Science.gov

Sample records for batch uptake thermodynamic

  1. Exploring the controls of soil biogeochemistry in a restored coastal wetland using object-oriented computer simulations of uptake kinetics and thermodynamic optimization in batch reactors

    NASA Astrophysics Data System (ADS)

    Payn, R. A.; Helton, A. M.; Poole, G.; Izurieta, C.; Bernhardt, E. S.; Burgin, A. J.

    2012-12-01

    Many hypotheses have been proposed to predict patterns of biogeochemical redox reactions based on the availability of electron donors and acceptors and the thermodynamic theory of chemistry. Our objective was to develop a computer model that would allow us to test various alternatives of these hypotheses against data gathered from soil slurry batch reactors, experimental soil perfusion cores, and in situ soil profile observations from the restored Timberlake Wetland in coastal North Carolina, USA. Software requirements to meet this objective included the ability to rapidly develop and compare different hypothetical formulations of kinetic and thermodynamic theory, and the ability to easily change the list of potential biogeochemical reactions used in the optimization scheme. For future work, we also required an object pattern that could easily be coupled with an existing soil hydrologic model. These requirements were met using Network Exchange Objects (NEO), our recently developed object-oriented distributed modeling framework that facilitates simulations of multiple interacting currencies moving through network-based systems. An initial implementation of the object pattern was developed in NEO based on maximizing growth of the microbial community from available dissolved organic carbon. We then used this implementation to build a modeling system for comparing results across multiple simulated batch reactors with varied initial solute concentrations, varied biogeochemical parameters, or varied optimization schemes. Among heterotrophic aerobic and anaerobic reactions, we have found that this model reasonably predicts the use of terminal electron acceptors in simulated batch reactors, where reactions with higher energy yields occur before reactions with lower energy yields. However, among the aerobic reactions, we have also found this model predicts dominance of chemoautotrophs (e.g., nitrifiers) when their electron donor (e.g., ammonium) is abundant, despite the

  2. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Anke; Kleidon, Axel; Bechmann, Marcel

    2016-08-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how root water uptake can be evaluated thermodynamically and demonstrate that this evaluation provides additional insights into the factors that impede root water uptake. We derive an expression that relates the energy export at the base of the root system to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We illustrate this thermodynamic formulation using an idealized setup of scenarios with a simple model. In these scenarios, we demonstrate why heterogeneity in soil water distribution and rooting properties affect the impediment of water flow even though the mean soil water content and rooting properties are the same across the scenarios. The effects of heterogeneity can clearly be identified in the thermodynamics of the system in terms of differences in dissipative losses and hydraulic energy, resulting in an earlier start of water limitation in the drying cycle. We conclude that this thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path, which goes beyond resistances and also accounts for the role of heterogeneity in soil water distribution.

  3. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A.; Kleidon, A.; Bechmann, M.

    2015-12-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how the energetics involved in root water uptake can be quantified. The illustration is done using a simple, four-box model of the soil-root system to represent heterogeneity and a parameterization in which root water uptake is driven by the xylem potential of the plant with a fixed flux boundary condition. We use this approach to evaluate the effects of soil moisture heterogeneity and root system properties on the dissipative losses and export of energy involved in root water uptake. For this, we derive an expression that relates the energy export at the root collar to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We conclude that such a thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path and explicitly accounting not only for the resistances along the flow path and those imposed by soil drying but especially the role of heterogenous soil water distribution. The results show that least energy needs to be exported and dissipative losses are minimized by a root system if it extracts water uniformly from the soil. This has implications for plant water relations in forests where canopies generate heterogenous input patterns. Our diagnostic in the energy domain should be useful in future model applications for quantifying how plants can evolve towards greater efficiency in their structure and function, particularly in heterogenous soil environments. Generally, this approach may help to better describe heterogeneous processes in the soil in a simple, yet physically-based way.

  4. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    EPA Science Inventory

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  5. Modeling of batch sorber system: kinetic, mechanistic, and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Mishra, Vishal

    2016-09-01

    The present investigation has dealt with the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase. Various rate models were evaluated to elucidate the kinetics of copper and zinc biosorptions, and the results indicated that the pseudo-second-order model was more appropriate than the pseudo-first-order model. The curve of the initial sorption rate versus the initial concentration of copper and zinc ions also complemented the results of the pseudo-second-order model. Models used for the mechanistic modeling were the intra-particle model of pore diffusion and Bangham's model of film diffusion. The results of the mechanistic modeling together with the values of pore and film diffusivities indicated that the preferential mode of the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase was film diffusion. The results of the intra-particle model showed that the biosorption of the copper and zinc ions was not dominated by the pore diffusion, which was due to macro-pores with open-void spaces present on the surface of egg-shell particles. The thermodynamic modeling reproduced the fact that the sorption of copper and zinc was spontaneous, exothermic with the increased order of the randomness at the solid-liquid interface.

  6. Batch uptake of lysozyme: effect of solution viscosity and mass transfer on adsorption.

    PubMed

    Wright, P R; Muzzio, F J; Glasser, B J

    1998-01-01

    In this study, solid-phase adsorption by macroporous and hyper-diffusive resins was investigated in a batch uptake adsorption system to quantify solid-phase diffusion rates as a function of bulk phase viscosity. The performance of chromatographic resins used for adsorption of proteins is dependent on several factors including solid and liquid-phase diffusivity, boundary layer mass transfer, and intraparticle mass transfer effects. Understanding these effects is critical to process development and optimization of both packed and fluidized bed adsorption systems. The macroporous resin used here was Streamline SP, and the hyper-diffusive resin was S-HyperD LS. Both have been frequently used in fluidized bed adsorption of proteins; however, factors that affect uptake rates of these media are not well quantified. Adsorption isotherms were well represented by an empirical fit of a Langmuir isotherm. Solid-phase diffusion coefficients obtained from simulations were in agreement with other models for macroporous and hyper-diffusive particles. S-HyperD LS in the buffer system had the highest uptake rate, but increased bulk phase viscosity decreased the rate by approximately 50%. Increases in bulk phase viscosity increased film mass transfer effects, and uptake was observed to be a strong function of the film mass transfer coefficient. Uptake by Streamline SP particles was slower than S-HyperD in buffer, due to a greater degree of intraparticle mass transfer resistance. The effect of increased film mass transfer resistance coupled with intraparticle mass transfer resistances at an increased bulk phase viscosity resulted in a decrease of 80% in the uptake rate by Streamline SP relative to S-HyperD.

  7. Batch sorption and spectroscopic speciation studies of neptunium uptake by montmorillonite and corundum

    NASA Astrophysics Data System (ADS)

    Elo, O.; Müller, K.; Ikeda-Ohno, A.; Bok, F.; Scheinost, A. C.; Hölttä, P.; Huittinen, N.

    2017-02-01

    Detailed information on neptunium(V) speciation on montmorillonite and corundum surfaces was obtained by batch sorption and desorption studies combined with surface complexation modelling using the Diffuse Double-Layer (DDL) model, in situ time-resolved Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) and X-ray absorption (XAS) spectroscopies. The pH-dependent batch sorption studies and the spectroscopic investigations were conducted under carbonate-free conditions in 10 mM NaClO4 or 10 mM NaCl. Solid concentrations of 0.5 g/l and 5 g/l were used depending on the experiment. The neptunium(V) desorption from the two mineral surfaces was investigated at pH values ranging from 8 to 10, using the replenishment technique. Neptunium(V) was found to desorb from the mineral surface, however, the extent of desorption was dependent on the solution pH. The desorption of neptunium(V) was confirmed in the ATR FT-IR spectroscopic studies at pH 10, where all of the identified inner-sphere complexed neptunium(V), characterized by a vibrational band at 790 cm-1, was desorbed from both mineral surfaces upon flushing the mineral films with a blank electrolyte solution. In XAS investigations of neptunium(V) uptake by corundum, the obtained structural parameters confirm the formation of an inner-sphere complex adsorbed on the surface in a bidentate fashion. As the inner-sphere complexes found in the IR-studies are characterized by identical sorption bands on both corundum and montmorillonite, we tentatively assigned the neptunium(V) inner-sphere complex on montmorillonite to the same bidentate complex found on corundum in the XAS investigations. Finally, the obtained batch sorption and spectroscopic results were modelled with surface complexation modelling to explain the neptunium(V) speciation on montmorillonite over the entire investigated pH range. The modelling results show that cation exchange in the interlayer space as well as two pH-dependent surface complexes

  8. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-01

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  9. Composite polymeric beads containing N,N,N',N'-tetraoctyldiglycolamide for actinide ion uptake from nitric acid feeds: Batch uptake, kinetic modelling and column studies.

    PubMed

    Gujar, R B; Mohapatra, P K; Lakshmi, D Shanthana; Figoli, A

    2015-11-27

    Polyethersulphone (PES) based composite polymeric beads (CPB) containing TODGA (N,N,N',N'-tetraoctyldiglycolamide) as the extractant were prepared by conventional phase inversion technique and were tested for the uptake of actinide ions such as Am(3+), UO2(2+), Pu(4+), Np(4+) and fission product ions such as Eu(3+) and Sr(2+). The CPBs containing 2.5-10wt.% TODGA were characterized by various physical methods and their porosity, size, surface morphology, surface area and the degradation profile by thermogravimetry were analyzed. The batch uptake studies involved kinetics of metal ion sorption, uptake as a function of nitric acid concentration, kinetic modelling and adsorption isotherms and most of the studies involved the Am(3+) ions. The batch saturation sorption capacities for Eu(3+) loading at 3M HNO3 were determined to be 6.6±0.02, 9.1±0.02 and 22.3±0.04mgg(-1) of CRBs with 2.5wt.%, 5wt.% and 10wt.% TODGA, respectively. The sorption isotherm analysis with Langmuir, D-R and Freundlisch isotherms indicated chemisorption monolayer mechanism. Chromatographic studies indicated breakthrough of Eu(3+) (using a solution containing Eu carrier) after about 0.75 bed volume (3.5-4mL). Elution of the loaded Eu was carried out using 0.01M EDTA as the eluent.

  10. Using thermodynamics to assess biotic and abiotic impediments to root water uptake

    NASA Astrophysics Data System (ADS)

    Bechmann, Marcel; Hildebrandt, Anke; Kleidon, Axel

    2016-04-01

    Root water uptake has been the subject of extensive research, dealing with understanding the processes limiting transpiration and understanding strategies of plants to avoid water stress. Many of those studies use models of water flow from the soil through the plant into the atmosphere to learn about biotic and abiotic factors affecting plant water relations. One important question in this context is to identify those processes that are most limiting to water transport, and specifically whether these processes lie within the plant or the soil? Here, we propose to use a thermodynamic formulation of root water uptake to answer this question. The method allows us to separate the energy exported at the root collar into a sum of energy fluxes related to all processes along the flow path, notably including the effect of increasing water retention in drier soils. Evaluation of the several contributions allows us to identify and rank the processes by how much these impede water flow from the soil to the atmosphere. The application of this approach to a complex 3-dimensional root water uptake model reveals insights on the role of root versus soil resistances to limit water flow. We investigate the efficiency of root water uptake in an ensemble of root systems with varying root hydraulic properties. While root morphology is kept the same, root radial and axial resistances are artificially varied. Starting with entirely young systems (uptake roots, high radial, low axial conductance) we increasingly add older roots (transport roots, high axial, low radial conductance) to improve transport within root systems. This yields a range of root hydraulic architectures, where the extremes are limited either by radial uptake capacity or low capacity to transport water along the root system. We model root water uptake in this range of root systems with a 3-dimensional root water uptake model in two different soils, applying constant flux boundary conditions in a dry down experiment and

  11. A new bioenergetic and thermodynamic approach to batch photoautotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions.

    PubMed

    da Silva, Milena Fernandes; Casazza, Alessandro Alberto; Ferrari, Pier Francesco; Perego, Patrizia; Bezerra, Raquel Pedrosa; Converti, Attilio; Porto, Ana Lucia Figueiredo

    2016-05-01

    Photobioreactor configuration, mode of operation and light intensity are known to strongly impact on cyanobacteria growth. To shed light on these issues, kinetic, bioenergetic and thermodynamic parameters of batch Arthrospira platensis cultures were estimated along the time at photosynthetic photon flux density (PPFD) of 70μmolm(-2)s(-1) in different photobioreactors with different surface/volume ratio (S/V), namely open pond (0.25cm(-1)), shaken flask (0.48cm(-1)), horizontal photobioreactor (HoP) (1.94cm(-1)) and helicoidal photobioreactor (HeP) (3.88cm(-1)). Maximum biomass concentration and productivity remarkably increased with S/V up to 1.94cm(-1). HoP was shown to be the best-performing system throughout the whole runs, while HeP behaved better only at the start. Runs carried out in HoP increasing PPFD from 40 to 100μmolm(-2)s(-1) revealed a progressive enhancement of bioenergetics and thermodynamics likely because of favorable light distribution. HoP appeared to be a promising configuration to perform high-yield indoor cyanobacterial cultures.

  12. The Thermodynamic Flow-Force Interpretation of Root Nutrient Uptake Kinetics: A Powerful Formalism for Agronomic and Phytoplanktonic Models.

    PubMed

    Le Deunff, Erwan; Tournier, Pierre-Henri; Malagoli, Philippe

    2016-01-01

    The ion influx isotherms obtained by measuring unidirectional influx across root membranes with radioactive or stable tracers are mostly interpreted by enzyme-substrate-like modeling. However, recent analyses from ion transporter mutants clearly demonstrate the inadequacy of the conventional interpretation of ion isotherms. Many genetically distinct carriers are involved in the root catalytic function. Parameters Vmax and Km deduced from this interpretation cannot therefore be regarded as microscopic parameters of a single transporter, but are instead macroscopic parameters (V[Formula: see text] and K[Formula: see text], apparent maximum velocity and affinity constant) that depend on weighted activities of multiple transporters along the root. The flow-force interpretation based on the thermodynamic principle of irreversible processes is an alternative macroscopic modeling approach for ion influx isotherms in which macroscopic parameters Lj (overall conductance of the root system for the substrate j) and πj (thermodynamic parameter when Jj = 0) have a straightforward meaning with respect to the biological sample studied. They characterize the efficiency of the entire root catalytic structure without deducing molecular characteristics. Here we present the basic principles of this theory and how its use can be tested and improved by changing root pre- and post-wash procedures before influx measurements in order to come as close as possible to equilibrium conditions. In addition, the constant values of Vm and Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not reflect variations in response to temperature, nutrient status or nutrient regimes. The linear formalism of the flow-force approach, which integrates temperature effect on nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of plants and phytoplankton. This formalism offers a simplification of parametrization to help find more realistic analytical

  13. The Thermodynamic Flow-Force Interpretation of Root Nutrient Uptake Kinetics: A Powerful Formalism for Agronomic and Phytoplanktonic Models

    PubMed Central

    Le Deunff, Erwan; Tournier, Pierre-Henri; Malagoli, Philippe

    2016-01-01

    The ion influx isotherms obtained by measuring unidirectional influx across root membranes with radioactive or stable tracers are mostly interpreted by enzyme-substrate-like modeling. However, recent analyses from ion transporter mutants clearly demonstrate the inadequacy of the conventional interpretation of ion isotherms. Many genetically distinct carriers are involved in the root catalytic function. Parameters Vmax and Km deduced from this interpretation cannot therefore be regarded as microscopic parameters of a single transporter, but are instead macroscopic parameters (Vmapp and Kmapp, apparent maximum velocity and affinity constant) that depend on weighted activities of multiple transporters along the root. The flow-force interpretation based on the thermodynamic principle of irreversible processes is an alternative macroscopic modeling approach for ion influx isotherms in which macroscopic parameters Lj (overall conductance of the root system for the substrate j) and πj (thermodynamic parameter when Jj = 0) have a straightforward meaning with respect to the biological sample studied. They characterize the efficiency of the entire root catalytic structure without deducing molecular characteristics. Here we present the basic principles of this theory and how its use can be tested and improved by changing root pre- and post-wash procedures before influx measurements in order to come as close as possible to equilibrium conditions. In addition, the constant values of Vm and Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not reflect variations in response to temperature, nutrient status or nutrient regimes. The linear formalism of the flow-force approach, which integrates temperature effect on nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of plants and phytoplankton. This formalism offers a simplification of parametrization to help find more realistic analytical expressions and numerical

  14. Norbadione a: kinetics and thermodynamics of cesium uptake in aqueous and alcoholic media.

    PubMed

    Korovitch, Alexandre; Mulon, Jean-Baptiste; Souchon, Vincent; Leray, Isabelle; Valeur, Bernard; Mallinger, Aurélie; Nadal, Brice; Le Gall, Thierry; Lion, Claude; Ha-Duong, Nguyêt-Thanh; El Hage Chahine, Jean-Michel

    2010-10-07

    Norbadione A (NbA) is a mushroom pigment, which is assumed to be involved in (137)Cs accumulation all over Europe during the Chernobyl nuclear accident. NbA bears seven acid-base functional groups, among which are two enolic and two carboxylic acid moieties. This work deals with complex formation of Cs(+) and NbA in ethanol, ethanol/water (9:1) (M1), and water with, when required, the support of two Cs(+) ionophore probes, calix[4]arene-bis(crown-6-ether)dioxycoumarine (A1) and its tetrasuslfonated form (A2). In ethanol, two Cs(+) complexes are formed, with the affinity constants K(1EtOH) = (1.1 ± 0.25) × 10(5) and K(2EtOH) = (2.1 ± 0.4) × 10(3). In M1, a single Cs(+) complex occurs when only the enols are deprotonated, whereas a bicomplex is formed when both enols and carboxylic acids are deprotonated: K(1M1) = (1.5 ± 0.3) × 10(5) and K(2M1) = (4 ± 2) × 10(3). These data are confirmed by stopped-flow and T-jump kinetics. In ethanol, a fast Cs(+) exchange occurs between NbA and A1: direct rate constant, k(1) = (3.1 ± 0.1) × 10(7) M(-1) s(-1); reverse rate constant k(-1) = (2.8 ± 1) × 10(5) M(-1) s(-1); and Cs(+) exchange constant, K(1Exchange) = (9 ± 4) × 10(-3). In M1, the quenching of A2 fluorescence by NbA is used to determine the kinetics of complex formation with Cs(+): k(2) = (1.8 ± 0.4) × 10(9) M(-1) s(-1); k(-2) = (1.80 ± 0.15) × 10(4) s(-1); and K(1M1) = (1.5 ± 0.5) × 10(5). The affinity of NbA for Cs(+) is probably the result of the particular structure in which the two pulvinic acid arms adopt a conformation that forms two complexation sites composed of the two enolates and/or the two carboxylates. This renders the efficiency in Cs(+) uptake comparable to that of some calixarenes or crown ethers.

  15. Effect of culture residence time on substrate uptake and storage by a pure culture of Thiothrix (CT3 strain) under continuous or batch feeding.

    PubMed

    Valentino, Francesco; Beccari, Mario; Villano, Marianna; Tandoi, Valter; Majone, Mauro

    2017-05-25

    A pure culture of the filamentous bacterium Thiothrix, strain CT3, was aerobically cultured in a chemostat under continuous acetate feeding at three different culture residence times (RT 6, 12 or 22 d) and the same volumetric organic load rate (OLR 0.12gCOD/L/d). Cells cultured at decreasing RT in the chemostat had an increasing transient response to acetate spikes in batch tests. The maximum specific acetate removal rate increased from 25 to 185mgCOD/gCOD/h, corresponding to a 1.8 to 8.1 fold higher respective steady-state rate in the chemostat. The transient response was mainly due to acetate storage in the form of poly(3-hydroxybutyrate) (PHB), whereas no growth response was observed at any RT. Interestingly, even though the storage rate also decreased as the RT increased, the storage yield increased from 0.41 to 0.50 COD/COD. This finding does not support the traditional view that storage plays a more important role as the transient response increases. The transient response of the steady-state cells was much lower than in cells cultured under periodic feeding (at 6 d RT, from 82 to 247mgCOD/gCOD/h), with the latter cells showing both storage and growth responses. On the other hand, even though steady-state cells had no growth response and their storage rate was also less, steady-state cells showed a higher storage yield than cells cultured under dynamic feeding. This suggests that in Thiothrix strain CT3, the growth response is triggered by periodic feeding, whereas the storage response is a constitutive mechanism, independent from previous acclimation to transient conditions.

  16. Manganese uptake of imprinted polymers

    SciTech Connect

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  17. Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption.

    PubMed

    Mittal, Alok; Mittal, Jyoti; Kurup, Lisha

    2006-09-01

    An inexpensive adsorption method has been developed for the removal of indigo carmine, a highly toxic indigoid class of dye from wastewater. Waste materials--bottom ash, a power plant waste and de-oiled soya, an agricultural waste--have been used as adsorbents. Attempts have been made through batch and bulk removal of the dye and both the adsorbents have been found to exhibit good efficiency to adsorb indigo carmine. Under batch technique effect of temperature, pH, concentration, dosage of adsorbents, sieve size of adsorbents, etc. have been observed. The dye uptake on to both the adsorbents is found to validate Langmuir and Freundlich adsorption isotherms models. Different thermodynamic parameters, like Gibb's free energy, enthalpy and entropy of the on-going adsorption process have also been evaluated. Batch technique has also been employed for the kinetic measurements and the adsorption follows a first order rate kinetics for both the adsorbents. The kinetic investigations also reveal for both the adsorbents film diffusion and particle diffusion mechanisms are operative in the lower and higher concentration ranges, respectively. Under the bulk removal, indigo carmine has been adsorbed through the column beds of bottom ash and de-oiled soya and more than 90% of the dye material has been recovered by eluting dilute NaOH solution through exhausted columns.

  18. Biosorptive uptake of Fe(2+), Cu(2+) and As(5+) by activated biochar derived from Colocasia esculenta: Isotherm, kinetics, thermodynamics, and cost estimation.

    PubMed

    Banerjee, Soumya; Mukherjee, Shraboni; LaminKa-Ot, Augustine; Joshi, S R; Mandal, Tamal; Halder, Gopinath

    2016-09-01

    The adsorptive capability of superheated steam activated biochar (SSAB) produced from Colocasia esculenta was investigated for removal of Cu(2+), Fe(2+) and As(5+) from simulated coal mine wastewater. SSAB was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analyser. Adsorption isotherm indicated monolayer adsorption which fitted best in Langmuir isotherm model. Thermodynamic study suggested the removal process to be exothermic, feasible and spontaneous in nature. Adsorption of Fe(2+), Cu(2+) and As(5+) on to SSAB was found to be governed by pseudo-second order kinetic model. Efficacy of SSAB in terms of metal desorption, regeneration and reusability for multiple cycles was studied. Regeneration of metal desorbed SSAB with 1 N sodium hydroxide maintained its effectiveness towards multiple metal adsorption cycles. Cost estimation of SSAB production substantiated its cost effectiveness as compared to commercially available activated carbon. Hence, SSAB could be a promising adsorbent for metal ions removal from aqueous solution.

  19. Debiasing Crowdsourced Batches

    PubMed Central

    Zhuang, Honglei; Parameswaran, Aditya; Roth, Dan; Han, Jiawei

    2015-01-01

    Crowdsourcing is the de-facto standard for gathering annotated data. While, in theory, data annotation tasks are assumed to be attempted by workers independently, in practice, data annotation tasks are often grouped into batches to be presented and annotated by workers together, in order to save on the time or cost overhead of providing instructions or necessary background. Thus, even though independence is usually assumed between annotations on data items within the same batch, in most cases, a worker's judgment on a data item can still be affected by other data items within the batch, leading to additional errors in collected labels. In this paper, we study the data annotation bias when data items are presented as batches to be judged by workers simultaneously. We propose a novel worker model to characterize the annotating behavior on data batches, and present how to train the worker model on annotation data sets. We also present a debiasing technique to remove the effect of such annotation bias from adversely affecting the accuracy of labels obtained. Our experimental results on both synthetic data and real-world data demonstrate the effectiveness of our proposed method. PMID:26713175

  20. Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae.

    PubMed

    Khani, M H; Keshtkar, A R; Ghannadi, M; Pahlavanzadeh, H

    2008-02-11

    Biosorption equilibrium, kinetics and thermodynamics of binding of uranium ions to Cystoseria indica were studied in a batch system with respect to temperature and initial metal ion concentration. Algae biomass exhibited the highest uranium uptake capacity at 15 degrees C at an initial uranium ion concentration of 500 mg l(-1) and an initial pH of 4. Biosorption capacity increased from 198 to 233 mg g(-1) with an decrease in temperature from 45 to 15 degrees C at this initial uranium concentration. The Langmuir isotherm model were applied to experimental equilibrium data of uranium biosorption depending on temperature. Equilibrium data fitted very well to the Langmuir model C. indica algae in the studied concentration range of Uranium ions at all the temperatures studied. The saturation type kinetic model was applied to experimental data at different temperatures changing from 15 to 45 degrees C to describe the batch biosorption kinetics assuming that the external mass transfer limitations in the system can be neglected and biosorption is chemical sorption controlled. The activation energy of biosorption (E(A)) was determined as -6.15 using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also evaluated.

  1. GIDEP Batching Tool

    NASA Technical Reports Server (NTRS)

    Fong, Danny; Odell,Dorice; Barry, Peter; Abrahamian, Tomik

    2008-01-01

    This software provides internal, automated search mechanics of GIDEP (Government- Industry Data Exchange Program) Alert data imported from the GIDEP government Web site. The batching tool allows the import of a single parts list in tab-delimited text format into the local JPL GIDEP database. Delimiters from every part number are removed. The original part numbers with delimiters are compared, as well as the newly generated list without the delimiters. The two lists run against the GIDEP imports, and output any matches. This feature only works with Netscape 2.0 or greater, or Internet Explorer 4.0 or greater. The user selects the browser button to choose a text file to import. When the submit button is pressed, this script will import alerts from the text file into the local JPL GIDEP database. This batch tool provides complete in-house control over exported material and data for automated batch match abilities. The batching tool has the ability to match capabilities of the parts list to tables, and yields results that aid further research and analysis. This provides more control over GIDEP information for metrics and reports information not provided by the government site. This software yields results quickly and gives more control over external data from the government site in order to generate other reports not available from the external source. There is enough space to store years of data. The program relates to risk identification and management with regard to projects and GIDEP alert information encompassing flight parts for space exploration.

  2. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.

    PubMed

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-12-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH(0), ΔS(0) and ΔG(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous.

  3. Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations.

    PubMed

    El-Kamash, A M

    2008-03-01

    Zeolite A was chemically synthesized and evaluated, as inorganic ion exchange material, for the removal of cesium and strontium ions from aqueous solutions in both batch and fixed bed column operations. Batch experiments were carried out as a function of pH, initial ion concentration and temperature. Simple kinetic and thermodynamic models have been applied to the rate and isotherm sorption data and the relevant kinetic and thermodynamic parameters were determined from the graphical presentation of these models. Breakthrough data were determined in a fixed bed column at room temperature (298 K) under the effect of various process parameters like bed depth, flow rate and initial ion concentration. The results showed that the total metal ion uptake and the overall bed capacity decreased with increasing flow rate and increased with increasing initial ion concentrations and bed depth. The dynamics of the ion exchange process was modeled by bed depth service time (BDST) model. The sorption rate constants (K) were found to increase with increase in flow rate indicating that the overall system kinetics was dominated by external mass transfer in the initial part of the sorption process in the column.

  4. Thermodynamic holography

    NASA Astrophysics Data System (ADS)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-10-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics.

  5. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  6. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  7. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  8. Insight into biosorption equilibrium, kinetics and thermodynamics of crystal violet onto Ananas comosus (pineapple) leaf powder

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sagnik; Chowdhury, Shamik; Saha, Papita Das

    2012-06-01

    Biosorption performance of pineapple leaf powder (PLP) for removal of crystal violet (CV) from its aqueous solutions was investigated. To this end, the influence of operational parameters such as pH, biosorbent dose, initial dye concentration and temperature were studied employing a batch experimental setup. The biosorption process followed the Langmuir isotherm model with high correlation coefficients ( R 2 > 0.99) at different temperatures. The maximum monolayer biosorption capacity was found to be 78.22 mg g-1 at 293 K. The kinetic data conformed to the pseudo-second-order kinetic model. The activation energy of the system was calculated as 58.96 kJ mol- 1 , indicating chemisorption nature of the ongoing biosorption process. A thermodynamic study showed spontaneous and exothermic nature of the biosorption process. Owing to its low cost and high dye uptake capacity, PLP has potential for application as biosorbent for removal of CV from aqueous solutions.

  9. Microbial diversity arising from thermodynamic constraints

    PubMed Central

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  10. Application of gain scheduling to the control of batch bioreactors

    NASA Technical Reports Server (NTRS)

    Cardello, Ralph; San, Ka-Yiu

    1987-01-01

    The implementation of control algorithms to batch bioreactors is often complicated by the inherent variations in process dynamics during the course of fermentation. Such a wide operating range may render the performance of fixed gain PID controllers unsatisfactory. In this work, a detailed study on the control of batch fermentation is performed. Furthermore, a simple batch controller design is proposed which incorporates the concept of gain-scheduling, a subclass of adaptive control, with oxygen uptake rate as an auxiliary variable. The control of oxygen tension in the biorector is used as a vehicle to convey the proposed idea, analysis and results. Simulation experiments indicate significant improvement in controller performance can be achieved by the proposed approach even in the presence of measurement noise.

  11. Data-driven batch schuduling

    SciTech Connect

    Bent, John; Denehy, Tim; Arpaci - Dusseau, Remzi; Livny, Miron; Arpaci - Dusseau, Andrea C

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  12. Batch compositions for cordierite ceramics

    DOEpatents

    Hickman, David L.

    1994-07-26

    Ceramic products consisting principally of cordierite and a method for making them are provided, the method employing batches comprising a mineral component and a chemical component, the mineral component comprising clay and talc and the chemical component consisting essentially of a combination of the powdered oxides, hydroxides, or hydrous oxides of magnesium, aluminum and silicon. Ceramics made by extrusion and firing of the batches can exhibit low porosity, high strength and low thermal expansion coefficients.

  13. Descriptive thermodynamics

    NASA Astrophysics Data System (ADS)

    Ford, David; Huntsman, Steven

    2006-06-01

    Thermodynamics (in concert with its sister discipline, statistical physics) can be regarded as a data reduction scheme based on partitioning a total system into a subsystem and a bath that weakly interact with each other. Whereas conventionally, the systems investigated require this form of data reduction in order to facilitate prediction, a different problem also occurs, in the context of communication networks, markets, etc. Such “empirically accessible” systems typically overwhelm observers with the sort of information that in the case of (say) a gas is effectively unobtainable. What is required for such complex interacting systems is not prediction (this may be impossible when humans besides the observer are responsible for the interactions) but rather, description as a route to understanding. Still, the need for a thermodynamical data reduction scheme remains. In this paper, we show how an empirical temperature can be computed for finite, empirically accessible systems, and further outline how this construction allows the age-old science of thermodynamics to be fruitfully applied to them.

  14. Nanoscopic Thermodynamics.

    PubMed

    Qi, Weihong

    2016-09-20

    Conventional thermodynamics for bulk substances encounters challenges when one considers materials on the nanometer scale. Quantities such as entropy, enthalpy, free energy, melting temperature, ordering temperature, Debye temperature, and specific heat no longer remain constant but change with the crystal dimension, size, and morphology. Often, one phenomenon is associated with a variety of theories from different perspectives. Still, a model that can reconcile the size and shape dependence of the thermal properties of the nanoscaled substances remains one of the goals of nanoscience and nanotechnology. This Account highlights the nanoscopic thermodynamics for nanoparticles, nanowires, and nanofilms, with particular emphasis on the bond energy model. The central idea is that the atomic cohesive energy determines the thermodynamic performance of a substance and the cohesive energy varies with the atomic coordination environment. It is the cohesive energy difference between the core and the shell that dictates the nanoscopic thermodynamics. This bond energy model rationalizes the following: (i) how the surface dangling bonds depress the melting temperature, entropy, and enthalpy; (ii) how the order-disorder transition of the nanoparticles depends on particle size and how their stability may vary when they are embedded in an appropriate matrix; (iii) predictions of the existence of face-centered cubic structures of Ti, Zr, and Hf at small size; (iv) how two elements that are immiscible in the bulk can form an alloy on the nanoscale, where the critical size can be predicted. The model has enabled us to reproduce the size and shape dependence of a number of physical properties, such as melting temperature, melting entropy, melting enthalpy, ordering temperature, Gibbs free energy, and formation heat, among others, for materials such as Pd, Au, Ag, Cu, Ni, Sn, Pb, In, Bi, Al, Ti, Zr, Hf, In-Al, Ag-Ni, Co-Pt, Cu-Ag, Cu-Ni, Au-Ni, Ag-Pt, and Au-Pt on the nanometer scale

  15. Sorption equilibrium, mechanism and thermodynamics studies of 1,3-propanediol on beta zeolite from an aqueous solution.

    PubMed

    Wang, Zhe; Wu, Zhe; Tan, Tianwei

    2013-10-01

    To identify the adsorption characteristics of 1,3-propanediol on beta zeolite, the effects of temperature, zeolite dose, and 1,3-propanediol concentration were studied through batch experiments. The results showed that the pseudo-second order model expressed the kinetic data better. The experimental and theoretical adsorption capacities were 116.2 and 119.0 mg/g at 293 K, respectively. The adsorption equilibrium data were observed to satisfy the Freundlich isotherm model. Based on the Boyd plot, intraparticle diffusion primarily governed the uptake process. Moreover, thermodynamic parameters, such as changes in standard free energy (ΔG(0)), standard enthalpy (ΔH(0)), and standard entropy, were estimated. The negative values of ΔG(0) and ΔH(0) (-9.4 kJ/mol) indicated that the adsorption process was spontaneous, exothermic, and feasible. Finally, the activation energy derived from the Arrhenius equation suggested that the interaction mainly constitute physical adsorption.

  16. Batching System for Superior Service

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Veridian's Portable Batch System (PBS) was the recipient of the 1997 NASA Space Act Award for outstanding software. A batch system is a set of processes for managing queues and jobs. Without a batch system, it is difficult to manage the workload of a computer system. By bundling the enterprise's computing resources, the PBS technology offers users a single coherent interface, resulting in efficient management of the batch services. Users choose which information to package into "containers" for system-wide use. PBS also provides detailed system usage data, a procedure not easily executed without this software. PBS operates on networked, multi-platform UNIX environments. Veridian's new version, PBS Pro,TM has additional features and enhancements, including support for additional operating systems. Veridian distributes the original version of PBS as Open Source software via the PBS website. Customers can register and download the software at no cost. PBS Pro is also available via the web and offers additional features such as increased stability, reliability, and fault tolerance.A company using PBS can expect a significant increase in the effective management of its computing resources. Tangible benefits include increased utilization of costly resources and enhanced understanding of computational requirements and user needs.

  17. Simulated Batch Production of Penicillin

    ERIC Educational Resources Information Center

    Whitaker, A.; Walker, J. D.

    1973-01-01

    Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)

  18. Physicochemical Characteristics of Transferon™ Batches.

    PubMed

    Medina-Rivero, Emilio; Vallejo-Castillo, Luis; Vázquez-Leyva, Said; Pérez-Sánchez, Gilberto; Favari, Liliana; Velasco-Velázquez, Marco; Estrada-Parra, Sergio; Pavón, Lenin; Pérez-Tapia, Sonia Mayra

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes.

  19. Physicochemical Characteristics of Transferon™ Batches

    PubMed Central

    Pérez-Sánchez, Gilberto; Favari, Liliana; Estrada-Parra, Sergio

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes. PMID:27525277

  20. NDA BATCH 2002-02

    SciTech Connect

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  1. Advances in thermodynamics

    SciTech Connect

    Sieniutycz, S. ); Salamon, P. )

    1990-01-01

    This book covers: nonequilibrium thermodynamics for solar energy applications; finite-time thermodynamics as applied to solar power conversion; thermodynamics and economics; exergy analysis; and an analysis of cumulative exergy consumption and exergy losses.

  2. Batch manufacturing: Six strategic needs

    SciTech Connect

    Ash, R.H.; Chappell, D.A.

    1995-08-01

    Since the advent of industrial digital control systems in the mid-1970s, industry has had the promise of integrated, configurable digital batch control systems to replace the morass of electromechanical devices like relays and stepping switches, recorders, and indicators which comprised the components of previous generations of batch control systems - the {open_quotes}monolithic monsters{close_quotes} of the 1960s and earlier. To help fulfill that promise, there have been many wide-ranging proprietary automation solutions for batch control since 1975, many of them technically excellent. However, even the best examples suffered from the lack of a common language and unifying concept permitting separate systems to be interconnected and work together. Today, some 20 years after the digital revolution began, industry has microprocessors, memory chips, data highways, and other marvelous technology to help automate the control of discontinuous processes. They also are on the way to having an accepted standard for batch automation, ISA S88. Batching systems are at once conceptually simple but executionally complex. The notion of adding ingredients one at a time to a vat, mixing, and then processing into final form is as old as the stone age. Every homemaker on earth, male or female, is familiar with how to follow a recipe to create some sumptuous item of culinary delight. Food recipes, so familiar and ubiquitous, are really just microcosms of the S88 recipe standard. They contain the same components: (1) Header (name and description of item being prepared, sometimes serving size); (2) Formula (list and amount of ingredients); (3) Equipment requirements (pans, mixing and cooking equipment); (4) Procedure (description of order of ingredient addition, mixing and other processing steps, baking/cooling time, and other processing steps); and (5) Other information (safety, cautions, and other miscellaneous instructions).

  3. Equilibrium, kinetic and thermodynamic studies of mercury adsorption on almond shell.

    PubMed

    Khaloo, Shokooh Sadat; Matin, Amir Hossein; Sharifi, Sahar; Fadaeinia, Masoumeh; Kazempour, Narges; Mirzadeh, Shaghayegh

    2012-01-01

    The application of almond shell as a low cost natural adsorbent to remove Hg(2+) from aqueous solution was investigated. Batch experiments were carried out to evaluate the adsorption capacity of the material. The chemical and physical parameters such as pH, sorbent amount, initial ion concentration, and contact time were optimized for the maximum uptake of mercury onto the solid surface. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models, and the experimental data were found to fit the Langmuir model rather than the Freundlich. The maximum adsorption capacity obtained from the Langmuir isotherm was 135.13 mg/g. A kinetic study was carried out with pseudo-first-order and pseudo-second-order reaction equations and it was found that the Hg(2+) uptake process followed the pseudo-second-order rate expression. The thermodynamic values, ΔG(0), ΔH(0) and ΔS(0), indicated that adsorption was an endothermic and spontaneous process. The potential of this material for mercury elimination was demonstrated by efficient Hg(2+) removal from a synthetic effluent.

  4. NDA Batch 2002-13

    SciTech Connect

    Hollister, R

    2009-09-17

    QC sample results (daily background check drum and 100-gram SGS check drum) were within acceptance criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on drum LL85501243TRU. Replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. HWM NCAR No. 02-1000168 issued on 17-Oct-2002 regarding a partially dislodged Cd sheet filter on the HPGe coaxial detector. This physical geometry occurred on 01-Oct-2002 and was not corrected until 10-Oct-2002, during which period is inclusive of the present batch run of drums. Per discussions among the Independent Technical Reviewer, Expert Reviewer and the Technical QA Supervisor, as well as in consultation with John Fleissner, Technical Point of Contact from Canberra, the analytical results are technically reliable. All QC standard runs during this period were in control. Data packet for SGS Batch 2002-13 generated using passive gamma-ray spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with establiShed control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable.

  5. Thermodynamics of Radiation Modes

    ERIC Educational Resources Information Center

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  6. Kinetics studies of uranium sorption by powdered corn cob in batch and fixed bed system

    PubMed Central

    Mahmoud, Mohamed A.

    2015-01-01

    Sorption of uranium (VI) from aqueous solution onto powdered corn cob has been carried out using batch and fixed-bed technique. The experimental results in batch technique were fitted well with pseudo second-order kinetics model. In the fixed bed technique, Thomas and Bohart–Adams models were evaluated by linear regression analysis for U(VI) uptake in different flow rates, bed heights and initial concentrations. The column experimental data were fitted well with Thomas mode (r2 = 0.999), but the Bohart–Adams model (r2 = 0.911), predicted poor performance of fixed-bed column. PMID:26843973

  7. Adding coal dust to coal batch

    SciTech Connect

    V.S. Shved; A.V.Berezin

    2009-05-15

    The granulometric composition of coke dust from the dry-slaking machine is determined. The influence of additions of 3-7% coke dust on the quality of industrial coking batch and the coke obtained by box coking is estimated. Adding 1% coke dust to coking batch does not markedly change the coke quality. Industrial equipment for the supply of dry-slaking dust to the batch is described.

  8. Plutonium immobilization feed batching system concept report

    SciTech Connect

    Erickson, S.

    2000-07-19

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas.

  9. Method and apparatus for melting glass batch

    DOEpatents

    Fassbender, Alexander G.; Walkup, Paul C.; Mudge, Lyle K.

    1988-01-01

    A glass melting system involving preheating, precalcining, and prefluxing of batch materials prior to injection into a glass furnace. The precursors are heated by convection rather than by radiation in present furnaces. Upon injection into the furnace, batch materials are intimately coated with molten flux so as to undergo or at least begin the process of dissolution reaction prior to entering the melt pool.

  10. Strontium Uptake by Cementitious Materials

    SciTech Connect

    Wieland,E.; Tits, J.; Kunz, D.; Dahn, R.

    2008-01-01

    Wet chemistry experiments and X-ray absorption fine structure (XAFS) measurements were carried out to investigate the immobilization of nonradioactive Sr and 85Sr in calcite-free and calcite-containing Portland cement. The partitioning of pristine Sr between hardened cement paste (HCP) and pore solution, and the uptake of 85Sr and nonradioactive Sr were investigated in batch-type sorption/desorption experiments. Sr uptake by HCP was found to be fast and nearly linear for both cements, indicating that differences in the compositions of the two cements have no influence on Sr binding. The partitioning of pristine Sr bound in the cement matrix and 85Sr between HCP and pore solution could be modeled in terms of a reversible sorption process using similar Kd values. These findings allow 85Sr uptake to be interpreted in terms of an isotopic exchange process with pristine Sr. Sr K-edge EXAFS measurements on Sr doped HCP and calcium silicate hydrate (C-S-H) samples reveal no significant differences in the local coordination environments of pristine Sr and Sr bound to the cement matrix upon sorption. The first coordination sphere consists of five to six oxygen atoms located at a distance of about 2.6 Angstroms, which corresponds to Sr-O distances in the hydration sphere of Sr2+ in alkaline solution. Sr binds to the cement matrix via two bridging oxygen atoms located at a distance of about 3.6 Angstroms. No further neighboring atoms could be detected, indicating that Sr is taken up as a partially hydrated species by HCP. Wet chemistry and spectroscopic data further indicate that Sr binding to C-S-H phases is likely to be the controlling uptake mechanism in the cement matrix, which allows Sr uptake by HCP to be predicted based on a Ca-Sr ion exchange model previously developed for Sr binding to C-S-H phases. The latter finding suggests that long-term predictions of Sr immobilization in the cementitious near field of repositories for radioactive waste can be based on a

  11. Batch Scheduling a Fresh Approach

    NASA Technical Reports Server (NTRS)

    Cardo, Nicholas P.; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    The Network Queueing System (NQS) was designed to schedule jobs based on limits within queues. As systems obtain more memory, the number of queues increased to take advantage of the added memory resource. The problem now becomes too many queues. Having a large number of queues provides users with the capability to gain an unfair advantage over other users by tailoring their job to fit in an empty queue. Additionally, the large number of queues becomes confusing to the user community. The High Speed Processors group at the Numerical Aerodynamics Simulation (NAS) Facility at NASA Ames Research Center developed a new approach to batch job scheduling. This new method reduces the number of queues required by eliminating the need for queues based on resource limits. The scheduler examines each request for necessary resources before initiating the job. Also additional user limits at the complex level were added to provide a fairness to all users. Additional tools which include user job reordering are under development to work with the new scheduler. This paper discusses the objectives, design and implementation results of this new scheduler

  12. Thermal Analysis of Waste Glass Batches: Effect of Batch Makeup on Gas-Evolving Reactions

    SciTech Connect

    Pierce, David A.; Hrma, Pavel R.; Marcial, Jose

    2013-01-21

    Batches made with a variety of precursors were subjected to thermo-gravimetric analysis. The baseline modifications included all-nitrate batch with sucrose addition, all-carbonate batch, and batches with different sources of alumina. All batches were formulated for a single glass composition (a vitrified simulated high-alumina high-level waste). Batch samples were heated from the ambient temperature to 1200°C at constant heating rates ranging from 1 K/min to 50 K/min. Major gas evolving reactions began at temperatures just above 100°C and were virtually complete by 650°C. Activation energies for major reactions were obtained with the Kissinger’s method. A rough model for the overall kinetics of the batch-conversion was developed to be eventually applied to a mathematical model of the cold cap.

  13. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  14. Chromium (VI) purification using pine sawdust in batch systems

    NASA Astrophysics Data System (ADS)

    Politi, Dorothea; Sidiras, Dimitris

    2012-12-01

    Pine sawdust, a waste generated in furniture industry, has been used as low-cost potential adsorbent. This low-cost adsorbent was used for the removal of chromium (VI) from an aqueous solution. The kinetics of adsorption and extent of adsorption at equilibrium are dependent on the physical and chemical characteristics of the adsorbent and adsorbate. The effect of hydrogen ion concentration, contact time, adsorbent dose and initial concentration of adsorbate on the uptake of chromium were studied in batch experiments. The adsorption data has been correlated with Lagergren - Eldridge pseudofirst order kinetic model. The efficiency of adsorbent material for the removal of Cr(VI) was found to be between 13.1 and 95.6%, respectively. These results depend on the conditions of pH, contact time, sawdust dose and Cr(VI) concentration.

  15. Thermodynamics of Bioreactions.

    PubMed

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  16. Stochastic Thermodynamics of Learning

    NASA Astrophysics Data System (ADS)

    Goldt, Sebastian; Seifert, Udo

    2017-01-01

    Virtually every organism gathers information about its noisy environment and builds models from those data, mostly using neural networks. Here, we use stochastic thermodynamics to analyze the learning of a classification rule by a neural network. We show that the information acquired by the network is bounded by the thermodynamic cost of learning and introduce a learning efficiency η ≤1 . We discuss the conditions for optimal learning and analyze Hebbian learning in the thermodynamic limit.

  17. Sequencing batch reactor performance treating PAH contaminated lagoon sediments.

    PubMed

    Giordano, Andrea; Stante, Loredana; Pirozzi, Francesco; Cesaro, Raffaele; Bortone, Giuseppe

    2005-03-17

    The applicability of sediment slurry sequencing batch reactors (SBR) to treat Venice lagoon sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) was investigated, carrying out experimental tests. The slurry, obtained mixing tap water and contaminated sediments with 17.1 mg kg(-1) TS total PAHs content, was loaded to a 8l lab-scale completely stirred reactor, operated as a sequencing batch reactor. Oxygen uptake rate exerted by the slurry, measured by means of a DO-stat titrator, was used to monitor the in-reactor biological activity and to select the optimal operating conditions for the sediment slurry SBR. The PAHs removal efficiency was evaluated in different operating conditions, obtained changing the hydraulic retention time (HRT) of the lab-scale reactor and adding an external carbon source to the slurry. HRT values used during the experiments are 98, 70 and 35 days, whereas the carbon source was added in order to evaluate its effect on the biological activity. The results have shown a stable degradation of PAHs, with a removal efficiency close to 55%, not dependent on the addition of carbon source and the tested HRTs.

  18. Batch Proving and Proof Scripting in PVS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2007-01-01

    The batch execution modes of PVS are powerful, but highly technical, features of the system that are mostly accessible to expert users. This paper presents a PVS tool, called ProofLite, that extends the theorem prover interface with a batch proving utility and a proof scripting notation. ProofLite enables a semi-literate proving style where specification and proof scripts reside in the same file. The goal of ProofLite is to provide batch proving and proof scripting capabilities to regular, non-expert, users of PVS.

  19. High-temperature thermodynamics.

    NASA Technical Reports Server (NTRS)

    Margrave, J. L.

    1967-01-01

    High temperature thermodynamics requiring species and phases identification, crystal structures, molecular geometries and vibrational, rotational and electronic energy levels and equilibrium constants

  20. DETAIL VIEW OF BATCH CAR, BUILT BY ATLAS CAR & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BATCH CAR, BUILT BY ATLAS CAR & MANUFACTURING COMPANY. BATCH STORAGE SILOS IN BACKGROUND - Chambers Window Glass Company, Batch Plant, North of Drey (Nineteenth) Street, West of Constitution Boulevard, Arnold, Westmoreland County, PA

  1. Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations.

    PubMed

    Undey, Cenk; Tatara, Eric; Cinar, Ali

    2004-02-19

    Supervision of batch bioprocess operations in real-time during the progress of a batch run offers many advantages over end-of-batch quality control. Multivariate statistical techniques such as multiway partial least squares (MPLS) provide an efficient modeling and supervision framework. A new type of MPLS modeling technique that is especially suitable for online real-time process monitoring and the multivariate monitoring charts are presented. This online process monitoring technique is also extended to include predictions of end-of-batch quality measurements during the progress of a batch run. Process monitoring, quality estimation and fault diagnosis activities are automated and supervised by embedding them into a real-time knowledge-based system (RTKBS). Interpretation of multivariate charts is also automated through a generic rule-base for efficient alarm handling. The integrated RTKBS and the implementation of MPLS-based process monitoring and quality control are illustrated using a fed-batch penicillin production benchmark process simulator.

  2. BatchQC: interactive software for evaluating sample and batch effects in genomic data.

    PubMed

    Manimaran, Solaiappan; Selby, Heather Marie; Okrah, Kwame; Ruberman, Claire; Leek, Jeffrey T; Quackenbush, John; Haibe-Kains, Benjamin; Bravo, Hector Corrada; Johnson, W Evan

    2016-12-15

    Sequencing and microarray samples often are collected or processed in multiple batches or at different times. This often produces technical biases that can lead to incorrect results in the downstream analysis. There are several existing batch adjustment tools for '-omics' data, but they do not indicate a priori whether adjustment needs to be conducted or how correction should be applied. We present a software pipeline, BatchQC, which addresses these issues using interactive visualizations and statistics that evaluate the impact of batch effects in a genomic dataset. BatchQC can also apply existing adjustment tools and allow users to evaluate their benefits interactively. We used the BatchQC pipeline on both simulated and real data to demonstrate the effectiveness of this software toolkit.

  3. Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands.

    PubMed

    Maillard, Elodie; Lange, Jens; Schreiber, Steffi; Dollinger, Jeanne; Herbstritt, Barbara; Millet, Maurice; Imfeld, Gwenaël

    2016-02-01

    Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation.

  4. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  5. Thermodynamic estimation: Ionic materials

    SciTech Connect

    Glasser, Leslie

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  6. Iodide interactions with clay minerals: Batch and diffusion studies

    NASA Astrophysics Data System (ADS)

    Miller, A. W.; Kruichak, J.; Mills, M.; Wang, Y.

    2012-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Iodine-129 is often the major driver of exposure risk from nuclear waste repositories at timescales >10,000 years. Therefore, understanding the geochemical cycling of iodine in clays is critical in developing defensible quantitative descriptions of nuclear waste disposal. Anions are not typically considered to interact with most clays as it is assumed that the fixed negative charge of clays actively repels the dissoloved anion. This is corroborated by many batch studies, but diffusion experiments in compacted clays have shown iodide retardation relative to chloride. The reasons for this are unknown; however, several possible hypotheses include: redox transformation controls on sorption behavior, complex surface charge environments due to overlapping charge domains, and sorption to ancillary minerals or weathering products. Seven different clay minerals have been examined using several techniques to chracterize the surface charge environment and iodide uptake. The use of a series of clays shifts the independent variable away from water chemistry characteristics (pH, contaminant concentration), and toward structural characterisitics of clay minerals including isomorphous substitution and clay texture. Iodide uptake batch experiments were completed with the clay minerals in a range of swamping electrolytes. The results give evidence for a novel uptake mechanism involving ion pair formation and iodide concentration within nano-confined environments. These results were further tested using diffusional columns where nano-confined regimes make up a larger proportion of the total porosity. These columns were compacted to different hydrostatic pressures and saturated with different ionic compositions. Porosity distributions were characterized with a fluoride tracer. Iodide diffusion characteristics were

  7. Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag

    SciTech Connect

    Gupta, V.K.; Srivastava, S.K.; Mohan, D.

    1997-06-01

    The waste slurry generated in fertilizer plants and slag (blast furnace waste) have been converted into low-cost adsorbents, activated carbon and activated slag, respectively, and these are utilized for the removal of malachite green (a basic dye) from wastewater. In the batch experiments, parameters studied include the effect of pH, sorbent dosage, adsorbate concentration, temperature, and contact time. Kinetic studies have been performed to have an idea of the mechanistic aspects and to obtain the thermodynamic parameters of the process. The uptake of the dye is greater on carbonaceous material than on activated slag. Sorption data have been correlated with both Langmuir and Freundlich adsorption models. The presence of anionic surfactants does not affect the uptake of dye significantly. The mass transfer kinetic approach has been applied for the determination of various parameters necessary for the designing of fixed-bed contactors. Chemical regeneration has been achieved with acetone in order to recover the loaded dye and restore the column to its original capacity without dismantling the same.

  8. A Batch Feeder for Inhomogeneous Bulk Materials

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.

    2016-04-01

    The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.

  9. [Repeated batch and fed-batch process for astaxanthin production by Phaffia rhodozyma].

    PubMed

    Xiao, Anfeng; Ni, Hui; Li, Lijun; Cai, Huinong

    2011-04-01

    A comparative study of batch and repeated batch process was carried out for astaxanthin fermentation of Phaffia rhodozyma to develop a more economical method for astaxanthin industrial production. In shaking flask fermentation, the change of biomass and astaxanthin production was studied to compare the five-day cycle with four-day cycle of repeated batch culture of P. rhodozyma. Astaxanthin production increased at first and then decreased subsequently in seven cycles, yet the yield of astaxanthin in the next six cycles remains higher than that of the first cycle. Comparing the average production of astaxanthin in the seven cycles, four-day cycle performed even better than five-day cycle. Subsequently, a repeated fed-batch process was used in a 5-1 bioreactor. The experimental data showed that biomass and astaxanthin production of the second batch could reach the level of the first batch, no matter that the carbon source was glucose or hydrolysis sugar of starch. This result showed that this strain had good stability, and thus repeated batch and fed-batch process could be applied in astaxanthin fermentation for economical purpose.

  10. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    PubMed

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency.

  11. Kinetic Uptake Studies of Powdered Materials in Solution

    PubMed Central

    Mohamed, Mohamed H.; Wilson, Lee D.

    2015-01-01

    Challenges exist for the study of time dependent sorption processes for heterogeneous systems, especially in the case of dispersed nanomaterials in solvents or solutions because they are not well suited to conventional batch kinetic experiments. In this study, a comparison of batch versus a one-pot setup in two variable configurations was evaluated for the study of uptake kinetics in heterogeneous (solid/solution) systems: (i) conventional batch method; (ii) one-pot system with dispersed adsorbent in solution with a semi-permeable barrier (filter paper or dialysis tubing) for in situ sampling; and (iii) one-pot system with an adsorbent confined in a semi-permeable barrier (dialysis tubing or filter paper barrier) with ex situ sampling. The sorbent systems evaluated herein include several cyclodextrin-based polyurethane materials with two types of phenolic dyes: p-nitrophenol and phenolphthalein. The one-pot kinetics method with in situ (Method ii) or ex situ (Method iii) sampling described herein offers significant advantages for the study of heterogeneous sorption kinetics of highly dispersed sorbent materials with particles sizes across a range of dimensions from the micron to nanometer scale. The method described herein will contribute positively to the development of advanced studies for heterogeneous sorption processes where an assessment of the relative uptake properties is required at different experimental conditions. The results of this study will be advantageous for the study of nanomaterials with significant benefits over batch kinetic studies for a wide range of heterogeneous sorption processes.

  12. Kinetics of enzymatic hydrolysis of olive oil in batch and fed-batch systems.

    PubMed

    Cabral, Paloma Souza; Filho, Arion Zandoná; Voll, Fernando Augusto Pedersen; Corazza, Marcos Lúcio

    2014-07-01

    This work reports experimental data, kinetic modeling, and simulations of enzyme-catalyzed hydrolysis of olive oil. This reaction was performed in batch system and an ordered-sequential Bi Bi model was used to model the kinetic mechanism. A fed-batch system was proposed and experimental data were obtained and compared to the simulated values. The kinetic model used was able to correlate the experimental data, in which a satisfactory agreement between the experimental data and modeling results was obtained under different enzyme concentration and initial free water content. Therefore, the modeling allowed a better understanding of the reaction kinetics and affords a fed-batch simulation for this system. From the results obtained, it was observed that the fed-batch approach showed to be more advantageous when compared to the conventional batch system.

  13. A biochemically structured model for ethanol fermentation by Kluyveromyces marxianus: A batch fermentation and kinetic study.

    PubMed

    Sansonetti, S; Hobley, T J; Calabrò, V; Villadsen, J; Sin, G

    2011-08-01

    Anaerobic batch fermentations of ricotta cheese whey (i.e. containing lactose) were performed under different operating conditions. Ethanol concentrations of ca. 22g L(-1) were found from whey containing ca. 44g L(-1) lactose, which corresponded to up to 95% of the theoretical ethanol yield within 15h. The experimental data could be explained by means of a simple knowledge-driven biochemically structured model that was built on bioenergetics principles applied to the metabolic pathways through which lactose is converted into major products. Use of the model showed that the observed concentrations of ethanol, lactose, biomass and glycerol during batch fermentation could be described within a ca. 6% deviation, as could the yield coefficients for biomass and ethanol produced on lactose. The model structure confirmed that the thermodynamics considerations on the stoichiometry of the system constrain the metabolic coefficients within a physically meaningful range thereby providing valuable and reliable insight into fermentation processes.

  14. Turbopump thermodynamic cooling

    NASA Technical Reports Server (NTRS)

    Patten, T. C.; Mckee, H. B.

    1972-01-01

    System for cooling turbopumps used in cryogenic fluid storage facilities is described. Technique uses thermodynamic propellant vent to intercept pump heat at desired conditions. Cooling system uses hydrogen from outside source or residual hydrogen from cryogenic storage tank.

  15. Thermodynamics: A Stirling effort

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Parrondo, Juan M. R.

    2012-02-01

    The realization of a single-particle Stirling engine pushes thermodynamics into stochastic territory where fluctuations dominate, and points towards a better understanding of energy transduction at the microscale.

  16. Thermodynamics and Frozen Foods.

    ERIC Educational Resources Information Center

    Kerr, William L.; Reid, David S.

    1993-01-01

    The heat content of a food at a given temperature can be described by the thermodynamic property of enthalpy. Presents a method to construct a simple calorimeter for measuring the enthalpy changes of different foods during freezing. (MDH)

  17. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  18. Thermodynamics in Fractional Calculus

    NASA Astrophysics Data System (ADS)

    Meilanov, R. P.; Magomedov, R. A.

    2014-11-01

    A generalization of thermodynamics in the formalism of fractional-order derivatives is given. Results of the traditional thermodynamics of Carnot, Clausius, and Helmholtz are obtained in the particular case where the exponent of a fractional-order derivative is equal to unity. A one-parametric "fractal" equation of state is obtained with account of the second virial coefficient. The application of the resulting equation of state in the case of the gas argon is considered.

  19. Uptake mechanism for iodine species to black carbon.

    PubMed

    Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu

    2013-09-17

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  20. Uptake Mechanism for Iodine Species to Black Carbon

    SciTech Connect

    Choung, Sungwook; Um, Wooyong; Kim, Min Kyung; Kim, Min-Gyu

    2013-08-13

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I-) and iodate (IO3-) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray Absorption Fine Structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  1. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    PubMed

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture.

  2. Uptake and retention of amitriptyline by kaolinite.

    PubMed

    Lv, Guocheng; Stockwell, Christie; Niles, Jacqueline; Minegar, Skylar; Li, Zhaohui; Jiang, Wei-Teh

    2013-12-01

    As the most commonly prescribed tricyclic antidepressant, amitriptyline (AT) is frequently detected in wastewater, surface runoff, and effluents from sewage treatment plants, and could potentially reach agriculture land through the application of municipal biosolids or reclaimed water. Kaolinite is one of the most important soil components under warm and humid climate conditions. In this study, the uptake and retention of AT by kaolinite from aqueous solution were investigated by batch tests, XRD, and FTIR analyses. The uptake of AT on kaolinite was instantaneous, attributed to surface adsorption as confirmed by XRD analyses. Quantitative correlation between desorption of exchangeable cations and AT adsorption confirmed experimentally that cation exchange was the dominant mechanism of AT uptake on kaolinite. The values for free energy of adsorption also suggested physi-sorption such as cation exchange. Solution pH had minimal influence at pH 5-11 even though the pKa value of AT was 9.4 and the surface charge of kaolinite was pH-dependent.

  3. JOB BUILDER remote batch processing subsystem

    NASA Technical Reports Server (NTRS)

    Orlov, I. G.; Orlova, T. L.

    1980-01-01

    The functions of the JOB BUILDER remote batch processing subsystem are described. Instructions are given for using it as a component of a display system developed by personnel of the System Programming Laboratory, Institute of Space Research, USSR Academy of Sciences.

  4. Batch testing for noroviruses in frozen raspberries.

    PubMed

    De Keuckelaere, Ann; Li, Dan; Deliens, Bart; Stals, Ambroos; Uyttendaele, Mieke

    2015-01-02

    Berries, in particular raspberries, have been associated with multiple recalls due to norovirus contamination and were linked to a number of norovirus (NoV) outbreaks. In the present study a total of 130 samples of frozen raspberries were collected from 26 batches in four different raspberry processing companies. In two companies the samples consisted of bulk frozen raspberries serving as raw material for the production of raspberry puree (an intermediate food product in a business to business setting). In two other companies, the samples consisted of bulk individually quick frozen (IQF) raspberries serving as raw material for the production of frozen fruit mixes (as a final food product for consumer). Enumeration of Escherichia coli and coliforms was performed as well as real-time reverse transcription PCR (RT-qPCR) detection of GI and GII NoV (in 2 × 10 g). In addition, in cases where positive NoV GI or GII RT-qPCR signals were obtained, an attempt to sequence the amplicons was undertaken. Six out of 70 samples taken from the 14 batches of frozen raspberries serving raspberry puree production provided a NoV RT-qPCR signal confirmed by sequencing. Four of these six positive samples clustered in one batch whereas the other two positive samples clustered in another batch from the same company. All six positive samples showed NoV RT-qPCR signals above the limit of quantification of the RT-qPCR assay. These two positive batches of frozen raspberries can be classified as being of insufficient sanitary quality. The mean NoV level in 20 g of these raspberry samples was 4.3 log genomic copies NoV GI/20 g. The concern for public health is uncertain as NoV RT-qPCR detection is unable to discriminate between infectious and non-infectious virus particles. For the IQF raspberries, one batch out of 12 tested NoV positive, but only 1 out of the 5 samples analyzed in this batch showed a positive RT-qPCR GI NoV signal confirmed by sequencing. The RT-qPCR signal was below the

  5. Kinetic and thermodynamic studies of the Co(II) and Ni(II) ions removal from aqueous solutions by Ca-Mg phosphates.

    PubMed

    Ivanets, A I; Srivastava, V; Kitikova, N V; Shashkova, I L; Sillanpää, M

    2017-03-01

    The aim of this work was to study the sorption kinetics and thermodynamics of Co(II) and Ni(II) from aqueous solutions by sorbents on the basis of hydrogen (PD-1) and tertiary (PD-2) Ca-Mg phosphates depending on the solution temperature and sorbents chemical composition. Kinetic studies of adsorption of Co(II) and Ni(II) ions onto samples of phosphate sorbents were performed in batch experiment at the temperatures 288, 303, 318 and 333 K. The sorbent dose was fixed at 10 g L(-1), initial pH value 2.6, and contact time varied from 5 to 600 min. The kinetics of Co(II) and Ni(II) adsorption were analyzed by using pseudo-first order, pseudo-second order and intraparticle diffusion models. Thermodynamic parameters (ΔG°, ΔH° and ΔS°) for the sorption of Co(II) and Ni(II) were determined using the Gibbs-Helmholtz equation. The calculated kinetic parameters and corresponding correlation coefficients revealed that Co(II) and Ni(II) uptake process followed the pseudo-second order rate expression. Thermodynamic studies confirmed the spontaneous and endothermic nature of removal process which indicate that sorption of Co(II) and Ni(II) ions onto both phosphate sorbents is favoured at higher temperatures and has the chemisorptive mechanism. The data thus obtained would be useful for practical application of the low cost and highly effective Ca-Mg phosphate sorbents.

  6. Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Nibou, D; Mekatel, H; Amokrane, S; Barkat, M; Trari, M

    2010-01-15

    The adsorption of Zn(2+) onto NaA and NaX zeolites was investigated. The samples were synthesized according to a hydrothermal crystallization using aluminium isopropoxide (Al[OCH(CH(3))(2)](3)) as a new alumina source. The effects of pH, initial concentration, solid/liquid ratio and temperature were studied in batch experiments. The Freundlich and the Langmuir models were applied and the adsorption equilibrium followed Langmuir adsorption isotherm. The uptake distribution coefficient (K(d)) indicated that the Zn(2+) removal was the highest at minimum concentration. Thermodynamic parameters were calculated. The negative values of standard enthalpy of adsorption revealed the exothermic nature of the adsorption process whereas the negative activation entropies reflected that no significant change occurs in the internal structure of the zeolites solid matrix during the sorption of Zn(2+). The negative values of Gibbs free energy were indicative of the spontaneity of the adsorption process. Analysis of the kinetic and rate data revealed that the pseudo second-order sorption mechanism is predominant and the intra particle diffusion was the determining step for the sorption of zinc ions. The obtained optimal parameters have been applied to wastewater from the industrial zone (Algeria) in order to remove the contained zinc effluents.

  7. Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber.

    PubMed

    Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan

    2013-08-01

    The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated.

  8. Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.

    PubMed

    Chen, J Paul; Wang, Lin

    2004-01-01

    Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.

  9. Thermodynamics and evolution.

    PubMed

    Demetrius, L

    2000-09-07

    The science of thermodynamics is concerned with understanding the properties of inanimate matter in so far as they are determined by changes in temperature. The Second Law asserts that in irreversible processes there is a uni-directional increase in thermodynamic entropy, a measure of the degree of uncertainty in the thermal energy state of a randomly chosen particle in the aggregate. The science of evolution is concerned with understanding the properties of populations of living matter in so far as they are regulated by changes in generation time. Directionality theory, a mathematical model of the evolutionary process, establishes that in populations subject to bounded growth constraints, there is a uni-directional increase in evolutionary entropy, a measure of the degree of uncertainty in the age of the immediate ancestor of a randomly chosen newborn. This article reviews the mathematical basis of directionality theory and analyses the relation between directionality theory and statistical thermodynamics. We exploit an analytic relation between temperature, and generation time, to show that the directionality principle for evolutionary entropy is a non-equilibrium extension of the principle of a uni-directional increase of thermodynamic entropy. The analytic relation between these directionality principles is consistent with the hypothesis of the equivalence of fundamental laws as one moves up the hierarchy, from a molecular ensemble where the thermodynamic laws apply, to a population of replicating entities (molecules, cells, higher organisms), where evolutionary principles prevail.

  10. Thyroid Scan and Uptake

    MedlinePlus

    ... procedures within the last two months that used iodine-based contrast material. Your doctor will instruct you ... a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a ...

  11. Thyroid Scan and Uptake

    MedlinePlus Videos and Cool Tools

    ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  12. Thermodynamics of Biological Processes

    PubMed Central

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob

    2012-01-01

    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  13. Thermodynamics of Nonadditive Systems.

    PubMed

    Latella, Ivan; Pérez-Madrid, Agustín; Campa, Alessandro; Casetti, Lapo; Ruffo, Stefano

    2015-06-12

    The usual formulation of thermodynamics is based on the additivity of macroscopic systems. However, there are numerous examples of macroscopic systems that are not additive, due to the long-range character of the interaction among the constituents. We present here an approach in which nonadditive systems can be described within a purely thermodynamics formalism. The basic concept is to consider a large ensemble of replicas of the system where the standard formulation of thermodynamics can be naturally applied and the properties of a single system can be consequently inferred. After presenting the approach, we show its implementation in systems where the interaction decays as 1/r(α) in the interparticle distance r, with α smaller than the embedding dimension d, and in the Thirring model for gravitational systems.

  14. Thermodynamics of graphene

    NASA Astrophysics Data System (ADS)

    Rusanov, A. I.

    2014-12-01

    The 21st century has brought a lot of new results related to graphene. Apparently, graphene has been characterized from all points of view except surface science and, especially, surface thermodynamics. This report aims to close this gap. Since graphene is the first real two-dimensional solid, a general formulation of the thermodynamics of two-dimensional solid bodies is given. The two-dimensional chemical potential tensor coupled with stress tensor is introduced, and fundamental equations are derived for energy, free energy, grand thermodynamic potential (in the classical and hybrid forms), enthalpy, and Gibbs energy. The fundamentals of linear boundary phenomena are formulated with explaining the concept of a dividing line, the mechanical and thermodynamic line tensions, line energy and other linear properties with necessary thermodynamic equations. The one-dimensional analogs of the Gibbs adsorption equation and Shuttleworth-Herring relation are presented. The general thermodynamic relationships are illustrated with calculations based on molecular theory. To make the reader sensible of the harmony of chemical and van der Waals forces in graphene, the remake of the classical graphite theory is presented with additional variable combinations of graphene sheets. The calculation of the line energy of graphene is exhibited including contributions both from chemical bonds and van der Waals forces (expectedly, the latter are considerably smaller than the former). The problem of graphene holes originating from migrating vacancies is discussed on the basis of the Gibbs-Curie principle. An important aspect of line tension is the planar sheet/nanotube transition where line tension acts as a driving force. Using the bending stiffness of graphene, the possible radius range is estimated for achiral (zigzag and armchair) nanotubes.

  15. Production of fructosyltransferase by Aureobasidium sp. ATCC 20524 in batch and two-step batch cultures.

    PubMed

    Salinas, Martín A; Perotti, Nora I

    2009-01-01

    A comparison of fructosyltransferase (EC 2.4.1.9) production by Aureobasidium sp. ATCC 20524 in batch and two step batch cultures was investigated in a 1-l stirred tank reactor using a sucrose supply of 200 g/l. Results showed that the innovative cultivation in two step of Aureobasidium sp. produced more fructosyltransferase (FFase) than the single batch culture at the same sucrose concentration with a maximal enzyme production of 523 U/ml, which was 80.5% higher than the one obtained in the batch culture. The production of fructooligosaccharides (FOSs) was also analyzed; their concentration reached a maximum value of 160 g/l the first day in the two-step culture and 127 g/l in the single-batch mode. The use of the two-step batch culture with Aureobasidium sp. ATCC 20524 in allowing the microorganism to grow up prior to the induction of sucrose (second step), proved to be a powerful method for producing fructosyltransferase and FOSs.

  16. Batch and fed-batch fermentation of Bacillus thuringiensis using starch industry wastewater as fermentation substrate.

    PubMed

    Vu, Khanh Dang; Tyagi, Rajeshwar Dayal; Valéro, José R; Surampalli, Rao Y

    2010-08-01

    Bacillus thuringiensis var. kurstaki biopesticide was produced in batch and fed-batch fermentation modes using starch industry wastewater as sole substrate. Fed-batch fermentation with two intermittent feeds (at 10 and 20 h) during the fermentation of 72 h gave the maximum delta-endotoxin concentration (1,672.6 mg/L) and entomotoxicity (Tx) (18.5 x 10(6) SBU/mL) in fermented broth which were significantly higher than maximum delta-endotoxin concentration (511.0 mg/L) and Tx (15.8 x 10(6) SBU/mL) obtained in batch process. However, fed-batch fermentation with three intermittent feeds (at 10, 20 and 34 h) of the fermentation resulted in the formation of asporogenous variant (Spo-) from 36 h to the end of fermentation (72 h) which resulted in a significant decrease in spore and delta-endotoxin concentration and finally the Tx value. Tx of suspended pellets (27.4 x 10(6) SBU/mL) obtained in fed-batch fermentation with two feeds was the highest value as compared to other cases.

  17. Viscoplasticity: A thermodynamic formulation

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Chaboche, J. L.

    1989-01-01

    A thermodynamic foundation using the concept of internal state variables is given for a general theory of viscoplasticity, as it applies to initially isotropic materials. Three fundamental internal state variables are admitted. They are: a tensor valued back stress for kinematic effects, and the scalar valued drag and yield strengths for isotropic effects. All three are considered to phenomenologically evolve according to competitive processes between strain hardening, strain induced dynamic recovery, and time induced static recovery. Within this phenomenological framework, a thermodynamically admissible set of evolution equations is put forth. This theory allows each of the three fundamental internal variables to be composed as a sum of independently evolving constituents.

  18. Inflight thermodynamic properties

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Daniels, G. E.; Johnson, D. L.; Smith, O. E.

    1973-01-01

    The inflight thermodynamic parameters (temperature, pressure, and density) of the atmosphere are presented. Mean and extreme values of the thermodynamic parameters given here can be used in application of many aerospace problems, such as: (1) research and planning and engineering design of remote earth sensing systems; (2) vehicle design and development; and (3) vehicle trajectory analysis, dealing with vehicle thrust, dynamic pressure, aerodynamic drag, aerodynamic heating, vibration, structural and guidance limitations, and reentry analysis. Atmospheric density plays a very important role in most of the above problems. A subsection on reentry is presented, giving atmospheric models to be used for reentry heating, trajectory, etc., analysis.

  19. Mechanics, Waves and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  20. Thermodynamics and evolutionary genetics

    NASA Astrophysics Data System (ADS)

    Müller, Ingo

    2010-03-01

    Thermodynamics and evolutionary genetics have something in common. Thus, the randomness of mutation of cells may be likened to the random thermal fluctuations in a gas. And the probabilistic nature of entropy in statistical thermodynamics can be carried over to a population of haploid and diploid cells without any conceptual change. The energetic potential wells in which the atoms of a liquid are caught correspond to selective advantages for some phenotype over others. Thus, the eventual stable state in a population comes about as a compromise in the universal competition between entropy and energy.

  1. Beyond Equilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2005-01-01

    Beyond Equilibrium Thermodynamics fills a niche in the market by providing a comprehensive introduction to a new, emerging topic in the field. The importance of non-equilibrium thermodynamics is addressed in order to fully understand how a system works, whether it is in a biological system like the brain or a system that develops plastic. In order to fully grasp the subject, the book clearly explains the physical concepts and mathematics involved, as well as presenting problems and solutions; over 200 exercises and answers are included. Engineers, scientists, and applied mathematicians can all use the book to address their problems in modelling, calculating, and understanding dynamic responses of materials.

  2. Use of sequential-batch fermentations to characterize the impact of mild hypothermic temperatures on the anaerobic stoichiometry and kinetics of Saccharomyces cerevisiae.

    PubMed

    Cruz, A L B; Verbon, A J; Geurink, L J; Verheijen, P J T; Heijnen, J J; van Gulik, W M

    2012-07-01

    This work presents a characterization of the stoichiometry and kinetics of anaerobic batch growth of Saccharomyces cerevisiae at cultivation temperatures between 12 and 30°C. To minimize the influence of the inoculum condition and ensure full adaptation to the cultivation temperature, the experiments were carried out in sequencing batch reactors. It was observed that the growth rate obtained in the first batch performed after each temperature shift was 10-30% different compared with the subsequent batches at the same temperature, which were much more reproducible. This indicates that the sequencing batch approach provides accurate and reproducible growth rate data. Data reconciliation was applied to the measured time patterns of substrate, biomass, carbon dioxide and byproducts with the constraint that the elemental conservation relations were satisfied, allowing to obtain consistent best estimates of all uptake and secretion rates. Subsequently, it was attempted to obtain an appropriate model description of the temperature dependency of these rates. It was found that the Ratkowsky model provided a better description of the temperature dependency of growth, uptake and secretion rates than the Arrhenius law. Most interesting was to find that most of the biomass-specific rates have the same temperature dependency, leading to a near temperature independent batch stoichiometry.

  3. Uptake Mechanisms of Eu(III) on Hydroxyapatite: A Potential Permeable Reactive Barrier Backfill Material for Trapping Trivalent Minor Actinides.

    PubMed

    Xu, Lin; Zheng, Tao; Yang, Shitong; Zhang, Linjuan; Wang, Jianqiang; Liu, Wei; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2016-04-05

    The permeable reactive barrier (PRB) technique has attracted an increasing level of attention for the in situ remediation of contaminated groundwater. In this study, the macroscopic uptake behaviors and microscopic speciation of Eu(III) on hydroxyapatite (HAP) were investigated by a combination of theoretical modeling, batch experiments, powder X-ray diffraction (PXRD) fitting, and X-ray absorption spectroscopy (XAS). The underlying removal mechanisms were identified to further assess the application potential of HAP as an effective PRB backfill material. The macroscopic analysis revealed that nearly all dissolved Eu(III) in solution was removed at pH 6.5 within an extremely short reaction time of 5 min. In addition, the thermodynamic calculations, desorption experiments, and PXRD and XAS analyses definitely confirmed the formation of the EuPO4·H2O(s) phase during the process of uptake of dissolved Eu(III) by HAP via the dissolution-precipitation mechanism. A detailed comparison of the present experimental findings and related HAP-metal systems suggests that the relative contribution of precipitation to the total Eu(III) removal increases as the P:Eu ratio decreases. The dosage of HAP-based PRB for the remediation of groundwater polluted by Eu(III) and analogous trivalent actinides [e.g., Am(III) and Cm(III)] should be strictly controlled depending on the dissolved Eu(III) concentration to obtain an optimal P:M (M represents Eu, Am, or Cm) ratio and treatment efficiency.

  4. 3. INSIDE BATCH FURNACE BUILDING, VIEW LOOKING NORTH AT REGENERATIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INSIDE BATCH FURNACE BUILDING, VIEW LOOKING NORTH AT REGENERATIVE BATCH FURNACES ON LEFT AND 5 TON CAPACITY CHARGING MACHINE ON RIGHT. - U.S. Steel Duquesne Works, 22-Inch Bar Mill, Along Monongahela River, Duquesne, Allegheny County, PA

  5. Using Forensics to Untangle Batch Effects in TCGA Data - TCGA

    Cancer.gov

    Rehan Akbani, Ph.D., and colleagues at the University of Texas MD Anderson Cancer Center developed a tool called MBatch to detect, diagnose, and correct batch effects in TCGA data. Read more about batch effects in this Case Study.

  6. Job Scheduling Under the Portable Batch System

    NASA Technical Reports Server (NTRS)

    Henderson, Robert L.; Woodrow, Thomas S. (Technical Monitor)

    1995-01-01

    The typical batch queuing system schedules jobs for execution by a set of queue controls. The controls determine from which queues jobs may be selected. Within the queue, jobs are ordered first-in, first-run. This limits the set of scheduling policies available to a site. The Portable Batch System removes this limitation by providing an external scheduling module. This separate program has full knowledge of the available queued jobs, running jobs, and system resource usage. Sites are able to implement any policy expressible in one of several procedural language. Policies may range from "bet fit" to "fair share" to purely political. Scheduling decisions can be made over the full set of jobs regardless of queue or order. The scheduling policy can be changed to fit a wide variety of computing environments and scheduling goals. This is demonstrated by the use of PBS on an IBM SP-2 system at NASA Ames.

  7. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    ERIC Educational Resources Information Center

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  8. Capacitated max -Batching with Interval Graph Compatibilities

    NASA Astrophysics Data System (ADS)

    Nonner, Tim

    We consider the problem of partitioning interval graphs into cliques of bounded size. Each interval has a weight, and the weight of a clique is the maximum weight of any interval in the clique. This natural graph problem can be interpreted as a batch scheduling problem. Solving a long-standing open problem, we show NP-hardness, even if the bound on the clique sizes is constant. Moreover, we give a PTAS based on a novel dynamic programming technique for this case.

  9. Thermodynamic Modeling of Arsenic in Copper Smelting Processes

    NASA Astrophysics Data System (ADS)

    Chen, Chunlin; Zhang, Ling; Jahanshahi, Sharif

    2010-12-01

    Published data on the activity coefficients of arsenic in liquid copper, matte and, slag have been reviewed, assessed, and used in the development of thermodynamic databases for solution models of melts. The databases were validated against the literature data on the equilibrium distribution of arsenic between the matte and the slag. The models and databases were used in investigating the effects of matte grade, slag chemistry, SO2 partial pressure, arsenic loading, and temperature on the equilibrium distribution of arsenic between the melts and gas phase during copper smelting and converting. The results obtained show that the continuous smelting processes operates close to equilibrium between condensed phases with most arsenic reporting to the gas phase. A comparison of the batch and continuous converting processes showed a considerable difference with respect to the elimination of the arsenic from condensed phases. These results indicate batch processes to be more efficient in the removal of arsenic through the gas stream.

  10. Thermodynamics of Dilute Solutions.

    ERIC Educational Resources Information Center

    Jancso, Gabor; Fenby, David V.

    1983-01-01

    Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…

  11. Thermodynamically Correct Bioavailability Estimations

    DTIC Science & Technology

    1992-04-30

    6448 I 1. SWPPUMENTA* NOTIS lIa. OISTUAMJTiOAVAILAIILTY STATIMENT 121 OT REbT ostwosCo z I Approved for public release; distribution unlimited... research is to develop thermodynamically correct bioavailability estimations using chromatographic stationary phases as a model of the "interphase

  12. Program Computes Thermodynamic Functions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1994-01-01

    PAC91 is latest in PAC (Properties and Coefficients) series. Two principal features are to provide means of (1) generating theoretical thermodynamic functions from molecular constants and (2) least-squares fitting of these functions to empirical equations. PAC91 written in FORTRAN 77 to be machine-independent.

  13. Thermodynamics of liquid metal

    SciTech Connect

    Kushnirenko, A.N.

    1988-01-01

    The thermodynamics of a liquid metal based on quantum-mechanical models of the crystal, electronic, and nuclear structures of the metal are derived in this paper. The models are based on such formulations as the Bohr radius, the Boltzmann constant, the Planck Law, the Fermi surface, and the Pauli principle.

  14. Thermodynamics of Resource Recycling.

    ERIC Educational Resources Information Center

    Hauserman, W. B.

    1988-01-01

    Evaluates the overall economic efficiency of a closed resource cycle. Uses elementary thermodynamic definitions of overall thermal efficiency for determining an economically quantifiable basis. Selects aluminum for investigation and includes a value-entropy diagram for a closed aluminum cycle. (MVL)

  15. Single molecules: Thermodynamic limits

    NASA Astrophysics Data System (ADS)

    Liphardt, Jan

    2012-09-01

    Technologies aimed at single-molecule resolution of non-equilibrium systems increasingly require sophisticated new ways of thinking about thermodynamics. An elegant extension to standard fluctuation theory grants access to the kinetic intermediate states of these systems -- as DNA-pulling experiments now demonstrate.

  16. On Teaching Thermodynamics

    ERIC Educational Resources Information Center

    Debbasch, F.

    2011-01-01

    The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…

  17. Available Energy via Nonequilibrium Thermodynamics.

    ERIC Educational Resources Information Center

    Woollett, E. L.

    1979-01-01

    Presents basic relations involving the concept of available energy that are derived from the local equations of nonequilibrium thermodynamics. The equations and applications of the local thermodynamic equilibrium LTD model are also presented. (HM)

  18. Fluctuating Thermodynamics for Biological Processes

    NASA Astrophysics Data System (ADS)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  19. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  20. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  1. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  2. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  3. 40 CFR 63.1408 - Aggregate batch vent stream provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Aggregate batch vent stream provisions... § 63.1408 Aggregate batch vent stream provisions. (a) Emission standards. Owners or operators of aggregate batch vent streams at a new or existing affected source shall comply with either paragraph...

  4. 40 CFR 63.1408 - Aggregate batch vent stream provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Aggregate batch vent stream provisions... § 63.1408 Aggregate batch vent stream provisions. (a) Emission standards. Owners or operators of aggregate batch vent streams at a new or existing affected source shall comply with either paragraph...

  5. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions...

  6. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions...

  7. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  8. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; Vanreken, T.; Fischer, M.; Matías, E.; Moya, M.; Farmer, D.; Cohen, R. C.

    2007-06-01

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. Semi-volatile partitioning equilibrates on a timescale between 6 and 20 min. When the aerosol sulfate-to-nitrate molar ratio is less than 1, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations are required to accurately predict the partitioning and phase state of aerosols.

  9. Theoretical considerations underlying Na(+) uptake mechanisms in freshwater fishes.

    PubMed

    Parks, Scott K; Tresguerres, Martin; Goss, Greg G

    2008-11-01

    Ion and acid-base regulating mechanisms have been studied at the fish gill for almost a century. Original models proposed for Na(+) and Cl(-) uptake, and their linkage with H(+) and HCO(3)(-) secretion have changed substantially with the development of more sophisticated physiological techniques. At the freshwater fish gill, two dominant mechanisms for Na(+) uptake from dilute environments have persisted in the literature. The use of an apical Na(+)/H(+) exchanger driven by a basolateral Na(+)/K(+)-ATPase versus an apical Na(+) channel electrogenically coupled to an apical H(+)-ATPase have been the source of debate for a number of years. Advances in molecular biology have greatly enhanced our understanding of the basic ion transport mechanisms at the fish gill. However, it is imperative to ensure that thermodynamic principles are followed in the development of new models for gill ion transport. This review will focus on the recent molecular advances for Na(+) uptake in freshwater fish. Emphasis will be placed on thermodynamic constraints that prevent electroneutral apical NHE function in most freshwater environments. By combining recent advances in molecular and functional physiology of fish gills with thermodynamic considerations of ion transport, our knowledge in the field should continue to grow in a logical manner.

  10. Semiautomated, Reproducible Batch Processing of Soy

    NASA Technical Reports Server (NTRS)

    Thoerne, Mary; Byford, Ivan W.; Chastain, Jack W.; Swango, Beverly E.

    2005-01-01

    A computer-controlled apparatus processes batches of soybeans into one or more of a variety of food products, under conditions that can be chosen by the user and reproduced from batch to batch. Examples of products include soy milk, tofu, okara (an insoluble protein and fiber byproduct of soy milk), and whey. Most processing steps take place without intervention by the user. This apparatus was developed for use in research on processing of soy. It is also a prototype of other soy-processing apparatuses for research, industrial, and home use. Prior soy-processing equipment includes household devices that automatically produce soy milk but do not automatically produce tofu. The designs of prior soy-processing equipment require users to manually transfer intermediate solid soy products and to press them manually and, hence, under conditions that are not consistent from batch to batch. Prior designs do not afford choices of processing conditions: Users cannot use previously developed soy-processing equipment to investigate the effects of variations of techniques used to produce soy milk (e.g., cold grinding, hot grinding, and pre-cook blanching) and of such process parameters as cooking times and temperatures, grinding times, soaking times and temperatures, rinsing conditions, and sizes of particles generated by grinding. In contrast, the present apparatus is amenable to such investigations. The apparatus (see figure) includes a processing tank and a jacketed holding or coagulation tank. The processing tank can be capped by either of two different heads and can contain either of two different insertable mesh baskets. The first head includes a grinding blade and heating elements. The second head includes an automated press piston. One mesh basket, designated the okara basket, has oblong holes with a size equivalent to about 40 mesh [40 openings per inch (.16 openings per centimeter)]. The second mesh basket, designated the tofu basket, has holes of 70 mesh [70 openings

  11. SLUDGE BATCH 5 SIMULANT FLOWSHEET STUDIES

    SciTech Connect

    Lambert, D; Michael Stone, M; Bradley Pickenheim, B; David Best, D; David Koopman, D

    2008-10-03

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 4 (SB4) processing to Sludge Batch 5 (SB5) processing in early fiscal year 2009. Tests were conducted using non-radioactive simulants of the expected SB5 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2007-0007, Rev. 1 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB5 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB5 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the washing plan to prepare SB5 and the estimated SB4 heel mass. Nine DWPF process simulations were completed in 4-L laboratory-scale equipment using both a batch simulant (Tank 51 simulant after washing is complete) and a blend simulant (Tank 40 simulant after Tank 51 transfer is complete). Each simulant had a set of four SRAT and SME simulations at varying acid stoichiometry levels (115%, 130%, 145% and 160%). One additional run was made using blend simulant at 130% acid that included additions of the Actinide Removal Process (ARP) waste prior to acid addition and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) waste following SRAT dewatering. There are several parameters that are noteworthy concerning SB5 sludge: (1) This is the first batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution. (2) The sludge is high in mercury

  12. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    PubMed Central

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  13. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment.

    PubMed

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-07-27

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome.

  14. System for charging batch/cullet in a glass furnace

    SciTech Connect

    Argent, R.D.; Crouse, C.F.

    1992-06-23

    This patent describes a charger for feeding batch material and cullet to a glass melting furnace, the charger of the type having a support frame with a batch hopper therein and a reciprocable charger plate positioned under the hopper for receiving batch material therefrom. This patent describes improvement in: a cullet feed hopper mounted on the charger adjacent to the batch hopper and positioned between the batch hopper and a discharge end of the charger; heat exchange means associated with the cullet feed hopper for preheating the cullet therein: and duct means associated with the heat exchange means adapted to receive hot exhaust gases from the glass furnace for preheating the cullet.

  15. Kinetic and thermodynamic studies of sulforaphane adsorption on macroporous resin.

    PubMed

    Yuanfeng, Wu; Lei, Zhang; Jianwei, Mao; Shiwang, Liu; Jun, Huang; Yuru, You; Lehe, Mei

    2016-08-15

    The adsorption equilibrium, kinetic and thermodynamic of sulforaphane (SF) adsorption onto macroporous resin in aqueous phase were studied. The SP850 resin was screened as the appropriate resin for SF purification. From the equilibrium studies, the Redlich-Peterson model was found to be the best for description of the adsorption behavior of SF onto SP850 resin, followed by the Freundlich model and the Langmuir model. Batch equilibrium experiments demonstrated that, in the examined temperature range, the equilibrium adsorption capacity of SP850 resin decreased with increasing adsorption temperature. Thermodynamics studies indicated that the adsorption of SF was a physical, exothermic, and spontaneous process. The adsorption kinetics revealed that the pseudo-second-order kinetic model was suitable to characterize the kinetics of adsorption of SF onto SP850. Finally, the intra-particle diffusion model demonstrated that SF diffused quickly into macropores, and that diffusion slowed down in the meso- and micropores.

  16. Contact symmetries and Hamiltonian thermodynamics

    SciTech Connect

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-10-15

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.

  17. Canonical fluid thermodynamics

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1972-01-01

    The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.

  18. Thermodynamics of nuclear transport

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Hao; Mehta, Pankaj; Elbaum, Michael

    Molecular transport across the nuclear envelope is important for eukaryotes for gene expression and signaling. Experimental studies have revealed that nuclear transport is inherently a nonequilibrium process and actively consumes energy. In this work we present a thermodynamics theory of nuclear transport for a major class of nuclear transporters that are mediated by the small GTPase Ran. We identify the molecular elements responsible for powering nuclear transport, which we term the ``Ran battery'' and find that the efficiency of transport, measured by the cargo nuclear localization ratio, is limited by competition between cargo molecules and RanGTP to bind transport receptors, as well as the amount of NTF2 (i.e. RanGDP carrier) available to circulate the energy flow. This picture complements our current understanding of nuclear transport by providing a comprehensive thermodynamics framework to decipher the underlying biochemical machinery. Pm and CHW were supported by a Simons Investigator in the Mathematical Modeling in Living Systems grant (to PM).

  19. Statistical Thermodynamics of Biomembranes

    PubMed Central

    Devireddy, Ram V.

    2010-01-01

    An overview of the major issues involved in the statistical thermodynamic treatment of phospholipid membranes at the atomistic level is summarized: thermodynamic ensembles, initial configuration (or the physical system being modeled), force field representation as well as the representation of long-range interactions. This is followed by a description of the various ways that the simulated ensembles can be analyzed: area of the lipid, mass density profiles, radial distribution functions (RDFs), water orientation profile, Deuteurium order parameter, free energy profiles and void (pore) formation; with particular focus on the results obtained from our recent molecular dynamic (MD) simulations of phospholipids interacting with dimethylsulfoxide (Me2SO), a commonly used cryoprotective agent (CPA). PMID:19460363

  20. New distributions in thermodynamics

    NASA Astrophysics Data System (ADS)

    Maslov, V. P.

    2016-09-01

    A model of the equation of state for classical gases consisting of nonpolar molecules is constructed under the assumption that the spinodal, critical isochore, and second virial coefficients of the gas have been set. The corresponding thermodynamic distributions are determined. It is shown that the isotherms constructed in the framework of the proposed model coincide with the isotherms of the van der Waals model obtained on a different basis.

  1. Black Hole Thermodynamics

    NASA Astrophysics Data System (ADS)

    Israel, Werner

    This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.

  2. Thermodynamical Arguments Against Evolution

    NASA Astrophysics Data System (ADS)

    Rosenhouse, Jason

    2017-02-01

    The argument that the second law of thermodynamics contradicts the theory of evolution has recently been revived by anti-evolutionists. In its basic form, the argument asserts that whereas evolution implies that there has been an increase in biological complexity over time, the second law, a fundamental principle of physics, shows this to be impossible. Scientists have responded primarily by noting that the second law does not rule out increases in complexity in open systems, and since the Earth receives energy from the Sun, it is an open system. This reply is correct as far as it goes, and it adequately rebuts the most crude versions of the second law argument. However, it is insufficient against more sophisticated versions, and it leaves many relevant aspects of thermodynamics unexplained. We shall consider the history of the argument, explain the nuances various anti-evolution writers have brought to it, and offer thorough explanations for why the argument is fallacious. We shall emphasize in particular that the second law is best viewed as a mathematical statement. Since anti-evolutionists never make use of the mathematical structure of thermodynamics, invocations of the second law never contribute anything substantive to their discourse.

  3. The discovery of thermodynamics

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  4. Nonequilibrium thermodynamics of nucleation

    SciTech Connect

    Schweizer, M.; Sagis, L. M. C.

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  5. Nonequilibrium thermodynamics of nucleation.

    PubMed

    Schweizer, M; Sagis, L M C

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  6. Nonequilibrium thermodynamics of nucleation

    NASA Astrophysics Data System (ADS)

    Schweizer, M.; Sagis, L. M. C.

    2014-12-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  7. Geochemistry of batch-extract waters derived from spoil material collected at the Cordero coal mine, Powder River basin, Wyoming

    USGS Publications Warehouse

    Naftz, D.L.

    1990-01-01

    Batch-mixing experiments to evaluate postmining water quality at the Cordero Mine were conducted by the U.S. Geological Survey during 1984 to 1985. Contact of groundwater from the spoil aquifer with fresh spoil material caused only small changes in major-element concentrations and in pH, unless sulfide oxidation or contact with soluble salts, such as epsomite, occurred. In contrast, large changes in major-element concentration resulted when water from the coal aquifer contacted the spoil material. Only three of seven reaction models considered to explain the water quality changes during the batch-mixing experiments were consistent with the thermodynamic and mineralogical data. The three models used to account for the observed water quality changes derived potassium from potassium feldspar; magnesium from chlorite or epsomite or both; sodium from cation exchange and halite; chloride from halite; silica from potassium feldspar and chlorite; sulfate from gypsum, or epsomite or both, and carbon from carbon dioxide. In general, water quality samples obtained from the batch-mixing experiments using water from the coal aquifer had smaller major-ion concentrations than the actual water quality in the spoil aquifer. These differences can be explained by the limited amount of efflorescent salt dissolution and volume of water used in the experiments. Correction ratios calculated for these experiments may be applied to batch-mixing experiments at other mines in the area, to predict postmining water quality. (USGS)

  8. Thermodynamics of adaptive molecular resolution

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.

    2016-11-01

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U(1)-U(0). The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al., J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as `real' thermodynamic variables. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  9. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  10. Comparison of heavy metal toxicity in continuous flow and batch reactors

    NASA Astrophysics Data System (ADS)

    Sengor, S. S.; Gikas, P.; Moberly, J. G.; Peyton, B. M.; Ginn, T. R.

    2009-12-01

    The presence of heavy metals may significantly affect microbial growth. In many cases, small amounts of particular heavy metals may stimulate microbial growth; however, larger quantities may result in microbial growth reduction. Environmental parameters, such as growth pattern may alter the critical heavy metal concentration, above which microbial growth stimulation turns to growth inhibition. Thus, it is important to quantify the effects of heavy metals on microbial activity for understanding natural or manmade biological reactors, either in situ or ex situ. Here we compare the toxicity of Zn and Cu on Arthrobacter sp., a heavy metal tolerant microorganism, under continuous flow versus batch reactor operations. Batch and continuous growth tests of Arthrobacter sp. were carried out at various individual and combined concentrations of Zn and Cu. Biomass concentration (OD) was measured for both the batch and continuous reactors, whereas ATP, oxygen uptake rates and substrate concentrations were additionally measured for the continuous system. Results indicated that Cu was more toxic than Zn under all conditions for both systems. In batch reactors, all tested Zn concentrations up to 150 uM showed a stimulatory effect on microbial growth. However, in the case of mixed Zn and Cu exposures, the presence of Zn either eliminated (at the 50 uM level both Zn and Cu) or reduced by ~25% (at the 100 and 150 uM levels both Zn and Cu) the Cu-induced inhibition. In the continuous system, only one test involved combined Cu (40uM) and Zn (125uM) and this test showed similar results to the 40uM Cu continuous test, i.e., no reduction in inhibition. The specific ATP concentration, i.e., ATP/OD, results for the continuous reactor showed an apparent recovery for both Cu-treated populations, although neither the OD nor glucose data showed any recovery. This may reflect that the individual microorganisms that survived after the addition of heavy metals, kept maintaining the usual ATP

  11. Thermodynamics of Rubber Elasticity

    NASA Astrophysics Data System (ADS)

    Pellicer, J.; Manzanares, J. A.; Zúñiga, J.; Utrillas, P.; Fernández, J.

    2001-02-01

    A thermodynamic study of an isotropic rubber band under uniaxial stress is presented on the basis of its equation of state. The behavior of the rubber band is compared with both that of an ideal elastomer and that of an ideal gas, considering the generalized Joule's law as the ideality criterion. First, the thermal expansion of rubber at constant stress and the change in the stress with temperature at constant length are described. Thermoelastic inversion is then considered, and the experimental observations are easily rationalized. Finally, the temperature changes observed in the adiabatic stretching of a rubber band are evaluated from the decrease of entropy with length.

  12. Stochastic thermodynamics of resetting

    NASA Astrophysics Data System (ADS)

    Fuchs, Jaco; Goldt, Sebastian; Seifert, Udo

    2016-03-01

    Stochastic dynamics with random resetting leads to a non-equilibrium steady state. Here, we consider the thermodynamics of resetting by deriving the first and second law for resetting processes far from equilibrium. We identify the contributions to the entropy production of the system which arise due to resetting and show that they correspond to the rate with which information is either erased or created. Using Landauer's principle, we derive a bound on the amount of work that is required to maintain a resetting process. We discuss different regimes of resetting, including a Maxwell demon scenario where heat is extracted from a bath at constant temperature.

  13. Dynamics versus thermodynamics

    NASA Astrophysics Data System (ADS)

    Berdichevsky, V. L.

    1991-05-01

    An effort is made to characterize the ways in which the approaches of statistical mechanics and thermodynamics can be useful in the study of the dynamic behavior of structures. This meditation proceeds through consideration of such wide-ranging and deliberately provocative questions as: 'What are to be considered values in a stress-distribution function?' and 'How many degrees-of-freedom has a beam?'; it then gives attention to the hierarchy of vibrations, the interaction of the mechanism of dissipation with invisible degrees of freedom, and a plausible view of vibrations for the case of small dissipation.

  14. Autonomous quantum thermodynamic machines

    NASA Astrophysics Data System (ADS)

    Tonner, Friedemann; Mahler, Günter

    2005-12-01

    We investigate the dynamics of a quantum system consisting of a single spin coupled to an oscillator and sandwiched between two thermal baths at different temperatures. By means of an adequately designed Lindblad equation, it is shown that this device can function as a thermodynamic machine exhibiting Carnot-type cycles. For the present model, this means that when run as a heat engine, coherent motion of the oscillator is amplified. Contrary to the quantum computer, such a machine has a quantum as well as a classical limit. Away from the classical limit, it asymptotically approaches a stationary transport scenario.

  15. TANK 50 BATCH 0 SALTSTONE FORMULATION CONFIRMATION

    SciTech Connect

    Langton, C.

    2006-06-05

    Savannah River National Laboratory (SRNL) personnel were requested to confirm the Tank 50 Batch 0 grout formulation per Technical Task Request, SSF-TTR-2006-0001 (task 1 of 2) [1]. Earlier Batch 0 formulation testing used a Tank 50 sample collected in September 2005 and is described elsewhere [2]. The current testing was performed using a sample of Tank 50 waste collected in May 2006. This work was performed according to the Technical Task and Quality Assurance Plan (TT/QAP), WSRC-RP-2006-00594 [3]. The salt solution collected from Tank 50 in May 2006 contained approximately 3 weight percent more solids than the sample collected in September 2005. The insoluble solids took longer to settle in the new sample which was interpreted as indicating finer particles in the current sample. The saltstone formulation developed for the September 2005 Tank 50 Batch 0 sample was confirmed for the May 2006 sample with one minor exception. Saltstone prepared with the Tank 50 sample collected in May 2006 required 1.5 times more Daratard 17 set retarding admixture than the saltstone prepared with the September In addition, a sample prepared with lower shear mixing (stirring with a spatula) had a higher plastic viscosity (57 cP) than samples made with higher shear mixing in a blender (23cP). The static gel times of the saltstone slurries made with low shear mixing were also shorter ({approx}32 minutes) than those for comparable samples made in the blender ({approx}47 minutes). The addition of the various waste streams (ETP, HEU-HCAN, and GPE-HCAN) to Tank 50 from September 2005 to May 2006 has increased the amount of set retarder, Daratard 17, required for processing saltstone slurries through the Saltstone facility. If these streams are continued to be added to Tank 50, the quantity of admixtures required to maintain the same processing conditions for the Saltstone facility will probably change and additional testing is recommended to reconfirm the Tank 50 Saltstone formulation.

  16. On thermodynamic and microscopic reversibility

    SciTech Connect

    Crooks, Gavin E.

    2011-07-12

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

  17. Clarified sludge (basic oxygen furnace sludge)--an adsorbent for removal of Pb(II) from aqueous solutions--kinetics, thermodynamics and desorption studies.

    PubMed

    Naiya, Tarun Kumar; Bhattacharya, Ashim Kumar; Das, Sudip Kumar

    2009-10-15

    The basic oxygen furnace waste generated in steel plant has been used as a low cost adsorbent for the removal of Pb(II) from aqueous solution. The effect of pH, adsorbent dosage, initial metal ion concentration, contact time and temperature on adsorption process was studied in batch experiments. Results of the equilibrium experiments showed that the solution pH was the key factor affecting the adsorption characteristics. Optimum pH for the adsorption was found to be 5 with corresponding adsorbent dosage level of 5 g/L. The equilibrium was achieved within 1h of contact time. Kinetics data were best described by pseudo second order model. The effective particle diffusion coefficient of Pb(II) is the order of 10(-10)m(2)/s. The maximum uptake was 92.5mg/g. The adsorption data can be well fitted by Freundlich isotherm. The result of the equilibrium studies showed that the solution pH was the key factor affecting the adsorption. External mass transfer analysis was also carried out for the adsorption process. The thermodynamic studies indicated that the adsorption is spontaneous and endothermic. The sorption energy (10.1745 kJ/mol) calculated from Dubinin-Radushkevich isotherm indicated that the adsorption process is chemical in nature. Desorption studies were carried out using dilute mineral acids to elucidate the mechanism of adsorption. Application studies were carried out considering the economic viewpoint of wastewater treatment plant operations.

  18. Removal of malathion from aqueous solution using De-Acidite FF-IP resin and determination by UPLC-MS/MS: equilibrium, kinetics and thermodynamics studies.

    PubMed

    Naushad, Mu; Alothman, Z A; Khan, M R

    2013-10-15

    In the present study, De-Acidite FF-IP resin was used to remove a highly toxic and persistent organophosphorus pesticide (malathion) from the aqueous solution. Batch experiments were performed as a function of various experimental parameters such as effect of pH (2-10), contact time (10-120 min), resin dose (0.05-0.5 g), initial malathion concentration (0.5-2.5 µg mL(-1)) and temperature (25-65°C). The concentration of malathion was determined using a sensitive, selective and rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The uptake rate of malathion on De-Acidite FF-IP resin was rapid and equilibrium established within 40 min. Kinetics studies showed better applicability for pseudo-second-order model. The equilibrium data was fitted to Langmuir and Freundlich isotherm models and the isotherm constants were calculated for malathion. The values of thermodynamic parameters (ΔG(0), ΔH(0) and ΔS(0)) were computed from the Van't Hoff plot of lnKC vs. 1/T which showed that the adsorption of malathion was feasible, endothermic and spontaneous. The regeneration studies were carried out which demonstrated a decrease in the recovery of malathion from 95% to 68% after five consecutive cycles. Breakthrough and exhaustive capacities of malathion were found to be 1.25 mg g(-1) and 3.5 mg g(-1), respectively.

  19. Towards the Batch Synthesis of Long DNA

    DTIC Science & Technology

    2002-10-01

    MISMATCHES In a series of papers,136 the SantaLucia NN model137 of Watson - Crick paired DNA thermodynamics was successfully extended to incorporate...generally indicate a- helix coding or structural motifs for DNA incorporation into chromatin. Trifonov, E. N., “3-,!10.5-, 200- and 400-base...double-stranded DNA , is well-described by Hearst’s “weakly bending rod” model with 3.4 Å rise/bp and 13 Å radius for the helix ; its persistence length39

  20. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  1. Thermodynamics of Accelerating Black Holes

    NASA Astrophysics Data System (ADS)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  2. Reactive Scheduling in Multipurpose Batch Plants

    NASA Astrophysics Data System (ADS)

    Narayani, A.; Shaik, Munawar A.

    2010-10-01

    Scheduling is an important operation in process industries for improving resource utilization resulting in direct economic benefits. It has a two-fold objective of fulfilling customer orders within the specified time as well as maximizing the plant profit. Unexpected disturbances such as machine breakdown, arrival of rush orders and cancellation of orders affect the schedule of the plant. Reactive scheduling is generation of a new schedule which has minimum deviation from the original schedule in spite of the occurrence of unexpected events in the plant operation. Recently, Shaik & Floudas (2009) proposed a novel unified model for short-term scheduling of multipurpose batch plants using unit-specific event-based continuous time representation. In this paper, we extend the model of Shaik & Floudas (2009) to handle reactive scheduling.

  3. Optimizing Resource Utilization in Grid Batch Systems

    NASA Astrophysics Data System (ADS)

    Gellrich, Andreas

    2012-12-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  4. Batch sequential designs for computer experiments

    SciTech Connect

    Moore, Leslie M; Williams, Brian J; Loeppky, Jason L

    2009-01-01

    Computer models simulating a physical process are used in many areas of science. Due to the complex nature of these codes it is often necessary to approximate the code, which is typically done using a Gaussian process. In many situations the number of code runs available to build the Guassian process approximation is limited. When the initial design is small or the underlying response surface is complicated this can lead to poor approximations of the code output. In order to improve the fit of the model, sequential design strategies must be employed. In this paper we introduce two simple distance based metrics that can be used to augment an initial design in a batch sequential manner. In addition we propose a sequential updating strategy to an orthogonal array based Latin hypercube sample. We show via various real and simulated examples that the distance metrics and the extension of the orthogonal array based Latin hypercubes work well in practice.

  5. Reducing variance in batch partitioning measurements

    SciTech Connect

    Mariner, Paul E.

    2010-08-11

    The partitioning experiment is commonly performed with little or no attention to reducing measurement variance. Batch test procedures such as those used to measure K{sub d} values (e.g., ASTM D 4646 and EPA402 -R-99-004A) do not explain how to evaluate measurement uncertainty nor how to minimize measurement variance. In fact, ASTM D 4646 prescribes a sorbent:water ratio that prevents variance minimization. Consequently, the variance of a set of partitioning measurements can be extreme and even absurd. Such data sets, which are commonplace, hamper probabilistic modeling efforts. An error-savvy design requires adjustment of the solution:sorbent ratio so that approximately half of the sorbate partitions to the sorbent. Results of Monte Carlo simulations indicate that this simple step can markedly improve the precision and statistical characterization of partitioning uncertainty.

  6. Thermodynamics of geothermal fluids

    SciTech Connect

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  7. Thermodynamics of Error Correction

    NASA Astrophysics Data System (ADS)

    Sartori, Pablo; Pigolotti, Simone

    2015-10-01

    Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  8. Thermodynamics. [algebraic structure

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.

  9. Biochemical Thermodynamics under near Physiological Conditions

    ERIC Educational Resources Information Center

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  10. Groundwater uptake by woody vegetation in a semiarid oak savanna

    NASA Astrophysics Data System (ADS)

    Miller, Gretchen R.; Chen, Xingyuan; Rubin, Yoram; Ma, Siyan; Baldocchi, Dennis D.

    2010-10-01

    Groundwater can serve as an important resource for woody vegetation in semiarid landscapes, particularly when soil water is functionally depleted and unavailable to plants. This study examines the uptake of groundwater by deciduous blue oak trees (Quercus douglasii) in a California oak savanna. Here we present a suite of direct and indirect methods that demonstrate its occurrence and quantify its rates. The study site is underlain by a thin soil layer and fractured metavolcanic bedrock. Typical depth to groundwater is approximately 8 m. A variety of water storage and flux measurements were collected from 2005 to 2008, including groundwater levels, soil moisture contents, sap flows, and latent heat fluxes. During the dry season, groundwater uptake rates ranged from 4 to 25 mm month-1 and approximately 80% of total ET during June, July, and August came from groundwater. Leaf and soil water potentials supported these results, indicating that groundwater uptake was thermodynamically favorable over soil water uptake for key portions of the growing season. These findings strongly suggest that blue oaks should be considered obligate phreatophytes and that groundwater reserves provide a buffer to rapid changes in their hydroclimate, if these assets are not otherwise depleted by prolonged drought or human consumption. While groundwater uptake may provide for short-term protection, it should be viewed not as a mechanism for continued plant growth. It allows the woody vegetation to subsist during the summer but not to flourish.

  11. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar.

    PubMed

    Wang, Zong-Min; Lu, Zhen-Ming; Yu, Yong-Jian; Li, Guo-Quan; Shi, Jin-Song; Xu, Zheng-Hong

    2015-09-01

    Solid-state fermentation of traditional Chinese vinegar is a mixed-culture refreshment process that proceeds for many centuries without spoilage. Here, we investigated bacterial community succession and flavor formation in three batches of Zhenjiang aromatic vinegar using pyrosequencing and metabolomics approaches. Temporal patterns of bacterial succession in the Pei (solid-state vinegar culture) showed no significant difference (P > 0.05) among three batches of fermentation. In all the batches investigated, the average number of community operational taxonomic units (OTUs) decreased dramatically from 119 ± 11 on day 1 to 48 ± 16 on day 3, and then maintained in the range of 61 ± 9 from day 5 to the end of fermentation. We confirmed that, within a batch of fermentation process, the patterns of bacterial diversity between the starter (took from the last batch of vinegar culture on day 7) and the Pei on day 7 were similar (90%). The relative abundance dynamics of two dominant members, Lactobacillus and Acetobacter, showed high correlation (coefficient as 0.90 and 0.98 respectively) among different batches. Furthermore, statistical analysis revealed dynamics of 16 main flavor metabolites were stable among different batches. The findings validate the batch-to-batch uniformity of bacterial community succession and flavor formation accounts for the quality of Zhenjiang aromatic vinegar. Based on our understanding, this is the first study helps to explain the rationality of age-old artistry from a scientific perspective.

  12. Cobalt (II) removal from aqueous solutions by natural hemp fibers: Batch and fixed-bed column studies

    NASA Astrophysics Data System (ADS)

    Tofan, Lavinia; Teodosiu, Carmen; Paduraru, Carmen; Wenkert, Rodica

    2013-11-01

    Natural hemp fibers were explored as sorbent for the removal of Co(II) ions from aqueous solutions in batch and dynamic conditions. The batch Co(II) sorption capacity increased up to pH 5, reached the maximum (7.5-7.8 mg/g) over the initial pH of 4.5-5. As the initial concentration of metal ion increased (in the range of 25-200 mg/L), the cobalt uptake was enhanced, but the Co(II) removal efficiency decreased. The batch sorption of Co(II) on the tested hemp follows a pseudo-second order model, which relies on the assumption that the chemisorptions may be the rate-controlling step. The Langmuir model better described the Co(II) sorption process on the natural hemp fibers in comparison with the Freundlich model. This finding complies with the results of fixed-bed studies which emphasize that the optimal solution for describing the behavior of the investigated hemp bed column is provided by the Thomas model. The sorption capacity of the hemp fibers column (15.44 mg/g) performed better than that of the Co(II)-hemp batch system (13.58 mg/g). The possibility to use hemp fibers as an alternative in the Co(II) wastewater treatment should be studied under pilot scale applications, so as to complete the studies concerning the removal efficiencies with technical and economic factors that influence process scale-up.

  13. Methanosarcina domination in anaerobic sequencing batch reactor at short hydraulic retention time.

    PubMed

    Ma, Jingwei; Zhao, Baisuo; Frear, Craig; Zhao, Quanbao; Yu, Liang; Li, Xiujin; Chen, Shulin

    2013-06-01

    The Archaea population of anaerobic sequential batch reactor (ASBR) featuring cycle operations under varying hydraulic retention time (HRT) was evaluated for treating a dilute waste stream. Terminal-Restriction Length Polymorphism and clone libraries for both 16S rRNA gene and mcrA gene were employed to characterize the methanogenic community structure. Results revealed that a Methanosarcina dominated methanogenic community was successfully established when using an ASBR digester at short HRT. It was revealed that both 16S rRNA and mcrA clone library could not provide complete community structure, while combination of two different clone libraries could capture more archaea diversity. Thermodynamic calculations confirmed a preference for the observed population structure. The results both experimentally and theoretically confirmed that Methanosarcina dominance emphasizing ASBR's important role in treating low strength wastewater as Methanosarcina will be more adept at overcoming temperature and shock loadings experienced with treating this type of wastewater.

  14. Nonequilibrium Thermodynamics in Biological Systems

    NASA Astrophysics Data System (ADS)

    Aoki, I.

    2005-12-01

    1. Respiration Oxygen-uptake by respiration in organisms decomposes macromolecules such as carbohydrate, protein and lipid and liberates chemical energy of high quality, which is then used to chemical reactions and motions of matter in organisms to support lively order in structure and function in organisms. Finally, this chemical energy becomes heat energy of low quality and is discarded to the outside (dissipation function). Accompanying this heat energy, entropy production which inevitably occurs by irreversibility also is discarded to the outside. Dissipation function and entropy production are estimated from data of respiration. 2. Human body From the observed data of respiration (oxygen absorption), the entropy production in human body can be estimated. Entropy production from 0 to 75 years old human has been obtained, and extrapolated to fertilized egg (beginning of human life) and to 120 years old (maximum period of human life). Entropy production show characteristic behavior in human life span : early rapid increase in short growing phase and later slow decrease in long aging phase. It is proposed that this tendency is ubiquitous and constitutes a Principle of Organization in complex biotic systems. 3. Ecological communities From the data of respiration of eighteen aquatic communities, specific (i.e. per biomass) entropy productions are obtained. They show two phase character with respect to trophic diversity : early increase and later decrease with the increase of trophic diversity. The trophic diversity in these aquatic ecosystems is shown to be positively correlated with the degree of eutrophication, and the degree of eutrophication is an "arrow of time" in the hierarchy of aquatic ecosystems. Hence specific entropy production has the two phase: early increase and later decrease with time. 4. Entropy principle for living systems The Second Law of Thermodynamics has been expressed as follows. 1) In isolated systems, entropy increases with time and

  15. Thermodynamics of the Earth

    NASA Astrophysics Data System (ADS)

    Stacey, Frank D.

    2010-04-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 × 1012 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>104 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  16. Thermodynamics--A Practical Subject.

    ERIC Educational Resources Information Center

    Jones, Hugh G.

    1984-01-01

    Provides a simplified, synoptic overview of the area of thermodynamics, enumerating and explaining the four basic laws, and introducing the mathematics involved in a stepwise fashion. Discusses such basic tools of thermodynamics as enthalpy, entropy, Helmholtz free energy, and Gibbs free energy, and their uses in problem solving. (JM)

  17. Thermodynamics from Car to Kitchen

    ERIC Educational Resources Information Center

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  18. Ch. 33 Modeling: Computational Thermodynamics

    SciTech Connect

    Besmann, Theodore M

    2012-01-01

    This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.

  19. Comments to Irreversibility in Thermodynamics

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1995-01-01

    The problem of irreversibility in thermodynamics was revisited and analyzed on the microscopic, stochastic, and macroscopic levels of description. It was demonstrated that Newtonian dynamics can be represented in the Reynolds form, a new phenomenological force with non-Lipschitz properties was introduced, and additional non- Lipschitz thermodynamical forces were incorporated into macroscopic models of transport phenomena.

  20. Inositol uptake in rat aorta

    SciTech Connect

    Rapoport, R.M.; Van Gorp, C.; Chang, Ki-Churl )

    1990-01-01

    {sup 3}H-inositol uptake into deendothelialized aorta was linear for at least 2 h and was composed of both a saturable, Na{sup +}-dependent, and a nonsaturable, Na{sup +}-independent component. The Na{sup +}-dependent component of inositol uptake had a K{sub m} of 50 {mu}M and a V{sub max} of 289 pmol/mg prot/h. Exposure to LiCl, ouabain, or Ca{sup 2+} - free Krebs-Ringer bicarbonate solution inhibited uptake. Metabolic poisoning with dinitrophenol, as well as incubation with phloretin, an inhibitor of carrier-mediated hexose transport, also inhibited uptake. Exposure to norepinephrine decreased inositol uptake, while phorbol myristate acetate was without effect. Isobutylmethylxanthine significantly increased inositol uptake, while the increased uptake due to dibutyryl cyclic AMP and forskolin were not statistically significant. Sodium nitroprusside, and activator of guanylate cyclase, and 8-bromo cyclic GMP, were without effect on uptake, as was methylene blue, an inhibitor of guanylate cyclase. Inositol uptake into the aorta was increased when the endothelium was allowed to remain intact, although this effect was likely due to uptake in both the endothelial and smooth muscle cells.

  1. Cooling by Thermodynamic Induction

    NASA Astrophysics Data System (ADS)

    Patitsas, S. N.

    2017-03-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  2. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  3. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  4. Geometry of thermodynamic control.

    PubMed

    Zulkowski, Patrick R; Sivak, David A; Crooks, Gavin E; DeWeese, Michael R

    2012-10-01

    A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one-dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first-order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory.

  5. Cooling by Thermodynamic Induction

    NASA Astrophysics Data System (ADS)

    Patitsas, S. N.

    2016-11-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  6. Modern problems of thermodynamics

    NASA Astrophysics Data System (ADS)

    Novikov, I. I.

    2012-12-01

    The role of energy and methods of its saving for the development of human society and life are analyzed. The importance of future use of space energy flows and energy of water and air oceans is emphasized. The authors consider the idea of the unit for production of electric energy and pure substances using sodium chloride which reserves are limitless on the planet. Looking retrospectively at the development of power engineering from the elementary fire to modern electric power station, we see that the used method of heat production, namely by direct interaction of fuel and oxidizer, is the simplest. However, it may be possible to combust coal, i.e., carbon in salt melt, for instance, sodium chloride that would be more rational and efficient. If the stated problems are solved positively, we would master all energy properties of the substance; and this is the main problem of thermodynamics being one of the sciences on energy.

  7. Thermodynamics of anisotropic branes

    NASA Astrophysics Data System (ADS)

    Ávila, Daniel; Fernández, Daniel; Patiño, Leonardo; Trancanelli, Diego

    2016-11-01

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a `Minkowski embedding', in which they lie outside of the horizon, and a `black hole embedding', in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  8. Thermodynamics of feldspathoid solutions

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.; Ghiorso, Mark S.

    We have developed models for the thermody-namic properties of nephelines, kalsilites, and leucites in the simple system NaAlSiO4-KAlSiO4-Ca0.5AlSiO4-SiO2-H2O that are consistent with all known constraints on subsolidus equilibria and thermodynamic properties, and have integrated them into the existing MELTS software package. The model for nepheline is formulated for the simplifying assumptions that (1) a molecular mixing-type approximation describes changes in the configurational entropy associated with the coupled exchange substitutions □Si?NaAl and □Ca? Na2 and that (2) Na+ and K+ display long-range non-convergent ordering between a large cation and the three small cation sites in the Na4Al4Si4O16 formula unit. Notable features of the model include the prediction that the mineral tetrakalsilite (``panunzite'', sensu stricto) results from anti-ordering of Na and K between the large cation and the three small cation sites in the nepheline structure at high temperatures, an average dT/dP slope of about 55°/kbar for the reaction over the temperature and pressure ranges 800-1050 °C and 500-5000 bars, roughly symmetric (i.e. quadratic) solution behavior of the K-Na substitution along joins between fully ordered components in nepheline, and large positive Gibbs energies for the nepheline reciprocal reactions and and for the leucite reciprocal reaction

  9. INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH SIX DIFFERENT MATERIALS. MIX SIFTED DOWN FROM SILOS ABOVE. INGREDIENTS: SAND, SODA ASH, DOLOMITE LIMESTONE, NEPHELINE SYENITE, SALT CAKE. - Chambers-McKee Window Glass Company, Batch Plant, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  10. 21 CFR 211.188 - Batch production and control records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Batch production and control records. 211.188 Section 211.188 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... production and control of each batch. These records shall include: (a) An accurate reproduction of...

  11. Searching CA Condensates, On-Line and Batch.

    ERIC Educational Resources Information Center

    Kaminecki, Ronald M.; And Others

    Batch mode processing is compared, using cost-effectiveness, with on-line processing for computer-aided searching of chemical abstracts. Consideration for time, need, coverage, and adaptability are found to be the criteria by which a searcher selects a method, and sometimes both methods are used. There is a tradeoff between batch mode's slower…

  12. System Requirements for On-Line and Batch Retrieval.

    ERIC Educational Resources Information Center

    American Society for Information Science, Washington, DC. Special Interest Group on Computerized Retrieval Services.

    Three papers on system requirements for on-line and batch retrieval presented at the American Society for Information Science (ASIS) annual meeting are included here. At G.D. Searle, data for records related to pharmacology screening are used in a batch system, and an on-line system is used to search information on mutagenic, carcinogenic, and…

  13. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater.

    PubMed

    Ruiz-Marin, Alejandro; Mendoza-Espinosa, Leopoldo G; Stephenson, Tom

    2010-01-01

    Two species of microalgae growing as immobilized and free-cells were compared to test its ability to remove N and P in batch cultures of urban wastewater. The best microalgae-cell growth configuration was selected to be tested in bioreactor operated in semi-continuous mode. Scenedesmus obliquus showed a higher N and P uptake rate in urban wastewater than Chlorella vulgaris. When tested in semi-continuous mode and with the re-calcification of beads, S. obliquus was more effective in removing N and P for longer periods (181 h) than batch cultures; fecal coliforms removal was good (95%) although the final concentration was still unsuitable for discharge to natural water bodies. Protein and lipids content analysis suggest that, from a practical point of view, immobilized systems could facilitate the separation of the biomass from the treated wastewater although in terms of nutritional value of the biomass, immobilized systems do not represent an advantage over free-cell systems.

  14. Dynamic Simulation of Batch Photocatalytic Reactor (BPR) for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Dutta, Suman

    2012-08-01

    Reactive dyes discharged from dyehouse causes a serious environmental problem. UV/TiO2 photocatalysis has been employed effectively for these organic dyes removal from dye-house effluent. This process produces less amount of non-toxic final product. In this paper a photocatalytic reactor has been designed for Reactive red 198 (RR198) removal from aqueous solution. The reactor is operating in batch mode. After each batch, TiO2 catalyst has been separated and recycled in the next batch. Mathematical model equation of this batch photocatalytic reactor (BPR) has been developed considering Langmuir-Hinshelwood kinetics. Simulation of BPR has been carried out using fourth order Runge-Kutta (RK) method and fifth order RK method (Butcher method). This simulation results can be used to develop an automatic photocatlytic reactor for industrial wastewater treatment. Catalyst activity decay and its effect on each batch have been incorporated in this model.

  15. Bridging the gap between batch and column experiments: A case study of Cs adsorption on granite.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Teng, Shi-Ping

    2009-01-15

    Both batch and column methods are conventionally utilized to determine some critical parameters for assessing the transport of contaminants of concern. The validity of using these parameters is somewhat confusing, however, since outputs such as distribution coefficient (Kd) from these two approaches are often discrepant. To bridge this gap, all possible factors that might contribute to this discrepancy were thoroughly investigated in this report by a case study of Cs sorption to crushed granite under various conditions. Our results confirm an important finding that solid/liquid (S/L) ratio is the dominant factor responsible for this discrepancy. As long as the S/L ratio exceeds 0.25, a consistent Kd value can be reached by the two methods. Under these conditions (S/L ratios>0.25), the sorption capacity of the solid is about an order of magnitude less than that in low S/L ratios (<0.25). Although low sorption capacity is observed in the cases of high S/L ratios, the sorption usually takes place preferentially on the most favorable (thermodynamically stable) sorption sites to form a stronger binding. This is verified by our desorption experiments in which a linear isotherm feature is shown either in deionized water or in 1M of ammonium acetate solutions. It may be concluded that batch experiment with an S/L ratio exceeding 0.25 is crucial to obtain convincing Kd values for safety assessment of radioactive waste repository.

  16. [Long-Term Inhibition of FNA on Aerobic Phosphate Uptake and Variation of Phosphorus Uptake Properties of the Sludge].

    PubMed

    Ma, Juan; Li, Lu; Yu, Xiao-jun; Sun, Lei-jun; Sun, Hong-wei; Chen, Yong-zhi

    2015-10-01

    An alternating anaerobic/oxic ( An/O) sequencing batch reactor (SBR) was employed to investigate the long-term inhibitory effect of free nitrous acid (FNA) on aerobic phosphorus uptake performance and variation of phosphorus uptake properties of the sludge by adding nitrite. The reactor was started up under the condition of 21-23 degrees C. The results showed that FNA had no impact on phosphate release and uptake capacities of the sludge. However, the specific phosphate release/uptake rates was found to be higher. As FNA concentration (measure by HNO2-N) was lower than 0.53 x 10(-3) mg x L(-1), phosphorus removal efficiency of the system was higher than 96.9%. When the FNA concentration was increased to 0.99 x 10(-3) mg x L(-1), 1.46 x 10(-3) mg x L(-1) and 1.94 x 10(-3) mg x L(-1), the phosphorus removal performance deteriorated rapidly. The phosphorus removal efficiency was recovered to 64.42%, 67.33% and 44.14% after 50, 12 and 30 days, respectively, which implied the deterioration of phosphorus removal performance caused by FNA inhibition could be recovered and long-term acclimation could shorten the recovery process. Notably, increasing nitrite consumption appeared during aerobic phase with the concentration of FNA below 1.46 x 10(-3) mg x L(-1). It was also observed that the phosphorus uptake properties of the sludge varied after long-term inhibition. Nitrate and nitrite type anoxic phosphorus uptake capacity was increased by 3.35 and 3.86 times, respectively, suggesting long-term dosing FNA may facilitate the denitrifying of polyphosphate in organisms utilizing nitrite as electron acceptor. Moreover, long-term acclimation favored sludge settling.

  17. Assessment of CO₂ adsorption capacity on activated carbons by a combination of batch and dynamic tests.

    PubMed

    Balsamo, Marco; Silvestre-Albero, Ana; Silvestre-Albero, Joaquín; Erto, Alessandro; Rodríguez-Reinoso, Francisco; Lancia, Amedeo

    2014-05-27

    In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance of three different activated carbons (AC) obtained from olive stones by chemical activation followed by physical activation with CO2 at varying times (i.e., 20, 40, and 60 h). Kinetic and thermodynamic CO2 adsorption tests from simulated flue gas at different temperatures and CO2 pressures are carried out under both batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with a CO2/N2 mixture) conditions. The textural characterization of the AC samples shows a direct dependence of both micropore and ultramicropore volume on the activation time; hence, AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that when CO2 pressure is lower than 0.3 bar, the lower the activation time, the higher CO2 adsorption capacity; a ranking of ω(eq)(AC20) > ω(eq)(AC40) > ω(eq)(AC60) can be exactly defined when T = 293 K. This result is likely ascribed to the narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of flue gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight the fact that the adsorption of N2 on the synthesized AC samples can be considered to be negligible. Finally, the importance of proper analysis for data characterization and adsorption experimental results is highlighted for the correct assessment of the CO2 removal performance of activated carbons at different CO2 pressures and operating temperatures.

  18. Effect of glass-batch makeup on the melting process

    SciTech Connect

    Hrma, Pavel R; Schweiger, Michael J; Humrickhouse, Carissa J; Moody, J Adam; Tate, Rachel M; Rainsdon, Timothy T; Tegrotenhuis, Nathan E; Arrigoni, Benjamin M; Marcial, Jose; Rodriguez, Carmen P; Tincher, Benjamin

    2010-03-29

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5-μm in size, caused extensive foaming because their major portion dissolved at temperatures <800°C, contributing to the formation of viscous glass-forming melt that trapped evolving batch gases. Primary foam did not occur in batches with larger quartz grains, ±75 μm in size, because their major portion dissolved at temperatures >800°C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160°C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B2O3, CaO, Li2O, MgO, and Na2O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  19. Biodenitrification in Sequencing Batch Reactors. Final report

    SciTech Connect

    Silverstein, J.

    1996-01-23

    One plan for stabilization of the Solar Pond waters and sludges at Rocky Flats Plant (RFP), is evaporation and cement solidification of the salts to stabilize heavy metals and radionuclides for land disposal as low-level mixed waste. It has been reported that nitrate (NO{sub 3}{sub {minus}}) salts may interfere with cement stabilization of heavy metals and radionuclides. Therefore, biological nitrate removal (denitrification) may be an important pretreatment for the Solar Pond wastewaters at RFP, improving the stability of the cement final waste form, reducing the requirement for cement (or pozzolan) additives and reducing the volume of cemented low-level mixed waste requiring ultimate disposal. A laboratory investigation of the performance of the Sequencing Batch Reactor (SBR) activated sludge process developed for nitrate removal from a synthetic brine typical of the high-nitrate and high-salinity wastewaters in the Solar Ponds at Rocky Flats Plant was carried out at the Environmental Engineering labs at the University of Colorado, Boulder, between May 1, 1994 and October 1, 1995.

  20. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint.

    PubMed

    Xiong, Haoshu; Yu, Lawrence X; Qu, Haibin

    2013-06-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T(2) and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.

  1. The effect of nitrite on aerobic phosphate uptake and denitrifying activity of phosphate-accumulating organisms.

    PubMed

    Yoshida, Y; Takahashi, K; Saito, T; Tanaka, K

    2006-01-01

    An anaerobic/aerobic/anoxic/aerobic sequencing batch reactor (SBR) was operated with municipal wastewater to investigate the effect of nitrite on biological phosphorus removal (BPR). When nitrite accumulated, aerobic phosphate uptake activity significantly decreased and, in case of hard exposure to nitrite, BPR severely deteriorated. The interesting observation was that the relative anoxic activity of phosphate accumulating organisms (PAOs) increased after nitrite exposure. Moreover batch tests of aerobic phosphate uptake in the presence/absence of nitrite indicated that PAOs with the higher relative anoxic activity are less sensitive to nitrite exposure. From these results, we concluded that BPR is sensitive to nitrite exposure, but BPR containing PAOs with the higher relative anoxic activity is possibly more stable against nitrite than BPR containing PAOs with the lower relative anoxic activity.

  2. Single-Patient Molecular Testing with NanoString nCounter Data Using a Reference-Based Strategy for Batch Effect Correction.

    PubMed

    Talhouk, Aline; Kommoss, Stefan; Mackenzie, Robertson; Cheung, Martin; Leung, Samuel; Chiu, Derek S; Kalloger, Steve E; Huntsman, David G; Chen, Stephanie; Intermaggio, Maria; Gronwald, Jacek; Chan, Fong C; Ramus, Susan J; Steidl, Christian; Scott, David W; Anglesio, Michael S

    2016-01-01

    A major weakness in many high-throughput genomic studies is the lack of consideration of a clinical environment where one patient at a time must be evaluated. We examined generalizable and platform-specific sources of variation from NanoString gene expression data on both ovarian cancer and Hodgkin lymphoma patients. A reference-based strategy, applicable to single-patient molecular testing is proposed for batch effect correction. The proposed protocol improved performance in an established Hodgkin lymphoma classifier, reducing batch-to-batch misclassification while retaining accuracy and precision. We suggest this strategy may facilitate development of NanoString and similar molecular assays by accelerating prospective validation and clinical uptake of relevant diagnostics.

  3. Thermodynamics of weight loss diets.

    PubMed

    Fine, Eugene J; Feinman, Richard D

    2004-12-08

    BACKGROUND: It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? RESULTS: Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. CONCLUSIONS: Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms.

  4. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  5. 40 CFR 205.57-6 - Acceptance and rejection of batches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Acceptance and rejection of batches... Acceptance and rejection of batches. (a) The batch from which a batch sample is selected will be accepted or rejected based upon the number of failing vehicles in the batch sample. A sufficient number of test...

  6. Kinetic and thermodynamic study of the liquid-phase etherification of isoamylenes with methanol

    SciTech Connect

    Piccoli, R.L. ); Lovisi, H.R. )

    1995-02-01

    The kinetics and thermodynamics of liquid-phase etherification of isoamylenes with methanol on ion exchange catalyst (Amberlyst 15) were studied. Thermodynamic properties and rate data were obtained in a batch reactor operating under 1,013 kPa and 323--353 K. The kinetic equation was modeled following the Langmuir-Hinshelwood-Hougen-Watson formalism according to a proposed surface mechanism where the rate-controlling step is the surface reaction. According to the experimental results, methanol adsorbs very strongly on the active sites, covering them completely, and thus the reaction follows an apparent first-order behavior. The isoamylenes, according to the proposed mechanism, adsorb simultaneously on the same single active center already occupied by methanol, migrating through the liquid layer formed by the alcohol around the catalyst to react in the acidic site. From the proposed mechanism a model was suggested and the kinetic and thermodynamic parameters were obtained using nonlinear estimation methods.

  7. Thermodynamic Metrics and Optimal Paths

    SciTech Connect

    Sivak, David; Crooks, Gavin

    2012-05-08

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  8. Computing Thermodynamic And Transport Properties

    NASA Technical Reports Server (NTRS)

    Mcbride, B.; Gordon, Sanford

    1993-01-01

    CET89 calculates compositions in chemical equilibrium and properties of mixtures of any chemical system for which thermodynamic data available. Provides following options: obtains chemical-equilibrium compositions and corresponding thermodynamic mixture properties for assigned thermodynamic states; calculates dilute-gas transport properties of complex chemical mixtures; obtains Chapman-Jouguet detonation properties for gaseous mixtures; calculates properties of incident and reflected shocks in terms of assigned velocities; and calculates theoretical performance of rocket for both equilibrium and frozen compositions during expansion. Rocket performance based on optional models of finite or infinite area combustor.

  9. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  10. Stochastic thermodynamics of information processing

    NASA Astrophysics Data System (ADS)

    Cardoso Barato, Andre

    2015-03-01

    We consider two recent advancements on theoretical aspects of thermodynamics of information processing. First we show that the theory of stochastic thermodynamics can be generalized to include information reservoirs. These reservoirs can be seen as a sequence of bits which has its Shannon entropy changed due to the interaction with the system. Second we discuss bipartite systems, which provide a convenient description of Maxwell's demon. Analyzing a special class of bipartite systems we show that they can be used to study cellular information processing, allowing for the definition of an entropic rate that quantifies how much a cell learns about a fluctuating external environment and that is bounded by the thermodynamic entropy production.

  11. The Thermodynamic Properties of Cubanite

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Lauretta, D. S.; Keller, L. P.

    2012-01-01

    CuFe2S3 exists in two polymorphs, a low-temperature orthorhombic form (cubanite) and a high-temperature cubic form (isocubanite). Cubanite has been identified in the CI-chondrite and Stardust collections. However, the thermodynamic properties of cubanite have neither been measured nor estimated. Our derivation of a thermodynamic model for cubanite allows constraints to be placed on the formation conditions. This data, along with the temperature constraint afforded by the crystal structure, can be used to assess the environments in which cubanite formation is (or is not) thermodynamically favored.

  12. Active Batch Selection via Convex Relaxations with Guaranteed Solution Bounds.

    PubMed

    Chakraborty, Shayok; Balasubramanian, Vineeth; Sun, Qian; Panchanathan, Sethuraman; Ye, Jieping

    2015-10-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar instances for manual annotation. More recently, there have been attempts towards a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. In this paper, we propose two novel batch mode active learning (BMAL) algorithms: BatchRank and BatchRand. We first formulate the batch selection task as an NP-hard optimization problem; we then propose two convex relaxations, one based on linear programming and the other based on semi-definite programming to solve the batch selection problem. Finally, a deterministic bound is derived on the solution quality for the first relaxation and a probabilistic bound for the second. To the best of our knowledge, this is the first research effort to derive mathematical guarantees on the solution quality of the BMAL problem. Our extensive empirical studies on 15 binary, multi-class and multi-label challenging datasets corroborate that the proposed algorithms perform at par with the state-of-the-art techniques, deliver high quality solutions and are robust to real-world issues like label noise and class imbalance.

  13. Thermodynamical string fragmentation

    NASA Astrophysics Data System (ADS)

    Fischer, Nadine; Sjöstrand, Torbjörn

    2017-01-01

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  14. The sequencing batch reactor as an excellent configuration to treat wastewater from the petrochemical industry.

    PubMed

    Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-02-01

    In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI30/SVI5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g(-1) to 80 mL·g(-1). Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.

  15. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    PubMed Central

    Meitz, Andrea; Sagmeister, Patrick; Lubitz, Werner; Herwig, Christoph; Langemann, Timo

    2016-01-01

    The Bacterial Ghost (BG) platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs) from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology. PMID:27681912

  16. Electrooptical monitoring of cell polarizability and cell size in aerobic Escherichia coli batch cultivations.

    PubMed

    Junne, Stefan; Nicolas Cruz-Bournazou, M; Angersbach, Alexander; Götz, Peter

    2010-09-01

    The time-dependent development of cell polarizability and length in Escherichia coli batch fermentations were observed at-line with electrooptical measurements. While using a measurement system with fully automated sample preparation, the development of these properties can be observed with a comparable high frequency (six measurements per hour). The polarizability as well as the mean cell length both increase soon after inoculation and then decline from the growth phase on until the stationary phase is reached. Based on the dynamic behavior of polarizability, the growth phase can be divided into four distinct stages. Changes in the cultivation temperature or the pre-cultivation conditions lead to alterations in the development of the polarizability and mean cell length. Based on the frequency disperse of polarizability measured at four different frequencies from 210 to 2,100 kHz, a prediction model is established that is based on the relation of the polarizability to the metabolic activity. Applying multi-linear partial least squares methods (N-PLS), the model is able to predict the specific acetate synthesis and uptake with a root mean square error of prediction of 0.19 (6% of the mean). The method represents a tool for characterization of different stages with respect to microbial metabolic activity and the energy balance during batch cultivations.

  17. Program calculation of thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Gill, Walter; Filho, Fernando Fachini; Ribeirodeoliveira, Ronaldo

    1986-12-01

    The determination of the thermodynamic properties are examined through the basic equations such as: state equation (Beattie-Bridgeman Form), saturation pressure equation, specific heat constant pressure or constant volume equation, and specific volume or density of liquid equation.

  18. Thermodynamic efficiency of solar concentrators.

    PubMed

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  19. Review of selenium thermodynamic data

    NASA Astrophysics Data System (ADS)

    Cowan, C. E.

    1988-02-01

    This report assesses the accuracy and completeness of available thermodynamic data on selenium. A review of experimental methods from published literature on selenium thermodynamic data focused on chemical reactions responsible for the formation of both aqueous complexes and solid phases of selenate, selenite, and selenide. The reviewer selected best data values, based on the methods used for estimating thermodynamic data. After inclusion of these values into the MINTEQ model, a validation study evaluated model performance for selenite and selenide solid phases. Lack of selenate data precluded model validation for this compound. The review furnished data on 22 aqueous complexes of selenite, 15 of selenide, and 17 of selenate, as well as 21 solid phases of selenite, 20 of selenide and 8 of selenate. These data proved inadequate to represent the formation of species in the solid phase. The validation study gave inconclusive predictions of selenite and selenide solubility and could not be used to assess the accuracy or completeness of the thermodynamic data.

  20. Thermodynamics of Asymptotically Conical Geometries.

    PubMed

    Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H

    2015-06-12

    We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.

  1. Thermodynamic and relativistic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Artamonov, A. A.; Plotnikov, E. M.

    2017-01-01

    Thermodynamic uncertainty relation (UR) was verified experimentally. The experiments have shown the validity of the quantum analogue of the zeroth law of stochastic thermodynamics in the form of the saturated Schrödinger UR. We have also proposed a new type of UR for the relativistic mechanics. These relations allow us to consider macroscopic phenomena within the limits of the ratio of the uncertainty relations for different physical quantities.

  2. Kinetics of cadmium uptake by chitosan-based crab shells.

    PubMed

    Evans, Johanna R; Davids, William G; MacRae, Jean D; Amirbahman, Aria

    2002-07-01

    Crushed crab shells were chemically treated to transform the chitin present into chitosan. Three particle sizes with average diameters of 0.65, 1.43 and 3.38 mm, average pore diameters ranging from approximately 300 to 540 A, and a specific surface area of approximately 30 m2/g were obtained. Batch experiments were performed to study the uptake equilibrium and kinetics of cadmium by chitosan. Adsorption equilibrium followed a Freundlich relationship and was found to be independent of particle size indicating that adsorption takes place largely in the pore space. A high initial rate of cadmium uptake was followed by a slower uptake rate suggesting intraparticle diffusion as the rate-limiting step. The kinetic uptake data were successfully modeled using a pore diffusion model incorporating nonlinear adsorption. The effect of boundary layer resistance was modeled through inclusion of a mass transfer expression at the outside boundary. Two fitting parameters, the tortuosity factor (tau) and the mass transfer coefficient at the outside boundary (k(c)) were used. These parameters were unique for all solute and sorbent concentrations. The tortuosity factors varied from 1.5 for large particles to 5.1 for small particles. The mass transfer coefficient varied from 2 x 10(-7) m/s at 50 rpm to 2 x 10(-3) m/s at 200 rpm. At agitation rates below 100 rpm, boundary layer resistance reduced the uptake rate significantly. Its very high sorption capacity and relatively low production cost make chitosan an attractive sorbent for the removal of heavy metals from waste streams.

  3. Simulating Metabolism with Statistical Thermodynamics

    SciTech Connect

    Cannon, William R.

    2014-08-04

    Kinetic probabilities of state are usually based on empirical measurements, while thermodynamic state probabilities are based on the assumption that chemical species are distributed to according to a multinomial Boltzmann distribution. While the use of kinetic simulations is desirable, obtaining all the mass action rate constants necessary to carry out kinetic simulations is an overwhelming challenge. Here, the kinetic probability of a state is compared in depth to the thermodynamic probability of a state for sets of coupled reactions. The entropic and energetic contributions to thermodynamic stable states are described and compared to entropic and energetic contributions of kinetic steady states. It is shown that many kinetic steady states are possible for a system of coupled reactions depending on the relative values of the mass action rate constants, but only one of these corresponds to a thermodynamically stable state. Furthermore, the thermodynamic stable state corresponds to a minimum free energy state. The use of thermodynamic simulations of state to model metabolic processes is attractive, since metabolite levels and energy requirements of pathways can be evaluated using only standard free energies of formation as parameters in the probability distribution. In chemical physics, the assumption of a Boltzmann distribution is the basis of transition state theory for modeling transitory species. Application to stable species, such as those found in metabolic processes, is a less severe assumption that would enable the use of simulations of state.

  4. Effects of light intensity and temperature on Cryptomonas ovata (Cryptophyceae) growth and nutrient uptake rates

    USGS Publications Warehouse

    Cloern, James E.

    1977-01-01

    Specific growth rate of Cryptomonas ovata var. palustris Pringsheim was measured in batch culture at 14 light-temperature combinations. Both the maximum growth rate (μm) and optimum light intensity (Iopt) fit an empirical function that increases exponentially with temperature up to an optimum (Topt), then declines rapidly as temperature exceeds Topt. Incorporation of these functions into Steele's growth equation gives a good estimate of specific growth rate over a wide range of temperature and light intensity. Rates of phosphate, ammonium and nitrate uptake were measured separately at 16 combinations of irradiance and temperature and following a spike addition of all starved cells initially took up nutrient at a rapid rate. This transitory surge was followed by a period of steady, substrate-saturated uptake that persisted until external nutrient concentration fell. Substrate-saturated NO3−-uptake proceeded at very slow rates in the dark and was stimulated by both increased temperature and irradiance; NH4+-uptake apparently proceeded at a basal rate at 8 and l4 C and was also stimulated by increased temperature and irradiance. Rates of NH4−-uptake were much higher than NO3−-uptake at all light-temperature combinations. Below 20 C, PO4−3-uptake was more rapid in dark than in light, but was light enhanced at 26 C.

  5. Thermodynamics of firms' growth

    PubMed Central

    Zambrano, Eduardo; Hernando, Alberto; Hernando, Ricardo; Plastino, Angelo

    2015-01-01

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1 155 142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing ‘free’ creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. PMID:26510828

  6. 12. Interior view of cement and aggregate batch plant showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view of cement and aggregate batch plant showing storage bins. Photographer unknown, c. 1926. Source: Ralph Pleasant. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  7. Groundwater arsenic remediation using zerovalent iron: Batch and column tests

    EPA Science Inventory

    Recently, increasing efforts have been made to explore the applicability and limitations of zerovalent iron (Fe0) for the treatment of arsenicbearing groundwater and wastewater. The experimental batch and column tests have demonstrated that arsenate and arsenite are removed effec...

  8. Glycerol production by fermentation: a fed-batch approach

    SciTech Connect

    Vijaikishore, P.; Karanth, N.G.

    1987-01-01

    In this investigation the bioconversion of glycerol from glucose was studied in a laboratory fermentor using an alkaline medium with a fed batch mode of carbon source addition yielding 30% glycerol concentration in the final broth. (Refs. 9).

  9. 11. GASFIRED CRUCIBLE FURNACES WERE USED TO MELT SMALL, BATCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. GAS-FIRED CRUCIBLE FURNACES WERE USED TO MELT SMALL, BATCH QUANTITIES OF BRONZE IN STOCKHAM'S BRASS FOUNDRY FOR THE PRODUCTION OF BRONZE VALVES, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  10. Modeling and simulation of fed-batch protein refolding process.

    PubMed

    Dong, Xiao-Yan; Shi, Guang-Quan; Li, Wei; Sun, Yan

    2004-01-01

    The simplified kinetic model that assumes competition between first-order folding and third-order aggregation was used to model the fed-batch refolding of denatured-reduced lysozyme. It was found that the model was able to describe the process at limited concentration ranges, i.e., 1-2 and 5-7 mg mL(-)(1), respectively, at extensive guanidinium chloride (GdmCl) concentrations and controlled concentrations of oxidizing and reducing agents. The folding or aggregation rate constant was different at the two protein concentration ranges and strongly dependent on the denaturant concentration. As a result, both rate constants at the two concentration ranges were expressed as functions of GdmCl concentration. The rate constants determined by fed-batch experiments could be employed for the prediction of the fed-batch process but were not able to be extended to a batch refolding by direct dilution. Computer simulations show that the denaturant concentration and fed-batch flow rate are important factors influencing the refolding yield. Prolonged fed-batch time is beneficial to keep the transient intermediate concentration at a low level and to increase the yield of correctly folded protein. This is of importance when the denaturant concentration in refolding buffer solution is low. Thus, at a low denaturant concentration, fed-batch time should be sufficiently long, whereas at an appropriately high GdmCl concentration, a short fed-batch time or a high feed rate of the denatured protein is effective to give a high refolding yield.

  11. Vertical profiles of cloud condensation nuclei, aerosol hygroscopicity, water uptake, and scattering across the United States

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Bougiatioti, A.; Nenes, A.; Anderson, B. E.; Beyersdorf, A. J.; Brock, C. A.; Gordon, T. D.; Lack, D.; Law, D. C.; Liao, J.; Middlebrook, A. M.; Richardson, M.; Thornhill, K. L., II; Winstead, E.; Wagner, N. L.; Welti, A.; Ziemba, L. D.

    2014-12-01

    The evolutions of vertical distributions of aerosol chemical, microphysical, hygroscopic, and optical properties present fundamental challenges to the understanding of ground-level air quality and radiative transfer, and few datasets exist to date for evaluation of atmospheric models. Data collected from recent NASA and NOAA field campaigns in the California Central Valley (DISCOVER-AQ), southeast United States (SENEX, SEAC4RS) and Texas (DISCOVER-AQ) allow for a unique opportunity to constrain vertical profiles of climate-relevant aerosol properties. This work presents in-situ aircraft measurements of cloud condensation nuclei (CCN) concentration and derivations of aerosol hygroscopicity, water uptake, and light scattering. Aerosol hygroscopicity is derived from CCN and aerosol measurements. Inorganic water uptake is calculated from aerosol composition using ISORROPIA, a chemical thermodynamic model, while organic water uptake is calculated from organic hygroscopicity. Aerosol scattering closure is performed between scattering from water uptake calculations and in-situ scattering measurements.

  12. Effect of pH on biological phosphorus uptake.

    PubMed

    Serralta, J; Ferrer, J; Borrás, L; Seco, A

    2006-12-05

    An anaerobic aerobic laboratory scale sequencing batch reactor (SBR) was operated to study the effect of pH on enhanced biological phosphorus removal. Seven steady states were achieved under different operating conditions. In all of them, a slight variation in the pH value was observed during anaerobic phase. However, pH rose significantly during aerobic phase. The increase observed was due to phosphorus uptake and carbon dioxide stripping. When pH was higher than 8.2-8.25 the phosphorus uptake rate clearly decreased. The capability of Activated Sludge Model No. 2d (ASM2d) and Biological Nutrient Removal Model No. 1 (BNRM1) to simulate experimental results was evaluated. Both models successfully characterized the enhanced biological phosphorus removal performance of the SBR. Furthermore, BNRM1 also reproduced the pH variations observed and the decrease in the phosphorus uptake rate. This model includes a switch function in the kinetic expressions to represent the pH inhibition in biological processes. The pH inhibition constants related to polyphosphate storage process were obtained by adjusting model predictions to measured phosphorus concentrations. On the other hand, pH inhibition should be included in ASM2d to accurately simulate experimental phosphorus evolution observed in an A/O SBR.

  13. Thermodynamics of imidacloprid sorption in Croatian soils

    NASA Astrophysics Data System (ADS)

    Milin, Čedomila; Broznic, Dalibor

    2015-04-01

    Neonicotinoids are increasingly replacing the organophosphate and methylcarbamate acetylcholinesterase inhibitors which are losing their effectiveness because of selection for resistant pest populations. Imidacloprid is the most important neonicotinoid with low soil persistence, high insecticidal potency and relatively low mammalian toxicity. In Croatia, imidacloprid is most commonly used in olive growing areas, including Istria and Kvarner islands, as an effective means of olive fruit fly infestation control. Sorption-desorption behavior of imidacloprid in six soils collected from five coastal regions in Croatia at 20, 30 and 40°C was investigated using batch equilibrium technique. Isothermal data were applied to Freundlich, Langmuir and Temkin equation, and the thermodynamic parameters ΔH°, ΔG°, ΔS° were calculated. The sorption isotherm curves were of non-linear and may be classified as L-type suggesting a relatively high sorption capacity for imidacloprid. Our results showed that the KFsor values decreased for all the tested soils as the temperature increases, indicating that the temperature strongly influence the sorption. Values of ΔG° were negative (-4.65 to -2.00 kJ/mol) indicating that at all experimental temperatures the interactions of imidacloprid with soils were spontaneous process. The negative and small ΔH° values (-19.79 to -8.89 kJ/mol) were in the range of weak forces, such as H-bonds, consistent with interactions and par¬titioning of the imidacloprid molecules into soil organic matter. The ΔS° values followed the range of -57.12 to -14.51 J/molK, suggesting that imidacloprid molecules lose entropy during transition from the solution phase to soil surface. It was found that imidacloprid desorption from soil was concentration and temperature dependent, i.e. at lower imidacloprid concentrations and temperature, lower desorption percentage occurred. Desorption studies revealed that hysteretic behavior under different temperature

  14. NOTE: The specific uptake size index for quantifying radiopharmaceutical uptake

    NASA Astrophysics Data System (ADS)

    Fleming, John S.; Bolt, Livia; Stratford, Jennifer S.; Kemp, Paul M.

    2004-07-01

    Quantitative indices of radionuclide uptake in an object of interest provide a useful adjunct to qualitative interpretation in the diagnostic application of radionuclide imaging. This note describes a new measure of total uptake of an organ, the specific uptake size index (SUSI). It can either be related in absolute terms to the total activity injected or to the specific activity in a reference region. As it depends on the total activity in the object, the value obtained will not depend on the resolution of the imaging process, as is the case with some other similar quantitative indices. This has been demonstrated in an experiment using simulated images. The application of the index to quantification of dopamine receptor SPECT imaging and parathyroid thyroid subtraction planar scintigraphy is described. The index is considered to be of potential value in reducing variation in quantitative assessment of uptake in objects with applications in all areas of radionuclide imaging.

  15. OPLS in batch monitoring - Opens up new opportunities.

    PubMed

    Souihi, Nabil; Lindegren, Anders; Eriksson, Lennart; Trygg, Johan

    2015-02-01

    In batch statistical process control (BSPC), data from a number of "good" batches are used to model the evolution (trajectory) of the process and they also define model control limits, against which new batches may be compared. The benchmark methods used in BSPC include partial least squares (PLS) and principal component analysis (PCA). In this paper, we have used orthogonal projections to latent structures (OPLS) in BSPC and compared the results with PLS and PCA. The experimental study used was a batch hydrogenation reaction of nitrobenzene to aniline characterized by both UV spectroscopy and process data. The key idea is that OPLS is able to separate the variation in data that is correlated to the process evolution (also known as 'batch maturity index') from the variation that is uncorrelated to process evolution. This separation of different types of variations can generate different batch trajectories and hence lead to different established model control limits to detect process deviations. The results demonstrate that OPLS was able to detect all process deviations and provided a good process understanding of the root causes for these deviations. PCA and PLS on the other hand were shown to provide different interpretations for several of these process deviations, or in some cases they were unable to detect actual process deviations. Hence, the use of OPLS in BSPC can lead to better fault detection and root cause analysis as compared to existing benchmark methods and may therefore be used to complement the existing toolbox.

  16. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.

  17. Fed-batch versus batch cultures of Yarrowia lipolytica for γ-decalactone production from methyl ricinoleate.

    PubMed

    Gomes, Nelma; Teixeira, José A; Belo, Isabel

    2012-04-01

    Constant medium feeding rate and intermittent fed-batch fermentation strategies were investigated aiming to increase the yields of γ-decalactone production by Yarrowia lipolytica, using methyl ricinoleate as substrate and ricinoleic acid source. The accumulation of another compound, 3-hydroxy-γ-decalactone, was also analyzed since it derives from the direct precursor of γ-decalactone thereby providing information about the enzymatic activities of the pathway. Both strategies were compared with the traditional batch mode in terms of overall productivity and yield in respect to the substrate. Although the productivity of γ-decalactone was considerably higher in the batch mode (168 mg l(-1) h(-1)), substrate conversion to lactone (73 mg γ-decalactone g(-1)) was greater in the intermittent fed-batch giving 6.8 g γ-decalactone l(-1). This last strategy therefore has potential for γ-decalactone production at an industrial level.

  18. Online batch scheduling of equal-length jobs on two identical batch machines to maximise the number of early jobs

    NASA Astrophysics Data System (ADS)

    Li, Wenjie; Li, Shisheng

    2015-03-01

    We study the online batch scheduling of equal-length jobs on two identical batch machines. Each batch machine can process up to b jobs simultaneously as a batch (where b is called the capacity of the machines). The goal is to determine a schedule that maximises the (weighted) number of early jobs. For the non-preemptive model, we first present an upper bound that depends on the machine capacity b, and then we provide a greedy online algorithm with a competitive ratio of 1/(b + 1). For the preemption-restart model with b = ∞, we first show that no online algorithm has a competitive ratio greater than 0.595, and then we design an online algorithm with a competitive ratio of ?.

  19. Collaborative study to establish human immunoglobulin BRP batch 3 and human immunoglobulin (molecular size) BRP batch 1.

    PubMed

    Sandberg, E; Daas, A; Behr-Gross, M-E

    2006-11-01

    A study was carried out by the European Directorate for the Quality of Medicines (EDQM) as part of the joint Biological Standardisation Programme of the Council of Europe and the European Commission with the aim to establish replacement batches of the European Pharmacopoeia (Ph. Eur.) human immunoglobulin Biological Reference Preparation (BRP) batch 2. Twenty-eight laboratories participated in this study. The suitability of the candidate reference preparations to serve as working references in the tests for distribution of the molecular size, anticomplementary activity and Fc function, in accordance with the specifications of the Ph. Eur. monographs Human normal immunoglobulin for intravenous administration (0918), Human normal immunoglobulin (0338) and Anti-T lymphocyte immunoglobulin for human use, animal (1928) was demonstrated. The candidates were therefore established as human immunoglobulin BRP batch 3 and Human immunoglobulin (molecular size) BRP batch 1. The prescribed use of the latter BRP is limited to the test for distribution of molecular size.

  20. Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes.

    PubMed

    Plaza Cazón, J; Viera, M; Donati, E; Guibal, E

    2013-11-15

    Zn(II) and Cd(II) removal by biosorption using Undaria pinnatifida was studied in batch and dynamic systems. The kinetic uptake follows a pseudo second order rate equation indicating that the rate limiting step is a chemical reaction. The equilibrium data are described by the Langmuir isotherm in mono-component solutions. In binary solutions, the Jain and Snowyink model shows that most of the active sites are exclusively accessible to cadmium ions without competition with the zinc ions. The dynamic studies show that the biosorbent has higher retention and affinity for Cd(II) than for Zn(II) in both mono- and bi-component systems. SEM-EDX analysis indicates that the active sites are heterogeneously distributed on the cell wall surface. FT-IR spectrometry characterization shows that carboxylic groups and chemical groups containing N and S contribute to Zn(II) and Cd(II) uptake by U. pinnatifida. According to these results calcium-treated U. pinnatifida is a suitable adsorbent for Zn(II) and Cd(II) pollutants.

  1. Batch and High Cell Density Fed-Batch Culture Productions of an Organophosphorus Hydrolase

    DTIC Science & Technology

    2002-01-01

    0.02 g H3BO3, 0.01 g NaMoO4@ 2H2O , and 0.01 g CuSO4 . Fed-Batch Fermentations were carried out in the same Bio-Flow 3000 unit fitted with 10 L...per L): 3.0 g nitrilotriacetic acid, 6.0 MgSO4@7H2O, 1.0 g NaCl, 1.0 g MnSO4@H2O, 0.5 g FeSO4@7H20, 0.1 CaCl2@ 2H2O , 0.1 CoCl2@6H2O, 0.1 g ZnSO4@7H2O

  2. SLUDGE BATCH 7B GLASS VARIABILITY STUDY

    SciTech Connect

    Johnson, F.; Edwards, T.

    2011-10-25

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not predictable

  3. SLUDGE BATCH VARIABILITY STUDY WITH FRIT 418

    SciTech Connect

    Johnson, F.; Edwards, T.

    2010-11-29

    The Defense Waste Processing Facility (DWPF) initiated processing Sludge Batch 6 (SB6) in the summer of 2010. In support of processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 to process SB6. This recommendation was based on assessments of the compositional projections for SB6 available at the time from the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of SB6, SRNL executed a variability study to assess the applicability of the current durability models for SB6. The durability models were assessed over the expected Frit 418-SB6 composition range. Seventeen glasses were selected for the variability study based on the sludge projections used in the frit recommendation. Five of the glasses are based on the centroid of the compositional region, spanning a waste loading (WL) range of 32 to 40%. The remaining twelve glasses are extreme vertices (EVs) of the sludge region of interest for SB6 combined with Frit 418 and are all at 36% WL. These glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). After initiating the SB6 variability study, the measured composition of the SB6 Tank 51 qualification glass produced at the SRNL Shielded Cells Facility indicated that thorium was present in the glass at an appreciable concentration (1.03 wt%), which made it a reportable element for SB6. This concentration of ThO{sub 2} resulted in a second phase of experimental studies. Five glasses were formulated that were based on the centroid of the new sludge compositional region combined with Frit 418, spanning a WL range of 32 to 40%. These glasses were fabricated and characterized using chemical composition analysis and the PCT. Based on the measured PCT response, all of the glasses (with and without thorium) were acceptable with respect to the Environmental Assessment (EA) reference glass

  4. Thermodynamic efficiency out of equilibrium

    NASA Astrophysics Data System (ADS)

    Sivak, David; Crooks, Gavin

    2011-03-01

    Molecular-scale machines typically operate far from thermodynamic equilibrium, limiting the applicability of equilibrium statistical mechanics to understand their efficiency. Thermodynamic length analysis relates a non-equilibrium property (dissipation) to equilibrium properties (equilibrium fluctuations and their relaxation time). Herein we demonstrate that the thermodynamic length framework follows directly from the assumptions of linear response theory. Uniting these two frameworks provides thermodynamic length analysis a firmer statistical mechanical grounding, and equips linear response theory with a metric structure to facilitate the prediction and discovery of optimal (minimum dissipation) paths in complicated free energy landscapes. To explore the applicability of this theoretical framework, we examine its accuracy for simple bistable systems, parametrized to model single-molecule force-extension experiments. Through analytic derivation of the equilibrium fluctuations and numerical calculation of the dissipation and relaxation time, we verify that thermodynamic length analysis (though derived in a near-equilibrium limit) provides a strikingly good approximation even far from equilibrium, and thus provides a useful framework for understanding molecular motor efficiency.

  5. Thermodynamic Limit in Statistical Physics

    NASA Astrophysics Data System (ADS)

    Kuzemsky, A. L.

    2014-03-01

    The thermodynamic limit in statistical thermodynamics of many-particle systems is an important but often overlooked issue in the various applied studies of condensed matter physics. To settle this issue, we review tersely the past and present disposition of thermodynamic limiting procedure in the structure of the contemporary statistical mechanics and our current understanding of this problem. We pick out the ingenious approach by Bogoliubov, who developed a general formalism for establishing the limiting distribution functions in the form of formal series in powers of the density. In that study, he outlined the method of justification of the thermodynamic limit when he derived the generalized Boltzmann equations. To enrich and to weave our discussion, we take this opportunity to give a brief survey of the closely related problems, such as the equipartition of energy and the equivalence and nonequivalence of statistical ensembles. The validity of the equipartition of energy permits one to decide what are the boundaries of applicability of statistical mechanics. The major aim of this work is to provide a better qualitative understanding of the physical significance of the thermodynamic limit in modern statistical physics of the infinite and "small" many-particle systems.

  6. Production of savinase and population viability of Bacillus clausii during high-cell-density fed-batch cultivations.

    PubMed

    Christiansen, Torben; Michaelsen, Søren; Wümpelmann, Mogens; Nielsen, Jens

    2003-08-05

    The growth and product formation of a Savinase-producing Bacillus clausii were investigated in high-cell-density fed-batch cultivations with both linear and exponential feed profiles. The highest specific productivity of Savinase was observed shortly after the end of the initial batch phase for all feed profiles applied and, in addition, there was a time-dependent decrease in specific productivity. The specific glucose uptake rate increased with time for constant specific growth rate indicating that the maintenance requirements increased with time, possibly due to a decreasing K(+) concentration. The physiological state of the cells was monitored during the cultivations using a flow cytometry assay based on the permeability of the cell membrane to propidium iodide. In the latter parts of the fed-batch cultures with a linear feed profile, a large portion of the cell population was found to have a permeable membrane, indicating a large percentage of dead cells. By assuming that only cells with a nonpermeable membrane contributed to growth and product formation, the physiological properties of this subpopulation were calculated.

  7. Removal of arsenic(III) and arsenic(V) on chemically modified low-cost adsorbent: batch and column operations

    NASA Astrophysics Data System (ADS)

    Roy, Palas; Mondal, Naba Kumar; Bhattacharya, Shreya; Das, Biswajit; Das, Kousik

    2013-03-01

    Batch and column operations were performed utilizing thioglycolated sugarcane carbon (TSCC), a low-cost adsorbent, to remove As(III) and As(V) from aqueous systems. Under optimized batch conditions, the TSCC could remove up to 92.7 and 91.4 % for As(III) and As(V), respectively. An artificial neural network model showed the validity of TSCC as a preferable adsorbent for arsenic [As(III) and As(V)] removal in batch studies. In column operations, removal efficiency increases with increase in influent arsenic concentration and adsorbent dose and decreases with increase in flow rate. At an adsorbent dose of 6.0 g, flow rate 3.0 mL min-1, and initial arsenic concentration 1,500 μg L-1, the arsenic uptake capacity of TSCC for As(III) and As(V) was found to be 85.01 and 83.82 μg g-1, respectively. The Thomas model was used to analyze the column experimental data. Results from the column operations indicated that the adsorption behavior of arsenic [As(III) and As(V)] fits exceptionally well with the Thomas model with high correlation coefficient and very low standard error. Examinations of scanning electron microscopy and FTIR spectroscopy reveal that high arsenic adsorption favors surface complexation on the adsorbent surface.

  8. Application of surface area measurement for identifying the source of batch-to-batch variation in processability.

    PubMed

    Vippagunta, Radha R; Pan, Changkang; Vakil, Ronak; Meda, Vindhya; Vivilecchia, Richard; Motto, Michael

    2009-01-01

    The primary goal of this study was to evaluate the use of specific surface area as a measurable physical property of materials for understanding the batch-to-batch variation in the flow behavior. The specific surface area measurements provide information about the nature of the surface making up the solid, which may include defects or void space on the surface. These void spaces are often present in the crystalline material due to varying degrees of disorderness and can be considered as amorphous regions. In the present work, the specific surface area for 10 batches of the same active pharmaceutical ingredient (compound 1) with varying quantity of amorphous content was investigated. Some of these batches showed different flow behavior when processed using roller compaction. The surface area value was found to increase in the presence of low amorphous content, and decrease with high amorphous content as compared to crystalline material. To complement the information obtained from the above study, physical blends of another crystalline active pharmaceutical ingredient (compound 2) and its amorphous form were prepared in known proportions. Similar trend in specific surface area value was found. Tablets prepared from known formulation with varying amorphous content of the active ingredient (compound 3) also exhibited the same trend. A hypothesis to explain the correlation between the amorphous content and specific surface area has been proposed. The results strongly support the use of specific surface area as a measurable tool for investigation of source of batch to batch variation in processability.

  9. Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation.

    PubMed

    Dolejš, Igor; Krasňan, Vladimír; Stloukal, Radek; Rosenberg, Michal; Rebroš, Martin

    2014-10-01

    Clostridium acetobutylicum immobilised in polyvinylalcohol, lens-shaped hydrogel capsules (LentiKats(®)) was studied for production of butanol and other products of acetone-butanol-ethanol fermentation. After optimising the immobilisation protocol for anaerobic bacteria, continuous, repeated batch, and fed-batch fermentations in repeated batch mode were performed. Using glucose as a substrate, butanol productivity of 0.41 g/L/h and solvent productivity of 0.63 g/L/h were observed at a dilution rate of 0.05 h(-1) during continuous fermentation with a concentrated substrate (60 g/L). Through the process of repeated batch fermentation, the duration of fermentation was reduced from 27.8h (free-cell fermentation) to 3.3h (immobilised cells) with a solvent productivity of 0.77 g/L/h (butanol 0.57 g/L/h). The highest butanol and solvent productivities of 1.21 and 1.91 g/L/h were observed during fed-batch fermentation operated in repeated batch mode with yields of butanol (0.15 g/g) and solvents (0.24 g/g), respectively, produced per gram of glucose.

  10. Batch and Pulsed Fed-Batch Cultures of Aspergillus flavipes FP-500 Growing on Lemon Peel at Stirred Tank Reactor.

    PubMed

    Wolf-Márquez, V E; García-García, E; García-Rivero, M; Aguilar-Osorio, G; Martínez Trujillo, M A

    2015-11-01

    Aspergillus flavipes FP-500 grew up on submerged cultures using lemon peel as the only carbon source, developing several batch and pulsed fed-batch trials on a stirred tank reactor. The effect of carbon source concentration, reducing sugar presence and initial pH on exopectinase and endopectinase production, was analyzed on batch cultures. From this, we observed that the highest substrate concentration favored biomass (X max) but had not influence on the corresponding specific production (q p) of both pectinases; the most acid condition provoked higher endopectinase-specific productions but had not a significant effect on those corresponding to exopectinases; and reducing sugar concentrations higher than 1.5 g/L retarded pectinase production. On the other hand, by employing the pulsed fed-batch operation mode, we observed a prolonged growth phase, and an increase of about twofold on endopectinase production without a significant raise on biomass concentration. So, pulsed fed-batch seems to be a good alternative for obtaining higher endopectinase titers by using high lemon peel quantities without having mixing and repression problems to the system. The usefulness of unstructured kinetic models for explaining, under a theoretic level, the behavior of the fungus along the batch culture with regard to pectinase production was evident.

  11. Octreotide Uptake in Parathyroid Adenoma

    PubMed Central

    Karaçavuş, Seyhan; Kula, Mustafa; Cihan Karaca, Züleyha; Ünlühızarcı, Kürşad; Tutuş, Ahmet; Bayram, Fahri; Çoban, Ganime

    2012-01-01

    The patient with a history of bone pain and muscle weakness, was thought to have oncogenic osteomalacia as a result of biochemical investigations and directed to Nuclear Medicine Department for a whole-body bone scintigraphy and 111In-octreotide scintigraphy. There was no focal pathologic tracer uptake, but generalized marked increase in skeletal uptake on bone scintigraphy. Octreotide scintigraphy showed accumulation of octreotide in the region of the left lobe of the thyroid gland in the neck. Thereafter, parathyroid scintigraphy was performed with technetium-99m labeled metroxy-isobutyl-isonitryl (99mTc-MIB) and MIBI scan demonstrated radiotracer uptake at the same location with octreotide scintigraphy. The patient underwent left inferior parathyroidectomy and histopathology confirmed a parathyroid adenoma. Somatostatin receptor positive parathyroid adenoma may show octreotide uptake. Octreotide scintigraphy may be promising and indicate a possibility of using somatostatin analogues for the medical treatment of somatostatin receptor positive Conflict of interest:None declared. PMID:23487397

  12. A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling

    NASA Astrophysics Data System (ADS)

    Shapiro, B.; Jin, Q.

    2015-12-01

    Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.

  13. PSMA Uptake in Mediastinal Sarcoidosis.

    PubMed

    Ardies, Philip Junior; Gykiere, Pieterjan; Goethals, Lode; De Mey, Johan; De Geeter, Frank; Everaert, Hendrik

    2017-04-01

    Prostate-specific membrane antigen (PSMA) is a cell surface glycoprotein which is frequently overexpressed on prostate cancer cells. Ga-PSMA PET/CT plays an increasing role in prostate cancer management. However, growing evidence suggests increased PSMA uptake in a variety of other malignant tumor entities and in some benign lesions. This report describes PSMA uptake in numerous thoracic lymph nodes in a patient with known mediastinal sarcoidosis. Knowledge and recognition of these possibilities are important to avoid scan misinterpretation.

  14. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; van Reken, T.; Fischer, M.; Matías, E.; Moya, M.; Farmer, D.; Cohen, R. C.

    2009-03-01

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1μm diameter, semi-volatile partitioning requires 15-30 min to equilibrate; longer time is typically required during the night and early morning hours. Aerosol and gas-phase speciation always exhibits substantial temporal variability, so that aerosol composition measurements (bulk or size-resolved) obtained over large integration periods are not reflective of its true state. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  15. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    SciTech Connect

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  16. Non-hermitian quantum thermodynamics

    PubMed Central

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-01-01

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model. PMID:27003686

  17. Non-hermitian quantum thermodynamics

    SciTech Connect

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.

  18. Local non-equilibrium thermodynamics

    PubMed Central

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  19. Statistical thermodynamics of clustered populations.

    PubMed

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  20. Non-hermitian quantum thermodynamics

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  1. Information thermodynamics on causal networks.

    PubMed

    Ito, Sosuke; Sagawa, Takahiro

    2013-11-01

    We study nonequilibrium thermodynamics of complex information flows induced by interactions between multiple fluctuating systems. Characterizing nonequilibrium dynamics by causal networks (i.e., Bayesian networks), we obtain novel generalizations of the second law of thermodynamics and the fluctuation theorem, which include an informational quantity characterized by the topology of the causal network. Our result implies that the entropy production in a single system in the presence of multiple other systems is bounded by the information flow between these systems. We demonstrate our general result by a simple model of biochemical adaptation.

  2. Thermodynamic features of dioxins' adsorption.

    PubMed

    Prisciandaro, Marina; Piemonte, Vincenzo; di Celso, Giuseppe Mazziotti; Ronconi, Silvia; Capocelli, Mauro

    2017-02-15

    In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir's model. In particular, the Langmuir isotherm parameters (K and wmax) have been validated through the estimation of the adsorption heat (ΔHads), which varies in the range 20-24kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.

  3. Arsenic Uptake by Hydroxyapatite in the Presence of Fe(II)

    NASA Astrophysics Data System (ADS)

    Sahai, N.; Lee, Y. J.; Xu, H.; Ciardelli, M.

    2005-12-01

    We have examined As(III) and As(V) uptake by hydroxyapatite (HAP) in the absence and presence of the commonly occurring geochemical species, Fe(II), in a system open to the atmosphere and at near-neutral pH. The immediate goal of our project is to develop an inexpensive, efficient remediation method for the acute As contamination problem in well-waters of Bangladesh and Eastern India. Our study also provide a conceptual model system for understanding cation, neutral species and anion uptake by a class of minerals (apatites) capable of multiple substitutions, the effect of co-ions on metal(loid) uptake and the geochemically ubiquitous, but relatively poorly-understood, process of coprecipitation. Batch experiments on HAP suspensions, equilibrated for 24 hours, indicate that As(III) and As(V) uptake is slightly greater in the presence of HAP compared to the control experiment. The addition of Fe(II) significantly improves As(III) and As(V) uptake from solutions, both, without and with HAP suspensions. Analyses of equilibrated solutions and High Resolution Transmission Electron Microscopy of solids formed suggest that precipitation of amorphous FePO4.nH2O nanoparticles (10-20 nm) is mainly responsible for As removal with additional uptake by HAP. The efficiency of the process suggests the potential for an effective remediation strategy of As-contaminated drinking water after it has been withdrawn from the affected well.

  4. Formation of co-crystals: Kinetic and thermodynamic aspects

    NASA Astrophysics Data System (ADS)

    Gagnière, E.; Mangin, D.; Puel, F.; Rivoire, A.; Monnier, O.; Garcia, E.; Klein, J. P.

    2009-04-01

    Co-crystallisation is a recent method of great interest for the pharmaceutical industry, since pharmaceutical co-crystals represent useful materials for drug products. In this study, an active pharmaceutical ingredient (carbamazepine (CBZ)) co-crystallized with a vitamin (nicotinamide (NCT)) was chosen as a model substance. This work was focused on the construction of a phase diagram for the system CBZ/NCT, split in six domains for kinetic reasons (the different solid phases which might appear during the crystallisation) and in four domains according to thermodynamic aspects (the stable final phase obtained). Although co-crystals are not ionic compounds, the supersaturation of co-crystals can be evaluated by considering the solubility product. Batch crystallisation operations were carried out in a stirred vessel equipped with an in situ video probe. This latter device was a powerful analysis tool to monitor the CBZ/NCT co-crystals and single CBZ crystals since these two crystalline phases grown in ethanol exhibited needle and platelet habits. As concerns kinetics, the different solid phases which might appear during the experiments were observed and competed against each others. In accordance with thermodynamics, the stable solid form was obtained at the end of the operation. Finally some preliminary results indicate that the nucleation of co-crystals may be favoured by the presence of CBZ crystals. Epitaxial relationships between CBZ/NCT co-crystals and CBZ crystals were suspected.

  5. Nitrogen Uptake in Spinach

    NASA Astrophysics Data System (ADS)

    Ramirez, J.; VanBenthem, P.

    2013-12-01

    A plant's absorption of nitrogen can be encouraged by a variety of environmental factors, especially the application of fertilizers. As a common limiting factor in plant growth, not up taking enough nitrogen can be a result of an unhealthy plant. Moreover, as farmers seek out methods to increase growth of plants, fertilizers are used as a solution to the issue of nitrogen deficiency to incorporate additional nitrogen from chemical or organic sources, by not using the right fertilizer can greatly affect the plats. The point of this research project is to determine the effect of various fertilizers on the plant growth, and to correlate the measured nitrogen, water and chlorophyll content in spinach leaves. Spinach leaves were used because they are known to quickly uptake chemicals in the environment. The spinach plants were exposed to four different growing parameters, which are referred to as control, ammonium nitrate, MiracleGro , and organic. The spinach was originally placed in nitrogen deficient soil with only 2.2x10 4 weight percent (wt. %) nitrogen. The leaves in the control group were grown in this nitrogen deficient soil without any fertilizer added. Ammomium nitrate and MiracleGro were added to the spinach in the A and MG groups, respectively, and organic chicken stool was used for the O group. By using a spectral imaging system and flame combustion techniques, the chlorophyll content can be related to the nitrogen content in the spinach leaves. In these spinach leaves, nitrogen and chlorophyll content were measured, chlorophyll is a green pigment that plays a crucial role in producing nutrients for green plants. The lack of chlorophyll will allow the plant to become susceptible to diseases, so it is extremely important that the plants have a high content of chlorophyll. The role of nitrogen in chlorophyll is very important and helps in the creation of chlorophyll; therefore it is necessary that an appropriate amount of nitrogen is added for optimal growth

  6. Mechanisms of Ocean Heat Uptake

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi

    An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical

  7. Single-batch production of recombinant human polyclonal antibodies.

    PubMed

    Nielsen, Lars S; Baer, Alexandra; Müller, Christian; Gregersen, Kristian; Mønster, Nina T; Rasmussen, Søren K; Weilguny, Dietmar; Tolstrup, Anne B

    2010-07-01

    We have previously described the development and implementation of a strategy for production of recombinant polyclonal antibodies (rpAb) in single batches employing CHO cells generated by site-specific integration, the Sympress I technology. The Sympress I technology is implemented at industrial scale, supporting a phase II clinical development program. Production of recombinant proteins by site-specific integration, which is based on incorporation of a single copy of the gene of interest, makes the Sympress I technology best suited to support niche indications. To improve titers while maintaining a cost-efficient, highly reproducible single-batch manufacturing mode, we have evaluated a number of different approaches. The most successful results were obtained using random integration in a new producer cell termed ECHO, a CHO DG44 cell derivative engineered for improved productivity at Symphogen. This new expression process is termed the Sympress II technology. Here we describe proof-of-principle data demonstrating the feasibility of the Sympress II technology for single-batch rpAb manufacturing using two model systems each composed of six target-specific antibodies. The compositional stability and the batch-to-batch reproducibility of rpAb produced by the ECHO cells were at least as good as observed previously using site-specific integration technology. Furthermore, the new process had a significant titer increase.

  8. Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions.

    PubMed

    Raynal, M; Pruden, A

    2008-04-01

    This study explores the effect of microbial consortium composition and reactor configuration on methyl tert-butyl ether (MTBE) biodegradation in the presence of benzene, toluene, ethylbenzene and p-xylenes(BTEX). MTBE biodegradation was monitored in the presence and absence of BTEX in duplicate batch reactors inoculated with distinct enrichment cultures: MTBE only (MO-originally enriched on MTBE) and/or MTBE BTEX (MB-originally enriched on MTBE and BTEX). The MO culture was also applied in a semi-batch reactor which received both MTBE and BTEX periodically in fresh medium after allowing cells to settle. The composition of the microbial consortia was explored using a combination of 16S rRNA gene cloning and quantitative polymerase chain reaction targeting the known MTBE-degrading strain PM1T. MTBE biodegradation was completely inhibited by BTEX in the batch reactors inoculated with the MB culture, and severely retarded in those inoculated with the MO culture (0.18+/-0.04 mg/L-day). In the semi-batch reactor, however, the MTBE biodegradation rate in the presence of BTEX was almost three times as high as in the batch reactors (0.48+/-0.2 mg/L-day), but still slower than MTBE biodegradation in the absence of BTEX in the MO-inoculated batch reactors (1.47+/-0.47 mg/L-day). A long lag phase in MTBE biodegradation was observed in batch reactors inoculated with the MB culture (20 days), but the ultimate rate was comparable to the MO culture (0.95+/-0.44 mg/L-day). Analysis of the cultures revealed that strain PM1T concentrations were lower in cultures that successfully biodegraded MTBE in the presence of BTEX. Also, other MTBE degraders, such as Leptothrix sp. and Hydrogenophaga sp. were found in these cultures. These results demonstrate that MTBE bioremediation in the presence of BTEX is feasible, and that culture composition and reactor configuration are key factors.

  9. Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon.

    PubMed

    Silva-Medeiros, Flávia V; Consolin-Filho, Nelson; Xavier de Lima, Mateus; Bazzo, Fernando Previato; Barros, Maria Angélica S D; Bergamasco, Rosângela; Tavares, Célia R G

    2016-12-01

    The presence of silver in the natural water environment has been of great concern because of its toxicity, especially when it is in the free ion form (Ag(+)). This paper aims to study the adsorption kinetics of silver ions from an aqueous solution onto coconut shell activated carbon using batch methods. Batch kinetic data were fitted to the first-order model and the pseudo-second-order model, and this last equation fits correctly the experimental data. Equilibrium experiments were carried out at 30°C, 40°C, and 50°C. The adsorption isotherms were reasonably fit using Langmuir model, and the adsorption process was slightly influenced by changes in temperature. Thermodynamic parameters (ΔH°, ΔG°, and ΔS°) were determined. The adsorption process seems to be non-favorable, exothermic, and have an increase in the orderness.

  10. Analogy between Thermodynamics and Mechanics.

    ERIC Educational Resources Information Center

    Peterson, Mark A.

    1979-01-01

    Establishes and illustrates a formal analogy between the motion of a particle and the "motion" of the equilibrium state of a homogeneous system in a quasistatic process. The purpose is to show that there is a much larger set of natural coordinate transformations in thermodynamics. (GA)

  11. Thermodynamic properties of gadolinium disilicide

    SciTech Connect

    Lukashenko, G.M.; Polotskaya, R.I.

    1986-11-01

    The authors determine the Gibbs energy, enthalpy, formation heat, and other thermodynamic properties of gadolinium disilicide by measuring the electromotive force in the 830-960 K temperature range in electrolytes consisting of molten tin and various chlorides. The relationship of these properties to crystal structure is briefly discussed.

  12. Conservation laws and thermodynamic efficiencies.

    PubMed

    Benenti, Giuliano; Casati, Giulio; Wang, Jiao

    2013-02-15

    We show that generic systems with a single relevant conserved quantity reach the Carnot efficiency in the thermodynamic limit. Such a general result is illustrated by means of a diatomic chain of hard-point elastically colliding particles where the total momentum is the only relevant conserved quantity.

  13. Simulating Metabolism with Statistical Thermodynamics

    PubMed Central

    Cannon, William R.

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed. PMID:25089525

  14. Thermodynamic theory of equilibrium fluctuations

    SciTech Connect

    Mishin, Y.

    2015-12-15

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  15. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  16. Simulating metabolism with statistical thermodynamics.

    PubMed

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  17. Thermodynamics on the Molality Scale

    ERIC Educational Resources Information Center

    Canagaratna, Sebastian G.; Maheswaran, M.

    2013-01-01

    For physical measurements, the compositions of solutions, especially electrolyte solutions, are expressed in terms of molality rather than mole fractions. The development of the necessary thermodynamic equations directly in terms of molality is not common in textbooks, and the treatment in the literature is not very systematic. We develop a…

  18. A Simple Statistical Thermodynamics Experiment

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2010-01-01

    Comparing the predicted and actual rolls of combinations of both two and three dice can help to introduce many of the basic concepts of statistical thermodynamics, including multiplicity, probability, microstates, and macrostates, and demonstrate that entropy is indeed a measure of randomness, that disordered states (those of higher entropy) are…

  19. Some Considerations about Thermodynamic Cycles

    ERIC Educational Resources Information Center

    da Silva, M. F. Ferreira

    2012-01-01

    After completing their introductory studies on thermodynamics at the university level, typically in a second-year university course, most students show a number of misconceptions. In this work, we identify some of those erroneous ideas and try to explain their origins. We also give a suggestion to attack the problem through a systematic and…

  20. THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING

    EPA Science Inventory

    Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...

  1. Recycling, Thermodynamics and Environmental Thrift

    ERIC Educational Resources Information Center

    Berry, R. Stephen

    1972-01-01

    Compares the cost, in terms of thermodynamic potential, of manufacturing automobiles from raw mineral resources or from recycled vehicles, and of the production of extended-life products. Uses this as an example for arguing that new technologies, with efficiencies closer to the theoretical themodynamic minima, are needed if a society is to…

  2. Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough.

    PubMed

    Bowes, Brian D; Lenhoff, Abraham M

    2011-07-22

    Protein transport behavior was compared for the traditional SP Sepharose Fast Flow and the dextran-modified SP Sepharose XL and Capto S resins. Examination of the dynamic binding capacities (DBCs) revealed a fundamental difference in the balance between transport and equilibrium capacity limitations when comparing the two resin classes, as reflected by differences in the locations of the maximum DBCs as a function of salt. In order to quantitatively compare transport behavior, confocal microscopy and batch uptake experiments were used to obtain estimates of intraparticle protein diffusivities. For the traditional particle, such diffusivity estimates could be used to predict column breakthrough behavior accurately. However, for the dextran-modified media, neither the pore- nor the homogeneous-diffusion model was adequate, as experimental dynamic binding capacities were consistently lower than predicted. In examining the shapes of breakthrough curves, it was apparent that the model predictions failed to capture two features observed for the dextran-modified media, but never seen for the traditional resin. Comparison of estimated effective pore diffusivities from confocal microscopy and batch uptake experiments revealed a discrepancy that led to the hypothesis that protein uptake in the dextran-modified resins could occur with a shrinking-core-like sharp uptake front, but with incomplete saturation. The reason for the incomplete saturation is speculated to be that protein initially fills the dextran layer with inefficient packing, but can rearrange over time to accommodate more protein. A conceptual model was developed to account for the partial shrinking-core uptake to test whether the physical intuition led to predictions consistent with experimental behavior. The model could correctly reproduce the two unique features of the breakthrough curves and, in sample applications, parameters found from the fit of one breakthrough curve could be used to adequately match

  3. Upstream process optimization of polyhydroxybutyrate (PHB) by Alcaligenes latus using two-stage batch and fed-batch fermentation strategies.

    PubMed

    Wang, Bingqing; Sharma-Shivappa, Ratna R; Olson, Jonathan W; Khan, Saad A

    2012-11-01

    This research focused on optimizing the upstream process time for production of polyhydroxybutyrate (PHB) from sucrose by two-stage batch and fed-batch fermentation with Alcaligenes latus ATCC 29714. The study included selection of strain, two-stage batch fermentations with different time points for switching to nitrogen limited media (14, 16 or 18 h) and fed-batch fermentations with varied time points (similar to two stage) for introducing nitrogen limited media. The optimal strain to produce PHB using sucrose as carbon source was A. latus ATCC 29714 with maximum-specific growth rate of 0.38 ± 0.01 h(-1) and doubling time of 1.80 ± 0.05 h. Inducing nitrogen limitation at 16 h and ending second stage at 26 h gave optimal performance for PHB production, resulting in a PHB content of 46.7 ± 12.2 % (g PHB per g dry cell weight) at the end of fermentation. This was significantly higher (P ≤ 0.05) (approximately 7 %) than the corresponding fed batch run in which nitrogen limitation was initiated at 16 h.

  4. Possible extended forms of thermodynamic entropy

    NASA Astrophysics Data System (ADS)

    Sasa, Shin-ichi

    2014-01-01

    Thermodynamic entropy is determined by a heat measurement through the Clausius equality. The entropy then formalizes a fundamental limitation of operations by the second law of thermodynamics. The entropy is also expressed as the Shannon entropy of the microscopic degrees of freedom. Whenever an extension of thermodynamic entropy is attempted, we must pay special attention to how its three different aspects just mentioned are altered. In this paper, we discuss possible extensions of the thermodynamic entropy.

  5. Thermodynamics of statistical inference by cells.

    PubMed

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-03

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  6. Stochastic growth logistic model with aftereffect for batch fermentation process

    NASA Astrophysics Data System (ADS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  7. Estimation of kinetic rates in batch Thiobacillus ferrooxidans cultures.

    PubMed

    Biagiola, S; Solsona, J; Milocco, R

    2001-11-17

    In this work, the key problem of estimation in bioprocesses when no structural model is available is dealt with. A nonlinear observer-based algorithm is developed in order to estimate kinetic rates in batch bioreactors. The algorithm uses the measurements of biomass concentration and either substrate concentration or redox potential to perform the estimation of the respective specific kinetic rates. For this purpose, a general mathematical model description of the process is provided. The estimation algorithm design is based on a nonlinear reduced-order observer. The observer performance is validated with experimental results on a Thiobacillus ferrooxidans batch culture.

  8. [Hydroxycinnamic acid levels of various batches from mugwort flowering tops].

    PubMed

    Fraisse, D; Carnat, A; Carnat, A-P; Guédon, D; Lamaison, J-L

    2003-07-01

    Dried flowering tops of 24 harvested batches (Artemisia vulgaris: 13; Artemisia verlotiorum: 11) and 12 batches of mugwort from commercial origin were examined. The levels of principal compounds averaged respectively: total hydroxycinnamic acids 6.09; 10.29 and 9.13%, chlorogenic acid 0.79; 2.05 and 1.35%, 1,5-dicaffeoylquinic acid 0.51; 4.01 and 1.25%, 3,5-dicaffeoylquinic acid 2.21; 1.25 and 2.60%. Specifications were discussed for an European Pharmacopoeial monography.

  9. Stochastic growth logistic model with aftereffect for batch fermentation process

    SciTech Connect

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  10. Determination of uranium(VI) sorbed species in calcium silicate hydrate phases: a laser-induced luminescence spectroscopy and batch sorption study.

    PubMed

    Tits, Jan; Geipel, Gerhard; Macé, Nathalie; Eilzer, Manuela; Wieland, Erich

    2011-07-01

    Batch sorption experiments and time-resolved luminescence spectroscopy investigations were carried out to study the U(VI) speciation in calcium silicate hydrates for varying chemical conditions representing both fresh and altered cementitious environments. U(VI) uptake was found to be fast and sorption distribution ratios (R(d) values) were very high indicating strong uptake by the C-S-H phases. In addition a strong dependence of pH and solid composition (Ca:Si mol ratio) was observed. U(VI) luminescence spectroscopy investigations showed that the U(VI) solid speciation continuously changed over a period up to 6 months in contrast to the fast sorption kinetics observed in the batch sorption studies. Decay profile analysis combined with factor analysis of series of spectra of U(VI)-C-S-H suspensions, recorded with increasing delay times, revealed the presence of four luminescent U(VI) species in C-S-H suspensions, in agreement with the batch sorption data. Along with the aqueous UO(2)(OH)(4)(2-) species and a Ca-uranate precipitate, two different sorbed species were identified which are either bound to silanol groups on the surface or incorporated in the interlayer of the C-S-H structure.

  11. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  12. Batch culture and repeated-batch culture of Cunninghamella bainieri 2A1 for lipid production as a comparative study

    PubMed Central

    Dashti, Marjan Ganjali; Abdeshahian, Peyman

    2015-01-01

    This research was performed based on a comparative study on fungal lipid production by a locally isolated strain Cunninghamella bainieri 2A1 in batch culture and repeated-batch culture using a nitrogen-limited medium. Lipid production in the batch culture was conducted to study the effect of different agitation rates on the simultaneous consumption of ammonium tartrate and glucose sources. Lipid production in the repeated-batch culture was studied by considering the effect of harvesting time and harvesting volume of the culture broth on the lipid accumulation. The batch cultivation was carried out in a 500 ml Erlenmeyer flask containing 200 ml of the fresh nitrogen-limited medium. Microbial culture was incubated at 30 °C under different agitation rates of 120, 180 and 250 rpm for 120 h. The repeated-batch culture was performed at three harvesting times of 12, 24 and 48 h using four harvesting cultures of 60%, 70%, 80% and 90%. Experimental results revealed that nitrogen source (ammonium tartrate) was fully utilized by C. bainieri 2A1 within 24 h in all agitation rates tested. It was also observed that a high amount of glucose in culture medium was consumed by C. bainieri 2A1 at 250 rpm agitation speed during the batch fermentation. Similar results showed that the highest lipid concentration of 2.96 g/L was obtained at an agitation rate of 250 rpm at 120 h cultivation time with the maximum lipid productivity of 7.0 × 10−2 mg/ml/h. On the other hand, experimental results showed that the highest lipid concentration produced in the repeated-batch culture was 3.30 g/L at the first cycle of 48 h harvesting time using 70% harvesting volume, while 0.23 g/L gamma-linolenic acid (GLA) was produced at the last cycle of 48 h harvesting time using 80% harvesting volume. PMID:26980997

  13. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves.

    PubMed

    Guerrero-Coronilla, Imelda; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo

    2015-04-01

    The present study explored the kinetics, equilibrium and thermodynamics of amaranth (acid red 27) anionic dye (AD) biosorption to water hyacinth leaves (LEC). The effect of LEC particle size, contact time, solution pH, initial AD concentration and temperature on AD biosorption was studied in batch experiments. AD biosorption increased with rising contact time and initial AD concentration, and with decreasing LEC particle size and solution pH. Pseudo-second-order chemical reaction kinetics provided the best correlation for the experimental data. Isotherm studies showed that the biosorption of AD onto LEC closely follows the Langmuir isotherm, with a maximum biosorption capacity of about 70 mg g(-1). The thermodynamic parameters confirm that AD biosorption by LEC is non-spontaneous and endothermic in nature. Results indicate that LEC is a strong biosorbent capable of effective detoxification of AD-laden wastewaters.

  14. Ferrioxamine B analogues: targeting the FoxA uptake system in the pathogenic Yersinia enterocolitica.

    PubMed

    Kornreich-Leshem, Hagit; Ziv, Carmit; Gumienna-Kontecka, Elzbieta; Arad-Yellin, Rina; Chen, Yona; Elhabiri, Mourad; Albrecht-Gary, Anne-Marie; Hadar, Yitzhak; Shanzer, Abraham

    2005-02-02

    A series of ferrioxamine B analogues that target the bacterium Yersinia enterocolitica were prepared. These iron carriers are composed of three hydroxamate-containing monomeric units. Two identical monomers consist of N-hydroxy-3-aminopropionic acid coupled with beta-alanine, and a third unit at the amino terminal is composed of N-hydroxy-3-aminopropionic acid and one of the following amino acids: beta-alanine (1a), phenylalanine (1b), cyclohexylalanine (1c), or glycine (1d). Thermodynamic results for representatives of the analogues have shown a strong destabilization (3-4 orders of magnitude) of the ferric complexes with respect to ferrioxamine B, probably due to shorter spacers and a more strained structure around the metal center. No significant effect of the variations at the N-terminal has been observed on the stability of the ferric complexes. By contrast, using in vivo radioactive uptake experiments, we have found that these modifications have a substantial effect on the mechanism of iron(III) uptake in the pathogenic bacteria Yersinia enterocolitica. Analogues 1a and 1d were utilized by the ferrioxamine B uptake system (FoxA), while 1b and 1c either used different uptake systems or were transported to the microbial cell nonspecifically by diffusion via the cell membrane. Transport via the FoxA system was also confirmed by uptake experiments with the FoxA deficient strain of Yersinia enterocolitica. A fluorescent marker, attached to 1a in a way that did not interfere with its biological activity, provided additional means to monitor the uptake mechanism by fluorescence techniques. Of particular interest is the observation that 1a was utilized by the uptake system of ferrioxamine B in Yersinia enterocolitica (FoxA) but failed to use the ferrioxamine uptake route in Pseudomonas putida. Here, we present a case in which biomimetic siderophore analogues deliberately designed for a particular bacterium can distinguish between related uptake systems of different

  15. Supercritical fluid thermodynamics from equations of state

    NASA Astrophysics Data System (ADS)

    Giovangigli, Vincent; Matuszewski, Lionel

    2012-03-01

    Supercritical multicomponent fluid thermodynamics are often built from equations of state. We investigate mathematically such a construction of a Gibbsian thermodynamics compatible at low density with that of ideal gas mixtures starting from a pressure law. We further study the structure of chemical production rates obtained from nonequilibrium statistical thermodynamics. As a typical application, we consider the Soave-Redlich-Kwong cubic equation of state and investigate mathematically the corresponding thermodynamics. This thermodynamics is then used to study the stability of H2-O2-N2 mixtures at high pressure and low temperature as well as to illustrate the role of nonidealities in a transcritical H2-O2-N2 flame.

  16. Tier 3 batch system data locality via managed caches

    NASA Astrophysics Data System (ADS)

    Fischer, Max; Giffels, Manuel; Jung, Christopher; Kühn, Eileen; Quast, Günter

    2015-05-01

    Modern data processing increasingly relies on data locality for performance and scalability, whereas the common HEP approaches aim for uniform resource pools with minimal locality, recently even across site boundaries. To combine advantages of both, the High- Performance Data Analysis (HPDA) Tier 3 concept opportunistically establishes data locality via coordinated caches. In accordance with HEP Tier 3 activities, the design incorporates two major assumptions: First, only a fraction of data is accessed regularly and thus the deciding factor for overall throughput. Second, data access may fallback to non-local, making permanent local data availability an inefficient resource usage strategy. Based on this, the HPDA design generically extends available storage hierarchies into the batch system. Using the batch system itself for scheduling file locality, an array of independent caches on the worker nodes is dynamically populated with high-profile data. Cache state information is exposed to the batch system both for managing caches and scheduling jobs. As a result, users directly work with a regular, adequately sized storage system. However, their automated batch processes are presented with local replications of data whenever possible.

  17. Adaptation to high throughput batch chromatography enhances multivariate screening.

    PubMed

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored.

  18. Comparison of neptunium sorption results using batch and column techniques

    SciTech Connect

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J.; Bish, D.L.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.

  19. Many-body approach to the dynamics of batch learning

    NASA Astrophysics Data System (ADS)

    Wong, K. Y. Michael; Li, S.; Tong, Y. W.

    2000-09-01

    Using the cavity method and diagrammatic methods, we model the dynamics of batch learning of restricted sets of examples, widely applicable to general learning cost functions, and fully taking into account the temporal correlations introduced by the recycling of the examples. The approach is illustrated using the Adaline rule learning teacher-generated or random examples.

  20. 27 CFR 19.598 - Dump/batch records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Section 19.598 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Records and Reports Processing Records § 19.598 Dump/batch records. A proprietor who processes, mixes, or blends spirits in the processing account...

  1. 27 CFR 19.598 - Dump/batch records.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Section 19.598 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Records and Reports Processing Records § 19.598 Dump/batch records. A proprietor who processes, mixes, or blends spirits in the processing account...

  2. 27 CFR 19.598 - Dump/batch records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 19.598 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Records and Reports Processing Records § 19.598 Dump/batch records. A proprietor who processes, mixes, or blends spirits in the processing account...

  3. 27 CFR 19.598 - Dump/batch records.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 19.598 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Records and Reports Processing Records § 19.598 Dump/batch records. A proprietor who processes, mixes, or blends spirits in the processing account...

  4. 76 FR 62044 - Alternative Testing Requirements for Small Batch Manufacturers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... From the Federal Register Online via the Government Publishing Office CONSUMER PRODUCT SAFETY COMMISSION Alternative Testing Requirements for Small Batch Manufacturers AGENCY: U.S. Consumer Product Safety Commission. ACTION: Notice of public hearing. SUMMARY: Section 14(i)(4)(A)(i) of the...

  5. Use of an anaerobic sequencing batch reactor for parameter estimation in modelling of anaerobic digestion.

    PubMed

    Batstone, D J; Torrijos, M; Ruiz, C; Schmidt, J E

    2004-01-01

    The model structure in anaerobic digestion has been clarified following publication of the IWA Anaerobic Digestion Model No. 1 (ADM1). However, parameter values are not well known, and uncertainty and variability in the parameter values given is almost unknown. Additionally, platforms for identification of parameters, namely continuous-flow laboratory digesters, and batch tests suffer from disadvantages such as long run times, and difficulty in defining initial conditions, respectively. Anaerobic sequencing batch reactors (ASBRs) are sequenced into fill-react-settle-decant phases, and offer promising possibilities for estimation of parameters, as they are by nature, dynamic in behaviour, and allow repeatable behaviour to establish initial conditions, and evaluate parameters. In this study, we estimated parameters describing winery wastewater (most COD as ethanol) degradation using data from sequencing operation, and validated these parameters using unsequenced pulses of ethanol and acetate. The model used was the ADM1, with an extension for ethanol degradation. Parameter confidence spaces were found by non-linear, correlated analysis of the two main Monod parameters; maximum uptake rate (k(m)), and half saturation concentration (K(S)). These parameters could be estimated together using only the measured acetate concentration (20 points per cycle). From interpolating the single cycle acetate data to multiple cycles, we estimate that a practical "optimal" identifiability could be achieved after two cycles for the acetate parameters, and three cycles for the ethanol parameters. The parameters found performed well in the short term, and represented the pulses of acetate and ethanol (within 4 days of the winery-fed cycles) very well. The main discrepancy was poor prediction of pH dynamics, which could be due to an unidentified buffer with an overall influence the same as a weak base (possibly CaCO3). Based on this work, ASBR systems are effective for parameter

  6. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A.

    PubMed

    El-Kamash, A M; Zaki, A A; El Geleel, M Abed

    2005-12-09

    The sorptive removal of zinc and cadmium ions from aqueous solutions using synthetic zeolite A was investigated. Experiments were carried out as a function of solute concentration and temperature (298-333 K). Several kinetic models were used to test the experimental rate data and to examine the controlling mechanism of the sorption process. Various parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. Equilibrium sorption data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Of the model tested, both Freundlich and D-R isotherm expressions were found to give better fit to the experimental equilibrium data compared to Langmuir model. The mean free energy is in all cases in the range corresponding to the ion exchange type of sorption. The results indicated that synthetic zeolite A can be used as an efficient ion exchange material for the removal of zinc and cadmium ions from industrial and radioactive wastewaters.

  7. Tumor uptake of radioruthenium compounds

    SciTech Connect

    Srivastava, S C; Richards, P; Meinken, G E; Larson, S M; Grunbaum, Z

    1980-01-01

    The use of ruthenium-97 as a scintigraphic agent, particularly for tumor localization, is investigated. The tumor uptake of ruthenium chloride and ruthenium-labelled transferrin is evaluated and their application as tumor-imagine agents is compared to gallium-67 citrate. (ACR)

  8. Respirometric kinetic parameter calculations of a batch jet loop bioreactor treating leachate and oxygen uptake rate estimation by DTM.

    PubMed

    Ince, M; Yildiz, F; Engin, G Onkal; Engin, S N; Keskinler, B

    2008-05-30

    A novel circulating jet loop bioreactor adapted for organic matter oxidation has been designed and constructed. In this study, the input was leachate samples collected from Kemerburgaz Odayeri waste landfill site located on the European side of Istanbul. Controlling the jet loop bioreactor to realize high rates of purification depends on maintaining the appropriate loadings and operating conditions. This requires collecting various system data to estimate the dynamics of the system satisfactorily with the aim of keeping certain parameters within the specified range. The differential transform method (DTM) based solution of the state equations reveals the current state of the process so that any deviation in the system parameters can be immediately detected and regulated accordingly. The respirometric method for kinetic parameter calculations for biodegradation has been used for some time. In many studies, the respirometer was designed separately, usually in bench-scale. However, when a separate respirometer is used, the scale effect and parameters that affect the hydrodynamic structure of the system should be taken into consideration. In this study, therefore, the jet loop reactor itself was used as a respirometer. Thus, the kinetic parameters found reflecting the characteristics of microorganisms used for biodegradation would be more realistic. If the main reactor, here the jet loop reactor, would be used as the respirometer, the kinetic parameter changes can easily be monitored in the long run. Using the bioreactor as a respirometer, the most important kinetic parameters, Ks, kd and micromax were found to be 11,000 mg L(-1), 0.019 day(-1), and 0.21 day(-1), respectively. The stoichiometric coefficient, Y, was found to be 0.28 gr gr(-1) for the present system.

  9. The 4th Thermodynamic Principle?

    SciTech Connect

    Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco

    2007-04-28

    It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulation of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible.

  10. Learning thermodynamics with Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Melko, Roger G.

    2016-10-01

    A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.

  11. Thermodynamic Stability of Topological Insulators

    NASA Astrophysics Data System (ADS)

    Usanmaz, Demet; Nath, Pinku; Plata, Jose J.; Hart, Gus L. W.; Nardelli, Marco B.; Curtarolo, Stefano; CenterMaterials Genomics Team; G. L. W. Hart Collaboration; M. B. Nardelli Collaboration

    2015-03-01

    Well known three-dimensional TIs such as Bi2Te3,Bi2Se3,Bi2Te2Se, Sb2Te2Se, have been the subject of research due to potential application for spintronic devices. TIs have large bulk band gap and metallic surface states at the special time-reversal-invariant momentum (TRIM) points of the Brillouin zone. These fascinating properties constitute the current carry along the surface and not conduct current through the bulk. Creating heterostructures of TIs has recently been demonstrated to be advantageous for controlling electronic properties. In addition to the importance of the electronic properties of materials, thermodynamic stability is the key for manufacturability of materials. Guided by cluster expansion, we have investigated the thermodynamic stability of TI interfaces.

  12. Thermodynamics of stochastic Turing machines.

    PubMed

    Strasberg, Philipp; Cerrillo, Javier; Schaller, Gernot; Brandes, Tobias

    2015-10-01

    In analogy to Brownian computers we explicitly show how to construct stochastic models which mimic the behavior of a general-purpose computer (a Turing machine). Our models are discrete state systems obeying a Markovian master equation, which are logically reversible and have a well-defined and consistent thermodynamic interpretation. The resulting master equation, which describes a simple one-step process on an enormously large state space, allows us to thoroughly investigate the thermodynamics of computation for this situation. Especially in the stationary regime we can well approximate the master equation by a simple Fokker-Planck equation in one dimension. We then show that the entropy production rate at steady state can be made arbitrarily small, but the total (integrated) entropy production is finite and grows logarithmically with the number of computational steps.

  13. Thermodynamics of black plane solution

    NASA Astrophysics Data System (ADS)

    Rodrigues, Manuel E.; Jardim, Deborah F.; Houndjo, Stéphane J. M.; Myrzakulov, Ratbay

    2013-11-01

    We obtain a new phantom black plane solution in D of the Einstein-Maxwell theory coupled with a cosmological constant. We analyse their basic properties, as well as its causal structure, and obtain the extensive and intensive thermodynamic variables, as well as the specific heat and the first law. Through the specific heat and the so-called geometric methods, we analyse in detail their thermodynamic properties, the extreme and phase transition limits, as well as the local and global stabilities of the system. The normal case is shown with an extreme limit and the phantom one with a phase transition only for null mass, which is physically inaccessible. The systems present local and global stabilities for certain values of the entropy density with respect to the electric charge, for the canonical and grand canonical ensembles.

  14. Thermodynamics with Continuous Information Flow

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Esposito, Massimiliano

    2014-07-01

    We provide a unified thermodynamic formalism describing information transfers in autonomous as well as nonautonomous systems described by stochastic thermodynamics. We demonstrate how information is continuously generated in an auxiliary system and then transferred to a relevant system that can utilize it to fuel otherwise impossible processes. Indeed, while the joint system satisfies the second law, the entropy balance for the relevant system is modified by an information term related to the mutual information rate between the two systems. We show that many important results previously derived for nonautonomous Maxwell demons can be recovered from our formalism and use a cycle decomposition to analyze the continuous information flow in autonomous systems operating at a steady state. A model system is used to illustrate our findings.

  15. Thermodynamic effects on developed cavitation

    NASA Technical Reports Server (NTRS)

    Holl, J. W.; Billet, M. L.; Weir, D. S.

    1975-01-01

    The results of an investigation of thermodynamic effects are presented. Distributions of temperature and pressure in a developed cavity were measured for zero- and quarter-caliber ogives. A semiempirical entrainment theory was developed to correlate the measured temperature depression in the cavity. This theory correlates the maximum temperature depression expressed in dimensionless form as the Jakob number in terms of the dimensionless numbers of Nusselt, Reynolds, Froude, and Peclet, and dimensionless cavity length, L/D. The results show that in general, the temperature depression increases with L/D and temperature and the cavitation number based on measured cavity pressure is a function of L/D for a given model contour, independent of the thermodynamic effect.

  16. Stochastic thermodynamics with information reservoirs

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Seifert, Udo

    2014-10-01

    We generalize stochastic thermodynamics to include information reservoirs. Such information reservoirs, which can be modeled as a sequence of bits, modify the second law. For example, work extraction from a system in contact with a single heat bath becomes possible if the system also interacts with an information reservoir. We obtain an inequality, and the corresponding fluctuation theorem, generalizing the standard entropy production of stochastic thermodynamics. From this inequality we can derive an information processing entropy production, which gives the second law in the presence of information reservoirs. We also develop a systematic linear response theory for information processing machines. For a unicyclic machine powered by an information reservoir, the efficiency at maximum power can deviate from the standard value of 1 /2 . For the case where energy is consumed to erase the tape, the efficiency at maximum erasure rate is found to be 1 /2 .

  17. Thermodynamic constraints on fluctuation phenomena.

    PubMed

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  18. Thermodynamic constraints on fluctuation phenomena

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  19. Thermodynamic Model of Spatial Memory

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  20. A thermodynamic equation of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Pirouz Kavehpour, H.

    2008-03-01

    Materials ranging from sand to fire-retardant to toothpaste are considered fragile, able to exhibit both solid and fluid-like properties across the jamming transition. Guided by granular flow experiments, our equation of jammed states is path-dependent, definable at different athermal equilibrium states. The non-equilibrium thermodynamics based on a structural temperature incorporate physical ageing to address the non-exponential, non-Arrhenious relaxation of granular flows. In short, jamming is simply viewed as a thermodynamic transition that occurs to preserve a positive configurational entropy above absolute zero. Without any free parameters, the proposed equation-of-state governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.

  1. A thermodynamic unification of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Brodsky, E. E.; Kavehpour, H. P.

    2008-05-01

    Fragile materials ranging from sand to fire retardant to toothpaste are able to exhibit both solid and fluid-like properties across the jamming transition. Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to flow under conditions that still remain unknown. Here, we quantify jamming using a thermodynamic approach by accounting for the structural ageing and the shear-induced compressibility of dry sand. Specifically, the jamming threshold is defined using a non-thermal temperature that measures the `fluffiness' of a granular mixture. The thermodynamic model, cast in terms of pressure, temperature and free volume, also successfully predicts the entropic data of five molecular glasses. Notably, the predicted configurational entropy averts the Kauzmann paradox-an unresolved crisis where the configurational entropy becomes negative-entirely. Without any free parameters, the proposed equation-of-state also governs the mechanism of shear banding and the associated features of shear softening and thickness invariance.

  2. Thermodynamics of combined cycle plant

    NASA Astrophysics Data System (ADS)

    Crane, R. I.

    The fundamental thermodynamics of power plants including definitions of performance criteria and an introduction to exergy are reviewed, and treatments of simplified performance calculations for the components which form the major building blocks and a gas/steam combined cycle plant are given: the gas turbine, the heat recovery steam generator, and the remainder of the steam plant. Efficiency relationships and energy and exergy analyses of combined cycle plant are presented, with examples. Among the aspects considered are gas turbine performance characteristics and fuels, temperature differences for heat recovery, multiple steam pressures and reheat, supplementary firing and feed water heating. Attention is drawn to points of thermodynamic interest arising from applications of combined cycle plant to repowering of existing steam plant and to combined heat and power (cogeneration); some advances, including coal firing, are also introduced.

  3. Chemical reactions in endoreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wagner, Katharina; Hoffmann, Karl Heinz

    2016-01-01

    Endoreversible thermodynamics is a theory for the (approximate) description of thermodynamic non-equilibrium systems, which allows us to capture the ever present irreversibilities of real processes. For instance in heat engines the dissipation due to finite heat transport capabilities, as well as the resulting limitations in the energy fluxes, can be incorporated into the theory. It has thus been very successful in closing the gap between observed and theoretically predicted efficiencies. Here an extension of the theory is provided, with which chemical reactions can be included in the formalism. This opens up a wide field of applications for endoreversible modeling and the investigation of dissipative processes, for instance in fuel cells or batteries.

  4. Thermodynamic geometry of supercooled water

    NASA Astrophysics Data System (ADS)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2015-03-01

    The thermodynamic curvature scalar R is evaluated for supercooled water with a two-state equation of state correlated with the most recent available experimental data. This model assumes a liquid-liquid critical point. Our investigation extends the understanding of the thermodynamic behavior of R considerably. We show that R diverges to -∞ when approaching the assumed liquid-liquid critical point. This limit is consistent with all of the fluid critical point models known so far. In addition, we demonstrate a sign change of R along the liquid-liquid line from negative near the critical point to positive on moving away from the critical point in the low density "ice-like" liquid phase. We also trace out the Widom line in phase space. In addition, we investigate increasing correlation length in supercooled water and compare our results with recent published small angle x-ray scattering measurements.

  5. The fate of siderophores: antagonistic environmental interactions in exudate-mediated micronutrient uptake.

    PubMed

    Harrington, James M; Duckworth, Owen W; Haselwandter, Kurt

    2015-06-01

    Organisms acquire metals from the environment by releasing small molecules that solubilize and promote their specific uptake. The best known example of this nutrient uptake strategy is the exudation of siderophores, which are a structurally-diverse class of molecules that are traditionally viewed as being integral to iron uptake. Siderophores have been proposed to act through a variety of processes, but their effectiveness can be mitigated by a variety of chemical and physical processes of both biotic and abiotic origin. Processes that occur at the surface of minerals can degrade or sequester siderophores, preventing them from fulfilling their function of returning metals to the organism. In addition, biotic processes including enzymatic degradation of the siderophore and piracy of the metal or of the siderophore complex also disrupt iron uptake. Some organisms have adapted their nutrient acquisition strategies to address these potential pitfalls, producing multiple siderophores and other exudates that take advantage of varying kinetic and thermodynamic factors to allow the continued uptake of metals. A complete understanding of the factors that contribute to metal uptake in nature will require a concerted effort to study processes identified in laboratory systems in the context of more complicated environmental systems.

  6. Adsorption of Chrysoidine R by using fly ash in batch process.

    PubMed

    Matheswaran, Manickam; Karunanithi, Thirugnanam

    2007-06-25

    This investigation deals with effective utilization of fly ash as adsorbent for the removal of Chrysoidine R from the aqueous solution. The fly ash is a major byproduct generated in coal-based thermal power plants and has good potential for use as an adsorbent. A series of experiments were carried out in a batch adsorption technique to obtain the effect of process variables viz. contact time, pH (2, 4, 6 and 8) initial concentration of the dye (400, 600, 800 and 1000mgL(-1)), amount of the adsorbent (125, 250, 375 and 500mgL(-1)), and temperature (303, 313, 323 and 333K) on adsorption. The concentration of dye was determined by spectrophotometer. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly; higher adsorption percentage was observed at lower concentration of chrysoidine. The adsorption data were analyzed using Langmuir and Freundlich isotherms. The adsorption was found to obey pseudo-first order kinetics. An intra particle diffusion model was used to fit the experimental data. The thermodynamic parameters such as standard change in free energy, enthalpy and entropy of adsorption have been calculated. Adsorption of Chrysoidine R on fly ash was found to be an exothermic reaction.

  7. Dynamic simulation and nonlinear control of a rigorous batch reactive distillation.

    PubMed

    Kathel, Prateek; Jana, Amiya K

    2010-01-01

    This work deals with the dynamics and control of a high-purity batch distillation column with chemical reaction. A heterogeneous esterification reaction between the acetic acid and butanol takes place to produce butyl acetate. The process model is formulated considering variable liquid holdup, UNIQUAC model for thermodynamic property predictions, nonlinear Francis weir formula for tray hydraulics, pseudohomogeneous model to represent the reaction kinetics and rigorous energy balance. A structured and simple iterative approach is devised to compute the vapor flows with the fast convergence, under the rigorous energy balance. The representative column is treated with a distillate policy based on which, the lightest product, water is removed as distillate at the starting of production phase. As a consequence, the column gets progressively richer with the main product, butyl acetate. In addition, almost complete conversion of the limiting reactant is achieved. In order to maintain the product purity at the top, a nonlinear generic model controller (GMC) in two different forms has been proposed. Finally, a comparative closed-loop performance is addressed. It is shown that the control scheme, along with the effective distillate strategy, leads to almost complete conversion of ingredients and high-purity products.

  8. SiGe channel deposition by batch epitaxy

    NASA Astrophysics Data System (ADS)

    Reichel, Carsten; Schoenekess, Joerg; Dietel, Andreas; Wasyluk, Joanna; Chow, Yew Tuck; Kammler, Thorsten

    2015-08-01

    Batch epitaxy has been introduced for high volume manufacturing of SiGe channels in order to reduce the cost for this epitaxial process by a factor of 3. Beside cost, SiGe channel deposition by batch epitaxy offers many benefits for manufacturing. The stability of the process and the reduced variability of the SiGe thickness greatly improve the variation of VT. The batch epitaxy process does not show a pattern loading effect for SiGe thickness reducing the complexity for manufacturing significantly. However, since the tool concept is very different to that of the widely used single wafer tools, there are some tool specific issues that need to be managed. The wafer backside is critical for batch epitaxy. A nitride backside facing the front side of the wafer results in a clear degradation of the uniformity and a change of the morphology of the SiGe channel compared to that facing a Si backside. The thermal rounding is more pronounced for the channels deposited in a batch tool for both large and narrow width devices. The device parameters of the large width device are not affected by thermal rounding but the performance of the narrow width device is clearly degraded. The thin SiGe layer at the edge of the channel driven by thermal rounding affects the VT and thus the effective device width. An in-situ etching before SiGe deposition to avoid thermal rounding was not feasible due to defects issues which were induced by the wafer backside. Finally a thermal rounding of the Si by an aggressive H2 bake before SiGe deposition improves the SiGe channel uniformity and recovers the performance degradation of the narrow width device partly.

  9. A dynamic method based on the specific substrate uptake rate to set up a feeding strategy for Pichia pastoris

    PubMed Central

    2011-01-01

    Background Pichia pastoris is one of the most important host organisms for the recombinant production of proteins in industrial biotechnology. To date, strain specific parameters, which are needed to set up feeding profiles for fed batch cultivations, are determined by time-consuming continuous cultures or consecutive fed batch cultivations, operated at different parameter sets. Results Here, we developed a novel approach based on fast and easy to do batch cultivations with methanol pulses enabling a more rapid determination of the strain specific parameters specific substrate uptake rate qs, specific productivity qp and the adaption time (Δtimeadapt) of the culture to methanol. Based on qs, an innovative feeding strategy to increase the productivity of a recombinant Pichia pastoris strain was developed. Higher specific substrate uptake rates resulted in increased specific productivity, which also showed a time dependent trajectory. A dynamic feeding strategy, where the setpoints for qs were increased stepwise until a qs max of 2.0 mmol·g-1·h-1 resulted in the highest specific productivity of 11 U·g-1·h-1. Conclusions Our strategy describes a novel and fast approach to determine strain specific parameters of a recombinant Pichia pastoris strain to set up feeding profiles solely based on the specific substrate uptake rate. This approach is generic and will allow application to other products and other hosts. PMID:21371310

  10. Thermodynamic aspects of therapeutic hypothermia.

    PubMed

    Vanlandingham, Sean C; Kurz, Michael C; Wang, Henry E

    2015-01-01

    Therapeutic hypothermia (TH) is an important treatment for post-cardiac arrest syndrome. Despite its widespread practice, only limited data describe the thermodynamic aspects of heat transfer during TH. This paper reviews the principles of human body heat balance and provides a conceptual model for characterizing heat exchange during TH. The model may provide a framework for computer simulation for improving training in or clinical methods of TH.

  11. Thermodynamic work from operational principles

    NASA Astrophysics Data System (ADS)

    Gallego, R.; Eisert, J.; Wilming, H.

    2016-10-01

    In recent years we have witnessed a concentrated effort to make sense of thermodynamics for small-scale systems. One of the main difficulties is to capture a suitable notion of work that models realistically the purpose of quantum machines, in an analogous way to the role played, for macroscopic machines, by the energy stored in the idealisation of a lifted weight. Despite several attempts to resolve this issue by putting forward specific models, these are far from realistically capturing the transitions that a quantum machine is expected to perform. In this work, we adopt a novel strategy by considering arbitrary kinds of systems that one can attach to a quantum thermal machine and defining work quantifiers. These are functions that measure the value of a transition and generalise the concept of work beyond those models familiar from phenomenological thermodynamics. We do so by imposing simple operational axioms that any reasonable work quantifier must fulfil and by deriving from them stringent mathematical condition with a clear physical interpretation. Our approach allows us to derive much of the structure of the theory of thermodynamics without taking the definition of work as a primitive. We can derive, for any work quantifier, a quantitative second law in the sense of bounding the work that can be performed using some non-equilibrium resource by the work that is needed to create it. We also discuss in detail the role of reversibility and correlations in connection with the second law. Furthermore, we recover the usual identification of work with energy in degrees of freedom with vanishing entropy as a particular case of our formalism. Our mathematical results can be formulated abstractly and are general enough to carry over to other resource theories than quantum thermodynamics.

  12. Thermodynamics of feedback controlled systems

    NASA Astrophysics Data System (ADS)

    Cao, F. J.; Feito, M.

    2009-04-01

    We compute the entropy reduction in feedback controlled systems due to the repeated operation of the controller. This was the lacking ingredient to establish the thermodynamics of these systems, and in particular of Maxwell’s demons. We illustrate some of the consequences of our general results by deriving the maximum work that can be extracted from isothermal feedback controlled systems. As a case example, we finally study a simple system that performs an isothermal information-fueled particle pumping.

  13. Improved Estimates of Thermodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  14. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1985-12-24

    Specific Heat: Non-Metallic Solids, In Thormophysical Properties of Matter, The TPRC Data Series, Touloukian , Y.S., and Ho, C.Y. (Eds.), IFI, Plenum, New...heating method. Thermodynamic properties of silicon nitride (a, b) and boron nitride (hex, cub) have been determined to 1300K. Calculational...I. ’Research on Therophy/ical Properties . ......... a. Preliminary Measurements oft -"riple Point Temperature of Graphite 1 i_- ng Technique

  15. Nonequilibrium thermodynamics of pressure solution

    NASA Astrophysics Data System (ADS)

    Lehner, F. K.; Bataille, J.

    1984-01-01

    This paper is concerned with the thermodynamic theory of solution and precipitation processes in wet crustal rocks and with the mechanism of steady pressure-solution slip in ‘contact zones,’ such as grain-to-grain contacts, fracture surfaces, and permeable gouge layers, that are infiltrated by a mobile aqueous solution phase. A local dissipation jump condition at the phase boundary is fundamental to identifying the thermodynamic force driving the solution and precipitation process and is used here in setting up linear phenomenological relations to model near-equilibrium phase transformation kinetics. The local thermodynamic equilibrium of a stressed pure solid in contact with its melt or solution phase is governed by Gibbs's relation, which is rederived here, in a manner emphasizing its independence of constitutive assumptions for the solid while neglecting surface tension and diffusion in the solid. Fluid-infiltrated contact zones, such as those formed by rough surfaces, cannot generally be in thermodynamic equilibrium, especially during an ongoing process of pressure-solution slip, and the existing equilibrium formulations are incorrect in overlooking dissipative processes tending to eliminate fluctuations in superficial free energies due to stress concentrations near asperities, defects, or impurities. Steady pressure-solution slip is likely to exhibit a nonlinear dependence of slip rate on shear stress and effective normal stress, due to a dependence of the contact-zone state on the latter. Given that this dependence is negligible within some range, linear relations for pressure-solution slip can be derived for the limiting cases of diffusion-controlled and interface-reaction-controlled rates. A criterion for rate control by one of these mechanisms is set by the magnitude of the dimensionless quantity kδ/2C pD, where k is the interfacial transfer coefficient, δ is the mean diffusion path length, C p is the solubility at pressure p, and D is the mass

  16. Pulmonary uptake of morphine (M)

    SciTech Connect

    Roerig, D.L.; Bunke, S.S.; Kotrly, K.J.; Dawson, C.A.; Kampine, J.P.

    1986-03-01

    Previously the authors reported less than 5% of M was taken up during the first pass through the human lung. The low uptake of this basic lipophilic amine was further investigated in a single pass isolated perfused rat lung (IPL) in comparison to uptake of radiolabelled H/sub 2/O, antipyrine (A), aminopyrine (AM), nicotine (N) and phenylethylamine (P). The IPL was perfused for 5 min with each drug (5nmol/ml) and effluent collected in 10 sec fractions. Pulmonary extraction was calculated using indocyanine green dye as a non-extractable reference indicator. Accumulation of all compounds in the IPL reached an apparent equilibrium within 4 min. At equilibrium lung/perfusate conc. ratios for H/sub 2/O, A, AM, N, P and M were 1.04, 0.84, 0.85, 1.44, 2.57 and 1.13 respectively. The time course of M uptake differed from the other compounds since initial extraction of M was low (23%) compared to 75%, 53%, 35%, 82% and 86% for H/sub 2/O, A, AM, N and P respectively. Also, the half time to equilibrium for M was longer (50 sec) compared to 18, 21, 26, 19 and 22 sec for H/sub 2/O, A, AM, N and P respectively. The low initial pulmonary extraction of M compared to these compounds followed by greater M extraction during the remainder of drug infusion suggests uptake mechanisms for M different than the flow limited uptake for water and other basic amine drugs.

  17. Thermodynamics of Oligonucleotide Duplex Melting

    NASA Astrophysics Data System (ADS)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-05-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply rigorous thermodynamic analysis to an important biochemical problem. Because the stacking of base pairs on top of one another is a significant factor in the energetics of oligonucleotide melting, several investigators have applied van't Hoff analysis to melting temperature data using a nearest-neighbor model and have obtained entropies and enthalpies for the stacking of bases. The present article explains how the equilibrium constant for the dissociation of strands from double-stranded oligonucleotides can be expressed in terms of the total strand concentration and thus how the total strand concentration influences the melting temperature. It also presents a simplified analysis based on the entropies and enthalpies of stacking that is manually tractable so that students can work examples to help them understand the thermodynamics of oligonucleotide melting.

  18. Thermodynamic States in Explosion Fields

    SciTech Connect

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  19. Thermodynamical journey in plant biology

    PubMed Central

    Barbacci, Adelin; Magnenet, Vincent; Lahaye, Marc

    2015-01-01

    Nonequilibrium irreversible thermodynamics constitute a meaningful point of view suitable to explore life with a rich paradigm. This analytical framework can be used to span the gap from molecular processes to plant function and shows great promise to create a holistic description of life. Since living organisms dissipate energy, exchange entropy and matter with their environment, they can be assimilated to dissipative structures. This concept inherited from nonequilibrium thermodynamics has four properties which defines a scale independent framework suitable to provide a simpler and more comprehensive view of the highly complex plant biology. According to this approach, a biological function is modeled as a cascade of dissipative structures. Each dissipative structure, corresponds to a biological process, which is initiated by the amplification of a fluctuation. Evolution of the process leads to the breakage of the system symmetry and to the export of entropy. Exporting entropy to the surrounding environment corresponds to collecting information about it. Biological actors which break the symmetry of the system and which store information are by consequence, key actors on which experiments and data analysis focus most. This paper aims at illustrating properties of dissipative structure through familiar examples and thus initiating the dialogue between nonequilibrium thermodynamics and plant biology. PMID:26175747

  20. Thermodynamic constraints for biochemical networks.

    PubMed

    Beard, Daniel A; Babson, Eric; Curtis, Edward; Qian, Hong

    2004-06-07

    The constraint-based approach to analysis of biochemical systems has emerged as a useful tool for rational metabolic engineering. Flux balance analysis (FBA) is based on the constraint of mass conservation; energy balance analysis (EBA) is based on non-equilibrium thermodynamics. The power of these approaches lies in the fact that the constraints are based on physical laws, and do not make use of unknown parameters. Here, we show that the network structure (i.e. the stoichiometric matrix) alone provides a system of constraints on the fluxes in a biochemical network which are feasible according to both mass balance and the laws of thermodynamics. A realistic example shows that these constraints can be sufficient for deriving unambiguous, biologically meaningful results. The thermodynamic constraints are obtained by comparing of the sign pattern of the flux vector to the sign patterns of the cycles of the internal cycle space via connection between stoichiometric network theory (SNT) and the mathematical theory of oriented matroids.

  1. Batch and fed-batch simultaneous saccharification and fermentation of primary sludge from pulp and paper mills.

    PubMed

    Mendes, Cátia Vanessa Teixeira; Rocha, Jorge Manuel Dos Santos; de Menezes, Fabrícia Farias; Carvalho, Maria da Graça Videira Sousa

    2016-09-26

    Primary sludge from a Portuguese pulp and paper mill, containing 60% of carbohydrates, and unbleached pulp (as reference material), with 93% of carbohydrates, were used to produce ethanol by simultaneous saccharification and fermentation (SSF). SSF was performed in batch or fed-batch conditions without the need of a pretreatment. Cellic(®) CTec2 was the cellulolytic enzymatic complex used and Saccharomyces cerevisiae (baker's yeast or ATCC 26602 strain) or the thermotolerant yeast Kluyveromyces marxianus NCYC 1426 were employed. Primary sludge was successfully converted to ethanol and the best results in SSF efficiency were obtained with S. cerevisiae. An ethanol concentration of 22.7 g L(-1) was produced using a content of 50 g L(-1) of carbohydrates from primary sludge, in batch conditions, with a global conversion yield of 81% and a production rate of 0.94 g L(-1) h(-1). Fed-batch operation enabled higher solids content (total carbohydrate concentration of 200 g L(-1), equivalent to a consistency of 33%) and a reduction of three-quarters of cellulolytic enzyme load, leading to an ethanol concentration of 40.7 g L(-1), although with lower yield and productivity. Xylitol with a concentration up to 7 g L(-1) was also identified as by-product in the primary sludge bioconversion process.

  2. Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder.

    PubMed

    Saha, Papita Das; Chakraborty, Sagnik; Chowdhury, Shamik

    2012-04-01

    In this study, batch and fixed-bed column experiments were performed to investigate the biosorption potential of Artocarpus heterophyllus (jackfruit) leaf powder (JLP) to remove crystal violet (CV) from aqueous solutions. Batch biosorption studies were carried out as a function of solution pH, contact time, initial dye concentration and temperature. The biosorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer biosorption capacity of 43.39 mg g(-1) at pH 7.0, initial dye concentration=50 mg L(-1), temperature=293 K and contact time=120 min. According to Dubinin-Radushkevich (D-R) isotherm model, biosorption of CV by JLP was chemisorption. The biosorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic analysis revealed that biosorption of CV from aqueous solution by JLP was a spontaneous and exothermic process. In order to ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the BDST model showed good agreement with the experimental results at all the process parameters studied. It can be concluded that JLP is a promising biosorbent for removal of CV from aqueous solutions.

  3. Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials

    SciTech Connect

    Ceder, Gerbrand; Marzari, Nicola

    2011-08-31

    The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

  4. Looking for Waldo: A Potential Thermodynamic Signature to DNA Damage

    PubMed Central

    2015-01-01

    Conspectus DNA in its simplest form is an ensemble of nucleic acids, water, and ions, and the conformation of DNA is dependent on the relative proportions of all three components. When DNA is covalently damaged by endogenous or exogenous reactive species, including those produced by some anticancer drugs, the ensemble undergoes localized changes that affect nucleic acid structure, thermodynamic stability, and the qualitative and quantative arrangement of associated cations and water molecules. Fortunately, the biological effects of low levels of DNA damage are successfully mitigated by a large number of proteins that efficiently recognize and repair DNA damage in the midst of a vast excess of canonical DNA. In this Account, we explore the impact of DNA modifications on the high resolution and dynamic structure of DNA, DNA stability, and the uptake of ions and water and explore how these changes may be sensed by proteins whose function is to initially locate DNA lesions. We discuss modifications on the nucleobases that are located in the major and minor grooves of DNA and include lesions that are observed in vivo, including oxidized bases, as well as some synthetic nucleobases that allow us to probe how the location and nature of different substituents affect the thermodynamics and structure of the DNA ensemble. It is demonstrated that disruption of a cation binding site in the major groove by modification of the N7-position on the purines, which is the major site for DNA alkylation, is enthalpically destabilizing. Accordingly, tethering a cationic charge in the major groove is enthalpically stabilizing. The combined structural and thermodynamic studies provide a detailed picture of how different DNA lesions affect the dynamics of DNA and how modified bases interact with their environment. Our work supports the hypothesis that there is a “thermodynamic signature” to DNA lesions that can be exploited in the initial search that requires differentiation between

  5. Looking for Waldo: a potential thermodynamic signature to DNA damage.

    PubMed

    Gold, Barry; Stone, Michael P; Marky, Luis A

    2014-04-15

    DNA in its simplest form is an ensemble of nucleic acids, water, and ions, and the conformation of DNA is dependent on the relative proportions of all three components. When DNA is covalently damaged by endogenous or exogenous reactive species, including those produced by some anticancer drugs, the ensemble undergoes localized changes that affect nucleic acid structure, thermodynamic stability, and the qualitative and quantative arrangement of associated cations and water molecules. Fortunately, the biological effects of low levels of DNA damage are successfully mitigated by a large number of proteins that efficiently recognize and repair DNA damage in the midst of a vast excess of canonical DNA. In this Account, we explore the impact of DNA modifications on the high resolution and dynamic structure of DNA, DNA stability, and the uptake of ions and water and explore how these changes may be sensed by proteins whose function is to initially locate DNA lesions. We discuss modifications on the nucleobases that are located in the major and minor grooves of DNA and include lesions that are observed in vivo, including oxidized bases, as well as some synthetic nucleobases that allow us to probe how the location and nature of different substituents affect the thermodynamics and structure of the DNA ensemble. It is demonstrated that disruption of a cation binding site in the major groove by modification of the N7-position on the purines, which is the major site for DNA alkylation, is enthalpically destabilizing. Accordingly, tethering a cationic charge in the major groove is enthalpically stabilizing. The combined structural and thermodynamic studies provide a detailed picture of how different DNA lesions affect the dynamics of DNA and how modified bases interact with their environment. Our work supports the hypothesis that there is a "thermodynamic signature" to DNA lesions that can be exploited in the initial search that requires differentiation between canonical DNA and

  6. Ferrous iron uptake in Cryptococcus neoformans.

    PubMed

    Jacobson, E S; Goodner, A P; Nyhus, K J

    1998-09-01

    Previous studies have implicated ferric reduction in the iron uptake pathway of the opportunistic pathogen Cryptococcus neoformans. Here we studied iron uptake directly, using 55Fe in the presence of reductants. Uptake was linear with respect to time and number of yeast cells. The plot of uptake versus concentration exhibited a steep rise up to about 1 microM, a plateau between 1 and 25 microM, and a second steep rise above 25 microM, consistent with high- and low-affinity uptake systems. A Km for high-affinity uptake was estimated to be 0.6 microM Fe(II); 1 microM was used for standardized uptake assays. At this concentration, the uptake rate was 110 +/- 3 pmol/10(6) cells/h. Iron repletion (15 microM) and copper starvation drastically decreased high-affinity iron uptake. Incubation at 0 degreesC or in the presence of 2 mM KCN abolished high-affinity iron uptake, suggesting that uptake requires metabolic energy. When exogenous reducing agents were not supplied and the culture was washed free of secreted reductants, uptake was reduced by 46%; the remaining uptake activity presumably was dependent upon the cell membrane ferric reductase. Further decreases in free Fe(II) levels achieved by trapping with bathophenanthroline disulfonate or reoxidizing with potassium nitrosodisulfonate reduced iron uptake very drastically, suggesting that it is the Fe(II) species which is transported by the high-affinity transporter. The uptake of Fe was stimulated two- to threefold by deferoxamine, but this increment could be abolished by copper starvation or inhibition of the ferric reductase by Pt, indicating that Fe solubilized by this molecule also entered the reductive iron uptake pathway.

  7. Enhanced formation of aerobic granular sludge with yellow earth as nucleating agent in a sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    He, Q. L.; Zhang, S. L.; Zou, Z. C.; Wang, H. Y.

    2016-08-01

    Enhanced formation of aerobic granulation was investigated by adding yellow earth as a nucleating agent in a sequencing batch reactor with a constant setting time of 10 min. As a result, granules with an average diameter over 1 mm were obtained on the 4th day. The mature granules behaved better than the seed sludge in the water content, specific gravity, sludge volume index, settling velocity, and specific oxygen uptake rate. The yellow earth stimulated the secretion of extracellular polymeric substances, especially proteins. Both chemical oxygen demand and ammonia nitrogen had a removal rate over 90%, and more than 80% of the total inorganic nitrogen was removed even under aeration conditions due to simultaneous denitrification. The enhancement effects of the yellow earth might be based on the unique physicochemical characteristics and short settling time. A settling time of 10 min or more turned out not to be a prerequisite for a rapid granulation process.

  8. Nutrient removal, microbial community and sludge settlement in anaerobic/aerobic sequencing batch reactors without enhanced biological phosphorus removal.

    PubMed

    Wu, Guangxue; Rodgers, Michael

    2010-01-01

    Nutrient removal, microbial community and sludge settlement were examined in two 3-litre laboratory-scale anaerobic/aerobic sequencing batch reactors (SBRs). One SBR was operated at 10 degrees C and the other SBR at 20 degrees C. Different from conventional enhanced biological phosphorus removal, most of the soluble sodium acetate was removed in the aerobic phase and no organic carbon uptake or biological phosphorus release occurred in the anaerobic phase. In this type of anaerobic/aerobic SBR, the phosphorus removal and sludge settlement seemed to be unstable, and the dominant microorganism was Zoogloea sp. Although no excess biological phosphorus removal occurred, extracellular phosphorus precipitation contributed a significant proportion to total phosphorus removed. Sludge volume index decreased with increasing phosphorus contents in the biomass under all conditions. The functions of extracellular polymeric substances in sludge settlement and phosphorus removal depended on the environmental conditions applied.

  9. A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor (PSBR).

    PubMed

    Wang, Meng; Yang, Han; Ergas, Sarina J; van der Steen, Peter

    2015-12-15

    Removal of nitrogen from anaerobically digested swine manure centrate was investigated in a photo-sequencing batch reactor (PSBR) with alternating light and dark periods. Microalgal photosynthesis was shown to provide enough oxygen for complete nitritation during the light period. With addition of an organic carbon source during the dark period, the reactor removed over 90% total nitrogen (TN) without aeration other than by mixing. Overall, 80% of the TN removal was through nitritation/denitritation and the rest was due to biomass uptake. The high concentrations of ammonia and nitrite and low dissolved oxygen concentration in the PSBR effectively inhibited nitrite oxidizing bacteria, resulting in stable nitritation. The hybrid microalgal photosynthesis and shortcut nitrogen removal process has the potential to substantially reduce aeration requirements for treatment of anaerobic digestion side streams. The PSBR also produced well settling biomass with sludge volume index of 62 ± 16 mL mg(-1).

  10. Effects of idle time on biological phosphorus removal by sequencing batch reactors.

    PubMed

    Gao, Dawen; Yin, Hang; Liu, Lin; Li, Xing; Liang, Hong

    2013-12-01

    Three identical sequencing batch reactors (SBRs) were operated to investigate the effects of various idle times on the biological phosphorus (P) removal. The idle times were set to 3 hr (R1), 10 hr (R2) and 17 hr (R3). The results showed that the idle time of a SBR had potential impact on biological phosphorus removal, especially when the influent phosphorus concentration increased. The phosphorus removal efficiencies of the R2 and R3 systems declined dramatically compared with the stable R1 system, and the P-release and P-uptake rates of the R3 system in particular decreased dramatically. The PCR-DGGE analysis showed that uncultured Pseudomonas sp. (GQ183242.1) and beta-Proteobacteria (AY823971) were the dominant phosphorus removal bacteria for the R1 and R2 systems, while uncultured gamma-Proteobacteria were the dominant phosphorus removal bacteria for the R3 system. Glycogen-accumulating organisms (GAOs), such as uncultured Sphingomonas sp. (AM889077), were found in the R2 and R3 systems. Overall, the R1 system was the most stable and exhibited the best phosphorus removal efficiency. It was found that although the idle time can be prolonged to allow the formation of intracellular polymers when the phosphorus concentration of the influent is low, systems with a long idle time can become unstable when the influent phosphorus concentration is increased.

  11. Low temperature biological phosphorus removal and partial nitrification in a pilot sequencing batch reactor system.

    PubMed

    Yuan, Qiuyan; Oleszkiewicz, Jan A

    2011-01-01

    Partial nitrification and biological phosphorus removal appear to hold promise of a cost-effective and sustainable biological nutrient removal process. Pilot sequencing batch reactors (SBRs) were operated under anaerobic/aerobic configuration for 8 months. It was found that biological phosphorus removal can be achieved in an SBR system, along with the partial nitrification process. Sufficient volatile fatty acids supply was the key for enhanced biological phosphorus removal. This experiment demonstrated that partial nitrification can be achieved even at low temperature with high dissolved oxygen (>3 mg/L) concentration. Shorter solid retention time (SRT) for nitrite oxidizing bacteria (NOB) than for ammonia oxidizing bacteria due to the nitrite substrate limitation at the beginning of the aeration cycle was the reason that caused NOB wash-out. Controlling SRT should be the strategy for an SBR operated in cold climate to achieve partial nitrification. It was also found that the aerobic phosphorus accumulating organisms' P-uptake was more sensitive to nitrite inhibition than the process of anaerobic P-release.

  12. Organic anion uptake by hepatocytes.

    PubMed

    Wolkoff, Allan W

    2014-10-01

    Many of the compounds taken up by the liver are organic anions that circulate tightly bound to protein carriers such as albumin. The fenestrated sinusoidal endothelium of the liver permits these compounds to have access to hepatocytes. Studies to characterize hepatic uptake of organic anions through kinetic analyses, suggested that it was carrier-mediated. Attempts to identify specific transporters by biochemical approaches were largely unsuccessful and were replaced by studies that utilized expression cloning. These studies led to identification of the organic anion transport proteins (oatps), a family of 12 transmembrane domain glycoproteins that have broad and often overlapping substrate specificities. The oatps mediate Na(+)-independent organic anion uptake. Other studies identified a seven transmembrane domain glycoprotein, Na(+)/taurocholate transporting protein (ntcp) as mediating Na(+)-dependent uptake of bile acids as well as other organic anions. Although mutations or deficiencies of specific members of the oatp family have been associated with transport abnormalities, there have been no such reports for ntcp, and its physiologic role remains to be determined, although expression of ntcp in vitro recapitulates the characteristics of Na(+)-dependent bile acid transport that is seen in vivo. Both ntcp and oatps traffic between the cell surface and intracellular vesicular pools. These vesicles move through the cell on microtubules, using the microtubule based motors dynein and kinesins. Factors that regulate this motility are under study and may provide a unique mechanism that can alter the plasma membrane content of these transporters and consequently their accessibility to circulating ligands.

  13. Batch culture biodegradation of methylhydrazine contaminated NASA wastewater.

    PubMed

    Nwankwoala, A U; Egiebor, N O; Gilbert, C; Nyavor, K

    1999-04-01

    The batch culture degradation of NASA wastewater containing mixtures of citric acid, methylhydrazine, and their reaction product was studied. The organic contaminants present in the NASA wastewater were degraded by Achromobacter sp., Rhodococcus B30 and Rhodococcus J10. While the Achromobacter sp. showed a preference for the degradation of the citric acid, the Rhodococcus species were most effective in reducing the methylhydrazine and the reaction product. Removals of more than 50% were observed for citric acid, methylhydrazine and the reaction product when the NASA wastewater was inoculated with the microbes in batch cultures. Simulation and chemical characterization of citric acid and hydrazine mixtures show that the interaction is partly of a chemical nature and leads to the formation of a conjugated UV/Visible absorbing compound. An 'azo' carbonyl derivative of the citric acid, consistent with the spectral data obtained from the investigation, has been proposed as the possible product.

  14. Bquant - Novel script for batch quantification of LCMS data.

    PubMed

    Rožman, Marko; Petrović, Mira

    2016-01-01

    Quantitative target analysis by liquid chromatography coupled to mass spectrometry (LCMS) is ubiquitous in environmental, metabolomic and toxicological studies. Targeted LCMS methods are capable of the simultaneous determination of literally hundreds of analytes. Although acquiring of instrumental data is very fast, data post-processing i.e. quantification can be time consuming step (and)or dependent to various commercial software packages. In attempt to facilitate this drawback Wolfram Mathematica script for batch quantification of LCMS data was created. Script works with direct outputs of integration algorithms created by different instrument control software's or custom created outputs. Key benefits of Bquant script are: •simple and automated routine for batch mode quantification•vast improvement in processing time (especially compared to manual interpretation)•data can be quickly re-analysed using different inputs Script was validated on various datasets and some of these were provided as working examples.

  15. Plutonium immobilization ceramic feed batching component test report

    SciTech Connect

    Erickson, S.A.

    1999-10-04

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Ceramic feed batching (CFB) is one of the first process steps involved with first stage plutonium immobilization. The CFB step will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization CFB process preliminary concept (including a process block diagram), batch splitting component test results, CFB development areas, and FY 1999 and 2000 CFB program milestones.

  16. Jute batching oil: a tumor promoter on mouse skin

    SciTech Connect

    Mehrotra, N.K.; Kumar, S.; Agarwal, R.; Antony, M.

    1987-02-01

    A mineral oil essentially used in the jute industry for the batching of jute fibers, and earlier reported to be nontumorigenic on mouse skin, has been found to be a tumor promoter following a two-stage mouse-skin bioassay protocol. The types of tumors developed after initiation with a single dose of urethane or 3-methylcholanthrene (subcutaneously), followed by repeated skin painting with jute batching oil (JBO) included benign papillomas, keratoacanthomas, and fibrosarcomas. Chemical analysis of this oil indicated the total aromatic content was 11.71% and the amount of fluoranthene, pyrene, chrysene, and triphenylene was in the range of 192.54 to 227.79 mg/kg in the test sample. The underlying biochemical mechanism for the tumor-promoting effect of JBO seemed to operate through a different pathway rather than involving the induction of cytochrome-dependent monoxygenase and N-demethylase activities in the tissue.

  17. Empirical State Error Covariance Matrix for Batch Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe

    2015-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.

  18. Sorting Olive Batches for the Milling Process Using Image Processing

    PubMed Central

    Puerto, Daniel Aguilera; Martínez Gila, Diego Manuel; Gámez García, Javier; Gómez Ortega, Juan

    2015-01-01

    The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco). The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results. PMID:26147729

  19. A method for detection and diagnosis on batch fermentations.

    PubMed

    Dondo, Rodolfo G

    2003-01-01

    In this work we present some basic ideas about detection and diagnosis of faults and abrupt dynamic changes in batch fermentations. Our work focuses on the simultaneous use of two detection methods (residual based and balances based) within the estimation procedure. The idea behind the use of both methods is that the weakness of one of them can be compensated by the use of the other one. Thus the simultaneous use of both methods allows detecting and possibly isolating a wide range of faults. Observations such as the effect of nonlinearities on the detection tests and robustness to model uncertainty are discussed. Numerical results on a particular case, the xanthan gum batch fermentation, are presented. Simulated faults and abnormal behaviors were promptly detected but diagnostics showed mixed results.

  20. Simulation of continuous and batch hydrolysis of willow

    SciTech Connect

    Zacchi, G.; Dahlbom, J.; Scott, C.D.

    1986-01-01

    The influence of product and enzyme concentrations on the kinetics of the enzymic hydrolysis of alkali-pretreated willow is studied. The hydrolysis was performed in a UF-membrane reactor in which the product concentration was kept constant. An empirical 4-parameter rate equation that gives a good correlation to both continuous and batch hydrolysis data is presented. The model comprises the effects of enzyme concentration and product inhibition. (Refs. 11).

  1. Batch Processing with the Radioiodine Laser Induced-Fluorescence Detector.

    DTIC Science & Technology

    1980-08-27

    out by ourselves and by Burger. (2) Can the poisoning of the Au catalyst be avoided by eliminating the silica tube in which the reaction is run? (3) Can...of alkyl Iodides and HI to 12 have been quantitatively evaluated for use in batch processing. Scrubbing properties of silver zeolites in terms of their...to an apparent poisoning of the gold catalyst after a short period of time. Subsequently, studies by ourselves and conversations with Lee Burger of

  2. Integration of virtualized worker nodes in standard batch systems

    NASA Astrophysics Data System (ADS)

    Büge, Volker; Hessling, Hermann; Kemp, Yves; Kunze, Marcel; Oberst, Oliver; Quast, Günter; Scheurer, Armin; Synge, Owen

    2010-04-01

    Current experiments in HEP only use a limited number of operating system flavours. Their software might only be validated on one single OS platform. Resource providers might have other operating systems of choice for the installation of the batch infrastructure. This is especially the case if a cluster is shared with other communities, or communities that have stricter security requirements. One solution would be to statically divide the cluster into separated sub-clusters. In such a scenario, no opportunistic distribution of the load can be achieved, resulting in a poor overall utilization efficiency. Another approach is to make the batch system aware of virtualization, and to provide each community with its favoured operating system in a virtual machine. Here, the scheduler has full flexibility, resulting in a better overall efficiency of the resources. In our contribution, we present a lightweight concept for the integration of virtual worker nodes into standard batch systems. The virtual machines are started on the worker nodes just before jobs are executed there. No meta-scheduling is introduced. We demonstrate two prototype implementations, one based on the Sun Grid Engine (SGE), the other using Maui/Torque as a batch system. Both solutions support local job as well as Grid job submission. The hypervisors currently used are Xen and KVM, a port to another system is easily envisageable. To better handle different virtual machines on the physical host, the management solution VmImageManager is developed. We will present first experience from running the two prototype implementations. In a last part, we will show the potential future use of this lightweight concept when integrated into high-level (i.e. Grid) work-flows.

  3. A review of the Lasnet batch job system

    SciTech Connect

    Busby, L.

    1993-01-13

    The authors installed the McGill-DNQS job queuing system on their network of Sun Sparc and HP7x0 Unix workstations. These machines support interactive use as well as cpu-intensive batch jobs. After three months of operation they are generally very pleased with the system. This paper covers the decisions they made about installation, configuration, and operation. It details the successes and failures so far, and discusses future plans.

  4. 40 CFR 63.492 - Batch front-end process vents-reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... causes a Group 2 batch front-end process vent to become a Group 1 batch front-end process vent, the owner..., as defined in § 63.488(i)(1), is made that causes a Group 2 batch front-end process vent with annual... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Batch front-end process...

  5. Thermodynamic Properties of Supported Catalysts

    SciTech Connect

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  6. Dark-energy thermodynamic models

    SciTech Connect

    Besprosvany, Jaime; Izquierdo, German

    2010-12-07

    We study cosmological consequences of dark-energy thermodynamic models. The assumption that dark energy is conformed of quanta, and an extensivity argument generalize its equation of state. This implies that dark energy and another key component exchange energy. The energy densities of dark energy and the other component then tend asymptotically to a constant, thus explaining the coincidence of dark matter and dark energy today. On the other hand, a model of non-relativistic particles in a Bose-Einstein condensate, with a short-range attractive interaction, produces acceleration. It is shown that the phantom-acceleration regime, at the beginning of the universe, solves the horizon problem.

  7. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1980-09-01

    Department of Commerce 23 -1A , /7 National Bureau of Standards A102 Washington, D.C. 20234 ______________ I I. CONTROLLING OFFICE NAME AND ADDRESS Air...DISTRIBUTION STATEMENT (of this Report) r ~Appro-,’. f’or public re r-: e ; 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from...8SOLETE SCRT SEUIYCLASSIFICATION OF TNIS PAGE " e aoEtr AEOST.1-0443 THERMODYNAMICS OF HIGH TEMPERATURE MATERIALS Annual Report for the Period of 1 October

  8. Thermodynamic laws in isolated systems.

    PubMed

    Hilbert, Stefan; Hänggi, Peter; Dunkel, Jörn

    2014-12-01

    The recent experimental realization of exotic matter states in isolated quantum systems and the ensuing controversy about the existence of negative absolute temperatures demand a careful analysis of the conceptual foundations underlying microcanonical thermostatistics. Here we provide a detailed comparison of the most commonly considered microcanonical entropy definitions, focusing specifically on whether they satisfy or violate the zeroth, first, and second laws of thermodynamics. Our analysis shows that, for a broad class of systems that includes all standard classical Hamiltonian systems, only the Gibbs volume entropy fulfills all three laws simultaneously. To avoid ambiguities, the discussion is restricted to exact results and analytically tractable examples.

  9. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  10. Thermodynamics of discrete quantum processes

    NASA Astrophysics Data System (ADS)

    Anders, Janet; Giovannetti, Vittorio

    2013-03-01

    We define thermodynamic configurations and identify two primitives of discrete quantum processes between configurations for which heat and work can be defined in a natural way. This allows us to uncover a general second law for any discrete trajectory that consists of a sequence of these primitives, linking both equilibrium and non-equilibrium configurations. Moreover, in the limit of a discrete trajectory that passes through an infinite number of configurations, i.e. in the reversible limit, we recover the saturation of the second law. Finally, we show that for a discrete Carnot cycle operating between four configurations one recovers Carnot's thermal efficiency.

  11. Thermodynamic laws in isolated systems

    NASA Astrophysics Data System (ADS)

    Hilbert, Stefan; Hänggi, Peter; Dunkel, Jörn

    2014-12-01

    The recent experimental realization of exotic matter states in isolated quantum systems and the ensuing controversy about the existence of negative absolute temperatures demand a careful analysis of the conceptual foundations underlying microcanonical thermostatistics. Here we provide a detailed comparison of the most commonly considered microcanonical entropy definitions, focusing specifically on whether they satisfy or violate the zeroth, first, and second laws of thermodynamics. Our analysis shows that, for a broad class of systems that includes all standard classical Hamiltonian systems, only the Gibbs volume entropy fulfills all three laws simultaneously. To avoid ambiguities, the discussion is restricted to exact results and analytically tractable examples.

  12. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  13. A Simple Thermodynamic Analysis of Photosynthesis

    NASA Astrophysics Data System (ADS)

    Albarrán-Zavala, E.; Angulo-Brown, F.

    2007-12-01

    In this paper we present a comparative study of nine photosynthetic pathways bymeans of their thermodynamic performance. The comparison is made by using the thermalefficiency of light-to-chemical energy conversion and the so-called ecological criterionarising from finite-time thermodynamics. The application of both criteria leads tophotosynthesis made by metaphytes and non sulfur purple bacteria as those of bestthermodynamic performance. In spite of the simplicity of our thermodynamic approachsome insights over the low overall efficiency of photosynthesis is suggested.

  14. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  15. Performances of a granular sequencing batch reactor (GSBR).

    PubMed

    Torregrossa, M; Di Bella, G; Viviani, G; Gnoffo, A

    2007-01-01

    Aerobic granulation in sequencing batch reactors is widely reported in literature and in particular in SBAR (Sequencing batch airlift reactor) configuration, due to the high localised hydrodynamic shear forces that occur in this type of configuration. The aim of this work was to observe the phenomenon of the aerobic granulation and to confirm the excellent removal efficiencies that can be achieved with this technology. In order to do that, a laboratory-scale plant, inoculated with activated sludge collected from a conventional WWTP, was operated for 64 days: 42 days as a SBAR and 22 days as a SBBC (sequencing batch bubble column). The performances of the pilot plant showed excellent organics removal. COD and BOD removal efficiencies were respectively, 93 and 94%; on the contrary, N-removal efficiency was extremely low (5%-45%/o). The granules dimensions increased during the whole experimentation; change of reactor configuration contributed to further improve this aspect. The experimental work confirmed the essential role of hydraulic settling time in the formation of aerobic granules and in the sludge settleability and the need to find an optimum between granule size and oxygen supply to achieve good N-removal efficiency.

  16. Batch and continuous removal of arsenic using hyacinth roots.

    PubMed

    Govindaswamy, Shekar; Schupp, Donald A; Rock, Steven A

    2011-07-01

    Arsenic is considered a primary pollutant in drinking water because of its high toxicity. The unique property of water hyacinth roots (Eichhornia crassipes) to remove heavy metals is of great signiicance for the development of a cost-effective phytoremediation technology. An experimental test program was conducted at the United States Environmental Protection (USEPA) Test and Evaluation (T&E) Facility in Cincinnati, Ohio, to investigate the potential of water hyacinth roots to remove arsenic from spiked drinking water samples. Water hyacinth roots were washed, dried, and powdered to provide dried hyacinth roots (DHR) for batch and continuous column experiments, Various quantities of DHR were added to water spiked with 300 micrograms per liter (microg/L) arsenic. A concentration of 20 g/L DHR was found adequate for greater than 90% arsenic removal in the batch tests. Based on the batch test results, continuous column experiments were performed using a 2-L column. In a continuous system, 15 L of water containing 300 microg/L arsenic were treated to below 20 microg/L using 50 g DHR, and 44 L of water containing 600 microg/L arsenic were treated to below 20 microg/L using 100 g DHR, giving a specific accumulation rate of approximately 260 microg As/g DHR.

  17. Fed-batch production of tetanus toxin by Clostridium tetani.

    PubMed

    Fratelli, Fernando; Siquini, Tatiana Joly; de Abreu, Marcelo Estima; Higashi, Hisako Gondo; Converti, Attilio; de Carvalho, João Carlos Monteiro

    2010-01-01

    This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed-batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ(0)) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50-60 L(f)/mL) for NZ(0) > or = 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield ( approximately 60 L(f)/mL) about 33% higher than those of fed-batch runs with addition at fixed concentration ( approximately 45 L(f)/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification.

  18. Analyzing data flows of WLCG jobs at batch job level

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-05-01

    With the introduction of federated data access to the workflows of WLCG, it is becoming increasingly important for data centers to understand specific data flows regarding storage element accesses, firewall configurations, as well as the scheduling of batch jobs themselves. As existing batch system monitoring and related system monitoring tools do not support measurements at batch job level, a new tool has been developed and put into operation at the GridKa Tier 1 center for monitoring continuous data streams and characteristics of WLCG jobs and pilots. Long term measurements and data collection are in progress. These measurements already have been proven to be useful analyzing misbehaviors and various issues. Therefore we aim for an automated, realtime approach for anomaly detection. As a requirement, prototypes for standard workflows have to be examined. Based on measurements of several months, different features of HEP jobs are evaluated regarding their effectiveness for data mining approaches to identify these common workflows. The paper will introduce the actual measurement approach and statistics as well as the general concept and first results classifying different HEP job workflows derived from the measurements at GridKa.

  19. Treatment of agro based industrial wastewater in sequencing batch reactor: performance evaluation and growth kinetics of aerobic biomass.

    PubMed

    Lim, J X; Vadivelu, V M

    2014-12-15

    A sequencing batch reactor (SBR) with a working volume of 8 L and an exchange ratio of 25% was used to enrich biomass for the treatment of the anaerobically treated low pH palm oil mill effluent (POME). The influent concentration was stepwise increased from 5000 ± 500 mg COD/L to 11,500 ± 500 mg COD/L. The performance of the reactor was monitored at different organic loading rates (OLRs). It was found that approximately 90% of the COD content of the POME wastewater was successfully removed regardless of the OLR applied to the SBR. Cycle studies of the SBR show that the oxygen uptake by the biomass while there is no COD reduction may be due to the oxidation of the storage product by the biomass. Further, the growth kinetic parameters of the biomass were determined in batch experiments using respirometer. The maximum specific growth rate (μmax) was estimated to be 1.143 day(-1) while the half saturation constant (Ks) with respect to COD was determined to be 0.429 g COD/L. The decay coefficient (bD) and biomass yield (Y) were found to be 0.131 day(-1) and 0.272 mg biomass/mg COD consumed, respectively.

  20. Effect of solids retention time on nitrogen and phosphorus removal from municipal wastewater in a sequencing batch membrane bioreactor.

    PubMed

    Belli, Tiago José; Bernardelli, Jossy Karla Brasil; da Costa, Rayra Emanuelly; Bassin, João Paulo; Amaral, Miriam Cristina Santos; Lapolli, Flávio Rubens

    2017-04-01

    This study evaluated the removal of organic matter, nitrogen and phosphate from a municipal wastewater in a sequencing batch membrane bioreactor (SBMBR) operated at different solids retention times (SRTs) and subjected to different aeration profiles. The results demonstrated that SRT reduction from 80 to 20 d had a negligible effect on chemical oxygen demand (COD) removal and only a slight negative effect on nitrification. COD removal efficiency remained stable at 97%, whereas ammonium removal decreased from 99% to 97%. The total nitrogen removal efficiency was improved by SRT reduction, increasing from 80% to 86%. Although the total phosphorus (TP) removal was not significantly affected by the SRT reduction, ranging from 40-49%, the P-release and P-uptake processes were observed to increase as the SRT was reduced. The implementation of a pre-aeration phase in the SBMBR operating cycle allowed a higher TP removal performance, which reached up to 76%. Batch tests suggested that the fraction of phosphate removed anoxically from the total (anoxic + aerobic) phosphate removal decreased with the SRT reduction.

  1. 40 CFR 204.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Acceptance and rejection of batch... § 204.57-7 Acceptance and rejection of batch sequence. (a) The manufacturer will continue to inspect... inspected until the cumulative number of rejected batches is less than or equal to the sequence...

  2. 40 CFR 205.57-7 - Acceptance and rejection of batch sequence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Acceptance and rejection of batch....57-7 Acceptance and rejection of batch sequence. (a) The manufacturer will continue to inspect... batches is less than or equal to the sequence acceptance number of greater than or equal to the...

  3. 40 CFR 204.57-6 - Acceptance and rejection of batches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Acceptance and rejection of batches... Acceptance and rejection of batches. (a) A failing compressor is one whose measured sound level is in excess... sufficient number of test samples will be drawn from the batch sample until the cumulative number of...

  4. BatchPrimer3: A high throughput web application for PCR and sequencing primer design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new web primer design program, BatchPrimer3, is developed based on Primer3. BatchPrimer3 adopted the Primer3 core program as a major primer design engine to choose the best primer pairs. A new score-based primer picking module is incorporated into BatchPrimer3 and used to pick position-restricte...

  5. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year...

  6. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year...

  7. Polynomial Transfer Lot Sizing Techniques for Batch Processing on Consecutive Machines

    DTIC Science & Technology

    1989-09-01

    batch, while still specifying sizable batches? Goldratt , the developer of OPT (Optimized Production Technology) [7; 12, pp. 692-715; 101, answered this...and Jeffrey L Rummel, Batching to Minimize Flow Times on One Machine, Management Science, 33, #6, 1987, pp. 784-799. [71 Goldratt , Eliyahu and Robert

  8. 40 CFR 63.1322 - Batch process vents-reference control technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-reference control technology. 63.1322 Section 63.1322 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Batch process vents—reference control technology. (a) Batch process vents. The owner or operator of...

  9. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Batch process vents-monitoring... Batch process vents—monitoring equipment. (a) General requirements. Each owner or operator of a batch... § 63.1322(a) or § 63.1322(b), shall install the monitoring equipment specified in paragraph (c) of...

  10. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Batch front-end process vents-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process...

  11. 40 CFR 63.1322 - Batch process vents-reference control technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Batch process vents-reference control technology. 63.1322 Section 63.1322 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Batch process vents—reference control technology. (a) Batch process vents. The owner or operator of...

  12. Classical Solution Thermodynamics: A Retrospective View.

    ERIC Educational Resources Information Center

    Van Ness, H. C.; Abbott, M. M.

    1985-01-01

    Examines topics related to classical solution thermodynamics, considering energy, enthalpy, and the Gibbs function. Applicable mathematical equations are introduced and discussed when appropriate. (JN)

  13. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  14. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  15. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  16. Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots.

    PubMed

    Gao, Yanzheng; Cheng, Zhaoxia; Ling, Wanting; Huang, Jing

    2010-09-01

    The arbuscular mycorrhizal (AM) hyphae-mediated uptake of polycyclic aromatic hydrocarbons (PAHs) by the roots of ryegrass (Lolium multiflorum Lam.) was investigated using three-compartment systems. Glomus mosseae and Glomus etunicatum were chosen, and fluorene and phenanthrene were used as representative PAHs. When roots were grown in un-spiked soils, AM hyphae extended into PAH-spiked soil and clearly absorbed and transported PAHs to roots, resulting in high concentrations of fluorene and phenanthrene in roots. This was further confirmed by the batch equilibration experiment, which revealed that the partition coefficients (K(d)) of tested PAHs by mycorrhizal hyphae were 270-356% greater than those by roots, suggesting the great potential of hyphae to absorb PAHs. Because of fluorene's lower molecular weight and higher water solubility, its translocation by hyphae was greater than that of phenanthrene. These results provide new perspectives on the AM hyphae-mediated uptake by plants of organic contaminants from soil.

  17. Thermodynamic properties of triphenylantimony dibenzoate

    NASA Astrophysics Data System (ADS)

    Markin, A. V.; Smirnova, N. N.; Lyakaev, D. V.; Klimova, M. N.; Sharutin, V. V.; Sharutina, O. K.

    2016-10-01

    The temperature dependence of the heat capacity of triphenylantimony dibenzoate Ph3Sb(OC(O)Ph)2 is studied in the range of 6-480 K by means of precision adiabatic vacuum calorimetry and differential scanning calorimetry. The melting of the compound is observed in this temperature range, and its standard thermodynamic characteristics are identified and analyzed. Ph3Sb(OC(O)Ph)2 is obtained in a metastable amorphous state in a calorimeter. The standard thermodynamic functions of Ph3Sb(OC(O)Ph)2 in the crystalline and liquid states are calculated from the obtained experimental data: C p ° ( T), H°( T)- H°(0), S°( T), and G°(T)- H°(0) for the region from T → 0 to 480 K. The standard entropy of formation of the compound in the crystalline state at T = 298.15 K is determined. Multifractal processing of the low-temperature ( T < 50 K) heat capacity of the compound is performed. It is concluded that the structure of the compound has a planar chain topology.

  18. Thermodynamic indicators for environmental certification.

    PubMed

    Panzieri, Margherita; Porcelli, Marcello; Pulselli, Federico Maria

    2002-09-01

    The Earth is an open thermodynamic system, that remains in a steady state far from the equilibrium, through energy and matter exchanges with the surrounding environment. These natural constraints, which prevent the system from maximizing its entropy, are threatened by human action and our ecosystem needs urgent protection. In this viewpoint the environmental certification was born, according to international standards ISO 14001, ISO 14040, and European Regulation EMAS. These are voluntary adhesions to a program of environmental protection by companies, administrations and organizations which, starting from the respect of the existing environmental laws and regulations, decide to further improve their environmental performance. To obtain and maintain certification of a system is necessary to apply some indicators to evaluate its environmental performance and to demonstrate its progressive improvement. Here we propose to use for this purpose the thermodynamic indicators produced from energy analysis by Odum. The case study is Montalcino city (Italy) and energy indicators are used to evaluate environmental performance of this system where exist different activities, from agricultural productions, to tourism. Results show that energy analysis could become a valid standard monitoring method for environmental certification, especially in consideration of its wide application field.

  19. Inconsistencies in steady state thermodynamics

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Motai, Ricardo

    2014-03-01

    We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. These quantities are determined via zero-flux conditions of particles and energy between the driven system and a reservoir. For the models considered here, the fluxes are given in terms of certain stationary average densities, eliminating the need to perturb the system by actually exchanging particles; μ and Te are thereby obtained via open-circuit measurements, using a virtual reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas, both μ and Te need to be defined. We show analytically that the zeroth law is violated, and determine the size of the violations numerically. Our results highlight a fundamental inconsistency in the extension of thermodynamics to nonequilibrium steady states. Research supported by CNPq, Brazil.

  20. QCD thermodynamics on a lattice

    NASA Astrophysics Data System (ADS)

    Levkova, Ludmila A.

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.

  1. Thermodynamic States in Explosion Fields

    SciTech Connect

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  2. Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast

    PubMed Central

    2011-01-01

    Background The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. Results To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. Conclusions As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs. PMID:22023736

  3. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    PubMed

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes.

  4. Improved propionic acid production from glycerol: combining cyclic batch- and sequential batch fermentations with optimal nutrient composition.

    PubMed

    Dishisha, Tarek; Ibrahim, Mohammad H A; Cavero, Victor Hugo; Alvarez, Maria Teresa; Hatti-Kaul, Rajni

    2015-01-01

    Propionic acid was produced from glycerol using Propionibacterium acidipropionici. In this study, the impact of the concentrations of carbon and nitrogen sources, and of different modes of high cell density fermentations on process kinetics and -efficiency was investigated. Three-way ANOVA analysis and batch cultivations at varying C/N ratios at pH 6.5 revealed that propionic acid production rate is significantly influenced by yeast extract concentration. Glycerol to yeast extract ratio (ww(-1)) of 3:1 was required for complete glycerol consumption, while maintaining the volumetric productivity. Using this optimum C/N ratio for propionic acid production in cyclic batch fermentation gave propionate yield up to 93mol% and productivity of 0.53gL(-1)h(-1). Moreover, sequential batch fermentation with cell recycling resulted in production rates exceeding 1gL(-1)h(-1) at initial glycerol up to 120gL(-1), and a maximum of 1.63gL(-1)h(-1) from 90gL(-1) glycerol.

  5. Synthesis of lactulose in batch and repeated-batch operation with immobilized β-galactosidase in different agarose functionalized supports.

    PubMed

    Guerrero, Cecilia; Vera, Carlos; Illanes, Andrés

    2017-04-01

    Lactulose synthesis was done in repeated-batch mode with Aspergillus oryzae β-galactosidase immobilized in glyoxyl-agarose (GA-βG), amino-glyoxyl-agarose (Am-GA-βG) and chelate-glyoxyl-agarose (Che-GA-βG), at fructose/lactose molar ratios of 4, 12 and 20. Highest yields of lactulose in batch were obtained with Che-GA-βG (0.21, 0.29 and 0.32g·g(-1)) for 4, 12 and 20 fructose/lactose molar ratios respectively; when operating in 10 repeated batches highest product to biocatalyst mass ratios were obtained with Am-GA-βG (1.82, 2.52 and 2.7g·mg(-1)), while the lowest were obtained with Che-GA-βG (0.25, 0.33 and 0.39g·mg(-1)). Operational stability of Am-GA-βG was higher than GA-βG and Che-GA-βG and much higher than that of the free enzyme, at all fructose/lactose molar ratios evaluated. Efficiency of biocatalyst use for GA-βG were 64.4, 35.5 and 18.4kglactulose/gprotein, for fructose/lactose molar ratios of 4, 12 and 20 respectively, while for Che-GA-βG were 1.46, 1.05 and 0.96kglactulose/gprotein.

  6. DNA Uptake by Transformable Bacteria

    SciTech Connect

    Lacks, Sanford A.

    1999-03-31

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  7. DNA UPTAKE BY TRANSFORMABLE BACTERIA

    SciTech Connect

    LACKS,S.A.

    1999-09-07

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  8. An updated model for nitrate uptake modelling in plants. II. Assessment of active root involvement in nitrate uptake based on integrated root system age: measured versus modelled outputs

    PubMed Central

    Malagoli, Philippe; Le Deunff, Erwan

    2014-01-01

    Background and Aims An updated version of a mechanistic structural–functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions. Methods The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow–Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root. Key Results Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0–30 and 30–60 cm) contained 75–88 % of the total root length and biomass, and accounted for 90–95 % of N taken up at harvest. Conclusions This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels. PMID:24709791

  9. Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins.

    PubMed

    Crolla, A; Kennedy, K J

    2004-05-13

    This study reports on the effects of fermentor agitation and fed-batch mode of operation on citric acid production from Candida lipolytica using n-paraffin as the carbon source. An optimum range of agitation speeds in the 800-1000 rpm range corresponding to Reynolds numbers of 50000-63000 (based on initial batch conditions) seemed to give the best balance between substrate utilization for biomass growth and citric acid production. Application of multiple fed-batch feedings can be used to extend the batch fermentation and increase final citric acid concentrations and product yield. The three-cycle fed-batch system increased overall citric acid yields to 0.8-1.0 g citricacid/g n-paraffin, approximately a 100% improvement in product yield from those observed in the single cycle fed-batch system and a 200% improvement over normal batch operation. The three-cycle fed-batch mode of operation also increased the final citric acid concentration to 42 g/l from about 12 and 6g/l for single fed-batch cycle and normal batch modes of operation, respectively. Increased citric acid concentrations in three-cycle fed-batch mode was achieved at longer fermentation times.

  10. Teaching Differentials in Thermodynamics Using Spatial Visualization

    ERIC Educational Resources Information Center

    Wang, Chih-Yueh; Hou, Ching-Han

    2012-01-01

    The greatest difficulty that is encountered by students in thermodynamics classes is to find relationships between variables and to solve a total differential equation that relates one thermodynamic state variable to two mutually independent state variables. Rules of differentiation, including the total differential and the cyclic rule, are…

  11. The Development of Understanding in Elementary Thermodynamics.

    ERIC Educational Resources Information Center

    Lewis, Eileen Lob

    This study investigates how students participating in the same curriculum construct understanding in elementary thermodynamics during a semester-long eighth-grade physical science class. Two questions were addressed: (1) How does the learners' understanding change during the study of elementary thermodynamics? and (2) What role do students'…

  12. Understanding Product Optimization: Kinetic versus Thermodynamic Control.

    ERIC Educational Resources Information Center

    Lin, King-Chuen

    1988-01-01

    Discusses the concept of kinetic versus thermodynamic control of reactions. Explains on the undergraduate level (1) the role of kinetic and thermodynamic control in kinetic equations, (2) the influence of concentration and temperature upon the reaction, and (3) the application of factors one and two to synthetic chemistry. (MVL)

  13. Thermodynamics of Radiation-Balanced Lasing

    DTIC Science & Technology

    2003-05-01

    Thermodynamics of radiation - balanced lasing Carl E. Mungan Department of Physics, U.S. Naval Academy, Annapolis, Maryland 21402-5026 Received August...1. REPORT DATE DEC 2002 2. REPORT TYPE 3. DATES COVERED 00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE Thermodynamics of radiation - balanced lasing 5a

  14. Black hole chemistry: thermodynamics with Lambda

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Mann, Robert B.; Teo, Mae

    2017-03-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.

  15. Molecular thermodynamics for chemical process design.

    PubMed

    Prausnitz, J M

    1979-08-24

    Chemical process design requires quantitative information on the equilibrium properties of a variety of fluid mixtures. Since the experimental effort needed to provide this information is often prohibitive in cost and time, chemical engineers must utilize rational estimation techniques based on limited experimental data. The basis for such techniques is molecular thermodynamics, a synthesis of classical and statistical thermodynamics, molecular physics, and physical chemistry.

  16. A Vector Representation for Thermodynamic Relationships

    ERIC Educational Resources Information Center

    Pogliani, Lionello

    2006-01-01

    The existing vector formalism method for thermodynamic relationship maintains tractability and uses accessible mathematics, which can be seen as a diverting and entertaining step into the mathematical formalism of thermodynamics and as an elementary application of matrix algebra. The method is based on ideas and operations apt to improve the…

  17. An Experimental Determination of Thermodynamic Values

    ERIC Educational Resources Information Center

    Antony, Erling; Muccianti, Christine; Vogel, Tracy

    2012-01-01

    Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)

  18. Understanding the Thermodynamics of Biological Order

    ERIC Educational Resources Information Center

    Peterson, Jacob

    2012-01-01

    By growth in size and complexity (i.e., changing from more probable to less probable states), plants and animals appear to defy the second law of thermodynamics. The usual explanation describes the input of nutrient and sunlight energy into open thermodynamic systems. However, energy input alone does not address the ability to organize and create…

  19. Friction Force: From Mechanics to Thermodynamics

    ERIC Educational Resources Information Center

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  20. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  1. Optical Melting Measurements of Nucleic Acid Thermodynamics

    PubMed Central

    Turner, Douglas H.

    2014-01-01

    Optical melting experiments provide measurements of thermodynamic parameters for nucleic acids. These thermodynamic parameters are widely used in RNA structure prediction programs and DNA primer design software. This review briefly summarizes the theory and underlying assumptions of the method and provides practical details for instrument calibration, experimental design, and data interpretation. PMID:20946778

  2. Physiologically-based toxicokinetic models help identifying the key factors affecting contaminant uptake during flood events.

    PubMed

    Brinkmann, Markus; Eichbaum, Kathrin; Kammann, Ulrike; Hudjetz, Sebastian; Cofalla, Catrina; Buchinger, Sebastian; Reifferscheid, Georg; Schüttrumpf, Holger; Preuss, Thomas; Hollert, Henner

    2014-07-01

    As a consequence of global climate change, we will be likely facing an increasing frequency and intensity of flood events. Thus, the ecotoxicological relevance of sediment re-suspension is of growing concern. It is vital to understand contaminant uptake from suspended sediments and relate it to effects in aquatic biota. Here we report on a computational study that utilizes a physiologically based toxicokinetic model to predict uptake, metabolism and excretion of sediment-borne pyrene in rainbow trout (Oncorhynchus mykiss). To this end, data from two experimental studies were compared with the model predictions: (a) batch re-suspension experiments with constant concentration of suspended particulate matter at two different temperatures (12 and 24°C), and (b) simulated flood events in an annular flume. The model predicted both the final concentrations and the kinetics of 1-hydroxypyrene secretion into the gall bladder of exposed rainbow trout well. We were able to show that exhaustive exercise during exposure in simulated flood events can lead to increased levels of biliary metabolites and identified cardiac output and effective respiratory volume as the two most important factors for contaminant uptake. The results of our study clearly demonstrate the relevance and the necessity to investigate uptake of contaminants from suspended sediments under realistic exposure scenarios.

  3. Respirometric response and microbial succession of nitrifying sludge to m-cresol pulses in a sequencing batch reactor.

    PubMed

    Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro

    2017-02-01

    A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L(-1)) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L(-1) m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.

  4. Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB) producing sequencing batch reactors at short SRTs.

    PubMed

    Johnson, Katja; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2010-04-01

    Many waste streams that are suitable substrates for mixed culture bioplastic (polyhydroxyalkanoate, PHA) production are nutrient limited and may need to be supplemented to allow sufficient growth of PHA accumulating bacteria. The scope of this study was to investigate the necessity of nutrient supplementation for the enrichment of an efficient PHA producing mixed culture. We studied the influence of different degrees of carbon and nitrogen limitation on the performance of an acetate-fed feast-famine sequencing batch reactor (SBR) employed to enrich PHA storing bacteria. The microbial reaction rates in the SBR showed a shift with a change in the limiting substrate: high acetate uptake rates were found in carbon-limited SBRs (medium C/N ratios 6-13.2 Cmol/Nmol), while nitrogen-limited SBRs (medium C/N ratios 15-24 Cmol/Nmol) were characterized by high ammonia uptake rates. Biomass in strongly nitrogen-limited SBRs had higher baseline PHA contents in the SBR, but carbon-limited SBRs resulted usually in biomass with higher maximal PHA storage capacities. The PHA storage capacity in a nitrogen-limited SBR operated at 0.5 d SRT decreased significantly over less than 5 months operation. For the microbial selection and biomass production stage of a PHA production process carbon limitation seems thus favourable and nutrient deficient wastewaters may consequently require supplementation with nutrients for the selection of a stable PHA storing biomass with a high storage capacity.

  5. Application of thermodynamics to silicate crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1972-01-01

    A review of thermodynamic relations is presented, describing Guggenheim's regular solution models, the simple mixture, the zeroth approximation, and the quasi-chemical model. The possibilities of retrieving useful thermodynamic quantities from phase equilibrium studies are discussed. Such quantities include the activity-composition relations and the free energy of mixing in crystalline solutions. Theory and results of the study of partitioning of elements in coexisting minerals are briefly reviewed. A thermodynamic study of the intercrystalline and intracrystalline ion exchange relations gives useful information on the thermodynamic behavior of the crystalline solutions involved. Such information is necessary for the solution of most petrogenic problems and for geothermometry. Thermodynamic quantities for tungstates (CaWO4-SrWO4) are calculated.

  6. Black hole thermodynamics in MOdified Gravity (MOG)

    NASA Astrophysics Data System (ADS)

    Mureika, Jonas R.; Moffat, John W.; Faizal, Mir

    2016-06-01

    We analyze the thermodynamical properties of black holes in a modified theory of gravity, which was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without dark matter. The thermodynamics of non-rotating and rotating black hole solutions resembles similar solutions in Einstein-Maxwell theory with the electric charge being replaced by a new mass dependent gravitational charge Q =√{ αGN } M. This new mass dependent charge modifies the effective Newtonian constant from GN to G =GN (1 + α), and this in turn critically affects the thermodynamics of the black holes. We also investigate the thermodynamics of regular solutions, and explore the limiting case when no horizons forms. So, it is possible that the modified gravity can lead to the absence of black hole horizons in our universe. Finally, we analyze corrections to the thermodynamics of a non-rotating black hole and obtain the usual logarithmic correction term.

  7. eQuilibrator--the biochemical thermodynamics calculator.

    PubMed

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  8. Thermodynamic Model of Noise Information Transfer

    NASA Astrophysics Data System (ADS)

    Hejna, Bohdan

    2008-10-01

    In this paper we apply a certain unifying physical description of the results of Information Theory. Assuming that heat entropy is a thermodynamic realization of information entropy [2], we construct a cyclical, thermodynamic, average-value model of an information transfer chain [3] as a general heat engine, in particular a Carnot engine, reversible or irreversible. A working medium of the cycle (a thermodynamic system transforming input heat energy) can be considered as a thermodynamic, average-value model or, as such, as a realization of an information transfer channel. We show that in a model realized in this way the extended II. Principle of Thermodynamics is valid [2] and we formulate its information form.

  9. Horizon thermodynamics in fourth-order gravity

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen

    2017-03-01

    In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE = TdS - PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called ;Legendre transformation; at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.

  10. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung; Takahashi, Taro

    1993-06-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0{sup 2} include carbon chemistry, distribution of alkalinity, pCO{sup 2} and total concentration of dissolved C0{sup 2}, sea-air pCO{sup 2} difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0{sup 2} uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0{sup 2} from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0{sup 2} fertilization is a potential candidate for such missing carbon sinks.

  11. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung ); Takahashi, Taro . Lamont-Doherty Earth Observatory)

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0[sup 2] include carbon chemistry, distribution of alkalinity, pCO[sup 2] and total concentration of dissolved C0[sup 2], sea-air pCO[sup 2] difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0[sup 2] uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0[sup 2] from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0[sup 2] fertilization is a potential candidate for such missing carbon sinks.

  12. Stochastic thermodynamics for active matter

    NASA Astrophysics Data System (ADS)

    Speck, Thomas

    2016-05-01

    The theoretical understanding of active matter, which is driven out of equilibrium by directed motion, is still fragmental and model oriented. Stochastic thermodynamics, on the other hand, is a comprehensive theoretical framework for driven systems that allows to define fluctuating work and heat. We apply these definitions to active matter, assuming that dissipation can be modelled by effective non-conservative forces. We show that, through the work, conjugate extensive and intensive observables can be defined even in non-equilibrium steady states lacking a free energy. As an illustration, we derive the expressions for the pressure and interfacial tension of active Brownian particles. The latter becomes negative despite the observed stable phase separation. We discuss this apparent contradiction, highlighting the role of fluctuations, and we offer a tentative explanation.

  13. Thermodynamic volume of cosmological solitons

    NASA Astrophysics Data System (ADS)

    Mbarek, Saoussen; Mann, Robert B.

    2017-02-01

    We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter a, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass Mout satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring Mout to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.

  14. Thermodynamics of freezing and melting.

    PubMed

    Pedersen, Ulf R; Costigliola, Lorenzo; Bailey, Nicholas P; Schrøder, Thomas B; Dyre, Jeppe C

    2016-08-17

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature-pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system.

  15. Advanced working fluids: Thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Lee, Lloyd L.; Gering, Kevin L.

    1990-10-01

    Electrolytes are used as working fluids in gas fired heat pump chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. An accurate correlation is developed to evaluate properties for concentrated electrolyte solutions. Sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in strongly colligative cosolvent. The operating windows are determined for a number of absorption fluids of industrial importance.

  16. Satellite observed thermodynamics during FGGE

    NASA Technical Reports Server (NTRS)

    Smith, W. L.

    1985-01-01

    During the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE), determinations of temperature and moisture were made from TIROS-N and NOAA-6 satellite infrared and microwave sounding radiance measurements. The data were processed by two methods differing principally in their horizontal resolution. At the National Earth Satellite Service (NESS) in Washington, D.C., the data were produced operationally with a horizontal resolution of 250 km for inclusion in the FGGE Level IIb data sets for application to large-scale numerical analysis and prediction models. High horizontal resolution (75 km) sounding data sets were produced using man-machine interactive methods for the special observing periods of FGGE at the NASA/Goddard Space Flight Center and archived as supplementary Level IIb. The procedures used for sounding retrieval and the characteristics and quality of these thermodynamic observations are given.

  17. Thermodynamics of Photons on Fractals

    SciTech Connect

    Akkermans, Eric; Dunne, Gerald V.; Teplyaev, Alexander

    2010-12-03

    A thermodynamical treatment of a massless scalar field (a photon) confined to a fractal spatial manifold leads to an equation of state relating pressure to internal energy, PV{sub s}=U/d{sub s}, where d{sub s} is the spectral dimension and V{sub s} defines the 'spectral volume'. For regular manifolds, V{sub s} coincides with the usual geometric spatial volume, but on a fractal this is not necessarily the case. This is further evidence that on a fractal, momentum space can have a different dimension than position space. Our analysis also provides a natural definition of the vacuum (Casimir) energy of a fractal. We suggest ways that these unusual properties might be probed experimentally.

  18. Simple thermodynamics of jet engines

    NASA Astrophysics Data System (ADS)

    Patrício, Pedro; Tavares, José M.

    2010-08-01

    We use the first and second laws of thermodynamics to analyze the behavior of an ideal jet engine. Simple analytical expressions for the thermal efficiency, the overall efficiency, and the reduced thrust are derived. We show that the thermal efficiency depends only on the compression ratio r and on the velocity of the aircraft. The other two performance measures depend also on the ratio of the temperature at the turbine to the inlet temperature in the engine, T3/Ti. An analysis of these expressions shows that it is not possible to choose an optimal set of values of r and T3/Ti that maximize both the overall efficiency and thrust. We study how irreversibilities in the compressor and the turbine decrease the overall efficiency of jet engines and show that this effect is more pronounced for smaller T3/Ti.

  19. Thermodynamics of freezing and melting

    PubMed Central

    Pedersen, Ulf R.; Costigliola, Lorenzo; Bailey, Nicholas P.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  20. Thermodynamics of Intragenic Nucleosome Ordering

    NASA Astrophysics Data System (ADS)

    Chevereau, G.; Palmeira, L.; Thermes, C.; Arneodo, A.; Vaillant, C.

    2009-10-01

    The nucleosome ordering observed in vivo along yeast genes is described by a thermodynamical model of nonuniform fluid of 1D hard rods confined by two excluding energy barriers at gene extremities. For interbarrier distances L≲1.5kbp, nucleosomes equilibrate into a crystal-like configuration with a nucleosome repeat length (NRL) L/ñ165bp, where n is the number of regularly positioned nucleosomes. We also observe “bistable” genes with a fuzzy chromatin resulting from a statistical mixing of two crystal states, one with an expanded chromatin (NRL ˜L/n) and the other with a compact one (NRL ˜L/(n+1)). By means of single nucleosome switching, bistable genes may drastically alter their expression level as suggested by their higher transcriptional plasticity. These results enlighten the role of the intragenic chromatin on gene expression regulation.

  1. Extended thermodynamics of dense gases

    NASA Astrophysics Data System (ADS)

    Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M.

    2012-11-01

    We study extended thermodynamics of dense gases by adopting the system of field equations with a different hierarchy structure to that adopted in the previous works. It is the theory of 14 fields of mass density, velocity, temperature, viscous stress, dynamic pressure, and heat flux. As a result, most of the constitutive equations can be determined explicitly by the caloric and thermal equations of state. It is shown that the rarefied-gas limit of the theory is consistent with the kinetic theory of gases. We also analyze three physically important systems, that is, a gas with the virial equations of state, a hard-sphere system, and a van der Waals fluid, by using the general theory developed in the former part of the present work.

  2. Thermodynamics of lunar ilmenite reduction

    NASA Technical Reports Server (NTRS)

    Altenberg, B. H.; Franklin, H. A.; Jones, C. H.

    1993-01-01

    With the prospect of returning to the moon, the development of a lunar occupation would fulfill one of the goals of the Space Exploration Initiative (SEI) of the late 1980's. Processing lunar resources into useful products, such as liquid oxygen for fuel and life support, would be one of many aspects of an active lunar base. ilmenite (FeTiO3) is found on the lunar surface and can be used as a feed stock to produce oxygen. Understanding the various ilmenite-reduction reactions elucidates many processing options. Defining the thermodynamic chemical behavior at equilibrium under various conditions of temperature and pressures can be helpful in specifying optimal operating conditions. Differences between a previous theoretical analysis and experimentally determined results has sparked interest in trying to understand the effect of operating pressure on the hydrogen-reduction-of-ilmenite reaction. Various aspects of this reduction reaction are discussed.

  3. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor.

    PubMed

    Prachakittikul, Pensiri; Wantawin, Chalermraj; Noophan, Pongsak Lek; Boonapatcharoen, Nimaradee

    2016-01-01

    Ammonium removal by the ANaerobic AMonium OXidation (ANAMMOX) process was observed through the Sulfate-Reducing Ammonium Oxidation (SRAO) process. The same concentration of ammonium (100 mg N L(-1)) was applied to two anaerobic sequencing batch reactors (AnSBRs) that were inoculated with the same activated sludge from the Vermicelli wastewater treatment process, while nitrite was fed in ANAMMOX and sulfate in SRAO reactors. In SRAO-AnSBR, in substrates that were fed with a ratio of NH4(+)/SO4(2-) at 1:0.4 ± 0.03, a hydraulic retention time (HRT) of 48 h and without sludge draining, the Ammonium Removal Rate (ARR) was 0.02 ± 0.01 kg N m(-3).d(-1). Adding specific ANAMMOX substrates to SRAO-AnSBR sludge in batch tests results in specific ammonium and nitrite removal rates of 0.198 and 0.139 g N g(-1) VSS.d, respectively, indicating that the ANAMMOX activity contributes to the removal of ammonium in the SRAO process using the nitrite that is produced from SRAO. Nevertheless, the inability of ANAMMOX to utilize sulfate to oxidize ammonium was also investigated in batch tests by augmenting enriched ANAMMOX culture in SRAO-AnSBR sludge and without nitrite supply. The time course of sulfate in a 24-hour cycle of SRAO-AnSBR showed an increase in sulfate after 6 h. For enriched SRAO culture, the uptake molar ratio of NH4(+)/SO4(2-) at 8 hours in a batch test was 1:0.82 lower than the value of 1:0.20 ± 0.09 as obtained in an SRAO-AnSBR effluent, while the stoichiometric ratio of 1:0.5 that includes the ANAMMOX reaction was in this range. After a longer operation of more than 2 years without sludge draining, the accumulation of sulfate and the reduction of ammonium removal were observed, probably due to the gradual increase in the sulfur denitrification rate and the competitive use of nitrite with ANAMMOX. The 16S rRNA gene PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR cloning analyses resulted in the detection of the ANAMMOX

  4. Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals.

    PubMed

    Hu, Zhiqiang; Ferraina, Richard A; Ericson, Jon F; Mackay, Allison A; Smets, Barth F

    2005-02-01

    The physical and biochemical characteristics of the biomass in three lab-scale sequencing batch reactors (SBR) treating a synthetic wastewater at a 20-day target solids retention time (SRT) were investigated. The synthetic wastewater feed contained biogenic compounds and 22 organic priming compounds, chosen to represent a wide variety of chemical structures with different N, P and S functional groups. At a two-day hydraulic retention time (HRT), the oxidation-reduction potential (ORP) cycled between -100 (anoxic) and 100 mV (aerobic) in the anoxic/aerobic SBR, while it remained in a range of 126+/-18 and 249+/-18 mV in the aerobic sequencing batch biofilm reactor (SBBR) and the aerobic SBR reactor, respectively. A granular activated sludge with excellent settleability (SVI=98+/-31 L mg(-1)) developed only in the anoxic/aerobic SBR, compared to a bulky sludge with poor settling characteristics in the aerobic SBR and SBBR. While all reactors had very good COD removal (>90%) and displayed nitrification, substantial nitrogen removal (74%) was only achieved in the anoxic/aerobic SBR. During the entire operational period, benzoate, theophylline and 4-chlorophenol were completely removed in all reactors. In contrast, effluent 3-nitrobenzoate was recorded when its influent concentration was increased to 5 mg L(-1) and dropped only to below 1 mg L(-1) after 300 days of operation. The competent (active) biomass fractions for these compounds were between 0.04% and 5.52% of the total biomass inferred from substrate-specific microbial enumerations. The measured competent biomass fractions for 4-chlorophenol and 3-nitrobenzoate degradation were significantly lower than the influent COD fractions of these compounds. Correspondent to the highest competent biomass fraction for benzoate degradation among the test SOCs, benzoate oxidation could be quantified with an extant respirometric technique, with the highest specific oxygen uptake rate (SOUR(benzoate), 0.026 g O2 h(-1) g(-1

  5. Seroprevalence of enteropathogenic Yersinia spp. in pig batches at slaughter.

    PubMed

    Vanantwerpen, Gerty; Van Damme, Inge; De Zutter, Lieven; Houf, Kurt

    2014-09-01

    Enteropathogenic Yersinia spp. are one of the main causes of foodborne bacterial infections in Europe. Slaughter pigs are the main reservoir and carcasses are contaminated during a sub-optimal hygienically slaughtering-process. Serology is potentially an easy option to test for the Yersinia-status of the pig (batches) before slaughter. A study of the variation in activity values (OD%) of Yersinia spp. in pigs and pig batches when applying a serological test were therefore conducted. In this study, pieces of the diaphragm of 7047 pigs, originating from 100 farms, were collected and meat juice was gathered, where after an enzyme-linked immunosorbent assay (ELISA) Pigtype Yopscreen (Labor Diagnostik Leipzig, Qiagen, Leipzig, Germany) was performed. The results were defined positive if the activity values exceeded the proposed cut-off value of 30 OD%. Results at pig level displayed a bimodal-shaped distribution with modes at 0-10% (n=879) and 50-60% (n=667). The average OD% was 51% and 66% of the animals tested positive. The within-batch seroprevalence ranged from 0 to 100% and also showed a bimodal distribution with modes at 0% (n=7) and 85-90% (n=16). On 7 farms, no single seropositive animal was present and in 22 farms, the mean OD% was below 30%. Based on the results obtained at slaughter, 66% of the pigs had contact with enteropathogenic Yersinia spp. at farm level. The latter occurred in at least 93% of the farms indicating that most farms are harboring enteropathogenic Yersinia spp.

  6. Persistence of Escherichia coli in batch and continuous vermicomposting systems.

    PubMed

    Hénault-Ethier, Louise; Martin, Vincent J J; Gélinas, Yves

    2016-10-01

    Vermicomposting is a biooxidation process in which epigeicearthworms act in synergy with microbial populations to degrade organic matter. Vermicomposting does not go through a thermophilic stage as required by North American legislations for pathogen eradication. We examined the survival of a Green Fluorescent Protein (GFP) labeled Escherichia coli MG1655 as a model for the survival of pathogenic bacteria in both small-scale batch and medium-scale continuously-operated systems to discern the influence of the earthworm Eisenia fetida, nutrient content and the indigenous vermicompost microbial community on pathogen abundance. In batch systems, the microbial community had the greatest influence on the rapid decline of E. coli populations, and the effect of earthworms was only visible in microbially-impoverishedvermicomposts. No significant earthworm density-dependent relationship was observed on E. coli survival under continuous operation. E. coli numbers decreased below the US EPA compost sanitation guidelines of 10(3)Colony Forming Units (CFU)/g (dry weight) within 18-21days for both the small-scale batch and medium-scale continuous systems, but it took up to 51days without earthworms and with an impoverished microbial community to reach the legal limit. Nutrient replenishment (i.e. organic carbon) provided by continuous feed input did not appear to extend E. coli survival. In fact, longer survival of E. coli was noticed in treatments where less total and labile sugars were available, suggesting that sugars may support potentially antagonist bacteria in the vermicompost. Total N, pH and humidity did not appear to affect E. coli survival. Several opportunistic human pathogens may be found in vermicompost, and their populations are likely kept in check by antagonists.

  7. Predicting protein dynamic binding capacity from batch adsorption tests.

    PubMed

    Carta, Giorgio

    2012-10-01

    The dynamic binding capacity (DBC) and its dependence on residence time influence the design and productivity of adsorption columns used in protein capture applications. This paper offers a very simple approach to predict the DBC of an adsorption column based on a measurement of the equilibrium binding capacity (EBC) and of the time needed to achieve one-half of the EBC in a batch adsorption test. The approach is based on a mass transfer kinetics model that assumes pore diffusion with a rectangular isotherm; however, the same approach is also shown to work for other systems where solute transport inside the particle occurs through other transport mechanisms.

  8. Optimal policies for a finite-horizon batching inventory model

    NASA Astrophysics Data System (ADS)

    Al-Khamis, Talal M.; Benkherouf, Lakdere; Omar, Mohamed

    2014-10-01

    This paper is concerned with finding an optimal inventory policy for the integrated replenishment-production batching model of Omar and Smith (2002). Here, a company produces a single finished product which requires a single raw material and the objective is to minimise the total inventory costs over a finite planning horizon. Earlier work in the literature considered models with linear demand rate function of the finished product. This work proposes a general methodology for finding an optimal inventory policy for general demand rate functions. The proposed methodology is adapted from the recent work of Benkherouf and Gilding (2009).

  9. Determining gold in water by anion-exchange batch extraction

    USGS Publications Warehouse

    McHugh, J.B.

    1986-01-01

    This paper describes a batch procedure for determining gold in natural waters. It is completely adaptable to field operations. The water samples are filtered and acidified before they are equilibrated with an anion-exchange resin by shaking. The gold is then eluted with acetone-nitric acid solution, and the eluate evaporated to dryness. The residue is taken up in hydrobromic acid-bromine solution and the gold is extracted with methyl isobutyl ketone. The extract is electrothermally atomized in an atomic-absorption spectrophotometer. The limit of determination is 1 ng 1. ?? 1986.

  10. Batch adsorption of cadmium ions from aqueous solution by means of olive cake.

    PubMed

    Al-Anber, Zaid Ahmed; Matouq, Mohammed Abu Dayeh

    2008-02-28

    The use of natural adsorbent such as olive cake to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Jordan. In this study, batch adsorption experiments were carried out for the removal of cadmium ions from its aqueous solution using olive cake as adsorbent. Parameters effects such as temperature, pH and adsorbent dose on the adsorption process were studied. The adsorbent used in this study exhibited as good sorption at approximately pH 6 at temperatures 28, 35 and 45 degrees C. The removal efficiency was found to be 66% at pH 6 and temperature 28 degrees C. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models to calculate isotherm constants. The experimental results were in a good agreement with these models. Results show that when an increasing in temperature from 28 to 45 degrees C, the maximum adsorption capacity (qmax) is decreased from 65.4 to 44.4 mg/g and Freundlich constant (Kf) decreased from 19.9 to 15.7. The thermodynamic parameters for the adsorption process data were evaluated using Langmuir isotherm. The free energy change (DeltaG degrees) and the enthalpy change (DeltaH degrees) showed that the process was feasible and exothermic, respectively. The dynamic data fitted to the first order, Lagergren-first order and pseudo second-order kinetic models. The experimental results indicated that the pseudo second-order reaction model provided the best description for these data with a correlation coefficient of 0.99. The adsorption rate constant was calculated as 8.4x10(-3) g mg(-1) min(-1) at 28 degrees C.

  11. Mechanistic platform knowledge of concomitant sugar uptake in Escherichia coli BL21(DE3) strains

    PubMed Central

    Wurm, David J.; Hausjell, Johanna; Ulonska, Sophia; Herwig, Christoph; Spadiut, Oliver

    2017-01-01

    When producing recombinant proteins, the use of Escherichia coli strain BL21(DE3) in combination with the T7-based pET-expression system is often the method of choice. In a recent study we introduced a mechanistic model describing the correlation of the specific glucose uptake rate (qs,glu) and the corresponding maximum specific lactose uptake rate (qs,lac,max) for a pET-based E. coli BL21(DE3) strain producing a single chain variable fragment (scFv). We showed the effect of qs,lac,max on productivity and product location underlining its importance for recombinant protein production. In the present study we investigated the mechanistic qs,glu/qs,lac,max correlation for four pET-based E. coli BL21(DE3) strains producing different recombinant products and thereby proved the mechanistic model to be platform knowledge for E. coli BL21(DE3). However, we found that the model parameters strongly depended on the recombinant product. Driven by this observation we tested different dynamic bioprocess strategies to allow a faster investigation of this mechanistic correlation. In fact, we succeeded and propose an experimental strategy comprising only one batch cultivation, one fed-batch cultivation as well as one dynamic experiment, to reliably determine the mechanistic model for qs,glu/qs,lac,max and get trustworthy model parameters for pET-based E. coli BL21(DE3) strains which are the basis for bioprocess development. PMID:28332595

  12. Does the 14C method estimate net photosynthesis? Implications from batch and continuous culture studies of marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Pei, Shaofeng; Laws, Edward A.

    2013-12-01

    We carried out batch culture studies with seven species of marine phytoplankton and chemostat studies with two of the seven species to determine whether and to what extent 14C uptake approximated net photosynthesis. In two of seven cases, Isochrysis galbana and Dunaliella tertiolecta, cells uniformly labeled with 14C lost no activity when they were transferred to a 14C-free medium and allowed to grow in the light. In similar experiments with four other species, uniformly labeled cells lost activity when incubated in the light, but the loss rates were only a few percent per day. Thus these six species appear to respire primarily recently fixed carbon. In the case of the remaining species, Chlorella kessleri, loss rates of 14C in the light from uniformly labeled cells were about 29% per day, the apparent ratio of respiration to net photosynthesis being 0.4. Follow-up chemostat studies with I. galbana and C. kessleri grown under both light- and nitrate-limited conditions produced results consistent with the implications of the batch culture work: uptake of 14C by I. galbana after incubations of 24 h yielded estimates of photosynthetic carbon fixation equal to the product of the chemostat dilution rate and the concentration of organic carbon in the growth chamber. Similar experiments with C. kessleri produced 14C-based estimates of photosynthetic carbon fixation that exceeded the net rates of organic carbon production in the growth chamber by roughly 55%. Time-course studies with both species indicated that at high growth rates recently fixed carbon began to enter the respiratory substrate pool after a time lag of several hours, a result consistent with previous work with D. tertiolecta. The lag time appeared to be much shorter at low growth rates. The results with C. kessleri are similar to results previously reported for Chlorella pyrenoidosa and Amphidium carteri. Collectively these results suggest that 14C uptake by species with relatively high ratios of

  13. Uptake of HBR on ice films

    SciTech Connect

    Chu, L.T.

    1996-10-01

    Uptake is an initial step occurring in heterogeneous atmospheric reactions. It is a key step necessary to understand the reaction mechanism of heterogeneous reactions occurring on polar stratospheric clouds (PSCs) surfaces. The uptake of HBr on ice films has been investigated in a fast flow reactor and the amount is determined by using a differentially pumped quadrupole mass spectrometer combined with a pulsed molecular beam sampling method. A larger uptake and the formation of hydrobromic acid hydrates were observed in the uptake experiments. The effect of the ice film temperatures, HBr pressures, and ice film morphology on the uptake is studied. We will compare the uptake of HCl, HBr and HI on the basis of our recent studies. The results will lead to an advanced understanding of heterogeneous bromine reactions on PSCs.

  14. Neutrophil uptake of vaccinia virus in vitro

    SciTech Connect

    West, B.C.; Eschete, M.L.; Cox, M.E.; King, J.W.

    1987-10-01

    We studied human neutrophils for uptake of vaccinia virus. Uptake was determined radiometrically and by electron microscopy. Vaccinia virus was labeled with /sup 14/C or /sup 3/H, incubated with neutrophils, and quantified in neutrophil pellets in a new radiometric phagocytosis assay. Better results were obtained from assays of (/sup 3/H)thymidine-labeled virus; uptake increased through 1 hr and then plateaued. Phagocytosis of 3H-labeled Staphylococcus aureus was normal. Uptake of virus was serum dependent. Hexose monophosphate shunt activity was measured by two methods. No /sup 14/CO/sub 2/ from (/sup 14/C)1-glucose accompanied uptake of vaccinia virus, in contrast to the respiratory burst accompanying bacterial phagocytosis. Electron microscopy showed intact to slightly digested intraphagolysosomal vaccinia virus. Pock reduction assay showed a decrease in viral content due to neutrophils until 6 hr of incubation, when a modest but significant increase was observed. Thus, neutrophil uptake of vaccinia virus is distinguished from bacterial phagocytosis.

  15. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber.

    PubMed

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution.

  16. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    PubMed Central

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  17. Thermodynamics of Cadmium Sorption on Different Soils of West Bengal, India

    PubMed Central

    Paul, Ranjit Kumar; Das, D. K.; Boruah, Romesh K.; Sonar, Indira

    2014-01-01

    A sorption study was conducted on different soils collected from five agroecological zones of West Bengal, India, to understand the soil environmental behavior and fate of cadmium. For this purpose batch adsorption experiments were carried out at the native soil pH and at three different temperatures (25°C, 35°C, and 45°C). The adsorption data fitted by a linear least squares technique to the different sorption isotherms. Most data obtained give the good fit to both Freundlich and modified Langmuir isotherms, but they are not consistent with the linear Langmuir adsorption model. Thermodynamic parameters, namely, thermodynamics equilibrium constant at a particular temperature T  (KT0), Gibbs free energy at a particular temperature T  (ΔGT0), and change of enthalpy (ΔH0) and change of entropy at temperature T  (ΔST0), were also determined by applying sorption value and concentrations of Cd in equilibrium solution within the temperature range. The thermodynamic parameters revealed that Cd sorption increases as the values of KT0, ΔGT0, ΔH0, and ΔST0 were increased on reaction temperatures. The spontaneous sorption reaction can be concluded due to high values of ΔGT0. The positive values of ΔH0 indicated that the Cd sorption is an endothermic one. Under these present conditions, the soil and its components possibly supply a number of sites having different adsorption energies for cadmium sorption. PMID:24683322

  18. Uptake of Polymyxin B into Renal Cells

    PubMed Central

    Abdelraouf, Kamilia; Chang, Kai-Tai; Yin, Taijun; Hu, Ming

    2014-01-01

    Polymyxin B is increasingly used as a treatment of last resort against multidrug-resistant Gram-negative infections. Using a mammalian kidney cell line, we demonstrated that polymyxin B uptake into proximal tubular epithelial cells was saturable and occurred primarily through the apical membrane, suggesting the involvement of transporters in the renal uptake of polymyxin B. Megalin might play a role in the uptake and accumulation of polymyxin B into renal cells. PMID:24733472

  19. Batch adsorption of phenol onto physiochemical-activated coconut shell.

    PubMed

    Mohd Din, Azam T; Hameed, B H; Ahmad, Abdul L

    2009-01-30

    The liquid-phase adsorption of phenol onto coconut shell-based activated carbon, CS850A was investigated for its equilibrium studies and kinetic modeling. Coconut shell was converted into high quality activated carbon through physiochemical activation at 850 degrees C under the influence of CO(2) flow. Beforehand, the coconut shell was carbonized at 700 degrees C and the resulted char was impregnated with KOH at 1:1 weight ratio. In order to evaluate the performance of CS850A, a series of batch adsorption experiments were conducted with initial phenol concentrations ranging from 100 to 500 mg l(-1), adsorbent loading of 0.2g and the adsorption process was maintained at 30+/-1 degrees C. The adsorption isotherms were in conformation to both Langmuir and Freundlich isotherm models. Chemical reaction was found to be a rate-controlling parameter to this phenol-CS850A batch adsorption system due to strong agreement with the pseudo-second-order kinetic model. Adsorption capacity for CS850A was found to be 205.8 mg g(-1).

  20. A batch-mode micromachining process for spherical structures

    NASA Astrophysics Data System (ADS)

    Li, Tao; Visvanathan, Karthik; Gianchandani, Yogesh B.

    2014-02-01

    This paper reports a self-aligned three-dimensional process (3D-SOULE) that incorporates batch-mode micro ultrasonic machining (µUSM), lapping and micro electro-discharge machining (µEDM) for fabrication of concave and mushroom-shaped spherical structures from hard and brittle materials. To demonstrate the process, 1 mm structures are fabricated from glass and ruby spheres. The µEDM technique is used to create the tool for μUSM from stainless steel spheres. Stainless steel 440, which provides a tool wear ratio <5%, is chosen as the tool material. A 2 × 2 array is used for batch processing. For an ultrasound generator frequency of 20 kHz and a vibration amplitude of 15 µm, machining rates of 24 and 12 µm min-1 are obtained for glass and ruby spheres, respectively. An approximate linear relationship is observed between the measured roughness (Ra) of the machined surface and the product of the fracture toughness (KIC) and the hardness (H) of the workpiece material (KIC3/2H1/2).

  1. BEclear: Batch Effect Detection and Adjustment in DNA Methylation Data.

    PubMed

    Akulenko, Ruslan; Merl, Markus; Helms, Volkhard

    2016-01-01

    Batch effects describe non-natural variations of, for example, large-scale genomic data sets. If not corrected by suitable numerical algorithms, batch effects may seriously affect the analysis of these datasets. The novel array platform independent software tool BEclear enables researchers to identify those portions of the data that deviate statistically significant from the remaining data and to replace these portions by typical values reconstructed from neighboring data entries based on latent factor models. In contrast to other comparable methods that often use some sort of global normalization of the data, BEclear avoids changing the apparently unaffected parts of the data. We tested the performance of this approach on DNA methylation data for various tumor data sets taken from The Cancer Genome Atlas and compared the results to those obtained with the existing algorithms ComBat, Surrogate Variable Analysis, RUVm and Functional normalization. BEclear constantly performed at par with or better than these methods. BEclear is available as an R package at the Bioconductor project http://bioconductor.org/packages/release/bioc/html/BEclear.html.

  2. Optimization of batch alcoholic fermentation of glucose syrup substrate

    SciTech Connect

    Chen, S.L.

    1981-08-01

    The quantitative effects of substrate concentration, yeast concentration, and nutrient supplementation on ethanol content, fermentation time, and ethanol productivity were investigated in a Box-Wilson central composite design experiment, consisting of five levels of each variable. High substrate concentration, up to 30 degrees Brix, resulted in higher ethanol content (i.e., up to 15.7% w/v or 19.6% v/v) but longer fermentation time and hence lower ethanol productivity. Increasing yeast concentration, on the other hand, resulted in shorter fermentation time and higher ethanol productivity. Higher levels of nutrient supplementation generally led to shorter fermentation time and higher productivity. The highest ethanol productivity of about 21 g ethanol h was obtained at low substrate concentration (i.e., 12 degrees Brix), low alcohol content (i.e., 6% by weight), high yeast concentration (i.e., 4.4%), and high supplementation of yeast extract (i.e., 2.8%). Productivity of this magnitude is substantially higher than that of the traditional batch fermentation or fed-batch fermentation. It is comparable to the results of continuous fermentation but lower than those of vacuum fermentation. Optimal conditions for maximal ethanol productivity can be established by a multiple regression analysis technique and by plotting the contours of constant response to conform to the constraints of individual operations. (Refs. 12).

  3. Toward a homogeneous and efficient batch-tray dryer

    SciTech Connect

    Khattab, N.M.

    1996-06-01

    In batch-tray dryers, with equal loading of trays, a nonhomogeneous drying of the product may result. This will degrade the quality of the dried product, as some of it will be either overdried or underdried. To obtain homogeneous drying, the trays must be loaded in accordance with the condition of the inlet air to each tray, i.e., as the air gets cooler and more saturated with moisture when moving upward, the tray loading should be reduced. The aim of the present work is to develop an analytical method for obtaining the best loading pattern in batch-tray dryers, that guarantees a homogeneous and efficient drying of the product. A mathematical model that describes the mass and heat transfer inside the dryer is proposed. Homogeneous drying is achieved by solving the model under constraints imposed by some proposed control functions, giving as a result the loading of different trays. An algorithm of the calculation procedures is given, and an application to study drying of apricots is demonstrated. In addition, the performance of the dryer, loaded so as to achieve homogeneous drying of the product, was studied under a wide range of inlet air conditions to determine the one that gives maximum productivity of the dryer. The final result of those calculations is to obtain the necessary condition for a product of good quality dried in the most efficient way.

  4. Anaerobic batch conversion of pine wood torrefaction condensate.

    PubMed

    Doddapaneni, Tharaka Rama Krishna C; Praveenkumar, Ramasamy; Tolvanen, Henrik; Palmroth, Marja R T; Konttinen, Jukka; Rintala, Jukka

    2017-02-01

    Organic compound rich torrefaction condensate, owing to their high water content and acidic nature, have yet to be exploited for practical application. In this study, microbial conversion of torrefaction condensate from pine wood through anaerobic batch digestion (AD) to produce methane was evaluated. Torrefaction condensate exhibited high methane potentials in the range of 430-492mL/g volatile solids (VS) and 430-460mL/gVS under mesophilic and thermophilic conditions, respectively. Owing to the changes in the composition, the methane yields differed with the torrefaction condensates produced at different temperatures (225, 275 and 300°C), with a maximum of 492±18mL/gVS with the condensate produced at 300°C under mesophilic condition. The cyclic batch AD experiments showed that 0.1VSsubstrate:VSinoculum is optimum, whereas the higher substrate loading (0.2-0.5) resulted in a reversible inhibition of the methane production. The results suggest that torrefaction condensate could be practically valorized through AD.

  5. Survival Probability of Beneficial Mutations in Bacterial Batch Culture

    PubMed Central

    Wahl, Lindi M.; Zhu, Anna Dai

    2015-01-01

    The survival of rare beneficial mutations can be extremely sensitive to the organism’s life history and the trait affected by the mutation. Given the tremendous impact of bacteria in batch culture as a model system for the study of adaptation, it is important to understand the survival probability of beneficial mutations in these populations. Here we develop a life-history model for bacterial populations in batch culture and predict the survival of mutations that increase fitness through their effects on specific traits: lag time, fission time, viability, and the timing of stationary phase. We find that if beneficial mutations are present in the founding population at the beginning of culture growth, mutations that reduce the mortality of daughter cells are the most likely to survive drift. In contrast, of mutations that occur de novo during growth, those that delay the onset of stationary phase are the most likely to survive. Our model predicts that approximately fivefold population growth between bottlenecks will optimize the occurrence and survival of beneficial mutations of all four types. This prediction is relatively insensitive to other model parameters, such as the lag time, fission time, or mortality rate of the population. We further estimate that bottlenecks that are more severe than this optimal prediction substantially reduce the occurrence and survival of adaptive mutations. PMID:25758382

  6. Comparison of laboratory batch and flow-through microcosm bioassays.

    PubMed

    Clément, Bernard J P; Delhaye, Hélène L; Triffault-Bouchet, Gaëlle G

    2014-10-01

    Since 1997, we have been developing a protocol for ecotoxicological bioassays in 2-L laboratory microcosms and have applied it to the study of various pollutants and ecotoxicological risk assessment scenarios in the area of urban facilities and transport infrastructures. The effects on five different organisms (micro-algae, duckweeds, daphnids, amphipods, chironomids) are assessed using biological responses such as growth, emergence (chironomids), reproduction (daphnids) and survival, with a duration of exposure of 3 weeks. This bioassay has mainly been used as a batch bioassay, i.e., the water was not renewed during the test. A flow-through microcosm bioassay has been developed recently, with the assumption that conditions for the biota should be improved, variability reduced, and the range of exposure patterns enlarged (e.g., the possibility of maintaining constant exposure in the water column). This paper compares the results obtained in batch and flow-through microcosm bioassays, using cadmium as a model toxicant. As expected, the stabilization of physico-chemical parameters, increased organism fitness and reduced variability were observed in the flow-through microcosm bioassay.

  7. Ultrasonic agitation method for accelerating batch leaching tests

    SciTech Connect

    Caldwell, R.J.; Stegemann, J.A.; Chao, C.C.

    1996-12-31

    A method has been developed which uses ultrasonic cavitation to accelerate batch leaching tests. Batch leaching tests, in which attainment of an equilibrium between the solid sample and liquid leachant is desired, usually involve particle size reduction and mixing to hasten mass transfer of soluble compounds. In the study discussed here, mixing in the form of ultrasonic cavitation was used to supply an intense level of agitation. Breaking the liquid boundary layer surrounding individual waste particles ensured a maximum concentration gradient between the solid and liquid phases and accelerated attainment of steady state concentrations. Evaluation of the acceleration technique was made through comparison of leachate quality of stabilized/solidified (S/S) residue samples tested using the Wastewater Technology Centre`s (WTC) equilibrium extraction (EE) and an ultrasonically agitated version of the same test method (UEE). The sample preparation, liquid-to-solid ratio, extraction fluid, etc., specified in the EE method were held constant for the EE and UEE samples, while the duration and method of agitation was altered for the UEE samples. To date, this evaluation has been made using five metal finishing residues, which were selected based on their elevated concentrations of regulated contaminants. The results of the evaluations are presented and suggestions are made as to the applicability of this accelerated test method.

  8. BEclear: Batch Effect Detection and Adjustment in DNA Methylation Data

    PubMed Central

    Akulenko, Ruslan; Merl, Markus; Helms, Volkhard

    2016-01-01

    Batch effects describe non-natural variations of, for example, large-scale genomic data sets. If not corrected by suitable numerical algorithms, batch effects may seriously affect the analysis of these datasets. The novel array platform independent software tool BEclear enables researchers to identify those portions of the data that deviate statistically significant from the remaining data and to replace these portions by typical values reconstructed from neighboring data entries based on latent factor models. In contrast to other comparable methods that often use some sort of global normalization of the data, BEclear avoids changing the apparently unaffected parts of the data. We tested the performance of this approach on DNA methylation data for various tumor data sets taken from The Cancer Genome Atlas and compared the results to those obtained with the existing algorithms ComBat, Surrogate Variable Analysis, RUVm and Functional normalization. BEclear constantly performed at par with or better than these methods. BEclear is available as an R package at the Bioconductor project http://bioconductor.org/packages/release/bioc/html/BEclear.html. PMID:27559732

  9. Survival probability of beneficial mutations in bacterial batch culture.

    PubMed

    Wahl, Lindi M; Zhu, Anna Dai

    2015-05-01

    The survival of rare beneficial mutations can be extremely sensitive to the organism's life history and the trait affected by the mutation. Given the tremendous impact of bacteria in batch culture as a model system for the study of adaptation, it is important to understand the survival probability of beneficial mutations in these populations. Here we develop a life-history model for bacterial populations in batch culture and predict the survival of mutations that increase fitness through their effects on specific traits: lag time, fission time, viability, and the timing of stationary phase. We find that if beneficial mutations are present in the founding population at the beginning of culture growth, mutations that reduce the mortality of daughter cells are the most likely to survive drift. In contrast, of mutations that occur de novo during growth, those that delay the onset of stationary phase are the most likely to survive. Our model predicts that approximately fivefold population growth between bottlenecks will optimize the occurrence and survival of beneficial mutations of all four types. This prediction is relatively insensitive to other model parameters, such as the lag time, fission time, or mortality rate of the population. We further estimate that bottlenecks that are more severe than this optimal prediction substantially reduce the occurrence and survival of adaptive mutations.

  10. Investigation of vinegar production using a novel shaken repeated batch culture system.

    PubMed

    Schlepütz, Tino; Büchs, Jochen

    2013-01-01

    Nowadays, bioprocesses are developed or optimized on small scale. Also, vinegar industry is motivated to reinvestigate the established repeated batch fermentation process. As yet, there is no small-scale culture system for optimizing fermentation conditions for repeated batch bioprocesses. Thus, the aim of this study is to propose a new shaken culture system for parallel repeated batch vinegar fermentation. A new operation mode - the flushing repeated batch - was developed. Parallel repeated batch vinegar production could be established in shaken overflow vessels in a completely automated operation with only one pump per vessel. This flushing repeated batch was first theoretically investigated and then empirically tested. The ethanol concentration was online monitored during repeated batch fermentation by semiconductor gas sensors. It was shown that the switch from one ethanol substrate quality to different ethanol substrate qualities resulted in prolonged lag phases and durations of the first batches. In the subsequent batches the length of the fermentations decreased considerably. This decrease in the respective lag phases indicates an adaptation of the acetic acid bacteria mixed culture to the specific ethanol substrate quality. Consequently, flushing repeated batch fermentations on small scale are valuable for screening fermentation conditions and, thereby, improving industrial-scale bioprocesses such as vinegar production in terms of process robustness, stability, and productivity.

  11. Comparison of the release of constituents from granular materials under batch and column testing.

    PubMed

    Lopez Meza, Sarynna; Garrabrants, Andrew C; van der Sloot, Hans; Kosson, David S

    2008-01-01

    Column leaching testing can be considered a better basis for assessing field impact data than any other available batch test method and thus provides a fundamental basis from which to estimate constituent release under a variety of field conditions. However, column testing is time-intensive compared to the more simplified batch testing, and may not always be a viable option when making decisions for material reuse. Batch tests are used most frequently as a simple tool for compliance or quality control reasons. Therefore, it is important to compare the release that occurs under batch and column testing, and establish conservative interpretation protocols for extrapolation from batch data when column data are not available. Five different materials (concrete, construction debris, aluminum recycling residue, coal fly ash and bottom ash) were evaluated via batch and column testing, including different column flow regimes (continuously saturated and intermittent unsaturated flow). Constituent release data from batch and column tests were compared. Results showed no significant difference between the column flow regimes when constituent release data from batch and column tests were compared. In most cases batch and column testing agreed when presented in the form of cumulative release. For arsenic in carbonated materials, however, batch testing underestimates the column constituent release for most LS ratios and also on a cumulative basis. For cases when As is a constituent of concern, column testing may be required.

  12. Nonequilibrium Thermodynamics of Chemical Reaction Networks: Wisdom from Stochastic Thermodynamics

    NASA Astrophysics Data System (ADS)

    Rao, Riccardo; Esposito, Massimiliano

    2016-10-01

    We build a rigorous nonequilibrium thermodynamic description for open chemical reaction networks of elementary reactions. Their dynamics is described by deterministic rate equations with mass action kinetics. Our most general framework considers open networks driven by time-dependent chemostats. The energy and entropy balances are established and a nonequilibrium Gibbs free energy is introduced. The difference between this latter and its equilibrium form represents the minimal work done by the chemostats to bring the network to its nonequilibrium state. It is minimized in nondriven detailed-balanced networks (i.e., networks that relax to equilibrium states) and has an interesting information-theoretic interpretation. We further show that the entropy production of complex-balanced networks (i.e., networks that relax to special kinds of nonequilibrium steady states) splits into two non-negative contributions: one characterizing the dissipation of the nonequilibrium steady state and the other the transients due to relaxation and driving. Our theory lays the path to study time-dependent energy and information transduction in biochemical networks.

  13. The role of thermodynamics in biochemical engineering

    NASA Astrophysics Data System (ADS)

    von Stockar, Urs

    2013-09-01

    This article is an adapted version of the introductory chapter of a book whose publication is imminent. It bears the title "Biothermodynamics - The role of thermodynamics in biochemical engineering." The aim of the paper is to give a very short overview of the state of biothermodynamics in an engineering context as reflected in this book. Seen from this perspective, biothermodynamics may be subdivided according to the scale used to formalize the description of the biological system into three large areas: (i) biomolecular thermodynamics (most fundamental scale), (ii) thermodynamics of metabolism (intermediary scale), and (iii) whole-cell thermodynamics ("black-box" description of living entities). In each of these subareas, the main available theoretical approaches and the current and the potential applications are discussed. Biomolecular thermodynamics (i) is especially well developed and is obviously highly pertinent for the development of downstream processing. Its use ought to be encouraged as much as possible. The subarea of thermodynamics of live cells (iii), although scarcely applied in practice, is also expected to enhance bioprocess research and development, particularly in predicting culture performances, for understanding the driving forces for cellular growth, and in developing, monitoring, and controlling cellular cultures. Finally, there is no question that thermodynamic analysis of cellular metabolism (ii) is a promising tool for systems biology and for many other applications, but quite a large research effort is still needed before it may be put to practical use.

  14. Thermodynamics of cosmological matter creation

    PubMed Central

    Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P.

    1988-01-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  15. Thermodynamics fundamentals of energy conversion

    NASA Astrophysics Data System (ADS)

    Dan, Nicolae

    The work reported in the chapters 1-5 focuses on the fundamentals of heat transfer, fluid dynamics, thermodynamics and electrical phenomena related to the conversion of one form of energy to another. Chapter 6 is a re-examination of the fundamental heat transfer problem of how to connect a finite-size heat generating volume to a concentrated sink. Chapter 1 extends to electrical machines the combined thermodynamics and heat transfer optimization approach that has been developed for heat engines. The conversion efficiency at maximum power is 1/2. When, as in specific applications, the operating temperature of windings must not exceed a specified level, the power output is lower and efficiency higher. Chapter 2 addresses the fundamental problem of determining the optimal history (regime of operation) of a battery so that the work output is maximum. Chapters 3 and 4 report the energy conversion aspects of an expanding mixture of hot particles, steam and liquid water. At the elemental level, steam annuli develop around the spherical drops as time increases. At the mixture level, the density decreases while the pressure and velocity increases. Chapter 4 describes numerically, based on the finite element method, the time evolution of the expanding mixture of hot spherical particles, steam and water. The fluid particles are moved in time in a Lagrangian manner to simulate the change of the domain configuration. Chapter 5 describes the process of thermal interaction between the molten material and water. In the second part of the chapter the model accounts for the irreversibility due to the flow of the mixture through the cracks of the mixing vessel. The approach presented in this chapter is based on exergy analysis and represents a departure from the line of inquiry that was followed in chapters 3-4. Chapter 6 shows that the geometry of the heat flow path between a volume and one point can be optimized in two fundamentally different ways. In the "growth" method the

  16. Thermodynamics of cosmological matter creation.

    PubMed

    Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P

    1988-10-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  17. Thermodynamic universality of quantum Carnot engines

    SciTech Connect

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentally relevant examples.

  18. Considerations on non equilibrium thermodynamics of interactions

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-04-01

    Nature can be considered the "first" engineer! For scientists and engineers, dynamics and evolution of complex systems are not easy to predict. A fundamental approach to study complex system is thermodynamics. But, the result is the origin of too many schools of thermodynamics with a consequent difficulty in communication between thermodynamicists and other scientists and, also, among themselves. The solution is to obtain a unified approach based on the fundamentals of physics. Here we suggest a possible unification of the schools of thermodynamics starting from two fundamental concepts of physics, interaction and flows.

  19. Thermodynamical stability of the Bardeen black hole

    SciTech Connect

    Bretón, Nora; Perez Bergliaffa, Santiago E.

    2014-01-14

    We analyze the stability of the regular magnetic Bardeen black hole both thermodynamically and dynamically. For the thermodynamical analysis we consider a microcanonical ensemble and apply the turning point method. This method allows to decide a change in stability (or instability) of a system, requiring only the assumption of smoothness of the area functional. The dynamical stability is asserted using criteria based on the signs of the Lagrangian and its derivatives. It turns out from our analysis that the Bardeen black hole is both thermodynamically and dynamically stable.

  20. Thermodynamic universality of quantum Carnot engines

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less

  1. Thermodynamic universality of quantum Carnot engines.

    PubMed

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-01

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamics-independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. Our theoretical findings are illustrated for two experimentally relevant examples.

  2. Thermodynamic laws apply to brain function.

    PubMed

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  3. Uptake of macrominerals and trace elements by the cyanobacterium Spirulina platensis (Arthrospira platensis PCC 8005) under photoautotrophic conditions: culture medium optimization.

    PubMed

    Cogne, Guillaume; Lehmann, Bernd; Dussap, Claude-Gilles; Gros, Jean-Bernard

    2003-03-05

    Uptake rates of macrominerals and trace elements were characterized in batch and continuous cultures of Spirulina platensis under photoautotropic conditions. The values of yield coefficients were determined using inductively coupled plasma emission spectroscopy (ICP-ES). Further simplifications of culture medium proved possible, mainly in the trace element solutions; concentrations of some elements were lowered and trace elements B, Mo, V, Cr, Ni, Co, W, and Ti were removed.

  4. Biological phosphorus removal inhibition by roxarsone in batch culture systems.

    PubMed

    Guo, Qingfeng; Liu, Li; Hu, Zhenhu; Chen, Guowei

    2013-06-01

    Roxarsone has been extensively used in the feed of animals, which is usually excreted unchanged in the manure and eventually enter into animal wastewater, challenging the biological phosphorus removal processes. Knowledge of its inhibition effect is key for guiding treatment of roxarsone-contaminated wastewater, and is unfortunately keeping unclear. We study the inhibition of roxarsone on biological phosphorus removal processes for roxarsone-contaminated wastewater treatment, in terms of the removal and rates of chemical oxygen demand (COD), phosphate. Results showed that presence of roxarsone considerably limited the COD removals, especially at roxarsone concentration exceeding 40 mg L(-1). Additionally, roxarsone inhibited both phosphorus release and uptake processes, consistent with the phosphate profiles during the biological phosphorus removal processes; whereas, roxarsone is more toxic to phosphorus uptake process, than release function. The results indicated that it is roxarsone itself, rather than the inorganic arsenics, inhibit biological phosphorus removal processes within both aerobic and anaerobic roxarsone-contaminated wastewater treatment.

  5. Cr(VI) uptake mechanism of Bacillus cereus.

    PubMed

    Chen, Zhi; Huang, Zhipeng; Cheng, Yangjian; Pan, Danmei; Pan, Xiaohong; Yu, Meijuan; Pan, Zhiyun; Lin, Zhang; Guan, Xiong; Wu, Ziyu

    2012-04-01

    In this study, we investigated the Cr(VI) uptake mechanism in an indigenous Cr(VI)-tolerant bacterial strain -Bacillus cereus through batch and microscopic experiments. We found that both the cells and the supernatant collected from B. cereus cultivation could reduce Cr(VI). The valence state analysis revealed the complete transformation from Cr(VI) into Cr(III) by living B. cereus. Further X-ray absorption fine structure and Fourier transform infrared analyses showed that the reduced Cr(III) was coordinated with carboxyl and amido functional groups from either the cells or supernatant. Scanning electron microscopy and atomic force microscopy observation showed that noticeable Cr(III) precipitates were accumulated on bacterial surfaces. However, Cr(III) could also be detected in bacterial inner portions by using transmission electron microscopy thin section analysis coupled with energy dispersive X-ray spectroscopy. Through quantitative analysis of chromium distribution, we determined the binding ratio of Cr(III) in supernatant, cell debris and cytoplasm as 22%, 54% and 24%, respectively. Finally, we further discussed the role of bacterium-origin soluble organic molecules to the remediation of Cr(VI) pollutants.

  6. Investigation of lead(II) uptake by Bacillus thuringiensis 016.

    PubMed

    Chen, Zhi; Pan, Xiaohong; Chen, Hui; Lin, Zhang; Guan, Xiong

    2015-11-01

    In this work, we investigated the lead(II) biosorption mechanism of Bacillus thuringiensis (Bt) 016 through batch and microscopic experiments. We found that the maximum lead(II) biosorption capacity of Bt 016 was 164.77 mg/g (dry weight). The pH value could affect the biosorption of lead(II) in a large extent. Fourier transform infrared analyses and selective passivation experiments suggested that the carboxyl, amide and phosphate functional groups of Bt 016 played an important role in lead(II) biosorption. Scanning electron microscopy observation showed that noticeable lead(II) precipitates were accumulated on bacterial surfaces. Further transmission electron microscopy thin section analysis coupled with energy dispersive X-ray spectroscopy as well as selected area electron diffraction indicated that lead(II) immobilized on the bacteria could be transformated into random-shaped crystalline lead-containing minerals eventually. This work provided a new insight into lead(II) uptake of Bt, highlighting the potential of Bt in the restoration of lead(II) contaminated repositories.

  7. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    NASA Astrophysics Data System (ADS)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2016-02-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium (q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (ΔG 0), enthalpy (ΔH 0) and entropy (ΔS 0) were determined and the positive value of (ΔH) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  8. Biological phosphorus removal in anoxic-aerobic sequencing batch reactor with starch as sole carbon source.

    PubMed

    Luo, Dacheng; Yuan, Linjiang; Liu, Lun; Chai, Lu; Wang, Xin

    2017-01-01

    In traditional biological phosphorus removal (BPR), phosphorus release in anaerobic stage is the prerequisite of phosphorus excessive uptake in aerobic conditions. Moreover, when low molecular weight of the organic substance such as volatile fatty acids (VFAs) is scarce in bulk liquid or anaerobic condition does not exist, phosphate accumulating organisms (PAOs) have difficulty removing phosphorus. However, in this work, phosphorus removal in two anoxic-aerobic sequencing batch reactors (SBRs) was observed when starch was supplied as a sole carbon source. The relations of the BPR with idle period were investigated in the two identical SBRs; the idle times were set to 0.5 hr (R1) and 4 hr (R2), respectively. Results of the study showed that, in the two SBRs, phosphorus concentrations of 0.26-3.11 mg/L in effluent were obtained after aeration when phosphorus concentration in influent was about 8 mg/L. Moreover, lower accumulations/transformations of polyhydroxyalkanoates (PHAs) and higher transformation of glycogen occurred in the SBRs, indicating that glycogen was the main energy source that was different from the traditional mechanism of BPR. Under the different idle time, the phosphorus removal was a little different. In R2, which had a longer idle period, phosphorus release was very obvious just as occurs in a anaerobic-aerobic regime, but there was a special phenomenon of chemical oxygen demand increase, while VFAs had no notable change. It is speculated that PAOs can assimilate organic compounds in the mixed liquor, which were generated from glycolysis by fermentative organisms, coupled with phosphorus release. In R1, which had a very short idle period, anaerobic condition did not exist; phosphorus removal rate reached 63%. It is implied that a new metabolic pathway can occur even without anaerobic phosphorus release when starch is supplied as the sole carbon source.

  9. Hydrogen production by hup(-) mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors.

    PubMed

    Uyar, Basar; Gürgan, Muazzez; Özgür, Ebru; Gündüz, Ufuk; Yücel, Meral; Eroglu, Inci

    2015-10-01

    Photofermentative production of hydrogen is a promising and sustainable process; however, it should be coupled to dark fermentation to become cost effective. In order to integrate dark fermentation and photofermentation, the suitability of dark fermenter effluents for the photofermentative hydrogen production must be demonstrated. In this study, thermophilic dark fermenter effluent (DFE) of sugar beet thick juice was used as a substrate in photofermentation process to compare wild-type and uptake hydrogenase-deficient (hup (-)) mutant strains of Rhodobacter capsulatus by means of hydrogen production and biomass growth. The tests were conducted in small-scale (50 mL) batch and large-scale (4 L) continuous photobioreactors in indoor conditions under continuous illumination. In small scale batch conditions, maximum cell concentrations were 0.92 gdcw/L c and 1.50 gdcw/L c, hydrogen yields were 34 % and 31 %, hydrogen productivities were 0.49 mmol/(L c·h) and 0.26 mmol/(Lc·h), for hup (-) and wild-type cells, respectively. In large-scale continuous conditions, maximum cell concentrations were 1.44 gdcw/L c and 1.87 gdcw/L c, hydrogen yields were 48 and 46 %, and hydrogen productivities were 1.01 mmol/(L c·h) and 1.05 mmol/(L c·h), for hup (-) and wild-type cells, respectively. Our results showed that Rhodobacter capsulatus hup (-) cells reached to a lower maximum cell concentration but their hydrogen yield and productivity were in the same range or superior compared to the wild-type cells in both batch and continuous operating modes. The maximum biomass concentration, yield and productivity of hydrogen were higher in continuous mode compared to the batch mode with both bacterial strains.

  10. Effect of Uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine

    SciTech Connect

    Tobes, M.C.; Jaques, S. Jr.; Wieland, D.M.; Sisson, J.C.

    1985-08-01

    The mechanisms underlying the uptake of the radiopharmaceutical metaiodobenzylguanidine (MIBG) and the catecholamine norepinephrine (NE) were studied using cultured bovine adrenomedullary cells as an in vitro model system. Sodium-dependent and sodium-independent uptake systems have been identified and characterized for both MIBG and NE. The sodium-dependent uptake of Ne and MIBG was inhibited by the selective Uptake-one inhibitors, desmethylimipramine (DMI) and cocaine, whereas the sodium-independent uptake for NE and MIBG was much less sensitive to inhibition by these agents. The sodium-dependent uptake system fulfills the criteria for the neuronal Uptake-one system, and the sodium-independent uptake system fulfills the criteria for a passive diffusion mechanism. Arterial concentrations proximal to the dog adrenal were very small suggesting that the sodium-dependent (Uptake-one) system is predominant in vivo. Consistent with the in vitro observations, the in vivo uptake of MIBG and NE into dog adrenal medullae was effectively blocked by pretreatment with DMI or cocaine. Therefore, iodine-131 MIBG scintigraphy of the adrenal appears to reflect uptake by way of the Uptake-one system.

  11. Intact cell mass spectrometry as a progress tracking tool for batch and fed-batch fermentation processes.

    PubMed

    Helmel, Michaela; Marchetti-Deschmann, Martina; Raus, Martin; Posch, Andreas E; Herwig, Christoph; Šebela, Marek; Allmaier, Günter

    2015-02-01

    Penicillin production during a fermentation process using industrial strains of Penicillium chrysogenum is a research topic permanently discussed since the accidental discovery of the antibiotic. Intact cell mass spectrometry (ICMS) can be a fast and novel monitoring tool for the fermentation progress during penicillin V production in a nearly real-time fashion. This method is already used for the characterization of microorganisms and the differentiation of fungal strains; therefore, the application of ICMS to samples directly harvested from a fermenter is a promising possibility to get fast information about the progress of fungal growth. After the optimization of the ICMS method to penicillin V fermentation broth samples, the obtained ICMS data were evaluated by hierarchical cluster analysis or an in-house software solution written especially for ICMS data comparison. Growth stages of a batch and fed-batch fermentation of Penicillium chrysogenum are differentiated by one of those statistical approaches. The application of two matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instruments in the linear positive ion mode from different vendors demonstrated the universal applicability of the developed ICMS method. The base for a fast and easy-to-use method for monitoring the fermentation progress of P. chrysogenum is created with this ICMS method developed especially for fermentation broth samples.

  12. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    PubMed

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  13. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    PubMed

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh.

  14. Batch and fed batch production of pectin lyase and pectate lyase by novel strain Debaryomyces nepalensis in bioreactor.

    PubMed

    Gummadi, Sathyanarayana N; Kumar, D Sunil

    2008-03-01

    The effect of various parameters such as pH, agitation and aeration was studied for maximum production of pectin lyase (PL) and pectate lyase (PGL) by a novel yeast strain Debaryomyces nepalensis in bioreactor. The optimal levels of pH, aeration and agitation rate was found to be 7.0, 300rpm and 1vvm, respectively. Under these conditions, D. nepalensis produced 14,200U/L of PL and 12,000U/L of PGL corresponding to a productivity of 600U/Lh and 500U/Lh of PL and PGL, respectively. Fed-batch production was studied by feeding inducer (lemon peel), carbon source (galactose) individually and in combination at 12h of growth for enhanced production of PL and PGL. Combined feeding of inducer and carbon source at 12h was found to be the best strategy for enhanced production of PL and PGL. Under these conditions, production of PL and PGL increased to 23,300U/L and 22,400U/L, respectively which corresponded to a productivity of 728U/Lh of PL and 700U/Lh of PGL, respectively. The production was increased by 1.6- and 1.8-fold and productivity by 1.2- and 1.4-fold for PL and PGL, respectively when compared to batch culture.

  15. Production of heterologous polygalacturonase I from Aspergillus kawachii in Saccharomyces cerevisiae in batch and fed-batch cultures.

    PubMed

    Rojas, N L; Ortiz, G E; Baruque, D J; Cavalitto, S F; Ghiringhelli, P D

    2011-09-01

    The pg1 gene from the filamentous fungus Aspergillus kawachii, which codifies for an acid polygalacturonase, was cloned into the pYES2 expression vector, giving rise to the pYES2:pg1ΔI construct. Engineered Saccharomyces cerevisiae, transformed with pYES2:pg1ΔI construct, both expressed and exported an active polygalacturonase with a MW of ~60 kDa and an isoelectric point of 3.7, similar to those reported for the wild-type enzyme. The recombinant enzyme has the ability to hydrolyze polygalacturonic acid at pH 2.5. Heterologous PG1 production was studied under controlled conditions in batch and fed-batch systems. A simultaneous addition of glucose and galactose was found to be the most suitable feeding strategy assayed, resulting in a final PG1 production of 50 U/ml. The production process proposed in this study could be applied for the industrial production of a novel and useful polygalacturonase.

  16. Batch-to-batch variation of Chelex-100 confounds metal-catalysed oxidation. Leaching of inhibitory compounds from a batch of Chelex-100 and their removal by a pre-washing procedure.

    PubMed

    Van Reyk, D M; Brown, A J; Jessup, W; Dean, R T

    1995-12-01

    Removal of adventitious redox-active metals from buffers by treatment with Chelex resin is a widely used procedure in free radical research. Use of a new batch of Chelex-100 resin in our laboratory coincided with a sudden inability to oxidise low-density lipoprotein with copper. We found that copper-mediated oxidation of ascorbate in water treated with the same batch of Chelex was inhibited when compared with untreated water and water treated with a different batch of the resin. Washing the Chelex removed the inhibitory effect suggesting that material was leaching from the resin. The washing procedure for Chelex-100 described is simple and can be scaled up. Oxidation of ascorbate with low concentrations of copper can be used to test the quality of batches of the resin.

  17. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  18. Thermodynamic and Properties of Nanophases

    SciTech Connect

    Wunderlich, Bernhard {nmn}

    2009-01-01

    A large volume of today s research deals with nanophases of various types. The materials engineer, chemist, or physicist, however, when dealing with applications of nanophases is often unaware of the effect of the small size on structure and properties. The smallest nanophases reach the limit of phase definitions by approaching atomic dimensions. There, the required homogeneity of a phase is lost and undue property fluctuations destroy the usefulness of thermodynamic functions. In fact, itwas not expected that a definite nanophasewould exist belowthe size of a microphase.Aneffort ismadein this reviewto identify macrophases, microphases, and nanophases. It is shown that nanophases should contain no bulk matter as defined by macrophases and also found in microphases. The structure and properties of nanophases, thus, must be different from macrophases and microphases. These changes may include different crystal and amorphous structures, and phase transitions of higher or of lower temperature. The phase properties are changing continuously when going from one surface to the opposite one. The discussion makes use of results from structure determination, calorimetry, molecular motion evaluations, and molecular dynamics simulations.

  19. Thermodynamic modeling of asphaltene aggregation.

    PubMed

    Rogel, E

    2004-02-03

    A new molecular thermodynamic model for the description of the aggregation behavior of asphaltenes in different solvents is presented. This new model is relatively simple and strictly predictive and does not use any experimental information from asphaltene solutions. In this model, asphaltene aggregates are described as composed of an aromatic core formed by stacked aromatic sheets surrounded by aliphatic chains. The proposed model qualitatively predicts the asphaltene aggregation behavior in a series of different solvents. In particular, the experimental trends observed for the variation of aggregate size with (1) asphaltene molecular characteristics (condensation index, aromaticity, and chain length), (2) asphaltene concentration, (3) solvent characteristics, and (4) temperature have been successfully reproduced by the proposed model. The model also provides a plausible explanation for the existence or absence of a critical micelle concentration (cmc) for asphaltene solutions. Specifically, the model predicted that the asphaltenes with low aromaticities and low aromatic condensations do not exhibit cmc behavior. Finally, the obtained results clearly support the classical model for asphaltene aggregates.

  20. Thermodynamic stability of hydrogen clathrates

    PubMed Central

    Patchkovskii, Serguei; Tse, John S.

    2003-01-01

    The stability of the recently characterized type II hydrogen clathrate [Mao, W. L., Mao, H.-K., Goncharov, A. F., Struzhkin, V. V., Guo, Q., et al. (2002) Science 297, 2247–2249] with respect to hydrogen occupancy is examined with a statistical mechanical model in conjunction with first-principles quantum chemistry calculations. It is found that the stability of the clathrate is mainly caused by dispersive interactions between H2 molecules and the water forming the cage walls. Theoretical analysis shows that both individual hydrogen molecules and nH2 guest clusters undergo essentially free rotations inside the clathrate cages. Calculations at the experimental conditions – 2,000 bar (1 bar = 100 kPa) and 250 K confirm multiple occupancy of the clathrate cages with average occupations of 2.00 and 3.96 H2 molecules per D-512 (small) and H-51264 (large) cage, respectively. The H2–H2O interactions also are responsible for the experimentally observed softening of the H—H stretching modes. The clathrate is found to be thermodynamically stable at 25 bar and 150 K. PMID:14657391