in the final product was modified comparatively to the batch process, especially for higher alcohols, isoamylacetate, and diacetyl. This modification is due to different physiology states of yeast in two processes. Nevertheless, the taste of cider was quite acceptable.

  17. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    PubMed

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf

    2015-01-20

    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae.

    PubMed

    Amillastre, Emilie; Aceves-Lara, César-Arturo; Uribelarrea, Jean-Louis; Alfenore, Sandrine; Guillouet, Stéphane E

    2012-08-01

    The impact of the temperature on an industrial yeast strain was investigated in very high ethanol performance fermentation fed-batch process within the range of 30-47 °C. As previously observed with a lab strain, decoupling between growth and glycerol formation occurred at temperature of 36 °C and higher. A dynamic model was proposed to describe the impact of the temperature on the total and viable biomass, ethanol and glycerol production. The model validation was implemented with experimental data sets from independent cultures under different temperatures, temperature variation profiles and cultivation modes. The proposed model fitted accurately the dynamic evolutions for products and biomass concentrations over a wide range of temperature profiles. R2 values were above 0.96 for ethanol and glycerol in most experiments. The best results were obtained at 37 °C in fed-batch and chemostat cultures. This dynamic model could be further used for optimizing and monitoring the ethanol fermentation at larger scale. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Zhan, Xiao; Wang, Wu

    2014-06-01

    An integrated strategy (additional energy substrate-three stage pH control-fed batch) was firstly proposed for efficiently improving chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter. The strain adaptive-growing phase was greatly shortened from 8days into 4days with the supplement of additional 2g/L Fe(2+)+2g/L S(0). Jarosite passivation was effectively weakened basing on higher biomass via the three-stage pH-stat control (pH 1.3-1.0-0.7). The mineral substrate inhibition was attenuated by fed-batch fermentation. With the integrated strategy, the biochemical reaction was promoted and achieved a better balance. Meanwhile, the domination course of A. thiooxidans in the microbial community was shortened from 14days to 8days. As the results of integrated strategy, the final copper ion and productivity reached 89.1mg/L and 2.23mg/(Ld), respectively, which was improved by 52.8% compared to the uncontrolled batch bioleaching. The integrated strategy could be further exploited for industrial chalcopyrite bioleaching. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Succinic acid production from cellobiose by Actinobacillus succinogenes.

    PubMed

    Jiang, Min; Xu, Rong; Xi, Yong-Lan; Zhang, Jiu-Hua; Dai, Wen-Yu; Wan, Yue-Jia; Chen, Ke-Quan; Wei, Ping

    2013-05-01

    In this study, cellobiose, a reducing disaccharide was used to produce succinic acid by Actinobacillus succinogenes NJ113. A final succinic acid concentration of 30.3g/l with a yield of 67.8% was achieved from an initial cellobiose concentration of 50 g/l via batch fermentation in anaerobic bottles. The cellobiose uptake mechanism was investigated and the results of enzyme assays revealed that the phosphoenolpyruvate phosphotransferase system (PEP-PTS) played an important role in the cellobiose uptake process. In batch fermentation with 18 g/l of cellobiose and 17 g/l of other sugars from sugarcane bagasse cellulose hydrolysates, a succinic acid concentration of 20.0 g/l was obtained, with a corresponding yield of 64.7%. This study found that cellobiose from incomplete hydrolysis of cellulose could be a potential carbon source for economical and efficient succinic acid production by A. succinogenes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Z.; Yang, S.T.

    1998-05-01

    An extractive fermentation process using an amine extractant and a hollow-fiber membrane extractor to selectively remove propionic acid from the fermentation broth was developed to produce propionate from lactose. Compared to the conventional batch fermentation, the extractive fermentation had a much higher productivity ({approximately}1 g/(L{center_dot}h) or 5-fold increase), higher propionate yield (up to 0.66 g/g or more than 20% increase), higher final product concentration (75 g/L or higher), and higher product purity ({approximately}90%). Meanwhile, acetate and succinate productions in the extractive fermentation were significantly reduced. The improved fermentation performance can be attributed to the reduced product inhibition and a possiblemore » metabolic pathway shift to favor more propionic but less acetic and succinic acid production. The process was stable and gave consistent long-term performance over the 1.5-month period studied. The effects of propionate concentration, pH, and amine content in the solvent on the extractive fermentation were also studied and are discussed in this paper.« less

  2. Improved productivity of poly (3-hydroxybutyrate) (PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture.

    PubMed

    Cui, Bin; Huang, Shaobin; Xu, Fuqian; Zhang, Ruijian; Zhang, Yongqing

    2015-07-01

    A particularly successful polyhydroxyalkanoate (PHA) in industrial applications is poly (3-hydroxybutyrate) (PHB). However, one of the major obstacles for wider application of PHB is the cost of its production and purification. Therefore, it is desirable to discover a method for producing PHB in large quantities at a competitive price. Glycerol is a cheap and widely used carbon source that can be applied in PHB production process. There are numerous advantages to operating fermentation at elevated temperatures; only several thermophilic bacteria are able to accumulate PHB when glycerol is the growth substrate. Here, we report on the possibility of increasing PHB production at low cost using thermophilic Chelatococcus daeguensis TAD1 when glycerol is the growth substrate in a fed-batch culture. We found that (1) excess glycerol inhibited PHB accumulation and (2) organic nitrogen sources, such as tryptone and yeast extract, promoted the growth of C. daeguensis TAD1. In the batch fermentation experiments, we found that using glycerol at low concentrations as the sole carbon source, along with the addition of mixed nitrate (NH4Cl, tryptone, and yeast extract), stimulated PHB accumulation in C. daeguensis TAD1. The results showed that the PHB productivity decreased in the following order: two-stage fed-batch fermentation > fed-batch fermentation > batch fermentation. In optimized culture conditions, a PHB amount of 17.4 g l(-1) was obtained using a two-stage feeding regimen, leading to a productivity rate of 0.434 g l(-1) h(-1), which is the highest productivity rate reported for PHB to date. This high PHB biosynthetic productivity could decrease the total production cost, allowing for further development of industrial applications of PHB.

  3. Changes in the bacterial community in the fermentation process of kôso, a Japanese sugar-vegetable fermented beverage.

    PubMed

    Chiou, Tai-Ying; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Takahashi, Tomoya

    2017-02-01

    Kôso is a Japanese fermented beverage made with over 20 kinds of vegetables, mushrooms, and sugars. The changes in the bacterial population of kôso during fermentation at 25 °C over a period of 10 days were studied using 454 pyrosequencing of the 16S rRNA gene. The analysis detected 224 operational taxonomic units (OTUs) clustered from 8 DNA samples collected on days 0, 3, 7, and 10 from two fermentation batches. Proteobacteria were the dominant phylum in the starting community, but were replaced by Firmicutes within three days. Seventy-eight genera were identified from the 224 OTUs, in which Bifidobacterium, Leuconostoc, Lactococcus, and Lactobacillus dominated, accounting for over 96% of the total bacterial population after three days' fermentation. UniFrac-Principal Coordinate Analysis of longitudinal fermented samples revealed dramatic changes in the bacterial community in kôso, resulting in significantly low diversity at the end of fermentation as compared with the complex starting community.

  4. Simulation and optimization of continuous extractive fermentation with recycle system

    NASA Astrophysics Data System (ADS)

    Widjaja, Tri; Altway, Ali; Rofiqah, Umi; Airlangga, Bramantyo

    2017-05-01

    Extractive fermentation is continuous fermentation method which is believed to be able to substitute conventional fermentation method (batch). The recovery system and ethanol refinery will be easier. Continuous process of fermentation will make the productivity increase although the unconverted sugar in continuous fermentation is still in high concentration. In order to make this process more efficient, the recycle process was used. Increasing recycle flow will enhance the probability of sugar to be re-fermented. However, this will make ethanol enter fermentation column. As a result, the accumulated ethanol will inhibit the growth of microorganism. This research aims to find optimum conditions of solvent to broth ratio (S:B) and recycle flow to fresh feed ratio in order to produce the best yield and productivity. This study employed optimization by Hooke Jeeves method using Matlab 7.8 software. The result indicated that optimum condition occured in S: B=2.615 and R: F=1.495 with yield = 50.2439 %.

  5. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    PubMed

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Simulated Batch Production of Penicillin

    ERIC Educational Resources Information Center

    Whitaker, A.; Walker, J. D.

    1973-01-01

    Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)

  7. [Effects of dissolved oxygen and pH on Candida utilis batch fermentation of glutathione].

    PubMed

    Wei, Gong-Yuan; Li, Yin; Du, Guo-Cheng; Chen, Jian

    2003-11-01

    The effects of dissolved oxygen (DO) and pH on glutathione batch fermentation by Candida utilis WSH-02-08 in a 7 liters stirred fermentor were investigated. It was shown that DO concentration is an important factor in glutathione production. With the initial glucose concentration of 30 g/L and a 5 L/min air flow rate, and the agitation rate less than 250 r/min, the DO concentration was not sufficient to satisfy the oxygen requirement during the fermentation. With an agitation rate of more than 300 r/min, the cell growth and glutathione production were enhanced significantly, with the dry cell mass and glutathione production were 20% and 25% higher than that at 200 r/min. When C. utilis WSH 02-08 was cultivated in a batch process without pH control, cell growth and glutathione production were inhibited, likely due to a dramatic decrease in the pH. Intracellular glutathione leakages were observed when the pH was 1.5 or less. To assess the effect of pH on glutathione production, six batch processes controlled at pH 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5 were conducted. The yield was highest at pH 5.5, when the dry cell mass and yield were 27% and 95% respectively higher than fermentation without pH control. The maximal intracellular glutathione content (2.15 %) was also achieved at the pH. To improve our understandings on the effect of pH on the batch glutathione production, a modified Logistic equation and Luedeking-Piret equation were used to simulate cell growth and glutathione production, respectively, under different pH. Based on the parameters obtained by the nonlinear estimation, kinetic analysis was performed to elucidate the effect of pH on the batch glutathione production. The process controlled at pH 5.5 was proven to be the best due to the higher value of K(I) (substrate inhibitory constant in the Logistic equation), lower value of a and higher value of beta (slope and intercept in the Luedeking-Piret equation, respectively).

  8. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.

    PubMed

    Robledo-Narváez, Paula N; Muñoz-Páez, Karla M; Poggi-Varaldo, Hector M; Ríos-Leal, Elvira; Calva-Calva, Graciano; Ortega-Clemente, L Alfredo; Rinderknecht-Seijas, Noemí; Estrada-Vázquez, Carlos; Ponce-Noyola, M Teresa; Salazar-Montoya, J Alfredo

    2013-10-15

    Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of pH and Temperature on Recombinant Manganese Peroxidase Production and Stability

    NASA Astrophysics Data System (ADS)

    Jiang, Fei; Kongsaeree, Puapong; Schilke, Karl; Lajoie, Curtis; Kelly, Christine

    The enzyme manganese peroxidase (MnP) is produced by numerous white-rot fungi to overcome biomass recalcitrance caused by lignin. MnP acts directly on lignin and increases access of the woody structure to synergistic wood-degrading enzymes such as cellulases and xylanases. Recombinant MnP (rMnP) can be produced in the yeast Pichia pastoris αMnP1-1 in fed-batch fermentations. The effects of pH and temperature on recombinant manganese peroxidase (rMnP) production by P. pastoris αMnP1-1 were investigated in shake flask and fed-batch fermentations. The optimum pH and temperature for a standardized fed-batch fermentation process for rMnP production in P. pastoris ctMnP1-1 were determined to be pH 6 and 30 °C, respectively. P. pastoris αMnP1-1 constitutively expresses the manganese peroxidase (mnp1) complementary DNA from Phanerochaete chrysosporium, and the rMnP has similar kinetic characteristics and pH activity and stability ranges as the wild-type MnP (wtMnP). Cultivation of P. chrysosporium mycelia in stationary flasks for production of heme peroxidases is commonly conducted at low pH (pH 4.2). However, shake flask and fed-batch fermentation experiments with P. pastoris αMnP1-1 demonstrated that rMnP production is highest at pH 6, with rMnP concentrations in the medium declining rapidly at pH less than 5.5, although cell growth rates were similar from pH 4-7. Investigations of the cause of low rMnP production at low pH were consistent with the hypothesis that intracellular proteases are released from dead and lysed yeast cells during the fermentation that are active against rMnP at pH less than 5.5.

  10. Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici

    DOE PAGES

    Wang, Xiaoqing; Salvachua, Davinia; Sanchez i Nogue, Violeta; ...

    2017-08-17

    The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the native PA-producing bacterium Propionibacterium acidipropionici. A wide range of culture conditions and process parameters were examined and experimentally optimized to maximize titer, rate, and yield of PA. The effect of gas sparging during fermentation was first examined, and N 2 was found to exhibit improved performance over CO 2. Subsequently, the effects of different hydrolysate concentrations, nitrogen sources, and neutralization agentsmore » were investigated. One of the best combinations found during batch experiments used yeast extract (YE) as the primary nitrogen source and NH 4OH for pH control. This combination enabled PA titers of 30.8 g/L with a productivity of 0.40 g/L h from 76.8 g/L biomass sugars, while successfully minimizing lactic acid production. Due to the economic significance of downstream separations, increasing titers using fed-batch fermentation was examined by changing both feeding media and strategy. Continuous feeding of hydrolysate was found to be superior to pulsed feeding and combined with high YE concentrations increased PA titers to 62.7 g/L and improved the simultaneous utilization of different biomass sugars. Additionally, applying high YE supplementation maintains the lactic acid concentration below 4 g/L for the duration of the fermentation. Finally, with the aim of increasing productivity, high cell density fed-batch fermentations were conducted. PA titers increased to 64.7 g/L with a productivity of 2.35 g/L h for the batch stage and 0.77 g/L h for the overall process. These results highlight the importance of media and fermentation strategy to improve PA production. Altogether, this work demonstrates the feasibility of producing PA from corn stover hydrolysate.« less

  11. Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoqing; Salvachua, Davinia; Sanchez i Nogue, Violeta

    The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the native PA-producing bacterium Propionibacterium acidipropionici. A wide range of culture conditions and process parameters were examined and experimentally optimized to maximize titer, rate, and yield of PA. The effect of gas sparging during fermentation was first examined, and N 2 was found to exhibit improved performance over CO 2. Subsequently, the effects of different hydrolysate concentrations, nitrogen sources, and neutralization agentsmore » were investigated. One of the best combinations found during batch experiments used yeast extract (YE) as the primary nitrogen source and NH 4OH for pH control. This combination enabled PA titers of 30.8 g/L with a productivity of 0.40 g/L h from 76.8 g/L biomass sugars, while successfully minimizing lactic acid production. Due to the economic significance of downstream separations, increasing titers using fed-batch fermentation was examined by changing both feeding media and strategy. Continuous feeding of hydrolysate was found to be superior to pulsed feeding and combined with high YE concentrations increased PA titers to 62.7 g/L and improved the simultaneous utilization of different biomass sugars. Additionally, applying high YE supplementation maintains the lactic acid concentration below 4 g/L for the duration of the fermentation. Finally, with the aim of increasing productivity, high cell density fed-batch fermentations were conducted. PA titers increased to 64.7 g/L with a productivity of 2.35 g/L h for the batch stage and 0.77 g/L h for the overall process. These results highlight the importance of media and fermentation strategy to improve PA production. Altogether, this work demonstrates the feasibility of producing PA from corn stover hydrolysate.« less

  12. Bioethanol production from the dry powder of Jerusalem artichoke tubers by recombinant Saccharomyces cerevisiae in simultaneous saccharification and fermentation.

    PubMed

    Wang, Yi-Zhou; Zou, Shan-Mei; He, Mei-Lin; Wang, Chang-Hai

    2015-04-01

    It has been found that recombinant Saccharomyces cerevisiae 6525 can produce high concentration of ethanol in one-step fermentation from the extract of Jerusalem artichoke tubers or inulin. However, the utilization rate of raw materials was low and the fermentation process was costly and complicated. Therefore, in this study, after the optimum processing conditions for ethanol production in fed-batch fermentation were determined in flask, the recombinant S. cerevisiae 6525 was first used to produce ethanol from the dry powder of Jerusalem artichoke tubers in 5-L agitating fermentor. After 72 h of fermentation, around 84.3 g/L ethanol was produced in the fermentation liquids, and the conversion efficiency of inulin-type sugars to ethanol was 0.453, or 88.6 % of the theoretical value of 0.511. This study showed high feasibility of bioethanol industrial production from the Jerusalem artichoke tubers and provided a basis for it in the future.

  13. Optimization of prehydrolysis time and substrate feeding to improve ethanol production by simultaneous saccharification and fermentation of furfural process residue.

    PubMed

    He, Jianlong; Zhang, Wenbo; Liu, Xiaoyan; Xu, Ning; Xiong, Peng

    2016-11-01

    Ethanol is a very important industrial chemical. In order to improve ethanol productivity using Saccharomyces cerevisiae in fermentation from furfural process residue, we developed a process of simultaneous saccharification and fermentation (SSF) of furfural process residue, optimizing prehydrolysis cellulase loading concentration, prehydrolysis time, and substrate feeding strategy. The ethanol concentration obtained from the optimized process was 19.3 g/L, corresponding 76.5% ethanol yield, achieved by running SSF for 48 h from 10% furfural process residue with prehydrolysis at 50°C for 4 h and cellulase loading of 15 FPU/g furfural process residue. For higher ethanol concentrations, fed-batch fermentation was performed. The optimized fed-batch process increased the ethanol concentration to 37.6 g/L, 74.5% yield, obtained from 10% furfural process residue with two additions of 5% substrate at 12 and 24 h. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Bioethanol production from fermentable sugar juice.

    PubMed

    Zabed, Hossain; Faruq, Golam; Sahu, Jaya Narayan; Azirun, Mohd Sofian; Hashim, Rosli; Boyce, Amru Nasrulhaq

    2014-01-01

    Bioethanol production from renewable sources to be used in transportation is now an increasing demand worldwide due to continuous depletion of fossil fuels, economic and political crises, and growing concern on environmental safety. Mainly, three types of raw materials, that is, sugar juice, starchy crops, and lignocellulosic materials, are being used for this purpose. This paper will investigate ethanol production from free sugar containing juices obtained from some energy crops such as sugarcane, sugar beet, and sweet sorghum that are the most attractive choice because of their cost-effectiveness and feasibility to use. Three types of fermentation process (batch, fed-batch, and continuous) are employed in ethanol production from these sugar juices. The most common microorganism used in fermentation from its history is the yeast, especially, Saccharomyces cerevisiae, though the bacterial species Zymomonas mobilis is also potentially used nowadays for this purpose. A number of factors related to the fermentation greatly influences the process and their optimization is the key point for efficient ethanol production from these feedstocks.

  15. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation.

    PubMed

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P

    2016-11-01

    The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bioethanol Production from Fermentable Sugar Juice

    PubMed Central

    Zabed, Hossain; Faruq, Golam; Sahu, Jaya Narayan; Azirun, Mohd Sofian; Hashim, Rosli; Nasrulhaq Boyce, Amru

    2014-01-01

    Bioethanol production from renewable sources to be used in transportation is now an increasing demand worldwide due to continuous depletion of fossil fuels, economic and political crises, and growing concern on environmental safety. Mainly, three types of raw materials, that is, sugar juice, starchy crops, and lignocellulosic materials, are being used for this purpose. This paper will investigate ethanol production from free sugar containing juices obtained from some energy crops such as sugarcane, sugar beet, and sweet sorghum that are the most attractive choice because of their cost-effectiveness and feasibility to use. Three types of fermentation process (batch, fed-batch, and continuous) are employed in ethanol production from these sugar juices. The most common microorganism used in fermentation from its history is the yeast, especially, Saccharomyces cerevisiae, though the bacterial species Zymomonas mobilis is also potentially used nowadays for this purpose. A number of factors related to the fermentation greatly influences the process and their optimization is the key point for efficient ethanol production from these feedstocks. PMID:24715820

  17. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.

    PubMed

    Li, Ruo-Hong; Li, Xiao-Yan

    2017-12-01

    A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cultivation of oleaginous Rhodotorula mucilaginosa in airlift bioreactor by using seawater.

    PubMed

    Yen, Hong-Wei; Liao, Yu-Ting; Liu, Yi Xian

    2016-02-01

    The enormous water resource consumption is a concern to the scale-up fermentation process, especially for those cheap fermentation commodities, such as microbial oils as the feedstock for biodiesel production. The direct cultivation of oleaginous Rhodotorula mucilaginosa in a 5-L airlift bioreactor using seawater instead of pure water led to a slightly lower biomass being achieved, at 17.2 compared to 18.1 g/L, respectively. Nevertheless, a higher lipid content of 65 ± 5% was measured in the batch using seawater as compared to the pure water batch. Both the salinity and osmotic pressure decreased as the cultivation time increased in the seawater batch, and these effects may contribute to the high tolerance for salinity. No effects were observed for the seawater on the fatty acid profiles. The major components for both batches using seawater and pure water were C16:0 (palmitic acid), C18:1 (oleic acid) and C18:2 (linoleic acid), which together accounted for over 85% of total lipids. The results of this study indicated that seawater could be a suitable option for scaling up the growth of oleaginous R. mucilaginosa, especially from the perspective of water resource utilization. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Enhancement of Biohydrogen Production via pH Variation using Molasses as Feedstock in an Attached Growth System

    NASA Astrophysics Data System (ADS)

    Che Zuhar, C. N. S.; Lutpi, N. A.; Idris, N.; Wong, Y. S.; Tengku Izhar, T. N.

    2018-03-01

    In this study, mesophilic biohydrogen production by a mixed culture, obtained from a continuous anaerobic reactor treating molasses effluent from sugarcane bagasse, was improved by using granular activated carbon (GAC) as the carrier material. A series of batch fermentation were performed at 37°C by feeding the anaerobic sludge bacteria with molasses to determine the effect of initial pH in the range of 5.5 to 7.5, and the effect of repeated batch cultivation on biohydrogen production. The enrichment of granular activated carbon (GAC) immobilised cells from the repeated batch cultivation were used as immobilised seed culture to obtain the optimal initial pH. The cumulative hydrogen production results from the optimal pH were fitted into modified Gompertz equation in order to obtained the batch profile of biohydrogen production. The optimal hydrogen production was obtained at an initial pH of 5.5 with the maximum hydrogen production (Hm) was found to be 84.14 ml, and maximum hydrogen production rate (Rm) was 3.63 mL/h with hydrogen concentration of 759 ppm. The results showed that the granular activated carbon was successfully enhanced the biohydrogen production by stabilizing the pH and therefore could be used as a carrier material for fermentative hydrogen production using industrial effluent.

  20. Production of ε-poly-lysine by Streptomyces albulus PD-1 via solid-state fermentation.

    PubMed

    Xu, Delei; Yao, Haiqing; Xu, Zhaoxian; Wang, Rui; Xu, Zheng; Li, Sha; Feng, Xiaohai; Liu, Youhua; Xu, Hong

    2017-01-01

    The aim of this study was to produce ε-poly-lysine (ε-PL) by Streptomyces albulus PD-1 through solid-state fermentation (SSF) using agro-industrial residues. Maximum ε-PL production (86.62mg/g substrate) was obtained a mixed substrate of rapeseed cake and wheat bran (2:1, w/w) supplemented with glucose (4%, w/w), (NH 4 ) 2 SO 4 (3%, w/w), with an initial moisture content of 65%, initial pH of 7.0 and inoculum size of 13% v/w, incubated at 30°C for 8days. The results of scanning electron microscopy indicated that the filamentous thallus could penetrate the substrate surface. Moreover, repeated-batch SSF was successfully conducted 8 times using 10% substrate as seeds for the next fermentation cycle, and the results suggest that repeated-batch SSF is more efficient because of the shortened lag phase. To the best of our knowledge, this is the first report on ε-PL production using the SSF process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass.

    PubMed

    Wu, Fang-Chen; Wu, Jane-Yii; Liao, Yi-Jyun; Wang, Man-Ying; Shih, Ing-Lung

    2014-03-01

    Gracilaria sp., a red alga, was used as a feedstock for the production of bioethanol. Saccharification of Gracilaria sp. by sequential acid and enzyme hydrolysis in situ produced a high quality hydrolysate that ensured its fermentability to produce ethanol. The optimal saccharification process resulted in total 11.85g/L (59.26%) of glucose and galactose, Saccharomyces cerevisiae Wu-Y2 showed a good performance on co-fermentability of glucose and galactose released in the hydrolysate from Gracilaria sp. The final ethanol concentrations of 4.72g/L (0.48g/g sugar consumed; 94% conversion efficiency) and the ethanol productivity 4.93g/L/d were achieved. 1g of dry Gracilaria can be converted to 0.236g (23.6%) of bioethanol via the processes developed. Efficient alcohol production by immobilized S. cerevisiae Wu-Y2 in batch and repeated batch fermentation was also demonstrated. The findings of this study revealed that Gracilaria sp. can be a potential feedstock in biorefinery for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Comparison of different estimation techniques for biomass concentration in large scale yeast fermentation.

    PubMed

    Hocalar, A; Türker, M; Karakuzu, C; Yüzgeç, U

    2011-04-01

    In this study, previously developed five different state estimation methods are examined and compared for estimation of biomass concentrations at a production scale fed-batch bioprocess. These methods are i. estimation based on kinetic model of overflow metabolism; ii. estimation based on metabolic black-box model; iii. estimation based on observer; iv. estimation based on artificial neural network; v. estimation based on differential evaluation. Biomass concentrations are estimated from available measurements and compared with experimental data obtained from large scale fermentations. The advantages and disadvantages of the presented techniques are discussed with regard to accuracy, reproducibility, number of primary measurements required and adaptation to different working conditions. Among the various techniques, the metabolic black-box method seems to have advantages although the number of measurements required is more than that for the other methods. However, the required extra measurements are based on commonly employed instruments in an industrial environment. This method is used for developing a model based control of fed-batch yeast fermentations. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor.

    PubMed

    Huang, Jin; Cai, Jin; Wang, Jin; Zhu, Xiangcheng; Huang, Lei; Yang, Shang-Tian; Xu, Zhinan

    2011-02-01

    Butyric acid is an important specialty chemical with wide industrial applications. The feasible large-scale fermentation for the economical production of butyric acid requires low-cost substrate and efficient process. In the present study, butyric acid production by immobilized Clostridium tyrobutyricum was successfully performed in a fibrous-bed bioreactor using Jerusalem artichoke as the substrate. Repeated-batch fermentation was carried out to produce butyric acid with a high butyrate yield (0.44 g/g), high productivity (2.75 g/L/h) and a butyrate concentration of 27.5 g/L. Furthermore, fed-batch fermentation using sulfuric acid pretreated Jerusalem artichoke hydrolysate resulted in a high butyric acid concentration of 60.4 g/L, with the yield of 0.38 g/g and the selectivity of ∼ 85.1 (85.1g butyric acid/g acetic acid). Thus, the production of butyric acid from Jerusalem artichoke on a commercial scale could be achieved based on the system developed in this work. Copyright © 2010. Published by Elsevier Ltd.

  4. Bio-ethanol Production from Green Onion by Yeast in Repeated Batch.

    PubMed

    Robati, Reza

    2013-09-01

    Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast "Saccharomyces cerevisiae" in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.

  5. Optimization of the liquid biofertilizer production in batch fermentation with by-product from MSG

    NASA Astrophysics Data System (ADS)

    Namfon, Panjanapongchai; Ratchanok, Sahaworarak; Chalida, Daengbussade

    2017-03-01

    The long term use of chemical fertilizers destroyed the friability of soil which obviously decreased quantity and quality of crops and especially affect microorganisms living in soils. The bio-fertilizer with microbial consortium is an environmental friendly alternative to solve this bottleneck due to harboring soil microorganisms such as Bacillus sp., Micrococcus sp., Pseudomonas sp., Staphylococcus sp. and Deinococcus sp. produced with natural by-product or waste from industries that is alternative and sustainable such as nutrient-rich (by-product) from Mono Sodium Glutamate (MSG) for producing liquid biofertilizer by batch fermentation. In this work, the concentration of reducing sugar from substrate as main carbon source was evaluated in shake flask with mixed cultures. The optimal conditions were studied comparing with two levels of reducing sugar concentration (10, 20 g/L) and inoculums concentration (10, 20 %v/v) with using (2×2) full factorial design. The results indicated that the by-product from monosodium glutamate is feasible for fermentation and inoculums concentration is mainly influenced the batch fermentation process. Moreover, the combined 20 g/L and 10%v/v were considerably concluded as an optimal condition, of which the concentration of vegetative cells and spores attained at 8.29×109 CFU/mL and 1.97×105 CFU/mL, respectively. Their spores cell yields from reducing sugar (Yx/s) were obtained at 1.22×106 and 3.34×105 CFU/g were markedly different. In conclusion, the liquid Biofertilizer was produced satisfactorily at 20 g/L reducing sugar and 10% v/v inoculums in shake flask culture. Moreover, these results suggested that the by-product from monosodium glutamate is feasible for low-cost substrate in economical scale and environmental-friendly.

  6. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review

    PubMed Central

    Cos, Oriol; Ramón, Ramón; Montesinos, José Luis; Valero, Francisco

    2006-01-01

    The methylotrophic yeast Pichia pastoris has been widely reported as a suitable expression system for heterologous protein production. The use of different phenotypes under PAOX promoter, other alternative promoters, culture medium, and operational strategies with the objective to maximize either yield or productivity of the heterologous protein, but also to obtain a repetitive product batch to batch to get a robust process for the final industrial application have been reported. Medium composition, kinetics growth, fermentation operational strategies from fed-batch to continuous cultures using different phenotypes with the most common PAOX promoter and other novel promoters (GAP, FLD, ICL), the use of mixed substrates, on-line monitoring of the key fermentation parameters (methanol) and control algorithms applied to the bioprocess are reviewed and discussed in detail. PMID:16600031

  7. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation.

    PubMed

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-11-17

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH 3 -H 2 O 2 -pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH 3 -H 2 O 2 -pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water.

  8. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation

    PubMed Central

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-01-01

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH3-H2O2-pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH3-H2O2-pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water. PMID:27853308

  9. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    PubMed

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ethanol Production from Traditional and Emerging Raw Materials

    NASA Astrophysics Data System (ADS)

    Rudolf, Andreas; Karhumaa, Kaisa; Hahn-Hägerdal, Bärbel

    The ethanol industry of today utilizes raw materials rich in saccharides, such as sugar cane or sugar beets, and raw materials rich in starch, such as corn and wheat. The concern about supply of liquid transportation fuels, which has brought the crude oil price above 100 /barrel during 2006, together with the concern about global warming, have turned the interest towards large-scale ethanol production from lignocellulosic materials, such as agriculture and forestry residues. Baker's yeast Saccharomyces cerevisiae is the preferred fermenting microorganism for ethanol production because of its superior and well-documented industrial performance. Extensive work has been made to genetically improve S. cerevisiae to enable fermentation of lignocellulosic raw materials. Ethanolic fermentation processes are conducted in batch, fed-batch, or continuous mode, with or without cell recycling, the relative merit of which will be discussed.

  11. Bio-based extraction and stabilization of anthocyanins.

    PubMed

    Roy, Anirban; Mukherjee, Rudra Palash; Howard, Luke; Beitle, Robert

    2016-05-01

    This work reports a novel method of recovering anthocyanin compounds from highly-pigmented grapes via a fermentation based approach. It was hypothesized that batch growth of Zymomonas mobilis on simple medium would produce both ethanol and enzymes/biomass-acting materials, the combination of which will provide a superior extraction when compared to simple alcohol extraction. To examine this hypothesis, Z. mobilis was fermented in a batch consisting of mashed Vitis vinifera and glucose, and the recovered anthocyanin pool was compared to that recovered via extraction with ethanol. Data indicated higher amounts of anthocyanins were recovered when compared to simple solvent addition. Additionally, the percent polymeric form of the anthocyanins could be manipulated by the level of aeration maintained in the fermentation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:601-605, 2016. © 2016 American Institute of Chemical Engineers.

  12. Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation.

    PubMed

    Shang, Tingting; Si, Dayong; Zhang, Dongyan; Liu, Xuhui; Zhao, Longmei; Hu, Cong; Fu, Yu; Zhang, Rijun

    2017-06-21

    Xylanase degrades xylan into monomers of various sizes by catalyzing the endohydrolysis of the 1,4-β-D-xylosidic linkage randomly, possessing potential in wide industrial applications. Most of xylanases are susceptible to be inactive when suffering high temperature and high alkaline process. Therefore, it is necessary to develop a high amount of effective thermoalkaliphilic xylanases. This study aims to enhance thermoalkaliphilic xylanase production in Pichia pastoris through fermentation parameters optimization and novel efficient fed-batch strategy in high cell-density fermentation. Recombinant xylanase activity increased 12.2%, 7.4%, 12.0% and 9.9% by supplementing the Pichia pastoris culture with 20 g/L wheat bran, 5 mg/L L-histidine, 10 mg/L L-tryptophan and 10 mg/L L-methionine in shake flasks, respectively. Investigation of nutritional fermentation parameters, non-nutritional fermentation parameters and feeding strategies in 1 L bioreactor and 1 L shake flask revealed that glycerol and methanol feeding strategies were the critical factors for high cell density and xylanase activity. In 50 L bioreactor, a novel glycerol feeding strategy and a four-stage methanol feeding strategy with a stepwise increase in feeding rate were developed to enhance recombinant xylanase production. In the initial 72 h of methanol induction, the linear dependence of xylanase activity on methanol intake was observed (R 2  = 0.9726). The maximum xylanase activity was predicted to be 591.2 U/mL, while the actual maximum xylanase activity was 560.7 U/mL, which was 7.05 times of that in shake flask. Recombinant xylanase retained 82.5% of its initial activity after pre-incubation at 80 °C for 50 min (pH 8.0), and it exhibited excellent stability in the broad temperature (60-80 °C) and pH (pH 8.0-11.0) ranges. Efficient glycerol and methanol fed-batch strategies resulting in desired cell density and xylanase activity should be applied in other P. pastoris fermentation for other recombinant proteins production. Recombinant xylanases with high pH- and thermal-stability showed potential in various industrial applications.

  13. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.

    PubMed

    de Lima, Pollyne Borborema Almeida; Mulder, Kelly Cristina Leite; Melo, Nadiele Tamires Moreira; Carvalho, Lucas Silva; Menino, Gisele Soares; Mulinari, Eduardo; de Castro, Virgilio H; Dos Reis, Thaila F; Goldman, Gustavo Henrique; Magalhães, Beatriz Simas; Parachin, Nádia Skorupa

    2016-09-15

    Crude glycerol is the main byproduct of the biodiesel industry. Although it can have different applications, its purification is costly. Therefore, in this study a biotechnological route has been proposed for further utilization of crude glycerol in the fermentative production of lactic acid. This acid is largely utilized in food, pharmaceutical, textile, and chemical industries, making it the hydroxycarboxylic acid with the highest market potential worldwide. Currently, industrial production of lactic acid is done mainly using sugar as the substrate. Thus here, for the first time, Pichia pastoris has been engineered for heterologous L-lactic acid production using glycerol as a single carbon source. For that, the Bos taurus lactate dehydrogenase gene was introduced into P. pastoris. Moreover, a heterologous and a novel homologous lactate transporter have been evaluated for L-lactic acid production. Batch fermentation of the P. pastoris X-33 strain producing LDHb allowed for lactic acid production in this yeast. Although P. pastoris is known for its respiratory metabolism, batch fermentations were performed with different oxygenation levels, indicating that lower oxygen availability increased lactic acid production by 20 %, pushing the yeast towards a fermentative metabolism. Furthermore, a newly putative lactate transporter from P. pastoris named PAS has been identified by search similarity with the lactate transporter from Saccharomyces cerevisiae Jen1p. Both heterologous and homologous transporters, Jen1p and PAS, were evaluated in one strain already containing LDH activity. Fed-batch experiments of P. pastoris strains carrying the lactate transporter were performed with the batch phase at aerobic conditions followed by an aerobic oxygen-limited phase where production of lactic acid was favored. The results showed that the strain containing PAS presented the highest lactic acid titer, reaching a yield of approximately 0.7 g/g. We showed that P. pastoris has a great potential as a fermentative organism for producing L-lactic acid using glycerol as the carbon source at limited oxygenation conditions (below 0.05 % DO in the bioreactor). The best strain had both the LDHb and the homologous lactate transporter encoding genes expressed, and reached a titer 1.5 times higher than the strain with the S. cerevisiae transporter. Finally, it was also shown that increased lactic acid production was concomitant to reduction of acetic acid formation by half.

  14. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells.

    PubMed

    Ki, Dongwon; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2015-11-01

    The aim of this study was to investigate the combination of two technologies - pulsed electric field (PEF) pre-treatment and semi-continuous pre-fermentation of primary sludge (PS) - to produce volatile fatty acids (VFAs) as the electron donor for microbial electrolysis cells (MECs). Pre-fermentation with a 3-day solids retention time (SRT) led to the maximum generation of VFAs, with or without pretreatment of the PS through pulsed-electric-fields (PEF). PEF treatment before fermentation enhanced the accumulation of the preferred VFA, acetate, by 2.6-fold. Correspondingly, MEC anodes fed with centrate from 3-day pre-fermentation of PEF-treated PS had a maximum current density ∼3.1 A/m(2), which was 2.4-fold greater than the control pre-fermented centrate. Over the full duration of batch MEC experiments, using pre-fermented centrate led to successful performance in terms of Coulombic efficiency (95%), Coulombic recovery (80%), and COD-removal efficiency (85%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Comparative analysis of microbial community of novel lactic acid fermentation inoculated with different undefined mixed cultures.

    PubMed

    Liang, Shaobo; Gliniewicz, Karol; Mendes-Soares, Helena; Settles, Matthew L; Forney, Larry J; Coats, Erik R; McDonald, Armando G

    2015-03-01

    Three undefined mixed cultures (activated sludge) from different municipal wastewater treatment plants were used as seeds in a novel lactic acid fermentation process fed with potato peel waste (PPW). Anaerobic sequencing batch fermenters were run under identical conditions to produce predominantly lactic acid. Illumina sequencing was used to examine the 16S rRNA genes of bacteria in the three seeds and fermenters. Results showed that the structure of microbial communities of three seeds were different. All three fermentation products had unique community structures that were dominated (>96%) by species of the genus Lactobacillus, while members of this genus constituted <0.1% in seeds. The species of Lactobacillus sp. differed among the three fermentations. Results of this study suggest the structure of microbial communities in lactic acid fermentation of PPW with undefined mixed cultures were robust and resilient, which provided engineering prospects for the microbial utilization of carbohydrate wastes to produce lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Diversity and dynamics of lactic acid bacteria in Atole agrio, a traditional maize-based fermented beverage from South-Eastern Mexico, analysed by high throughput sequencing and culturing.

    PubMed

    Pérez-Cataluña, Alba; Elizaquível, Patricia; Carrasco, Purificación; Espinosa, Judith; Reyes, Dolores; Wacher, Carmen; Aznar, Rosa

    2018-03-01

    The purpose of this work was to analyse the diversity and dynamics of lactic acid bacteria (LAB) throughout the fermentation process in Atole agrio, a traditional maize based food of Mexican origin. Samples of different fermentation times were analysed using culture-dependent and -independent approaches. Identification of LAB isolates revealed the presence of members of the genera Pediococcus, Weissella, Lactobacillus, Leuconostoc and Lactococcus, and the predominance of Pediococcus pentosaceus and Weissella confusa in liquid and solid batches, respectively. High-throughput sequencing (HTS) of the 16S rRNA gene confirmed the predominance of Lactobacillaceae and Leuconostocaceae at the beginning of the process. In liquid fermentation Acetobacteraceae dominate after 4 h as pH decreased. In contrast, Leuconostocaceae dominated the solid fermentation except at 12 h that were overgrown by Acetobacteraceae. Regarding LAB genera, Lactobacillus dominated the liquid fermentation except at 12 h when Weissella, Lactococcus and Streptococcus were the most abundant. In solid fermentation Weissella predominated all through the process. HTS determined that Lactobacillus plantarum and W. confusa dominated in the liquid and solid batches, respectively. Two oligotypes have been identified for L. plantarum and W. confusa populations, differing in a single nucleotide position each. Only one of the oligotypes was detected among the isolates obtained from each species, the biological significance of which remains unclear.

  17. In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota.

    PubMed

    Guergoletto, Karla Bigetti; Costabile, Adele; Flores, Gema; Garcia, Sandra; Gibson, Glenn R

    2016-04-01

    This study was carried out to investigate the potential fermentation properties of juçara pulp, using pH-controlled anaerobic batch cultures reflective of the distal region of the human large intestine. Effects upon major groups of the microbiota were monitored over 24h incubations by fluorescence in situ hybridisation (FISH). Short-chain fatty acids (SCFA) were measured by HPLC. Phenolic compounds, during an in vitro simulated digestion and fermentation, were also analysed. Juçara pulp can modulate the intestinal microbiota in vitro, promoting changes in the relevant microbial populations and shifts in the production of SCFA. Fermentation of juçara pulp resulted in a significant increase in numbers of bifidobacteria after a 24h fermentation compared to a negative control. After in vitro digestion, 46% of total phenolic content still remained. This is the first study reporting the potential prebiotic effect of juçara pulp; however, human studies are necessary to prove its efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Applied in situ product recovery in ABE fermentation.

    PubMed

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davies, E Timothy; Harvey, Adam P

    2017-05-01

    The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid-liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed-batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single-stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563-579, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  19. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Pt. 63, Subpt... comply with the emission limitations in the following table: For each fed-batch fermenter producing yeast... duration of a batch.b. The emission limitation does not apply during the production of specialty yeast. ...

  20. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Pt. 63, Subpt... comply with the emission limitations in the following table: For each fed-batch fermenter producing yeast... duration of a batch.b. The emission limitation does not apply during the production of specialty yeast. ...

  1. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Pt. 63, Subpt... comply with the emission limitations in the following table: For each fed-batch fermenter producing yeast... duration of a batch.b. The emission limitation does not apply during the production of specialty yeast. ...

  2. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

    USDA-ARS?s Scientific Manuscript database

    One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...

  3. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation.

    PubMed

    Li, Yun-Cheng; Gou, Zi-Xi; Zhang, Ying; Xia, Zi-Yuan; Tang, Yue-Qin; Kida, Kenji

    Lignocellulose-derived inhibitors have negative effects on the ethanol fermentation capacity of Saccharomyces cerevisiae. In this study, the effects of eight typical inhibitors, including weak acids, furans, and phenols, on glucose and xylose co-fermentation of the recombinant xylose-fermenting flocculating industrial S. cerevisiae strain NAPX37 were evaluated by batch fermentation. Inhibition on glucose fermentation, not that on xylose fermentation, correlated with delayed cell growth. The weak acids and the phenols showed additive effects. The effect of inhibitors on glucose fermentation was as follows (from strongest to weakest): vanillin>phenol>syringaldehyde>5-HMF>furfural>levulinic acid>acetic acid>formic acid. The effect of inhibitors on xylose fermentation was as follows (from strongest to weakest): phenol>vanillin>syringaldehyde>furfural>5-HMF>formic acid>levulinic acid>acetic acid. The NAPX37 strain showed substantial tolerance to typical inhibitors and showed good fermentation characteristics, when a medium with inhibitor cocktail or rape straw hydrolysate was used. This research provides important clues for inhibitors tolerance of recombinant industrial xylose-fermenting S. cerevisiae. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Optimal quality control of bakers' yeast fed-batch culture using population dynamics.

    PubMed

    Dairaku, K; Izumoto, E; Morikawa, H; Shioya, S; Takamatsu, T

    1982-12-01

    An optimal quality control policy for the overall specific growth rate of bakers' yeast, which maximizes the fermentative activity in the making of bread, was obtained by direct searching based on the mathematical model proposed previously. The mathematical model had described the age distribution of bakers' yeast which had an essential relationship to the ability of fermentation in the making of bread. The mathematical model is a simple aging model with two periods: Nonbudding and budding. Based on the result obtained by direct searching, the quality control of bakers' yeast fed-batch culture was performed and confirmed to be experimentally valid.

  5. A neural network strategy for end-point optimization of batch processes.

    PubMed

    Krothapally, M; Palanki, S

    1999-01-01

    The traditional way of operating batch processes has been to utilize an open-loop "golden recipe". However, there can be substantial batch to batch variation in process conditions and this open-loop strategy can lead to non-optimal operation. In this paper, a new approach is presented for end-point optimization of batch processes by utilizing neural networks. This strategy involves the training of two neural networks; one to predict switching times and the other to predict the input profile in the singular region. This approach alleviates the computational problems associated with the classical Pontryagin's approach and the nonlinear programming approach. The efficacy of this scheme is illustrated via simulation of a fed-batch fermentation.

  6. Development of a GMP Phase III purification process for VB4-845, an immunotoxin expressed in E. coli using high cell density fermentation.

    PubMed

    Premsukh, Arjune; Lavoie, Joelle M; Cizeau, Jeannick; Entwistle, Joycelyn; MacDonald, Glen C

    2011-07-01

    VB4-845 is a recombinant immunotoxin comprised of an anti-epithelial cell adhesion molecule (EpCAM) scFv fused to a truncated form of the bacterial toxin, Pseudomonas exotoxin A. VB4-845, purified from TB fed-batch fermentation, showed clinical efficacy when administered locally to treat non-muscle invasive bladder cancer (NMIBC) and squamous cell carcinomas of the head and neck (SCCHN). Here, we describe the implementation of an Escherichia coli high cell density (HCD) cultivation and purification process for VB4-845. HCD cultivation was a prerequisite for achieving higher yields necessary for Phase III clinical trials and commercialization. Using this process, the VB4-845 titer in the supernatant was increased by 30-fold over the original TB fed-batch cultivation. To obtain clinical grade material, a process involving a five-step column purification procedure was implemented and led to an overall recovery of ∼ 40%. VB4-845 purity of >97% was achieved after the first three columns following the removal of low-molecular weight product-related impurities and aggregates. Endotoxins were effectively separated from VB4-845 on the Q-columns and by washing the Ni-column with a detergent buffer while host cell proteins were removed using ceramic hydroxyapatite. Comparability studies demonstrated that the purified product from the Phase III process was identical to the Phase II reference standard produced using TB fed-batch fermentation. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells.

    PubMed

    Chen, Jyh-Ping; Wu, Kuo-Wei; Fukuda, Hideki

    2008-03-01

    Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis alpha-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value.

  8. Bioethanol Production from Uncooked Raw Starch by Immobilized Surface-engineered Yeast Cells

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Ping; Wu, Kuo-Wei; Fukuda, Hideki

    Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value.

  9. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.

    PubMed

    Li, Yun-Cheng; Mitsumasu, Kanako; Gou, Zi-Xi; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Wu, Xiao-Lei; Akamatsu, Takashi; Taguchi, Hisataka; Kida, Kenji

    2016-02-01

    Industrial yeast strains with good xylose fermentation ability and inhibitor tolerance are important for economical lignocellulosic bioethanol production. The flocculating industrial Saccharomyces cerevisiae strain NAPX37, harboring the xylose reductase-xylitol dehydrogenase (XR-XDH)-based xylose metabolic pathway, displayed efficient xylose fermentation during batch and continuous fermentation. During batch fermentation, the xylose consumption rates at the first 36 h were similar (1.37 g/L/h) when the initial xylose concentrations were 50 and 75 g/L, indicating that xylose fermentation was not inhibited even when the xylose concentration was as high as 75 g/L. The presence of glucose, at concentrations of up to 25 g/L, did not affect xylose consumption rate at the first 36 h. Strain NAPX37 showed stable xylose fermentation capacity during continuous ethanol fermentation using xylose as the sole sugar, for almost 1 year. Fermentation remained stable at a dilution rate of 0.05/h, even though the xylose concentration in the feed was as high as 100 g/L. Aeration rate, xylose concentration, and MgSO4 concentration were found to affect xylose consumption and ethanol yield. When the xylose concentration in the feed was 75 g/L, a high xylose consumption rate of 6.62 g/L/h and an ethanol yield of 0.394 were achieved under an aeration rate of 0.1 vvm, dilution rate of 0.1/h, and 5 mM MgSO4. In addition, strain NAPX37 exhibited good tolerance to inhibitors such as weak acids, furans, and phenolics during xylose fermentation. These findings indicate that strain NAPX37 is a promising candidate for application in the industrial production of lignocellulosic bioethanol.

  10. Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid.

    PubMed

    Liang, Shaobo; Gliniewicz, Karol; Gerritsen, Alida T; McDonald, Armando G

    2016-05-01

    Mixed cultures fermentation can be used to convert organic wastes into various chemicals and fuels. This study examined the fermentation performance of four batch reactors fed with different agricultural (orange, banana, and potato (mechanical and steam)) peel wastes using mixed cultures, and monitored the interval variation of reactor microbial communities with 16S rRNA genes using Illumina sequencing. All four reactors produced similar chemical profile with lactic acid (LA) as dominant compound. Acetic acid and ethanol were also observed with small fractions. The Illumina sequencing results revealed the diversity of microbial community decreased during fermentation and a community of largely lactic acid producing bacteria dominated by species of Lactobacillus developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations.

    PubMed

    Kundiyana, Dimple K; Huhnke, Raymond L; Wilkins, Mark R

    2010-05-01

    Fermentation of syngas offers several advantages compared to chemical catalysts such as higher specificity of biocatalysts, lower energy costs, and higher carbon efficiency. Scale-up of syngas fermentation from a bench scale to a pilot scale fermentor is a critical step leading to commercialization. The primary objective of this research was to install and commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a 7.5-L fermentor to a pilot scale 100-L fermentor. Initial preparation and fermentations were conducted in strictly anaerobic conditions. The fermentation system was maintained in a batch mode with continuous syngas supply. The effect of anaerobic fermentation in a pilot scale fermentor was evaluated. In addition, the impact of improving the syngas mass transfer coefficient on the utilization and product formation was studied. Results indicate a six fold improvement in ethanol concentration compared to serum bottle fermentation, and formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137.

    PubMed

    Shen, Naikun; Wang, Qingyan; Zhu, Jing; Qin, Yan; Liao, Siming; Li, Yi; Zhu, Qixia; Jin, Yanling; Du, Liqin; Huang, Ribo

    2016-07-01

    Duckweed is potentially an ideal succinic acid (SA) feedstock due to its high proportion of starch and low lignin content. Pretreatment methods, substrate content and nitrogen source were investigated to enhance the bioconversion of duckweed to SA and to reduce the costs of production. Results showed that acid hydrolysis was an effective pretreatment method because of its high SA yield. The optimum substrate concentration was 140g/L. The optimum substrate concentration was 140g/L. Corn steep liquor powder could be considered a feasible and inexpensive alternative to yeast extract as a nitrogen source. Approximately 57.85g/L of SA was produced when batch fermentation was conducted in a 1.3L stirred bioreactor. Therefore, inexpensive duckweed can be a promising feedstock for the economical and efficient production of SA through fermentation by Actinobacillus succinogenes GXAS137. Copyright © 2016. Published by Elsevier Ltd.

  13. Metabolic Engineering toward Sustainable Production of Nylon-6.

    PubMed

    Turk, Stefan C H J; Kloosterman, Wigard P; Ninaber, Dennis K; Kolen, Karin P A M; Knutova, Julia; Suir, Erwin; Schürmann, Martin; Raemakers-Franken, Petronella C; Müller, Monika; de Wildeman, Stefaan M A; Raamsdonk, Leonie M; van der Pol, Ruud; Wu, Liang; Temudo, Margarida F; van der Hoeven, Rob A M; Akeroyd, Michiel; van der Stoel, Roland E; Noorman, Henk J; Bovenberg, Roel A L; Trefzer, Axel C

    2016-01-15

    Nylon-6 is a bulk polymer used for many applications. It consists of the non-natural building block 6-aminocaproic acid, the linear form of caprolactam. Via a retro-synthetic approach, two synthetic pathways were identified for the fermentative production of 6-aminocaproic acid. Both pathways require yet unreported novel biocatalytic steps. We demonstrated proof of these bioconversions by in vitro enzyme assays with a set of selected candidate proteins expressed in Escherichia coli. One of the biosynthetic pathways starts with 2-oxoglutarate and contains bioconversions of the ketoacid elongation pathway known from methanogenic archaea. This pathway was selected for implementation in E. coli and yielded 6-aminocaproic acid at levels up to 160 mg/L in lab-scale batch fermentations. The total amount of 6-aminocaproic acid and related intermediates generated by this pathway exceeded 2 g/L in lab-scale fed-batch fermentations, indicating its potential for further optimization toward large-scale sustainable production of nylon-6.

  14. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    PubMed

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production.

    PubMed

    Costa, M A S; Cerri, B C; Ceccato-Antonini, S R

    2018-01-01

    Fermentation is one of the most critical steps of the fuel ethanol production and it is directly influenced by the fermentation system, selected yeast, and bacterial contamination, especially from the genus Lactobacillus. To control the contamination, the industry applies antibiotics and biocides; however, these substances can result in an increased cost and environmental problems. The use of the acid treatment of cells (water-diluted sulphuric acid, adjusted to pH 2·0-2·5) between the fermentation cycles is not always effective to combat the bacterial contamination. In this context, this study aimed to evaluate the effect of ethanol addition to the acid treatment to control the bacterial growth in a fed-batch system with cell recycling, using the industrial yeast strain Saccharomyces cerevisiae PE-2. When only the acid treatment was used, the population of Lactobacillus fermentum had a 3-log reduction at the end of the sixth fermentation cycle; however, when 5% of ethanol was added to the acid solution, the viability of the bacterium was completely lost even after the first round of cell treatment. The acid treatment +5% ethanol was able to kill L. fermentum cells without affecting the ethanol yield and with a low residual sugar concentration in the fermented must. In Brazilian ethanol-producing industry, water-diluted sulphuric acid is used to treat the cell mass at low pH (2·0) between the fermentative cycles. This procedure reduces the number of Lactobacillus fermentum from 10 7 to 10 4  CFU per ml. However, the addition of 5% ethanol to the acid treatment causes the complete loss of bacterial cell viability in fed-batch fermentation with six cell recycles. The ethanol yield and yeast cell viability are not affected. These data indicate the feasibility of adding ethanol to the acid solution replacing the antibiotic use, offering a low cost and a low amount of residue in the biomass. © 2017 The Society for Applied Microbiology.

  16. Cardboard proportions and total solids contents as driving factors in dry co-fermentation of food waste.

    PubMed

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Bernet, Nicolas; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-01-01

    This study evaluated the influence of the co-substrate proportions (0-60% of cardboard in dry basis) and the initial total solid contents (20-40%) on the batch fermentation performance. Maximum hydrogen yields were obtained when mono-fermenting food waste at high solids contents (89mlH 2 ·gVS -1 ). The hydrogen yields were lower when increasing the proportions of cardboard. The lower hydrogen yields at higher proportions of cardboard were translated into higher yields of caproic acid (up to 70.1gCOD·kgCOD bio -1 ), produced by consumption of acetic acid and hydrogen. The highest substrate conversions were achieved at low proportions of cardboard, indicating a stabilization effect due to higher buffering capacities in co-fermentation. Clostridiales were predominant in all operational conditions. This study opens up new possibilities for using the cardboard proportions for controlling the production of high added-value products in dry co-fermentation of food waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity

    USDA-ARS?s Scientific Manuscript database

    Simultaneous acetone butanol ethanol (ABE) fermentation by Clostridium beijerinckii 260 and in situ product recovery was investigated using a vacuum process operated in two modes: continuous and intermittent. Integrated batch fermentations and ABE recovery were conducted at 37 deg C using a 14-L bio...

  18. In vitro fermentation of alternansucrase raffinose acceptor products by human gut bacteria

    USDA-ARS?s Scientific Manuscript database

    In this work, in vitro fermentation of alternansucrase raffinose acceptor products, previously fractionated according to their degree of polymerization (DP; from DP4 to DP10) was carried out using pH-controlled small scale batch cultures at 37ºC under anaerobic conditions with human faeces. Bifidog...

  19. Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate.

    PubMed

    Thuy, Nguyen Thi Huong; Kongkaew, Artit; Flood, Adrian; Boontawan, Apichat

    2017-06-01

    The fermentation of succinic acid from fresh cassava root using Actinobacillus succinogenes ATCC55618, and the recovery of the product using crystallization were investigated. Fresh cassava root is an ideal succinic acid feedstock due to its low price and high starch content. Saccharification was carried out using commercially available enzymes and diammonium phosphate was used as an inexpensive nitrogen source. Different fermentation modes were compared in terms of product yield and productivity. Results for fed-batch fermentations showed that a succinic acid titer of 151.44g/L, with yield and productivity of 1.51g SA /g glucose and 3.22g/L/h could be obtained. Seeded batch cooling crystallization was investigated after pre-treatment using nanofiltration. A succinic acid crystal purity of 99.35% with a relative crystallinity of 96.77% was obtained from high seeding experiments. These results indicated that fresh cassava roots could be an economically alternative feedstock for a high quality succinic acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hyper-production of butyric acid from delignified rice straw by a novel consolidated bioprocess.

    PubMed

    Chi, Xue; Li, Jianzheng; Wang, Xin; Zhang, Yafei; Antwi, Philip

    2018-04-01

    A novel consolidated bioprocess for hyper-production of butyric acid from delignified rice straw without exogenous enzymes involved was developed by co-fermentation of Clostridium thermocellum ATCC 27405 and C. thermobutyricum ATCC 49875. Feasibility of the consolidated bioprocess was approved by batch fermentations, with the optimum pH of 6.5. Fed-batch fermentation with a constant pH of 6.5 at 55 °C could enhance the butyric acid yield to a remarkable 33.9 g/L with a selectivity as high as 78%. Metabolic analysis of the co-culture indicated that sugars liberated by C. thermocellum ATCC 27405 were effectively converted to butyric acid by C. thermobutyricum ATCC 49875. Secondary metabolism of C. thermobutyricum ATCC 49875 also contributed to the hyper-production of butyric acid, resulting in the re-assimilation of by-products such as acetic acid and ethanol. This work provides a more effective fermentation process for butyric acid production from lignocellulosic biomass for future applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, CC; Dong, J; Yang, ST

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gasmore » stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. (C) 2013 Elsevier Ltd. All rights reserved.« less

  2. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process.

    PubMed

    Lu, Congcong; Dong, Jie; Yang, Shang-Tian

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.

    PubMed

    Liu, Zi-Yong; Yao, Xiu-Qing; Zhang, Quan; Liu, Zhen; Wang, Ze-Jie; Zhang, Yong-Yu; Li, Fu-Li

    2017-04-01

    Producing biobutanol from lignocellulosic biomass has shown promise to ultimately reduce greenhouse gases and alleviate the global energy crisis. However, because of the recalcitrance of a lignocellulosic biomass, a pretreatment of the substrate is needed which in many cases releases soluble lignin compounds (SLCs), which inhibit growth of butanol-producing clostridia. In this study, we found that SLCs changed the acetone/butanol ratio (A/B ratio) during butanol fermentation. The typical A/B molar ratio during Clostridium beijerinckii NCIMB 8052 batch fermentation with glucose as the carbon source is about 0.5. In the present study, the A/B molar ratio during batch fermentation with a lignocellulosic hydrolysate as the carbon source was 0.95 at the end of fermentation. Structural and redox potential changes of the SLCs were characterized before and after fermentation by using gas chromatography/mass spectrometry and electrochemical analyses, which indicated that some exogenous SLCs were involved in distributing electron flow to C. beijerinckii , leading to modulation of the redox balance. This was further demonstrated by the NADH/NAD + ratio and trxB gene expression profile assays at the onset of solventogenic growth. As a result, the A/B ratio of end products changed significantly during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source compared to glucose as the carbon source. These results revealed that SLCs not only inhibited cell growth but also modulated the A/B ratio during C. beijerinckii butanol fermentation. IMPORTANCE Bioconversion of lignocellulosic feedstocks to butanol involves pretreatment, during which hundreds of soluble lignin compounds (SLCs) form. Most of these SLCs inhibit growth of solvent-producing clostridia. However, the mechanism by which these compounds modulate electron flow in clostridia remains elusive. In this study, the results revealed that SLCs changed redox balance by producing oxidative stress and modulating electron flow as electron donors. Production of H 2 and acetone was stimulated, while butanol production remained unchanged, which led to a high A/B ratio during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source. These observations provide insight into utilizing C. beijerinckii to produce butanol from a lignocellulosic biomass. Copyright © 2017 American Society for Microbiology.

  4. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052

    PubMed Central

    Liu, Zi-Yong; Yao, Xiu-Qing; Zhang, Quan; Liu, Zhen; Wang, Ze-Jie; Zhang, Yong-Yu

    2017-01-01

    ABSTRACT Producing biobutanol from lignocellulosic biomass has shown promise to ultimately reduce greenhouse gases and alleviate the global energy crisis. However, because of the recalcitrance of a lignocellulosic biomass, a pretreatment of the substrate is needed which in many cases releases soluble lignin compounds (SLCs), which inhibit growth of butanol-producing clostridia. In this study, we found that SLCs changed the acetone/butanol ratio (A/B ratio) during butanol fermentation. The typical A/B molar ratio during Clostridium beijerinckii NCIMB 8052 batch fermentation with glucose as the carbon source is about 0.5. In the present study, the A/B molar ratio during batch fermentation with a lignocellulosic hydrolysate as the carbon source was 0.95 at the end of fermentation. Structural and redox potential changes of the SLCs were characterized before and after fermentation by using gas chromatography/mass spectrometry and electrochemical analyses, which indicated that some exogenous SLCs were involved in distributing electron flow to C. beijerinckii, leading to modulation of the redox balance. This was further demonstrated by the NADH/NAD+ ratio and trxB gene expression profile assays at the onset of solventogenic growth. As a result, the A/B ratio of end products changed significantly during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source compared to glucose as the carbon source. These results revealed that SLCs not only inhibited cell growth but also modulated the A/B ratio during C. beijerinckii butanol fermentation. IMPORTANCE Bioconversion of lignocellulosic feedstocks to butanol involves pretreatment, during which hundreds of soluble lignin compounds (SLCs) form. Most of these SLCs inhibit growth of solvent-producing clostridia. However, the mechanism by which these compounds modulate electron flow in clostridia remains elusive. In this study, the results revealed that SLCs changed redox balance by producing oxidative stress and modulating electron flow as electron donors. Production of H2 and acetone was stimulated, while butanol production remained unchanged, which led to a high A/B ratio during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source. These observations provide insight into utilizing C. beijerinckii to produce butanol from a lignocellulosic biomass. PMID:28130305

  5. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production

    PubMed Central

    Meersman, Esther; Steensels, Jan; Struyf, Nore; Paulus, Tinneke; Saels, Veerle; Mathawan, Melissa; Allegaert, Leen; Vrancken, Gino

    2015-01-01

    Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor. PMID:26590272

  6. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production.

    PubMed

    Meersman, Esther; Steensels, Jan; Struyf, Nore; Paulus, Tinneke; Saels, Veerle; Mathawan, Melissa; Allegaert, Leen; Vrancken, Gino; Verstrepen, Kevin J

    2016-01-15

    Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Comprehensive assessment of the L-lysine production process from fermentation of sugarcane molasses.

    PubMed

    Anaya-Reza, Omar; Lopez-Arenas, Teresa

    2017-07-01

    L-Lysine is an essential amino acid that can be produced by chemical processes from fossil raw materials, as well as by microbial fermentation, the latter being a more efficient and environmentally friendly procedure. In this work, the production process of L-lysine-HCl is studied using a systematic approach based on modeling and simulation, which supports decision making in the early stage of process design. The study considers two analysis stages: first, the dynamic analysis of the fermentation reactor, where the conversion of sugars from sugarcane molasses to L-lysine with a strain of Corynebacterium glutamicum is carried out. In this stage, the operation mode (either batch or fed batch) and operating conditions of the fermentation reactor are defined to reach the maximum technical criteria. Afterwards, the second analysis stage relates to the industrial production process of L-lysine-HCl, where the fermentation reactor, upstream processing, and downstream processing are included. In this stage, the influence of key parameters on the overall process performance is scrutinized through the evaluation of several technical, economic, and environmental criteria, to determine a profitable and sustainable design of the L-lysine production process. The main results show how the operating conditions, process design, and selection of evaluation criteria can influence in the conceptual design. The best plant design shows maximum product yield (0.31 g L-lysine/g glucose) and productivity (1.99 g/L/h), achieving 26.5% return on investment (ROI) with a payback period (PBP) of 3.8 years, decreasing water and energy consumption, and with a low potential environmental impact (PEI) index.

  8. Features of Saccharomyces cerevisiae as a culture starter for the production of the distilled sugar cane beverage, cachaça in Brazil.

    PubMed

    Campos, C R; Silva, C F; Dias, D R; Basso, L C; Amorim, H V; Schwan, R F

    2010-06-01

    To evaluate the dominance and persistence of strains of Saccharomyces cerevisiae during the process of sugar cane fermentation for the production of cachaça and to analyse the microbial compounds produced in each fermentative process. Three S. cerevisiae strains were evaluated during seven consecutive 24-h fermentation batches using recycled inocula. The UFLA CA 116 strain had the largest population of viable organisms, and the maximum population was achieved in the fourth batch after 96 h of fermentation. The UFLA CA 1162 and UFLA CA 1183 strains grew more slowly, and the maximum population was reached in the seventh batch. Molecular characterization of isolated yeast cells using PFGE (pulse field gel electrophoresis) revealed that more than 86% of the isolates corresponded to the initially inoculated yeast strain. The concentration of aldehydes, esters, methanol, alcohol and volatile acids in the final-aged beverages were within the legal limits. Cachaça produced by select yeast strains exhibits analytical differences. UFLA CA 1162 and UFLA CA 116 S. cerevisiae isolates can be considered the ideal strains for the artisanal production of cachaça in Brazil. The use of select yeast strains can improve the quality and productivity of cachaça production. Our findings are important for the appropriate monitoring of yeast during sugar cane fermentation. In addition, we demonstrate that UFLA CA 116 and UFLA CA 1162, the ideal yeast strains for cachaça production, are maintained at a high population density. The persistence of these yeast strains in the fermentation of sugar cane juice promotes environmental conditions that prevent or decrease bacterial contamination. Thus, the use of select yeast strains for the production of cachaça is a viable economic alternative to standardize the production of this beverage.

  9. Economic process to co-produce poly(ε-l-lysine) and poly(l-diaminopropionic acid) by a pH and dissolved oxygen control strategy.

    PubMed

    Xu, Zhaoxian; Feng, Xiaohai; Sun, Zhuzhen; Cao, Changhong; Li, Sha; Xu, Zheng; Xu, Zongqi; Bo, Fangfang; Xu, Hong

    2015-01-01

    This study tended to apply biorefinery of indigenous microbes to the fermentation of target-product generation through a novel control strategy. A novel strategy for co-producing two valuable homopoly(amino acid)s, poly(ε-l-lysine) (ε-PL) and poly(l-diaminopropionic acid) (PDAP), was developed by controlling pH and dissolved oxygen concentrations in Streptomyces albulus PD-1 fermentation. The production of ε-PL and PDAP got 29.4 and 9.6gL(-1), respectively, via fed-batch cultivation in a 5L bioreactor. What is more, the highest production yield (21.8%) of similar production systems was achieved by using this novel strategy. To consider the economic-feasibility, large-scale production in a 1t fermentor was also implemented, which would increase the gross profit of 54,243.5USD from one fed-batch bioprocess. This type of fermentation, which produces multiple commercial products from a unified process is attractive, because it will improve the utilization rate of raw materials, enhance production value and enrich product variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Development of a simple intensified fermentation strategy for growth of Magnetospirillum gryphiswaldense MSR-1: Physiological responses to changing environmental conditions.

    PubMed

    Fernández-Castané, Alfred; Li, Hong; Thomas, Owen R T; Overton, Tim W

    2018-06-01

    The development of a simple pH-stat fed-batch fermentation strategy for the production of Magnetospirillum gryphiswaldense MSR-1 and magnetosomes (nanoscale magnetic organelles with biotechnological applications) is described. Flow cytometry was exploited as a powerful analytical tool for process development, enabling rapid monitoring of cell morphology, physiology and polyhydroxyalkanoate production. The pH-stat fed-batch growth strategy was developed by varying the concentrations of the carbon source (lactic acid) and the alternative electron acceptor (sodium nitrate) in the feed. Growth conditions were optimized on the basis of biomass concentration, cellular magnetism (indicative of magnetosome production), and intracellular iron concentration. The highest biomass concentration and cellular iron content achieved were an optical density at 565 nm of 15.5 (equivalent to 4.2 g DCW·L -1 ) and 33.1 mg iron·g -1 DCW, respectively. This study demonstrates the importance of analyzing bacterial physiology during fermentation development and will potentially aid the industrial production of magnetosomes, which can be used in a wide range of biotechnology and healthcare applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Unusal pattern of product inhibition: batch acetic acid fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behaviormore » was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.« less

  12. Improvement of ε-poly-L-lysine production through seed stage development based on in situ pH monitoring.

    PubMed

    Sun, Qi-Xing; Chen, Xu-Sheng; Ren, Xi-Dong; Mao, Zhong-Gui

    2015-01-01

    Nissin, natamycin, and ε-poly-L-lysine (ε-PL) are three safe, microbial-produced food preservatives used today in the food industry. However, current industrial production of ε-PL is only performed in several countries. In order to realize large-scale ε-PL production by fermentation, the effects of seed stage on cell growth and ε-PL production were investigated by monitoring of pH in situ in a 5-L laboratory-scale fermenter. A significant increase in ε-PL production in fed-batch fermentation by Streptomyces sp. M-Z18 was achieved, at 48.9 g/L, through the optimization of several factors associated with seed stage, including spore pretreatment, inoculum age, and inoculum level. Compared with conventional fermentation approaches using 24-h-old shake-flask seed broth as inoculum, the maximum ε-PL concentration and productivity were enhanced by 32.3 and 36.6 %, respectively. The effect of optimized inoculum conditions on ε-PL production on a large scale was evaluated using a 50-L pilot-scale fermenter, attaining a maximum ε-PL production of 36.22 g/L in fed-batch fermentation, constituting the first report of ε-PL production at pilot scale. These results will be helpful for efficient ε-PL production by Streptomyces at pilot and plant scales.

  13. Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes-The importance of evaporation effects.

    PubMed

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V

    2017-03-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. Biotechnol. Bioeng. 2017;114: 589-599. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii.

    PubMed

    De Swaaf, Martin E; Sijtsma, Lolke; Pronk, Jack T

    2003-03-20

    The heterotrophic marine alga Crypthecodinium cohnii is known to produce docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications, during batch cultivation on complex media containing sea salt, yeast extract, and glucose. In the present study, fed-batch cultivation was studied as an alternative fermentation strategy for DHA production. Glucose and acetic acid were compared as carbon sources. For both substrates, the feed rate was adapted to the maximum specific consumption rate of C. cohnii. In glucose-grown cultures, this was done by maintaining a significant glucose concentration (between 5 and 20 g/L) throughout fermentation. In acetic acid-grown cultures, the medium feed was automatically controlled via the culture pH. A feed consisting of acetic acid (50% w/w) resulted in a higher overall volumetric productivity of DHA (r(DHA)) than a feed consisting of 50% (w/v) glucose (38 and 14 mg/L/h, respectively). The r(DHA) was further increased to 48 mg/L/h using a feed consisting of pure acetic acid. The latter fermentation strategy resulted in final concentrations of 109 g/L dry biomass, 61 g/L lipid, and 19 g/L DHA. These are the highest biomass, lipid, and DHA concentrations reported to date for a heterotrophic alga. Vigorous mixing was required to sustain aerobic conditions during high-cell-density cultivation. This was complicated by culture viscosity, which resulted from the production of viscous extracellular polysaccharides. These may present a problem for large-scale industrial production of DHA. Addition of a commercial polysaccharide-hydrolase preparation could decrease the viscosity of the culture and the required stirring. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 666-672, 2003.

  15. Design of a lamella settler for biomass recycling in continuous ethanol fermentation process.

    PubMed

    Tabera, J; Iznaola, M A

    1989-04-20

    The design and application of a settler to a continuous fermentation process with yeast recycle were studied. The compact lamella-type settler was chosen to avoid large volumes associated with conventional settling tanks. A rationale of the design method is covered. The sedimentation area was determined by classical batch settling rate tests and sedimentation capacity calculation. Limitations on the residence time of the microorganisms in the settler, rather than sludge thickening considerations, was the approach employed for volume calculation. Fermentation rate tests with yeast after different sedimentation periods were carried out to define a suitable residence time. Continuous cell recycle fermentation runs, performed with the old and new sedimentation devices, show that lamella settler improves biomass recycling efficiency, being the process able to operate at higher sugar concentrations and faster dilution rates.

  16. Ethanol fermentation from molasses at high temperature by thermotolerant yeast Kluyveromyces sp. IIPE453 and energy assessment for recovery.

    PubMed

    Dasgupta, Diptarka; Ghosh, Prasenjit; Ghosh, Debashish; Suman, Sunil Kumar; Khan, Rashmi; Agrawal, Deepti; Adhikari, Dilip K

    2014-10-01

    High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction-azeotropic distillation technique for the same.

  17. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    PubMed

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the cellulosic ethanol industry.

  18. Mechanisms and kinetics of cellulose fermentation for protein production

    NASA Technical Reports Server (NTRS)

    Dunlap, C. A.

    1971-01-01

    The development of a process (and ancillary processing and analytical techniques) to produce bacterial single-cell protein of good nutritional quality from waste cellulose is discussed. A fermentation pilot plant and laboratory were developed and have been in operation for about two years. Single-cell protein (SCP) can be produced from sugarcane bagasse--a typical agricultural cellulosic waste. The optimization and understanding of this process and its controlling variables are examined. Both batch and continuous fermentation runs have been made under controlled conditions in the 535 liter pilot plant vessel and in the laboratory 14-liter fermenters.

  19. Insights Gained from the Dehalococcoides ethenogenes Strain 195’s Transcriptome Responding to a Wide Range of Respiration Rates and Substrate Types

    DTIC Science & Technology

    2012-04-01

    fermented yeast , pure hydrogen, or endogenous biomass decay). When similarly respiring (~120 ?eeq PCE/(L-hr)) batch and PSS cultures were contrasted, the...electron equivalence (eeq) basis), and electron donor type (butyrate, lactate, yeast extract, fermented yeast , pure hydrogen, or endogenous biomass...acceptor ratios (0.7 to 17 on an electron equivalence (eeq) basis), and 12 electron donor type (butyrate, lactate, yeast extract, fermented yeast , pure

  20. Effect of Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilis AX101.

    PubMed

    Gyamerah, M; Ampaw-Asiedu, M; Mackey, J; Menezes, B; Woldesenbet, S

    2018-06-01

    The potential of large-scale lignocellulosic biomass hydrolysis to fermentable sugars using ionic liquids has increased interest in this green chemistry route to fermentation for fuel-ethanol production. The ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride compared to other reported ionic liquids has the advantage of hydrolysing lignocellulosic biomass to reducing sugars at catalytic concentrations (≤0·032 mol l -1 ) in a single step. However, effects of this ionic liquid on co-fermentation of glucose, xylose and arabinose to ethanol by recombinant Zymomonas mobilisAX101 has not been studied. Authentic glucose, xylose and arabinose were used to formulate fermentation media at varying catalytic 1-(1-propylsulfonic)-3-methylimidazolium chloride concentrations for batch co-fermentation of the sugars using Z. mobilisAX101. The results showed that at 0·008, 0·016 and 0·032 mol l -1 ionic liquid in the culture medium, cell growth decreased by 10, 27 and 67% respectively compared to the control. Ethanol yields were 62·6, 61·8, 50·5 and 23·1% for the control, 0·008, 0·016 and 0·032 mol l -1 ionic liquid respectively. The results indicate that lignocellulosic biomass hydrolysed using 0·008 mol l -1 of 1-(1-propylsulfonic)-3-methylimidazolium chloride would eliminate an additional separation step and provide a ready to use fermentation substrate. This is the first reported study of the effect of the Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilisAX101 in batch culture. Growth on and co-fermentation of the sugars by Z. mobilisAX 101 with no significant inhibition by the ionic liquid at the same catalytic amounts of 0·008 mol l -1 used to hydrolyse lignocellulosic biomass to reducing sugars overcome two major hurdles that adversely affect the process economics of large-scale industrial cellulosic fuel ethanol production; the energy-intensive hydrolysis and ionic liquid separation steps. © 2018 The Society for Applied Microbiology.

  1. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  2. Continuous energy recovery and nutrients removal from molasses wastewater by synergistic system of dark fermentation and algal culture under various fermentation types.

    PubMed

    Ren, Hong-Yu; Kong, Fanying; Ma, Jun; Zhao, Lei; Xie, Guo-Jun; Xing, Defeng; Guo, Wan-Qian; Liu, Bing-Feng; Ren, Nan-Qi

    2018-03-01

    Synergistic system of dark fermentation and algal culture was initially operated at batch mode to investigate the energy production and nutrients removal from molasses wastewater in butyrate-type, ethanol-type and propionate-type fermentations. Butyrate-type fermentation was the most appropriate fermentation type for the synergistic system and exhibited the accumulative hydrogen volume of 658.3 mL L -1 and hydrogen yield of 131.7 mL g -1 COD. By-products from dark fermentation (mainly acetate and butyrate) were further used to cultivate oleaginous microalgae. The maximum algal biomass and lipid content reached 1.01 g L -1 and 38.5%, respectively. In continuous operation, the synergistic system was stable and efficient, and energy production increased from 8.77 kJ L -1  d -1 (dark fermentation) to 17.3 kJ L -1  d -1 (synergistic system). Total COD, TN and TP removal efficiencies in the synergistic system reached 91.1%, 89.1% and 85.7%, respectively. This study shows the potential of the synergistic system in energy recovery and wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs: (II). Decolorization of dyes by laccase containing fermentation broth with or without self-immobilized mycelia.

    PubMed

    Lin, Jian-Ping; Lian, Wei; Xia, Li-Ming; Cen, Pei-Lin

    2003-01-01

    The capability of decolorization for commercial dyes by Coriolus versicolor fermentation broth containing laccase with or without immobilized mycelium was evaluated. With cell-free fermentation broth containing laccase, high decolorization ratio was achieved foracid orange 7, but not for the other dyes concerned. The immobilized mycelium was proved to be more efficient than the cell-free system. All the four dyestuffs studied were found being decolourized with certain extent by immobilized mycelium. The repeated-batch decolorization was carried out with satisfactory results. The experimental data showed that the continuous decolorization of wastewater from a printing and dyeing industry was possible by using the self-immobilized C. versicolor.

  4. Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.

    PubMed

    Gray, Steven R; Peretti, Steven W; Lamb, H Henry

    2013-06-01

    In situ Raman spectroscopy was employed for real-time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm(-1) C-C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high- and low-concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two-set calibration models for starch (R(2)  = 0.998, percent error = 2.5%) and ethanol (R(2)  = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS-based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman-based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Copyright © 2013 Wiley Periodicals, Inc.

  5. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    PubMed

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh. Copyright © 2016. Published by Elsevier Ltd.

  6. High-solid mesophilic methane fermentation of food waste with an emphasis on Iron, Cobalt, and Nickel requirements.

    PubMed

    Qiang, Hong; Lang, Dong-Li; Li, Yu-You

    2012-01-01

    The effect of trace metals on the mesophilic methane fermentation of high-solid food waste was investigated using both batch and continuous experiments. The continuous experiment was conducted by using a CSTR-type reactor with three run. During the first run, the HRT of the reactor was stepwise decreased from 100 days to 30 days. From operation day 50, the reactor efficiency deteriorated due to the lack of trace metals. The batch experiment showed that iron, cobalt, and nickel combinations had a significant effect on food waste. According to the results of the batch experiment, a combination of iron, cobalt, and nickel was added into the CSTR reactor by two different methods at run II, and III. Based on experimental results and theoretical calculations, the most suitable values of Fe/COD, Co/COD, and Ni/COD in the substrate were identified as 200, 6.0, and 5.7 mg/kg COD, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Fermentation of Agave tequilana juice by Kloeckera africana: influence of amino-acid supplementations.

    PubMed

    Valle-Rodríguez, Juan Octavio; Hernández-Cortés, Guillermo; Córdova, Jesús; Estarrón-Espinosa, Mirna; Díaz-Montaño, Dulce María

    2012-02-01

    This study aimed to improve the fermentation efficiency of Kloeckera africana K1, in tequila fermentations. We investigated organic and inorganic nitrogen source requirements in continuous K. africana fermentations fed with Agave tequilana juice. The addition of a mixture of 20 amino-acids greatly improved the fermentation efficiency of this yeast, increasing the consumption of reducing sugars and production of ethanol, compared with fermentations supplemented with ammonium sulfate. The preference of K. africana for each of the 20 amino-acids was further determined in batch fermentations and we found that asparagine supplementation increased K. africana biomass production, reducing sugar consumption and ethanol production (by 30, 36.7 and 45%, respectively) over fermentations supplemented with ammonium sulfate. Therefore, asparagine appears to overcome K. africana nutritional limitation in Agave juice. Surprisingly, K. africana produced a high concentration of ethanol. This contrasts to poor ethanol productivities reported for other non-Saccharomyces yeasts indicating a relatively high ethanol tolerance for the K. africana K1 strain. Kloeckera spp. strains are known to synthesize a wide variety of volatile compounds and we have shown that amino-acid supplements influenced the synthesis by K. africana of important metabolites involved in the bouquet of tequila. The findings of this study have revealed important nutritional limitations of non-Saccharomyces yeasts fermenting Agave tequilana juice, and have highlighted the potential of K. africana in tequila production processes.

  8. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation.

    PubMed

    Niessen, J; Schröder, U; Harnisch, F; Scholz, F

    2005-01-01

    To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.

  9. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    PubMed Central

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-01-01

    Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae. PMID:18304329

  10. Switching the mode of sucrose utilization by Saccharomyces cerevisiae.

    PubMed

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-02-27

    Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.

  11. Plasmid fermentation process for DNA immunization applications.

    PubMed

    Carnes, Aaron E; Williams, James A

    2014-01-01

    Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.

  12. Optimized batch fermentation of cheese whey. Supplemented feedlot waste filtrate to produce a nitrogen-rich feed supplement for ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, M.D.; Reddy, C.A.

    1986-03-01

    An optimized batch fermentation process for the conversion of cattle feedlot waste filtrate, supplemented with cheese whey, into a nitrogenous feed supplement for ruminants is described. Feedlot waste filtrate supplemented with cheese whey (5 g of whey per 100 ml) was fermented by the indigenous microbial flora in the feedlot waste filtrate. Ammonium hydroxide was added to the fermentation not only to maintain a constant pH but also to produce ammonium salts of organic acids, which have been shown to be valuable as nitrogenous feed supplements for ruminants. The utilization of substrate carbohydrate at pH 7.0 and 43 degrees Cmore » was greater than 94% within 8 h, and the crude protein (total N X 6.25) content of the product was 70 to 78% (dry weight basis). About 66 to 69% of the crude protein was in the form of ammonia nitrogen. Lactate and acetate were the predominant acids during the first 6 to 8 hours of fermentation, but after 24 hours, appreciable levels of propionate and butyrate were also present. The rate of fermentation and the crude protein content of the product were optimal at pH 7.0 and decreased at a lower pH. For example, fermentation did not go to completion even after 24 hours at pH 4.5. Fermentation proceeded optimally at 43 degrees C, less so at 37 degrees C, and considerably more slowly at 23 and 50 degrees C. Concentrations of up to 15 g of cheese whey per 100 ml of feedlot waste filtrate were fermented efficiently. Fermentation of feedlot waste filtrate obtained from animals fed low silage-high grain, high silage-low grain, or dairy rations resulted in similar products in terms of total nitrogen and organic acid composition.« less

  13. Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S.

    PubMed

    Qiu, Yibin; Sha, Yuanyuan; Zhang, Yatao; Xu, Zongqi; Li, Sha; Lei, Peng; Xu, Zheng; Feng, Xiaohai; Xu, Hong

    2017-09-01

    This study aimed to develop non-food fermentation for the cost-effective production of poly-(γ-glutamic acid) (γ-PGA) using a novel strain of Bacillus amyloliquefaciens NX-2S. The new isolate assimilated inulin more efficiently than other carbohydrates from Jerusalem artichoke, without hydrolytic treatment. To investigate the effect of inulin on γ-PGA production, the transcript levels of γ-PGA synthetase genes (pgsB, pgsC, pgsA), regulatory genes (comA, degQ, degS), and the glutamic acid biosynthesis gene (glnA) were analyzed; inulin addition upregulated these key genes. Without exogenous glutamate, strain NX-2S could produce 6.85±0.22g/L of γ-PGA during fermentation. Exogenous glutamate greatly enhances the γ-PGA yield (39.4±0.38g/L) and productivity (0.43±0.05g/L/h) in batch fermentation. Our study revealed a potential method of non-food fermentation to produce high-value products. Copyright © 2017. Published by Elsevier Ltd.

  14. Enhanced Fermentative Hydrogen and Methane Production from an Inhibitory Fruit-Flavored Medium with Membrane-Encapsulated Cells

    PubMed Central

    Akinbomi, Julius; Wikandari, Rachman; Taherzadeh, Mohammad J.

    2015-01-01

    This study focused on the possibility of improving fermentative hydrogen and methane production from an inhibitory fruit-flavored medium using polyvinylidene fluoride (PVDF) membrane-encapsulated cells. Hexanal, myrcene, and octanol, which are naturally produced in fruits such as apple, grape, mango, orange, strawberry, and plum, were investigated. Batch and semi-continuous fermentation processes at 55 °C were carried out. Presence of 5 g/L of myrcene, octanol, and hexanal resulted in no methane formation by fermenting bacteria, while encapsulated cells in the membranes resulted in successful fermentation with 182, 111, and 150 mL/g COD of methane, respectively. The flavor inhibitions were not serious on hydrogen-producing bacteria. With free cells in the presence of 5 g/L (final concentration) of hexanal-, myrcene-, and octanol-flavored media, average daily yields of 68, 133, and 88 mL/g COD of hydrogen, respectively, were obtained. However, cell encapsulation further improved these hydrogen yields to 189, 179, and 198 mL/g COD. The results from this study indicate that the yields of fermentative hydrogen and methane productions from an inhibitory medium could be improved using encapsulated cells. PMID:26501329

  15. A novel cleaner production process of citric acid by recycling its treated wastewater.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-07-01

    In this study, a novel cleaner production process of citric acid was proposed to completely solve the problem of wastewater management in citric acid industry. In the process, wastewater from citric acid fermentation was used to produce methane through anaerobic digestion and then the anaerobic digestion effluent was further treated with air stripping and electrodialysis before recycled as process water for the later citric acid fermentation. This proposed process was performed for 10 batches and the average citric acid production in recycling batches was 142.4±2.1g/L which was comparable to that with tap water (141.6g/L). Anaerobic digestion was also efficient and stable in operation. The average chemical oxygen demand (COD) removal rate was 95.1±1.2% and methane yield approached to 297.7±19.8mL/g TCODremoved. In conclusion, this novel process minimized the wastewater discharge and achieved the cleaner production in citric acid industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A membrane-integrated fermentation reactor system: its effects in reducing the amount of sub-raw materials for D-lactic acid continuous fermentation by Sporolactobacillus laevolacticus.

    PubMed

    Mimitsuka, Takashi; Na, Kyungsu; Morita, Ken; Sawai, Hideki; Minegishi, Shinichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu

    2012-01-01

    Continuous fermentation by retaining cells with a membrane-integrated fermentation reactor (MFR) system was found to reduce the amount of supplied sub-raw material. If the amount of sub-raw material can be reduced, continuous fermentation with the MFR system should become a more attractive process for industrialization, due to decreased material costs and loads during the refinement process. Our findings indicate that the production rate decreased when the amount of the sub-raw material was reduced in batch fermentation, but did not decrease during continuous fermentation with Sporolactobacillus laevolacticus. Moreover, continuous fermentation with a reduced amount of sub-raw material resulted in a productivity of 11.2 g/L/h over 800 h. In addition, the index of industrial process applicability used in the MFR system increased by 6.3-fold as compared with the conventional membrane-based fermentation reactor previously reported, suggesting a potential for the industrialization of this D-lactic acid continuous fermentation process.

  17. Effect of fermented wastewaters from butter production on phosphates removal in a sequencing batch reactor.

    PubMed

    Janczukowicz, Wojciech; Rodziewicz, Joanna; Thornton, Arthur; Czaplicka, Kamila

    2012-09-01

    This study determined the potential for fermented wastewaters from butter production plant to act as a carbon source to facilitate phosphates removal. Synthetic dairy wastewaters were treated using SBR, with doses of fermented wastewaters. An increase in the fermented wastewater doses were found to improve the effluent quality in respect of phosphates and nitrates. The lowest concentrations of phosphate and nitrates, respectively 0.10 ± 0.04 mg PO(4)-PL(-1) and 1.03 ± 0.22 mg NO(3)-NL(-1), were noted in the effluent from the reactor fed with fermented wastewaters in a dose of 0.25 L d(-1) per 0.45 L d(-1) of wastewaters fed to the reactor. In the case of the two highest doses, an increase in effluent COD was stated. The higher effectiveness resulted from the fact that the introduction of fermented wastewaters caused an increase in the easily-available carbon compounds content and the predominance of acetic acid amongst VFAs available to dephosphatating and denitrifying bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Detection of biogenic amines and microbial safety assessment of novel Meju fermented with addition of Nelumbo nucifera, Ginkgo biloba, and Allium sativum.

    PubMed

    Shukla, Shruti; Lee, Jong Suk; Bajpai, Vivek K; Nile, Shivraj Hariram; Huh, Yun Suk; Han, Young-Kyu; Kim, Myunghee

    2018-04-10

    Meju, a cooked and fermented soy bean based food product, is used as a major ingredient in Korean traditional fermented foods such as Doenjang. We developed a novel type of Meju using single and combined extracts of Allium sativum (garlic clove), Nelumbo nucifera (lotus leaves), and Ginkgo biloba (ginkgo leaves) at 1% and 10% concentrations to improve the safety of Meju-based fermented products. Biogenic amines (BAs) in protein-rich fermented food products pose considerable toxical risks. The objective of this study was to investigate the effects of adding selected plant extracts in Meju samples during fermentation. Nine BAs, including tryptamine, 2-phenylethylamine, putrescine, cadaverine, agmatine, histamine, tyramine, spermidine and spermine, were isolated from Meju samples after sample derivatization with dansyl chloride and analyzed by high performance liquid chromatography. As a result, all tested Meju samples with added plant extracts showed total BAs levels in the range of 20.12 ± 2.03 to 118.42 ± 10.68 mg/100 g, which were below the safety limit set by various regulatory authorities (USFDA/KFDA/EFSA). However, among all tested Meju samples, LOM10 (Meju fermented with Nelumbo nucifera at 10% concentration) showed higher levels of BAs content than others either due to batch-to-batch variability or reduced beneficial microorganisms and/or due to increase in BA forming microorganisms. Also, none of the samples showed the aflatoxin level above the detection limit. Furthermore, all the tested Meju samples improved microbial safety as confirmed by the complete absence of Salmonella species and Staphylococcus aureus. However, some of the Meju samples showed the presence of coliforms (in range of 1.6 × 10 0 -1.1 × 10 3  CFU/g), which is under regulatory limits. These results suggested that the use of plant extracts in Meju during fermentation have potential to improve microbial and toxicological safety of Meju products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Improved fed-batch production of high-purity PHB (poly-3 hydroxy butyrate) by Cupriavidus necator (MTCC 1472) from sucrose-based cheap substrates under response surface-optimized conditions.

    PubMed

    Dey, Pinaki; Rangarajan, Vivek

    2017-10-01

    Experimental investigations were carried out for Cupriavidus necator (MTCC 1472)-based improved production of poly-3 hydroxy butyrate (PHB) through induced nitrogen limiting fed-batch cultivation strategies. Initially Plackett-Burman design and response surface methodology were implemented to optimize most influencing process parameters. With optimized process parameter values, continuous feeding strategies ware applied in a 5-l fermenter with table sugar concentration of 100 g/l, nitrogen concentration of 0.12 g/l for fed-batch fermentation with varying dilution rates of 0.02 and 0.046 1/h. To get enriched production of PHB, concentration of the sugar was further increased to 150 and 200 g/l in feeding. Maximum concentrations of PHB achieved were 22.35 and 23.07 g/l at those dilution rates when sugar concentration maintains at 200 g/l in feeding. At maximum concentration of PHB (23.07 g/l), productivity of 0.58 g/l h was achieved with maximum PHB accumulation efficiency up to 64% of the dry weight of biomass. High purity of PHB, close to medical grade was achieved after surfactant hypochlorite extraction method, and it was further confirmed by SEM, EDX, and XRD studies.

  20. Production of exopolysaccharides by Acinetobacter strains in a controlled fed-batch fermentation process using soap stock oil (SSO) as carbon source.

    PubMed

    Shabtai, Y

    1990-04-01

    The production of two extracellular capsular heteropolysaccharides by two different Acinetobacter strains has been studied in separate controlled fermentation processes with a view to their industrial applications as specific dispersing agents. The first, emulsan, is an extracellular polyanionic amphipathic heteropolysaccharide (MW 10(6) D) made by A. calcoaceticus RAG-1. It forms and stabilizes oil in water emulsions. The other, biodispersan (PS-A2), is another extracellular zwitterionic heteropolysaccharide (MW 51 kD) made by A. calcoaceticus A2. This polysaccharide disperses big solid limestone granules forming micron-size water suspension. Both polysaccharides are synthesized within the cells, exported to their outer surface to form an extracellular cell-associated capsule and released subsequently into the growth medium. The polymers were produced in a computer-controlled fed-batch intensively aerated fermentation process. A commercially available and cheap fatty acids mixture (soap stock oil) served as the carbon source, and was fed in coordination with the required nitrogen. The coordinated feed of carbon and nitrogen was operated on the basis of two metabolic correlations: The first correlation related the cell protein produced and the ammonium nitrogen consumed with the outcoming coeffients of 24 and 21 mM NH3/g protein for the emulsan and the biodispersan fermentations respectively. The second correlation linked the consumption of the fatty acids with that of the nitrogen source dictating the appropriate C/N ratio of the feed into the operating fermentor. These ratios were 7.7 g C/g N for the emulsan fermentation and 8.5 gC/g N in the case of the biodispersan production process.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Jung, Hwi-Min; Lee, Jinwon; Oh, Min-Kyu

    2015-01-01

    Due to its cost-effectiveness and rich sugar composition, sugarcane molasses is considered to be a promising carbon source for biorefinery. However, the sugar mixture in sugarcane molasses is not consumed as efficiently as glucose in microbial fermentation due to complex interactions among their utilizing pathways, such as carbon catabolite repression (CCR). In this study, 2,3-butanediol-producing Enterobacter aerogenes was engineered to alleviate CCR and improve sugar utilization by modulating its carbon preference. The gene encoding catabolite repressor/activator (Cra) was deleted in the genome of E. aerogenes to increase the fructose consumption rate. However, the deletion mutation repressed sucrose utilization, resulting in the accumulation of sucrose in the fermentation medium. Cra regulation on expression of the scrAB operon involved in sucrose catabolism was verified by reverse transcription and real-time PCR, and the efficiency of sucrose utilization was restored by disrupting the scrR gene and overexpressing the scrAB operon. In addition, overexpression of the ptsG gene involved in glucose utilization enhanced the glucose preference among mixed sugars, which relieved glucose accumulation in fed-batch fermentation. In fed-batch fermentation using sugarcane molasses, the maximum titer of 2,3-butanediol production by the mutant reached 140.0 g/L at 54 h, which was by far the highest titer of 2,3-butanediol with E. aerogenes achieved through genetic engineering. We have developed genetically engineered E. aerogenes as a 2,3-butanediol producer that efficiently utilizes sugarcane molasses. The fermentation efficiency was dramatically improved by the alleviation of CCR and modulation of carbon preference. These results offer a metabolic engineering approach for achieving highly efficient utilization of mixed sugars for the biorefinery industry.

  2. Novel technologies for enhanced production of ethanol: impact of high productivity on process economics

    USDA-ARS?s Scientific Manuscript database

    In these studies Saccharomyces cerevisiae NRRL Y-566 was used to produce ethanol from a concentrated glucose (250-300 gL-1) solution. When fermentation media were supplemented with CaCO3 and CaCl2, ethanol concentrations, yield, and productivities were improved significantly. In control batch fermen...

  3. Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control

    USDA-ARS?s Scientific Manuscript database

    A systematic study was performed to demonstrate the impact of methanol (MeOH) on poly(3-hydroxybutyrate) (PHB) synthesis and molecular weight (MW) control. Glycerine (init. conc. = 1.0%; w/v), was used as the primary carbon source in batch-culture fermentations with varying concentrations (0 to 0.85...

  4. Impact of partial nitritation degree and C/N ratio on simultaneous Sludge Fermentation, Denitrification and Anammox process.

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Yuan, Yue; Zhao, Mengyue; Wang, Shuying

    2016-11-01

    This study presents a novel process (i.e. PN/SFDA) to remove nitrogen from low C/N domestic wastewater. The process mainly involves two reactors, a pre-Sequencing Batch Reactor for partial nitritation (termed as PN-SBR) and an anoxic reactor for integrated Denitrification and Anammox with carbon sources produced from Sludge Fermentation (termed as SFDA). During long-term Runs, NO2(-)/NH4(+) ratio (i.e. NO2(-)-N/NH4(+)-N calculated by mole) in the PN-SBR effluent was gradually increased from 0.2 to 37 by extending aerobic duration, meaning that partial nitritation turning to full nitritation could be achieved. Impact of partial nitritation degree on SFDA process was investigated and the result showed that, NO2(-)/NH4(+) ratios between 2 and 10 were appropriate for the co-existence of denitrification and anammox together in the SFDA reactor, and denitrification instead of anammox contributed greater for nitrogen removal. Further batch tests indicated that anammox collaborated well with denitrification at low C/N (1.0 in this study). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor.

    PubMed

    Li, Chong; Gao, Shi; Yang, Xiaofeng; Lin, Carol Sze Ki

    2018-02-01

    In situ fibrous bed bioreactor (isFBB) for efficient succinic acid (SA) production by Yarrowia lipolytica was firstly developed in our former study. In this study, agricultural residues including wheat straw, corn stalk and sugarcane bagasse were investigated for the improvement of isFBB, and sugarcane bagasse was demonstrated to be the best immobilization material. With crude glycerol as the sole carbon source, optimization for isFBB batch fermentation was carried out. Under the optimal conditions of 20g sugarcane bagasse as immobilization material, 120gL -1 crude glycerol as carbon source and 4Lmin -1 of aeration rate, the resultant SA concentration was 53.6gL -1 with an average productivity of 1.45gL -1 h -1 and a SA yield of 0.45gg -1 . By feeding crude glycerol, SA titer up to 209.7gL -1 was obtained from fed batch fermentation, which was the highest value that ever reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85.

    PubMed

    Li, Qiang; Siles, Jose A; Thompson, Ian P

    2010-10-01

    Succinic acid is a platform molecule that has recently generated considerable interests. Production of succinate from waste orange peel and wheat straw by consolidated bioprocessing that combines cellulose hydrolysis and sugar fermentation, using a cellulolytic bacterium, Fibrobacter succinogenes S85, was studied. Orange peel contains D-limonene, which is a well-known antibacterial agent. Its effects on batch cultures of F. succinogenes S85 were examined. The minimal concentrations of limonene found to inhibit succinate and acetate generation and bacterial growth were 0.01%, 0.1%, and 0.06% (v/v), respectively. Both pre-treated orange peel by steam distillation to remove D: -limonene and intact wheat straw were used as feedstocks. Increasing the substrate concentrations of both feedstocks, from 5 to 60 g/L, elevated succinate concentration and productivity but lowered the yield. In addition, pre-treated orange peel generated greater succinate productivities than wheat straw but had similar resultant titres. The greatest succinate titres were 1.9 and 2.0 g/L for pre-treated orange peel and wheat straw, respectively. This work demonstrated that agricultural waste such as wheat straw and orange peel can be biotransformed to succinic acid by a one-step consolidated bioprocessing. Measures to increase fermentation efficiency are also discussed.

  7. Dietary supplementation with bovine lactoferrampin-lactoferricin produced by Pichia pastoris fed-batch fermentation affects intestinal microflora in weaned piglets.

    PubMed

    Tang, Xiang-Shan; Shao, Hua; Li, Tie-Jun; Tang, Zhi-Ru; Huang, Rui-Ling; Wang, Sheng-Ping; Kong, Xiang-Feng; Wu, Xin; Yin, Yu-Long

    2012-10-01

    This work is aimed at investigating the effects of recombinant bovine lactoferrampin-lactoferricin (LFA-LFC) instead of chlortetracycline on intestinal microflora in weaned piglets. The high cost of peptide production from either native digestion or chemical synthesis limits the clinical application of antimicrobial peptides. The expression of recombinant peptides in yeast may be an effective alternative. In the current study, recombinant LFA-LFC was produced via fed-batch fermentation in recombinant strain Pichia pastoris (KM71) XS10. Uniform design U6(6(4)) was used to optimize the fermentation conditions. The target peptide purified via cation-exchange and size-exclusion chromatography was added into the dietary of weaned piglets. After 21 days, the Lactobacilli, Bifidobacteria, and Enterobacteria in the chyme of the gut were quantified using real-time polymerase chain reaction. The results showed that approximately 82 mg of LFA-LFC was secreted into 1 L of medium under optimized conditions. Moreover, purified peptide showed strong antimicrobial activities against all the tested microorganisms. Compared with the control group, the LFA-LFC group increased the amount of Lactobacilli and Bifidobacteria (P<0.05) in the chyme of the stomach, duodenum, jejunum, ileum, colon, and caecum. These results show that dietary supplementation with LFA-LFC can affect intestinal microflora in weaned piglets.

  8. Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms.

    PubMed

    Andrés-Toro, B; Girón-Sierra, J M; Fernández-Blanco, P; López-Orozco, J A; Besada-Portas, E

    2004-04-01

    This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.

  9. Enhanced Ethanol Production from De-Ashed Paper Sludge by Simultaneous Saccharification and Fermentation and Simultaneous Saccharification and Co-Fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, L.; Wang, W.; Pallapolu, V. R.

    2011-11-01

    A previous study demonstrated that paper sludges with high ash contents can be converted to ethanol by simultaneous saccharification and fermentation (SSF) or simultaneous saccharification and co-fermentation (SSCF). High ash content in the sludge, however, limited solid loading in the bioreactor, causing low product concentration. To overcome this problem, sludges were de-ashed before SSF and SSCF. Low ash content in sludges also increased the ethanol yield to the extent that the enzyme dosage required to achieve 70% yield in the fermentation process was reduced by 30%. High solid loading in SSF and SSCF decreased the ethanol yield. High agitation andmore » de-ashing of the sludges were able to restore the part of the yield loss caused by high solid loading. Substitution of the laboratory fermentation medium (peptone and yeast extract) with corn steep liquor did not bring about any adverse effects in the fermentation. Fed-batch operation of the SSCF and SSF using low-ash content sludges was effective in raising the ethanol concentration, achieving 47.8 g/L and 60.0 g/L, respectively.« less

  10. Use of soybean oil and ammonium sulfate additions to optimize secondary metabolite production.

    PubMed

    Junker, B; Mann, Z; Gailliot, P; Byrne, K; Wilson, J

    1998-12-05

    A valine-overproducing mutant (MA7040, Streptomyces hygroscopicus) was found to produce 1.5 to 2.0 g/L of the immunoregulant, L-683,590, at the 0.6 m3 fermentation scale in a simple batch process using soybean oil and ammonium sulfate-based GYG5 medium. Levels of both lower (L-683,795) and higher (HH1 and HH2) undesirable homolog levels were controlled adequately. This batch process was utilized to produce broth economically at the 19 m3 fermentation scale. Material of acceptable purity was obtained without the multiple pure crystallizations previously required for an earlier culture, MA6678, requiring valine supplementation for impurity control. Investigations at the 0.6 m3 fermentation scale were conducted, varying agitation, pH, initial soybean oil/ammonium sulfate charges, and initial aeration rate to further improve growth and productivity. Mid-cycle ammonia levels and lipase activity appeared to have an important role. Using mid-cycle soybean oil additions, a titer of 2.3 g/L of L-683,590 was obtained, while titers reached 2.7 g/L using mid-cycle soybean oil and ammonium sulfate additions. Both higher and lower homolog levels remained acceptable during this fed-batch process. Optimal timing of mid-cycle oil and ammonium sulfate additions was considered a critical factor to further titer improvements. Copyright 1998 John Wiley & Sons, Inc.

  11. Presence of glucose, xylose, and glycerol fermenting bacteria in the deep biosphere of the former Homestake gold mine, South Dakota

    PubMed Central

    Rastogi, Gurdeep; Gurram, Raghu N.; Bhalla, Aditya; Gonzalez, Ramon; Bischoff, Kenneth M.; Hughes, Stephen R.; Kumar, Sudhir; Sani, Rajesh K.

    2012-01-01

    Eight fermentative bacterial strains were isolated from mixed enrichment cultures of a composite soil sample collected at 1.34 km depth from the former Homestake gold mine in Lead, SD, USA. Phylogenetic analysis of their 16S rRNA gene sequences revealed that these isolates were affiliated with the phylum Firmicutes belonging to genera Bacillus and Clostridium. Batch fermentation studies demonstrated that isolates had the ability to ferment glucose, xylose, or glycerol to industrially valuable products such as ethanol and 1,3-propanediol (PDO). Ethanol was detected as the major fermentation end product in glucose-fermenting cultures at pH 10 with yields of 0.205–0.304 g of ethanol/g of glucose. While a xylose-fermenting strain yielded 0.189 g of ethanol/g of xylose and 0.585 g of acetic acid/g of xylose at the end of fermentation. At pH 7, glycerol-fermenting isolates produced PDO (0.323–0.458 g of PDO/g of glycerol) and ethanol (0.284–0.350 g of ethanol/g of glycerol) as major end products while acetic acid and succinic acid were identified as minor by-products in fermentation broths. These results suggest that the deep biosphere of the former Homestake gold mine harbors bacterial strains which could be used in bio-based production of ethanol and PDO. PMID:23919089

  12. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture.

    PubMed

    Liu, Wei; Xu, Xin; Zhang, Rubing; Cheng, Tao; Cao, Yujin; Li, Xiaoxiao; Guo, Jiantao; Liu, Huizhou; Xian, Mo

    2016-01-01

    Geraniol is an acyclic monoterpene alcohol, which exhibits good prospect as a gasoline alternative. Geraniol is naturally encountered in plants at low concentrations and an attractive target for microbial engineering. Geraniol has been heterologously produced in Escherichia coli, but the low titer hinders its industrial applications. Moreover, bioconversion of geraniol by E. coli remains largely unknown. Recombinant overexpression of Ocimum basilicum geraniol synthase, Abies grandis geranyl diphosphate synthase, and a heterotic mevalonate pathway in E. coli BL21 (DE3) enabled the production of up to 68.6 ± 3 mg/L geraniol in shake flasks. Initial fed-batch fermentation only increased geraniol production to 78.8 mg/L. To further improve the production yield, the fermentation conditions were optimized. Firstly, 81.4 % of volatile geraniol was lost during the first 5 h of fermentation in a solvent-free system. Hence, isopropyl myristate was added to the culture medium to form an aqueous-organic two-phase culture system, which effectively prevented volatilization of geraniol. Secondly, most of geraniol was eventually biotransformed into geranyl acetate by E. coli, thus decreasing geraniol production. For the first time, we revealed the role of acetylesterase (Aes, EC 3.1.1.6) from E. coli in hydrolyzing geranyl acetate to geraniol, and production of geraniol was successfully increased to 2.0 g/L under controlled fermentation conditions. An efficient geraniol production platform was established by overexpressing several key pathway proteins in engineered E. coli strain combined with a controlled fermentation system. About 2.0 g/L geraniol was obtained using our controllable aqueous-organic two-phase fermentation system, which is the highest yield to date. In addition, the interconversion between geraniol and geranyl acetate by E. coli was first elucidated. This study provided a new and promising strategy for geraniol biosynthesis, which laid a basis for large-scale industrial application.

  13. Methane and Hydrogen Production from Anaerobic Fermentation of Municipal Solid Wastes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuro; Lee, Dong-Yeol; Xu, Kaiqin; Li, Yu-You; Inamori, Yuhei

    Methane and hydrogen production was investigated in batch experiments of thermophilic methane and hydrogen fermentation, using domestic garbage and food processing waste classified by fat/carbohydrate balance as a base material. Methane production per unit of VS added was significantly positively correlated with fat content and negatively correlated with carbohydrate content in the substrate, and the average value of the methane production per unit of VS added from fat-rich materials was twice as large as that from carbohydrate-rich materials. By contrast, hydrogen production per unit of VS added was significantly positively correlated with carbohydrate content and negatively correlated with fat content. Principal component analysis using the results obtained in this study enable an evaluation of substrates for methane and hydrogen fermentation based on nutrient composition.

  14. Scale-down/scale-up studies leading to improved commercial beer fermentation.

    PubMed

    Nienow, Alvin W; Nordkvist, Mikkel; Boulton, Christopher A

    2011-08-01

    Scale-up/scale-down techniques are vital for successful and safe commercial-scale bioprocess design and operation. An example is given in this review of recent studies related to beer production. Work at the bench scale shows that brewing yeast is not compromised by mechanical agitation up to 4.5 W/kg; and that compared with fermentations mixed by CO(2) evolution, agitation ≥ 0.04 W/kg is able to reduce fermentation time by about 20%. Work at the commercial scale in cylindroconical fermenters shows that, without mechanical agitation, most of the yeast sediments into the cone for about 50% of the fermentation time, leading to poor temperature control. Stirrer mixing overcomes these problems and leads to a similar reduction in batch time as the bench-scale tests and greatly reduces its variability, but is difficult to install in extant fermenters. The mixing characteristics of a new jet mixer, a rotary jet mixer, which overcomes these difficulties, are reported, based on pilot-scale studies. This change enables the advantages of stirring to be achieved at the commercial scale without the problems. In addition, more of the fermentable sugars are converted into ethanol. This review shows the effectiveness of scale-up/scale-down studies for improving commercial operations. Suggestions for further studies are made: one concerning the impact of homogenization on the removal of vicinal diketones and the other on the location of bubble formation at the commercial scale. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  16. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry.

    PubMed

    Mendes-Ferreira, A; Mendes-Faia, A; Leão, C

    2004-01-01

    To study the effects of assimilable nitrogen concentration on growth profile and on fermentation kinetics of Saccharomyces cerevisiae. Saccharomyces cerevisiae was grown in batch in a defined medium with glucose (200 g l(-1)) as the only carbon and energy source, and nitrogen supplied as ammonium sulphate or phosphate forms under different concentrations. The initial nitrogen concentration in the media had no effect on specific growth rates of the yeast strain PYCC 4072. However, fermentation rate and the time required for completion of the alcoholic fermentation were strongly dependent on nitrogen availability. At the stationary phase, the addition of ammonium was effective in increasing cell population, fermentation rate and ethanol. The yeast strain required a minimum of 267 mg N l(-1) to attain complete dryness of media, within the time considered for the experiments. Lower levels were enough to support growth, although leading to sluggish or stuck fermentation. The findings reported here contribute to elucidate the role of nitrogen on growth and fermentation performance of wine yeast. This information might be useful to the wine industry where excessive addition of nitrogen to prevent sluggish or stuck fermentation might have a negative impact on wine stability and quality. Copyright 2004 The Society for Applied Microbiology

  17. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.

    PubMed

    Bagheri Lotfabad, Tayebe; Ebadipour, Negisa; Roostaazad, Reza; Partovi, Maryam; Bahmaei, Manochehr

    2017-04-01

    Rhamnolipids are the most common biosurfactants and P. aeruginosa strains are the most frequently studied microorganisms for the production of rhamnolipids. Eco-friendly advantages and promising applications of rhamnolipids in various industries are the major reasons for pursuing the economic production of these biosurfactants. This study shows that cultivation of P. aeruginosa MR01 in medium contained inexpensive soybean oil refinery wastes which exhibited similar levels and homologues of rhamnolipids. Mass spectrometry indicated that the Rha-C10-C10 and Rha-Rha-C10-C10 constitute the main rhamnolipids in different cultures of MR01 including one of oil carbon source analogues. Moreover, rhamnolipid mixtures extracted from different cultures showed critical micelle concentrations (CMC) in the range of ≃24 to ≃36mg/l with capability to reduce the surface tension of aqueous solution from 72 to ≃27-32mN/m. However, the sol-gel technique using tetraethyl orthosilicate (TEOS) was used as a gentler method in order to entrap the P. aeruginosa MR01 cells in mold silica gels. Immobilized cells can be utilized several times in consecutive fermentation batches as well as in flow fermentation processes. In this way, reusability of the cells may lead to a more economical fermentation process. Approximately 90% of cell viability was retained during the silica sol-gel immobilization and ≃84% of viability of immobilized cells was preserved for 365days of immobilization and storage of the cells in phosphate buffer at 4°C and 25°C. Moreover, mold gels showed good mechanical stability during the seven successive fermentation batches and the entrapped cells were able to efficiently preserve their biosurfactant-producing potential. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In vitro study of the age-dependent caecal fermentation pattern and methanogenesis in young rabbits.

    PubMed

    Piattoni, F; Demeyer, D I; Maertens, L

    1996-01-01

    The caecal fermentation pattern, including methanogenesis, was studied in young rabbits using in vitro batch incubations. Six conventional litters of eight rabbits each were used. At the age of 22, 25, 28, 32, 36, 42 and 56 days, an animal was slaughtered from each litter and its caecal contents were used for in vitro batch incubations at 39 degrees C/24 h. The incubated samples were analysed for volatile fatty acids (VFA), methane, hydrogen, ammonia nitrogen (NH3-N) and lactic acid (LA). The net total in vitro VFA production did not differ clearly with age, although a significant decrease was observed on day 36, reflecting the reduced zootechnical performances probably related to an infection with Clostridium spiroforme that occurred in the same period. The molar proportions of butyrate and propionate formed a change in the opposite direction with age, starting with a sudden shift from propionate to butyrate at day 25. In vitro NH3-N production was suggestive of a progressive and significant decrease with age; in vitro LA production was always low. Methane production was almost absent from fermentation until 32 days of age, after which it suddenly shifted from 1.6 to 52.0 mumol/flask/day and increased further with age. A significant litter effect on methanogenesis was observed which suggested the existence of a genetic effect. The hydrogen production was quite low and decreased significantly from day 36 with increasing methanogenesis. The calculated hydrogen recoveries showed a gradual increase from day 32 and were positively correlated (r = 0.92) with methane production. In conclusion, it would seem that in young suckling rabbits, reductive acetogenesis is a major characteristic of caecal fermentation, to be replaced gradually and partially by methanogenesis with the increasing intake of solid feed.

  19. An Online Respiratory Quotient-Feedback Strategy of Feeding Yeast Extract for Efficient Arachidonic Acid Production by Mortierella alpina

    PubMed Central

    Li, Xiangyu; Yu, Chao; Yao, Jianming; Wang, Zhiming; Lu, Shuhuan

    2018-01-01

    Mortierella alpina (M. alpina) is well known for arachidonic acid (ARA) production. However, low efficiency and unstableness are long existed problems for industrial production of ARA by M. alpina due to the lack of online regulations. The aim of the present work is to develop an online-regulation strategy for efficient and stable ARA production in industry. The strategy was developed in 50 L fermenters and then applied in a 200 m3 fermenter. Results indicated that yeast extract (YE) highly increased cell growth in shake flask, it was then used in bioreactor fermentation by various feeding strategies. Feeding YE to control respiratory quotient (RQ) at 1.1 during 0–48 h and at 1.5 during 48–160 h, dry cell weight, and ARA titer reached 53.1 and 11.49 g/L in 50 L fermenter, which were increased by 79.4 and 36.9% as compared to that without YE feeding, respectively. Then, the online RQ-feedback strategy was applied in 200 m3 bioreactor fermentation and an average ARA titer of 16.82 g/L was obtained from 12 batches, which was 41.0% higher than the control batches. This is the first report on successful application of online RQ-feedback control of YE in ARA production, especially in an industrial scale of 200 m3 fermentation. It could be applied to other industrial production of microbial oil by oleaginous microorganisms. PMID:29404320

  20. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    PubMed Central

    Bettiga, Maurizio; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2008-01-01

    Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively. Conclusion The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme. PMID:18947407

  1. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum.

    PubMed

    Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S

    2015-03-01

    1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds.

  2. Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production.

    PubMed

    Espinosa-Gonzalez, Isabel; Parashar, Archana; Bressler, David C

    2014-03-01

    This study proposes a novel alternative for the utilization of whey permeate, a by-product stream from the dairy industry, as the feedstock for the biomass and lipid production of the microalgae Chlorella protothecoides. Glucose and galactose from the pre-hydrolyzed whey permeate were used as main carbon sources in a base mineral media for establishing batch and fed batch cultures. Batch cultures reached a biomass production of 9.1±0.2g/L with a total lipid accumulation of 42.0±6.6% (dry weight basis), while in the fed batch cultures 17.2±1.3g/L of biomass with 20.5±0.3% lipid accumulation (dry weight basis) were obtained. A third strategy for the direct utilization of whey permeate was investigated by simultaneous saccharification and fermentation (SSF), wherein, 7.3±1.3g/L of biomass with 49.9±3.3% lipid accumulation (dry weight basis) was obtained in batch mode using immobilized enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A novel membrane-integrated fermentation reactor system: application to pyruvic acid production in continuous culture by Torulopsis glabrata.

    PubMed

    Sawai, Hideki; Mimitsuka, Takashi; Minegishi, Shin-Ichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu

    2011-08-01

    This paper describes the performance of a novel bio-reactor system, the membrane-integrated fermentation reactor (MFR), for efficient continuous fermentation. The MFR, equipped with an autoclavable polyvinylidene difluoride membrane, has normally been used for biological wastewater treatment. The productivity of the MFR system, applied to the continuous production of pyruvic acid by the yeast Torulopsis glabrata, was remarkably high. The volumetric productivity of pyruvic acid increased up to 4.2 g/l/h, about four times higher than that of batch fermentation. Moreover, the membrane was able to filter fermentation broth for more than 300 h without fouling even though the cell density of the fermentation broth reached 600 as OD(660). Transmembrane pressure, used as an indicator of membrane fouling, remained below 5 kPa throughout the continuous fermentation. These results clearly indicate that the MFR system is a simple and highly efficient system that is applicable to the fermentative production of a range of biochemicals.

  4. Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation.

    PubMed

    Fong, Baley A; Wood, David W

    2010-10-19

    Elastin-like polypeptides (ELPs) are useful tools that can be used to non-chromatographically purify proteins. When paired with self-cleaving inteins, they can be used as economical self-cleaving purification tags. However, ELPs and ELP-tagged target proteins have been traditionally expressed using highly enriched media in shake flask cultures, which are generally not amenable to scale-up. In this work, we describe the high cell-density expression of self-cleaving ELP-tagged targets in a supplemented minimal medium at a 2.5 liter fermentation scale, with increased yields and purity compared to traditional shake flask cultures. This demonstration of ELP expression in supplemented minimal media is juxtaposed to previous expression of ELP tags in extract-based rich media. We also describe several sets of fed-batch conditions and their impact on ELP expression and growth medium cost. By using fed batch E. coli fermentation at high cell density, ELP-intein-tagged proteins can be expressed and purified at high yield with low cost. Further, the impact of media components and fermentation design can significantly impact the overall process cost, particularly at large scale. This work thus demonstrates an important advances in the scale up of self-cleaving ELP tag-mediated processes.

  5. Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation

    PubMed Central

    2010-01-01

    Background Elastin-like polypeptides (ELPs) are useful tools that can be used to non-chromatographically purify proteins. When paired with self-cleaving inteins, they can be used as economical self-cleaving purification tags. However, ELPs and ELP-tagged target proteins have been traditionally expressed using highly enriched media in shake flask cultures, which are generally not amenable to scale-up. Results In this work, we describe the high cell-density expression of self-cleaving ELP-tagged targets in a supplemented minimal medium at a 2.5 liter fermentation scale, with increased yields and purity compared to traditional shake flask cultures. This demonstration of ELP expression in supplemented minimal media is juxtaposed to previous expression of ELP tags in extract-based rich media. We also describe several sets of fed-batch conditions and their impact on ELP expression and growth medium cost. Conclusions By using fed batch E. coli fermentation at high cell density, ELP-intein-tagged proteins can be expressed and purified at high yield with low cost. Further, the impact of media components and fermentation design can significantly impact the overall process cost, particularly at large scale. This work thus demonstrates an important advances in the scale up of self-cleaving ELP tag-mediated processes. PMID:20959011

  6. A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics

    PubMed Central

    Sasaki, Daisuke; Fukuda, Itsuko; Tanaka, Kosei; Yoshida, Ken-ichi; Kondo, Akihiko; Osawa, Ro

    2016-01-01

    We devised a single-batch fermentation system to simulate human colonic microbiota from fecal samples, enabling the complex mixture of microorganisms to achieve densities of up to 1011 cells/mL in 24 h. 16S rRNA gene sequence analysis of bacteria grown in the system revealed that representatives of the major phyla, including Bacteroidetes, Firmicutes, and Actinobacteria, as well as overall species diversity, were consistent with those of the original feces. On the earlier stages of fermentation (up to 9 h), trace mixtures of acetate, lactate, and succinate were detectable; on the later stages (after 24 h), larger amounts of acetate accumulated along with some of propionate and butyrate. These patterns were similar to those observed in the original feces. Thus, this system could serve as a simple model to simulate the diversity as well as the metabolism of human colonic microbiota. Supplementation of the system with several prebiotic oligosaccharides (including fructo-, galacto-, isomalto-, and xylo-oligosaccharides; lactulose; and lactosucrose) resulted in an increased population in genus Bifidobacterium, concomitant with significant increases in acetate production. The results suggested that this fermentation system may be useful for in vitro, pre-clinical evaluation of the effects of prebiotics prior to testing in humans. PMID:27483470

  7. Effect of pH on ethanol-type acidogenic fermentation of fruit and vegetable waste.

    PubMed

    Wu, Yuanyuan; Wang, Cuiping; Zheng, Mingyue; Zuo, Jiane; Wu, Jing; Wang, Kaijun; Yang, Boqiong

    2017-02-01

    The aim of this study was to investigate the possibility and optimal controlling strategy for ethanol-type acidogenic fermentation of fruit and vegetable waste by mixed microbial cultures. Four continuous stirred tank reactors (CSTR) were operated at various pHs (4.0, 5.0, 5.5, and 6.0) with an organic loading rate of 13gVS/(Ld) and hydraulic retention time of 3d. Butyrate-type fermentation was observed at pH 5.0, 5.5, and 6.0. Conversely, at pH 4.0, ethanol-type fermentation was observed with a high mass concentration and proportion (of total fermentative products) of ethanol, which were 6.7g/L and 88.8%, respectively. However, the total concentration of ethanol-type fermentative products substantially decreased from days 22-25. The optimal pH of ethanol-type fermentative microorganisms was investigated by using batch experiments with pH controlled at 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, and 7.0 and results showed that the maximum ethanol concentration and relatively highest acidogenic rate were found at pH of 5.5. The pH in the long term CSTR was changed from 4.0 to 5.5 to improve ethanol-type fermentation and results showed that ethanol-type fermentation was improved temporarily, however, was followed by the reappearance of butyrate-type fermentation. In addition, ethanol-type fermentation recovered once more when pH was reverted to 4.0. Therefore, the results of this study suggest that a process of dynamic, sequenced pH control with the order pH 4.0, 5.5 and 4.0 might be a feasible controlling strategy for continuous and stable ethanol-type fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    PubMed

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus. © 2015 Wiley Periodicals, Inc.

  9. Biosuccinic Acid from Lignocellulosic-Based Hexoses and Pentoses by Actinobacillus succinogenes: Characterization of the Conversion Process.

    PubMed

    Ferone, Mariateresa; Raganati, Francesca; Olivieri, Giuseppe; Salatino, Piero; Marzocchella, Antonio

    2017-12-01

    Succinic acid (SA) is a well-established chemical building block. Actinobacillus succinogenes fermentation is by far the most investigated route due to very promising high SA yield and titer on several sugars. This study contributes to include the SA production within the concept of biorefinery of lignocellulose biomass. The study was focused on the SA production by A. succinogenes DSM 22257 using sugars representative from lignocellulose hydrolysis-glucose, mannose, arabinose, and xylose-as carbon source. Single sugar batch fermentation tests and mixture sugar fermentation tests were carried out. All the sugars investigated were converted in succinic acid by A. succinogenes. The best fermentation performances were measured in tests with glucose as carbon source. The bacterial growth kinetics was characterized by glucose inhibition. No inhibition phenomena were observed with the other sugar investigated. The sugar mixture fermentation tests highlighted the synergic effects of the co-presence of the four sugars. Under the operating conditions tested, the final concentration of succinic acid in the sugar mixture test was larger (27 g/L) than that expected (25.5 g/L) by combining the fermentation of the single sugar. Moreover, the concentration of acetic and formic acid was lower, consequently obtaining an increment in the succinic acid specificity.

  10. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106.

    PubMed

    Ye, Lidan; Zhou, Xingding; Hudari, Mohammad Sufian Bin; Li, Zhi; Wu, Jin Chuan

    2013-03-01

    Cost-effective production of optically pure lactic acid from lignocellulose sugars is commercially attractive but challenging. Bacillus coagulans C106 was isolated from environment and used to produce l-lactic acid from xylose at 50°C and pH 6.0 in mineral salts medium containing 1-2% (w/v) of yeast extract without sterilizing the medium before fermentation. In batch fermentation with 85g/L of xylose, lactic acid titer and productivity reached 83.6g/L and 7.5g/Lh, respectively. When fed-batch (120+80+60g/L) fermentation was applied, they reached 215.7g/L and 4.0g/Lh, respectively. In both cases, the lactic acid yield and optical purity reached 95% and 99.6%, respectively. The lactic acid titer and productivity on xylose are the highest among those ever reported. Ca(OH)2 was found to be a better neutralizing agent than NaOH in terms of its giving higher lactic acid titer (1.2-fold) and productivity (1.8-fold) under the same conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The digester modification for biogas production from palm oil mill effluent by Fed-batch

    NASA Astrophysics Data System (ADS)

    Aznury, M.; Amin, J. M.; Hasan, A.; Harsyah, A.

    2018-03-01

    The purpose of this research is to biogas production in the digester modification equipment by Fed-batch of the palm oil mill effluent (POME) to determine the quality of POME after a treatment and the concentration of biogas that is formed every 24 hours within 10 days. The raw materials used are POME from PT Mitra Ogan, Tbk. In the initial stage is sedimentation process in the first digester tank at a flow rate 6 liters/minute and then observing the retention time of 24 hours. POME flowed into the second digester tank for fermentation process with the addition of active microbes seed every 24 hours to produce biogas. After the fermentation process is complete, POME flowed to third digester tank for water treatment stage before being released into the environment. COD content test values obtained after processing are 766, 362 and 350 mg/L, approximately. While the BOD value is 212.75; 125 and 110.9 mg/L, approximately. Biogas production for 10 days fermentation are 10.88% methane, 19.2% oxygen and 75.83% nitrogen, approximately.

  12. Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor.

    PubMed

    Jiang, Ling; Wang, Jufang; Liang, Shizhong; Cai, Jin; Xu, Zhinan; Cen, Peilin; Yang, Shangtian; Li, Shuang

    2011-01-01

    Repeated fed-batch fermentation of glucose by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was successfully employed to produce butyric acid at a high final concentration as well as to adapt a butyric-acid-tolerant strain. At the end of the eighth fed-batch fermentation, the butyric acid concentration reached 86.9 ± 2.17 g/L, which to our knowledge is the highest butyric acid concentration ever produced in the traditional fermentation process. To understand the mechanism and factors contributing to the improved butyric acid production and enhanced acid tolerance, adapted strains were harvested from the FBB and characterized for their physiological properties, including specific growth rate, acid-forming enzymes, intracellular pH, membrane-bound ATPase and cell morphology. Compared with the original culture used to seed the bioreactor, the adapted culture showed significantly reduced inhibition effects of butyric acid on specific growth rate, cellular activities of butyric-acid-forming enzyme phosphotransbutyrylase (PTB) and ATPase, together with elevated intracellular pH, and elongated rod morphology. © 2010 Wiley Periodicals, Inc.

  13. Proteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditions.

    PubMed

    Raman, Babu; Nandakumar, M P; Muthuvijayan, Vignesh; Marten, Mark R

    2005-11-05

    Proteome analysis was used to compare global protein expression changes in Escherichia coli fermentation between exponential and glucose-limited fed-batch phase. Two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry were used to separate and identify 49 proteins showing >2-fold difference in expression. Proteins upregulated during exponential phase include ribonucleotide biosynthesis enzymes and ribosomal recycling factor. Proteins upregulated during fed-batch phase include those involved in high-affinity glucose uptake, transport and degradation of alternate carbon sources and TCA cycle, suggesting an enhanced role of the cycle under glucose- and energy-limited conditions. We report the upregulation of several putative proteins (ytfQ, ygiS, ynaF, yggX, yfeX), not identified in any previous study under carbon-limited conditions. Copyright (c) 2005 Wiley Periodicals, Inc.

  14. Effect of the type of fat on the physicochemical, instrumental and sensory characteristics of reduced fat non-acid fermented sausages.

    PubMed

    Mora-Gallego, Héctor; Serra, Xavier; Guàrdia, Maria Dolors; Miklos, Rikke; Lametsch, René; Arnau, Jacint

    2013-03-01

    Four batches of reduced fat non-acid fermented sausages were manufactured with pork-ham lean, and the addition of no fat (Lean), 5% pork backfat (BF), 5% sunflower oil (SO) and 5% diacylglycerols (DAGs). The effect of the type of fat as pork-fat substitute on some physicochemical parameters, instrumental color and texture and sensory attributes of the sausages was studied. Results showed that reduced fat non-acid fermented sausages containing less than 12.5% of fat (BF, SO and DAGs) had a good overall sensory quality. This means a fat reduction of more than 70% compared with the average fat content of standard fermented sausages of similar characteristics. Sausages with SO showed higher sensory ratings in desirable ripened odor and flavor attributes and improved texture defined by lower hardness and chewiness (both sensory and instrumental) and higher crumbliness. Sausages with DAGs showed a similar behavior to that of BF, so they could be a good alternative to produce healthier reduced fat non-acid fermented sausages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17.

    PubMed

    Zhou, Jie; Ouyang, Jia; Xu, Qianqian; Zheng, Zhaojuan

    2016-12-01

    The main barriers to cost-effective lactic acid production from lignocellulose are the high cost of enzymes and the ineffective utilization of the xylose within the hydrolysate. In the present study, the thermophilic Bacillus coagulans strain CC17 was used for the simultaneous saccharification and fermentation (SSF) of bagasse sulfite pulp (BSP) to produce l-lactic acid. Unexpectedly, SSF by CC17 required approximately 33.33% less fungal cellulase than did separate hydrolysis and fermentation (SHF). More interestingly, CC17 can co-ferment cellobiose and xylose without any exogenous β-glucosidase in SSF. Moreover, adding xylanase could increase the concentration of lactic acid produced via SSF. Up to 110g/L of l-lactic acid was obtained using fed-batch SSF, resulting in a lactic acid yield of 0.72g/g cellulose. These results suggest that SSF using CC17 has a remarkable advantage over SHF and that a potentially low-cost and highly-efficient fermentation process can be established using this protocol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Systemic infections in three infants due to a lactose-fermenting strain of Salmonella virchow.

    PubMed

    Ruiz, J; Núñez, M L; Sempere, M A; Díaz, J; Gómez, J

    1995-05-01

    Three previously healthy children developed gastroenteritis which led within a few days to systemic infections, two cases of bacteremia and one of meningitis. A lactose-fermenting Salmonella virchow strain was isolated from cerebrospinal fluid and blood cultures. In one case, this strain was also isolated from stool cultures. All the children had been fed the same milk formula. There was no other relationship between them. The batch of dried-milk formula was confirmed as the source of the infection by isolation of an identical lactose-fermenting Salmonella virchow strain by the Centro Nacional de Alimentación.

  17. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields.

    PubMed

    Dipasquale, L; Adessi, A; d'Ippolito, G; Rossi, F; Fontana, A; De Philippis, R

    2015-01-01

    Two-stage process based on photofermentation of dark fermentation effluents is widely recognized as the most effective method for biological production of hydrogen from organic substrates. Recently, it was described an alternative mechanism, named capnophilic lactic fermentation, for sugar fermentation by the hyperthermophilic bacterium Thermotoga neapolitana in CO2-rich atmosphere. Here, we report the first application of this novel process to two-stage biological production of hydrogen. The microbial system based on T. neapolitana DSM 4359(T) and Rhodopseudomonas palustris 42OL gave 9.4 mol of hydrogen per mole of glucose consumed during the anaerobic process, which is the best production yield so far reported for conventional two-stage batch cultivations. The improvement of hydrogen yield correlates with the increase in lactic production during capnophilic lactic fermentation and takes also advantage of the introduction of original conditions for culturing both microorganisms in minimal media based on diluted sea water. The use of CO2 during the first step of the combined process establishes a novel strategy for biohydrogen technology. Moreover, this study opens the way to cost reduction and use of salt-rich waste as feedstock.

  18. Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium.

    PubMed

    Shen, Yu; Guo, Jin-Song; Chen, You-Peng; Zhang, Hai-Dong; Zheng, Xu-Xu; Zhang, Xian-Ming; Bai, Feng-Wu

    2012-08-31

    Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio.

    PubMed

    Suo, Yukai; Ren, Mengmeng; Yang, Xitong; Liao, Zhengping; Fu, Hongxin; Wang, Jufang

    2018-05-01

    Butyric acid fermentation by Clostridium couples with the synthesis of acetic acid. But the presence of acetic acid reduces butyric acid yield and increases separation and purification costs of butyric acid. Hence, enhancing the butyrate/acetate ratio is important for economical butyric acid production. This study indicated that enhancing the acetyl-CoA to butyrate flux by overexpression of both the butyryl-CoA/acetate CoA transferase (cat1) and crotonase (crt) genes in C. tyrobutyricum could significantly reduce acetic acid concentration. Fed-batch fermentation of ATCC 25755/cat1 + crt resulted in increased butyrate/acetate ratio of 15.76 g/g, which was 2.24-fold higher than that of the wild-type strain. Furthermore, in order to simultaneously increase the butyrate/acetate ratio, butyric acid concentration and productivity, the recombinant strain ATCC 25755/ppcc (co-expression of 6-phosphofructokinase (pfkA) gene, pyruvate kinase (pykA) gene, cat1, and crt) was constructed. Consequently, ATCC 25755/ppcc produced more butyric acid (46.8 vs. 35.0 g/L) with a higher productivity (0.83 vs. 0.49 g/L·h) and butyrate/acetate ratio (13.22 vs. 7.22 g/g) as compared with the wild-type strain in batch fermentation using high glucose concentration (120 g/L). This study demonstrates that enhancing the acetyl-CoA to butyrate flux is an effective way to reduce acetic acid production and increase butyrate/acetate ratio.

  20. Conversion of Aqueous Ammonia-Treated Corn Stover to Lactic Acid by Simultaneous Saccharification and Cofermentation

    NASA Astrophysics Data System (ADS)

    Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.

    Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.

  1. Process development for a recombinant Chinese hamster ovary (CHO) cell line utilizing a metal induced and amplified metallothionein expression system.

    PubMed

    Huang, Edwin P; Marquis, Christopher P; Gray, Peter P

    2004-11-20

    The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 microM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 10(7) cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (c) 2004 Wiley Periodicals, Inc

  2. Effect of fermentation time of mixture of solid and liquid wastes from tapioca industry to percentage reduction of TSS (Total Suspended Solids)

    NASA Astrophysics Data System (ADS)

    Pandia, S.; Tanata, S.; Rachel, M.; Octiva, C.; Sialagan, N.

    2018-02-01

    The waste from tapioca industry is as an organic waste that contains many important compounds such as carbohydrate, protein, and glucose. This research as aimed to know the effect of fermentation time from solid waste combined with waste-water from the tapioca industry to percentage reduction of TSS. The study was started by mixing the solid and liquid wastes from tapioca industry at a ratio of 70:30, 60:40, 50:50, 40:60, and 30:70 (w/w) with a starter from solid waste of cattle in a batch anaerobic digester. The percentage reduction of TSS was 72.2289 at a ratio by weight of the composition of solid and liquid wastes from tapioca industry was 70:30 after 30 days of fermentation time.

  3. Lactic acid production with undefined mixed culture fermentation of potato peel waste.

    PubMed

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2014-11-01

    Potato peel waste (PPW) as zero value byproduct generated from food processing plant contains a large quantity of starch, non-starch polysaccharide, lignin, protein, and lipid. PPW as one promising carbon source can be managed and utilized to value added bioproducts through a simple fermentation process using undefined mixed cultures inoculated from wastewater treatment plant sludge. A series of non-pH controlled batch fermentations under different conditions such as pretreatment process, enzymatic hydrolysis, temperature, and solids loading were studied. Lactic acid (LA) was the major product, followed by acetic acid (AA) and ethanol under fermentation conditions without the presence of added hydrolytic enzymes. The maximum yields of LA, AA, and ethanol were respectively, 0.22 g g(-1), 0.06 g g(-1), and 0.05 g g(-1). The highest LA concentration of 14.7 g L(-1) was obtained from a bioreactor with initial solids loading of 60 g L(-1) at 35°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biotechnological production of enantiomerically pure d-lactic acid.

    PubMed

    Klotz, Silvia; Kaufmann, Norman; Kuenz, Anja; Prüße, Ulf

    2016-11-01

    The fermentation process of l-lactic acid is well known. Little importance was attached to d-lactic acid, but in the past 10 years, d-lactic acid gained significantly in importance. d-Lactic acid is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of d-lactic acid. Additionally, the technological achievements in biotechnological d-lactic acid production including fermentation techniques like fed batch, simultaneous saccharification, and fermentation and continuous techniques are presented. Attention is also turned to suitable alternative substrates and their applicability in fermentation processes. Furthermore, advantages and disadvantages of product recovery and purification are discussed. Economic aspects of PLA are pointed out, and the present industrial producers of lactic acid are briefly introduced.

  5. Isolation, Identification and Characterization of Yeasts from Fermented Goat Milk of the Yaghnob Valley in Tajikistan

    PubMed Central

    Qvirist, Linnea A.; De Filippo, Carlotta; Strati, Francesco; Stefanini, Irene; Sordo, Maddalena; Andlid, Thomas; Felis, Giovanna E.; Mattarelli, Paola; Cavalieri, Duccio

    2016-01-01

    The geographically isolated region of the Yaghnob Valley, Tajikistan, has allowed its inhabitants to maintain a unique culture and lifestyle. Their fermented goat milk constitutes one of the staple foods for the Yaghnob population, and is produced by backslopping, i.e., using the previous fermentation batch to inoculate the new one. This study addresses the yeast composition of the fermented milk, assessing genotypic, and phenotypic properties. The 52 isolates included in this study revealed small species diversity, belonging to Kluyveromyces marxianus, Pichia fermentans, Saccharomyces cerevisiae, and one Kazachstania unispora. The K. marxianus strains showed two different genotypes, one of which never described previously. The two genetically different groups also differed significantly in several phenotypic characteristics, such as tolerance toward high temperatures, low pH, and presence of acid. Microsatellite analysis of the S. cerevisiae strains from this study, compared to 350 previously described strains, attributed the Yaghnobi S. cerevisiae to two different ancestry origins, both distinct from the wine and beer strains, and similar to strains isolated from human and insects feces, suggesting a peculiar origin of these strains, and the existence of a gut reservoir for S. cerevisiae. Our work constitutes a foundation for strain selection for future applications as starter cultures in food fermentations. This work is the first ever on yeast diversity from fermented milk of the previously unexplored area of the Yaghnob Valley. PMID:27857705

  6. Establishment and assessment of an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Bao, Jia-Wei; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the problem of extraction wastewater in citric acid industrial production, an improved integrated citric acid-methane production process was established in this study. Extraction wastewater was treated by anaerobic digestion and then the anaerobic digestion effluent (ADE) was stripped by air to remove ammonia. Followed by solid-liquid separation to remove metal ion precipitation, the supernatant was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. 130U/g glucoamylase was added to medium after inoculation and the recycling process performed for 10 batches. Fermentation time decreased by 20% in recycling and the average citric acid production (2nd-10th) was 145.9±3.4g/L, only 2.5% lower than that with tap water (149.6g/L). The average methane production was 292.3±25.1mL/g CODremoved and stable in operation. Excessive Na(+) concentration in ADE was confirmed to be the major challenge for the proposed process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli.

    PubMed

    Lee, Won-Heong; Shin, So-Yeon; Kim, Myoung-Dong; Han, Nam Soo; Seo, Jin-Ho

    2012-03-01

    Guanosine 5'-triphosphate (GTP) is the key substrate for biosynthesis of guanosine 5'-diphosphate (GDP)-L-fucose. In this study, improvement of GDP-L-fucose production was attempted by manipulating the biosynthetic pathway for guanosine nucleotides in recombinant Escherichia coli-producing GDP-L-fucose. The effects of overexpression of inosine 5'-monophosphate (IMP) dehydrogenase, guanosine 5'-monophosphate (GMP) synthetase (GuaB and GuaA), GMP reductase (GuaC) and guanosine-inosine kinase (Gsk) on GDP-L-fucose production were investigated in a series of fed-batch fermentations. Among the enzymes tested, overexpression of Gsk led to a significant improvement of GDP-L-fucose production. Maximum GDP-L-fucose concentration of 305.5 ± 5.3 mg l(-1) was obtained in the pH-stat fed-batch fermentation of recombinant E. coli-overexpressing Gsk, which corresponds to a 58% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes. Such an enhancement of GDP-L-fucose production could be due to the increase in the intracellular level of GMP.

  8. Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models.

    PubMed

    Phukoetphim, Niphaphat; Salakkam, Apilak; Laopaiboon, Pattana; Laopaiboon, Lakkana

    2017-02-10

    The aim of this study was to model batch ethanol production from sweet sorghum juice (SSJ), under normal gravity (NG, 160g/L of total sugar) and high gravity (HG, 240g/L of total sugar) conditions with and without nutrient supplementation (9g/L of yeast extract), by Saccharomyces cerevisiae NP 01. Growth and ethanol production increased with increasing initial sugar concentration, and the addition of yeast extract enhanced both cell growth and ethanol production. From the results, either logistic or a modified Gompertz equation could be used to describe yeast growth, depending on information required. Furthermore, the modified Gompertz model was suitable for modeling ethanol production. Both the models fitted the data very well with coefficients of determination exceeding 0.98. The results clearly showed that these models can be employed in the development of ethanol production processes using SSJ under both NG and HG conditions. The models were also shown to be applicable to other ethanol fermentation systems employing pure and mixed sugars as carbon sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks.

    PubMed

    Du, Ran; Yan, Jianbin; Feng, Quanzhou; Li, Peipei; Zhang, Lei; Chang, Sandra; Li, Shizhong

    2014-01-01

    The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY). These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.

  10. A Novel Wild-Type Saccharomyces cerevisiae Strain TSH1 in Scaling-Up of Solid-State Fermentation of Ethanol from Sweet Sorghum Stalks

    PubMed Central

    Feng, Quanzhou; Li, Peipei; Zhang, Lei; Chang, Sandra; Li, Shizhong

    2014-01-01

    The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY). These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol. PMID:24736641

  11. Utilization of concentrate after membrane filtration of sugar beet thin juice for ethanol production.

    PubMed

    Kawa-Rygielska, Joanna; Pietrzak, Witold; Regiec, Piotr; Stencel, Piotr

    2013-04-01

    The subject of this study was to investigate the feasibility of the concentrate obtained after membrane ultrafiltration of sugar beet thin juice for ethanol production and selection of fermentation conditions (yeast strain and media supplementation). Resulting concentrate was subjected to batch ethanol fermentation using two strains of Saccharomyces cerevisiae (Ethanol Red and Safdistill C-70). The effect of different forms of media supplementation (mineral salts: (NH4)2SO4, K2HPO4, MgCl2; urea+Mg3(PO4)2 and yeast extract) on the fermentation course was also studied. It was stated that sugar beet juice concentrate is suitable for ethanol production yielding, depending on the yeast strain, ca. 85-87 g L(-1) ethanol with ca. 82% practical yield and more than 95% of sugars consumption after 72 h of fermentation. Nutrients enrichment further increased ethanol yield. The best results were obtained for media supplemented with urea+Mg3(PO4)2 yielding 91.16-92.06 g L(-1) ethanol with practical yield ranging 84.78-85.62% and full sugars consumption. Copyright © 2013. Published by Elsevier Ltd.

  12. Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation.

    PubMed

    Dai, Jian-Ying; Ma, Lin-Hui; Wang, Zhuang-Fei; Guan, Wen-Tian; Xiu, Zhi-Long

    2017-03-01

    Acetoin is a natural flavor and an important bio-based chemical which could be separated from fermentation broth by solvent extraction, salting-out extraction or recovered in the form of derivatives. In this work, a novel method named as sugaring-out extraction coupled with fermentation was tried in the acetoin production by Bacillus subtilis DL01. The effects of six solvents on bacterial growth and the distribution of acetoin and glucose in different solvent-glucose systems were explored. The operation parameters such as standing time, glucose concentration, and volume ratio of ethyl acetate to fermentation broth were determined. In a system composed of fermentation broth, glucose (100%, m/v) and two-fold volume of ethyl acetate, nearly 100% glucose was distributed into bottom phase, and 61.2% acetoin into top phase without coloring matters and organic acids. The top phase was treated by vacuum distillation to remove solvent and purify acetoin, while the bottom phase was used as carbon source to produce acetoin in the next batch of fermentation.

  13. In Vitro Fermentation of Linear and α-1,2-Branched Dextrans by the Human Fecal Microbiota▿

    PubMed Central

    Sarbini, Shahrul R.; Kolida, Sofia; Naeye, Thierry; Einerhand, Alexandra; Brison, Yoann; Remaud-Simeon, Magali; Monsan, Pierre; Gibson, Glenn R.; Rastall, Robert A.

    2011-01-01

    The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length. PMID:21666027

  14. Three-phase succession of autochthonous lactic acid bacteria to reach a stable ecosystem within 7 days of natural bamboo shoot fermentation as revealed by different molecular approaches.

    PubMed

    Romi, Wahengbam; Ahmed, Giasuddin; Jeyaram, Kumaraswamy

    2015-07-01

    Microbial community structure and population dynamics during spontaneous bamboo shoot fermentation for production of 'soidon' (indigenous fermented food) in North-east India were studied using cultivation-dependent and cultivation-independent molecular approaches. Cultivation-dependent analyses (PCR-amplified ribosomal DNA restriction analysis and rRNA gene sequencing) and cultivation-independent analyses (PCR-DGGE, qPCR and Illumina amplicon sequencing) were conducted on the time series samples collected from three independent indigenous soidon fermentation batches. The current findings revealed three-phase succession of autochthonous lactic acid bacteria to attain a stable ecosystem within 7 days natural fermentation of bamboo shoots. Weissella spp. (Weissella cibaria, uncultured Weissella ghanensis) and Lactococcus lactis subsp. cremoris predominated the early phase (1-2 days) which was joined by Leuconostoc citreum during the mid-phase (3 days), while Lactobacillus brevis and Lactobacillus plantarum emerged and became dominant in the late phase (5-7 days) with concurrent disappearance of W. cibaria and L. lactis subsp. cremoris. Lactococcus lactis subsp. lactis and uncultured Lactobacillus acetotolerans were predominantly present throughout the fermentation with no visible dynamics. The above identified dominant bacterial species along with their dynamics can be effectively utilized for designing a starter culture for industrialization of soidon production. Our results showed that a more realistic view on the microbial ecology of soidon fermentation could be obtained by cultivation-dependent studies complemented with cultivation-independent molecular approaches. Moreover, the critical issues to be considered for reducing methodological biases while studying the microbial ecology of traditional food fermentation were also highlighted with this soidon fermentation model. © 2015 John Wiley & Sons Ltd.

  15. In vitro evaluation of the fermentation properties and potential prebiotic activity of Agave fructans.

    PubMed

    Gomez, E; Tuohy, K M; Gibson, G R; Klinder, A; Costabile, A

    2010-06-01

    This study was carried out to evaluate in vitro the fermentation properties and the potential prebiotic activity of Agave-fructans extracted from Agave tequilana (Predilife). Five different commercial prebiotics were compared using 24-h pH-controlled anaerobic batch cultures inoculated with human faecal slurries. Measurement of prebiotic efficacy was obtained by comparing bacterial changes, and the production of short-chain fatty acids (SCFA) was also determined. Effects upon major groups of the microbiota were monitored over 24 h incubations by fluorescence in situ hybridization. SCFA were measured by HPLC. Fermentation of the Agave fructans (Predilife) resulted in a large increase in numbers of bifidobacteria and lactobacilli. Under the in vitro conditions used, this study has shown the differential impact of Predilife on the microbial ecology of the human gut. This is the first study reporting of a potential prebiotic mode of activity for Agave fructans investigated which significantly increased populations of bifidobacteria and lactobacilli compared to cellulose used as a control.

  16. Ginkgo fruit extract as an additive to modify rumen microbiota and fermentation and to mitigate methane production.

    PubMed

    Oh, S; Shintani, R; Koike, S; Kobayashi, Y

    2017-03-01

    Ginkgo fruit, an unused byproduct of the ginkgo nut industry, contains antimicrobial compounds known as anacardic acids. Two major cultivars of ginkgo, Kyuju (K) and Tokuro (T), were evaluated for their potential as a feed additive for ruminants. In batch culture, we incubated a mixture of hay and concentrate in diluted rumen fluid with or without 1.6% (fruit equivalent) ginkgo fruit extract. We conducted another series of batch culture studies to determine the dose response of fermentation. We also conducted continuous culture using the rumen simulation technique (RUSITEC) with cultivar K and carried out a pure culture study to monitor the sensitivity of 17 representative rumen bacterial species to ginkgo extract and component phenolics. Although both K and T extracts led to decreased methane and increased propionate production, changes were more apparent with K extract, and were dose-dependent. Total gas production was depressed at doses ≥3.2%, suggesting that 1.6% was the optimal supplementation level. In RUSITEC fermentation supplemented with 1.6% ginkgo K, methane decreased by 53% without affecting total gas or total VFA production, but with decreased acetate and increased propionate. Disappearance of dry matter, neutral detergent fiber, and acid detergent fiber were not affected by ginkgo, but ammonia levels were decreased. Quantitative PCR indicated that the abundance of protozoa, fungi, methanogens, and bacteria related to hydrogen and formate production decreased, but the abundance of bacteria related to propionate production increased. MiSeq analysis (Illumina Inc., San Diego, CA) confirmed these bacterial changes and identified archaeal community changes, including a decrease in Methanobrevibacter and Methanomassiliicoccaceae and an increase in Methanoplanus. Pure culture study results supported the findings for the above bacterial community changes. These results demonstrate that ginkgo fruit can modulate rumen fermentation toward methane mitigation and propionate enhancement via microbial selection. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. In vitro fermentation of oat flours from typical and high beta-glucan oat lines.

    PubMed

    Kim, Hyun Jung; White, Pamela J

    2009-08-26

    Two publicly available oat (Avena sativa) lines, "Jim" and "Paul" (5.17 and 5.31% beta-glucan, respectively), and one experimental oat line "N979" (7.70% beta-glucan), were used to study the effect of beta-glucan levels in oat flours during simulated in vitro digestion and fermentation with human fecal flora obtained from different individuals. The oat flours were digested by using human digestion enzymes and fermented by batch fermentation under anaerobic conditions for 24 h. The fermentation progress was monitored by measuring pH, total gas, and short-chain fatty acid (SCFA) production. Significant effects of beta-glucan on the formation of gas and total SCFA were observed compared to the blank without substrate (P < 0.05); however, there were no differences in pH changes, total gas, and total SCFA production among oat lines (P > 0.05). Acetate, propionate, and butyrate were the main SCFA produced from digested oat flours during fermentation. More propionate and less acetate were produced from digested oat flours compared to lactulose. Different human fecal floras obtained from three healthy individuals had similar patterns in the change of pH and the production of gas during fermentation. Total SCFA after 24 h of fermentation were not different, but the formation rates of total SCFA differed between individuals. In vitro fermentation of digested oat flours with beta-glucan could provide favorable environmental conditions for the colon and these findings, thus, will help in developing oat-based food products with desirable health benefits.

  18. Acidogenic fermentation of the organic fraction of municipal solid waste and cheese whey for bio-plastic precursors recovery - Effects of process conditions during batch tests.

    PubMed

    Girotto, Francesca; Lavagnolo, Maria Cristina; Pivato, Alberto; Cossu, Raffaello

    2017-12-01

    The problem of fossil fuels dependency is being addressed through sustainable bio-fuels and bio-products production worldwide. At the base of this bio-based economy there is the efficient use of biomass as non-virgin feedstock. Through acidogenic fermentation, organic waste can be valorised in order to obtain several precursors to be used for bio-plastic production. Some investigations have been done but there is still a lack of knowledge that must be filled before moving to effective full scale plants. Acidogenic fermentation batch tests were performed using food waste (FW) and cheese whey (CW) as substrates. Effects of nine different combinations of substrate to inoculum (S/I) ratio (2, 4, and 6) and initial pH (5, 7, and 9) were investigated for metabolites (acetate, butyrate, propionate, valerate, lactate, and ethanol) productions. Results showed that the most abundant metabolites deriving from FW fermentation were butyrate and acetate, mainly influenced by the S/I ratio (acetate and butyrate maximum productions of 21.4 and 34.5g/L, respectively, at S/I=6). Instead, when dealing with CW, lactate was the dominant metabolite significantly correlated with pH (lactate maximum production of 15.7g/L at pH = 9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Adaptation of continuous biogas reactors operating under wet fermentation conditions to dry conditions with corn stover as substrate.

    PubMed

    Kakuk, Balázs; Kovács, Kornél L; Szuhaj, Márk; Rákhely, Gábor; Bagi, Zoltán

    2017-08-01

    Corn stover (CS) is the agricultural by-product of maize cultivation. Due to its high abundance and high energy content it is a promising substrate for the bioenergy sector. However, it is currently neglected in industrial scale biogas plants, because of its slow decomposition and hydrophobic character. To assess the maximum biomethane potential of CS, long-term batch fermentations were carried out with various substrate concentrations and particle sizes for 72 days. In separate experiments we adapted the biogas producing microbial community in wet fermentation arrangement first to the lignocellulosic substrate, in Continuous Stirred Tank Reactor (CSTR), then subsequently, by continuously elevating the feed-in concentration, to dry conditions in solid state fermenters (SS-AD). In the batch tests, the <10 mm fraction of the grinded and sieved CS was amenable for biogasification, but it required 10% more time to produce 90% of the total biomethane yield than the <2 mm sized fraction, although in the total yields there was no significant difference between the two size ranges. We also observed that increasing amount of substrate added to the fermentation lowered the specific methane yield. In the CSTR experiment, the daily substrate loading was gradually increased from 1 to 2 g vs /L/day until the system produced signs of overloading. Then the biomass was transferred to SS-AD reactors and the adaptation process was studied. Although the specific methane yields were lower in the SS-AD arrangement (177 mL CH 4 /g vs in CSTR vs. 105 mL in SS-AD), the benefits of process operational parameters, i.e. lower energy consumption, smaller reactor volume, digestate amount generated and simpler configuration, may compensate the somewhat lower yield. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Effect of nitrate and nitrite curing salts on microbial changes and sensory quality of non-fermented sausages.

    PubMed

    Sanz, Y; Vila, R; Toldrá, F; Flores, J

    1998-07-21

    The effects of nitrate and nitrite curing salts on microbial changes and sensory quality of non-fermented sausages of small diameter were investigated. During pre-ripening (day 5), levels of lactic acid bacteria and yeasts were slightly higher in nitrite-made sausages than in those made with nitrate. In contrast, nitrite discouraged the growth of psychrotrophs as occurs in fermented sausages. By the end of ripening (day 26), levels of microorganisms were similar in both batches of sausages except for psychrotrophs being higher in those made with nitrite. Nitrate-made sausages showed higher aroma and taste intensity.

  1. Brettanomyces as a starter culture in rice-steamed sponge cake: a traditional fermented food in China.

    PubMed

    Wu, Peng; Xu, Xiaoyun; Xu, Yongxia; Chen, Qingchan; Pan, Siyi

    2011-11-01

    The potential use of Brettanomyces anomalus PSY-001 as an additional starter culture for the production of Rice-steamed sponge cake (RSSC), a traditional fermented food in China, was investigated. Two productions of RSSC, each containing batches of experimental cakes with Brettanomyces added and reference cakes with the leavened liquid added were carried out. For both experimental and reference cakes, chemical analysis and sensory evaluation were carried out during the fermentation period. The results showed that experimental cakes had desirable aroma and taste. The observed differences indicate a positive contribution to the overall quality of RSSC by B. anomalus PSY-001.

  2. Biogas from poultry waste-production and energy potential.

    PubMed

    Dornelas, Karoline Carvalho; Schneider, Roselene Maria; do Amaral, Adriana Garcia

    2017-08-01

    The objective of this study was to evaluate the effect of heat treatment on poultry litter with different levels of reutilisation for potential generation of biogas in experimental biodigesters. Chicken litter used was obtained from two small-scale poultry houses where 14 birds m -2 were housed for a period of 42 days per cycle. Litter from aviary 1 received no heat treatment while each batch of litter produced from aviary 2 underwent a fermentation process. For each batch taken, two biodigesters were set for each aviary, with hydraulic retention time of 35 days. The efficiency of the biodigestion process was evaluated by biogas production in relation to total solids (TS) added, as well as the potential for power generation. Quantified volumes ranged from 8.9 to 41.1 L of biogas for aviary 1, and 6.7 to 33.9 L of biogas for aviary 2, with the sixth bed reused from both aviaries registering the largest biogas potential. Average potential biogas in m 3  kg -1 of TS added were 0.022 to 0.034 for aviary 1 and 0.015 to 0.022 for aviary 2. Energy values ​​of biogas produced were calculated based on calorific value and ranged from 0.06 to 0.33 kWh for chicken litter without fermentation and from 0.05 to 0.27 kWh for chicken litter with fermentation. It was concluded that the re-use of poultry litter resulted in an increase in biogas production, and the use of fermentation in the microbiological treatment of poultry litter seems to have negatively influenced production of biogas.

  3. Mathematical modeling of fed-batch fermentation of Schizochytrium sp. FJU-512 growth and DHA production using a shift control strategy.

    PubMed

    Zhang, Mingliang; Wu, Weibin; Guo, Xiaolei; Weichen, You; Qi, Feng; Jiang, Xianzhang; Huang, Jianzhong

    2018-03-01

    To obtain high-cell-density cultures of Schizochytrium sp. FJU-512 for DHA production, two stages of fermentation strategy were used and carbon/nitrogen ratio, DO and temperature were controlled at different levels. The final dry cell weight, total lipid production and DHA yield in 15 l bioreactor reached 103.9, 37.2 and 16.0 g/l, respectively. For the further study of microbial growth and DHA production dynamics, we established a set of kinetic models for the fed-batch production of DHA by Schizochytrium sp. FJU-512 in 15 and 100 l fermenters and a compensatory parameter n was integrated into the model in order to find the optimal mathematical equations. A modified Logistic model was proposed to fit the cell growth data and the following kinetic parameters were obtained: µ m  = 0.0525/h, X m  = 100 g/l and n  = 4.1717 for the 15 l bioreactor, as well as µ m  = 0.0382/h, X m  = 107.4371 g/l and n  = 10 for the 100 l bioreactor. The Luedeking-Piret equations were utilized to model DHA production, yielding values of α  = 0.0648 g/g and β  = 0.0014 g/g/h for the 15 l bioreactor, while the values of α and β obtained for the 100 l fermentation were 0.0209 g/g and 0.0030 g/g/h. The predicted results compared with experimental data showed that the established models had a good fitting precision and were able to exactly depict the dynamic features of the DHA production process.

  4. The influence of slaughterhouse waste on fermentative H{sub 2} production from food waste: Preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia, E-mail: letizia.tuccinardi@uniroma1.it

    Highlights: • Co-digestion process finalized to bio-H{sub 2} production was tested in batch tests. • Slaughterhouse waste (SHW) and food waste (FW) were co-digested in different proportions. • The presence of SHW affected the H{sub 2} production from FW. • When SHW ranging between 50% and 70% the H{sub 2} production is improved. • SHW percentages above 70%, led to a depletion in H{sub 2} production. - Abstract: The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process formore » H{sub 2} production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H{sub 2} production compared to that in FW only, reaching H{sub 2}-production yields of 145 and 109 ml gVS{sub 0}{sup -1}, respectively, which are 1.5–2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H{sub 2} production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process.« less

  5. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation.

    PubMed

    Maeda, Roberto Nobuyuki; Barcelos, Carolina Araújo; Santa Anna, Lídia Maria Melo; Pereira, Nei

    2013-01-10

    This study aimed to produce a cellulase blend and to evaluate its application in a simultaneous saccharification and fermentation (SSF) process for second generation ethanol production from sugar cane bagasse. The sugar cane bagasse was subjected to pretreatments (diluted acid and alkaline), as for disorganizing the ligocellulosic complex, and making the cellulose component more amenable to enzymatic hydrolysis. The residual solid fraction was named sugar cane bagasse partially delignified cellulignin (PDC), and was used for enzyme production and ethanol fermentation. The enzyme production was performed in a bioreactor with two inoculum concentrations (5 and 10% v/v). The fermentation inoculated with higher inoculum size reduced the time for maximum enzyme production (from 72 to 48). The enzyme extract was concentrated using tangential ultrafiltration in hollow fiber membranes, and the produced cellulase blend was evaluated for its stability at 37 °C, operation temperature of the simultaneous SSF process, and at 50 °C, optimum temperature of cellulase blend activity. The cellulolytic preparation was stable for at least 300 h at both 37 °C and 50 °C. The ethanol production was carried out by PDC fed-batch SSF process, using the onsite cellulase blend. The feeding strategy circumvented the classic problems of diffusion limitations by diminishing the presence of a high solid:liquid ratio at any time, resulting in high ethanol concentration at the end of the process (100 g/L), which corresponded to a fermentation efficiency of 78% of the maximum obtainable theoretically. The experimental results led to the ratio of 380 L of ethanol per ton of sugar cane bagasse PDC. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Improved production of an enzyme that hydrolyses raw yam starch by Penicillium sp. S-22 using fed-batch fermentation.

    PubMed

    Sun, Hai-Yan; Ge, Xiang-Yang; Zhang, Wei-Guo

    2006-11-01

    A newly isolated strain, Penicillium sp. S-22, was used to produce an enzyme that hydrolyses raw yam starch [raw yam starch digesting enzyme (RYSDE)]. The enzyme activity and overall enzyme productivity were respectively 16 U/ml and 0.19 U/ml h in the batch culture. The enzyme activity increased to 85 U/ml by feeding of partially hydrolyzed raw yam starch. When a mixture containing partially hydrolyzed raw yam starch and peptone was fed by a pH-stat strategy, the enzyme activity reached 366 U/ml, 23-fold of that obtained in the batch culture, and the overall productivity reached 3.4 U/ml h, which was 18-fold of that in the batch culture.

  7. Soft sensor modeling based on variable partition ensemble method for nonlinear batch processes

    NASA Astrophysics Data System (ADS)

    Wang, Li; Chen, Xiangguang; Yang, Kai; Jin, Huaiping

    2017-01-01

    Batch processes are always characterized by nonlinear and system uncertain properties, therefore, the conventional single model may be ill-suited. A local learning strategy soft sensor based on variable partition ensemble method is developed for the quality prediction of nonlinear and non-Gaussian batch processes. A set of input variable sets are obtained by bootstrapping and PMI criterion. Then, multiple local GPR models are developed based on each local input variable set. When a new test data is coming, the posterior probability of each best performance local model is estimated based on Bayesian inference and used to combine these local GPR models to get the final prediction result. The proposed soft sensor is demonstrated by applying to an industrial fed-batch chlortetracycline fermentation process.

  8. Evaluation of a potentially probiotic non-dairy beverage developed with honey and kefir grains: Fermentation kinetics and storage study.

    PubMed

    Fiorda, Fernanda A; de Melo Pereira, Gilberto V; Thomaz-Soccol, Vanete; Rakshit, Sudip K; Soccol, Carlos R

    2016-12-01

    The aim of this work was to study the fermentation process of honey with kefir grains through a comprehensive understanding of its rheological properties, probiotic cell viability, instrumental color parameters and kinetic aspects in a batch bioreactor and during storage. The results showed that kefir grains were well adapted to bioreactor conditions, reaching high levels of cell viability (over 10 6 CFU mL -1 for total yeast and bacteria), phenolic compounds content (190 GAE/100 g) and acidification after 24 h of fermentation at 30 ℃. Colorimetric analysis showed that lightness (L*) and redness (a*) remained constant, while yellowness intensities (b*) decreased during fermentation time. After 35 days of storage, honey kefir beverage maintained its chemical characteristics and microbial viability as required to be classified as a probiotic product. The Ostwald-de-Waele (R 2  ≥ 0.98) and Herschel-Bulkley (R 2  ≥ 0.99) models can be used to predict the behavior of honey kefir beverage. The parameters analyzed in this study should be taken into account for industrial production of this novel non-dairy beverage. © The Author(s) 2016.

  9. Potassium metabisulphite as a potential biocide against Dekkera bruxellensis in fuel ethanol fermentations.

    PubMed

    Bassi, A P G; Paraluppi, A L; Reis, V R; Ceccato-Antonini, S R

    2015-03-01

    Dekkera bruxellensis is an important contaminant yeast of fuel ethanol fermentations in Brazil, whose system applies cell repitching between the fermentative cycles. This work evaluated the addition of potassium metabisulphite (PMB) on yeast growth and fermentative yields in pure and co-cultures of Saccharomyces cerevisiae and D. bruxellensis in two situations: addition to the acidic solution in which the cells are treated between the fermentative cycles or to the fermentation medium. In the range of 200-400 mg l(-1) , PMB was effective to control the growth of D. bruxellensis depending on the culture medium and strain. When added to the acidic solution (250 mg l(-1) ), a significant effect was observed in mixed cultures, because the inactivation of SO2 by S. cerevisiae most likely protected D. bruxellensis from being damaged by PMB. The physiological response of S. cerevisiae to the presence of PMB may explain the significant decrease in alcohol production. When added to the fermentation medium, PMB resulted in the control but not the death of D. bruxellensis, with less intensive effect on the fermentative efficiency. In co-culture with the addition of PMB, the fermentative efficiency was significantly lower than in the absence of PMB. This study is the first to evaluate the action of potassium metabisulphite to control the growth of Dekkera bruxellensis in the fermentation process for fuel alcohol production. As near as possible of industrial conditions, the study simulates the addition of that substance in different points in the fermentation process, verifying in which situation the effects over the starter yeast and alcohol yield are minimal and over D. bruxellensis are maximal. Co-culture fermentations were carried out in cell-recycled batch system. The feasibility of using this substance for this specific fermentation is discussed in light of the possible biological and chemical interactions. © 2014 The Society for Applied Microbiology.

  10. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.

    PubMed

    Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R

    2011-01-01

    Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates with a benchmark slow fermenting fiber that we fabricated in an in vitro simulation of the human digestive system. Results show a variety of fermentation profiles only some of which have slow and extended rate of fermentation. © 2011 Institute of Food Technologists®

  11. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    ERIC Educational Resources Information Center

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  12. Inferring mixed-culture growth from total biomass data in a wavelet approach

    NASA Astrophysics Data System (ADS)

    Ibarra-Junquera, V.; Escalante-Minakata, P.; Murguía, J. S.; Rosu, H. C.

    2006-10-01

    It is shown that the presence of mixed-culture growth in batch fermentation processes can be very accurately inferred from total biomass data by means of the wavelet analysis for singularity detection. This is accomplished by considering simple phenomenological models for the mixed growth and the more complicated case of mixed growth on a mixture of substrates. The main quantity provided by the wavelet analysis is the Hölder exponent of the singularity that we determine for our illustrative examples. The numerical results point to the possibility that Hölder exponents can be used to characterize the nature of the mixed-culture growth in batch fermentation processes with potential industrial applications. Moreover, the analysis of the same data affected by the common additive Gaussian noise still lead to the wavelet detection of the singularities although the Hölder exponent is no longer a useful parameter.

  13. Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca2+-independent α-amylase by Bacillus acidicola.

    PubMed

    Sharma, Archana; Satyanarayana, Tulasi

    2011-05-01

    The production of acidic α-amylase by a novel acidophilic bacterium Bacillus acidicola TSAS1 was optimized in submerged fermentation using statistical approaches. The process parameters that significantly affected α-amylase production (starch, K(2)HPO(4), inoculum size and temperature) were identified by Plackett and Burman design. The optimum levels of the significant variables as determined using central composite design of response surface methodology are starch (2.75%), K(2)HPO(4) (0.01%), inoculum size [2% (v/v) containing 1.9×10(8) CFU ml(-1)], and temperature (33°C). An overall 2.4 and 2.9-fold increase in enzyme production has been attained in batch and fed-batch fermentations in the laboratory fermentor, respectively. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Enhanced production and purification of recombinant surface array protein (Sap) for use in detection of Bacillus anthracis.

    PubMed

    Puranik, Nidhi; Tripathi, N K; Pal, V; Goel, Ajay Kumar

    2018-05-01

    Surface array protein (Sap) can be an important biomarker for specific detection of Bacillus anthracis , which is released by the bacterium during its growth in culture broth. In the present work, we have cloned and expressed Sap in Escherichia coli . The culture conditions and cultivation media were optimized and used in batch fermentation process for scale up of Sap in soluble form. The recombinant Sap was purified employing affinity chromatography followed by diafiltration. The final yield of purified protein was 20 and 46 mg/l of culture during shake flasks and batch fermentation, respectively. The protein purity and its reactivity were confirmed employing SDS-PAGE and Western blot, respectively. The antibodies raised against purified Sap were evaluated by Western blotting for detection of Sap released by B. anthracis . Our results showed that the Sap could be a novel marker for detection and confirmation of B. anthracis .

  15. Advanced control of dissolved oxygen concentration in fed batch cultures during recombinant protein production.

    PubMed

    Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A

    2009-02-01

    Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality.

  16. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Park, Bu-Soo; Lee, Jinwon; Oh, Min-Kyu

    2013-07-01

    Sugarcane molasses is considered to be a good carbon source for biorefinery due to its high sugar content and low price. Sucrose occupies more than half of the sugar in the molasses. Enterobacter aerogenes is a good host strain for 2,3-butanediol production, but its utilization of sucrose is not very efficient. To improve sucrose utilization in E. aerogenes, a sucrose regulator (ScrR) was disrupted from the genomic DNA. The deletion mutation increased the sucrose consumption rate significantly when sucrose or sugarcane molasses was used as a carbon source. The 2,3-butanediol production from sugarcane molasses by the mutant was enhanced by 60% in batch fermentation compared to that by the wild type strain. In fed-batch fermentation, 98.69 g/L of 2,3-butanediol production was achieved at 36 h. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Lactic acid and methane: improved exploitation of biowaste potential.

    PubMed

    Dreschke, G; Probst, M; Walter, A; Pümpel, T; Walde, J; Insam, H

    2015-01-01

    This feasibility study investigated a two-step biorefining approach to increase the value gained by recycling of organic municipal solid waste. Firstly, lactic acid was produced via batch fermentation at 37°C using the indigenous microbiome. Experiments revealed an optimal fermentation period of 24h resulting in high yields of lactic acid (up to 37gkg(-1)). The lactic acid proportion of total volatile fatty acid content reached up to 83%. Lactobacilli were selectively enriched to up to 75% of the bacterial community. Additionally conversion of organic matter to lactic acid was increased from 22% to 30% through counteracting end product inhibition by continuous lactic acid extraction. Secondly, fermentation residues were used as co-substrate in biomethane production yielding up to 618±41Nmlbiomethaneg(-1) volatile solids. Digestate, the only end product of this process can be used as organic fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Characteristics of Corn Stover Pretreated with Liquid Hot Water and Fed-Batch Semi-Simultaneous Saccharification and Fermentation for Bioethanol Production

    PubMed Central

    Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo

    2014-01-01

    Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism. PMID:24763192

  19. Growth monitoring and control in complex medium: a case study employing fed-batch penicillin fermentation and computer-aided on-line mass balancing.

    PubMed

    Mou, D G; Cooney, C L

    1983-01-01

    To broaden the practicality of on-line growth monitoring and control, its application in fedbatch penicillin fermentation using high corn steep liquor (CSL) concentration (53 g/L) is demonstrated. By employing a calculation method that considers the vagaries of CSL consumption, overall and instantaneous carbon-balancing equations are successfully used to calculate, on-line, the cell concentration and instantaneous specific growth rate in the penicillin production phase. As a consequence, these equations, together with a feedback control strategy, enable the computer control of glucose feed and maintenance of the preselected production-phase growth rate with error less than 0.002 h(-1).

  20. Optimization of soluble organic selenium accumulation during fermentation of Flammulina velutipes mycelia.

    PubMed

    Ma, Yunfeng; Xiang, Fu; Xiang, Jun; Yu, Longjiang

    2012-01-01

    Selenium is an essential nutrient with diverse physiological functions, and soluble organic selenium (SOS) sources have a higher bioavailability than inorganic selenium sources. Based on the response surface methodology and central composite design, this study presents the optimal medium components for SOS accumulation in batch cultures of Flammulina velutipes, i.e. 30 g/L glucose, 11.2 mg/L sodium selenite, and 1.85 g/L NH4NO3. Furthermore, logistic function model feeding was found to be the optimal feeding strategy for SOS accumulation during Flammulina velutipes mycelia fermentation, where the maximum SOS accumulation reached (4.63 +/- 0.24) mg/L, which is consistent with the predicted value.

  1. Fermentation of biomass sugars to ethanol using native industrial yeast strains.

    PubMed

    Yuan, Dawei; Rao, Kripa; Relue, Patricia; Varanasi, Sasidhar

    2011-02-01

    In this paper, the feasibility of a technology for fermenting sugar mixtures representative of cellulosic biomass hydrolyzates with native industrial yeast strains is demonstrated. This paper explores the isomerization of xylose to xylulose using a bi-layered enzyme pellet system capable of sustaining a micro-environmental pH gradient. This ability allows for considerable flexibility in conducting the isomerization and fermentation steps. With this method, the isomerization and fermentation could be conducted sequentially, in fed-batch, or simultaneously to maximize utilization of both C5 and C6 sugars and ethanol yield. This system takes advantage of a pH-dependent complexation of xylulose with a supplemented additive to achieve up to 86% isomerization of xylose at fermentation conditions. Commercially-proven Saccharomyces cerevisiae strains from the corn-ethanol industry were used and shown to be very effective in implementation of the technology for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.

    PubMed

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2015-11-01

    Lactic acid (LA) is a necessary industrial feedstock for producing the bioplastic, polylactic acid (PLA), which is currently produced by pure culture fermentation of food carbohydrates. This work presents an alternative to produce LA from potato peel waste (PPW) by anaerobic fermentation in a sequencing batch reactor (SBR) inoculated with undefined mixed culture from a municipal wastewater treatment plant. A statistical design of experiments approach was employed using set of 0.8L SBRs using gelatinized PPW at a solids content range from 30 to 50 g L(-1), solids retention time of 2-4 days for yield and productivity optimization. The maximum LA production yield of 0.25 g g(-1) PPW and highest productivity of 125 mg g(-1) d(-1) were achieved. A scale-up SBR trial using neat gelatinized PPW (at 80 g L(-1) solids content) at the 3 L scale was employed and the highest LA yield of 0.14 g g(-1) PPW and a productivity of 138 mg g(-1) d(-1) were achieved with a 1 d SRT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast

    PubMed Central

    Brickwedde, Anja; van den Broek, Marcel; Geertman, Jan-Maarten A.; Magalhães, Frederico; Kuijpers, Niels G. A.; Gibson, Brian; Pronk, Jack T.; Daran, Jean-Marc G.

    2017-01-01

    The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion (“attenuation”) of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains. PMID:28943864

  4. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast.

    PubMed

    Brickwedde, Anja; van den Broek, Marcel; Geertman, Jan-Maarten A; Magalhães, Frederico; Kuijpers, Niels G A; Gibson, Brian; Pronk, Jack T; Daran, Jean-Marc G

    2017-01-01

    The lager brewing yeast Saccharomyces pastorianus , an interspecies hybrid of S. eubayanus and S. cerevisiae , ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14 C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.

  5. Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies.

    PubMed

    Gahlawat, Geeta; Srivastava, Ashok K

    2013-06-01

    In the present investigation, batch cultivation of Azohydromonas australica DSM 1124 was carried out in a bioreactor for growth associated PHB production. The observed batch PHB production kinetics data was then used for the development of a mathematical model which adequately described the substrate limitation and inhibition during the cultivation. The statistical validity test demonstrated that the proposed mathematical model predictions were significant at 99% confidence level. The model was thereafter extrapolated to fed-batch to identify various nutrients feeding regimes during the bioreactor cultivation to improve the PHB accumulation. The distinct capability of the mathematical model to predict highly dynamic fed-batch cultivation strategies was demonstrated by experimental implementation of two fed-batch cultivation strategies. A significantly high PHB concentration of 22.65 g/L & an overall PHB content of 76% was achieved during constant feed rate fed-batch cultivation which is the highest PHB content reported so far using A. australica. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation.

    PubMed

    Park, Jeong-Hoon; Hong, Ji-Yeon; Jang, Hyun Chul; Oh, Seung Geun; Kim, Sang-Hyoun; Yoon, Jeong-Jun; Kim, Yong Jin

    2012-03-01

    A facile continuous method for dilute-acid hydrolysis of the representative red seaweed species, Gelidium amansii was developed and its hydrolysate was subsequently evaluated for fermentability. In the hydrolysis step, the hydrolysates obtained from a batch reactor and a continuous reactor were systematically compared based on fermentable sugar yield and inhibitor formation. There are many advantages to the continuous hydrolysis process. For example, the low melting point of the agar component in G. amansii facilitates improved raw material fluidity in the continuous reactor. In addition, the hydrolysate obtained from the continuous process delivered a high sugar and low inhibitor concentration, thereby leading to both high yield and high final ethanol titer in the fermentation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of fermentation conditions on biohydrogen production from cassava starch by anaerobic mixed cultures

    NASA Astrophysics Data System (ADS)

    Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.

    2016-06-01

    In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.

  8. Phase shifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online.

    PubMed

    Bapat, Prashant M; Das, Debasish; Dave, Nishant N; Wangikar, Pramod P

    2006-12-15

    Antibiotic fermentation processes are raw material cost intensive and the profitability is greatly dependent on the product yield per unit substrate consumed. In order to reduce costs, industrial processes use organic nitrogen substrates (ONS) such as corn steep liquor and yeast extract. Thus, although the stoichiometric analysis is the first logical step in process development, it is often difficult to achieve due to the ill-defined nature of the medium. Here, we present a black-box stoichiometric model for rifamycin B production via Amycolatopsis mediterranei S699 fermentation in complex multi-substrate medium. The stoichiometric coefficients have been experimentally evaluated for nine different media compositions. The ONS was quantified in terms of the amino acid content that it provides. Note that the black box stoichiometric model is an overall result of the metabolic reactions that occur during growth. Hence, the observed stoichiometric coefficients are liable to change during the batch cycle. To capture the shifts in stoichiometry, we carried out the stoichiometric analysis over short intervals of 8-16 h in a batch cycle of 100-200 h. An error analysis shows that there are no systematic errors in the measurements and that there are no unaccounted products in the process. The growth stoichiometry shows a shift from one substrate combination to another during the batch cycle. The shifts were observed to correlate well with the shifts in the trends of pH and exit carbon dioxide profiles. To exemplify, the ammonia uptake and nitrate uptake phases were marked by a decreasing pH trend and an increasing pH trend, respectively. Further, we find the product yield per unit carbon substrate to be greatly dependent on the nature of the nitrogen substrate. The analysis presented here can be readily applied to other fermentation systems that employ multi-substrate complex media.

  9. Evaluation of asymmetric polydimethylsiloxane-polyvinylidene fluoride composite membrane and incorporated with acetone-butanol-ethanol fermentation for butanol recovery.

    PubMed

    Xue, Chuang; Du, Guang-Qing; Chen, Li-Jie; Ren, Jian-Gang; Bai, Feng-Wu

    2014-10-20

    The polydimethylsiloxane-polyvinylidene fluoride (PDMS-PVDF) composite membrane was studied for its pervaporation performance to removal of butanol from butanol/ABE solution, fermentation broth as well as incorporated with acetone-butanol-ethanol (ABE) fermentation. The total flux and butanol titer in permeate through the PDMS-PVDF membrane were up to 769.6 g/m(2)h and 323.5 g/L at 80 °C, respectively. The butanol flux and total flux increased with increasing the feed temperature as well as the feed butanol titer. The butanol separation factor and butanol titer in permeate decreased slightly in the presence of acetone and ethanol in the feed due to their preferential dissolution and competitive permeation through the membrane. In fed-batch fermentation incorporated with pervaporation, butanol titer and flux in permeate maintained at a steady level with the range of 139.9-154.0 g/L and 13.3-16.3 g/m(2)h, respectively, which was attributed to the stable butanol titer in fermentation broth as well as the excellent hydrophobic nature of the PDMS-PVDF matrix. Therefore, the PDMS-PVDF composite membrane had a great potential in the in situ product recovery with ABE fermentation, enabling the economic production of biobutanol. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Bio-Heat Is a Key Environmental Driver Shaping the Microbial Community of Medium-Temperature Daqu.

    PubMed

    Xiao, Chen; Lu, Zhen-Ming; Zhang, Xiao-Juan; Wang, Song-Tao; Ao, Ling; Shen, Cai-Hong; Shi, Jin-Song; Xu, Zheng-Hong

    2017-12-01

    "Daqu" is a saccharifying and fermenting agent commonly used in the traditional solid-state fermentation industry (e.g., baijiu and vinegar). The patterns of microbial community succession and flavor formation are highly similar among batches, yet the mechanisms promoting temporal succession in the Daqu microbial ecology remain unclear. Here, we first correlated temporal profiles of microbial community succession with environmental variables (temperature, moisture, and titratable acidity) in medium temperature Daqu (MT-Daqu) throughout fermentation. Temperature dynamics significantly correlated ( P < 0.05) with the quick succession of MT-Daqu microbiota in the first 12 d of fermentation, while the community structure was relatively stable after 12 d. Then, we explored the effect of temperature on the MT-Daqu community assembly. In the first 4 d of fermentation, the rapid propagation of most bacterial taxa and several fungal taxa, including Candida , Wickerhamomyces , and unclassified Dipodascaceae and Saccharomycetales species, significantly increased MT-Daqu temperature to 55°C. Subsequently, sustained bio-heat generated by microbial metabolism (53 to 56°C) within MT-Daqu inhibited the growth of most microbes from day 4 to day 12, while thermotolerant taxa, including Bacillus , unclassified Streptophyta , Weissella , Thermoactinomyces , Thermoascus , and Thermomyces survived or kept on growing. Furthermore, temperature as a major driving force on the shaping of MT-Daqu microbiota was validated. Lowering the fermentation temperature by placing the MT-Daqu in a 37°C incubator resulted in decreased relative abundances of thermotolerant taxa, including Bacillus , Thermoactinomyces , and Thermoascus , in the MT-Daqu microbiota. This study revealed that bio-heat functioned as a primary endogenous driver promoting the formation of functional MT-Daqu microbiota. IMPORTANCE Humans have mastered the Daqu preparation technique of cultivating functional microbiota on starchy grains over thousands of years, and it is well known that the metabolic activity of these microbes is key to the flavor production of Chinese baijiu. The pattern of microbial community succession and flavor formation remains highly similar between batches, yet mechanistic insight into these patterns and into microbial population fidelity to specific environmental conditions remains unclear. Our study revealed that bio-heat was generated within Daqu bricks in the first 4 d of fermentation, concomitant with rapid microbial propagation and metabolism. The sustained bio-heat may then function as a major endogenous driving force promoting the formation of the MT-Daqu microbiota from day 4 to day 12. The bio-heat-driven growth of thermotolerant microorganisms might contribute to the formation of flavor metabolites. This study provides useful information for the temperature-based modulation of microbiota function during the fermentation of Daqu. Copyright © 2017 American Society for Microbiology.

  11. Monitoring peroxides generation during model wine fermentation by FOX-1 assay.

    PubMed

    Bridi, Raquel; González, Alvaro; Bordeu, Edmundo; López-Alarcón, Camilo; Aspée, Alexis; Diethelm, Benjamin; Lissi, Eduardo; Parpinello, Giuseppina Paola; Versari, Andrea

    2015-05-15

    The quality of wine is mainly determined during the alcoholic fermentation that gradually transforms the grape juice into wine. Along this process the yeast goes through several stressful stages which can affect its fermentative ability and industrial performance, affecting wine quality. Based on their actual application on industrial winemaking, commercial Saccharomyces cerevisiae strains (EC1118, QA23, VIN7 and VL3) were used. They were inoculated in batch laboratory fermentations in a model wine solution for evaluating the production of reactive oxygen species (ROS) during the yeast's alcoholic fermentation. For first time total hydroperoxides were determined by FOX-1 assay to follow ROS generation. The total hydroperoxides accumulated along the 10 days of fermentation peaked up to 10.0 μM in yeast EC1118, of which 1.3 μM was hydrogen peroxide (H2O2). The FOX-1 based analytical approach herein presented is a valuable tool for the quantification of ROS oxidative damage during winemaking. Copyright © 2015. Published by Elsevier Ltd.

  12. Use of a biparticle fluidized-bed bioreactor for the continuous and simultaneous fermentation and purification of lactic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, E. N.; Cooper, S. P.; Clement, S. L.

    A continuous biparticle fluidized bed reactor is developed for the simultaneous fermentation and purification of lactic acid. In this processing scheme, bacteria are immobilized in gelatin beads and are fluidized in a columnar reactor. Solid particles with sorbent capacity for the product are introduced at the top of the reactor, and fall counter currently to the biocatalyst, effecting in situ removal of the inhibitory product, while also controlling reactor pH at optimal levels. Initial long-term fermentation trials using immobilized Lactobacillus delbreuckii have demonstrated a 12 fold increase in volumetric productivity during adsorbent addition as opposed to control fermentations in themore » same reactor. Unoptimized regeneration of the loaded sorbent has effected at least an 8 fold concentration of lactic acid, and a 68 fold enhancement in separation from glucose compared to original levels in the fermentation broth. The benefits of this reactor system as opposed to conventional batch fermentation are discussed in terms of productivity and process economics.« less

  13. Bioethanol produced from Moringa oleifera seeds husk

    NASA Astrophysics Data System (ADS)

    Ali, E. N.; Kemat, S. Z.

    2017-06-01

    This paper presents the potential of bioethanol production from Moringa oleifera seeds husk which contains lignocellulosic through Simultaneous Saccharification and Fermentation (SSF) process by using Saccharomyces cerevisiae. This paper investigates the parameters which produce optimum bioethanol yield. The husk was hydrolyzed using NaOH and fermented using Saccharomyces cerevisiae yeast. Batch fermentation was performed with different yeast dosage of 1, 3, and 5 g/L, pH value was 4.5, 5.0 and 5.5, and fermentation time of 3, 6, 9 and 12 hours. The temperature of fermentation process in incubator shaker is kept constant at 32ºC. The samples are then filtered using a 0.20 μm nylon filter syringe. The yield of bioethanol produced was analysed using High Performance Liquid Chromatography (HPLC). The results showed that the highest yield of 29.69 g/L was obtained at 3 hours of fermentation time at pH of 4.5 and using 1g/L yeast. This research work showed that Moringa oleifera seeds husk can be considered to produce bioethanol.

  14. Use of a biparticle fluidized-bed bioreactor for the continuous and simultaneous fermentation and purification of lactic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, E.N.; Cooper, S.P.; Clement, S.L.

    1995-12-31

    A continuous biparticle fluidized-bed reactor is developed for the simultaneous fermentation and purification of lactic acid. In this processing scheme, bacteria are immobilized in gelatin beads and are fluidized in a columnar reactor. Solid particles with sorbent capacity for the product are introduced at the top of the reactor, and fall counter currently to the biocatalyst, effecting in situ removal of the inhibitory product, while also controlling reactor pH at optimal levels. Initial long-term fermentation trials using immobilized Lactobacillus delbreuckii have demonstrated a 12-fold increase in volumetric productivity during absorbent addition as opposed to control fermentations in the same reactor.more » Unoptimized regeneration of the loaded sorbent has effected at least an eightfold concentration of lactic acid and a 68-fold enhancement in separation from glucose compared to original levels in the fermentation broth. The benefits of this reactor system as opposed to conventional batch fermentation are discussed in terms of productivity and process economics.« less

  15. Implantation ability of the potential probiotic strain, Lactobacillus reuteri PL519, in "Salchichón," a traditional Iberian dry fermented sausage.

    PubMed

    Ruiz-Moyano, Santiago; Martín, Alberto; Benito, María José; Aranda, Emilio; Casquete, Rocío; Córdoba, María de Guia

    2011-01-01

    The purpose of this study was to investigate the potential of incorporating the probiotic L. reuteri PL519 into the manufacturing of Iberian dry fermented sausages, and to observe its effect on the sensory properties of these meat products. Specific polymerase chain reaction (PCR) was carried out to detect the presence of probiotic strain at high counts in the inoculated sausages. Changes due to probiotic inoculation on physicochemical parameters were determined and the impact on sensory quality evaluated. Dry fermented sausages inoculated with L. reuteri PL519 may be considered as functional products according to the counts of this strain found at the end of processing. Inoculation with L. reuteri PL519 increased the amount of acetic acid, protein, and lipid degradation products in dry fermented sausages. The differences observed in the descriptive sensorial analysis corresponded, however, to a little impact on overall acceptability since no significant changes were found between the control and L. reuteri PL519 batch in the hedonic test. Processing and marketing of Iberian dry fermented sausages with functional characteristics. © 2011 Institute of Food Technologists®

  16. Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types.

    PubMed

    Albaek, Mads O; Gernaey, Krist V; Hansen, Morten S; Stocks, Stuart M

    2011-08-01

    The purpose of this article is to demonstrate how a model can be constructed such that the progress of a submerged fed-batch fermentation of a filamentous fungus can be predicted with acceptable accuracy. The studied process was enzyme production with Aspergillus oryzae in 550 L pilot plant stirred tank reactors. Different conditions of agitation and aeration were employed as well as two different impeller geometries. The limiting factor for the productivity was oxygen supply to the fermentation broth, and the carbon substrate feed flow rate was controlled by the dissolved oxygen tension. In order to predict the available oxygen transfer in the system, the stoichiometry of the reaction equation including maintenance substrate consumption was first determined. Mainly based on the biomass concentration a viscosity prediction model was constructed, because rising viscosity of the fermentation broth due to hyphal growth of the fungus leads to significant lower mass transfer towards the end of the fermentation process. Each compartment of the model was shown to predict the experimental results well. The overall model can be used to predict key process parameters at varying fermentation conditions. Copyright © 2011 Wiley Periodicals, Inc.

  17. 2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation.

    PubMed

    Jeon, Sangjun; Kim, Duk-Ki; Song, Hyohak; Lee, Hee Jong; Park, Sunghoon; Seung, Doyoung; Chang, Yong Keun

    2014-04-01

    This study presents a new and effective downstream process to recover 2,3-butanediol (2,3-BD) from fermentation broth which is produced by a recombinant Klebsiella pneumoniae strain. The ldhA-deficient K. pneumoniae strain yielded about 90 g/L of 2,3-BD, along with a number of by-products, such as organic acids and alcohols, in a 65 h fed-batch fermentation. The pH-adjusted cell-free fermentation broth was firstly concentrated until 2,3-BD reached around 500 g/L by vacuum evaporation at 50°C and 50 mbar vacuum pressure. The concentrated solution was further treated using light alcohols, including methanol, ethanol, and isopropanol, for the precipitation of organic acids and inorganic salts. Isopropanol showed the highest removal efficiency, in which 92.5% and 99.8% of organic acids and inorganic salts were precipitated, respectively. At a final step, a vacuum distillation process enabled the recovery of 76.2% of the treated 2,3-BD, with 96.1% purity, indicating that fermentatively produced 2,3-BD is effectively recovered by a simple alcohol precipitation and vacuum distillation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Looking for practical tools to achieve next-future applicability of dark fermentation to produce bio-hydrogen from organic materials in Continuously Stirred Tank Reactors.

    PubMed

    Tenca, A; Schievano, A; Lonati, S; Malagutti, L; Oberti, R; Adani, F

    2011-09-01

    This study aimed at finding applicable tools for favouring dark fermentation application in full-scale biogas plants in the next future. Firstly, the focus was obtaining mixed microbial cultures from natural sources (soil-inocula and anaerobically digested materials), able to efficiently produce bio-hydrogen by dark fermentation. Batch reactors with proper substrate (1 gL(glucose)(-1)) and metabolites concentrations, allowed high H(2) yields (2.8 ± 0.66 mol H(2)mol(glucose)(-1)), comparable to pure microbial cultures achievements. The application of this methodology to four organic substrates, of possible interest for full-scale plants, showed promising and repeatable bio-H(2) potential (BHP=202 ± 3 NL(H2)kg(VS)(-1)) from organic fraction of municipal source-separated waste (OFMSW). Nevertheless, the fermentation in a lab-scale CSTR (nowadays the most diffused typology of biogas-plant) of a concentrated organic mixture of OFMSW (126 g(TS)L(-1)) resulted in only 30% of its BHP, showing that further improvements are still needed for future full-scale applications of dark fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

    PubMed Central

    Pham, C. H.; Triolo, J. M.; Cu, T. T. T.; Pedersen, L.; Sommer, S. G.

    2013-01-01

    In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane (CH4) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) (CH4 NL kg−1 VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC. PMID:25049861

  20. Combined "de novo" and "ex novo" lipid fermentation in a mix-medium of corncob acid hydrolysate and soybean oil by Trichosporon dermatis.

    PubMed

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Qi, Gao-Xiang; Xiong, Lian; Lin, Xiao-Qing; Wang, Can; Li, Hai-Long; Chen, Xin-De

    2017-01-01

    Microbial oil is one important bio-product for its important function in energy, chemical, and food industry. Finding suitable substrates is one key issue for its industrial application. Both hydrophilic and hydrophobic substrates can be utilized by oleaginous microorganisms with two different bio-pathways (" de novo " lipid fermentation and " ex novo " lipid fermentation). To date, most of the research on lipid fermentation has focused mainly on only one fermentation pathway and little work was carried out on both " de novo " and " ex novo " lipid fermentation simultaneously; thus, the advantages of both lipid fermentation cannot be fulfilled comprehensively. In this study, corncob acid hydrolysate with soybean oil was used as a mix-medium for combined " de novo " and " ex novo " lipid fermentation by oleaginous yeast Trichosporon dermatis . Both hydrophilic and hydrophobic substrates (sugars and soybean oil) in the medium can be utilized simultaneously and efficiently by T. dermatis . Different fermentation modes were compared and the batch mode was the most suitable for the combined fermentation. The influence of soybean oil concentration, inoculum size, and initial pH on the lipid fermentation was evaluated and 20 g/L soybean oil, 5% inoculum size, and initial pH 6.0 were suitable for this bioprocess. By this technology, the lipid composition of extracellular hydrophobic substrate (soybean oil) can be modified. Although adding emulsifier showed little beneficial effect on lipid production, it can modify the intracellular lipid composition of T. dermatis . The present study proves the potential and possibility of combined " de novo " and " ex novo " lipid fermentation. This technology can use hydrophilic and hydrophobic sustainable bio-resources to generate lipid feedstock for the production of biodiesel or other lipid-based chemical compounds and to treat some special wastes such as oil-containing wastewater.

  1. Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum

    PubMed Central

    Mutreja, Ruchi; Das, Debasish; Goyal, Dinesh; Goyal, Arun

    2011-01-01

    The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF) using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun), Azadirachta indica (neem), Saracens indica (asoka), bambusa dendrocalmus (bamboo), Populas nigra (poplar), Achnatherum hymenoides (wild grass), Eucalyptus marginata (eucalyptus), and Mangifera indica (mango), were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun) at 30°C gave maximum ethanol yield of 1.42 g/L. PMID:21811671

  2. Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum.

    PubMed

    Mutreja, Ruchi; Das, Debasish; Goyal, Dinesh; Goyal, Arun

    2011-01-01

    The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF) using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun), Azadirachta indica (neem), Saracens indica (asoka), bambusa dendrocalmus (bamboo), Populas nigra (poplar), Achnatherum hymenoides (wild grass), Eucalyptus marginata (eucalyptus), and Mangifera indica (mango), were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun) at 30°C gave maximum ethanol yield of 1.42 g/L.

  3. Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products.

    PubMed

    Ren, Xi-Dong; Chen, Xu-Sheng; Zeng, Xin; Wang, Liang; Tang, Lei; Mao, Zhong-Gui

    2015-06-01

    ε-Poly-L-lysine (ε-PL) is produced by Streptomyces as a secondary metabolite with wide industrial applications, but its production still needs to be further enhanced. Environmental stress is an important approach for the promotion of secondary metabolites production by Streptomyces. In this study, the effect of acidic pH shock on enhancing ε-PL production by Streptomyces sp. M-Z18 was investigated in a 5-L fermenter. Based on the evaluation of acidic pH shock on mycelia metabolic activity and shock parameters optimization, an integrated pH-shock strategy was developed as follows: pre-acid-shock adaption at pH 5.0 to alleviate the damage caused by the followed pH shock, and then acidic pH shock at 3.0 for 12 h (including pH decline from 4.0 to 3.0) to positively regulate mycelia metabolic activity, finally restoring pH to 4.0 to provide optimal condition for ε-PL production. After 192 h of fed-batch fermentation, the maximum ε-PL production and productivity reached 54.70 g/L and 6.84 g/L/day, respectively, which were 52.50 % higher than those of control without pH shock. These results demonstrated that acidic pH shock is an efficient approach for improving ε-PL production. The information obtained should be useful for ε-PL production by other Streptomyces.

  4. Carbon isotope effects associated with mixed-acid fermentation of saccharides by Clostridium papyrosolvens

    NASA Astrophysics Data System (ADS)

    Penning, Holger; Conrad, Ralf

    2006-05-01

    In anoxic environments, microbial fermentation is the first metabolic process in the path of organic matter degradation. Since little is known about carbon isotope fractionation during microbial fermentation, we studied mixed-acid fermentation of different saccharides (glucose, cellobiose, and cellulose) in Clostridium papyrosolvens. The bacterium was grown anaerobically in batch under different growth conditions, both in pure culture and in co-culture with Methanobacterium bryantii utilizing H 2/CO 2 or Methanospirillum hungatei utilizing both H 2/CO 2 and formate. Fermentation products were acetate, lactate, ethanol, formate, H 2, and CO 2 (and CH 4 in methanogenic co-culture), with acetate becoming dominant at low H 2 partial pressures. After complete conversion of the saccharides, acetate was 13C-enriched ( αsacc/ac = 0.991-0.997), whereas lactate ( αsacc/lac = 1.001-1.006), ethanol ( αsacc/etoh = 1.007-1.013), and formate ( αsacc/form = 1.007-1.011) were 13C-depleted. The total inorganic carbon produced was only slightly enriched in 13C, but was more enriched, when formate was produced in large amounts, as 12CO 2 was preferentially converted with H 2 to formate. During biomass formation, 12C was slightly preferred ( αsacc/biom ≈ 1.002). The observations in batch culture were confirmed in glucose-limited chemostat culture at growth rates of 0.02-0.15 h -1 at both low and high hydrogen partial pressures. Our experiments showed that the carbon flow at metabolic branch points in the fermentation path governed carbon isotope fractionation to the accumulated products. During production of pyruvate, C isotopes were not fractionated when using cellulose, but were fractionated to different extents depending on growth conditions when using cellobiose or glucose. At the first catabolic branch point (pyruvate), the produced lactate was depleted in 13C, whereas the alternative product acetyl-CoA was 13C enriched. At the second branch point (acetyl-CoA), the ethanol formed was 15.6-18.6‰ depleted in 13C compared to the alternative product acetate. At low hydrogen partial pressures, as normally observed under environmental conditions, fermentation of saccharides should mainly result in the production of acetate that is only slightly enriched in 13C (<3‰).

  5. Characterisation of HFBII biosurfactant production and foam fractionation with and without antifoaming agents.

    PubMed

    Winterburn, James B; Russell, Andrew B; Martin, Peter J

    2011-05-01

    The effects of foaming on the production of the hydrophobin protein HFBII by fermentation have been investigated at two different scales. The foaming behaviour was characterised in standard terms of the product enrichment and recovery achieved. Additional specific attention was given to the rate at which foam, product and biomass overflowed from the fermentation system in order to assess the utility of foam fractionation for HFBII recovery. HFBII was expressed as an extracellular product during fed-batch fermentations with a genetically modified strain of Saccharomyces cerevisiae, which were carried out with and without the antifoam Struktol J647. In the presence of antifoam, HFBII production is shown to be largely unaffected by process scale, with similar yields of HFBII on dry matter obtained. More variation in HFBII yield was observed between fermentations without antifoam. In fermentations without antifoam, a maximum HFBII enrichment in the foam phase of 94.7 was measured with an overall enrichment, averaged over all overflowed material throughout the whole fermentation, of 54.6 at a recovery of 98.1%, leaving a residual HFBII concentration of 5.3 mg L(-1) in the fermenter. It is also shown that uncontrolled foaming resulted in reduced concentration of biomass in the fermenter vessel, affecting total production. This study illustrates the potential of foam fractionation for efficient recovery of HFBII through simultaneous high enrichment and recovery which are greater than those reported for similar systems.

  6. Monitoring and Evaluation of Alcoholic Fermentation Processes Using a Chemocapacitor Sensor Array

    PubMed Central

    Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope

    2014-01-01

    The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument. PMID:25184490

  7. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell.

    PubMed

    Mahmoud, Mohamed; Parameswaran, Prathap; Torres, César I; Rittmann, Bruce E

    2014-01-01

    Pre-fermentation of poorly biodegradable landfill leachate (BOD5/COD ratio of 0.32) was evaluated for enhanced current density (j), Coulombic efficiency (CE), Coulombic recovery (CR), and removal of organics (BOD5 and COD) in a microbial electrolysis cell (MEC). During fermentation, the complex organic matter in the leachate was transformed to simple volatile fatty acids, particularly succinate and acetate in batch tests, but mostly acetate in semi-continuous fermentation. Carbohydrate had the highest degree of fermentation, followed by protein and lipids. j, CE, CR, and BOD5 removal were much greater for an MEC fed with fermented leachate (23 A/m(3) or 16 mA/m(2), 68%, 17.3%, and 83%, respectively) compared to raw leachate (2.5 A/m(3) or 1.7 mA/m(2), 56%, 2.1%, and 5.6%, respectively). All differences support the value of pre-fermentation before an MEC for stabilization of BOD5 and enhanced electron recovery as current when treating a recalcitrant wastewater like landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production.

    PubMed

    Neu, Anna-Katrin; Pleissner, Daniel; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-07-01

    In this study, mucilage, a residue from coffee production, was investigated as substrate in fermentative l(+)-lactic acid production. Mucilage was provided as liquid suspension consisting glucose, galactose, fructose, xylose and sucrose as free sugars (up to 60gL(-1)), and used directly as medium in Bacillus coagulans batch fermentations carried out at 2 and 50L scales. Using mucilage and 5gL(-1) yeast extract as additional nitrogen source, more than 40gL(-1) lactic acid was obtained. Productivity and yield were 4-5gL(-1)h(-1) and 0.70-0.77g lactic acid per g of free sugars, respectively, irrespective the scale. Similar yield was found when no yeast extract was supplied, the productivity, however, was 1.5gL(-1)h(-1). Down-stream processing of culture broth, including filtration, electrodialysis, ion exchange chromatography and distillation, resulted in a pure lactic acid formulation containing 930gL(-1)l(+)-lactic acid. Optical purity was 99.8%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Żubrowska-Sudoł, Monika; Podedworna, Jolanta; Bisak, Agnieszka; Sytek-Szmeichel, Katarzyna; Krawczyk, Piotr; Garlicka, Agnieszka

    2017-11-01

    The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9%) and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%). Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.

  10. Evaluation of enzymatic reactors for large-scale panose production.

    PubMed

    Fernandes, Fabiano A N; Rodrigues, Sueli

    2007-07-01

    Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.

  11. Biotechnological transformation of hydrocortisone to 16α-hydroxy hydrocortisone by Streptomyces roseochromogenes.

    PubMed

    Restaino, Odile Francesca; Marseglia, Mariacarmela; De Castro, Cristina; Diana, Paola; Forni, Pasquale; Parrilli, Michelangelo; De Rosa, Mario; Schiraldi, Chiara

    2014-02-01

    Streptomyces roseochromogenes is able to hydroxylate steroid compounds in different positions of their cycloalkane rings thanks to a cytochrome P-450 multi-enzyme complex. In this paper, the hydroxylation of the hydrocortisone in the 16α position, performed by bacterial whole cells, was investigated in both shake flask and fermentation conditions; the best settings for both cellular growth and transformation reaction were studied by investigating the optimal medium composition, the kinetic of conversion, the most suitable substrate concentration and the preferred addition timing. Using newly formulated malt extract- and yeast extract-based media, a 16α-hydrohydrocortisone concentration of 0.2 ± 0.01 g L(-1) was reached in shake flasks. Batch experiments in a 2-L fermentor established the reproducibility and robustness of the biotransformation, while a pulsed batch fermentation strategy allowed the production to increase up to 0.508 ± 0.01 g L(-1). By-product formation was investigated, and two new derivates of the hydrocortisone obtained during the bacterial transformation reaction and unknown so far, a C-20 hydroxy derivate and a C-21 N-acetamide one, were determined by NMR analyses.

  12. EFFICIENT RECOVERY OF BIOETHANOL USING NOVEL PERVAPORATION-DEPHLEGMATION PROCESS

    EPA Science Inventory

    Bioethanol is the most important liquid fuel made in the U.S. from domestically produced renewable resources. Traditional production of bioethanol involves batch fermation of biomass followed by ethanol recovery from the fermentation broths using distillation. The distillation st...

  13. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.

    PubMed

    Funke, Matthias; Buchenauer, Andreas; Schnakenberg, Uwe; Mokwa, Wilfried; Diederichs, Sylvia; Mertens, Alan; Müller, Carsten; Kensy, Frank; Büchs, Jochen

    2010-10-15

    In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs. Copyright 2010 Wiley Periodicals, Inc.

  14. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    NASA Astrophysics Data System (ADS)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  15. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    PubMed Central

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211

  16. The influence of calcium supplementation on immobilised mixed microflora for biohydrogen production

    NASA Astrophysics Data System (ADS)

    Lutpi, Nabilah Aminah; Shian, Wong Yee; Izhar, Tengku Nuraiti Tengku; Zainol, Noor Ainee; Kiong, Yiek Wee

    2017-04-01

    This study is aim to study the effect of calcium as supplement in attached growth system towards the enhancement of the hydrogen production performance. The effects of calcium ion for thermophilic biohydrogen production were studied by using a mixed culture, from palm oil mill effluent sludge and granular activated carbon (GAC) as the support material. Batch experiments were carried out at 60°C by feeding the anaerobic sludge bacteria with sucrose-containing synthetic medium at an initial pH of 5.5 under anaerobic conditions. The repeated batch cultivation process was conducted by adding different concentration of calcium at range 0.025g/L to 0.15g/L. The results showed that the calcium at 0.1 g/L was the optimal concentration to enhance the fermentative hydrogen production under thermophilic (60°C) conditions.

  17. Enhanced production of acarbose and concurrently reduced formation of impurity c by addition of validamine in fermentation of Actinoplanes utahensis ZJB-08196.

    PubMed

    Xue, Ya-Ping; Qin, Jun-Wei; Wang, Ya-Jun; Wang, Yuan-Shan; Zheng, Yu-Guo

    2013-01-01

    Commercial production of acarbose is exclusively via done microbial fermentation with strains from the genera of Actinoplanes. The addition of C7N-aminocyclitols for enhanced production of acarbose and concurrently reduced formation of impurity C by cultivation of A. utahensis ZJB-08196 in 500-mL shake flasks was investigated, and validamine was found to be the most effective strategy. Under the optimal conditions of validamine addition, acarbose titer was increased from 3560 ± 128 mg/L to 4950 ± 156 mg/L, and impurity C concentration was concurrently decreased from 289 ± 24 mg/L to 107 ± 29 mg/L in batch fermentation after 168 h of cultivation. A further fed-batch experiment coupled with the addition of validamine (20 mg/L) in the fermentation medium prior to inoculation was designed to enhance the production of acarbose. When twice feedings of a mixture of 6 g/L glucose, 14 g/L maltose, and 9 g/L soybean flour were performed at 72 h and 96 h, acarbose titer reached 6606 ± 103 mg/L and impurity C concentration was only 212 ± 12 mg/L at 168 h of cultivation. Acarbose titer and proportion of acarbose/impurity C increased by 85.6% and 152.9% when compared with control experiments. This work demonstrates for the first time that validamine addition is a simple and effective strategy for increasing acarbose production and reducing impurity C formation.

  18. Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption

    PubMed Central

    2014-01-01

    Background Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol. Results KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g · L-1 · h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture. Conclusions Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency. PMID:24401161

  19. Efficient Accumulation and In Vitro Antitumor Activities of Triterpene Acids from Submerged Batch--Cultured Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes).

    PubMed

    Wang, Xiao-Ling; Ding, Zhong-Yang; Zhao, Yan; Liu, Gao-Qiang; Zhou, Guo-Ying

    2017-01-01

    Triterpene acids are among the major bioactive constituents of lucidum. However, submerged fermentation techniques for isolating triterpene acids from G. lucidum have not been optimized for commercial use, and the antitumor activity of the mycelial triterpene acids needs to be further proven. The aim of this work was to optimize the conditions for G. lucidum culture with respect to triterpene acid production, scaling up the process, and examining the in vitro antitumor activity of mycelial triterpene acids. The key conditions (i.e., initial pH, fermentation temperature, and rotation speed) were optimized using response surface methodology, and the in vitro antitumor activity was evaluated using the MTT method. The optimum key fermentation conditions for triterpene acid production were pH 6.0; rotation speed, 161.9 rpm; and temperature, 30.1°C, resulting in a triterpene acid yield of 291.0 mg/L in the validation experiment in a 5-L stirred bioreactor; this yield represented a 70.8% increase in titer compared with the nonoptimized conditions. Furthermore, the optimized conditions were then successfully scaled up to a production scale of 200 L, and a triterpene productivity of 47.9 mg/L/day was achieved, which is, to our knowledge, the highest reported in the large-scale fermentation of G. lucidum. In addition, the mycelial triterpene acids were found to be cytotoxic to the SMMC-7721 and SW620 cell lines in vitro. Chemical analysis showed that the key active triterpene acid compounds, ganoderic acids T and Me, predominated in the extract, at 69.2 and 41.6 mg/g, respectively. Thus, this work develops a simple and feasible batch fermentation technique for the large-scale production of antitumor triterpene acids from G. lucidum.

  20. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    PubMed

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-08-19

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  1. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    PubMed Central

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h−1). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  2. Effect of starter cultures on survival of Listeria monocytogenes in Čajna sausage

    NASA Astrophysics Data System (ADS)

    Bošković, M.; Tadić, V.; Đorđević, J.; Glišić, M.; Lakićević, B.; Dimitrijević, M.; Baltić, M. Ž.

    2017-09-01

    The aim of the study was to evaluate the survival of Listeria monocytogenes during the production of Čajna sausage with short maturation time. Sausage batter was inoculated with three different serotypes 4b and serotype 1/2a of L. monocytogenes. Control sausages were without any starter culture added; the second batch was inoculated with strains of Lactobacillus sakei, Staphylococcus carnosus and Staphylococcus xylosus, and the third batch was inoculated with strains of Debaryomyces hansenii, Lactobacillus sakei, Pediococcus acidilactici, Pediococcus pentosaceus, Staphylococcus carnosus and Staphylococcus xylosus. After 18 days of ripening, L. monocytogenes was not detected in any of the sausages, but during this fermentation and drying, the numbers of this pathogen was lower in the sausages inoculated with starter cultures.

  3. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Part 63, Subpt. CCCC, Table 1... emission limitations in the following table: For each fed-batch fermenter producing yeast in the following... limitation does not apply during the production of specialty yeast. ...

  4. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants: Manufacturing of Nutritional Yeast Part 63, Subpt. CCCC, Table 1... emission limitations in the following table: For each fed-batch fermenter producing yeast in the following... limitation does not apply during the production of specialty yeast. ...

  5. Investigation of the performance of fermentation processes using a mathematical model including effects of metabolic bottleneck and toxic product on cells.

    PubMed

    Sriyudthsak, Kansuporn; Shiraishi, Fumihide

    2010-11-01

    A number of recent research studies have focused on theoretical and experimental investigation of a bottleneck in a metabolic reaction network. However, there is no study on how the bottleneck affects the performance of a fermentation process when a product is highly toxic and remarkably influences the growth and death of cells. The present work therefore studies the effect of bottleneck on product concentrations under different product toxicity conditions. A generalized bottleneck model in a fed-batch fermentation is constructed including both the bottleneck and the product influences on cell growth and death. The simulation result reveals that when the toxic product strongly influences the cell growth and death, the final product concentration is hardly changed even if the bottleneck is removed, whereas it is markedly changed by the degree of product toxicity. The performance of an ethanol fermentation process is also discussed as a case example to validate this result. In conclusion, when the product is highly toxic, one cannot expect a significant increase in the final product concentration even if removing the bottleneck; rather, it may be more effective to somehow protect the cells so that they can continuously produce the product. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Production of biomethane from palm oil mill effluent (POME) with fed batch system in beam-shaped digester

    NASA Astrophysics Data System (ADS)

    Aznury, Martha; Amin, Jaksen M.; Hasan, Abu; Himmatuliza, Astinesia

    2017-05-01

    Palm oil mill effluent (POME) is the biggest liquid waste which is produced from palm oil production. POME are containing organic matter, high levels of biological oxygen demand (BOD) and chemical oxygen demand (COD) were 28000 mg/L and 48000 mg/L. To reduce the levels of pollution caused by POME, is necessary to do stages of processing using a biological process that involves aerobic and anaerobic bacteria so that it can be utilized as a new product that has economic value, one is biogas. The processing into biogas in anaerobic performed by fed batch system. In the ratio between POME and activated microorganismes are 70:30%. The process of anaerobic fermentation in fed batch is done by time variation of the addition of the substrate. The mixture of POME and activated microorganismes were fermented for a month and then after one month substrates were added gradually as much as 1 liter into the digester with a variety of additional time are 1, 2, and 5 days. The interval of addition of the substrate give effect to the pH and the quantity of biogas produced. The highest increasing of the quantity of biomethane was 25.14 mol% at the time the addition of substrate every fifth day.

  7. Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate.

    PubMed

    Tran, T H T; Boudry, C; Everaert, N; Théwis, A; Portetelle, D; Daube, G; Nezer, C; Taminiau, B; Bindelle, J

    2016-02-01

    Adding mucus to in vitro fermentation models of the large intestine shows that some genera, namely lactobacilli, are dependent on host-microbiota interactions and that they rely on mucosal layers to increase their activity. This study investigated whether this dependence on mucus is substrate dependent and to what extent other genera are impacted by the presence of mucus. Inulin and cellulose were fermented in vitro by a fecal inoculum from pig in the presence or not of mucin beads in order to compare fermentation patterns and bacterial communities. Mucins increased final gas production with inulin and shifted short-chain fatty acid molar ratios (P < 0.001). Quantitative real-time PCR analyses revealed that Lactobacillus spp. and Bifidobacterium spp. decreased with mucins, but Bacteroides spp. increased when inulin was fermented. A more in-depth community analysis indicated that the mucins increased Proteobacteria (0.55 vs 0.25%, P = 0.013), Verrucomicrobia (5.25 vs 0.03%, P = 0.032), Ruminococcaceae, Bacteroidaceae and Akkermansia spp. Proteobacteria (5.67 vs 0.55%, P < 0.001) and Lachnospiraceae (33 vs 10.4%) were promoted in the mucus compared with the broth, while Ruminococcaceae decreased. The introduction of mucins affected many microbial genera and fermentation patterns, but from PCA results, the impact of mucus was independent of the fermentation substrate. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Mixed Carboxylic Acid Production by Megasphaera elsdenii from Glucose and Lignocellulosic Hydrolysate

    DOE PAGES

    Nelson, Robert S.; Peterson, Darren J.; Karp, Eric M.; ...

    2017-03-01

    Here, volatile fatty acids (VFAs) can be readily produced from many anaerobic microbes and subsequently utilized as precursors to renewable biofuels and biochemicals. Megasphaera elsdenii represents a promising host for production of VFAs, butyric acid (BA) and hexanoic acid (HA). However, due to the toxicity of these acids, product removal via an extractive fermentation system is required to achieve high titers and productivities. Here, we examine multiple aspects of extractive separations to produce BA and HA from glucose and lignocellulosic hydrolysate with M. elsdenii. A mixture of oleyl alcohol and 10% (v/v) trioctylamine was selected as an extraction solvent duemore » to its insignificant inhibitory effect on the bacteria. Batch extractive fermentations were conducted in the pH range of 5.0 to 6.5 to select the best cell growth rate and extraction efficiency combination. Subsequently, fed-batch pertractive fermentations were run over 230 h, demonstrating high BA and HA concentrations in the extracted fraction (57.2 g/L from ~190 g/L glucose) and productivity (0.26 g/L/h). To our knowledge, these are the highest combined acid titers and productivity values reported for M. elsdenii and bacterial mono-cultures from sugars. Lastly, the production of BA and HA (up to 17 g/L) from lignocellulosic sugars was demonstrated.« less

  9. Production of epoxide hydrolases in batch fermentations of Botryosphaeria rhodina.

    PubMed

    Melzer, Guido; Junne, Stefan; Wohlgemuth, Roland; Hempel, Dietmar C; Götz, Peter

    2008-06-01

    The filamentous fungus Botryosphaeria rhodina (ATCC 9055) was investigated related to its ability for epoxide hydrolase (EH) production. Epoxide hydrolase activity is located at two different sites of the cells. The larger part is present in the cytosol (70%), while the smaller part is associated to membranes (30%). In media optimization experiments, an activity of 3.5 U/gDW for aromatic epoxide hydrolysis of para-nitro-styrene oxide (pNSO) could be obtained. Activity increased by 30% when pNSO was added to the culture during exponential growth. An increase of enzyme activity up to 6 U/gDW was achieved during batch-fermentations in a bioreactor with 2.7 l working volume. Evaluation of fermentations with 30 l working volume revealed a relation of oxygen uptake rate to EH expression. Oxygen limitation resulted in a decreased EH activity. Parameter estimation by the linearization method of Hanes yielded Km values of 2.54 and 1.00 mM for the substrates S-pNSO and R-pNSO, respectively. vmax was 3.4 times higher when using R-pNSO. A protein purification strategy leading to a 47-fold increase in specific activity (940 U/mgProtein) was developed as a first step to investigate molecular and structural characteristics of the EH.

  10. Mixed Carboxylic Acid Production by Megasphaera elsdenii from Glucose and Lignocellulosic Hydrolysate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Robert S.; Peterson, Darren J.; Karp, Eric M.

    Here, volatile fatty acids (VFAs) can be readily produced from many anaerobic microbes and subsequently utilized as precursors to renewable biofuels and biochemicals. Megasphaera elsdenii represents a promising host for production of VFAs, butyric acid (BA) and hexanoic acid (HA). However, due to the toxicity of these acids, product removal via an extractive fermentation system is required to achieve high titers and productivities. Here, we examine multiple aspects of extractive separations to produce BA and HA from glucose and lignocellulosic hydrolysate with M. elsdenii. A mixture of oleyl alcohol and 10% (v/v) trioctylamine was selected as an extraction solvent duemore » to its insignificant inhibitory effect on the bacteria. Batch extractive fermentations were conducted in the pH range of 5.0 to 6.5 to select the best cell growth rate and extraction efficiency combination. Subsequently, fed-batch pertractive fermentations were run over 230 h, demonstrating high BA and HA concentrations in the extracted fraction (57.2 g/L from ~190 g/L glucose) and productivity (0.26 g/L/h). To our knowledge, these are the highest combined acid titers and productivity values reported for M. elsdenii and bacterial mono-cultures from sugars. Lastly, the production of BA and HA (up to 17 g/L) from lignocellulosic sugars was demonstrated.« less

  11. Application of balancing methods in modeling the penicillin fermentation.

    PubMed

    Heijnen, J J; Roels, J A; Stouthamer, A H

    1979-12-01

    This paper shows the application of elementary balancing methods in combination with simple kinetic equations in the formulation of an unstructured model for the fed-batch process for the production of penicillin. The rate of substrate uptake is modeled with a Monod-type relationship. The specific penicillin production rate is assumed to be a function of growth rate. Hydrolysis of penicillin to penicilloic acid is assumed to be first order in penicillin. In simulations with the present model it is shown that the model, although assuming a strict relationship between specific growth rate and penicillin productivity, allows for the commonly observed lag phase in the penicillin concentration curve and the apparent separation between growth and production phase (idiophase-trophophase concept). Furthermore it is shown that the feed rate profile during fermentation is of vital importance in the realization of a high production rate throughout the duration of the fermentation. It is emphasized that the method of modeling presented may also prove rewarding for an analysis of fermentation processes other than the penicillin fermentation.

  12. Anaerobic Membrane Bioreactor for Continuous Lactic Acid Fermentation

    PubMed Central

    Fan, Rong; Ebrahimi, Mehrdad; Czermak, Peter

    2017-01-01

    Membrane bioreactor systems can enhance anaerobic lactic acid fermentation by reducing product inhibition, thus increasing productivity. In batch fermentations, the bioconversion of glucose is strongly inhibited in the presence of more than 100 g·L−1 lactic acid and is only possible when the product is simultaneously removed, which can be achieved by ceramic membrane filtration. The crossflow velocity is a more important determinant of flux than the transmembrane pressure. Therefore, to stabilize the performance of the membrane bioreactor system during continuous fermentation, the crossflow velocity was controlled by varying the biomass concentration, which was monitored in real-time using an optical sensor. Continuous fermentation under these conditions, thus, achieved a stable productivity of ~8 g·L−1·h−1 and the concentration of lactic acid was maintained at ~40 g·L−1 at a dilution rate of 0.2 h−1. No residual sugar was detected in the steady state with a feed concentration of 50 g·L−1. PMID:28467384

  13. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    PubMed

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sol-gel immobilization as a suitable technique for enhancement of α-amylase activity of Aspergillus oryzae PP.

    PubMed

    Evstatieva, Yana; Yordanova, Mariya; Chernev, Georgi; Ruseva, Yanislava; Nikolova, Dilyana

    2014-07-04

    Bioencapsulation of microbial cells in silica-based matrices has proved to be a good strategy to enhance the biosynthetic capabilities and viability of bioproducers. In the present study, mycelium and pellet cultures of strain Aspergillus oryzae PP were successfully immobilized in sol-gel hybrid matrices composed of tetraethylorthosilicate as an inorganic precursor, 5% (w/v) starch and 10 or 15% (w/v) polyethylene oxide, or 10% (w/v) calcium alginate as organic compounds. Biosynthetic activity of immobilized cultures was investigated by batch and fed-batch cultivation and the obtained results of 3042.04 IU cm -3 were comparable with the enzyme activity of the free cell culture. Immobilized cultures retained their viability and biosynthetic capabilities up to the 744th h during fed-batch fermentation processes. Consequently, sol-gel encapsulation in hybrid matrices could be considered as a promising technique for immobilization of Aspergillus oryzae PP in order to increase the α-amylase production.

  15. Biotic and abiotic dynamics of a high solid-state anaerobic digestion box-type container system.

    PubMed

    Walter, Andreas; Probst, Maraike; Hinterberger, Stephan; Müller, Horst; Insam, Heribert

    2016-03-01

    A solid-state anaerobic digestion box-type container system for biomethane production was observed in 12 three-week batch fermentations. Reactor performance was monitored using physico-chemical analysis and the methanogenic community was identified using ANAEROCHIP-microarrays and quantitative PCR. A resilient community was found in all batches, despite variations in inoculum to substrate ratio, feedstock quality, and fluctuating reactor conditions. The consortia were dominated by mixotrophic Methanosarcina that were accompanied by hydrogenotrophic Methanobacterium, Methanoculleus, and Methanocorpusculum. The relationship between biotic and abiotic variables was investigated using bivariate correlation analysis and univariate analysis of variance. High amounts of biogas were produced in batches with high copy numbers of Methanosarcina. High copy numbers of Methanocorpusculum and extensive percolation, however, were found to negatively correlate with biogas production. Supporting these findings, a negative correlation was detected between Methanocorpusculum and Methanosarcina. Based on these results, this study suggests Methanosarcina as an indicator for well-functioning reactor performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310.

    PubMed

    Ling, Xueping; Guo, Jing; Liu, Xiaoting; Zhang, Xia; Wang, Nan; Lu, Yinghua; Ng, I-Son

    2015-05-01

    A new isolated Schizochytrium sp. LU310 from the mangrove forest of Wenzhou, China, was found as a high producing microalga of docosahexaenoic acid (DHA). In this study, the significant improvements for DHA fermentation by the batch mode in the baffled flasks (i.e. higher oxygen supply) were achieved. By applied the nitrogen-feeding strategy in 1000 mL baffled flasks, the biomass, DHA concentration and DHA productivity were increased by 110.4%, 117.9% and 110.4%, respectively. Moreover, DHA concentration of 21.06 g/L was obtained by feeding 15 g/L of glucose intermittently, which was an increase of 41.25% over that of the batch mode. Finally, an innovative strategy was carried out by intermittent feeding carbon and simultaneously feeding nitrogen. The maximum DHA concentration and DHA productivity in the fed-batch cultivation reached to 24.74 g/L and 241.5 mg/L/h, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. High efficiency cell-recycle continuous sodium gluconate production by Aspergillus niger using on-line physiological parameters association analysis to regulate feed rate rationally.

    PubMed

    Lu, Fei; Li, Chao; Wang, Zejian; Zhao, Wei; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2016-11-01

    In this paper, a system of cell-recycle continuous fermentation for sodium gluconate (SG) production by Aspergillus niger (A. niger) was established. Based on initial continuous fermentation result (100.0h) with constant feed rate, an automatic feedback strategy to regulate feed rate using on-line physiological parameters (OUR and DO) was proposed and applied successfully for the first time in the improved continuous fermentation (240.5h). Due to less auxiliary time, highest SG production rate (31.05±0.29gL(-1)h(-1)) and highest yield (0.984±0.067molmol(-1)), overall SG production capacity (975.8±5.8gh(-1)) in 50-L fermentor of improved continuous fermentation increased more than 300.0% compared to that of batch fermentation. Improvement of mass transfer and dispersed mycelia morphology were the two major reasons responsible for the high SG production rate. This system had been successfully applied to industrial fermentation and SG production was greatly improved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Monitoring of the microbiota profile in nukadoko, a naturally fermented rice bran bed for pickling vegetables.

    PubMed

    Ono, Hiroshi; Nishio, Shoko; Tsurii, Jun; Kawamoto, Tetsuhiro; Sonomoto, Kenji; Nakayama, Jiro

    2014-11-01

    Nukadoko is a fermented rice bran mash traditionally used for pickling vegetables in Japan. To date, the production of both homemade and commercial nukadoko depends on natural fermentation without using starter cultures. Here, we monitored chemical and microbiological changes in the initial batch fermentation of nukadoko. Nukadoko samples were prepared by spontaneous fermentation of four different brands of rice bran, and microbiome dynamics were analyzed for 2 months. In the first week, non-Lactobacillales lactic acid bacteria (LAB) species, which differed among the samples, grew proportionally to pH decrease and lactate increase. Thereafter, Lactobacillus plantarum started growing and consumed residual sugars, causing further lactate increase in nukadoko. Finally, microbial communities in all tested nukadoko samples were dominated by L. plantarum. Taken together, our results suggest that the mixture of the fast-growing LAB species and slow-growing L. plantarum may be used as a suitable starter culture to promote the initial fermentation of nukadoko. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Preeminent productivity of 1,3-propanediol by Clostridium butyricum JKT37 and the role of using calcium carbonate as pH neutraliser in glycerol fermentation.

    PubMed

    Tee, Zhao Kang; Jahim, Jamaliah Md; Tan, Jian Ping; Kim, Byung Hong

    2017-06-01

    Calcium carbonate was evaluated as a replacement for the base during the fermentation of glycerol by a highly productive strain of 1,3-propanediol (PDO), viz., Clostridium butyricum JKT37. Due to its high specific growth rate (µ max =0.53h -1 ), 40g/L of glycerol was completely converted into 19.6g/L of PDO in merely 7h of batch fermentation, leaving only acetate and butyrate as the by-products. The accumulation of these volatile fatty acids was circumvented with the addition of calcium carbonate as the pH neutraliser before the fermentation was inoculated. An optimal amount of 15g/L of calcium carbonate was statistically determined from screening with various glycerol concentrations (20-120g/L). By substituting potassium hydroxide with calcium carbonate as the pH neutraliser for fermentation in a bioreactor, a similar yield (Y PDO/glycerol =0.6mol/mol) with a constant pH was achieved at the end of the fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Application of byproducts from food processing for production of 2,3-butanediol using Bacillus amyloliquefaciens TUL 308.

    PubMed

    Sikora, Barbara; Kubik, Celina; Kalinowska, Halina; Gromek, Ewa; Białkowska, Aneta; Jędrzejczak-Krzepkowska, Marzena; Schüett, Fokko; Turkiewicz, Marianna

    2016-08-17

    A nonpathogenic bacterial strain Bacillus amyloliquefaciens TUL 308 synthesized minor 2,3-butanediol (2,3-BD) amounts from glucose, fructose, sucrose, and glycerol, and efficiently produced the diol from molasses and hydrolysates of food processing residues. Batch fermentations yielded 16.53, 10.72, and 5 g/L 2,3-BD from enzymatic hydrolysates of apple pomace, dried sugar beet pulp, and potato pulp (at initial concentrations equivalent to 45, 20, and 30 g/L glucose, respectively), and 25.3 g/L 2,3-BD from molasses (at its initial concentration equivalent to 60 g/L saccharose). Fed-batch fermentations in the molasses-based medium with four feedings with either glucose or sucrose (in doses increasing their concentration by 25 g/L) resulted in around twice higher maximum 2,3-BD concentration (of about 60 and 50 g/L, respectively). The GRAS Bacillus strain is an efficient 2,3-BD producer from food industry byproducts.

  1. A novel computerised image analysis method for the measurement of production of conidia from the aphid pathogenic fungus Erynia neoaphidis.

    PubMed

    Bonner, Tony J; Pell, Judith K; Gray, Simon N

    2003-03-14

    A semi-automated method has been developed for the quantification and measurement of conidia discharged by the aphid pathogen Erynia neoaphidis. This was used to compare conidiation by E. neoaphidis-mycosed pea aphid cadavers, mycelial plugs cut from agar plates, mycelial pellets from shake flasks and by mycelial pellets from different phases of liquid batch fermenter culture. Aphid cadavers discharged significantly more and significantly smaller conidia than plugs or pellets. The volume of conidia discharged was stable over the period of discharge (80 h), but more detailed analysis of the size frequency distribution showed that more very small and very large conidia were discharged after 5 h incubation than after 75 h incubation. Biomass harvested at the end of the exponential growth phase in batch fermenter culture produced significantly more conidia than biomass from any other growth phase. The implications of these findings for the development of production and formulation processes for E. neoaphidis as a biological control agent are discussed.

  2. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production.

    PubMed

    Berlowska, Joanna; Cieciura, Weronika; Borowski, Sebastian; Dudkiewicz, Marta; Binczarski, Michal; Witonska, Izabela; Otlewska, Anna; Kregiel, Dorota

    2016-10-17

    Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  3. Betaine Improves Polymer-Grade D-Lactic Acid Production by Sporolactobacillus inulinus Using Ammonia as Green Neutralizer.

    PubMed

    Lv, Guoping; Che, Chengchuan; Li, Li; Xu, Shujing; Guan, Wanyi; Zhao, Baohua; Ju, Jiansong

    2017-07-06

    The traditional CaCO3-based fermentation process generates huge amount of insoluble CaSO4 waste. To solve this problem, we have developed an efficient and green D-lactic acid fermentation process by using ammonia as neutralizer. The 106.7 g/L of D-lactic acid production and 0.89 g per g of consumed sugar were obtained by Sporolactobacillus inulinus CASD with a high optical purity of 99.7% by adding 100 mg/L betaine in the simple batch fermentation process. The addition of betaine was experimentally proven to protect cell at high concentration of ammonium ion, increase the D-lactate dehydrogenase specific activity and thus promote the production of D-lactic acid.

  4. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains.

    PubMed

    Aponte, Maria; Troianiello, Gabriele Danilo; Di Capua, Marika; Romano, Raffaele; Blaiotta, Giuseppe

    2016-01-01

    Spray-drying (SD) is widely considered a suitable method to preserve microorganisms, but data regarding yeasts are still scanty. In this study, the effect of growing media, process variables and carriers over viability of a wild wine Saccharomyces (S.) cerevisiae LM52 was evaluated. For biomass production, the strain was grown (batch and fed-batch fermentation) in a synthetic, as well as in a beet sugar molasses based-medium. Drying of cells resuspended in several combinations of soluble starch and maltose was performed at different inlet and outlet temperatures. Under the best conditions-suspension in soluble starch plus maltose couplet to inlet and outlet temperatures of 110 and 55 °C, respectively-the loss of viability of S. cerevisiae LM52 was 0.8 ± 0.1 and 0.5 ± 0.2 Log c.f.u. g(-1) for synthetic and molasses-based medium, respectively. Similar results were obtained when S. cerevisiae strains Zymoflore F15 and EC1118, isolated from commercial active dry yeast (ADY), were tested. Moreover, powders retained a high vitality and showed good fermentation performances up to 6 month of storage, at both 4 and -20 °C. Finally, fermentation performances of different kinds of dried formulates (SD and ADY) compared with fresh cultures did not show significant differences. The procedure proposed allowed a small-scale production of yeast in continuous operation with relatively simple equipment, and may thus represent a rapid response-on-demand for the production of autochthonous yeasts for local wine-making.

  5. Statistical optimization of recycled-paper enzymatic hydrolysis for simultaneous saccharification and fermentation via central composite design.

    PubMed

    Liu, Qing; Cheng, Ke-ke; Zhang, Jian-an; Li, Jin-ping; Wang, Ge-hua

    2010-01-01

    A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 degrees C, 20 FPU g(-1) substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l(-1) was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.

  6. Improved production of isobutanol in pervaporation-coupled bioreactor using sugarcane bagasse hydrolysate in engineered Enterobacter aerogenes.

    PubMed

    Jung, Hwi-Min; Lee, Ju Yeon; Lee, Jung-Hyun; Oh, Min-Kyu

    2018-07-01

    A process of isobutanol production from sugarcane bagasse hydrolysates in Enterobacter aerogenes was developed here with a pervaporation-integrated procedure. Isobutanol pathway was overexpressed in a mutant strain with eliminated byproduct-forming enzymes (LdhA, BudA, and PflB). A glucose-and-xylose-coconsuming ptsG mutant was constructed for effective utilization of lignocellulosic biomass. Toxic effects of isobutanol were alleviated by in situ recovery via a pervaporation procedure. Compared to single-batch fermentation, cell growth and isobutanol titer were improved by 60% and 100%, respectively, in the pervaporation-integrated fermentation process. A lab-made cross-linked polydimethylsiloxane membrane was cast on polyvinylidene fluoride and used in the pervaporation process. The membrane-penetrating condensate contained 55-226 g m -2  h -1 isobutanol with 6-25 g L -1 ethanol after separation. This study offers improved fermentative production of isobutanol from lignocellulosic biomass with a pervaporation procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Enhanced acarbose production by Streptomyces M37 using a two-stage fermentation strategy.

    PubMed

    Ren, Fei; Chen, Long; Xiong, Shuangli; Tong, Qunyi

    2017-01-01

    In this work, we investigated the effect of pH on Streptomyces M37 growth and its acarbose biosynthesis ability. We observed that low pH was beneficial for cell growth, whereas high pH favored acarbose synthesis. Moreover, addition of glucose and maltose to the fermentation medium after 72 h of cultivation promoted acarbose production. Based on these results, a two-stage fermentation strategy was developed to improve acarbose production. Accordingly, pH was kept at 7.0 during the first 72 h and switched to 8.0 after that. At the same time, glucose and maltose were fed to increase acarbose accumulation. With this strategy, we achieved an acarbose titer of 6210 mg/L, representing an 85.7% increase over traditional batch fermentation without pH control. Finally, we determined that the increased acarbose production was related to the high activity of glutamate dehydrogenase and glucose 6-phosphate dehydrogenase.

  8. Enhanced acarbose production by Streptomyces M37 using a two-stage fermentation strategy

    PubMed Central

    Ren, Fei; Chen, Long; Xiong, Shuangli; Tong, Qunyi

    2017-01-01

    In this work, we investigated the effect of pH on Streptomyces M37 growth and its acarbose biosynthesis ability. We observed that low pH was beneficial for cell growth, whereas high pH favored acarbose synthesis. Moreover, addition of glucose and maltose to the fermentation medium after 72 h of cultivation promoted acarbose production. Based on these results, a two-stage fermentation strategy was developed to improve acarbose production. Accordingly, pH was kept at 7.0 during the first 72 h and switched to 8.0 after that. At the same time, glucose and maltose were fed to increase acarbose accumulation. With this strategy, we achieved an acarbose titer of 6210 mg/L, representing an 85.7% increase over traditional batch fermentation without pH control. Finally, we determined that the increased acarbose production was related to the high activity of glutamate dehydrogenase and glucose 6-phosphate dehydrogenase. PMID:28234967

  9. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli

    PubMed Central

    2013-01-01

    Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation. PMID:24053676

  10. Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli.

    PubMed

    Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi

    2013-09-22

    Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.

  11. Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1

    PubMed Central

    2011-01-01

    Background Tripeptide glutathione (gamma-glutamyl-L-cysteinyl-glycine) is the most abundant non-protein thiol that protects cells from metabolic and oxidative stresses and is widely used as medicine, food additives and in cosmetic industry. The methylotrophic yeast Hansenula polymorpha is regarded as a rich source of glutathione due to the role of this thiol in detoxifications of key intermediates of methanol metabolism. Cellular and extracellular glutathione production of H. polymorpha DL-1 in the wild type and recombinant strains which overexpress genes of glutathione biosynthesis (GSH2) and its precursor cysteine (MET4) was studied. Results Glutathione producing capacity of H. polymorpha DL-1 depending on parameters of cultivation (dissolved oxygen tension, pH, stirrer speed), carbon substrate (glucose, methanol) and type of overexpressed genes of glutathione and its precursor biosynthesis during batch and fed-batch fermentations were studied. Under optimized conditions of glucose fed-batch cultivation, the glutathione productivity of the engineered strains was increased from ~900 up to ~ 2300 mg of Total Intracellular Glutathione (TIG) or GSH+GSSGin, per liter of culture medium. Meantime, methanol fed-batch cultivation of one of the recombinant strains allowed achieving the extracellular glutathione productivity up to 250 mg of Total Extracellular Glutathione (TEG) or GSH+GSSGex, per liter of the culture medium. Conclusions H. polymorpha is an competitive glutathione producer as compared to other known yeast and bacteria strains (Saccharomyces cerevisiae, Candida utilis, Escherichia coli, Lactococcus lactis etc.) with good perspectives for further improvement especially for production of extracellular form of glutathione. PMID:21255454

  12. Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor.

    PubMed

    Kudahettige-Nilsson, Rasika L; Helmerius, Jonas; Nilsson, Robert T; Sjöblom, Magnus; Hodge, David B; Rova, Ulrika

    2015-01-01

    Acetone-butanol-ethanol (ABE) fermentation was studied using acid-hydrolyzed xylan recovered from hardwood Kraft black liquor by CO2 acidification as the only carbon source. Detoxification of hydrolyzate using activated carbon was conducted to evaluate the impact of inhibitor removal and fermentation. Xylose hydrolysis yields as high as 18.4% were demonstrated at the highest severity hydrolysis condition. Detoxification using active carbon was effective for removal of both phenolics (76-81%) and HMF (38-52%). Batch fermentation of the hydrolyzate and semi-defined P2 media resulted in a total solvent yield of 0.12-0.13g/g and 0.34g/g, corresponding to a butanol concentration of 1.8-2.1g/L and 7.3g/L respectively. This work is the first study of a process for the production of a biologically-derived biofuel from hemicelluloses solubilized during Kraft pulping and demonstrates the feasibility of utilizing xylan recovered directly from industrial Kraft pulping liquors as a feedstock for biological production of biofuels such as butanol. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Biosynthesis of xanthan gum by Xanthomonas campestris LRELP-1 using kitchen waste as the sole substrate.

    PubMed

    Li, Panyu; Li, Ting; Zeng, Yu; Li, Xiang; Jiang, Xiaolong; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui

    2016-10-20

    Herein, we report the production of xanthan gum by fermentation using kitchen waste as the sole substrate. The kitchen waste was firstly pretreated by a simple hydrolysis method, after which the obtained kitchen waste hydrolysate was diluted with an optimal ratio 1:2. In a 5-L fermentor, the maximum xanthan production, reducing sugar conversion and utilization rates reached 11.73g/L, 67.07% and 94.82%, respectively. The kinetics of batch fermentation was also investigated. FT-IR and XRD characterizations confirmed the fermentation product as xanthan gum. TGA analyses showed that the thermal stability of the xanthan gum obtained in this study was similar to commercial sample. The molecular weights of xanthan gum were measured to be 0.69-1.37×10(6)g/mol. The maximum pyruvate and acetyl contents in xanthan gum were 6.11% and 2.49%, respectively. This study provides a cost-effective solution for the reusing of kitchen waste and a possible low-cost approach for xanthan production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    EPA Science Inventory

    The results of a laboratory scale investigation on ozone pretreatment of primary treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0 % (w/w) oz...

  15. Conversion of cellulosic materials into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma spp. under SHF and SSF processes.

    PubMed

    Faria, Nuno Torres; Santos, Marisa; Ferreira, Carla; Marques, Susana; Ferreira, Frederico Castelo; Fonseca, César

    2014-11-04

    Mannosylerythritol lipids (MEL) are glycolipids with unique biosurfactant properties and are produced by Pseudozyma spp. from different substrates, preferably vegetable oils, but also sugars, glycerol or hydrocarbons. However, solvent intensive downstream processing and the relatively high prices of raw materials currently used for MEL production are drawbacks in its sustainable commercial deployment. The present work aims to demonstrate MEL production from cellulosic materials and investigate the requirements and consequences of combining commercial cellulolytic enzymes and Pseudozyma spp. under separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes. MEL was produced from cellulosic substrates, Avicel® as reference (>99% cellulose) and hydrothermally pretreated wheat straw, using commercial cellulolytic enzymes (Celluclast 1.5 L® and Novozyme 188®) and Pseudozyma antarctica PYCC 5048(T) or Pseudozyma aphidis PYCC 5535(T). The strategies included SHF, SSF and fed-batch SSF with pre-hydrolysis. While SSF was isothermal at 28°C, in SHF and fed-batch SSF, yeast fermentation was preceded by an enzymatic (pre-)hydrolysis step at 50°C for 48 h. Pseudozyma antarctica showed the highest MEL yields from both cellulosic substrates, reaching titres of 4.0 and 1.4 g/l by SHF of Avicel® and wheat straw (40 g/l glucan), respectively, using enzymes at low dosage (3.6 and 8.5 FPU/gglucan at 28°C and 50°C, respectively) with prior dialysis. Higher MEL titres were obtained by fed-batch SSF with pre-hydrolysis, reaching 4.5 and 2.5 g/l from Avicel® and wheat straw (80 g/l glucan), respectively. This work reports for the first time MEL production from cellulosic materials. The process was successfully performed through SHF, SSF or Fed-batch SSF, requiring, for maximal performance, dialysed commercial cellulolytic enzymes. The use of inexpensive lignocellulosic substrates associated to straightforward downstream processing from sugary broths is expected to have a great impact in the economy of MEL production for the biosurfactant market, inasmuch as low enzyme dosage is sufficient for good systems performance.

  16. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    PubMed

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.

  17. Enhanced Production of Acarbose and Concurrently Reduced Formation of Impurity C by Addition of Validamine in Fermentation of Actinoplanes utahensis ZJB-08196

    PubMed Central

    Xue, Ya-Ping; Qin, Jun-Wei; Wang, Ya-Jun; Wang, Yuan-Shan; Zheng, Yu-Guo

    2013-01-01

    Commercial production of acarbose is exclusively via done microbial fermentation with strains from the genera of Actinoplanes. The addition of C7N-aminocyclitols for enhanced production of acarbose and concurrently reduced formation of impurity C by cultivation of A. utahensis ZJB-08196 in 500-mL shake flasks was investigated, and validamine was found to be the most effective strategy. Under the optimal conditions of validamine addition, acarbose titer was increased from 3560 ± 128 mg/L to 4950 ± 156 mg/L, and impurity C concentration was concurrently decreased from 289 ± 24 mg/L to 107 ± 29 mg/L in batch fermentation after 168 h of cultivation. A further fed-batch experiment coupled with the addition of validamine (20 mg/L) in the fermentation medium prior to inoculation was designed to enhance the production of acarbose. When twice feedings of a mixture of 6 g/L glucose, 14 g/L maltose, and 9 g/L soybean flour were performed at 72 h and 96 h, acarbose titer reached 6606 ± 103 mg/L and impurity C concentration was only 212 ± 12 mg/L at 168 h of cultivation. Acarbose titer and proportion of acarbose/impurity C increased by 85.6% and 152.9% when compared with control experiments. This work demonstrates for the first time that validamine addition is a simple and effective strategy for increasing acarbose production and reducing impurity C formation. PMID:23484146

  18. Re-fermentation of washed spent solids from batch hydrogenogenic fermentation for additional production of biohydrogen from the organic fraction of municipal solid waste.

    PubMed

    Muñoz-Páez, Karla M; Ríos-Leal, Elvira; Valdez-Vazquez, Idania; Rinderknecht-Seijas, Noemí; Poggi-Varaldo, Héctor M

    2012-03-01

    In the first batch solid substrate anaerobic hydrogenogenic fermentation with intermittent venting (SSAHF-IV) of the organic fraction of municipal solid waste (OFMSW), a cumulative production of 16.6 mmol H(2)/reactor was obtained. Releases of hydrogen partial pressure first by intermittent venting and afterward by flushing headspace of reactors with inert gas N(2) allowed for further hydrogen production in a second to fourth incubation cycle, with no new inoculum nor substrate nor inhibitor added. After the fourth cycle, no more H(2) could be harvested. Interestingly, accumulated hydrogen in 4 cycles was 100% higher than that produced in the first cycle alone. At the end of incubation, partial pressure of H(2) was near zero whereas high concentrations of organic acids and solvents remained in the spent solids. So, since approximate mass balances indicated that there was still a moderate amount of biodegradable matter in the spent solids we hypothesized that the organic metabolites imposed some kind of inhibition on further fermentation of digestates. Spent solids were washed to eliminate organic metabolites and they were used in a second SSAHF-IV. Two more cycles of H(2) production were obtained, with a cumulative production of ca. 2.4 mmol H(2)/mini-reactor. As a conclusion, washing of spent solids of a previous SSAHF-IV allowed for an increase of hydrogen production by 15% in a second run of SSAHF-IV, leading to the validation of our hypothesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Study on feasibility of determination of glucosamine content of fermentation process using a micro NIR spectrometer.

    PubMed

    Sun, Zhongyu; Li, Can; Li, Lian; Nie, Lei; Dong, Qin; Li, Danyang; Gao, Lingling; Zang, Hengchang

    2018-08-05

    N-acetyl-d-glucosamine (GlcNAc) is a microbial fermentation product, and NIR spectroscopy is an effective process analytical technology (PAT) tool in detecting the key quality attribute: the GlcNAc content. Meanwhile, the design of NIR spectrometers is under the trend of miniaturization, portability and low-cost nowadays. The aim of this study was to explore a portable micro NIR spectrometer with the fermentation process. First, FT-NIR spectrometer and Micro-NIR 1700 spectrometer were compared with simulated fermentation process solutions. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal FT-NIR and Micro-NIR 1700 models were 0.999, 0.999, 3.226 g/L, 1.388 g/L and 0.999, 0.999, 1.821 g/L, 0.967 g/L. Passing-Bablok regression method and paired t-test results showed there were no significant differences between the two instruments. Then the Micro-NIR 1700 was selected for the practical fermentation process, 135 samples from 10 batches were collected. Spectral pretreatment methods and variables selection methods (BiPLS, FiPLS, MWPLS and CARS-PLS) for PLS modeling were discussed. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal GlcNAc content PLS model of the practical fermentation process were 0.994, 0.995, 2.792 g/L and 1.946 g/L. The results have a positive reference for application of the Micro-NIR spectrometer. To some extent, it could provide theoretical supports in guiding the microbial fermentation or the further assessment of bioprocess. Copyright © 2018. Published by Elsevier B.V.

  20. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.

    PubMed

    Liu, Lina; Chen, Sheng; Wu, Jing

    2017-10-01

    Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.

Top