NASA Astrophysics Data System (ADS)
Ke, Yaling; Zhao, Yi
2018-04-01
The hierarchy of stochastic Schrödinger equation, previously developed under the unpolarised initial bath states, is extended in this paper for open quantum dynamics under polarised initial bath conditions. The method is proved to be a powerful tool in investigating quantum dynamics exposed to an ultraslow Ohmic bath, as in this case the hierarchical truncation level and the random sampling number can be kept at a relatively small extent. By systematically increasing the system-bath coupling strength, the symmetric Ohmic spin-boson dynamics is investigated at finite temperature, with a very small cut-off frequency. It is confirmed that the slow bath makes the system dynamics extremely sensitive to the initial bath conditions. The localisation tendency is stronger in the polarised initial bath conditions. Besides, the oscillatory coherent dynamics persists even when the system-bath coupling is very strong, in correspondence with what is found recently in the deep sub-Ohmic bath, where also the low-frequency modes dominate.
Unified picture of strong-coupling stochastic thermodynamics and time reversals
NASA Astrophysics Data System (ADS)
Aurell, Erik
2018-04-01
Strong-coupling statistical thermodynamics is formulated as the Hamiltonian dynamics of an observed system interacting with another unobserved system (a bath). It is shown that the entropy production functional of stochastic thermodynamics, defined as the log ratio of forward and backward system path probabilities, is in a one-to-one relation with the log ratios of the joint initial conditions of the system and the bath. A version of strong-coupling statistical thermodynamics where the system-bath interaction vanishes at the beginning and at the end of a process is, as is also weak-coupling stochastic thermodynamics, related to the bath initially in equilibrium by itself. The heat is then the change of bath energy over the process, and it is discussed when this heat is a functional of the system history alone. The version of strong-coupling statistical thermodynamics introduced by Seifert and Jarzynski is related to the bath initially in conditional equilibrium with respect to the system. This leads to heat as another functional of the system history which needs to be determined by thermodynamic integration. The log ratio of forward and backward system path probabilities in a stochastic process is finally related to log ratios of the initial conditions of a combined system and bath. It is shown that the entropy production formulas of stochastic processes under a general class of time reversals are given by the differences of bath energies in a larger underlying Hamiltonian system. The paper highlights the centrality of time reversal in stochastic thermodynamics, also in the case of strong coupling.
NASA Astrophysics Data System (ADS)
Lee, Sang Myung; Lee, Suk Kyu; Paik, Doo-Jin; Park, Joo Hyun
2017-04-01
The mechanism of iron dissolution and the effect of initial Fe content in a Zn bath on the dissolution rate of iron were investigated using a finger rotating method (FRM). When the initial iron content, [Fe]°, in the zinc bath was less than the solubility limit, the iron content in the zinc bath showed a rapid increase, whereas a moderate increase was observed when [Fe]° was close to the solubility limit. Based on Eisenberg's kinetic model, the mass transfer coefficient of iron in the present experimental condition was calculated to be k M = 1.2 × 10-5 m/s, which was similar to the results derived by Giorgi et al. under industrial practice conditions. A dissolution of iron occurred even when the initial iron content in the zinc bath was greater than the solubility limit, which was explained by the interfacial thermodynamics in conjunction with the morphology of the surface coating layer. By analyzing the diffraction patterns using TEM, the outermost dendritic-structured coating layer was confirmed as FeZn13 ( ζ). In order to satisfy the local equilibrium based on the Gibbs-Thomson equation, iron in the dendrite-structured phase spontaneously dissolved into the zinc bath, resulting in the enrichment of iron in front of the dendrite tip. Through the diffusion boundary layer in front of the dendritic-structured layer, dissolved Fe atoms diffused out and reacted with Zn and small amounts of Al, resulting in the formation of dross particles such as FeZn10Al x ( δ). It was experimentally confirmed that the smaller the difference between the initial iron content in the zinc bath and the iron solubility limit at a given temperature, the lower the number of formed dross particles.
On the time arrows, and randomness in cosmological signals
NASA Astrophysics Data System (ADS)
Gurzadyan, V. G.; Sargsyan, S.; Yegorian, G.
2013-09-01
Arrows of time - thermodynamical, cosmological, electromagnetic, quantum mechanical, psychological - are basic properties of Nature. For a quantum system-bath closed system the de-correlated initial conditions and no-memory (Markovian) dynamics are outlined as necessary conditions for the appearance of the thermodynamical arrow. The emergence of the arrow for the system evolving according to non-unitary dynamics due to the presence of the bath, then, is a result of limited observability, and we conjecture the arrow in the observable Universe as determined by the dark sector acting as a bath. The voids in the large scale matter distribution induce hyperbolicity of the null geodesics, with possible observational consequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiang, J.-T., E-mail: cosmology@gmail.com; Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan; Hu, B.L.
2015-11-15
The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculatingmore » the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the chain to the other bath. •Power balance relation shows the existence of NESS insensitive to initial conditions. •Functional method as a viable platform for issues in quantum thermodynamics.« less
Wash and Wean: Bathing Patients Undergoing Weaning Trials During Prolonged Mechanical Ventilation
Happ, Mary Beth; Tate, Judith A.; Swigart, Valerie A.; DiVirgilio-Thomas, Dana; Hoffman, Leslie A.
2010-01-01
BACKGROUND Bathing is a fundamental nursing care activity performed for or with the self-assistance of critically ill patients. Few studies address caregiver and/or patient-family perspectives about bathing activity during weaning from prolonged mechanical ventilation. OBJECTIVE To describe practices and beliefs about bathing patients during weaning from prolonged mechanical ventilation (PMV). METHODS Secondary analysis of qualitative data (observational field notes, interviews, and clinical record review) from a larger ethnographic study involving 30 patients weaning from PMV and the clinicians who cared for them using basic qualitative description. RESULTS Bathing, hygiene, and personal care were highly valued and equated with “good” nursing care by families and nurses. Nurses and respiratory therapists reported “working around” bath time and promoted conducting weaning trials before or after bathing. Patients were nevertheless bathed during weaning trials despite clinicians expressed concerns for energy conservation. Clinicians’ recognized individual patient response to bathing during PMV weaning trials. CONCLUSION Bathing is a central care activity for PMV patients and a component of daily work processes in the ICU. Bathing requires assessment of patient condition and activity tolerance and nurse-respiratory therapist negotiation and accommodation with respect to the initiation and/or continuation of PMV weaning trials during bathing. Further study is needed to validate the impact (or lack of impact) of various timing strategies for bathing PMV patients. PMID:20561877
Gong, Zhihao; Tang, Zhoufei; Wang, Haobin; Wu, Jianlan
2017-12-28
Within the framework of the hierarchy equation of motion (HEOM), the quantum kinetic expansion (QKE) method of the spin-boson model is reformulated in the matrix representation. The equivalence between the two formulations (HEOM matrices and quantum operators) is numerically verified from the calculation of the time-integrated QKE rates. The matrix formulation of the QKE is extended to the system-bath factorized initial state. Following a one-to-one mapping between HEOM matrices and quantum operators, a quantum kinetic equation is rederived. The rate kernel is modified by an extra term following a systematic expansion over the site-site coupling. This modified QKE is numerically tested for its reliability by calculating the time-integrated rate and non-Markovian population kinetics. For an intermediate-to-strong dissipation strength and a large site-site coupling, the population transfer is found to be significantly different when the initial condition is changed from the local equilibrium to system-bath factorized state.
Lee, Elaine C; Watson, Greig; Casa, Douglas; Armstrong, Lawrence E; Kraemer, William; Vingren, Jakob L; Spiering, Barry A; Maresh, Carl M
2012-01-01
Cold-water immersion is the criterion standard for treatment of exertional heat illness. Cryotherapy and water immersion also have been explored as ergogenic or recovery aids. The kinetics of inflammatory markers, such as interleukin-6 (IL-6), during cold-water immersion have not been characterized. To characterize serum IL-6 responses to water immersion at 2 temperatures and, therefore, to initiate further research into the multidimensional benefits of immersion and the evidence-based selection of specific, optimal immersion conditions by athletic trainers. Controlled laboratory study. Human performance laboratory Patients or Other Participants: Eight college-aged men (age = 22 ± 3 years, height = 1.76 ± 0.08 m, mass = 77.14 ± 9.77 kg, body fat = 10% ± 3%, and maximal oxygen consumption = 50.48 ± 4.75 mL·kg(-1) min(-1)). Participants were assigned randomly to receive either cold (11.70°C ± 2.02°C, n = 4) or warm (23.50°C ± 1.00°C, n = 4) water-bath conditions after exercise in the heat (temperature = 37°C, relative humidity = 52%) for 90 minutes or until volitional cessation. Whole-body cooling rates were greater in the cold water-bath condition for the first 6 minutes of water immersion, but during the 90-minute, postexercise recovery, participants in the warm and cold water-bath conditions experienced similar overall whole-body cooling. Heart rate responses were similar for both groups. Participants in the cold water-bath condition experienced an overall slight increase (30.54% ± 77.37%) in IL-6 concentration, and participants in the warm water-bath condition experienced an overall decrease (-69.76% ± 15.23%). We have provided seed evidence that cold-water immersion is related to subtle IL-6 increases from postexercise values and that warmer water-bath temperatures might dampen this increase. Further research will elucidate any anti-inflammatory benefit associated with water-immersion treatment and possible multidimensional uses of cooling therapies.
Lee, Elaine C.; Watson, Greig; Casa, Douglas; Armstrong, Lawrence E.; Kraemer, William; Vingren, Jakob L.; Spiering, Barry A.; Maresh, Carl M.
2012-01-01
Context Cold-water immersion is the criterion standard for treatment of exertional heat illness. Cryotherapy and water immersion also have been explored as ergogenic or recovery aids. The kinetics of inflammatory markers, such as interleukin-6 (IL-6), during cold-water immersion have not been characterized. Objective To characterize serum IL-6 responses to water immersion at 2 temperatures and, therefore, to initiate further research into the multidimensional benefits of immersion and the evidence-based selection of specific, optimal immersion conditions by athletic trainers. Design Controlled laboratory study. Setting Human performance laboratory Patients or Other Participants Eight college-aged men (age = 22 ± 3 years, height = 1.76 ± 0.08 m, mass = 77.14 ± 9.77 kg, body fat = 10% ± 3%, and maximal oxygen consumption = 50.48 ± 4.75 mL·kg−1·min−1). Main Outcome Measures Participants were assigned randomly to receive either cold (11.70°C ± 2.02°C, n = 4) or warm (23.50°C ± 1.00°C, n = 4) water-bath conditions after exercise in the heat (temperature = 37°C, relative humidity = 52%) for 90 minutes or until volitional cessation. Results Whole-body cooling rates were greater in the cold water-bath condition for the first 6 minutes of water immersion, but during the 90-minute, postexercise recovery, participants in the warm and cold water-bath conditions experienced similar overall whole-body cooling. Heart rate responses were similar for both groups. Participants in the cold water-bath condition experienced an overall slight increase (30.54% ± 77.37%) in IL-6 concentration, and participants in the warm water-bath condition experienced an overall decrease (−69.76% ± 15.23%). Conclusions We have provided seed evidence that cold-water immersion is related to subtle IL-6 increases from postexercise values and that warmer water-bath temperatures might dampen this increase. Further research will elucidate any anti-inflammatory benefit associated with water-immersion treatment and possible multidimensional uses of cooling therapies. PMID:23182014
Dynamics and protection of tripartite quantum correlations in a thermal bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jin-Liang, E-mail: guojinliang80@163.com; Wei, Jin-Long
2015-03-15
We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successfulmore » protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.« less
[The use of white and yellow turpentine baths with diabetic patients].
Davydova, O B; Turova, E A; Golovach, A V
1998-01-01
In patients with insulin-dependent diabetes mellitus while and yellow turpentine baths produced a positive effect on carbohydrate metabolism. White baths were more effective in respect to lipid metabolism, blood viscosity, produced a good effect on plasmic hemocoagulation factors. Both while and yellow turpentine baths were beneficial for capillary blood flow: initially high distal blood flow in patients with prevailing distal polyneuropathy decreased while in patients with macroangiopathy initially subnormal blood flow increased. Both white and yellow turpentine baths promoted better pulse blood filling of the lower limbs and weaker peripheral resistance of large vessels. In patients with non-insulin-dependent diabetes mellitus white and yellow turpentine baths contributed to normalization of carbohydrate metabolism. Yellow baths were more effective in lowering lipids. White baths induced inhibition of platelet aggregation but had no effect on coagulation, yellow baths promoted a reduction of fibrinogen but had no effect on platelet aggregation. Yellow baths produced more pronounced effect than white ones on blood viscosity and microcirculation. Both yellow and white baths stimulated pulse blood filling, corrected peripheral resistance of large and small vessels of the lower limbs.
Lessons on electronic decoherence in molecules from exact modeling
NASA Astrophysics Data System (ADS)
Hu, Wenxiang; Gu, Bing; Franco, Ignacio
2018-04-01
Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.
Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe
2013-08-14
Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.
Caya, Teresa; Musuuza, Jackson; Yanke, Eric; Schmitz, Michelle; Anderson, Brooke; Carayon, Pascale; Safdar, Nasia
2015-01-01
We undertook a systems engineering approach to evaluate housewide implementation of daily chlorhexidine bathing. We performed direct observations of the bathing process and conducted provider and patient surveys. The main outcome was compliance with bathing using a checklist. Fifty-seven percent of baths had full compliance with the chlorhexidine bathing protocol. Additional time was the main barrier. Institutions undertaking daily chlorhexidine bathing should perform a rigorous assessment of implementation to optimize the benefits of this intervention.
Hashiguchi, Nobuko; Tochihara, Yutaka
2009-02-01
In the present study we investigated the effects of low relative humidity (RH) and high air velocity (VA) on physiological and subjective responses after bathing in order to present the evidence for required nursing intervention after bathing. Eight healthy male subjects participated in this experiment. There were four thermal conditions which combined RH (20% of 60%) and VA (low: less than 0.2 m/s or high: from 0.5 to 0.7 m/s). After taking a tub bath, subjects sat for 80 min in the test room under each condition. In addition, one condition under which the subjects were exposed to 20% RH and high VA condition for 80 min without bathing condition was conducted. A decrease in mean skin temperature (T sk), dryness of the skin and eyes were observed, though thermal comfort and warmth retained, due to spending time after bathing in a low RH and high VA environment, compared to the condition without bathing. Moreover, dryness of the skin, a decrease in hydration of the skin and an increase in transepidermal water loss (TEWL) after bathing were significantly affected by RH levels, on the other hand subjective coolness, discomfort and perception of dryness in the eye were significantly affected by VA levels. The decrease in T sk after bathing was significantly affected by both RH and VA. From our findings we concluded that low RH and high VA have negative effects on humans after bathing, for example a decrease in body temperature and dryness of the skin and eyes. Moreover, it was indicated that the negative effects could be kept to a minimum and thermal comfort remain higher, if RH and VA levels were controlled within the optimum ranges.
Process for preparing superconducting film having substantially uniform phase development
Bharacharya, Raghuthan; Parilla, Philip A.; Blaugher, Richard D.
1995-01-01
A process for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material.
Process for preparing superconducting film having substantially uniform phase development
Bharacharya, R.; Parilla, P.A.; Blaugher, R.D.
1995-12-19
A process is disclosed for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material. 3 figs.
Work fluctuations for a Brownian particle between two thermostats
NASA Astrophysics Data System (ADS)
Visco, Paolo
2006-06-01
We explicitly determine the large deviation function of the energy flow of a Brownian particle coupled to two heat baths at different temperatures. This toy model, initially introduced by Derrida and Brunet (2005, Einstein aujourd'hui (Les Ulis: EDP Sciences)), not only allows us to sort out the influence of initial conditions on large deviation functions but also allows us to pinpoint various restrictions bearing upon the range of validity of the Fluctuation Relation.
Kanda, K; Tsuchiya, J; Seto, M; Ohnaka, T; Tochihara, Y
1995-06-01
Thermal conditions in the bathroom and physiological responses were examined during winter and summer. The subjects were 22 male and 20 female elderly people, between 65 and 88 years old living in 25 houses in Gunma Prefecture, Japan. Heart rate, blood pressure, skin temperature and thermal sensation were measured during bathing. Changes in thermal sensation due to bathing were assessed in the living room and dressing room on a 9-point scale. Then they were asked about the purposes of bathing and the facilities of bathroom and dressing room. The results are summarized as follows: 1. The purpose of bathing in winter was to warm up for more than 80% of the subjects. In summer, all subjects felt refreshed by bathing. Eighty-five percent of the subjects took a bath every other day in both seasons. 2. Fifty-two percent of the bathrooms had no ventilating fans and 32% had no exclusive dressing rooms. 3. The average room temperature in the dressing rooms was 13-14 degrees C in winter. Thermal sensation was 'cool', 'slightly cold' or 'cold' for more than two-thirds of the subjects when they were partially nude, and there were no heaters in most dressing rooms. 4. The heart rate increased steadily, and reached a maximum value in a partially dressed condition in both seasons. 5. In winter, a marked increase of systolic blood pressure was observed in the partially nude condition. There was a significant difference between the before bathing condition and partially nude condition in winter.(ABSTRACT TRUNCATED AT 250 WORDS)
Environment and initial state engineered dynamics of quantum and classical correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Cheng-Zhi, E-mail: czczwang@outlook.com; Li, Chun-Xian; Guo, Yu
Based on an open exactly solvable system coupled to an environment with nontrivial spectral density, we connect the features of quantum and classical correlations with some features of the environment, initial states of the system, and the presence of initial system–environment correlations. Some interesting features not revealed before are observed by changing the structure of environment, the initial states of system, and the presence of initial system–environment correlations. The main results are as follows. (1) Quantum correlations exhibit temporary freezing and permanent freezing even at high temperature of the environment, for which the necessary and sufficient conditions are given bymore » three propositions. (2) Quantum correlations display a transition from temporary freezing to permanent freezing by changing the structure of environment. (3) Quantum correlations can be enhanced all the time, for which the condition is put forward. (4) The one-to-one dependency relationship between all kinds of dynamic behaviors of quantum correlations and the initial states of the system as well as environment structure is established. (5) In the presence of initial system–environment correlations, quantum correlations under local environment exhibit temporary multi-freezing phenomenon. While under global environment they oscillate, revive, and damp, an explanation for which is given. - Highlights: • Various interesting behaviors of quantum and classical correlations are observed in an open exactly solvable model. • The important effects of the bath structure on quantum and classical correlations are revealed. • The one-to-one correspondence between the type of dynamical behavior of quantum discord and the initial state is given. • Quantum correlations are given in the presence of initial qubits–bath correlations.« less
Quantum simulation of the spin-boson model with a microwave circuit
NASA Astrophysics Data System (ADS)
Leppäkangas, Juha; Braumüller, Jochen; Hauck, Melanie; Reiner, Jan-Michael; Schwenk, Iris; Zanker, Sebastian; Fritz, Lukas; Ustinov, Alexey V.; Weides, Martin; Marthaler, Michael
2018-05-01
We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the Ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here we discuss how a quantum simulation of this problem can be performed by coupling a superconducting qubit to a set of microwave resonators. We demonstrate a possible implementation of a continuous spectral bath with individual bath resonators coupling strongly to the qubit. Applying a microwave drive scheme potentially allows us to access the strong-coupling regime of the spin-boson model. We discuss how the resulting spin relaxation dynamics with different initialization conditions can be probed by standard qubit-readout techniques from circuit quantum electrodynamics.
Bedri, Zeinab; O'Sullivan, John J; Deering, Louise A; Demeter, Katalin; Masterson, Bartholomew; Meijer, Wim G; O'Hare, Gregory
2015-02-15
A three-dimensional model is used to assess the bathing water quality of Bray and Killiney bathing sites in Ireland following changes to the sewage management system. The model, firstly calibrated to hydrodynamic and water quality data from the period prior to the upgrade of the Wastewater Treatment Works (WwTW), was then used to simulate Escherichia coli (E. coli) distributions for discharge scenarios of the periods prior to and following the upgrade of the WwTW under dry and wet weather conditions. E. coli distributions under dry weather conditions demonstrate that the upgrade in the WwTW has remarkably improved the bathing water quality to a Blue Flag status. The new discharge strategy is expected to drastically reduce the rainfall-related incidents in which environmental limits of the Bathing Water Directive are breached. However, exceedances to these limits may still occur under wet weather conditions at Bray bathing site due to storm overflows that may still be discharged through two sea outfalls offshore of Bray bathing site. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chronodiagnostic acquisition of recovery speed of heart rate under bathing stress.
Ishijima, M; Togawa, T
1999-11-01
Cycling on an ergometer is one effective means of measuring cardiovascular function while applying stress on the heart. Bathing in a hot water bath applies a low stress to the heart. The electrocardiograms of a healthy adult male (aged 35 at the start of study) were recorded while taking a hot water bath with no electrode attached to the body over a period of 2 years (376 days over a 762 day period). The recovery speed following the initial overshoot of the heart rate (HR) was observed. The bathtub was designed for the automatic acquisition of ECG data. Immediately after immersion in the tub, the HR reached a peak within 20 s and then exponentially decreased toward the lowest rate in the 120 s of bathing. The initial recovery speed of the HR from the stress of bathing had a specific rhythm in the subject. Spectrum analysis of the speed series indicated that slow recovery speed appeared in cyclic periods of approximately 1 year, 42 days and 17 days. The methodology may provide a chronodiagnostic index of an exercise test for cardiovascular function.
[Sulfide ooze mud and sodium chloride baths in treating osteoarthrosis patients].
Novikova, N V
1989-01-01
Humoral immunity initially affected in patients with osteoarthrosis returns to normal under the influence of a multiple-modality treatment involving application of sulphide moor in combination with sodium chloride baths.
Ugly ducklings-the dark side of plastic materials in contact with potable water.
Neu, Lisa; Bänziger, Carola; Proctor, Caitlin R; Zhang, Ya; Liu, Wen-Tso; Hammes, Frederik
2018-01-01
Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 10 6 cells/cm 2 (clean water controls), 9.5 × 10 6 cells/cm 2 (real bath toys), and 7.3 × 10 7 cells/cm 2 (dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users' microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water.
Conjugate gradient heat bath for ill-conditioned actions.
Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele
2007-08-01
We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heat-bath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heat-bath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.
Seidensticker, Sven; Zarfl, Christiane; Cirpka, Olaf A; Fellenberg, Greta; Grathwohl, Peter
2017-11-07
In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion. Which of these mechanisms controls the mass-transfer kinetics depends on partition coefficients, particle size, boundary conditions, and time. We have developed a semianalytical model accounting for both processes and performed batch experiments on the desorption kinetics of typical wastewater pollutants (phenanthrene, tonalide, and benzophenone) at different dissolved-organic-matter concentrations, which change the overall partitioning between microplastics and water. Initially, mass transfer is externally dominated, while finally, intraparticle diffusion controls release kinetics. Under boundary conditions typical for batch experiments (finite bath), desorption accelerates with increasing partition coefficients for intraparticle diffusion, while it becomes independent of partition coefficients if film diffusion prevails. On the contrary, under field conditions (infinite bath), the pollutant release controlled by intraparticle diffusion is not affected by partitioning of the compound while external mass transfer slows down with increasing sorption. Our results clearly demonstrate that sorption/desorption time scales observed in batch experiments may not be transferred to field conditions without an appropriate model accounting for both the mass-transfer mechanisms and the specific boundary conditions at hand.
NASA Astrophysics Data System (ADS)
Mihara, Ryosuke; Gao, Xu; Kim, Sun-joong; Ueda, Shigeru; Shibata, Hiroyuki; Seok, Min Oh; Kitamura, Shin-ya
2018-02-01
Using a direct observation experimental method, the oxide formation behavior on the surface of Fe-Cr-5 mass pct C-Si alloy baths during decarburization by a top-blown Ar-O2 mixture was studied. The effects of the initial Si and Cr content of the alloy, temperature, and oxygen feed ratio on oxide formation were investigated. The results showed that, for alloys without Si, oxide particles, unstable oxide films, and stable oxide films formed sequentially. The presence of Si in the alloy changed the formation behavior of stable oxide film, and increased the crucial C content when stable oxide film started to form. Increasing the temperature, decreasing the initial Cr content, and increasing the ratio of the diluting gas decreased the critical C content at which a stable oxide film started to form. In addition, the P CO and a_{{{Cr}2 {O}3 }} values at which oxides started to form were estimated using Hilty's equation and the equilibrium relation to understand the formation conditions and the role of each parameter in oxide formation.
Effect of bathing on atopic dermatitis during the summer season
Kim, Hakyoung; Ban, Jeongsuk; Park, Mi-Ran; Kim, Do-Soo; Kim, Hye-Young; Han, Youngshin; Ahn, Kangmo
2012-01-01
Background There are little objective data regarding the optimal practice methods of bathing, although bathing and the use of moisturizers are the most important facets to atopic dermatitis (AD) management. Objective We performed this study to evaluate the effect of bathing on AD. Methods Ninety-six children with AD were enrolled during the summer season. Parents were educated to bathe them once daily with mildly acidic cleansers, and to apply emollients for 14 days. Parents recorded the frequency of bathing and skin symptoms in a diary. Scoring AD (SCORAD) scores were measured at the initial and follow-up visits. Patients were divided into two groups, based on the compliance of bathing; poor compliance was defined as ≥ 2 bathless days. Results There was an improvement of SCORAD score, itching, and insomnia in the good compliance group (all p < 0.001). The mean change in SCORAD score from the baseline at the follow-up visit was greater in the good compliance group than the poor compliance group (p = 0.038). Conclusion Daily bathing using weakly acidic syndets can reduce skin symptoms of pediatric AD during the summer season. PMID:23130333
Barnes, Rebecca K; Jepson, Marcus; Thomas, Clare; Jackson, Sue; Metcalfe, Chris; Kessler, David; Cramer, Helen
2018-06-01
The study aim was to assess implementation fidelity (i.e., adherence) to a talk-based primary care intervention using Conversation Analytic (CA) methods. The context was a UK feasibility trial where General Practitioners (GPs) were trained to use "BATHE" (Background,Affect,Trouble,Handling,Empathy) - a technique to screen for psychosocial issues during consultations - with frequently attending patients. 35 GPs received BATHE training between July-October 2015. 15 GPs across six practices self-selected to record a sample of their consultations with study patients at three and six months. 31 consultations were recorded. 21/26 patients in four intervention practices gave permission for analysis. The recordings were transcribed and initially coded for the presence or absence of the five BATHE components. CA methods were applied to assess delivery, focusing on position and composition of each component, and patients' responses. Initial coding showed most of the BATHE components to be present in most contacts. However the CA analysis revealed unplanned deviations in position and adaptations in composition. Frequently the intervention was initiated too early in the consultation, and the BATHE questions misunderstood by patients as pertaining to their presenting problems rather than the psychosocial context for their problems. Often these deviations resulted in reducing theoretical fidelity of the intervention as a whole. A CA approach enabled a dynamic assessment of the delivery and receipt of BATHE in situ revealing common pitfalls in delivery and provided valuable examples of more and less efficacious implementations. During the trial this evidence was used in top-up trainings to address problems in delivery and to improve GP engagement. Using CA methods enabled a more accurate assessment of implementation fidelity, a fuller description of the intervention itself, and enhanced resources for future training. When positioned appropriately, BATHE can be a useful tool for eliciting information about the wider context of the medical visit. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantum engine efficiency bound beyond the second law of thermodynamics.
Niedenzu, Wolfgang; Mukherjee, Victor; Ghosh, Arnab; Kofman, Abraham G; Kurizki, Gershon
2018-01-11
According to the second law, the efficiency of cyclic heat engines is limited by the Carnot bound that is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. Quantum engines operating between a thermal and a squeezed-thermal bath have been shown to surpass this bound. Yet, their maximum efficiency cannot be determined by the reversibility condition, which may yield an unachievable efficiency bound above unity. Here we identify the fraction of the exchanged energy between a quantum system and a bath that necessarily causes an entropy change and derive an inequality for this change. This inequality reveals an efficiency bound for quantum engines energised by a non-thermal bath. This bound does not imply reversibility, unless the two baths are thermal. It cannot be solely deduced from the laws of thermodynamics.
Physiological and subjective responses to standing showers, sitting showers, and sink baths.
Ohnaka, T; Tochihara, Y; Kubo, M; Yamaguchi, C
1995-09-01
The purpose of this study was to investigate physiological and subjective responses during and after bathing in three different bathing methods. Eight healthy males bathed for 10 minutes, and then rested for 30 minutes. Three kinds of bathing methods - standing shower, sitting shower and sink bath - were adopted in this experiment. Water temperature and flow volume of the showers were kept at 41 degrees C and 11 liter/min, while water temperature of the bath was kept at 40 degrees C. Rectal temperature, skin temperatures and heart rate of the subjects were measured continuously during bathing and the subsequent 30-minute rest. Blood pressure and votes for thermal sensations were recorded before bathing, after 5 and 10 minutes of bathing, and 5, 10, 20 and 30 minutes after bathing. The following results were obtained. 1) Although rectal temperature rose, on the average, by 0.15 degrees C in all bathing methods, there were no significant differences among the three bathing methods at any time in the experiment. 2) Mean skin temperature (Tsk) during the sink bath was significantly higher than that in the standing or sitting shower. After bathing, Tsk of sink bath was slightly higher than those of the remaining conditions, but did not significantly differ among the bathing methods. 3) Heart rate increased gradually during all the bathing methods, however, only HR in the standing shower exceeded 100 beats/min which was significantly higher than those of the two remaining bathing methods. 4) Blood pressure (BP) decreased rapidly during the sink bath in contrast to an increased BP in the sitting and standing showers.
Effect of trunk-to-head bathing on physiological responses in newborns.
So, Hyun-Sook; You, Mi-Ae; Mun, Je-Yung; Hwang, Myeong-Jin; Kim, Hyun-Kyung; Pyeon, Suk-Jin; Shin, Mi-Young; Chang, Bong-Hee
2014-01-01
To determine the effect of trunk-to-head bathing versus the traditional head-to-trunk bathing on newborns' body temperature, heart rate, and oxygen saturation. A prospective, two-group, quasi-experimental repeated measures design. A newborn nursery in an urban university hospital. Sixty-two healthy full-term newborns. Newborns were randomly assigned to two groups. The newborns in the experimental group were bathed from trunk to head; those in the control group were bathed from head to trunk. Measurements of body temperature, heart rate, and oxygen saturation were obtained at four time points: before the bath, immediately after the bath, 30 minutes after the bath, and 60 minutes after the bath. No significant differences in body temperature, heart rate, or oxygen saturation were observed between groups. However, body temperature was significantly different across measurement times, and there was a significant interaction between group and measurement time. The mean body temperature dropped 0.2°C after bathing in both groups, but the experimental group returned to their initial body temperature more rapidly than the control group. These findings suggest that newborns who were bathed from trunk to head and whose heads were wet for shorter periods of time benefited with a more rapid recovery of body temperature and decreased heat loss due to evaporation. © 2014 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.
Thermal equilibrium control by frequent bang-bang modulation.
Yang, Cheng-Xi; Wang, Xiang-Bin
2010-05-01
In this paper, we investigate the non-Markovian heat transfer between a weakly damped harmonic oscillator (system) and a thermal bath. When the system is initially in a thermal state and not correlated with the environment, the mean energy of the system always first increases, then oscillates, and finally reaches equilibrium with the bath, no matter what the initial temperature of the system is. Moreover, the heat transfer between the system and the bath can be controlled by fast bang-bang modulation. This modulation does work on the system, and temporarily inverts the direction of heat flow. In this case, the common sense that heat always transfers from hot to cold does not hold any more. At the long time scale, a new dynamic equilibrium is established between the system and the bath. At this equilibrium, the energy of the system can be either higher or lower than its normal equilibrium value. A comprehensive analysis of the relationship between the dynamic equilibrium and the parameters of the modulation as well as the environment is presented.
Sudden transition and sudden change from open spin environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zheng-Da; School of Science, Jiangnan University, Wuxi 214122; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn
2014-11-15
We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at themore » high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed.« less
A general framework for complete positivity
NASA Astrophysics Data System (ADS)
Dominy, Jason M.; Shabani, Alireza; Lidar, Daniel A.
2016-01-01
Complete positivity of quantum dynamics is often viewed as a litmus test for physicality; yet, it is well known that correlated initial states need not give rise to completely positive evolutions. This observation spurred numerous investigations over the past two decades attempting to identify necessary and sufficient conditions for complete positivity. Here, we describe a complete and consistent mathematical framework for the discussion and analysis of complete positivity for correlated initial states of open quantum systems. This formalism is built upon a few simple axioms and is sufficiently general to contain all prior methodologies going back to Pechakas (Phys Rev Lett 73:1060-1062, 1994). The key observation is that initial system-bath states with the same reduced state on the system must evolve under all admissible unitary operators to system-bath states with the same reduced state on the system, in order to ensure that the induced dynamical maps on the system are well defined. Once this consistency condition is imposed, related concepts such as the assignment map and the dynamical maps are uniquely defined. In general, the dynamical maps may not be applied to arbitrary system states, but only to those in an appropriately defined physical domain. We show that the constrained nature of the problem gives rise to not one but three inequivalent types of complete positivity. Using this framework, we elucidate the limitations of recent attempts to provide conditions for complete positivity using quantum discord and the quantum data processing inequality. In particular, we correct the claim made by two of us (Shabani and Lidar in Phys Rev Lett 102:100402-100404, 2009) that vanishing discord is necessary for complete positivity, and explain that it is valid only for a particular class of initial states. The problem remains open, and may require fresh perspectives and new mathematical tools. The formalism presented herein may be one step in that direction.
Avian Assemblages at Bird Baths: A Comparison of Urban and Rural Bird Baths in Australia
Cleary, Gráinne P.; Parsons, Holly; Davis, Adrian; Coleman, Bill R.; Jones, Darryl N.; Miller, Kelly K.; Weston, Michael A.
2016-01-01
Private gardens provide habitat and resources for many birds living in human-dominated landscapes. While wild bird feeding is recognised as one of the most popular forms of human-wildlife interaction, almost nothing is known about the use of bird baths. This citizen science initiative explores avian assemblages at bird baths in private gardens in south-eastern Australia and how this differs with respect to levels of urbanisation and bioregion. Overall, 992 citizen scientists collected data over two, four-week survey periods during winter 2014 and summer 2015 (43% participated in both years). Avian assemblages at urban and rural bird baths differed between bioregions with aggressive nectar-eating species influenced the avian assemblages visiting urban bird baths in South Eastern Queensland, NSW North Coast and Sydney Basin while introduced birds contributed to differences in South Western Slopes, Southern Volcanic Plains and Victorian Midlands. Small honeyeaters and other small native birds occurred less often at urban bird baths compared to rural bird baths. Our results suggest that differences between urban versus rural areas, as well as bioregion, significantly influence the composition of avian assemblages visiting bird baths in private gardens. We also demonstrate that citizen science monitoring of fixed survey sites such as bird baths is a useful tool in understanding large-scale patterns in avian assemblages which requires a vast amount of data to be collected across broad areas. PMID:26962857
Portable oil bath for high-accuracy resistance transfer and maintenance
NASA Astrophysics Data System (ADS)
Shiota, Fuyuhiko
1999-10-01
A portable oil bath containing one standard resistor for high-accuracy resistance transfer and maintenance was developed and operated for seven years in the National Research Laboratory of Metrology. The aim of the bath is to save labor and apparatus for high-accuracy resistance transfer and maintenance by consistently keeping the standard resistor in an optimum environmental condition. The details of the prototype system, including its performance, are described together with some suggestions for a more practical bath design, which adopts the same concept.
Steady-state entanglement and thermalization of coupled qubits in two common heat baths
NASA Astrophysics Data System (ADS)
Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie
2018-03-01
In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.
Surface-hopping dynamics and decoherence with quantum equilibrium structure.
Grunwald, Robbie; Kim, Hyojoon; Kapral, Raymond
2008-04-28
In open quantum systems, decoherence occurs through interaction of a quantum subsystem with its environment. The computation of expectation values requires a knowledge of the quantum dynamics of operators and sampling from initial states of the density matrix describing the subsystem and bath. We consider situations where the quantum evolution can be approximated by quantum-classical Liouville dynamics and examine the circumstances under which the evolution can be reduced to surface-hopping dynamics, where the evolution consists of trajectory segments exclusively evolving on single adiabatic surfaces, with probabilistic hops between these surfaces. The justification for the reduction depends on the validity of a Markovian approximation on a bath averaged memory kernel that accounts for quantum coherence in the system. We show that such a reduction is often possible when initial sampling is from either the quantum or classical bath initial distributions. If the average is taken only over the quantum dispersion that broadens the classical distribution, then such a reduction is not always possible.
Tao, Guohua; Miller, William H
2011-07-14
An efficient time-dependent importance sampling method is developed for the Monte Carlo calculation of time correlation functions via the initial value representation (IVR) of semiclassical (SC) theory. A prefactor-free time-dependent sampling function weights the importance of a trajectory based on the magnitude of its contribution to the time correlation function, and global trial moves are used to facilitate the efficient sampling the phase space of initial conditions. The method can be generally applied to sampling rare events efficiently while avoiding being trapped in a local region of the phase space. Results presented in the paper for two system-bath models demonstrate the efficiency of this new importance sampling method for full SC-IVR calculations.
Entanglement and purity of two-mode Gaussian states in noisy channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio
2004-02-01
We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes.
Improved Fatigue Life Bearing Development
1989-06-01
lubricating conditions: (1) oil sump, with the bottom rolling element half submerged in oil; (2) oil vapor, with the bearings bathed in oil vapor rising from...the life of bearings operating at speeds up to 3 MDN. A 40-rnm thrust bearing (Fafnir 2AAM 208WO MBR ) was selected for the preliminary tests. Bearings...Bore Ball Bearing Test Rig. 56 P- Aft. C9) 57 The test bearings (Fafnir 2AAM 208W0 MBR ) were manufactured out of VIM-VAR M50. Initial testing was
Improving efficiency, reducing infection, and enhancing experience.
Massa, Judith
For health professionals to make an informed choice and tailor each bed bath to the individual needs of the patient, they must firstly understand the different bed bath options available, their impact on skin integrity, and any associated risks they may pose to the patient in terms of cross-infection. Only with this knowledge can health professionals determine the appropriate form and frequency of the bed bath. Specialist wipes offer significant improvements in skin care and a reduced risk of cross-infection, compared with the traditional soap and water bed bath. Use of these wipes also improves the efficiency of the process, which links to the Productive Ward Initiative and results in clinical staff (i.e. nursing staff, healthcare assistants) having more time available to undertake additional patient care activities. This product focus highlights the benefits of moving to a wipe-based bed bath method, and the significant efficiency savings that can be realized as a result.
Thermal diode utilizing asymmetric contacts to heat baths.
Komatsu, Teruhisa S; Ito, Nobuyasu
2010-01-01
We propose a simple thermal diode passively acting as a rectifier of heat current. The key design of the diode is the size asymmetry of the areas in contact with two distinct heat baths. The heat-conducting medium is liquid, inside of which gaslike regions are induced depending on the applied conditions. Simulating nanoscale systems of this diode, the rectification of heat current is demonstrated. If the packing density of the medium and the working regime of temperature are properly chosen, the heat current is effectively cut off when the heat bath with narrow contact is hotter, but it flows normally under opposite temperature conditions. In the former case, the gaslike region is induced in the system and it acts as a thermal insulator because it covers the entire narrow area of contact with the bath.
Pan, Feng; Tao, Guohua
2013-03-07
Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.
Dust-bathing behavior of laying hens in enriched colony housing systems and an aviary system
Louton, H.; Bergmann, S.; Reese, S.; Erhard, M. H.; Rauch, E.
2016-01-01
The dust-bathing behavior of Lohmann Selected Leghorn hens was compared in 4 enriched colony housing systems and in an aviary system. The enriched colony housing systems differed especially in the alignment and division of the functional areas dust bath, nest, and perches. Forty-eight-hour video recordings were performed at 3 time-points during the laying period, and focal animal sampling and behavior sampling methods were used to analyze the dust-bathing behavior. Focal animal data included the relative fractions of dust-bathing hens overall, of hens bathing in the dust-bath area, and of those bathing on the wire floor throughout the day. Behavior data included the number of dust-bathing bouts within a predefined time range, the duration of 1 bout, the number of and reasons for interruptions, and the number of and reasons for the termination of dust-bathing bouts. Results showed that the average duration of dust bathing varied between the 4 enriched colony housing systems compared with the aviary system. The duration of dust-bathing bouts was shorter than reported under natural conditions. A positive correlation between dust-bathing activity and size of the dust-bath area was observed. Frequently, dust baths were interrupted and terminated by disturbing influences such as pecking by other hens. This was especially observed in the enriched colony housing systems. In none of the observed systems, neither in the enriched colony housing nor in the aviary system, were all of the observed dust baths terminated “normally.” Dust bathing behavior on the wire mesh rather than in the provided dust-bath area generally was observed at different frequencies in all enriched colony housing systems during all observation periods, but never in the aviary system. The size and design of the dust-bath area influenced the prevalence of dust-bathing behavior in that small and subdivided dust-bath areas reduced the number of dust-bathing bouts but increased the incidence of sham dust bathing on the wire mesh. PMID:27044875
The Quantum-to-Classical Transition in Strongly Interacting Nanoscale Systems
NASA Astrophysics Data System (ADS)
Benatov, Latchezar Latchezarov
This thesis comprises two separate but related studies, dealing with two strongly interacting nanoscale systems on the border between the quantum and classical domains. In Part 1, we use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing in the presence of a momentum-coupled detector bath and a position-coupled environmental bath. Besides, the full master equation clearly shows that half of the detector back-action is correlated with electron tunneling, indicating a departure from the model of the detector as an effective bath and suggesting that a future calculation valid at lower bias voltage, stronger tunneling and/or stronger coupling might reveal interesting quantum effects in the oscillator dynamics. In the second part of the thesis, we study the subsystem dynamics and thermalization of an oscillator-spin star model, where a nanomechanical resonator is coupled to a few two-level systems (TLS's). We use a fourth-order Runge-Kutta numerical algorithm to integrate the Schrodinger equation for the system and obtain our results. We find that the oscillator reaches a Boltzmann steady state when the TLS bath is initially in a thermal state at a temperature higher than the oscillator phonon energy. This occurs in both chaotic and integrable systems, and despite the small number of spins (only six) and the lack of couplings between them. At the same time, pure initial states do not thermalize well in our system, indicating that mixed state thermalization stems from the thermal nature of the initial bath state. Under the influence of a thermal TLS bath, oscillator Fock states decay in an approximately exponential manner, but there is also a concave-down trend at very early times, possibly indicative of Gaussian decay. In the case of initial Fock state superpositions, the diagonal density matrix element behaves very similarly to single initial Fock states, while the off-diagonal matrix element decays sinusoidally with an exponentially decreasing amplitude. The off-diagonal decay time is much smaller then the diagonal one, indicating that superposition states decohere much faster than they decay. Both decay times decrease with increasing Fock state number, but more slowly than the 1/n dependence seen in the presence of an external ohmic bath.
Chromate conversion coating: Iridite 14-2 thermal/optical characterization
NASA Astrophysics Data System (ADS)
Rodriguez, Marcello
2012-10-01
Chromate Conversion Coating (CCC) BOL and EOL thermal properties (absorptance and emittance) have been unspecified throughout the industry and throughout its use here at GSFC. Being key values essential for thermal engineers to assess thermal space conditions, this study focuses on the current application process, its outputted properties and assess whether these properties can in turn be classified under proper documentation. The results show that wide variations in the process overcome any possibility in thermally classifying this coating. A new set of samples were fabricated (in preparation for space environmental studies) in which a more controlled approach to applying the CCC was made. The resulting thermal values continued to show variations indicating lack of bath agitation existing within the bath. From this study you can conclude that witness samples may not best represent the flight hardware for this coating. The study then turns to space environmental study testing samples to high temperature (80°C), high vacuum, and combination of both, and UV radiation totaling 1625 ESH. The results showed an extremely dynamic coating sensitive to every environmental condition it was exposed to. Though the initial changes to the coating are drastic, post initial changes appear to be minuscule making EOL predictions more attainable. These results show that the worst case alpha/emittance values are likely after ground processing and before space exposure. From the data obtained in this study greater understanding and more informed decisions can be made with respect to this coating.
Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths
NASA Astrophysics Data System (ADS)
Su, Xuping; Zhou, Jie; Wang, Jianhua; Wu, Changjun; Liu, Ya; Tu, Hao; Peng, Haoping
2017-02-01
Surface oxidation of molten Zn-6Al baths containing 0.0, 3.0 and 6.0 wt. % Mg were analyzed using X-ray photoelectron spectroscopy. γ-Al2O3 is formed on the surface of the Zn-6Al bath, while MgAl2O4 and MgO occur at 460 °C in the Zn-6Al-3Mg and Zn-6Al-6Mg baths, respectively. Thermodynamic analysis on the oxidation of the Zn-Al-Mg baths was performed. Calculated phase diagrams at 460 °C and 560 °C show good agreements with the experimental results. MgO or MgAl2O4 exists in almost the entire composition range of the calculated oxidation diagrams. According to the calculation, oxidation products depend on the composition and temperature of the baths. The primary and secondary oxidation products of the Zn-Al-Mg baths can be reasonably explained by oxidation phase diagrams. Utilizing these results, the favorable practical bath melts and operating conditions can be designed.
Preparation of lead-zirconium-titanium film and powder by electrodeposition
Bhattacharya, Raghu N.; Ginley, David S.
1995-01-01
A process for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications.
Preparation of lead-zirconium-titanium film and powder by electrodeposition
Bhattacharya, R.N.; Ginley, D.S.
1995-10-31
A process is disclosed for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications. 4 figs.
Venkataraman, Charulatha
2011-11-28
The linearized semiclassical initial value representation is employed to describe ultrafast electron transfer processes coupled to a phonon bath and weakly coupled to a proton mode. The goal of our theoretical investigation is to understand the influence of the proton on the electronic dynamics in various bath relaxation regimes. More specifically, we study the impact of the proton on coherences and analyze if the coupling to the proton is revealed in the form of an isotope effect. This will be important in distinguishing reactions in which the proton does not undergo significant rearrangement from those in which the electron transfer is accompanied by proton transfer. Unlike other methodologies widely employed to describe nonadiabatic electron transfer, this approach treats the electronic and nuclear degrees of freedom consistently. However, due to the linearized approximation, quantum interference effects are not captured accurately. Our study shows that at small phonon bath reorganization energies, coherent oscillations and isotope effect are observed in both slow and fast bath regimes. The coherences are more substantially damped by deuterium in comparison to the proton. Further, in contrast to the dynamics of the spin-boson model, the coherences are not long-lived. At large bath reorganization energies, the decay is incoherent in the slow and fast bath regimes. In this case, the extent of the isotope effect depends on the relative relaxation timescales of the proton mode and the phonon bath. The isotope effect is magnified for baths that relax on picosecond timescales in contrast to baths that relax in femtoseconds.
Purity of Gaussian states: Measurement schemes and time evolution in noisy channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paris, Matteo G.A.; Illuminati, Fabrizio; Serafini, Alessio
2003-07-01
We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermalmore » baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.« less
Control of electron spin decoherence in nuclear spin baths
NASA Astrophysics Data System (ADS)
Liu, Ren-Bao
2011-03-01
Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath. This work was supported by Hong Kong RGC/GRF CUHK402207, CUHK402209, and CUHK402410. The author acknowledges collaboration with Nan Zhao, Jian-Liang Hu, Sai Wah Ho, Jones T. K. Wan, and Jiangfeng Du.
Tissue floaters and contaminants in the histology laboratory.
Platt, Eric; Sommer, Paul; McDonald, Linda; Bennett, Ana; Hunt, Jennifer
2009-06-01
Anatomic pathology diagnosis is often based on morphologic features. In recent years, an appropriate increased attention to patient safety has led to an emphasis on improving maintenance of patient identity. Decreasing or eliminating cross-contamination from one specimen to another is an example of a patient identity issue for which process improvement can be initiated. To quantify the presence of cross-contamination from histology water baths and the slide stainers. We assessed for the presence of contaminants in water baths at cutting stations and in linear stainer stain baths. We assessed the potential for tissue discohesion and carryover in tissue samples and we assessed the potential for carryover onto blank slides sent through the stainer. In the 13 water baths examined (totalling 195 L of water), only one fragment of tissue was identified. The stain baths, however, contained abundant tissue contaminants, ranging in size from 2 to 3 cells to hundreds of cells. The first sets of xylenes and alcohols were the most heavily contaminated. Cross-contamination to blank slides occurred at a rate of 8%, with the highest frequency in the late afternoon. Cross-contamination can present a significant challenge in the histology laboratory. Although the histotechnologists' water baths are not heavily contaminated, the stainer baths do contain contaminating tissue fragments. Cross-contamination does occur onto blank slides in the experimental setting.
Coupled qubits as a quantum heat switch
NASA Astrophysics Data System (ADS)
Karimi, B.; Pekola, J. P.; Campisi, M.; Fazio, R.
2017-12-01
We present a quantum heat switch based on coupled superconducting qubits, connected to two LC resonators that are terminated by resistors providing two heat baths. To describe the system, we use a standard second order master equation with respect to coupling to the baths. We find that this system can act as an efficient heat switch controlled by the applied magnetic flux. The flux influences the energy level separations of the system, and under some conditions, the finite coupling of the qubits enhances the transmitted power between the two baths, by an order of magnitude under realistic conditions. At the same time, the bandwidth at maximum power of the switch formed of the coupled qubits is narrowed.
42 CFR 418.76 - Condition of participation: Hospice aide and homemaker services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... following basic checklist: (A) Bed bath. (B) Sponge, tub, and shower bath. (C) Hair shampoo (sink, tub, and... professionals and volunteers). (3) Had been subjected to an extended (or partial extended) survey as a result of...
42 CFR 418.76 - Condition of participation: Hospice aide and homemaker services.
Code of Federal Regulations, 2012 CFR
2012-10-01
... following basic checklist: (A) Bed bath. (B) Sponge, tub, and shower bath. (C) Hair shampoo (sink, tub, and... professionals and volunteers). (3) Had been subjected to an extended (or partial extended) survey as a result of...
42 CFR 418.76 - Condition of participation: Hospice aide and homemaker services.
Code of Federal Regulations, 2011 CFR
2011-10-01
... following basic checklist: (A) Bed bath. (B) Sponge, tub, and shower bath. (C) Hair shampoo (sink, tub, and... professionals and volunteers). (3) Had been subjected to an extended (or partial extended) survey as a result of...
42 CFR 418.76 - Condition of participation: Hospice aide and homemaker services.
Code of Federal Regulations, 2014 CFR
2014-10-01
... following basic checklist: (A) Bed bath. (B) Sponge, tub, and shower bath. (C) Hair shampoo (sink, tub, and... professionals and volunteers). (3) Had been subjected to an extended (or partial extended) survey as a result of...
42 CFR 418.76 - Condition of participation: Hospice aide and homemaker services.
Code of Federal Regulations, 2013 CFR
2013-10-01
... following basic checklist: (A) Bed bath. (B) Sponge, tub, and shower bath. (C) Hair shampoo (sink, tub, and... professionals and volunteers). (3) Had been subjected to an extended (or partial extended) survey as a result of...
Antimony sulfide thin films prepared by laser assisted chemical bath deposition
NASA Astrophysics Data System (ADS)
Shaji, S.; Garcia, L. V.; Loredo, S. L.; Krishnan, B.; Aguilar Martinez, J. A.; Das Roy, T. K.; Avellaneda, D. A.
2017-01-01
Antimony sulfide (Sb2S3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb2S3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb2S3 thin films for optoelectronic applications.
[Survival of Bacillus anthracis spores in various tannery baths].
Mendrycka, M; Mierzejewski, J
2000-01-01
The influence of tannery baths: liming, deliming, bating, pickling, tanning, retannage on the survival and on the germination dynamism of B. anthracis spores (Sterne strain) was investigated. The periods and the conditions of this influence were established according to technological process of cow hide tannage. Practically after every bath some part of the spores remained vital. The most effective killing of spores occurred after pickling, liming and deliming. Inversely, the most viable spores remained after bating and retannage process. The lack of correlation that was observed between survival and germination of spores after retannage bath can be explained by different mechanism of spores germination inhibition and their killing.
Approach to thermal equilibrium in atomic collisions.
Zhang, P; Kharchenko, V; Dalgarno, A; Matsumi, Y; Nakayama, T; Takahashi, K
2008-03-14
The energy relaxation of fast atoms moving in a thermal bath gas is explored experimentally and theoretically. Two time scales characterize the equilibration, one a short time, in which the isotropic energy distribution profile relaxes to a Maxwellian shape at some intermediate effective temperature, and the second, a longer time in which the relaxation preserves a Maxwellian distribution and its effective temperature decreases continuously to the bath gas temperature. The formation and preservation of a Maxwellian distribution does not depend on the projectile to bath gas atom mass ratio. This two-stage behavior arises due to the dominance of small angle scattering and small energy transfer in the collisions of neutral particles. Measurements of the evolving Doppler profiles of emission from excited initially energetic nitrogen atoms traversing bath gases of helium and argon confirm the theoretical predictions.
Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment
NASA Astrophysics Data System (ADS)
Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.
2016-02-01
The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.
The dynamics and shapes of a viscous sheet spreading on a moving liquid bath
NASA Astrophysics Data System (ADS)
Sebilleau, J.; Lebon, L.; Limat, L.; Quartier, L.; Receveur, M.
2010-10-01
We investigate the shape and dynamics of a floating viscous sheet formed by a jet falling on a static or moving bath under partial wetting conditions. For a static bath, the viscous sheet has a circular shape and spreads with a uniform thickness that is surprisingly larger than the static Langmuir equilibrium thickness. This thickening effect seems to be linked to a peculiarity of the oil used for the bath, which is in situation of total wetting on the sheet surface, and climbs the sheet a bit like a macroscopic "precursor film" that increases dissipation at the sheet perimeter. For a moving bath, the viscous sheet evolves from an ellipse to a ribbon, a transient remarkable pear shape being observed between these two states. A simple kinematic model of advection of the spreading sheet by the bath predicts very well the characteristics of the ribbon regime. Convected sheets whose shape is reminiscent of pendant drops in 2D are also observed at higher bath velocity, with interesting pinch off phenomena.
How does washing without water perform compared to the traditional bed bath: a systematic review.
Groven, Fabian M V; Zwakhalen, Sandra M G; Odekerken-Schröder, Gaby; Joosten, Erik J T; Hamers, Jan P H
2017-01-25
For immobile patients, a body wash in bed is sometimes the only bathing option. Traditionally, the bed bath is performed with water and soap. However, alternatives are increasingly used in health care. Washing without water is one such alternative that has been claimed to offer several advantages, such as improved hygiene and skin condition. This systematic review aims to provide a comprehensive overview of the evidence on outcomes of the washing without water concept compared to the traditional bed bath. Controlled trials about washing without water outcomes published after 1994 were collected by means of a systematic literature search in CINAHL, Embase, MEDLINE, and PUBMED at the 25th of February, 2016. Additionally, references and citations were searched and experts contacted. Studies were eligible if (1) the study designs included outcomes of washing without water products developed for the full body wash compared to the traditional bed bath, and (2) they were controlled trials. Two researchers independently used a standardized quality checklist to assess the methodological quality of the eligible studies. Finally, outcomes were categorized in (1) physiological outcomes related to hygiene and skin condition, (2) stakeholder-related outcomes, and (3) organizational outcomes in the data synthesis. Out of 33 potentially relevant articles subjected to full text screening, six studies met the eligibility criteria. Only two studies (of the same research group) were considered of high quality. The results of these high quality studies show that washing without water performed better than the traditional bed bath regarding skin abnormalities and bathing completeness. No differences between washing without water and the traditional bed bath were found for outcomes related to significant skin lesions, resistance during bathing and costs in the studies of high quality. There is limited moderate to high quality evidence that washing without water is not inferior to the traditional bed bath. Future research on washing without water is needed and should pay special attention to costs, hygiene, and to stakeholder-related outcomes, such as experiences and value perceptions of patients, nursing staff and family.
Wither, A; Greaves, J; Dunhill, I; Wyer, M; Stapleton, C; Kay, D; Humphrey, N; Watkins, J; Francis, C; McDonald, A; Crowther, J
2005-01-01
Achieving compliance with the mandatory standards of the 1976 Bathing Water Directive (76/160/EEC) is required at all U.K. identified bathing waters. In recent years, the Fylde coast has been an area of significant investments in 'point source' control, which have not proven, in isolation, to satisfactorily achieve compliance with the mandatory, let alone the guide, levels of water quality in the Directive. The potential impact of riverine sources of pollution was first confirmed after a study in 1997. The completion of sewerage system enhancements offered the potential for the study of faecal indicator delivery from upstream sources comprising both point sources and diffuse agricultural sources. A research project to define these elements commenced in 2001. Initially, a desk study reported here, estimated the principal infrastructure contributions within the Ribble catchment. A second phase of this investigation has involved acquisition of empirical water quality and hydrological data from the catchment during the 2002 bathing season. These data have been used further to calibrate the 'budgets' and 'delivery' modelling and these data are still being analysed. This paper reports the initial desk study approach to faecal indicator budget estimation using available data from the sewerage infrastructure and catchment sources of faecal indicators.
Post-industrial river water quality-Fit for bathing again?
Kistemann, Thomas; Schmidt, Alexandra; Flemming, Hans-Curt
2016-10-01
For the Ruhr River, bathing has been prohibited for decades. However, along with significant improvements of the hygienic water quality, there is an increasing demand of using the river for recreational purposes, in particular for bathing. In the "Safe Ruhr" interdisciplinary research project, demands, options and chances for lifting the bathing ban for the Ruhr River were investigated. As being the prominent reason for persisting recreational restrictions, microbiological water quality was in the focus of interest. Not only the faecal indicator organisms (FIOs) as required by the European Bathing Water Directive were considered, but also pathogens such as Salmonella, Pseudomonas aeruginosa, Legionella pneumophila, Campylobacter, Leptospira, enteroviruses and protozoan parasites. In this introductory paper, we firstly relate current recreational desires to historical experiences of river bathing. After recapitulating relevant microbial river contamination sources (predominantly sewage treatment plants, combined sewer overflows, and surface runoffs), we review existing knowledge about the relationships of FIOs and pathogens in rivers designated for recreational purposes, and then trace the evolution, rationale and validity of recreational freshwater quality criteria which are, despite obvious uncertainties, mostly relying on the FIO paradigm. In particular, the representativeness of FIOs is critically discussed. The working programme of Safe Ruhr, aiming at initiating and facilitating a process towards legalisation of Ruhr River bathing, is outlined. Sources of contamination can be technically handled which leaves the actual measures to political decisions. As contaminations are transient, only occasionally exceeding legal limits, a flexible bathing site management, warning bathers of non-safe situations, may amend technical interventions and offer innovative solutions. As a result, a situation-adapted system for lifting of the bathing ban for Ruhr River appears realistic. Copyright © 2016 Elsevier GmbH. All rights reserved.
Deeren, Dries; Dewulf, Evelyne; Verfaillie, Lydie
2016-12-01
A recent multicenter study demonstrated that bathing with chlorhexidine reduces the transmission of resistant organisms and the risk of hospital-acquired bloodstream infections in ICUs. We wanted to confirm the feasibility of this strategy in a cohort of patients in a typical intensive haematology unit. Patients treated with remission induction chemotherapy, autologous or allogeneic stem cell transplantation received daily chlorhexidine bathing. To avoid deshydratation of skin, we used prophylactic application of hydrating lotion, replaced by corticosteroid cream in case of skin toxicity of chemotherapy or conditioning. We studied 15 consecutive admissions of 12 patients. Daily chlorhexidine bathing never needed to be interrupted, even though 53% of patients were treated with intravenous cytarabine. Patients were satisfied with the skin treatment and reported few unwanted effects. Daily chlorhexidine bathing was feasible in our intensive haematology unit in all patients and did not increase skin toxicity, even when treated with IV cytarabine.
Effects of single moor baths on physiological stress response and psychological state: a pilot study
NASA Astrophysics Data System (ADS)
Stier-Jarmer, M.; Frisch, D.; Oberhauser, C.; Immich, G.; Kirschneck, M.; Schuh, A.
2017-11-01
Moor mud applications in the form of packs and baths are widely used therapeutically as part of balneotherapy. They are commonly given as therapy for musculoskeletal disorders, with their thermo-physical effects being furthest studied. Moor baths are one of the key therapeutic elements in our recently developed and evaluated 3-week prevention program for subjects with high stress level and increased risk of developing a burnout syndrome. An embedded pilot study add-on to this core project was carried out to assess the relaxing effect of a single moor bath. During the prevention program, 78 participants received a total of seven moor applications, each consisting of a moor bath (42 °C, 20 min, given between 02:30 and 05:20 p.m.) followed by resting period (20 min). Before and after the first moor application in week 1, and the penultimate moor application in week 3, salivary cortisol was collected, blood pressure and heart rate were measured, and mood state (Multidimensional Mood State Questionnaire) was assessed. A Friedman test of differences among repeated measures was conducted. Post hoc analyses were performed using the Wilcoxon signed-rank test. A significant decrease in salivary cortisol concentration was seen between pre- and post-moor bath in week 1 ( Z = -3.355, p = 0.0008). A non-significant decrease was seen between pre- and post-moor bath in week 3. Mood state improved significantly after both moor baths. This pilot study has provided initial evidence on the stress-relieving effects of single moor baths, which can be a sensible and recommendable therapeutic element of multimodal stress-reducing prevention programs. The full potential of moor baths still needs to be validated. A randomized controlled trial should be conducted comparing this balneo-therapeutic approach against other types of stress reduction interventions.
PICKLEX AS A NON-POLLUTING METAL SURFACE FINISHING PRETREATMENT AND PRETREATMENT/CONVERSION COATING
The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real world conditions. The pilot-scale study consisted of four 7-to16-day filtration runs, each processed a portion of the cleaning bath during...
The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...
Non-equilibrium dynamics from RPMD and CMD.
Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F
2016-11-28
We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.
[Whirlpool and pseudomonas infection--a local outbreak].
Malterud, Kirsti; Thesen, Janecke
2007-06-28
Hot tubs and whirlpools are popular in Norway, but related health risks are not well-known. Manifestations of bathing-associated Pseudomonas aeruginosa-infections can be seen in many organ systems. The most common of these, Pseudomonas folliculitis, is a self-limiting disease in otherwise healthy people, and does not require antibiotic treatment. We describe a local outbreak involving 6 people who had used the same hot whirlpool. The disease manifestations were different, and were initially confused with impetigo and mastitis/mammary tumour. Signs and symptoms are described, documented with photos and discussed in relation to knowledge about Pseudomonas infection and its manifestations. After suspecting the hot tub as a source of infection, diagnosis was made highly probable by bacteriological specimens from the tub. Hot tub-associated infections with Pseudomonas aeruginosa are probably more common than previously anticipated, and can easily be confused with conditions of different aetiology. They indicate unsatisfactory routines in tub maintenance. Improved guidelines for hot-tub-owners and the use of dip-slide cultures to secure routines are likely to prevent bathing-associated Pseudomonas infections.
Mbithi, J N; Springthorpe, V S; Sattar, S A; Pacquette, M
1993-01-01
Baths with 2% alkaline glutaraldehyde are often reused for 14 days to decontaminate flexible fiberoptic endoscopes (FFEs) between patients, but the effect of such reuse on the disinfectant's activity has not been known. Many busy endoscopy units also disinfect FFEs with contact times shorter than those recommended by the disinfectant manufacturer. We therefore collected samples of the disinfectant over the 14-day reuse period from two manual and one automatic bath used for bronchoscopes and gastroscopes at a local hospital. Control samples were also collected from a manual bath of 2% alkaline glutaraldehyde which did not receive any endoscopes. The germicidal activities of the samples were assessed in a carrier test against a mixture of hepatitis A virus, poliovirus 1 (Sabin), and Pseudomonas aeruginosa; the mixture also contained either Mycobacterium bovis or Mycobacterium gordonae. Bovine serum (5%) was the organic load. The criterion of efficacy was a minimum of a 3-log10-unit reduction in the infectivity titers of the organisms tested. The initial disinfectant concentration in all the baths was nearly 2.25%; it became about 1.8% in the control bath and fell to approximately 1% in the three test baths after 14 days. No protein was detected in the control bath, while its concentration rose gradually in the test baths to a maximum of 1,267 micrograms/ml after 14 days. With a contact time of 10 min at 20 +/- 2 degrees C, all the samples from the control bath were effective against all the test organisms and all the samples from all the test baths were also effective against P. aeruginosa. With a contact time of 10 or 20 min at 20+/-2 degrees C, the virucidal and mycobactericidal activities of the samples from the test baths showed broad-spectrum germicidal activity when the contact time was increased to 45 min and the temperature was raised to 25 degrees C. These findings emphasize the care needed in the disinfection of FFEs, especially in view of the increasing threat of AIDS and the resurgence of tuberculosis. PMID:8263184
Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.
Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q
2015-05-01
The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles. Copyright © 2015 Elsevier Inc. All rights reserved.
Study of electroless Ni-W-P alloy coating on martensitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com
Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acidmore » or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).« less
Pouran, Behdad; Arbabi, Vahid; Weinans, Harrie; Zadpoor, Amir A
2016-11-01
Transport of solutes helps to regulate normal physiology and proper function of cartilage in diarthrodial joints. Multiple studies have shown the effects of characteristic parameters such as concentration of proteoglycans and collagens and the orientation of collagen fibrils on the diffusion process. However, not much quantitative information and accurate models are available to help understand how the characteristics of the fluid surrounding articular cartilage influence the diffusion process. In this study, we used a combination of micro-computed tomography experiments and biphasic-solute finite element models to study the effects of three parameters of the overlying bath on the diffusion of neutral solutes across cartilage zones. Those parameters include bath size, degree of stirring of the bath, and the size and concentration of the stagnant layer that forms at the interface of cartilage and bath. Parametric studies determined the minimum of the finite bath size for which the diffusion behavior reduces to that of an infinite bath. Stirring of the bath proved to remarkably influence neutral solute transport across cartilage zones. The well-stirred condition was achieved only when the ratio of the diffusivity of bath to that of cartilage was greater than ≈1000. While the thickness of the stagnant layer at the cartilage-bath interface did not significantly influence the diffusion behavior, increase in its concentration substantially elevated solute concentration in cartilage. Sufficient stirring attenuated the effects of the stagnant layer. Our findings could be used for efficient design of experimental protocols aimed at understanding the transport of molecules across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inverse Leidenfrost effect: self-propelling drops on a bath
NASA Astrophysics Data System (ADS)
Gauthier, Anais; van der Meer, Devaraj; Lohse, Detlef; Physics of Fluids Team
2017-11-01
When deposited on very hot solid, volatile drops can levitate over a cushion of vapor, in the so-called Leidenfrost state. This phenomenon can also be observed on a hot bath and similarly to the solid case, drops are very mobile due to the absence of contact with the substrate that sustains them. We discuss here a situation of ``inverse Leidenfrost effect'' where room-temperature drops levitate on a liquid nitrogen pool - the vapor is generated here by the bath sustaining the relatively hot drop. We show that the drop's movement is not random: the liquid goes across the bath in straight lines, a pattern only disrupted by elastic bouncing on the edges. In addition, the drops are initially self-propelled; first at rest, they accelerate for a few seconds and reach velocities of the order of a few cm/s, before slowing down. We investigate experimentally the parameters that affect their successive acceleration and deceleration, such as the size and nature of the drops and we discuss the origin of this pattern.
Quantum Brownian motion and its conflict with the second law
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theo M.; Allahverdyan, Armen E.
2002-11-01
The Brownian motion of a harmonically bound quantum particle and coupled to a harmonic quantum bath is exactly solvable. At low enough temperatures the stationary state is non-Gibbsian due to an entanglement with the bath. This happens when a cloud of bath modes around the particle is formed. Equilibrium thermodynamics for particle plus bath together, does not imply standard thermodynamics for the particle itself at low T. Various formulations of the second law are then invalid. First, the Clausius inequality can be violated. Second, when the width of the confining potential is suddenly changed, there occurs a relaxation to equilibrium during which the rate of entropy production is partly negative. Third, for non-adiabatic changes of system parameters the rate of energy dissipation can be negative, and, out of equilibrium, cyclic processes are possible which extract work from the bath. Conditions are put forward under which perpetuum mobile of the second kind, having several work extraction cycles, enter the realm of condensed matter physics.
Entanglement dynamics of coupled qubits and a semi-decoherence free subspace
NASA Astrophysics Data System (ADS)
Campagnano, Gabriele; Hamma, Alioscia; Weiss, Ulrich
2010-01-01
We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in the cases of (I) two independent bosonic baths and (II) one common bath. We find that in the case (II) the existence of a decoherence-free subspace (DFS) makes entanglement dynamics very rich. We show that when the system is initially in a state with a component in the DFS the relaxation time is surprisingly long, showing the existence of semi-decoherence free subspaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian
We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less
Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility
NASA Astrophysics Data System (ADS)
Los, Victor F.
2017-08-01
A regular approach to accounting for initial correlations, which allows to go beyond the unrealistic random phase (initial product state) approximation in deriving the evolution equations, is suggested. An exact homogeneous (time-convolution and time-convolutionless) equations for a relevant part of the two-time equilibrium correlation function for the dynamic variables of a subsystem interacting with a boson field (heat bath) are obtained. No conventional approximation like RPA or Bogoliubov's principle of weakening of initial correlations is used. The obtained equations take into account the initial correlations in the kernel governing their evolution. The solution to these equations is found in the second order of the kernel expansion in the electron-phonon interaction, which demonstrates that generally the initial correlations influence the correlation function's evolution in time. It is explicitly shown that this influence vanishes on a large timescale (actually at t→ ∞) and the evolution process enters an irreversible kinetic regime. The developed approach is applied to the Fröhlich polaron and the low-temperature polaron mobility (which was under a long-time debate) is found with a correction due to initial correlations.
Combining dynamical decoupling with fault-tolerant quantum computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Hui Khoon; Preskill, John; Lidar, Daniel A.
2011-07-15
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprotected gates. Under suitable conditions, fault-tolerant quantum circuits constructed from DD-protected gates can tolerate stronger noise and have a lower overhead cost than fault-tolerant circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that couples to the quantum computer and can be expressed either in terms of the operator norm of the bath's Hamiltonian or in terms of themore » power spectrum of bath correlations; we explain in particular how the performance of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply to Hamiltonian noise models with limited spatial correlations.« less
Observation of an anomalous decoherence effect in a quantum bath at room temperature
Huang, Pu; Kong, Xi; Zhao, Nan; Shi, Fazhan; Wang, Pengfei; Rong, Xing; Liu, Ren-Bao; Du, Jiangfeng
2011-01-01
The decoherence of quantum objects is a critical issue in quantum science and technology. It is generally believed that stronger noise causes faster decoherence. Strikingly, recent theoretical work suggests that under certain conditions, the opposite is true for spins in quantum baths. Here we report an experimental observation of an anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy centre in high-purity diamond at room temperature. We demonstrate that, under dynamical decoupling, the double-transition can have longer coherence time than the single-transition even though the former couples to the nuclear spin bath as twice strongly as the latter does. The excellent agreement between the experimental and theoretical results confirms the controllability of the weakly coupled nuclear spins in the bath, which is useful in quantum information processing and quantum metrology. PMID:22146389
Clinical and anti-aging effect of mud-bathing therapy for patients with fibromyalgia.
Maeda, Toyoki; Kudo, Yoshihiro; Horiuchi, Takahiko; Makino, Naoki
2017-12-06
Spa bathing is known as a medical treatment for certain diseases causing chronic pains. Spa water contains mineral components which lower the specific heat of the water, resulting in a higher efficiency to warm body-core temperature. This phenomenon yields pain-relieving effect for rheumatoid arthritis, low back pain, sciatic neuralgia, fibromyalgia, etc. Here we introduce medical and biological effects of mud-spa-bathing therapy for fibromyalgia other than pain relief, the changes of blood examination data, and the telomere length of circulating leukocytes. The enrolled 7 patients with fibromyalgia syndrome were hospitalized and were subject to daily mud bathing at 40 °C for 10 min for about a month. Then, their subjective pain was reduced to about a quarter in average. They also showed lowered serum triglyceride and C-reactive protein level, maintaining the levels of aspartate transaminase and creatine phosphokinase, and increases of the red blood cell count, the serum albumin level, and the serum LDL-cholesterol level in comparison with cases without mud-bathing therapy, suggesting that mud bathing prevents inflammation and muscle atrophy and improves nutritional condition in fibromyalgia. In addition, the analysis of telomere length of peripheral leukocytes revealed a trend of negative correlation between telomere shortening and laboratory data change of hemoglobin and serum albumin. These telomeric changes can be explained hypothetically by an effect of mud bathing extending life-span of circulating leukocytes.
The chaotic interaction of two walkers
NASA Astrophysics Data System (ADS)
Tadrist, Loic; Samara, Naresh; Schlagheck, Peter; Gilet, Tristan
2016-11-01
A droplet bouncing on a vertically vibrated bath may be propelled horizontally by the Faraday waves that it generates at each rebound. This association of a wave and a particle is called a walker. Ten years ago, Yves Couder and co-workers noted that the dynamical encounter of two walkers may lead to either scattered trajectories or orbital motion. In this work, we investigate the interaction of two walkers more systematically. The walkers are launched towards each other with finely controlled initial conditions. Output trajectories are classified in four types: scattering, orbiting, wandering and complex. The interaction appears stochastic: the same set of initial parameters (to the measurement accuracy) can produce different outputs. Our analysis of the underlying chaos provides new insights on the stochastic nature of this experiment. This work is supported by the ARC Quandrops of the Wallonia-Brussels Federation.
Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process
NASA Astrophysics Data System (ADS)
Wodarz, Siggi; Hasegawa, Takashi; Ishio, Shunji; Homma, Takayuki
2017-05-01
CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated.
Nursing Care at the Time of Death: A Bathing and Honoring Practice.
Rodgers, Debra; Calmes, Beth; Grotts, Jonathan
2016-05-01
To explore family members' experience of a bathing and honoring practice after a loved one's death in the acute care setting. . A descriptive, qualitative design using a semistructured telephone interview script. . The Inpatient Adult Oncology Unit at Santa Barbara Cottage Hospital in California. . 13 family members who participated in the bathing and honoring practice after their loved one's death on the oncology unit. . Participants were selected by purposive sampling and interviewed by telephone three to six months after their loved one's death. Interviews using a semistructured script with open-ended questions were recorded, transcribed, verified, and analyzed using phenomenologic research techniques to identify common themes of experience. . 24 first-level themes and 11 superordinate themes emerged from the data. All participants indicated that the bathing and honoring practice was a positive experience and supported the grieving process. The majority found the practice to be meaningful and stated that it honored their loved one. Many expressed that the bathing and honoring was spiritually significant in a nondenominational way and that they hope it will be made available to all families of patients who die in the hospital. . After patient death, a bathing and honoring practice with family member participation is positive and meaningful, and it supports family members' initial grieving. . This study is a first step toward establishing specific nursing interventions as evidence-based practice that can be incorporated in routine nursing care for patients and families at the end of life.
NASA Astrophysics Data System (ADS)
Santra, Siddhartha; Cruikshank, Benjamin; Balu, Radhakrishnan; Jacobs, Kurt
2017-10-01
Fermi’s golden rule applies to a situation in which a single quantum state \\vert \\psi> is coupled to a near-continuum. This ‘quasi-continuum coupling’ structure results in a rate equation for the population of \\vert \\psi> . Here we show that the coupling of a quantum system to the standard model of a thermal environment, a bath of harmonic oscillators, can be decomposed into a ‘cascade’ made up of the quasi-continuum coupling structures of Fermi’s golden rule. This clarifies the connection between the physics of the golden rule and that of a thermal bath, and provides a non-rigorous but physically intuitive derivation of the Markovian master equation directly from the former. The exact solution to the Hamiltonian of the golden rule, known as the Bixon-Jortner model, generalized for an asymmetric spectrum, provides a window on how the evolution induced by the bath deviates from the master equation as one moves outside the Markovian regime. Our analysis also reveals the relationship between the oscillator bath and the ‘random matrix model’ (RMT) of a thermal bath. We show that the cascade structure is the one essential difference between the two models, and the lack of it prevents the RMT from generating transition rates that are independent of the initial state of the system. We suggest that the cascade structure is one of the generic elements of thermalizing many-body systems.
Quantum Zeno and anti-Zeno effects in open quantum systems
NASA Astrophysics Data System (ADS)
Zhou, Zixian; Lü, Zhiguo; Zheng, Hang; Goan, Hsi-Sheng
2017-09-01
The traditional approach to the quantum Zeno effect (QZE) and quantum anti-Zeno effect (QAZE) in open quantum systems (implicitly) assumes that the bath (environment) state returns to its original state after each instantaneous projective measurement on the system and thus ignores the cross-correlations of the bath operators between different Zeno intervals. However, this assumption is not generally true, especially for a bath with a considerably nonnegligible memory effect and for a system repeatedly projected into an initial general superposition state. We find that, in stark contrast to the result of a constant value found in the traditional approach, the scaled average decay rate in unit Zeno interval of the survival probability is generally time dependent or shows an oscillatory behavior. In the case of a strong bath correlation, the transition between the QZE and the QAZE depends sensitively on the number of measurements N . For a fixed N , a QZE region predicted by the traditional approach may in fact already be in the QAZE region. We illustrate our findings using an exactly solvable open qubit system model with a Lorentzian bath spectral density, which is directly related to realistic circuit cavity quantum electrodynamics systems. Thus the results and dynamics presented here can be verified with current superconducting circuit technology.
Effects of Temperature on Microstructure and Wear of Salt Bath Nitrided 17-4PH Stainless Steel
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Fan, Hongyuan; Zeng, Dezhi; Peng, Qian; Shen, Baoluo
2012-08-01
Salt bath nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 610, 630, and 650 °C for 2 h using a complex salt bath heat-treatment, and the properties of the nitrided surface were systematically evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt bathing nitriding, the main phase of the nitrided layer was expanded martensite (α'), expanded austenite (γN), CrN, Fe4N, and (Fe,Cr) x O y . In the sample nitrided above 610 °C, the expanded martensite transformed into expanded austenite. But in the sample nitrided at 650 °C, the expanded austenite decomposed into αN and CrN. The decomposed αN then disassembled into CrN and alpha again. The nitrided layer depth thickened intensively with the increasing nitriding temperature. The activation energy of nitriding in this salt bath was 125 ± 5 kJ/mol.
Star, R A; Burg, M B; Knepper, M A
1985-01-01
Cortical collecting ducts (CCD) from rabbits treated with deoxycorticosterone (DOC) actively secrete bicarbonate at high rates. To investigate the mechanism of bicarbonate secretion, we measured bicarbonate and chloride transport in CCD from rabbits treated with DOC for 9-24 d. Removal of chloride (replaced with gluconate) from both perfusate and bath inhibited bicarbonate secretion without changing transepithelial voltage. Removal of chloride only from the bath increased bicarbonate secretion, while removal of chloride only from the perfusate inhibited secretion. In contrast to the effect of removing chloride, removal of sodium from both the perfusate and bath (replacement with N-methyl-D-glucamine) did not change the rate of bicarbonate secretion. The rate of bicarbonate secretion equaled the rate of chloride absorption in tubules bathed with 0.1 mM ouabain to inhibit any cation-dependent chloride transport. Under these conditions, chloride absorption occurred against an electrochemical gradient. Removal of bicarbonate from both the perfusate and bath inhibited chloride absorption. Removal of bicarbonate only from the bath inhibited chloride absorption, while removal of bicarbonate from the lumen stimulated chloride absorption. We conclude that CCD from DOC-treated rabbits actively secrete bicarbonate and actively absorb chloride by an electroneutral mechanism involving 1:1 chloride/bicarbonate exchange. The process is independent of sodium. PMID:3930570
Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M
2015-12-01
Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Cannoni, Mirco
2015-03-01
We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.
Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach
NASA Astrophysics Data System (ADS)
Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.
2017-07-01
Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather than the mere presence or absence of coherence or noise, that is responsible for the optimal heat engine performance. In addition, we find that the effective voltage of QHE exhibits superior robustness against the bath noise as long as the system-bath coupling is not very strong.
NASA Astrophysics Data System (ADS)
Rohleder, N.; Wirth, D.; Fraßl, W.; Kowoll, R.; Schlemmer, M.; Vogler, S.; Kirsch, K. A.; Kirschbaum, C.; Gunga, H.-C.
2005-08-01
Limited data are available on the response of stress systems to microgravity. Increased activity of stress systems is reported during space flight, but unchanged or decreased activity during simulated microgravity. We here investigated the impact of head-out water immersion on the activity of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic-adrenal-medullary (SAM) system.Eight healthy young men were exposed to a six-hour water immersion in a thermo neutral bath and a control condition. Saliva samples were taken before, during, and after interventions to assess cortisol as an index for HPA axis activity, and salivary α-amylase as an index for SAM system activity.Cortisol levels uniformly decreased during both conditions. Amylase levels increased during both conditions, but were significantly lower during the first half of water immersion compared to the control condition.In conclusion, the HPA axis is not influenced by simulated microgravity, while SAM system activity shows initial decreases during water immersion.
Portable bathtub: technology for bed bath in bedridden patients.
Backes, Dirce Stein; Gomes, Carine Alves; Pereira, Simone Barbosa; Teles, Noelucy Ferreira; Backes, Marli Terezinha Stein
2017-04-01
determine the benefits of the Portable Bathtub as technology for bed bath in bedridden patients. qualitative research of exploratory-descriptive character, whose data were collected by means of 30 interviews with patients, family members and professionals directly involved in bed bath, carried out with Portable Bathtub, in bedridden patients of a medical clinic, from July to December 2015. from the data encoded by thematic content analysis resulted two categories: Portable Bathtub: from morphine to the patient's rekindled eyes; From mechanized practice to unique, transforming care. we concluded that the Portable Bathtub constitutes enhancing technology, as it enables clinical improvement of the patient's general condition and transcends traditional mechanized practices by the reach of advanced nursing care practices.
Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state
NASA Astrophysics Data System (ADS)
Hsiang, Jen-Tsung; Hu, B. L.
2015-11-01
This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T 1 > T 2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T 1, T 2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, `hot entanglement' is largely a fiction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Akihito, E-mail: kato@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp
2015-08-14
We consider a system consisting of two interacting qubits that are individually coupled to separate heat baths at different temperatures. The quantum effects in heat transport are investigated in a numerically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For a weak interqubit interaction, the total system is regarded as two individually thermostatted systems, whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits (q-q coherence) andmore » between the qubit and bath (q-b coherence) are studied through the heat current calculated for various strengths of the system-bath coupling and interqubit coupling for high and low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR approaches do not exhibit such behavior, because they do not possess the capability of treating the q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and q-b coherence are balanced in such a manner that coherence of the entire heat transport process is realized. We also find that the heat current does not follow Fourier’s law when the temperature difference is very large, due to the non-perturbative system-bath interactions.« less
Liao, Wen-Chun; Wang, Lee; Kuo, Ching-Pyng; Lo, Chyi; Chiu, Ming-Jang; Ting, Hua
2013-12-01
The decrease in core body temperature before sleep onset and during sleep is associated with dilation of peripheral blood vessels, which permits heat dissipation from the body core to the periphery. A lower core temperature coupled with a higher distal (hands and feet) temperature before sleep are associated with shorter sleep latency and better sleep quality. A warm footbath is thought to facilitate heat dissipation to improve sleep outcomes. This study examined the effect of a warm footbath (40°C water temperature, 20-min duration) on body temperature and sleep in older adults (≥55 years) with good and poor sleep. Two groups and an experimental crossover design was used. Forty-three adults responded to our flyer and 25 participants aged 59.8±3.7 years (poor sleeper with a Pittsburgh Sleep Quality Index score≥5=17; good sleepers with a Pittsburgh Sleep Quality Index score<5=8) completed this study. All participants had body temperatures (core, abdomen, and foot) and polysomnography recorded for 3 consecutive nights. The first night was for adaptation and sleep apnea screening. Participants were then randomly assigned to either the structured foot bathing first (second night) and non-bathing second (third night) condition or the non-bathing first (second night) and foot bathing second (third night) condition. A footbath before sleep significantly increased and retained foot temperatures in both good and poor sleepers. The pattern of core temperatures during foot bathing was gradually elevated (poor sleepers vs. good sleepers=+0.40±0.58°C vs. +0.66±0.17°C). There were no significant changes in polysomnographic sleep and perceived sleep quality between non-bathing and bathing nights for both groups. A footbath of 40°C water temperature and 20-min duration before sleep onset increases foot temperatures and distal-proximal skin temperature gradients to facilitate vessel dilatation and elevates core temperature to provide heat load to the body. This footbath does not alter sleep in older adults with good and poor sleep. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes.
Aizpurua-Olaizola, Oier; Navarro, Patricia; Vallejo, Asier; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz
2016-01-01
Wine production wastes are an interesting source of natural polyphenols. In this work, wine wastes extracts were encapsulated through vibration nozzle microencapsulation using sodium alginate as polymer and calcium chloride as hardening reagent. An experimental design approach was used to obtain calcium-alginate microbeads with high polyphenol content and good morphological features. In this way, the effect of pressure, frequency, voltage and the distance to the gelling bath were optimized for two nozzles of 150 and 300 μm. Long-term stability of the microbeads was studied for 6 months taking into account different storage conditions: temperatures (4 °C and room temperature), in darkness and in presence of light, and the addition of chitosan to the gelling bath. Encapsulated polyphenols were found to be much more stable compared to free polyphenols regardless the encapsulation procedure and storage conditions. Moreover, slightly lower degradation rates were obtained when chitosan was added to the gelling bath. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mathematical Model of Solidification During Electroslag Casting of Pilger Roll
NASA Astrophysics Data System (ADS)
Liu, Fubin; Li, Huabing; Jiang, Zhouhua; Dong, Yanwu; Chen, Xu; Geng, Xin; Zang, Ximin
A mathematical model for describing the interaction of multiple physical fields in slag bath and solidification process in ingot during pilger roll casting with variable cross-section which is produced by the electroslag casting (ESC) process was developed. The commercial software ANSYS was applied to calculate the electromagnetic field, magnetic driven fluid flow, buoyancy-driven flow and heat transfer. The transportation phenomenon in slag bath and solidification characteristic of ingots are analyzed for variable cross-section with variable input power under the conditions of 9Cr3NiMo steel and 70%CaF2 - 30%Al2O3 slag system. The calculated results show that characteristic of current density distribution, velocity patterns and temperature profiles in the slag bath and metal pool profiles in ingot have distinct difference at variable cross-sections due to difference of input power and cooling condition. The pool shape and the local solidification time (LST) during Pilger roll ESC process are analyzed.
NASA Astrophysics Data System (ADS)
Cheng, Xiaolu; Cina, Jeffrey A.
2014-07-01
A variational mixed quantum-semiclassical theory for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium is developed, tested, and used to simulate the temporal evolution of nonstationary states of the internal molecular and surrounding medium degrees of freedom. In this theory, termed the Fixed Vibrational Basis/Gaussian Bath (FVB/GB) method, the system is treated fully quantum mechanically while Gaussian wave packets are used for the bath degrees of freedom. An approximate time-dependent wave function of the entire model is obtained instead of just a reduced system density matrix, so the theory enables the analysis of the entangled system and bath dynamics that ensues following initial displacement of the internal-molecular (system) coordinate from its equilibrium position. The norm- and energy-conserving properties of the propagation of our trial wave function are natural consequences of the Dirac-Frenkel-McLachlan variational principle. The variational approach also stabilizes the time evolution in comparison to the same ansatz propagated under a previously employed locally quadratic approximation to the bath potential and system-bath interaction terms in the bath-parameter equations of motion. Dynamics calculations are carried out for molecular iodine in a 2D krypton lattice that reveal both the time-course of vibrational decoherence and the details of host-atom motion accompanying energy dissipation and dephasing. This work sets the stage for the comprehensive simulation of ultrafast time-resolved optical experiments on small molecules in low-temperature solids.
Characterization of Polysulfone Membranes Prepared with Thermally Induced Phase Separation Technique
NASA Astrophysics Data System (ADS)
Tiron, L. G.; Pintilie, Ș C.; Vlad, M.; Birsan, I. G.; Baltă, Ș
2017-06-01
Abstract Membrane technology is one of the most used water treatment technology because of its high removal efficiency and cost effectiveness. Preparation techniques for polymer membranes show an important aspect of membrane properties. Generally, polysulfone (PSf) and polyethersulfone (PES) are used for the preparation of ultrafiltration (UF) membranes. Polysulfone (PSf) membranes have been widely used for separation and purification of different solutions because of their excellent chemical and thermal stability. Polymeric membranes were obtained by phase inversion method. The polymer solution introduced in the nonsolvent bath (distilled water) initiate the evaporation of the solvent from the solution, this phenomenon has a strong influence on the transport properties. The effect of the coagulation bath temperature on the membrane properties is of interest for this study. Membranes are characterized by pure water flux, permeability, porosity and retention of methylene blue. The low temperature of coagulation bath improve the membrane’s rejection and its influence was most notable.
Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell
NASA Astrophysics Data System (ADS)
Wang, Qiang; Li, Baokuan; Fafard, Mario
2016-02-01
In order to explore the impact of anode replacement on heat transfer and magneto-hydrodynamic flow in aluminum smelting cells, a transient three-dimensional coupled mathematical model has been developed. With a steady state magnetic field, an electrical potential approach was used to obtain electromagnetic fields. Joule heating and Lorentz force, which were the source terms in the energy and momentum equations, were updated at each iteration. The phase change of molten electrolyte (bath) was modeled by an enthalpy-based technique in which the mushy zone was treated as a porous medium with porosity equal to the liquid fraction. A reasonable agreement between the test data and simulated results was achieved. Under normal conditions, the bath at the middle of the cell is hotter, while becoming colder at the four corners. Due to the heat extracted from the bath, the temperature of the new cold anode increases over time. The temperature of the bath under the new cold anode therefore quickly drops, resulting in a decrease of the electrical conductivity. More Joule effect is created. In addition, the bath under the new cold anode gradually freezes and flows more slowly. The temperature of the new anode located at the middle of the cell rises faster because of the warmer bath. It is easier to eliminate the effect of anode change when it occurs in the middle of the cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhiming, E-mail: 465609785@qq.com; Situ, Haozhen, E-mail: situhaozhen@gmail.com
In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangledmore » initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.« less
Lee, Chieh-Chi; Wu, Yu-Hung
2014-11-01
Thermal sulfur baths are a form of balneotherapy promoted in many cultures for improvement of skin conditions; however, certain uncommon skin problems may occur after bathing in hot sulfur springs. We report the case of a 65-year-old man who presented with multiple confluent, punched-out, round ulcers with peripheral erythema on the thighs and shins after bathing in a hot sulfur spring. Histopathologic examination revealed homogeneous coagulation necrosis of the epidermis and papillary dermis. Tissue cultures showed no evidence of a microbial infection. The histopathologic findings and clinical course were consistent with a superficial second-degree burn. When patients present with these findings, sulfur spring dermatitis should be considered in the differential diagnosis. Moreover, the patient's clinical history is crucial for correct diagnosis.
Stochastic theory of non-Markovian open quantum system
NASA Astrophysics Data System (ADS)
Zhao, Xinyu
In this thesis, a stochastic approach to solving non-Markovian open quantum system called "non-Markovian quantum state diffusion" (NMQSD) approach is discussed in details. The NMQSD approach can serve as an analytical and numerical tool to study the dynamics of the open quantum systems. We explore three main topics of the NMQSD approach. First, we extend the NMQSD approach to many-body open systems such as two-qubit system and coupled N-cavity system. Based on the exact NMQSD equations and the corresponding master equations, we investigate several interesting non-Markovian features due to the memory effect of the environment such as the entanglement generation in two-qubit system and the coherence and entanglement transfer between cavities. Second, we extend the original NMQSD approach to the case that system is coupled to a fermionic bath or a spin bath. By introducing the anti-commutative Grassmann noise and the fermionic coherent state, we derive a fermionic NMQSD equation and the corresponding master equation. The fermionic NMQSD is illustrated by several examples. In a single qubit dissipative example, we have explicitly demonstrated that the NMQSD approach and the ordinary quantum mechanics give rise to the exactly same results. We also show the difference between fermionic bath and bosonic bath. Third, we combine the bosonic and fermionic NMQSD approach to develop a unified NMQSD approach to study the case that an open system is coupled to a bosonic bath and a fermionic bath simultaneously. For all practical purposes, we develop a set of useful computer programs (NMQSD Toolbox) to implement the NMQSD equation in realistic computations. In particular, we develop an algorithm to calculate the exact O operator involved in the NMQSD equation. The NMQSD toolbox is designed to be user friendly, so it will be especially valuable for a non-expert who has interest to employ the NMQSD equation to solve a practical problem. Apart from the central topics on the NMQSD approach, we also study the environment-assisted error correction (EAEC) scheme. We have proposed two new schemes beyond the original EAEC scheme. Our schemes can be used to recover an unknown entangled initial state for a dephasing channel and recover an arbitrary unknown initial state for a dissipative channel using a generalized quantum measurement.
Generalized master equation via aging continuous-time random walks.
Allegrini, Paolo; Aquino, Gerardo; Grigolini, Paolo; Palatella, Luigi; Rosa, Angelo
2003-11-01
We discuss the problem of the equivalence between continuous-time random walk (CTRW) and generalized master equation (GME). The walker, making instantaneous jumps from one site of the lattice to another, resides in each site for extended times. The sojourn times have a distribution density psi(t) that is assumed to be an inverse power law with the power index micro. We assume that the Onsager principle is fulfilled, and we use this assumption to establish a complete equivalence between GME and the Montroll-Weiss CTRW. We prove that this equivalence is confined to the case where psi(t) is an exponential. We argue that is so because the Montroll-Weiss CTRW, as recently proved by Barkai [E. Barkai, Phys. Rev. Lett. 90, 104101 (2003)], is nonstationary, thereby implying aging, while the Onsager principle is valid only in the case of fully aged systems. The case of a Poisson distribution of sojourn times is the only one with no aging associated to it, and consequently with no need to establish special initial conditions to fulfill the Onsager principle. We consider the case of a dichotomous fluctuation, and we prove that the Onsager principle is fulfilled for any form of regression to equilibrium provided that the stationary condition holds true. We set the stationary condition on both the CTRW and the GME, thereby creating a condition of total equivalence, regardless of the nature of the waiting-time distribution. As a consequence of this procedure we create a GME that is a bona fide master equation, in spite of being non-Markov. We note that the memory kernel of the GME affords information on the interaction between system of interest and its bath. The Poisson case yields a bath with infinitely fast fluctuations. We argue that departing from the Poisson form has the effect of creating a condition of infinite memory and that these results might be useful to shed light on the problem of how to unravel non-Markov quantum master equations.
Kumar, Praveen; Jang, Seogjoo
2013-04-07
The emission lineshape of the B850 band in the light harvesting complex 2 of purple bacteria is calculated by extending the approach of 2nd order time-nonlocal quantum master equation [S. Jang and R. J. Silbey, J. Chem. Phys. 118, 9312 (2003)]. The initial condition for the emission process corresponds to the stationary excited state density where exciton states are entangled with the bath modes in equilibrium. This exciton-bath coupling, which is not diagonal in either site excitation or exciton basis, results in a new inhomogeneous term that is absent in the expression for the absorption lineshape. Careful treatment of all the 2nd order terms are made, and explicit expressions are derived for both full 2nd order lineshape expression and the one based on secular approximation that neglects off-diagonal components in the exciton basis. Numerical results are presented for a few representative cases of disorder and temperature. Comparison of emission line shape with the absorption line shape is also made. It is shown that the inhomogeneous term coming from the entanglement of the system and bath degrees of freedom makes significant contributions to the lineshape. It is also found that the perturbative nature of the theory can result in negative portion of lineshape in some situations, which can be removed significantly by inclusion of the inhomogeneous term and completely by using the secular approximation. Comparison of the emission and absorption lineshapes at different temperatures demonstrates the role of thermal population of different exciton states and exciton-phonon couplings.
Improved black nickel coatings for flat plate solar collectors
NASA Technical Reports Server (NTRS)
Lin, J. H.; Peterson, R. E.
1977-01-01
A new black nickel formula was developed which had a solar absorptance of 0.92 and an infrared emittance (at 100 C) of less than 0.10 after 14 days at 38 C and 95 percent relative humidity. The electroplating bath and conditions were changed to obtain the more stable coating configuration. The effect of bath composition, temperature, pH, and plating current density and time on the coating composition, optical properties and durability were investigated.
Testing the role of metal hydrolysis in the anomalous electrodeposition of Ni-Fe alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, T.M.; St. Clair, J.
1996-12-01
With the objective of testing several models of the anomalous codeposition (ACD) encountered in the electrodeposition of nickel-iron alloys, the effects of bath pH and complexing agents on the composition of deposits were examined. When the pH of the base line bath was increased from 3.0 to 5.0, the Ni/Fe mass ratio of the deposit increased (i.e., the deposition became less anomalous). The presence of tartrate ion in the bath produced a slight decrease in the Ni/Fe of the deposit. This complexing agent complexes ferric ion and thus prevents its precipitation but has little interaction with ferrous ion or nickelmore » ion under the electrodeposition conditions examined. The addition of ethylenediamine to the bath produced a significant increase in the Ni/Fe mass ratio. This complexing agent does not interact significantly with ferric ion or ferrous ion under the test conditions. None of these observations are consistent with the Dahms and Croll model of ACD. The effects of pH and tartaric acid on the deposit composition are consistent with the predictions of the Grande and Talbot model and the Matlosz model. The effect of ethylenediamine is not consistent with the Grande and Talbot model, but may be interpreted within the framework of the Matlosz model and the Hessami and Tobias model.« less
Implementation of a Hydrotherapy Protocol to Improve Postpartum Pain Management.
Batten, Meghann; Stevenson, Eleanor; Zimmermann, Deb; Isaacs, Christine
2017-03-01
A growing number of women are seeking alternatives to traditional pharmacologic pain management during birth. While there has been an extensive array of nonpharmacologic options developed for labor, there are limited offerings in the postpartum period. The purpose of this quality improvement project was to implement a hydrotherapy protocol in the early postpartum period to improve pain management for women choosing a nonmedicated birth. The postpartum hydrotherapy protocol was initiated in a certified nurse-midwife (CNM) practice in an urban academic medical center. All women who met criteria were offered a 30-minute warm water immersion bath at one hour postpartum. Pain scores were assessed prior to the bath, at 15 minutes after onset, and again at the conclusion (30 minutes). Women who completed the bath were also asked to complete a brief survey on their experience with postpartum hydrotherapy. In women who used the bath (N = 45), there was a significant reduction in pain scores (P < .001) between the onset of the bath and scores at both 15 minutes and 30 minutes. There was no significant difference between pain scores at 15 minutes and 30 minutes (P = .97). Of those women who completed a survey (n = 43), 97.7% reported both that the bath reduced their pain and improved their birth experience. One hundred percent reported they would use it again in another birth. This project demonstrated successful implementation of a hydrotherapy protocol as an alternative or adjunct to medication for early postpartum pain management that significantly reduced pain and improved the birth experience for those who used it. It offers a nonpharmacologic alternative where there have traditionally been limited options. © 2017 by the American College of Nurse-Midwives.
Zhou, Yi-Ting; Zhao, Xu-Dong; Jiang, Jian-Wei; Li, Xin-Sheng; Wu, Zhen-Hai
2016-10-01
Endovenous laser therapy (EVLT) is safe and effective for lower limb venous ulcers. However, severe necrosis and infection in the ulcer area are contraindications of puncture and EVLT. Local bath with ozone gas has been shown to improve the condition of ulcer areas. The aim of this study was to evaluate the clinical efficacy of ozone gas bath combined with EVLT in comparison with EVLT alone for the treatment for lower limb venous ulcers. Ninety-two patients with venous ulcers were randomized to receive ozone gas bath combined with EVLT (OEVLT group) or EVLT alone (EVLT group). In the OEVLT group, the venous ulcers were preconditioned with ozone gas bath prior to EVLT. The minimum follow-up time was 12 months. The two groups were compared in terms of complete occlusion of the treated veins, ulcer healing ratio, ratio of ulcer recurrence, patient satisfaction, complications, and side effects. There was no significant difference in venous occlusion between the two groups. The ratio of ulcer healing in the OEVLT group was significantly higher than the EVLT group at 12 months follow-up. Patients in the OEVLT group showed better satisfaction and a lower recurrence ratio than the OEVLT group. No severe complications or side effects occurred in either groups. Ozone gas bath combined with EVLT showed improved efficacy for the treatment of lower limb venous ulcers and lower recurrence ratio comparison with EVLT alone. This procedure is a safe and technically feasible.
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.
Naumann, Johannes; Grebe, Julian; Kaifel, Sonja; Weinert, Tomas; Sadaghiani, Catharina; Huber, Roman
2017-03-28
Despite advances in the treatment of depression, one-third of depressed patients fail to respond to conventional antidepressant medication. There is a need for more effective treatments with fewer side effects. The primary aim of this study was to determine whether hyperthermic baths reduce depressive symptoms in adults with depressive disorder. Randomized, two-arm placebo-controlled, 8-week pilot trial. Medically stable outpatients with confirmed depressive disorder (ICD-10: F32/F33) who were moderately depressed as determined by the 17-item Hamilton Scale for Depression (HAM-D) score ≥18 were randomly assigned to 2 hyperthermic baths (40 °C) per week for 4 weeks or a sham intervention with green light and follow-up after 4 weeks. Main outcome measure was the change in HAM-D total score from baseline (T0) to the 2-week time point (T1). A total of 36 patients were randomized (hyperthermic baths, n = 17; sham condition, n = 19). The intention-to-treat analysis showed a significant (P = .037) difference in the change in HAM-D total score with 3.14 points after 4 interventions (T1) in favour of the hyperthermic bath group compared to the placebo group. This pilot study suggests that hyperthermic baths do have generalized efficacy in depressed patients. DRKS00004803 at drks-neu.uniklinik-freiburg.de, German Clinical Trials Register (registration date 2016-02-02), retrospectively registered.
Vidal, M; Amigo, J M; Bro, R; Ostra, M; Ubide, C; Zuriarrain, J
2011-05-23
Desktop flatbed scanners are very well-known devices that can provide digitized information of flat surfaces. They are practically present in most laboratories as a part of the computer support. Several quality levels can be found in the market, but all of them can be considered as tools with a high performance and low cost. The present paper shows how the information obtained with a scanner, from a flat surface, can be used with fine results for exploratory and quantitative purposes through image analysis. It provides cheap analytical measurements for assessment of quality parameters of coated metallic surfaces and monitoring of electrochemical coating bath lives. The samples used were steel sheets nickel-plated in an electrodeposition bath. The quality of the final deposit depends on the bath conditions and, especially, on the concentration of the additives in the bath. Some additives become degraded with the bath life and so is the quality of the plate finish. Analysis of the scanner images can be used to follow the evolution of the metal deposit and the concentration of additives in the bath. Principal component analysis (PCA) is applied to find significant differences in the coating of sheets, to find directions of maximum variability and to identify odd samples. The results found are favorably compared with those obtained by means of specular reflectance (SR), which is here used as a reference technique. Also the concentration of additives SPB and SA-1 along a nickel bath life can be followed using image data handled with algorithms such as partial least squares (PLS) regression and support vector regression (SVR). The quantitative results obtained with these and other algorithms are compared. All this opens new qualitative and quantitative possibilities to flatbed scanners. Copyright © 2011 Elsevier B.V. All rights reserved.
Patterson, Dale A; Smith, Emmaleigh; Monahan, Mark; Medvecz, Andrew; Hagerty, Beth; Krijger, Lisa; Chauhan, Aakash; Walsh, Mark
2010-01-01
Cannabinoid hyperemesis is a syndrome characterized by severe nausea and hyperemesis associated with chronic marijuana abuse and marked by compulsive bathing habits, which temporarily alleviate symptoms. We describe the syndrome in 4 adult patients for whom extensive gastrointestinal evaluations failed to identify another clear cause. Cessation of marijuana use resulted in the alleviation of their symptoms. Because recreational and medical use of marijuana is increasing in the United States, this condition should be considered in many patients who present with cyclical vomiting.
"EPA'S NATIONAL BEACHES STUDY: HUNTINGTON BEACH, 2003"
The original U. S. Environmental Protection Agency (EPA) recreational water health studies, initiated in 1972 and completed in 1982, were designed to determine the relationship between swimming-associated gastroenteritis and the quality of the bathing water. However, these healt...
NASA Astrophysics Data System (ADS)
Taheri, Hesam; Nóbrega, João Miguel; Samyn, Pieter; Covas, José Antonio
2014-05-01
In this work, the simultaneous effect of both temperature and drawing ratio during processing of polypropylene monofilaments has been investigated. The basis of this work specifically aims at emphasizing the conditions of temperature and drawing ratio applied in the cooling bath, in order to find out under which conditions the named parameters can be applied in a processing line under continuous extrusion. The effects of temperature are studied for a constant total drawing ratio to analyze the influences on mechanical properties and structural differences of the final polypropylene monofilament. The quenched monofilaments were drawn around an adjustable guide assembly in the quench bath and first drawing stage, imparting thermal and mechanical treatments to the filaments. In the heating stage, monofilaments are affected to high-speed draw rolls while passing through the oven. As such, the best conditions to produce a polypropylene monofilament with high tenacity strength were determined. Results of this study show that the monofilament properties are significantly affected by temperature in the cooling zone. The nature of the first drawing had a significant effect on the end properties and monofilaments with modulus of 637 MPa have finally been manufactured. We have also proposed a new hypothesis, which is termed "gap nucleation" and determine this phenomenon in the gap between die and cooling bath.
Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, Lance
2014-01-01
The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \
Kreiskott, Sascha [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM; Arendt, Paul N [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM; Bronisz, Lawrence E [Los Alamos, NM
2009-03-31
A continuous process of forming a highly smooth surface on a metallic tape by passing a metallic tape having an initial roughness through an acid bath contained within a polishing section of an electropolishing unit over a pre-selected period of time, and, passing a mean surface current density of at least 0.18 amperes per square centimeter through the metallic tape during the period of time the metallic tape is in the acid bath whereby the roughness of the metallic tape is reduced. Such a highly smooth metallic tape can serve as a base substrate in subsequent formation of a superconductive coated conductor.
Implications of psychoactive 'bath salts' use during pregnancy.
Gray, Bobbe Ann; Holland, Cindra
2014-01-01
Psychoactive bath salts (PABS) comprise a group of highly dangerous designer drugs showing a sharp escalation in reported U.S. exposures from 2010 through 2012, following rapid spread of the drug in Europe. Since a federal ban on the major ingredients in October 2011, numbers have declined. However, evidence from the United Kingdom shows an initial decline after the UK ban in 2010 with a 400 percent increase in reports by 2012. Actual information about the effect of PABS use on pregnant women and fetuses is almost nonexistent. Clinicians should be aware of the potential maternal, fetal and neonatal effects of PABS. © 2014 AWHONN.
Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions.
Duffield, Rob; Marino, Frank E
2007-08-01
The aim of this study was to determine whether pre-cooling procedures improve both maximal sprint and sub-maximal work during intermittent-sprint exercise. Nine male rugby players performed a familiarisation session and three testing sessions of a 2 x 30-min intermittent sprint protocol, which consisted of a 15-m sprint every min separated by free-paced hard-running, jogging and walking in 32 degrees C and 30% humidity. The three sessions included a control condition, Ice-vest condition and Ice-bath/Ice-vest condition, with respective cooling interventions imposed for 15-min pre-exercise and 10-min at half-time. Performance measures of sprint time and % decline and distance covered during sub-maximal exercise were recorded, while physiological measures of core temperature (T (core)), mean skin temperature (T (skin)), heart rate, heat storage, nude mass, rate of perceived exertion, rate of thermal comfort and capillary blood measures of lactate [La(-)], pH, Sodium (Na(+)) and Potassium (K(+)) were recorded. Results for exercise performance indicated no significant differences between conditions for the time or % decline in 15-m sprint efforts or the distance covered during sub-maximal work bouts; however, large effect size data indicated a greater distance covered during hard running following Ice-bath cooling. Further, lowered T (core), T (skin), heart rate, sweat loss and thermal comfort following Ice-bath cooling than Ice-vest or Control conditions were present, with no differences present in capillary blood measures of [La(-)], pH, K(+) or Na(+). As such, the ergogenic benefits of effective pre-cooling procedures in warm conditions for team-sports may be predominantly evident during sub-maximal bouts of exercise.
Conditions for observing emergent SU(4) symmetry in a double quantum dot
NASA Astrophysics Data System (ADS)
Nishikawa, Yunori; Curtin, Oliver J.; Hewson, Alex C.; Crow, Daniel J. G.; Bauer, Johannes
2016-06-01
We analyze conditions for the observation of a low-energy SU(4) fixed point in capacitively coupled quantum dots. One problem, due to dots with different couplings to their baths, has been considered by L. Tosi, P. Roura-Bas, and A. A. Aligia, J. Phys.: Condens. Matter 27, 335601 (2015), 10.1088/0953-8984/27/33/335601. They showed how symmetry can be effectively restored via the adjustment of individual gates voltages, but they make the assumption of infinite on-dot and interdot interaction strengths. A related problem is the difference in the magnitudes between the on-dot and interdot strengths for capacitively coupled quantum dots. Here we examine both factors, based on a two-site Anderson model, using the numerical renormalization group to calculate the local spectral densities on the dots and the renormalized parameters that specify the low-energy fixed point. Our results support the conclusions of Tosi et al. that low-energy SU(4) symmetry can be restored, but asymptotically achieved only if the interdot interaction U12 is greater than or of the order of the bandwidth of the coupled conduction bath D , which might be difficult to achieve experimentally. By comparing the SU(4) Kondo results for a total dot occupation ntot=1 and 2, we conclude that the temperature dependence of the conductance is largely determined by the constraints of the Friedel sum rule rather than the SU(4) symmetry and suggest that an initial increase of the conductance with temperature is a distinguishing characteristic feature of an ntot=1 universal SU(4) fixed point.
Hasegawa, Hideo
2011-07-01
Responses of small open oscillator systems to applied external forces have been studied with the use of an exactly solvable classical Caldeira-Leggett model in which a harmonic oscillator (system) is coupled to finite N-body oscillators (bath) with an identical frequency (ω(n) = ω(o) for n = 1 to N). We have derived exact expressions for positions, momenta, and energy of the system in nonequilibrium states and for work performed by applied forces. A detailed study has been made on an analytical method for canonical averages of physical quantities over the initial equilibrium state, which is much superior to numerical averages commonly adopted in simulations of small systems. The calculated energy of the system which is strongly coupled to a finite bath is fluctuating but nondissipative. It has been shown that the Jarzynski equality is valid in nondissipative nonergodic open oscillator systems regardless of the rate of applied ramp force.
Creation of quantum steering by interaction with a common bath
NASA Astrophysics Data System (ADS)
Sun, Zhe; Xu, Xiao-Qiang; Liu, Bo
2018-05-01
By applying the hierarchy equation method, we computationally study the creation of quantum steering in a two-qubit system interacting with a common bosonic bath. The calculation does not adopt conventional approximate approaches, such as the Born, Markov, rotating-wave, and other perturbative approximations. Three kinds of quantum steering, i.e., Einstein-Podolsky-Rosen steering (EPRS), temporal steering (TS), and spatiotemporal steering (STS), are considered. Since the initial state of the two qubits is chosen as a product state, there does not exist EPRS at the beginning. During the evolution, we find that STS as well as EPRS are generated at the same time. An inversion relationship between STS and TS is revealed. By varying the system-bath coupling strength from weak to ultrastrong regimes, we find the nonmonotonic dependence of STS, TS, and EPRS on the coupling strength. It is interesting to study the dynamics of the three kinds of quantum steering by using an exactly numerical method, which is not considered in previous researches.
Profit is a dirty word: the development of the public baths and wash-houses in Britain 1847-1915.
Sheard, S
2000-04-01
Researh on sanitary reform in nineteenth-century Britain has focused mainly on the introduction of large-sanitary infrastructure, especially waterworks and sewage systems. Other sanitary measures such as the provision of public baths and wash-houses have been ignored, or discussed in the limited context of working-class responses to middle-class sanitarianism. Yet by 1915 public baths and wash-houses were to be found in nearly every British town and city. A detailed analysis of these 'enterprises' can provide a useful way of understanding the changing priorities of public health professionals and urban authorities as well as the changing attitudes of the working classes. Connections between personal cleanliness and disease evolved during the century, particularly after the formation of germ theory in the 1880s. This paper demonstrates how the introduction of public baths and wash-houses in Liverpool, Belfast, and Glasgow was initially a direct response to sanitary reform campaigns. It also shows that the explicit public health ideology of these developments was constantly compromised by implicit concerns about municipal finance and the potential profit that such enterprises could generate. This city-based analysis shows that this conflict hindered the full sanitary benefit which these schemes potentially offered.
NASA Astrophysics Data System (ADS)
Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard
2018-06-01
A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.
Optimal tuning of a confined Brownian information engine.
Park, Jong-Min; Lee, Jae Sung; Noh, Jae Dong
2016-03-01
A Brownian information engine is a device extracting mechanical work from a single heat bath by exploiting the information on the state of a Brownian particle immersed in the bath. As for engines, it is important to find the optimal operating condition that yields the maximum extracted work or power. The optimal condition for a Brownian information engine with a finite cycle time τ has been rarely studied because of the difficulty in finding the nonequilibrium steady state. In this study, we introduce a model for the Brownian information engine and develop an analytic formalism for its steady-state distribution for any τ. We find that the extracted work per engine cycle is maximum when τ approaches infinity, while the power is maximum when τ approaches zero.
Defining rolled metal performance for cold bolt upsetting (bolt head)
NASA Astrophysics Data System (ADS)
Pachurin, G. V.; Shevchenko, S. M.; Filippov, A. A.; Mukhina, M. V.; Kuzmin, N. A.
2018-03-01
Hardware items are one of the products for mass consumption. Rolled metal for cold forging shall have the required ductility, uniform mechanical characteristics along the mill length, corresponding chemical composition and shall be free from internal or superficial defects. Standard mechanical characteristics have been reviewed in this document and fracture criteria of calibrated rolled steel 40X have been calculated after its isothermal treatment at different temperatures in nitre bath and subsequent drawing with different deformation degrees. Comparison of synergy fracture criteria showed that rolled stock, treated as per the proposed conditions: bath patenting at the temperature of 400°C and drawing with reduction rate of 5% and 10%, are more preferable, comparing to processing conditions, existing in the industry.
USE OF FUME SUPPRESSANTS IN HARD CHROMIUM BATHS - EMISSION TESTING
The EPA Common Sense Initiative (CSI) is a cooperative effort of government, industry, environmental, and other stakeholder groups to find "cleaner, cheaper, smarter" approaches to environmental management in industrial sectors. The purpose of the project is to assist hard chrome...
USE OF FUME SUPPRESSANTS IN HARD CHROMIUM BATHS - QUALITY TESTING
The EPA Common Sense Initiative (CSI) is a cooperative effort of government, industry, environmental and other stakeholder groups to find "cleaner, cheaper, smarter" approaches to environmental management in industrial sectors. The purpose of the project is to help hard chromium ...
Force decay and deformation of orthodontic elastomeric ligatures.
Taloumis, L J; Smith, T M; Hondrum, S O; Lorton, L
1997-01-01
This study evaluated commercially available molded gray elastomeric ligatures from seven companies for force decay, dimensional change, and the relationship between ligature dimension and force. The initial wall thickness, inside diameter, outside diameter, and force levels of each ligature were measured. Three of four test groups of ligatures were stretched over stainless steel dowels with a circumference approximating that of a large orthodontic twin bracket. Test group 1 was kept at room temperature and humidity for 28 days and test group 2 in a synthetic saliva bath at 37 degrees C, pH 6.84 for 28 days. The residual forces and dimensional changes were measured. The third test group was placed in a synthetic saliva bath at 37 degrees C, pH 6.84, and force levels recorded at initial, 24 hours, 7 days, 14 days, and 28 days. The fourth test group of unstretched samples was placed in a synthetic saliva bath at 37 degrees C, pH 6.84 for 28 days to evaluate dimensional changes due solely to moisture sorption. The results for stretched samples in a simulated oral environment revealed the following: (1) Moisture and heat had a pronounced effect on force decay and permanent deformation, (2) a positive correlation existed between the wall thickness and force, (3) a negative correlation existed between the inside diameter and force, (4) a weak correlation existed between outside diameter and force, (5) the greatest force loss occurred in the first 24 hours and the decay pattern was similar for all ligatures tested, and (6) unstretched ligatures absorbed moisture in the range of 0.060% to 3.15%. The ligatures tested appear to be suitable for use during initial aligning and leveling. However, the rapid force loss and permanent deformation of these products may preclude their use for rotational and torque corrections.
Substrate spacing and thin-film yield in chemical bath deposition of semiconductor thin films
NASA Astrophysics Data System (ADS)
Arias-Carbajal Reádigos, A.; García, V. M.; Gomezdaza, O.; Campos, J.; Nair, M. T. S.; Nair, P. K.
2000-11-01
Thin-film yield in the chemical bath deposition technique is studied as a function of separation between substrates in batch production. Based on a mathematical model, it is proposed and experimentally verified in the case of CdS thin films that the film thickness reaches an asymptotic maximum with increase in substrate separation. It is shown that at a separation less than 1 mm between substrates the yield, i.e. percentage in moles of a soluble cadmium salt deposited as a thin film of CdS, can exceed 50%. This behaviour is explained on the basis of the existence of a critical layer of solution near the substrate, within which the relevant ionic species have a higher probability of interacting with the thin-film layer than of contributing to precipitate formation. The critical layer depends on the solution composition and the temperature of the bath as well as the duration of deposition. An effective value for the critical layer thickness has been defined as half the substrate separation at which 90% of the maximum film thickness for the particular bath composition, bath temperature and duration of deposition is obtained. In the case of CdS thin films studied as an example, the critical layer is found to extend from 0.5 to 2.5 mm from the substrate surface, depending on the deposition conditions.
NASA Astrophysics Data System (ADS)
Müller, Dirk K.; Pampel, André; Möller, Harald E.
2015-12-01
In the print version of this article initially published, reference to a funding source was missing. The following information should be added to the Acknowledgements section: This work was funded (in part) by the Helmholtz Alliance ICEMED-Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Networking Fund of the Helmholtz Association.
Heat, temperature and Clausius inequality in a model for active Brownian particles
Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio
2017-01-01
Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system’s Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production. PMID:28429787
Heat, temperature and Clausius inequality in a model for active Brownian particles.
Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio
2017-04-21
Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system's Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production.
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Th. M.; Allahverdyan, A. E.
2002-09-01
The Brownian motion of a quantum particle in a harmonic confining potential and coupled to harmonic quantum thermal bath is exactly solvable. Though this system presents at high temperatures a pedagogic example to explain the laws of thermodynamics, it is shown that at low enough temperatures the stationary state is non-Gibbsian due to an entanglement with the bath. In physical terms, this happens when the cloud of bath modes around the particle starts to play a nontrivial role, namely, when the bath temperature T is smaller than the coupling energy. Indeed, equilibrium thermodynamics of the total system, particle plus bath, does not imply standard equilibrium thermodynamics for the particle itself at low T. Various formulations of the second law are found to be invalid at low T. First, the Clausius inequality can be violated, because heat can be extracted from the zero point energy of the cloud of bath modes. Second, when the width of the confining potential is suddenly changed, there occurs a relaxation to equilibrium during which the entropy production is partly negative. In this process the energy put on the particle does not relax monotonically, but oscillates between particle and bath, even in the limit of strong damping. Third, for nonadiabatic changes of system parameters the rate of energy dissipation can be negative, and, out of equilibrium, cyclic processes are possible which extract work from the bath. Conditions are put forward under which perpetuum mobility of the second kind, having one or several work extraction cycles, enter the realm of condensed matter physics. Fourth, it follows that the equivalence between different formulations of the second law (e.g., those by Clausius and Thomson) can be violated at low temperatures. These effects are the consequence of quantum entanglement in the presence of the slightly off-equilibrium nature of the thermal bath, and become important when the characteristic quantum time scale ħ/kBT is larger than or comparable to other time scales of the system. They show that there is no general consensus between standard thermodynamics and quantum mechanics. The known agreements occur only due to the weak coupling limit, which does not pertain to low temperatures. Experimental setups for testing the effects are discussed.
Nieuwenhuizen, Th M; Allahverdyan, A E
2002-09-01
The Brownian motion of a quantum particle in a harmonic confining potential and coupled to harmonic quantum thermal bath is exactly solvable. Though this system presents at high temperatures a pedagogic example to explain the laws of thermodynamics, it is shown that at low enough temperatures the stationary state is non-Gibbsian due to an entanglement with the bath. In physical terms, this happens when the cloud of bath modes around the particle starts to play a nontrivial role, namely, when the bath temperature T is smaller than the coupling energy. Indeed, equilibrium thermodynamics of the total system, particle plus bath, does not imply standard equilibrium thermodynamics for the particle itself at low T. Various formulations of the second law are found to be invalid at low T. First, the Clausius inequality can be violated, because heat can be extracted from the zero point energy of the cloud of bath modes. Second, when the width of the confining potential is suddenly changed, there occurs a relaxation to equilibrium during which the entropy production is partly negative. In this process the energy put on the particle does not relax monotonically, but oscillates between particle and bath, even in the limit of strong damping. Third, for nonadiabatic changes of system parameters the rate of energy dissipation can be negative, and, out of equilibrium, cyclic processes are possible which extract work from the bath. Conditions are put forward under which perpetuum mobility of the second kind, having one or several work extraction cycles, enter the realm of condensed matter physics. Fourth, it follows that the equivalence between different formulations of the second law (e.g., those by Clausius and Thomson) can be violated at low temperatures. These effects are the consequence of quantum entanglement in the presence of the slightly off-equilibrium nature of the thermal bath, and become important when the characteristic quantum time scale variant Planck's over 2pi /k(B)T is larger than or comparable to other time scales of the system. They show that there is no general consensus between standard thermodynamics and quantum mechanics. The known agreements occur only due to the weak coupling limit, which does not pertain to low temperatures. Experimental setups for testing the effects are discussed.
Steady state quantum discord for circularly accelerated atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081
2015-12-15
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptoticmore » value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.« less
Quantum thermal diode based on two interacting spinlike systems under different excitations.
Ordonez-Miranda, Jose; Ezzahri, Younès; Joulain, Karl
2017-02-01
We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.
Osmosis in Cortical Collecting Tubules
Schafer, James A.; Patlak, Clifford S.; Andreoli, Thomas E.
1974-01-01
This paper reports a theoretical analysis of osmotic transients and an experimental evaluation both of rapid time resolution of lumen to bath osmosis and of bidirectional steady-state osmosis in isolated rabbit cortical collecting tubules exposed to antidiuretic hormone (ADH). For the case of a membrane in series with unstirred layers, there may be considerable differences between initial and steady-state osmotic flows (i.e., the osmotic transient phenomenon), because the solute concentrations at the interfaces between membrane and unstirred layers may vary with time. A numerical solution of the equation of continuity provided a means for computing these time-dependent values, and, accordingly, the variation of osmotic flow with time for a given set of parameters including: Pf (cm s–1), the osmotic water permeability coefficient, the bulk phase solute concentrations, the unstirred layer thickness on either side of the membrane, and the fractional areas available for volume flow in the unstirred layers. The analyses provide a quantitative frame of reference for evaluating osmotic transients observed in epithelia in series with asymmetrical unstirred layers and indicate that, for such epithelia, Pf determinations from steady-state osmotic flows may result in gross underestimates of osmotic water permeability. In earlier studies, we suggested that the discrepancy between the ADH-dependent values of Pf and PDDw (cm s–1, diffusional water permeability coefficient) was the consequence of cellular constraints to diffusion. In the present experiments, no transients were detectable 20–30 s after initiating ADH-dependent lumen to bath osmosis; and steady-state ADH-dependent osmotic flows from bath to lumen and lumen to bath were linear and symmetrical. An evaluation of these data in terms of the analytical model indicates: First, cellular constraints to diffusion in cortical collecting tubules could be rationalized in terms of a 25-fold reduction in the area of the cell layer available for water transport, possibly due in part to transcellular shunting of osmotic flow; and second, such cellular constraints resulted in relatively small, approximately 15%, underestimates of Pf. PMID:4846767
Whitney, Jon; Carswell, William; Rylander, Nichole
2013-06-01
Predictions of injury in response to photothermal therapy in vivo are frequently made using Arrhenius parameters obtained from cell monolayers exposed to laser or water bath heating. However, the impact of different heating methods and cellular microenvironments on Arrhenius predictions has not been thoroughly investigated. This study determined the influence of heating method (water bath and laser irradiation) and cellular microenvironment (cell monolayers and tissue phantoms) on Arrhenius parameters and spatial viability. MDA-MB-231 cells seeded in monolayers and sodium alginate phantoms were heated with a water bath for 3-20 min at 46, 50, and 54 °C or laser irradiated (wavelength of 1064 nm and fluences of 40 W/cm(2) or 3.8 W/cm(2) for 0-4 min) in combination with photoabsorptive carbon nanohorns. Spatial viability was measured using digital image analysis of cells stained with calcein AM and propidium iodide and used to determine Arrhenius parameters. The influence of microenvironment and heating method on Arrhenius parameters and capability of parameters derived from more simplistic experimental conditions (e.g. water bath heating of monolayers) to predict more physiologically relevant systems (e.g. laser heating of phantoms) were assessed. Arrhenius predictions of the treated area (<1% viable) under-predicted the measured areas in photothermally treated phantoms by 23 mm(2) using water bath treated cell monolayer parameters, 26 mm(2) using water bath treated phantom parameters, 27 mm(2) using photothermally treated monolayer parameters, and 0.7 mm(2) using photothermally treated phantom parameters. Heating method and cellular microenvironment influenced Arrhenius parameters, with heating method having the greater impact.
Baum, Michel
2016-02-15
Angiotensin II (ANG II) is secreted by the proximal tubule resulting in a luminal concentration that is 100- to 1,000-fold greater than that in the blood. Luminal ANG II has been shown to stimulate sodium transport in the proximal tubule and distal nephron. Surprisingly, luminal ANG II inhibits NaCl transport in the medullary thick ascending limb (mTAL), a nephron segment responsible for a significant amount of NaCl absorption from the glomerular ultrafiltrate. We confirmed that addition of 10(-8) M ANG II to the lumen inhibited mTAL chloride transport (220 ± 19 to 165 ± 25 pmol·mm(-1)·min(-1), P < 0.01) and examined whether an interaction with basolateral norepinephrine existed to simulate the in vivo condition of an innervated tubule. We found that in the presence of a 10(-6) M norepinephrine bath, luminal ANG II stimulated mTAL chloride transport from 298 ± 18 to 364 ± 42 pmol·mm(-1)·min(-1) (P < 0.05). Stimulation of chloride transport by luminal ANG II was also observed with 10(-3) M bath dibutyryl cAMP in the bathing solution and bath isoproterenol. A bath of 10(-5) H-89 blocked the stimulation of chloride transport by norepinephrine and prevented the effect of luminal ANG II to either stimulate or inhibit chloride transport. Bath phentolamine, an α-adrenergic agonist, also prevented the decrease in mTAL chloride transport by luminal ANG II. Thus luminal ANG II increases chloride transport with basolateral norepinephrine; an effect likely mediated by stimulation of cAMP. Alpha-1 adrenergic stimulation prevents the inhibition of chloride transport by luminal ANG II. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji
2013-08-01
The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.
Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface
NASA Astrophysics Data System (ADS)
Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.
2017-10-01
In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show a net exponential decay of the time-dependent survival probability for the H-Si initial vibrational state, allowing an easy extraction of the bending mode "lifetime." This is in contrast with the D-Si system, whose survival probability exhibits a non-monotonic decay, making it difficult to define such a lifetime. This different behavior of the vibrational decay is rationalized in terms of the power spectrum of the adsorbate-surface system. In the case of D-Si, it consists of several, non-uniformly distributed peaks around the bending mode frequency, whereas the H-Si spectrum exhibits a single Lorentzian lineshape, whose width corresponds to the calculated lifetime. The present work gives some insight into mechanisms of vibration-phonon coupling at surfaces. It also serves as a benchmark for multidimensional system-bath quantum dynamics, for comparison with approximate schemes such as reduced, open-system density matrix theory (where the bath is traced out and a Liouville-von Neumann equation is solved) or approximate wavefunction methods to solve the combined system-bath Schrödinger equation.
Baugh, J; Moussa, O; Ryan, C A; Nayak, A; Laflamme, R
2005-11-24
The counter-intuitive properties of quantum mechanics have the potential to revolutionize information processing by enabling the development of efficient algorithms with no known classical counterparts. Harnessing this power requires the development of a set of building blocks, one of which is a method to initialize the set of quantum bits (qubits) to a known state. Additionally, fresh ancillary qubits must be available during the course of computation to achieve fault tolerance. In any physical system used to implement quantum computation, one must therefore be able to selectively and dynamically remove entropy from the part of the system that is to be mapped to qubits. One such method is an 'open-system' cooling protocol in which a subset of qubits can be brought into contact with an external system of large heat capacity. Theoretical efforts have led to an implementation-independent cooling procedure, namely heat-bath algorithmic cooling. These efforts have culminated with the proposal of an optimal algorithm, the partner-pairing algorithm, which was used to compute the physical limits of heat-bath algorithmic cooling. Here we report the experimental realization of multi-step cooling of a quantum system via heat-bath algorithmic cooling. The experiment was carried out using nuclear magnetic resonance of a solid-state ensemble three-qubit system. We demonstrate the repeated repolarization of a particular qubit to an effective spin-bath temperature, and alternating logical operations within the three-qubit subspace to ultimately cool a second qubit below this temperature. Demonstration of the control necessary for these operations represents an important step forward in the manipulation of solid-state nuclear magnetic resonance qubits.
Wash Solution Bath Life Extension for the Space Shuttle Rocket Motor Aqueous Cleaning System
NASA Technical Reports Server (NTRS)
Saunders, Chad; Evans, Kurt; Sagers, Neil
1999-01-01
A spray-in-air aqueous cleaning system, which replaced 1,1,1 trichloroethane (TCA) vapor degreasing, is used for critical cleaning of Space Shuttle Redesigned Solid Rocket Motor (RSRM) metal parts. Small-scale testing demonstrated that the alkaline-based wash solution possesses adequate soil loading and cleaning properties. However, full-scale testing exhibited unexpected depletion of some primary components of the wash solution. Specifically, there was a significant decrease in the concentration of sodium metasilicate which forced change-out of the wash solution after eight days. Extension of wash solution bath life was necessary to ease the burden of frequent change-out on manufacturing. A laboratory study supports a depletion mechanism that is initiated by the hydrolysis of sodium tripolyphosphate (STPP) lowering the pH of the solution. The decrease in pH causes polymerization and subsequent precipitation of sodium metasilicate (SM). Further investigation showed that maintaining the pH was the key to preventing the precipitation of the sodium metasilicate. Implementation to the full scale operation demonstrated that periodic additions of potassium hydroxide (KOH) extended the useful bath life to more than four months.
Foreman, J H; Benson, G J; Foreman, M H
2006-08-01
Horses generate considerable internal heat burdens when exercising. Although common practice for a trainer or groom to place a wet blanket or towel on the dorsum of a hot horse post exercise, there are no data supporting the efficacy of this cooling method. To test the hypothesis that a pre-moistened blanket designed with a multilayered breathable fabric would enhance heat loss in horses post exercise. Eight treadmill-trained horses performed a standardised exercise test (SET) weekly for 3 weeks, with 3 different recovery treatments administered randomly. Pulmonary artery temperature (PAT) was measured via Swan-Ganz catheter. The SET consisted of 10 min at 3.7 m/sec, 3 min at 11.0 m/sec, 25 min at 3.7 m/sec and 20 min of recovery walking at 2.0 m/sec (58 min exercise and recovery under laboratory conditions of 35.0-40.6 degrees C and 27-49% RH). From 3-7 min during recovery, the treadmill was stopped and horses randomly received either: (a) no bath (negative control); (b) a bath consisting of 32 l of 1-4 degrees C water split into 3-4 cycles of bilateral water application (positive control) followed by water removal ('scraping'); or (c) application of a multilayered fabric blanket soaked in 16-19 degrees C water, wrung out, and placed over the dorsum and sides of the horse. PAT was compared using RM ANOVA with the Student Neuman-Keul's test used post hoc to discriminate between treatments at specific points in time. Mean PAT rose with each phase of exercise (P<0.001) and peaked at a mean of 40.2 +/- 0.2 degrees C. During recovery, the cold bath decreased HR and PAT for 9 min after walking resumed (P<0.001-P<0.05). The blanket did not decrease HR or PAT compared to negative control (P>0.05), and both were hotter than the cold bath treatment through 16 min of recovery (P<0.05). A specially-designed cooling blanket failed to reduce PAT when compared to negative control. Cold water bathing decreased HR and PAT but was not effective throughout all of recovery. A specially-designed, pre-moistened multilayered breathable fabric failed to promote evaporative cooling compared to negative control. Cold water baths may need to be repeated throughout recovery to optimise their effect.
NASA Astrophysics Data System (ADS)
Lee, Soomin; Fujimura, Hiroko; Shimomura, Yoshihiro; Katsuura, Tetsuo
2015-09-01
Recently, a growing number in Japan are switching to taking baths in the morning (morning bathing). However, the effects of the morning bathing on human physiological functions and work efficiency have not yet been revealed. Then, we hypothesized that the effect of morning bathing on physiological functions would be different from those of night bathing. In this study, we measured the physiological functions and work efficiency during the day following the morning bathing (7:10-7:20) including showering, mist sauna bathing, and no bathing as a control. Ten male healthy young adults participated in this study as the subjects. We evaluated the rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), heart rate variability (HRV), blood pressure (BP), the relative power density of the alpha wave (α-wave ratio) of electroencephalogram, alpha attenuation coefficient (AAC), and the error rate of the task performance. As a result, we found that the HR after the mist sauna bathing was significantly lower than those after no bathing rest 3 (11:00). Furthermore, we verified that the α-wave ratio of the Pz after the mist sauna bathing was significantly lower than those after no bathing during the task 6 (15:00). On the other hand, the α-wave ratio of the Pz after the mist sauna bathing was significantly higher than those after showering during the rest 3 (11:00). Tsk after the mist sauna bathing was higher than those after the showering at 9:00 and 15:00. In addition, the error rate of the task performance after the mist sauna bathing was lower than those after no bathing and showering at 14:00. This study concludes that a morning mist sauna is safe and maintains both skin temperature compared to other bathing methods. Moreover, it is presumed that the morning mist sauna bathing improves work efficiency comparing other bathing methods during the task period of the day following the morning bathing.
Lee, Soomin; Fujimura, Hiroko; Shimomura, Yoshihiro; Katsuura, Tetsuo
2015-09-01
Recently, a growing number in Japan are switching to taking baths in the morning (morning bathing). However, the effects of the morning bathing on human physiological functions and work efficiency have not yet been revealed. Then, we hypothesized that the effect of morning bathing on physiological functions would be different from those of night bathing. In this study, we measured the physiological functions and work efficiency during the day following the morning bathing (7:10-7:20) including showering, mist sauna bathing, and no bathing as a control. Ten male healthy young adults participated in this study as the subjects. We evaluated the rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), heart rate variability (HRV), blood pressure (BP), the relative power density of the alpha wave (α-wave ratio) of electroencephalogram, alpha attenuation coefficient (AAC), and the error rate of the task performance. As a result, we found that the HR after the mist sauna bathing was significantly lower than those after no bathing rest 3 (11:00). Furthermore, we verified that the α-wave ratio of the Pz after the mist sauna bathing was significantly lower than those after no bathing during the task 6 (15:00). On the other hand, the α-wave ratio of the Pz after the mist sauna bathing was significantly higher than those after showering during the rest 3 (11:00). Tsk after the mist sauna bathing was higher than those after the showering at 9:00 and 15:00. In addition, the error rate of the task performance after the mist sauna bathing was lower than those after no bathing and showering at 14:00. This study concludes that a morning mist sauna is safe and maintains both skin temperature compared to other bathing methods. Moreover, it is presumed that the morning mist sauna bathing improves work efficiency comparing other bathing methods during the task period of the day following the morning bathing.
Coating transformations in the early stages of hot-dip galvannealing of steel sheet
NASA Astrophysics Data System (ADS)
McDevitt, Erin Todd
The present, comprehensive study of the reactions occurring early in galvanneal processing under conditions typical of commercial production represents the first detailed investigation of the microstructural evolution of the coating in the early stages of galvannealing and the results shed new light on the course of the coating microstructural development. During hot dipping, an Fe2Al5 inhibition layer formed on the surface of the steel substrate in the first instants of immersion in Zn baths containing as low as 0.10 wt.% Al. When hot-dipping in a 0.14 wt.% Al, the as-dipped coating microstructure consisted of an Fe2Al 5 layer on the steel surface. That layer was covered by a layer of the Fe-Zn compound Gamma1, which was covered by the zeta phase or unalloyed Zn. Substrate chemistry did not affect coating microstructure development in the bath. Thermodynamic predictions of the precipitation behavior during the bath reactions agrees well with experimental observations. A mechanism for coating microstructure development in the Zn bath which is consistent with all the experimental results is proposed. From this information, the metallurgical variables which govern inhibition layer formation are discerned. The breakdown of the Fe2Al5 inhibition layer during galvannealing at 500°C occurred without the formation of outbursts. Instead, the grain boundary diffusion of Al into the steel substrate accounted for dissolution of the inhibition layer in the first second of galvannealing. A mechanism for inhibition layer breakdown is presented. P-additions affected only the rate at which the inhibition layer dissolved and did not affect the rate of Fe-Zn compound formation. P in the substrate blocked grain boundary diffusion of Al into the substrate thus slowing inhibition layer dissolution. The slower overall galvannealing behavior often observed on P-bearing substrates is due to a longer period of inhibition layer survival which results in a longer incubation period for the initiation of the formation of Fe-Zn compounds. The coating solidified after inhibition layer dissolution by the continuous formation of new delta grains from the liquid at the solidification front. The microstructural evolution of the entire coating, including the formation of Gamma and Gammal, during solidification is also presented.
The original EPA recreational water health studies, initiated in 1972 and completed in 1982, were designed to determine the relationship between swimming-associated gastroenteritis and the quality of the bathing water. The water quality was measured using multiple microbial indi...
Squeezed states and graviton-entropy production in the early universe
NASA Technical Reports Server (NTRS)
Giovannini, Massimo
1994-01-01
Squeezed states are a very useful framework for the quantum treatment of tensor perturbations (i.e. gravitons production) in the early universe. In particular, the non equilibrium entropy growth in a cosmological process of pair production is completely determined by the associated squeezing parameter and is insensitive to the number of particles in the initial state. The total produced entropy may represent a significant fraction of the entropy stored today in the cosmic blackbody radiation, provided pair production originates from a change in the background metric at a curvature scale of the Planck order. Within the formalism of squeezed thermal states it is also possible to discuss the stimulated emission of gravitons from an initial thermal bath, under the action of the cosmic gravitational background field. We find that at low energy the graviton production is enhanced, if compared with spontaneous creation from the vacuum; as a consequence, the inflation scale must be lowered, in order not to exceed the observed CMB quadrupole anisotropy. This effect is important, in particular, for models based on a symmetry-breaking transition which require, as initial condition, a state of thermal equilibrium at temperatures higher than the inflation scale and in which inflation has a minimal duration.
NASA Astrophysics Data System (ADS)
Campion, Nick
TheMaster of Arts in CulturalAstronomy andAstrology at the University of Wales, Lampeter, formerly taught at Bath Spa University in England, is the first degree of its kind in the world. (I shall refer to the discipline as Cultural Astronomy, with initial letters as upper case, and the phenomena which it studies as cultural astronomy, all lower case). My definition combines both the discipline and the phenomenon; 'Cultural astronomy: the use of astronomical knowledge, beliefs or theories to inspire, inform or influence social forms and ideologies, or any aspect of human behaviour. Cultural astronomy also includes the modern disciplines of ethnoastronomy and archaeoastronomy' (Campion 1997: 2).
Liebenberg, JE; Heaney, K; Guerino, F
2015-01-01
Objective An evaluation of the effect of chlorhexidine/ketoconazole shampoo baths on the flea control efficacy of indoxacarb applied topically to dogs. Methods and Results We randomly allocated 18 healthy mixed‐breed dogs to 3 groups: shampoo only; indoxacarb treated and medicated shampoo; and indoxacarb treated but not shampooed. Indoxacarb was administered on day 0 and dogs were shampooed on days 9 and 23. Dogs were infested with 100 adult Ctenocephalides felis initially 2 days before treatment and then weekly from days 7 to 28. Fleas were removed and counted 48 h post‐infestation. Conclusion Medicated shampoo use did not significantly reduce indoxacarb efficacy against C. felis. PMID:26220323
Thermodynamic cycle in a cavity optomechanical system
NASA Astrophysics Data System (ADS)
Ian, Hou
2014-07-01
A cavity optomechanical system is initiated by the radiation pressure of a cavity field onto a mirror element acting as a quantum resonator. This radiation pressure can control the thermodynamic character of the mirror to some extent, such as by cooling its effective temperature. Here, we show that by properly engineering the spectral density of a thermal heat bath that interacts with a quantum system, the evolution of the quantum system can be effectively turned on and off. Inside a cavity optomechanical system, when the heat bath is realized by a multi-mode oscillator modelling of the mirror, this on-off effect translates to infusion or extraction of heat energy in and out of the cavity field, facilitating a four-stroke thermodynamic cycle.
NASA Astrophysics Data System (ADS)
Moosavi, Saeideh Sadat; Norouzbeigi, Reza; Velayi, Elmira
2017-11-01
In the present work, copper oxide superhydrophobic surface is fabricated on a copper foil via the chemical bath deposition (CBD) method. The effects of some influential factors such as initial concentrations of Cu (II) ions and the surface energy modifier, solution pH, reaction and modification steps time on the wettability property of copper oxide surface were evaluated using Taguchi L16 experimental design. Results showed that the initial concentration of Cu (II) has the most significant impact on the water contact angle and wettability characteristics. The XRD, SEM, AFM and FTIR analyses were used to characterize the copper oxide surfaces. The Water contact angle (WCA) and contact angle hysteresis (CAH) were also measured. The SEM results indicated the formation of a flower-like micro/nano dual-scale structure of copper oxide on the substrate. This structure composed of numerous nano-petals with a thickness of about 50 nm. As a result, a copper oxide hierarchical surface with WCA of 168.4°± 3.5° and CAH of 2.73° exhibited the best superhydrophobicity under proposed optimum condition. This result has been obtained just by 10 min hydrolysis reaction. Besides, this surface showed a good stability under acidic and saline conditions.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.
1999-01-01
An initial assessment of a proposed High-Speed Civil Transport (HSCT) was conducted in the fall of 1995 at the NASA Langley Research Center. This configuration, known as the Industry Reference-H (Ref.-H), was designed by the Boeing Aircraft Company as part of their work in the High Speed Research program. It included a conventional tail, a cranked-arrow wing, four mixed-flow turbofan engines, and capacity for transporting approximately 300 passengers. The purpose of this assessment was to evaluate and quantify operational aspects of the Reference-H configuration from a pilot's perspective with the additional goal of identifying design strengths as well as any potential configuration deficiencies. This study was aimed at evaluating the Ref.-H configuration at many points of the aircraft's envelope to determine the suitability of the vehicle to accomplish typical mission profiles as well as emergency or envelope-limit conditions. Pilot-provided Cooper-Harper ratings and comments constituted the primary vehicle evaluation metric. The analysis included simulated real-time piloted evaluations, performed in a 6 degree of freedom motion base NASA Langley Visual-Motion Simulator, combined with extensive bath analysis. The assessment was performed using the third major release of the simulation data base (known as Ref.-H cycle 2B).
Triggering Descending Pain Inhibition by Observing Ourselves or a Loved-One in Pain.
Gougeon, Véronique; Gaumond, Isabelle; Goffaux, Philippe; Potvin, Stéphane; Marchand, Serge
2016-03-01
Recent studies demonstrate that empathy-evoked brain responses include the activation of brainstem structures responsible for triggering descending pain inhibition. Unfortunately, direct evidence linking empathy for pain and descending inhibitory controls (conditioned pain modulation) is lacking. This study, therefore, aimed to determine if the observation of ourselves or a loved-one in pain could activate descending pain inhibition without exposure to a noxious stimulation; which is otherwise required. Descending pain inhibition was triggered by immersing the right arm of participants (15 heterosexual couples; mean age±SE: 28.89±2.14) in a bath of cold water. The effects of empathy on descending pain inhibition were observed by immersing the right arm of participants in a bath of lukewarm water while having them watch a video of either themselves or their spouse during a previous nociceptive immersion. Immersion of the arm in a bath of lukewarm water without empathic (video) observation was also included as a control condition. A strong inhibitory response activated by the mere observation of the video of themselves or their spouse in pain without a nociceptive conditioning stimulus. Associative statistics also showed that strong pain catastrophizing responses while watching the video resulted in stronger pain inhibition. Moreover, high levels of empathy were associated with stronger pain inhibition, but only for women. This study showed that observing someone in pain triggers descending pain inhibition. Results also demonstrate how empathy and gender are affecting pain modulation mechanisms.
Zhang, Peng; Watanabe, Kunio; Eishi, Tokida
2007-12-01
Japanese macaques (Macaca fuscata) in a free-ranging group in Jigokudani valley, Nagano prefecture, are known to bathe in a hot spring. We used scan sampling in a study aimed at elucidating the causal factors and possible social transmission of this behavior. From 1980-2003, 31% of a total 114 females in the group habitually bathed in the hot spring. The habit was more widespread in dominant matrilines than in subordinate matrilines. Infants whose mothers bathed were more likely to bathe than infants of mothers who did not bathe. The number of monkeys bathing was clearly influenced by ambient air temperature. More monkeys bathed in the hot spring in winter than in summer. The results support the thermoregulation hypothesis of hot-spring bathing. Bathing behavior varies among age and sex categories of monkeys, with adult females and juveniles bathing more often than adult males and subadults. We compared hot-spring bathing with other thermoregulatory behaviors in various primate populations. (c) 2007 Wiley-Liss, Inc.
Mori, Yoshiharu; Okumura, Hisashi
2015-12-05
Simulated tempering (ST) is a useful method to enhance sampling of molecular simulations. When ST is used, the Metropolis algorithm, which satisfies the detailed balance condition, is usually applied to calculate the transition probability. Recently, an alternative method that satisfies the global balance condition instead of the detailed balance condition has been proposed by Suwa and Todo. In this study, ST method with the Suwa-Todo algorithm is proposed. Molecular dynamics simulations with ST are performed with three algorithms (the Metropolis, heat bath, and Suwa-Todo algorithms) to calculate the transition probability. Among the three algorithms, the Suwa-Todo algorithm yields the highest acceptance ratio and the shortest autocorrelation time. These suggest that sampling by a ST simulation with the Suwa-Todo algorithm is most efficient. In addition, because the acceptance ratio of the Suwa-Todo algorithm is higher than that of the Metropolis algorithm, the number of temperature states can be reduced by 25% for the Suwa-Todo algorithm when compared with the Metropolis algorithm. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Arias, Enrique; de Oliveira, Thiago R.; Sarandy, M. S.
2018-02-01
We introduce a quantum heat engine performing an Otto cycle by using the thermal properties of the quantum vacuum. Since Hawking and Unruh, it has been established that the vacuum space, either near a black hole or for an accelerated observer, behaves as a bath of thermal radiation. In this work, we present a fully quantum Otto cycle, which relies on the Unruh effect for a single quantum bit (qubit) in contact with quantum vacuum fluctuations. By using the notions of quantum thermodynamics and perturbation theory we obtain that the quantum vacuum can exchange heat and produce work on the qubit. Moreover, we obtain the efficiency and derive the conditions to have both a thermodynamic and a kinematic cycle in terms of the initial populations of the excited state, which define a range of allowed accelerations for the Unruh engine.
Non-minimal gravitational reheating during kination
NASA Astrophysics Data System (ADS)
Dimopoulos, Konstantinos; Markkanen, Tommi
2018-06-01
A new mechanism is presented which can reheat the Universe in non-oscillatory models of inflation, where the inflation period is followed by a period dominated by the kinetic density for the inflaton field (kination). The mechanism considers an auxiliary field non-minimally coupled to gravity. The auxiliary field is a spectator during inflation, rendered heavy by the non-minimal coupling to gravity. During kination however, the non-minimal coupling generates a tachyonic mass, which displaces the field, until its bare mass becomes important, leading to coherent oscillations. Then, the field decays into the radiation bath of the hot big bang. The model is generic and predictive, in that the resulting reheating temperature is a function only of the model parameters (masses and couplings) and not of initial conditions. It is shown that reheating can be very efficient also when considering only the Standard Model.
Angelova, N; Hunkeler, D
2001-01-01
Capsules were obtained by interpolymer complexation between chitosan (polycation) and sodium hexametaphosphate (SMP, oligoanion). The effect of the preparation conditions on the capsule characteristics was evaluated. Specifically, the influence of variables such as pH, ionic strength, reagent concentration, and additives on the capsule permeability properties was investigated using dextran as a model permeant. The capsule membrane permeability was found to increase by decreasing the chitosan/SMP ratio as well as adding mannitol to the oligoanion recipient bath. Increasing the ionic strength or the pH of the initial chitosan solution was also found to enhance the membrane permeability, moving the membrane exclusion limit to higher values. Generally, the capsules prepared tinder all tested conditions had a relatively low permeability which rarely exceeded a molecular cut-off of 40 kD based on dextran standards. Furthermore, the diffusion rate showed a strong temporal dependence, indicating that the capsules prepared under various conditions exhibit different apparent pore size densities on the surface. The results indicated that, in order to obtain the desired capsule mass-transfer properties, the preparation conditions should be carefully considered and adjusted. Adding a polyol as well as low salt amount (less than 0.15%) is preferable as a means of modulating the diffusion characteristics, without disturbing the capsule mechanical stability.
Chumngoen, Wanwisa; Chen, Hsin-Yi; Tan, Fa-Jui
2016-12-01
Under laboratory conditions, the qualities of boneless chicken breasts are commonly determined by placing them in a bag and cooking them in a water bath. The results are often applied as references for comparing the influences of cooking techniques. However, whether a sample cooked under this "laboratory" condition actually represents the meat cooked under the "real-life" condition in which meat is frequently cooked directly in water without packaging remains unclear. Whether the two cooking conditions lead to comparable results in meat quality should be determined. This study evaluated the influence of cooking conditions, including "placed-in-bag and cooked in a water bath (BC)" and "cooked directly in hot water (WC)" conditions, on the quality of chicken meat. The results reveal that BC samples had a longer cooking time. Deboned-and-skinless BC samples had a higher cooking loss and lower protein solubility (P < 0.01). BC samples with bone and skin had a higher lightness in both skin and muscle. No significant differences were observed in attributes, including shear force, collagen solubility, microstructures, redness, yellowness and descriptive sensory characteristics between treatments. Based on the results, considering the quality attributes that might be influenced, is critical when conducting relevant research. © 2016 Japanese Society of Animal Science.
Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan
2012-03-30
Chromium plating used for functional purposes provides an extremely hard, wear and corrosion resistant layer by means of electrolytic deposition. Typical layer thicknesses range between 2.5 and 500 μm. Chromium electroplating baths contain high concentrations of Cr(VI) with chromium trioxide (CrO(3)) as the chromium source. When because of technical or economic reasons a bath gets exhausted, a waste containing mainly chromium as dichromate as well as other heavy metals is generated. Chromium may then be purified for use in other industrial processes with different requirements. In this work, a sustainable system for using galvanic wastes as reagents in the leather tanning industry, thus reducing quantity of wastes to be treated, is presented. Metal cations present in the chromium exhausted bath were precipitated with NaOH. Then, the solution containing mainly soluble Cr(VI) was separated. By means of sodium sulphite in acidic conditions, Cr(VI) was reduced to Cr(III) as chromium (III) sulphate. From chromium (III) sulphate a basic Cr(III) sulphate may be obtained, which is one of most used compounds in the tanning industry. Cr(III) concentration in the final solution allows its reuse without concentration, but with a slight dilution. Copyright © 2012 Elsevier B.V. All rights reserved.
Barik, Arati J; Gogate, Parag R
2016-01-01
The present work investigates the degradation of 4-chloro 2-aminophenol (4C2AP), a highly toxic organic compound, using ultrasonic reactors and combination of ultrasound with photolysis and ozonation for the first time. Two types of ultrasonic reactors viz. ultrasonic horn and ultrasonic bath operating at frequency of 20 kHz and 36 kHz respectively have been used in the work. The effect of initial pH, temperature and power dissipation of the ultrasonic horn on the degradation rate has been investigated. The established optimum parameters of initial pH as 6 (natural pH of the aqueous solution) and temperature as 30 ± 2°C were then used in the degradation studies using the combined approaches. Kinetic study revealed that degradation of 4C2AP followed first order kinetics for all the treatment approaches investigated in the present work. It has been established that US+UV+O3 combined process was the most promising method giving maximum degradation of 4C2AP in both ultrasonic horn (complete removal) and bath (89.9%) with synergistic index as 1.98 and 1.29 respectively. The cavitational yield of ultrasonic bath was found to be eighteen times higher as compared to ultrasonic horn implying that configurations with higher overall areas of transducers would be better selection for large scale treatment. Overall, the work has clearly demonstrated that combined approaches could synergistically remove the toxic pollutant (4C2AP). Copyright © 2015 Elsevier B.V. All rights reserved.
An investigation of preload relaxation behaviour of three zinc- aluminum alloys
NASA Astrophysics Data System (ADS)
Mir, A. A.
2016-08-01
Zinc alloy castings are usually assembled together or mounted by screwed steel fasteners, and are tightened to a predetermined torque to develop the required tensile preload in the fastener. Due to relaxation processes in the castings, creep may cause a partial preload loss at an elevated temperature. The equipment used for load relaxation tests consists of a loadmonitoring device, an oil bath, and a data-acquisition system. A load cell monitoring device is used to monitor the load loss in an ISO-metric M6*1 steel screw set into sand castings made from alloys No. 3, No. 5 and No. 2 and tightened to produce an initial preload of 6 kN. The castings were held at constant temperature in the range 80 - 120°C in an oil bath. The oil bath maintains the desired test temperature throughout the experiment. All tests were conducted for periods of up to 160 h. For all alloys, the initial load loss was high, decreasing gradually with time, but not ceasing. The load loss increased rapidly with test temperature, and almost all of the relaxation curves approximated to a logarithmic decay of load with time. Alloy No. 2 had the best resistance to load loss, with No. 5 next and No. 3 worst at all temperatures. The lower resistance to relaxation of alloy No. 3 was mainly due to the lower relaxation strength of copper-free primary dendrites, whereas in alloys No. 5 and No. 2, the higher copper contents contribute greatly to their relaxation strength in the form of second-phase particles.
Shinrin-Yoku (Forest Bathing) and Nature Therapy: A State-of-the-Art Review.
Hansen, Margaret M; Jones, Reo; Tocchini, Kirsten
2017-07-28
Current literature supports the comprehensive health benefits of exposure to nature and green environments on human systems. The aim of this state-of-the-art review is to elucidate empirical research conducted on the physiological and psychological effects of Shinrin-Yoku (or Forest Bathing) in transcontinental Japan and China. Furthermore, we aim to encourage healthcare professionals to conduct longitudinal research in Western cultures regarding the clinically therapeutic effects of Shinrin-Yoku and, for healthcare providers/students to consider practicing Shinrin-Yoku to decrease undue stress and potential burnout. A thorough review was conducted to identify research published with an initial open date range and then narrowing the collection to include papers published from 2007 to 2017. Electronic databases (PubMed, PubMed Central, CINAHL, PsycINFO and Scopus) and snowball references were used to cull papers that evaluated the use of Shinrin-Yoku for various populations in diverse settings. From the 127 papers initially culled using the Boolean phrases: "Shinrin-yoku" AND/OR "forest bathing" AND/OR "nature therapy", 64 studies met the inclusion criteria and were included in this summary review and then divided into "physiological," "psychological," "sensory metrics" and "frameworks" sub-groups. Human health benefits associated with the immersion in nature continue to be currently researched. Longitudinal research, conducted worldwide, is needed to produce new evidence of the relationships associated with Shinrin-Yoku and clinical therapeutic effects. Nature therapy as a health-promotion method and potential universal health model is implicated for the reduction of reported modern-day "stress-state" and "technostress.".
Musuuza, Jackson S; Roberts, Tonya J; Carayon, Pascale; Safdar, Nasia
2017-01-14
Daily bathing with chlorhexidine gluconate (CHG) of intensive care unit (ICU) patients has been shown to reduce healthcare-associated infections and colonization by multidrug resistant organisms. The objective of this project was to describe the process of daily CHG bathing and identify the barriers and facilitators that can influence its successful adoption and sustainability in an ICU of a Veterans Administration Hospital. We conducted 26 semi-structured interviews with a convenience sample of 4 nurse managers (NMs), 13 registered nurses (RNs) and 9 health care technicians (HCTs) working in the ICU. We used qualitative content analysis to code and analyze the data. Dedoose software was used to facilitate data management and coding. Trustworthiness and scientific integrity of the data were ensured by having two authors corroborate the coding process, conducting member checks and keeping an audit trail of all the decisions made. Duration of the interviews was 15 to 39 min (average = 26 min). Five steps of bathing were identified: 1) decision to give a bath; 2) ability to give a bath; 3) decision about which soap to use; 4) delegation of a bath; and 5) getting assistance to do a bath. The bathing process resulted in one of the following three outcomes: 1) complete bath; 2) interrupted bath; and 3) bath not done. The outcome was influenced by a combination of barriers and facilitators at each step. Most barriers were related to perceived workload, patient factors, and scheduling. Facilitators were mainly organizational factors such as the policy of daily CHG bathing, the consistent supply of CHG soap, and support such as reminders to conduct CHG baths by nurse managers. Patient bathing in ICUs is a complex process that can be hindered and interrupted by numerous factors. The decision to use CHG soap for bathing was only one of 5 steps of bathing and was largely influenced by scheduling/workload and patient factors such as clinical stability, hypersensitivity to CHG, patient refusal, presence of IV lines and general hygiene. Interventions that address the organizational, provider, and patient barriers to bathing could improve adherence to a daily CHG bathing protocol.
Chiang, Charles; Eichenfield, Lawrence F
2009-01-01
Standard recommendations for skin care for patients with atopic dermatitis stress the importance of skin hydration and the application of moisturizers. However, objective data to guide recommendations regarding the optimal practice methods of bathing and emollient application are scarce. This study quantified cutaneous hydration status after various combination bathing and moisturizing regimens. Four bathing/moisturizer regimens were evaluated in 10 subjects, five pediatric subjects with atopic dermatitis and five subjects with healthy skin. The regimens consisted of bathing alone without emollient application, bathing and immediate emollient application, bathing and delayed application, and emollient application alone. Each regimen was evaluated in all subjects, utilizing a crossover design. Skin hydration was assessed with standard capacitance measurements. In atopic dermatitis subjects, emollient alone yielded a significantly (p < 0.05) greater mean hydration over 90 minutes (206.2% baseline hydration) than bathing with immediate emollient (141.6%), bathing and delayed emollient (141%), and bathing alone (91.4%). The combination bathing and emollient application regimens demonstrated hydration values at 90 minutes not significantly greater than baseline. Atopic dermatitis subjects had a decreased mean hydration benefit compared with normal skin subjects. Bathing without moisturizer may compromise skin hydration. Bathing followed by moisturizer application provides modest hydration benefits, though less than that of simply applying moisturizer alone.
Directed motion of a Brownian motor in a temperature gradient
NASA Astrophysics Data System (ADS)
Liu, Yibing; Nie, Wenjie; Lan, Yueheng
2017-05-01
Directed motion of mesoscopic systems in a non-equilibrium environment is of great interest to both scientists and engineers. Here, the translation and rotation of a Brownian motor is investigated under non-equilibrium conditions. An anomalous directed translation is found if the two heads of the Brownian motor are immersed in baths with different particle masses, which is hinted in the analytic computation and confirmed by the numerical simulation. Similar consideration is also used to find the directed movement in the single rotational and translational degree of freedom of the Brownian motor when residing in one thermal bath with a temperature gradient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitru, Irina, E-mail: aniri-dum@yahoo.com; Isar, Aurelian
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in amore » separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.« less
Armstrong, R D; Liebenberg, J E; Heaney, K; Guerino, F
2015-08-01
An evaluation of the effect of chlorhexidine/ketoconazole shampoo baths on the flea control efficacy of indoxacarb applied topically to dogs. We randomly allocated 18 healthy mixed-breed dogs to 3 groups: shampoo only; indoxacarb treated and medicated shampoo; and indoxacarb treated but not shampooed. Indoxacarb was administered on day 0 and dogs were shampooed on days 9 and 23. Dogs were infested with 100 adult Ctenocephalides felis initially 2 days before treatment and then weekly from days 7 to 28. Fleas were removed and counted 48 h post-infestation. Medicated shampoo use did not significantly reduce indoxacarb efficacy against C. felis. © 2015 MSD Animal Health. Australian Veterinary Journal published by Wiley Publishing Asia Pty Ltd on behalf of Australian Veterinary Association.
On the exact solvability of the anisotropic central spin model: An operator approach
NASA Astrophysics Data System (ADS)
Wu, Ning
2018-07-01
Using an operator approach based on a commutator scheme that has been previously applied to Richardson's reduced BCS model and the inhomogeneous Dicke model, we obtain general exact solvability requirements for an anisotropic central spin model with XXZ-type hyperfine coupling between the central spin and the spin bath, without any prior knowledge of integrability of the model. We outline basic steps of the usage of the operators approach, and pedagogically summarize them into two Lemmas and two Constraints. Through a step-by-step construction of the eigen-problem, we show that the condition gj‧2 - gj2 = c naturally arises for the model to be exactly solvable, where c is a constant independent of the bath-spin index j, and {gj } and { gj‧ } are the longitudinal and transverse hyperfine interactions, respectively. The obtained conditions and the resulting Bethe ansatz equations are consistent with that in previous literature.
Ocean outfalls as an alternative to minimizing risks to human and environmental health.
Feitosa, Renato Castiglia
2017-06-01
Submarine outfalls are proposed as an efficient alternative for the final destination of wastewater in densely populated coastal areas, due to the high dispersal capacity and the clearance of organic matter in the marine environment, and because they require small areas for implementation. This paper evaluates the probability of unsuitable bathing conditions in coastal areas nearby to the Ipanema, Barra da Tijuca and Icaraí outfalls based on a computational methodology gathering hydrodynamic, pollutant transport, and bacterial decay modelling. The results show a strong influence of solar radiation and all factors that mitigate its levels in the marine environment on coliform concentration. The aforementioned outfalls do not pollute the coastal areas, and unsuitable bathing conditions are restricted to nearby effluent launching points. The pollution observed at the beaches indicates that the contamination occurs due to the polluted estuarine systems, rivers and canals that flow to the coast.
CFD Modeling of Swirl and Nonswirl Gas Injections into Liquid Baths Using Top Submerged Lances
NASA Astrophysics Data System (ADS)
Huda, Nazmul; Naser, J.; Brooks, G.; Reuter, M. A.; Matusewicz, R. W.
2010-02-01
Fluid flow phenomena in a cylindrical bath stirred by a top submerged lance (TSL) gas injection was investigated by using the computational fluid dynamic (CFD) modeling technique for an isothermal air-water system. The multiphase flow simulation, based on the Euler-Euler approach, elucidated the effect of swirl and nonswirl flow inside the bath. The effects of the lance submergence level and the air flow rate also were investigated. The simulation results for the velocity fields and the generation of turbulence in the bath were validated against existing experimental data from the previous water model experimental study by Morsi et al.[1] The model was extended to measure the degree of the splash generation for different liquid densities at certain heights above the free surface. The simulation results showed that the two-thirds lance submergence level provided better mixing and high liquid velocities for the generation of turbulence inside the water bath. However, it is also responsible for generating more splashes in the bath compared with the one-third lance submergence level. An approach generally used by heating, ventilation, and air conditioning (HVAC) system simulations was applied to predict the convective mixing phenomena. The simulation results for the air-water system showed that mean convective mixing for swirl flow is more than twice than that of nonswirl in close proximity to the lance. A semiempirical equation was proposed from the results of the present simulation to measure the vertical penetration distance of the air jet injected through the annulus of the lance in the cylindrical vessel of the model, which can be expressed as L_{va} = 0.275( {do - di } )Frm^{0.4745} . More work still needs to be done to predict the detail process kinetics in a real furnace by considering nonisothermal high-temperature systems with chemical reactions.
NASA Astrophysics Data System (ADS)
Yalouz, S.; Falvo, C.; Pouthier, V.
2017-06-01
Based on the operatorial formulation of perturbation theory, the dynamical properties of a Frenkel exciton coupled with a thermal phonon bath on a star graph are studied. Within this method, the dynamics is governed by an effective Hamiltonian which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud, whereas the phonons are dressed by virtual excitonic transitions. Special attention is paid to the description of the coherence of a qubit state initially located on the central node of the graph. Within the nonadiabatic weak coupling limit, it is shown that several timescales govern the coherence dynamics. In the short time limit, the coherence behaves as if the exciton was insensitive to the phonon bath. Then, quantum decoherence takes place, this decoherence being enhanced by the size of the graph and by temperature. However, the coherence does not vanish in the long time limit. Instead, it exhibits incomplete revivals that occur periodically at specific revival times and it shows almost exact recurrences that take place at particular super-revival times, a singular behavior that has been corroborated by performing exact quantum calculations.
van 't Klooster, Charlotte I E A; Haabo, Vinije; Ruysschaert, Sofie; Vossen, Tessa; van Andel, Tinde R
2018-03-15
Herbal baths play an important role in the traditional health care of Maroons living in the interior of Suriname. However, little is known on the differences in plant ingredients used among and within the Maroon groups. We compared plant use in herbal baths documented for Saramaccan and Aucan Maroons, to see whether similarity in species was related to bath type, ethnic group, or geographical location. We hypothesized that because of their dissimilar cultural background, they used different species for the same type of bath. We assumed, however, that plants used in genital baths were more similar, as certain plant ingredients (e.g., essential oils), are preferred in these baths. We compiled a database from published and unpublished sources on herbal bath ingredients and constructed a presence/absence matrix per bath type and study site. To assess similarity in plant use among and within Saramaccan and Aucan communities, we performed three Detrended Correspondence Analyses on species level and the Jaccard Similarity Index to quantify similarity in bath ingredients. We recorded 349 plants used in six commonly used bath types: baby strength, adult strength, skin diseases, respiratory ailments, genital steam baths, and spiritual issues. Our results showed a large variation in plant ingredients among the Saramaccan and Aucans and little similarity between Saramaccans and Aucans, even for the same type of baths. Plant ingredients for baby baths and genital baths shared more species than the others. Even within the Saramaccan community, plant ingredients were stronger associated with location than with bath type. Plant use in bathing was strongly influenced by study site and then by ethnicity, but less by bath type. As Maroons escaped from different plantations and developed their ethnomedicinal practices in isolation, there has been little exchange in ethnobotanical knowledge after the seventeenth century between ethnic groups. Care should be taken in extrapolating plant use data collected from one location to a whole ethnic community. Maroon plant use deserves more scientific attention, especially now as there are indications that traditional knowledge is disappearing.
Temperature crossover of decoherence rates in chaotic and regular bath dynamics.
Sanz, A S; Elran, Y; Brumer, P
2012-03-01
The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I(2) in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.
NASA Astrophysics Data System (ADS)
Loranca-Ramos, F. E.; Diliegros-Godines, C. J.; Silva González, R.; Pal, Mou
2018-01-01
Copper antimony sulfide (CAS) has been proposed as low toxicity and earth abundant absorber materials for thin film photovoltaics due to their suitable optical band gap, high absorption coefficient and p-type electrical conductivity. The present work reports the formation of copper antimony sulfide by chemical bath deposition using sodium citrate as a complexing agent. We show that by tuning the annealing condition, one can obtain either chalcostibite or tetrahedrite phase. However, the main challenge was co-deposition of copper and antimony as ternary sulfides from a single chemical bath due to the distinct chemical behavior of these metals. The as-deposited films were subjected to several trials of thermal treatment using different temperatures and time to find the optimized annealing condition. The films were characterized by different techniques including Raman spectroscopy, X-ray diffraction (XRD), profilometer, scanning electron microscopy (SEM), UV-vis spectrophotometer, and Hall Effect measurements. The results show that the formation of chalcostibite and tetrahedrite phases is highly sensitive to annealing conditions. The electrical properties obtained for the chalcostibite films varied as the annealing temperature increases from 280 to 350 °C: hole concentration (n) = 1017-1018 cm-3, resistivity (ρ) = 1.74-2.14 Ωcm and carrier mobility (μ) = 4.7-9.26 cm2/Vseg. While for the tetrahedrite films, the electrical properties were n = 5 × 1019 cm-3, μ = 18.24 cm2/Vseg, and ρ = 5.8 × 10-3 Ωcm. A possible mechanism for the formation of ternary copper antimony sulfide has also been proposed.
Culture and long-term care: the bath as social service in Japan.
Traphagan, John W
2004-01-01
A central feature of Japan's approach to community-based care of the elderly, including long-term home health care, is the emphasis on providing bath facilities. For mobile elders, senior centers typically provide a public bathing facility in which people can enjoy a relaxing soak along with friends who also visit the centers. In terms of in-home long-term care, visiting bath services are provided to assist family care providers with the difflcult task of bathing a frail or disabled elder--a task made more problematic as a result of the Japanese style of bathing. I argue that the bath, as social service, is a culturally shaped solution to a specific problem of elder care that arises in the Japanese context as a result of the importance of the bath in everyday life for Japanese. While the services may be considered specific to Japan, some aspects of bathing services, particularly the mobile bath service, may also have applicability in the United States.
NASA Technical Reports Server (NTRS)
Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton
1987-01-01
Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.
21 CFR 720.4 - Information requested about cosmetic products.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... (iii) Other baby products. (2) Bath preparations. (i) Bath oils, tablets, and salts. (ii) Bubble baths. (iii) Bath capsules. (iv) Other bath preparations. (3) Eye makeup preparations. (i) Eyebrow pencil. (ii... preparations. (4) Fragrance preparations. (i) Colognes and toilet waters. (ii) Perfumes. (iii) Powders (dusting...
21 CFR 720.4 - Information requested about cosmetic products.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (iii) Other baby products. (2) Bath preparations. (i) Bath oils, tablets, and salts. (ii) Bubble baths. (iii) Bath capsules. (iv) Other bath preparations. (3) Eye makeup preparations. (i) Eyebrow pencil. (ii... preparations. (4) Fragrance preparations. (i) Colognes and toilet waters. (ii) Perfumes. (iii) Powders (dusting...
The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples
Sun, Xiaocun; Flatland, Bente
2016-01-01
Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV) of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia). Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature), while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice. Discussion Canine EDTA whole blood samples cool most rapidly and to a greater degree when placed in an ice-water bath rather than in ice. Samples stored on ice water can rapidly drop below normal refrigeration temperatures; this should be taken into consideration when using this cooling modality. PMID:27917319
Quantum Bath Refrigeration towards Absolute Zero: Challenging the Unattainability Principle
NASA Astrophysics Data System (ADS)
Kolář, M.; Gelbwaser-Klimovsky, D.; Alicki, R.; Kurizki, G.
2012-08-01
A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst’s third-law formulation known as the unattainability principle.
Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.
Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G
2012-08-31
A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.
Bath Salts Abuse Leading to New-Onset Psychosis and Potential for Violence.
John, Michelle E; Thomas-Rozea, Crystal; Hahn, David
Bath salts have recently emerged as a popular designer drug of abuse causing significant hazardous effects on mental health and physical health, resulting in public health legislation making its usage illegal in the United States. To educate mental health providers on the effects of the new designer drug bath salts, including its potential to cause psychosis and violence in patients. This is a case report on a 40-year-old male with no past psychiatric history who presented with new-onset psychosis and increased risk for violence after ingesting bath salts. In addition, a literature review was performed to summarize the documented effects of bath salts abuse and the current U.S. public health legislation on bath salts. The presented case illustrates a new-onset, substance-induced psychotic disorder related to bath salts usage. The literature review explains the sympathomimetic reaction and the potential for psychotic symptoms. To discuss the physical and psychological effects of bath salts, treatment options for bath salts abuse and U.S. legislation by Ohio state law to current U.S. federal law that bans production, sale, and possession of main substances found in bath salts. It is important for mental health providers to be aware of bath salts, understand the physical and psychiatric effects of bath salts and be familiar with current legislative policy banning its usage. Lastly, bath salts abuse should be in the differential diagnosis where psychosis is new onset or clinically incongruent with known primary presentation of a psychotic disorder.
Yoon, Kyung Su; Huang, Xue Zhu; Yoon, Yang Suk; Kim, Soo-Ki; Song, Soon Bong; Chang, Byung Soo; Kim, Dong Heui; Lee, Kyu Jae
2011-01-01
Electrolyzed reduced water (ERW), functional water, has various beneficial effects via antioxidant mechanism in vivo and in vitro. However there is no study about beneficial effects of ERW bathing. This study aimed to determine the effect of ERW bathing on the UVB-induced skin injury in hairless mice. For this purpose, mice were irradiated with UVB to cause skin injury, followed by individually taken a bath in ERW (ERW-bathing) and tap water (TW-bathing) for 21 d. We examined cytokines profile in acute period, and histological and ultrastructural observation of skin in chronic period. We found that UVB-mediated skin injury of ERW-bathing group was significantly low compared to TW control group in the early stage of experiment. Consistently, epidermal thickening as well as the number of dermal mast cell was significantly lowered in ERW-bathing group. Defection of corneocytes under the scanning electron microscope was less observed in ERW-bathing group than in TW-bathing group. Further, the level of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-12p70 in ERW group decreased whereas those of IL-10 increased. Collectively, our data indicate that ERW-bathing significantly reduces UVB-induced skin damage through influencing pro-/anti-inflammatory cytokine balance in hairless mice. This suggests that ERW-bathing has a positive effect on acute UVB-mediated skin disorders. This is the first report on bathing effects of ERW in UVB-induced skin injury.
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We use the "generalized hierarchical equation of motion" proposed in Paper I [C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148, 014103 (2018)] to study decoherence in a system coupled to a spin bath. The present methodology allows a systematic incorporation of higher-order anharmonic effects of the bath in dynamical calculations. We investigate the leading order corrections to the linear response approximations for spin bath models. Two kinds of spin-based environments are considered: (1) a bath of spins discretized from a continuous spectral density and (2) a bath of localized nuclear or electron spins. The main difference resides with how the bath frequency and the system-bath coupling parameters are distributed in an environment. When discretized from a continuous spectral density, the system-bath coupling typically scales as ˜1 /√{NB } where NB is the number of bath spins. This scaling suppresses the non-Gaussian characteristics of the spin bath and justifies the linear response approximations in the thermodynamic limit. For the nuclear/electron spin bath models, system-bath couplings are directly deduced from spin-spin interactions and do not necessarily obey the 1 /√{NB } scaling. It is not always possible to justify the linear response approximations in this case. Furthermore, if the spin-spin Hamiltonian is highly symmetrical, there exist additional constraints that generate highly non-Markovian and persistent dynamics that is beyond the linear response treatments.
The effect of sauna bathing on lipid profile in young, physically active, male subjects.
Gryka, Dorota; Pilch, Wanda; Szarek, Marta; Szygula, Zbigniew; Tota, Łukasz
2014-08-01
The aim of the study was to evaluate effects of Finnish sauna bathing on lipid profile in healthy, young men. Sixteen male subjects (20-23 years) were subjected to 10 sauna bathing sessions in a Finnish sauna every 1 or 2 days. The mean sauna temperature was 90±2°C, while humidity was 5-16%. Each session consisted of three 15-minute parts and a 2-minute cool-down between them. The following measurements were taken before and after the sauna sessions: body mass, heart rate, body skinfold thickness. The percentage fat content and then, the lean body mass were calculated. Total cholesterol, triacylglycerols, lipoprotein cholesterol LDL and HDL were measured in blood samples. A statistically significant decrease of total cholesterol and LDL cholesterol was observed during 3 weeks of sauna treatment and in the week afterwards. A significant decline in triacylglycerols was found directly after the 1st and 24 h directly after the 10th sauna session. After the 10th sauna session the level of HDL cholesterol remained slightly increased, but this change was not statistically significant. A decrease in blood plasma volume was found directly after the 1st and the last sauna bathing session due to perspiration. An adaptive increase in blood plasma volume was also found after the series of 10 sauna sessions. Ten complete sauna bathing sessions in a Finnish sauna caused a reduction in total cholesterol and LDL cholesterol fraction levels during the sessions and a gradual return of these levels to the initial level during the 1st and the 2nd week after the experiment. A small, statistically insignificant increase in HDL-C level and a transient decline in triacylglycerols were observed after those sauna sessions. The positive effect of sauna on lipid profile is similar to the effect that can be obtained through a moderate-intensity physical exercise.
Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P
2004-11-01
We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.
CPM Test-Retest Reliability: "Standard" vs "Single Test-Stimulus" Protocols.
Granovsky, Yelena; Miller-Barmak, Adi; Goldstein, Oren; Sprecher, Elliot; Yarnitsky, David
2016-03-01
Assessment of pain inhibitory mechanisms using conditioned pain modulation (CPM) is relevant clinically in prediction of pain and analgesic efficacy. Our objective is to provide necessary estimates of intersession CPM reliability, to enable transformation of the CPM paradigm into a clinical tool. Two cohorts of young healthy subjects (N = 65) participated in two dual-session studies. In Study I, a Bath-Thermode CPM protocol was used, with hot water immersion and contact heat as conditioning- and test-stimuli, respectively, in a classical parallel CPM design introducing test-stimulus first, and then the conditioning- and repeated test-stimuli in parallel. Study II consisted of two CPM protocols: 1) Two-Thermodes, one for each of the stimuli, in the same parallel design as above, and 2) single test-stimulus (STS) protocol with a single administration of a contact heat test-stimulus, partially overlapped in time by a remote shorter contact heat as conditioning stimulus. Test-retest reliability was assessed within 3-7 days. The STS-CPM had superior reliability intraclass correlation (ICC 2 ,: 1 = 0.59) over Bath-Thermode (ICC 2 ,: 1 = 0.34) or Two-Thermodes (ICC 2 ,: 1 = 0.21) protocols. The hand immersion conditioning pain had higher reliability than thermode pain (ICC 2 ,: 1 = 0.76 vs ICC 2 ,: 1 = 0.16). Conditioned test-stimulus pain scores were of good (ICC 2 ,: 1 = 0.62) or fair (ICC 2 ,: 1 = 0.43) reliability for the Bath-Thermode and the STS, respectively, but not for the Two-Thermodes protocol (ICC 2 ,: 1 = 0.20). The newly developed STS-CPM paradigm was more reliable than other CPM protocols tested here, and should be further investigated for its clinical relevance. It appears that large contact size of the conditioning-stimulus and use of single rather than dual test-stimulus pain contribute to augmentation of CPM reliability. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kudo, Yukiko; Sasaki, Makiko; Kikuchi, Yukiko; Sugiyama, Reiko; Hasebe, Makiko; Ishii, Noriko
2018-06-19
The present study was conducted in order to clarify the effects of a warm hand bath at 40°C for 10 min on the blood flow in the shoulder, skin and deep body temperature, autonomic nervous activity, and subjective comfort in healthy women. The study's participants were 40 healthy adult women who were randomly assigned to either a structured hand bath first and no hand bath second (Group A) or to no hand bath first and a hand bath second (Group B). The blood flow in the shoulder, skin and deep body temperature, autonomic nervous activity, and subjective comfort then were recorded in all the participants. A repeated-measures ANOVA revealed no significant difference in the blood flow in the right shoulder or deep body temperature between groups. The skin temperature of the hands, forearms, and arms was significantly increased, but not of the face and upper back. The skin temperature of the forearms was maintained at 0.5°C-1°C higher for 30 min in the hand bath group, compared with the no hand bath group. The hand bath group had a significantly higher heart rate while bathing and a significantly lower parasympathetic nerve activity level during bathing. No significant difference was seen in the sympathetic activity level between groups. The hand bath group had a significantly higher subjective comfort level. Hand baths can improve the level of subjective comfort and increase the heart rate and might affect autonomic nervous activity. The skin temperature of the forearms was maintained for 30 min in the hand bath group. © 2018 Japan Academy of Nursing Science.
Xu, Li; Wu, Lin; Liu, Tingting; Xing, Wenrong; Cao, Xinsheng; Zhang, Shu; Su, Zongyi
2017-09-01
[Purpose] The aim of our study was to explore the changes in the blood of servicemen in sub-health conditions during a 21-day balneotherapy program. [Subjects and Methods] For this study, 129 servicemen in sub-health condition were recruited. The subjects were randomly divided into either the balneotherapy group (70) or the control group (59). Subjects in the balneotherapy group received whole-body immersion bath therapy in thermomineral water (30 min daily) for 21 days. Their blood samples were examined 1 day before and after balneotherapy. The parameters studied included mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), white blood cell (WBC), lactic acid (LAC), alanine aminotransferase (ALT), glucose (GLU), and triglycerides (TG) levels. [Results] After 21 days of balneotherapy, MCH levels and MCHC increased significantly and WBC counts increased significantly. LAC levels decreased significantly. ALT, GLU, and TG levels decreased significantly. In the control group, there were no statistical differences before and after tap water baths following the same procedure. [Conclusion] A 21-day balneotherapy program significantly improved blood cell counts and blood biochemical indexes and reduced ponogen levels in servicemen in sub-health condition.
40 CFR 63.11507 - What are my standards and management practices?
Code of Federal Regulations, 2014 CFR
2014-07-01
... other bath chemistry ingredients that are added to replenish the bath, as in the original make-up of the... bath. (iii) If a wetting agent/fume suppressant is included in the electrolytic process bath chemicals... practicable. (8) Maintain quality control of chemicals, and chemical and other bath ingredient concentrations...
Kälsch, Julia; Pott, Leona L; Takeda, Atsushi; Kumamoto, Hideo; Möllmann, Dorothe; Canbay, Ali; Sitek, Barbara; Baba, Hideo A
2017-04-01
Beneficial effects of balneotherapy using naturally occurring carbonated water (CO 2 enriched) have been known since the Middle Ages. Although this therapy is clinically applied for peripheral artery disease and skin disorder, the underlying mechanisms are not fully elucidated.Under controlled conditions, rats were bathed in either CO 2 -enriched water (CO 2 content 1200 mg/L) or tap water, both at 37 °C, for 10 min daily over 4 weeks. Proliferation activity was assessed by Ki67 immunohistochemistry of the epidermis of the abdomen. The capillary density was assessed by immunodetection of isolectin-positive cells. Using cryo-fixed abdominal skin epidermis, follicle cells and stroma tissue containing capillaries were separately isolated by means of laser microdissection and subjected to proteomic analysis using label-free technique. Differentially expressed proteins were validated by immunohistochemistry.Proliferation activity of keratinocytes was not significantly different in the epidermis after bathing in CO 2 -enriched water, and also, capillary density did not change. Proteomic analysis revealed up to 36 significantly regulated proteins in the analyzed tissue. Based on the best expression profiles, ten proteins were selected for immunohistochemical validation. Only one protein, far upstream element binding protein 2 (FUBP2), was similarly downregulated in the epidermis after bathing in CO 2 -enriched water with both techniques. Low FUBP2 expression was associated with low c-Myc immune-expression in keratinocytes.Long-term bathing in CO 2 -enriched water showed a cellular protein response of epithelial cells in the epidermis which was detectable by two different methods. However, differences in proliferation activity or capillary density were not detected in the normal skin.
The Effectiveness of Structured Group Education on Ankylosing Spondylitis Patients.
Kasapoglu Aksoy, Meliha; Birtane, Murat; Taştekin, Nurettin; Ekuklu, Galip
2017-04-01
Ankylosing spondylitis (AS) is a common inflammatory rheumatic disease that affects the axial skeleton which can lead to structural and functional impairments. It has a negative impact on the person's daily life activities. Early diagnosis, exercise and patient education are factors playing a major role on prognosis. The purpose of the study was to compare the structured theoretical and exercise educational program with routine clinic educational efforts on the parameters of the disorder over a 3 month follow up. This randomized, educational intervention study was performed on 41 AS patients. A 5 day structured education and exercise program was applied to the first group of patients (Group 1) in subgroups consisting 4-5 patients each. Patients had group exercises throughout the education program. The second group followed routine clinical care. The effectiveness of the treatment was assessed by Bath ankylosing spondylitis functional (BASFI), Bath ankylosing spondylitis disease activity (BASDAI), Bath ankylosing spondylitis global (BAS-G), Bath ankylosing spondylitis metrology indices (BASMI), chest expansion, short form-36 (SF-36), ankylosing spondylitis quality of life scale (ASQoL) and laboratory parameters in all patients. Patients were evaluated on initiation and after 3 months. Significant improvements in BASFI, BASDAI and BAS-G, chest expansion, SF-36 and ASQoL indices were observed in Group 1 No difference could be found in BASMI and chest expansion. A structured educational and exercise intervention had a positive effect on the functional status,disease activity, and general well-being and quality of life. It also, shows that education programs should be within the routine treatment program for AS.
Kumar, Raja; Sinha, Alok
2017-02-01
Influence of common dye-bath additives, namely sodium chloride, ammonium sulphate, urea, acetic acid and citric acid, on the reductive decolouration of Direct Green 1 dye in the presence of Fe 0 was investigated. Organic acids improved dye reduction by augmenting Fe 0 corrosion, with acetic acid performing better than citric acid. NaCl enhanced the reduction rate by its 'salting out' effect on the bulk solution and by Cl - anion-mediated pitting corrosion of iron surface. (NH 4 ) 2 SO 4 induced 'salting out' effect accompanied by enhanced iron corrosion by SO 4 2- anion and buffering effect of NH 4 + improved the reduction rates. However, at 2g/L (NH 4 ) 2 SO 4 concentration, complexating of SO 4 2- with iron oxides decreased Fe 0 reactivity. Urea severely compromised the reduction reaction, onus to its chaotropic and 'salting in' effect in solution, and due to it masking the Fe 0 surface. Decolouration obeyed biphasic reduction kinetics (R 2 >0.993 in all the cases) exhibiting an initial rapid phase, when more than 95% dye reduction was observed, preceding a tedious phase. Maximum rapid phase reduction rate of 0.955/min was observed at pH2 in the co-presence of all dye-bath constituents. The developed biphasic model reckoned the influence of each dye-bath additive on decolouration and simulated well with the experimental data obtained at pH2. Copyright © 2016. Published by Elsevier B.V.
Westeel, P F; Coevoet, B; Bens, J L; Neuville, M; Morinière, P; Fievet, P; Dkhissi, H; Fournier, A
1983-01-01
In order to demonstrate a possible superiority of bicarbonate dialysis (HDB) over acetate dialysis (HDA) in conditions of standard dialysis (4 hours on a 1 m2 cuprophan dialyser) but with a bath rich in sodium (143 mEq/l) and control of ultrafiltration, we have compared 2 sequences of 3 runs of HDA and HDB with these conditions in 8 patients as regards their acido-basic and cardiologic parameters (continuous monitoring of ECG by Holter, regular measurement of blood pressure). Acid base balance study in AHD led to the distinction of 2 groups according to wether their plasma bicarbonate increased or decreased during the run. Rythmological tolerance was the same in BHD and AHD, wether all patients or both groups were considered. Heart rate was however slightly but significantly higher during AHD than during BHD, in the patients whose plasma bicarbonate decreased. In conclusion, the benefit of HDB is not remarkable when HDA is performed not only in standard conditions but also with a bath rich in sodium and with control of ultrafiltration.
Sliding bubbles on a hot horizontal wire in a subcooled bath
NASA Astrophysics Data System (ADS)
Duchesne, Alexis; Dubois, Charles; Caps, Hervé
2015-11-01
When a wire is heated up to the boiling point in a liquid bath some bubbles will nucleate on the wire surface. Traditional nucleate boiling theory predicts that bubbles generate from active nucleate site, grow up and depart from the heating surface due to buoyancy and inertia. However, an alternative scenario is presented in the literature for a subcooled bath: bubbles slide along the horizontal wire before departing. New experiments were performed by using a constantan wire and different liquids, varying the injected power. Silicone oil, water and even liquid nitrogen were tested in order to vary wetting conditions, liquid viscosities and surface tensions. We explored the influence of the wire diameter and of the subcooled bath temperature. We observed, of course, sliding motion, but also a wide range of behaviors from bubbles clustering to film boiling. We noticed that bubbles could change moving sense, especially when encountering with another bubble. The bubble speed is carefully measured and can reach more than 100 mm/s for a millimetric bubble. We investigated the dependence of the speed on the different parameters and found that this speed is, for a given configuration, quite independent of the injected power. We understand these phenomena in terms of Marangoni effects. This project has been financially supported by ARC SuperCool contract of the University of Liège.
42 CFR 484.36 - Condition of participation: Home health aide services.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (B) Sponge, tub, or shower bath. (C) Shampoo, sink, tub, or bed. (D) Nail and skin care. (E) Oral... extended) survey as a result of having been found to have furnished substandard care (or for other reasons...
42 CFR 484.36 - Condition of participation: Home health aide services.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (B) Sponge, tub, or shower bath. (C) Shampoo, sink, tub, or bed. (D) Nail and skin care. (E) Oral... extended) survey as a result of having been found to have furnished substandard care (or for other reasons...
42 CFR 484.36 - Condition of participation: Home health aide services.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (B) Sponge, tub, or shower bath. (C) Shampoo, sink, tub, or bed. (D) Nail and skin care. (E) Oral... extended) survey as a result of having been found to have furnished substandard care (or for other reasons...
42 CFR 484.36 - Condition of participation: Home health aide services.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (B) Sponge, tub, or shower bath. (C) Shampoo, sink, tub, or bed. (D) Nail and skin care. (E) Oral... extended) survey as a result of having been found to have furnished substandard care (or for other reasons...
42 CFR 484.36 - Condition of participation: Home health aide services.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (B) Sponge, tub, or shower bath. (C) Shampoo, sink, tub, or bed. (D) Nail and skin care. (E) Oral... extended) survey as a result of having been found to have furnished substandard care (or for other reasons...
Bloch-Nordsieck thermometers: one-loop exponentiation in finite temperature QED
NASA Astrophysics Data System (ADS)
Gupta, Sourendu; Indumathi, D.; Mathews, Prakash; Ravindran, V.
1996-02-01
We study the scattering of hard external particles in a heat bath in a real-time formalism for finite temperature QED. We investigate the distribution of the 4-momentum difference of initial and final hard particles in a fully covariant manner when the scale of the process, Q, is much larger than the temperature, T. Our computations are valid for all T subject to this constraint. We exponentiate the leading infra-red term at one-loop order through a resummation of soft (thermal) photon emissions and absorptions. For T > 0, we find that tensor structures arise which are not present at T = 0. These cant' thermal signatures. As a result, external particles can serve as thermometers introduced into the heat bath. We investigate the phase space origin of log( Q/ m) and log ( Q/ T) teens.
Decoherence dynamics of interacting qubits coupled to a bath of local optical phonons
NASA Astrophysics Data System (ADS)
Lone, Muzaffar Qadir; Yarlagadda, S.
2016-04-01
We study decoherence in an interacting qubit system described by infinite range Heisenberg model (IRHM) in a situation where the system is coupled to a bath of local optical phonons. Using perturbation theory in polaron frame of reference, we derive an effective Hamiltonian that is valid in the regime of strong spin-phonon coupling under nonadiabatic conditions. It is shown that the effective Hamiltonian commutes with the IRHM upto leading orders of perturbation and thus has the same eigenstates as the IRHM. Using a quantum master equation with Markovian approximation of dynamical evolution, we show that the off-diagonal elements of the density matrix do not decay in the energy eigen basis of IRHM.
... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...
33 CFR 334.45 - Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Shipyard, naval restricted area, Bath, Maine. 334.45 Section 334.45 Navigation and Navigable Waters CORPS... REGULATIONS § 334.45 Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine. (a) The... and other craft, except those vessels under the supervision or contract to local military or Naval...
33 CFR 334.45 - Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Shipyard, naval restricted area, Bath, Maine. 334.45 Section 334.45 Navigation and Navigable Waters CORPS... REGULATIONS § 334.45 Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine. (a) The... and other craft, except those vessels under the supervision or contract to local military or Naval...
33 CFR 334.45 - Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Shipyard, naval restricted area, Bath, Maine. 334.45 Section 334.45 Navigation and Navigable Waters CORPS... REGULATIONS § 334.45 Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine. (a) The... and other craft, except those vessels under the supervision or contract to local military or Naval...
33 CFR 334.45 - Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Shipyard, naval restricted area, Bath, Maine. 334.45 Section 334.45 Navigation and Navigable Waters CORPS... REGULATIONS § 334.45 Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine. (a) The... and other craft, except those vessels under the supervision or contract to local military or Naval...
33 CFR 334.45 - Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Shipyard, naval restricted area, Bath, Maine. 334.45 Section 334.45 Navigation and Navigable Waters CORPS... REGULATIONS § 334.45 Kennebec River, Bath Iron Works Shipyard, naval restricted area, Bath, Maine. (a) The... and other craft, except those vessels under the supervision or contract to local military or Naval...
... Bathing Basics You should give your baby a sponge bath until: the umbilical cord falls off and ... towels or blankets a clean diaper clean clothes Sponge baths. For a sponge bath, select a safe, ...
Interior view of bath 1 showing original cabinet and bath ...
Interior view of bath 1 showing original cabinet and bath fixtures, facing southeast. - Albrook Air Force Station, Company Officer's Quarters, East side of Canfield Avenue, Balboa, Former Panama Canal Zone, CZ
NASA Astrophysics Data System (ADS)
Zhu, He-Jie; Liang, Yan; Gao, Xiao-Yong; Guo, Rui-Fang; Ji, Qiang-Min
2015-06-01
Intrinsic ZnS and aluminum-doped nanocrystalline ZnS (ZnS:Al3+) films with zinc-blende structure were fabricated on heavily-doped p-type Si(100) substrates by chemical bath deposition method. Influence of aluminum doping on the microstructure, and photoluminescent and electrical properties of the films, were intensively investigated. The average crystallite size of the films varying in the range of about 9.0 ˜ 35.0 nm initially increases and then decreases with aluminum doping contents, indicating that the crystallization of the films are initially enhanced and then weakened. The incorporation of Al3+ was confirmed from energy dispersive spectrometry and the induced microstrain in the films. Strong and stable visible emission band resulting from the defect-related light emission were observed for the intrinsic ZnS and ZnS:Al3+ films at room temperature. The photoluminescence related to the aluminum can annihilate due to the self-absorption of ZnS:Al3+ when the Al3+ content surpasses certain value. The variation of the resistivity of the films that initially reduces and then increases is mainly caused by the partial substitute for Zn2+ by Al3+ as well as the enhanced crystallization, and by the enhanced crystal boundary scattering, respectively.
Quantum effects in energy and charge transfer in an artificial photosynthetic complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Pulak Kumar; Smirnov, Anatoly Yu.; Nori, Franco
2011-06-28
We investigate the quantum dynamics of energy and charge transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. This complex consists of six light-harvesting chromophores and an electron-acceptor fullerene. To describe quantum effects on a femtosecond time scale, we derive the set of exact non-Markovian equations for the Heisenberg operators of this photosynthetic complex in contact with a Gaussian heat bath. With these equations we can analyze the regime of strong system-bath interactions, where reorganization energies are of the order of the intersite exciton couplings. We show that the energy of the initially excited antenna chromophores is efficiently funneled tomore » the porphyrin-fullerene reaction center, where a charge-separated state is set up in a few picoseconds, with a quantum yield of the order of 95%. In the single-exciton regime, with one antenna chromophore being initially excited, we observe quantum beatings of energy between two resonant antenna chromophores with a decoherence time of {approx}100 fs. We also analyze the double-exciton regime, when two porphyrin molecules involved in the reaction center are initially excited. In this regime we obtain pronounced quantum oscillations of the charge on the fullerene molecule with a decoherence time of about 20 fs (at liquid nitrogen temperatures). These results show a way to directly detect quantum effects in artificial photosynthetic systems.« less
Thermal baths as quantum resources: more friends than foes?
NASA Astrophysics Data System (ADS)
Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analia
2015-12-01
In this article we argue that thermal reservoirs (baths) are potentially useful resources in processes involving atoms interacting with quantized electromagnetic fields and their applications to quantum technologies. One may try to suppress the bath effects by means of dynamical control, but such control does not always yield the desired results. We wish instead to take advantage of bath effects, that do not obliterate ‘quantumness’ in the system-bath compound. To this end, three possible approaches have been pursued by us. (i) Control of a quantum system faster than the correlation time of the bath to which it couples: such control allows us to reveal quasi-reversible/coherent dynamical phenomena of quantum open systems, manifest by the quantum Zeno or anti-Zeno effects (QZE or AZE, respectively). Dynamical control methods based on the QZE are aimed not only at protecting the quantumness of the system, but also diagnosing the bath spectra or transferring quantum information via noisy media. By contrast, AZE-based control is useful for fast cooling of thermalized quantum systems. (ii) Engineering the coupling of quantum systems to selected bath modes: this approach, based on field-atom coupling control in cavities, waveguides and photonic band structures, allows one to drastically enhance the strength and range of atom-atom coupling through the mediation of the selected bath modes. More dramatically, it allows us to achieve bath-induced entanglement that may appear paradoxical if one takes the conventional view that coupling to baths destroys quantumness. (iii) Engineering baths with appropriate non-flat spectra: this approach is a prerequisite for the construction of the simplest and most efficient quantum heat machines (engines and refrigerators). We may thus conclude that often thermal baths are ‘more friends than foes’ in quantum technologies.
Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Nishimura, Rumiko; Miwa, Chihiro; Kataoka, Yumiko; Kobayashi, Chihiro; Suzuki, Takahiro; Shigaraki, Masayuki; Maeda, Yoichi; Takada, Hiroki; Watanabe, Yoriko
2014-07-01
To reduce the risks of Japanese-style bathing, half-body bathing (HBLB) has been recommended in Japan, but discomfort due to the cold environment in winter prevents its widespread adoption. The development of the mist sauna, which causes a gradual core temperature rise with sufficient thermal comfort, has reduced the demerits of HBLB. We examined head-out 42 °C mist bathing with 38 °C HBLB up to the navel to see if it could improve thermal comfort without detracting from the merits of HBLB, with and without the effects of facial fanning (FF). The subjects were seven healthy males aged 22-25 years. The following bathing styles were provided: (1) HBLB-head-out half-body low bathing of 38 °C up to the navel (20 min); (2) HOMB-head-out mist bathing of 42 °C and HBLB of 38 °C (20 min); and (3) HOMBFF-HOMB with FF (20 min). HOMB raised the core temperature gradually. HOMBFF suppressed the core temperature rise in a similar fashion to HOMB. Increases in blood pressure and heart rate usually observed in Japanese traditional-style bathing were less marked in HOMBs with no significant difference with and without FF. The greatest body weight loss was observed after Japanese traditional-style bathing, with only one-third of this amount lost after mist bathing, and one-sixth after HBLB. HOMB increased thermal sensation, and FF also enhanced post-bathing invigoration. We conclude that HOMB reduces the risks of Japanese traditional style bathing by mitigating marked changes in the core temperature and hemodynamics, and FF provides thermal comfort and invigoration.
NASA Astrophysics Data System (ADS)
Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Nishimura, Rumiko; Miwa, Chihiro; Kataoka, Yumiko; Kobayashi, Chihiro; Suzuki, Takahiro; Shigaraki, Masayuki; Maeda, Yoichi; Takada, Hiroki; Watanabe, Yoriko
2014-07-01
To reduce the risks of Japanese-style bathing, half-body bathing (HBLB) has been recommended in Japan, but discomfort due to the cold environment in winter prevents its widespread adoption. The development of the mist sauna, which causes a gradual core temperature rise with sufficient thermal comfort, has reduced the demerits of HBLB. We examined head-out 42 °C mist bathing with 38 °C HBLB up to the navel to see if it could improve thermal comfort without detracting from the merits of HBLB, with and without the effects of facial fanning (FF). The subjects were seven healthy males aged 22-25 years. The following bathing styles were provided: (1) HBLB—head-out half-body low bathing of 38 °C up to the navel (20 min); (2) HOMB—head-out mist bathing of 42 °C and HBLB of 38 °C (20 min); and (3) HOMBFF—HOMB with FF (20 min). HOMB raised the core temperature gradually. HOMBFF suppressed the core temperature rise in a similar fashion to HOMB. Increases in blood pressure and heart rate usually observed in Japanese traditional-style bathing were less marked in HOMBs with no significant difference with and without FF. The greatest body weight loss was observed after Japanese traditional-style bathing, with only one-third of this amount lost after mist bathing, and one-sixth after HBLB. HOMB increased thermal sensation, and FF also enhanced post-bathing invigoration. We conclude that HOMB reduces the risks of Japanese traditional style bathing by mitigating marked changes in the core temperature and hemodynamics, and FF provides thermal comfort and invigoration.
KENTUCKY STRAIGHT PIPES REPORT, DECEMBER 2002
The poor sanitary conditions and water pollution problems EPA observed in the Kentucky counties of Harlan, Martin, Bath, and Montgomery were of the highest concern. The widespread scale of both the straight pipe issues as well as package plant wastewater problems present an envir...
Distillation of Bell states in open systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isasi, E.; Mundarain, D.
2010-04-15
In this work we show that the distillation protocol proposed by P. Chen et al. [Phys. Rev. A 54, 3824 (1996)] allows one to distill Bell states at any time for a system evolving in vacuum and prepared in an initial singlet. It is also shown that the same protocol, applied in nonzero temperature thermal baths, yields a considerable recovering of entanglement.
Entanglement preservation by continuous distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundarain, D.; Orszag, M.
2009-05-15
We study the two-qubit entanglement preservation for a system in the presence of independent thermal baths. We use a combination of filtering operations and distillation protocols as a series of frequent measurements on the system. It is shown that a small fraction of the total amount of available copies of the system preserves or even improves its initial entanglement during the evolution.
Diversity and Complexity: Becoming a Teacher in England in 2015-2016
ERIC Educational Resources Information Center
Whiting, Caroline; Whitty, Geoff; Menter, Ian; Black, Pat; Hordern, Jim; Parfitt, Anne; Reynolds, Kate; Sorensen, Nick
2018-01-01
This paper is based on a profile of Initial Teacher Training (ITT) provision in England, which was developed as part of a wider research programme on Diversity in Teacher Education (DiTE) based at Bath Spa University. It provides a new topography of routes to qualified teacher status (QTS) in England for the academic year 2015-2016, along similar…
Northwest Manufacturing Initiative
2013-03-26
Testing of Metallic Materials] specifications. For high temperature tests, a heated water bath was use while for low temperature testing down to...Weld metal and heat affected zones were evaluated using Charpy and E399 fracture toughness methods. The influence of temperature , loading rate, CVN...determine the influence of fracture test methods and welding procedures on toughness. Room temperature E399 tests, (CTS) were carried out under
NASA Astrophysics Data System (ADS)
Pierre, Sadrach; Duke, Jessica R.; Hele, Timothy J. H.; Ananth, Nandini
2017-12-01
We investigate the mechanisms of condensed phase proton-coupled electron transfer (PCET) using Mapping-Variable Ring Polymer Molecular Dynamics (MV-RPMD), a recently developed method that employs an ensemble of classical trajectories to simulate nonadiabatic excited state dynamics. Here, we construct a series of system-bath model Hamiltonians for the PCET, where four localized electron-proton states are coupled to a thermal bath via a single solvent mode, and we employ MV-RPMD to simulate state population dynamics. Specifically, for each model, we identify the dominant PCET mechanism, and by comparing against rate theory calculations, we verify that our simulations correctly distinguish between concerted PCET, where the electron and proton transfer together, and sequential PCET, where either the electron or the proton transfers first. This work represents a first application of MV-RPMD to multi-level condensed phase systems; we introduce a modified MV-RPMD expression that is derived using a symmetric rather than asymmetric Trotter discretization scheme and an initialization protocol that uses a recently derived population estimator to constrain trajectories to a dividing surface. We also demonstrate that, as expected, the PCET mechanisms predicted by our simulations are robust to an arbitrary choice of the initial dividing surface.
[Turpentine white emulsion baths in the rehabilation in patients with sexual dysfunctions].
Karpukhin, I V; Li, A A; Gusev, M E
2000-01-01
100 patients with sexual dysfunction (SD) and 20 SD patients took turpentine white emulsion baths and sodium chloride baths, respectively. The turpentine baths were given with step-by-step rise in turpentine concentration from 20 to 50 ml per 200 l of water, temperature 36-37 degrees C, duration of the procedure 10-15 min. The course consisted of 10-12 procedures which were conducted daily or each other day. The turpentine baths were more effective than sodium chloride baths (85 vs 50%, respectively).
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald
2012-01-01
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480
Linear-algebraic bath transformation for simulating complex open quantum systems
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; ...
2014-12-02
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallelmore » chains. Furthermore, the transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.« less
Emergent transport in a many-body open system driven by interacting quantum baths
NASA Astrophysics Data System (ADS)
Reisons, Juris; Mascarenhas, Eduardo; Savona, Vincenzo
2017-10-01
We analyze an open many-body system that is strongly coupled at its boundaries to interacting quantum baths. We show that the two-body interactions inside the baths induce emergent phenomena in the spin transport. The system and baths are modeled as independent spin chains resulting in a global nonhomogeneous X X Z model. The evolution of the system-bath state is simulated using matrix-product-states methods. We present two phase transitions induced by bath interactions. For weak bath interactions we observe ballistic and insulating phases. However, for strong bath interactions a diffusive phase emerges with a distinct power-law decay of the time-dependent spin current Q ∝t-α . Furthermore, we investigate long-lasting current oscillations arising from the non-Markovian dynamics in the homogeneous case and find a sharp change in their frequency scaling coinciding with the triple point of the phase diagram.
Robinson, J.W.
1958-08-26
A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.
Heat-bath algorithmic cooling with correlated qubit-environment interactions
NASA Astrophysics Data System (ADS)
Rodríguez-Briones, Nayeli A.; Li, Jun; Peng, Xinhua; Mor, Tal; Weinstein, Yossi; Laflamme, Raymond
2017-11-01
Cooling techniques are essential to understand fundamental thermodynamic questions of the low-energy states of physical systems, furthermore they are at the core of practical applications of quantum information science. In quantum computing, this controlled preparation of highly pure quantum states is required from the state initialization of most quantum algorithms to a reliable supply of ancilla qubits that satisfy the fault-tolerance threshold for quantum error correction. Heat-bath algorithmic cooling has been shown to purify qubits by controlled redistribution of entropy and multiple contact with a bath, not only for ensemble implementations but also for technologies with strong but imperfect measurements. In this paper, we show that correlated relaxation processes between the system and environment during rethermalization when we reset hot ancilla qubits, can be exploited to enhance purification. We show that a long standing upper bound on the limits of algorithmic cooling Schulman et al (2005 Phys. Rev. Lett. 94, 120501) can be broken by exploiting these correlations. We introduce a new tool for cooling algorithms, which we call ‘state-reset’, obtained when the coupling to the environment is generalized from individual-qubits relaxation to correlated-qubit relaxation. Furthermore, we present explicit improved cooling algorithms which lead to an increase of purity beyond all the previous work, and relate our results to the Nuclear Overhauser Effect.
Preparation of cuxinygazsen precursor films and powders by electroless deposition
Bhattacharya, Raghu N.; Batchelor, Wendi Kay; Wiesner, Holm; Ramanathan, Kannan; Noufi, Rommel
1999-01-01
A method for electroless deposition of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) precursor films and powders onto a metallic substrate comprising: preparing an aqueous bath solution of compounds selected from the group consisting of: I) a copper compound, a selenium compound, an indium compound and gallium compound; II) a copper compound, a selenium compound and an indium compound; III) a selenium compound, and indium compound and a gallium compound; IV) a selenium compound and a indium compound; and V) a copper compound and selenium compound; each compound being present in sufficient quantity to react with each other to produce Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3); adjusting the pH of the aqueous bath solution to an acidic value by the addition of a dilute acid; and initiating an electroless reaction with an oxidizing counterelectrode for a sufficient time to cause a deposit of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) from the aqueous bath solution onto a metallic substrate.
Two-level system in spin baths: Non-adiabatic dynamics and heat transport
NASA Astrophysics Data System (ADS)
Segal, Dvira
2014-04-01
We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.
NASA Astrophysics Data System (ADS)
Fong, Chee Sheng
2015-10-01
The cosmic matter-antimatter asymmetry can be generated through baryon number conserving decays of heavy particles that produce asymmetries in the two final states that carry equal and opposite baryon number in which one of them couples directly or indirectly to electroweak sphalerons. The final state that participates in electroweak sphalerons will have its baryon asymmetry partly reprocessed to a lepton asymmetry while the other remains chemically decoupled from the thermal bath or cloistered with its baryon content frozen. The key condition for this mechanism to work is for the decoupled particles to remain cloistered until after electroweak sphalerons freeze out and then the subsequent decays of the particles will inject an unbalanced baryon asymmetry in the thermal bath giving rise to a net nonzero baryon asymmetry. Such a condition implies weakly coupled particles and if produced in a collider could give signatures of long-lived (on a collider timescale) particles. We discuss such a scenario with a type-I seesaw model extended by a new colored scalar.
Age-dependent MDPV-induced taste aversions and thermoregulation in adolescent and adult rats.
Merluzzi, Andrew P; Hurwitz, Zachary E; Briscione, Maria A; Cobuzzi, Jennifer L; Wetzell, Bradley; Rice, Kenner C; Riley, Anthony L
2014-07-01
Adolescent rats are more sensitive to the rewarding and less sensitive to the aversive properties of various drugs of abuse than their adult counterparts. Given a nationwide increase in use of "bath salts," the present experiment employed the conditioned taste aversion procedure to assess the aversive effects of 3,4-methylenedioxypyrovalerone (MDPV; 0, 1.0, 1.8, or 3.2 mg/kg), a common constituent in "bath salts," in adult and adolescent rats. As similar drugs induce thermoregulatory changes in rats, temperature was recorded following MDPV administration to assess if thermoregulatory changes were related to taste aversion conditioning. Both age groups acquired taste aversions, although these aversions were weaker and developed at a slower rate in the adolescent subjects. Adolescents increased and adults decreased body temperature following MDPV administration with no correlation to aversions. The relative insensitivity of adolescents to the aversive effects of MDPV suggests that MDPV may confer an increased risk in this population. © 2013 Wiley Periodicals, Inc.
Molten salt bath circulation design for an electrolytic cell
Dawless, Robert K.; LaCamera, Alfred F.; Troup, R. Lee; Ray, Siba P.; Hosler, Robert B.
1999-01-01
An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Taylor, Mark; Dorreen, Mark
2018-02-01
In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.
Quantum Otto engine using a single ion and a single thermal bath
NASA Astrophysics Data System (ADS)
Biswas, Asoka; Chand, Suman
2016-05-01
Quantum heat engines employ a quantum system as the working fluid, that gives rise to large work efficiency, beyond the limit for classical heat engines. Existing proposals for implementing quantum heat engines require that the system interacts with the hot bath and the cold bath (both modelled as a classical system) in an alternative fashion and therefore assumes ability to switch off the interaction with the bath during a certain stage of the heat-cycle. However, it is not possible to decouple a quantum system from its always-on interaction with the bath without use of complex pulse sequences. It is also hard to identify two different baths at two different temperatures in quantum domain, that sequentially interact with the system. Here, we show how to implement a quantum Otto engine without requiring to decouple the bath in a sequential manner. This is done by considering a single thermal bath, coupled to a single trapped ion. The electronic degree of freedom of the ion is chosen as a two-level working fluid while the vibrational degree of freedom plays the role of the cold bath. Measuring the electronic state mimics the release of heat into the cold bath. Thus, our model is fully quantum and exhibits very large work efficiency, asymptotically close to unity.
Helander, Anders; Beck, Olof; Hägerkvist, Robert; Hultén, Peter
2013-08-01
The study aimed to collect information concerning the increasing use of new psychoactive substances, commonly sold through online shops as 'Internet drugs' or 'legal highs', or in terms of masked products such as 'bath salts' and 'plant food'. The Karolinska Institutet and Karolinska University Laboratory and the Swedish Poisons Information Centre have initiated a project called 'STRIDA' aiming to monitor the occurrence and trends of new psychoactive substances in Sweden, and collect information about their clinical symptoms, toxicity and associated health risks. A liquid chromatographic-tandem mass spectrometric (LC-MS/MS) multi-component method has been developed, currently allowing for the determination of > 80 novel psychoactive compounds or metabolites thereof. This study focused mainly on the particular drug substances identified and the population demographics of the initial STRIDA cases. In urine and/or blood samples obtained from 103 consecutive cases of admitted or suspected recreational drug intoxications in mostly young subjects (78% were ≤ 25 years, and 81% were males) presenting at emergency departments all over the country, psychoactive substances were detected in 82%. The substances comprised synthetic cannabinoids ('Spice'; JWH analogues), substituted cathinones ('bath salts'; e.g. butylone, MDPV and methylone) and tryptamines (4-HO-MET), plant-based substances (mitragynine and psilocin), as well as conventional drugs-of-abuse. In 44% of the cases, more than one new psychoactive substance, or a mixture of new and/or conventional drugs were detected. The initial results of the STRIDA project have documented use of a broad variety of new psychoactive substances among mainly young people all over Sweden.
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath
NASA Astrophysics Data System (ADS)
Rivera-Rivera, Luis A.; Wagner, Albert F.; Sewell, Thomas D.; Thompson, Donald L.
2015-01-01
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ˜100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Rivera, Luis A.; Wagner, Albert F.; Sewell, Thomas D.
2015-01-07
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is similar to 100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit withmore » the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities. (C) 2015 AIP Publishing LLC.« less
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath.
Rivera-Rivera, Luis A; Wagner, Albert F; Sewell, Thomas D; Thompson, Donald L
2015-01-07
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Rivera, Luis A.; Sewell, Thomas D.; Thompson, Donald L.
2015-01-07
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatzmore » function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane “simultaneously” colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.« less
NASA Astrophysics Data System (ADS)
Ghadi, Aliakbar; Saghafian, Hassan; Soltanieh, Mansour; Yang, Zhi-gang
2017-12-01
The diffusion mechanism of carbide-forming elements from a molten salt bath to a substrate surface was studied in this research, with particular focus on the processes occurring in the molten bath at the time of coating. Metal, oxide, and metal-oxide baths were investigated, and the coating process was performed on H13 steel substrates. Scanning electron microscopy and electron-probe microanalysis were used to study the coated samples and the quenched salt bath. The thickness of the carbide coating layer was 6.5 ± 0.5, 5.2 ± 0.5, or 5.7 ± 0.5 μm depending on whether it was deposited in a metal, oxide, or metal-oxide bath, respectively. The phase distribution of vanadium-rich regions was 63%, 57%, and 74% of the total coating deposited in metal, oxide, and metal-oxide baths, respectively. The results obtained using the metal bath indicated that undissolved suspended metal particles deposited onto the substrate surface. Then, carbon subsequently diffused to the substrate surface and reacted with the metal particles to form the carbides. In the oxide bath, oxide powders dissolved in the bath with or without binding to the oxidative structure (Na2O) of borax; they were then reduced by aluminum and converted into metal particles. We concluded that, in the metal and oxide baths, the deposition of metal particles onto the sample surface is an important step in the formation of the coating.
Hydrogen bonds in concreto and in computro
NASA Astrophysics Data System (ADS)
Stouten, Pieter F. W.; Kroon, Jan
1988-07-01
Molecular dynamics simulations of liquid water and liquid methanol have been carried out. For both liquids an effective pair potential was used. The models were fitted to the heat of vaporization, pressure and various radial distribution functions resulting from diffraction experiments on liquids. In both simulations 216 molecules were put in a cubic periodical ☐. The system was loosely coupled to a temperature bath and to a pressure bath. Following an initial equilibration period relevant data were sampled during 15 ps. The distributions of oxygen—oxygen distances in hydrogen bonds obtained from the two simulations are essentially the same. The distribution obtained from crystal data is somewhat different: the maximum has about the same position, but the curve is much narrower, which can be expected merely from the fact that diffraction experiments only supply average atomic positions and hence average interatomic distances. When thermal motion is taken into account a closer likeness is observed.
Dynamics of the one-dimensional Anderson insulator coupled to various bosonic baths
NASA Astrophysics Data System (ADS)
Bonča, Janez; Trugman, Stuart A.; Mierzejewski, Marcin
2018-05-01
We study a particle which propagates in a one-dimensional strong random potential and is coupled to a bosonic bath. We independently test various properties of bosons (hopping term, hard-core effects, and generic boson-boson interaction) and show that bosonic itineracy is the essential ingredient governing the dynamics of the particle. Coupling of the particle to itinerant phonons or hard-core bosons alike leads to delocalization of the particle by virtue of a subdiffusive (or diffusive) spread from the initially localized state. Delocalization remains in effect even when the boson frequency and the bandwidth of itinerant bosons remain an order of magnitude smaller than the magnitude of the random potential. When the particle is coupled to localized bosons, its spread remains logarithmic or even sublogarithmic. The latter result together with the survival probability shows that the particle remains localized despite being coupled to bosons.
NASA Astrophysics Data System (ADS)
Zhang, Bo; Liu, Jienan; Yang, Yanfeng; Liu, Luming; Liu, Jiechao; Luo, Lijian; Ma, Yubao; Hong, Xin
Reduction kinetics of stainless steel slag in iron bath smelting reduction was studied at the temperature of 1500°C ˜ 1650°C. It was concluded that the reduction process consisted of two parts. That is to say smelting reduction was controlled by stainless steel slag melting initially and by interface reaction later. In order to increase smelting reaction rate, the melting point of slag should be decreased at the first stage and adjust the liquidity of slag at later stage. Smelting reaction rate will be accelerated by means of optimize the slag content. The optimal reduction result that all most all of the chromium in slag been recovered was obtained in temperature was 1500°C, basicity of slag was 1.0˜1.2, the value of Al2O3+MgO was 25%.
Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine
NASA Astrophysics Data System (ADS)
Xu, Y. Y.; Chen, B.; Liu, J.
2018-02-01
Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.
Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
Xu, Y Y; Chen, B; Liu, J
2018-02-01
Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model-a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.
Rahnama'i, Mohammad S; van Koeveringe, Gommert A; van Kerrebroeck, Philip E V; de Wachter, Stefan G G
2013-02-07
To investigate the effect of prostaglandin depletion by means of COX-inhibition on cholinergic enhanced spontaneous contractions. The urethra and bladder of 9 male guinea pigs (weight 270-300 g) were removed and placed in an organ bath with Krebs' solution. A catheter was passed through the urethra through which the intravesical pressure was measured. The muscarinic agonist arecaidine, the non-selective COX inhibitor indomethacin, and PGE2 were subsequently added to the organ bath. The initial average frequency and amplitude of spontaneous contractions in the first 2 minutes after arecaidine application were labelled F(ini) and P(ini), respectively. The steady state frequency (F(steady)) and amplitude (P(steady)) were defined as the average frequency and amplitude during the 5 minutes before the next wash out. Application of 1 μM PGE2 increased the amplitude of spontaneous contractions without affecting frequency. 10 μM of indomethacin reduced amplitude but not frequency.The addition of indomethacin did not alter F(ini) after the first application (p = 0.7665). However, after the second wash, F(ini) was decreased (p = 0.0005). F(steady), P(steady) and P(ini) were not significantly different in any of the conditions. These effects of indomethacin were reversible by PGE2 addition.. Blocking PG synthesis decreased the cholinergically stimulated autonomous contractions in the isolated bladder. This suggests that PG could modify normal cholinergically evoked response. A combination of drugs inhibiting muscarinic receptors and PG function or production can then become an interesting focus of research on a treatment for overactive bladder syndrome.
ERIC Educational Resources Information Center
Exceptional Parent, 1991
1991-01-01
Problems in bathing a child who is physically disabled are described, and products that can assist are reviewed, such as reclining bath seats and bath lifts. A directory of bath and incontinence aids lists approximately 80 companies with codes for the types of products they make available. (JDD)
INVESTIGATION INTO THE REJUVENATION OF SPENT ELECTROLESS NICKEL BATHS BY ELECTRODIALYSIS
Electroless nickel plating generates substantially more waste than other metal-finishing processes due to the inherent limited bath life and the need for regular bath disposal. Electrodialysis can be used to generate electroless nickel baths, but poor membrane permselectivity, l...
Apollo(R) Thin Film Process Development: Final Technical Report, April 1998 - April 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, D.W.
2002-10-01
BP Solar first started investigative work on CdTe photovoltaics in 1986. The module product name chosen for the CdTe devices is Apollo. The deposition method chosen was electrochemical deposition due to its simplicity and good control of stoichiometric composition. The window layer used is CdS, produced from a chemical-bath deposition. Initial work focused on increasing photovoltaic cell size from a few mm2 to 900 cm2. At BP Solar's Fairfield plant, work is focused on increasing semiconductor deposition to 1 m2. The primary objective of this subcontract is to establish the conditions required for the efficient plating of CdS/CdTe on large-area,more » transparent conducting tin-oxide-coated glass superstrate. The initial phase concentrates on superstrate sizes up to 0.55 m2. Later phases will include work on 0.94 m2 superstrates. The tasks in this subcontract have been split into four main categories: (1) CdS and CdTe film studies; (2) Enhanced laser processing; (3) Outdoor testing program for the Apollo module; and (4) Production waste abatement and closed loop study.« less
The effects of footbath on sleep among the older adults in nursing home: A quasi-experimental study.
Kim, Hyun-Joo; Lee, Yaelim; Sohng, Kyeong-Yae
2016-06-01
To examine the long-term effects of foot-bathing therapy, using different water temperatures, on the sleep quality of older adults living in nursing homes. A quasi-experimental study design with non-equivalent control group. Thirty participants were recruited from a nursing home in Gyeong-gi Province, South Korea. The participants were randomly assigned to experimental, placebo, and control groups. The foot-bathing therapy was performed for 30min daily for four weeks. Water at 40°C was used for the experimental group, while water at 36.5°C was used for the placebo group. The control group did not receive any intervention. The participants' sleep patterns (total sleep amount, sleep efficiency, and sleep latency) and sleep-disturbed behaviors were compared based on group, using actigraphy and a sleep disorder inventory. The total amount of sleep and sleep efficiency were significantly different for the experimental group, especially those with poor sleep quality. There were no differences in sleep latency or sleep-disturbed behaviors among the groups. The long-term effect of the therapy decreased in the third week of the therapy. Daily, 30-min foot-bathing therapy sessions with water at 40°C were effective in improving sleep quality for older adults. The therapy was more effective for participants with poor sleep quality at baseline assessment than those with relatively good sleep quality. The long-term effects of foot-bathing therapy decreased three weeks after initiation; therefore, it might be desirable to deliver the therapy for two weeks, pause it for a week, and then resume it. Copyright © 2016 Elsevier Ltd. All rights reserved.
28 CFR 551.7 - Bathing and clothing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Bathing and clothing. 551.7 Section 551.7 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MISCELLANEOUS Grooming § 551.7 Bathing and clothing. Each inmate must observe the standards concerning bathing and...
28 CFR 551.7 - Bathing and clothing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Bathing and clothing. 551.7 Section 551.7 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MISCELLANEOUS Grooming § 551.7 Bathing and clothing. Each inmate must observe the standards concerning bathing and...
The Association Between Bathing Habits and Severity of Atopic Dermatitis in Children.
Koutroulis, Ioannis; Pyle, Tia; Kopylov, David; Little, Anthony; Gaughan, John; Kratimenos, Panagiotis
2016-02-01
Atopic dermatitis is an inflammatory skin disease that frequently affects children. The current recommendations on management using lifestyle modification are highly variable, leading to confusion and uncertainty among patients. To determine current bathing behaviors and the subsequent impact on disease severity. This was an observational cross-sectional study conducted at an urban pediatric emergency department. Parents were asked to fill out a questionnaire concerning the patient's bathing habits. The results were correlated with the atopic dermatitis severity determined by the SCORAD (SCORing Atopic Dermatitis) tool. No difference between variables was found to be significant for bathing frequency, time spent bathing, or use of moisturizers. Multivariate analysis showed that atopic dermatitis severity increased with age greater than 2 years (P = .0004) and with greater bathing duration (P = .001). Atopic dermatitis severity may be associated with a longer duration of bathing. The frequency of bathing does not appear to affect atopic dermatitis severity. © The Author(s) 2015.
Investigation of coercivity for electroplated Fe-Ni thick films
NASA Astrophysics Data System (ADS)
Yanai, T.; Eguchi, K.; Koda, K.; Kaji, J.; Aramaki, H.; Takashima, K.; Nakano, M.; Fukunaga, H.
2018-05-01
We have already reported Fe-Ni firms with good soft magnetic properties prepared by using an electroplating method. In our previous studies, we prepared the Fe-Ni films from citric-acid-based baths (CA-baths) and ammonium-chloride-based ones (AC-baths), and confirmed that the coercivity for the AC-baths was lower than that for the CA-baths. In the present study, we investigated reasons for the lower coercivity for the AC-baths to further improve the soft magnetic properties. From an observation of magnetic domains of the Fe22Ni78 films, we found that Fe22Ni78 film for AC-bath had a magnetic anisotropy in the width direction, and also found that the coercivity in the width direction was lower than the longitudinal one for the AC-bath. As an annealing for a stress relaxation in the films reduced the difference in the coercivity, we considered that the anisotropy is attributed to the magneto-elastic effect.
[Unusual and fatal type of burn injury: hot air sauna burn].
García-Tutor, E; Koljonen, V
2007-01-01
Sauna bathing is a popular recreational activity in Finland and is generally considered safe even for pregnant women and patients suffering from heart problems; but mixing alcohol with sauna bathing can be hazardous. In the normal Finnish recreational sauna the temperature is usually between 80 and 90 degrees C. A wide variety of burn injuries, in all age groups, are related to sauna bathing; scalds and contact burns account for over 85% while hot air, steam and flame burns for only 15%. Dehydration in patients under the influence of alcohol heightens the risk of hypotension which impairs skin blood circulation. This increased warming of the skin is an effect that is more marked on the outer and upper parts of the body exposed to hot air. Such patients require intensive care on admission: fluid replacement according to the Parkland formula, forced diuresis and immediate correction of acidosis and myoglobinuria. These patients have significant rhabdomyolysis on admission. The best predictor of survival is the creatine kinase level on the second post-injury day. CT scans are necessary to diagnose the underlying conditions of unconsciousness. The necrotic area extends to subcutaneous fat tissue and even to the underlying muscles. The level of excision is typically fascial and, in some areas, layers of the muscle must be removed. Owing to the popularity of sauna bathing throughout the world, it is important to know the extent of damage in this type of injury, in order not to underestimate the severity of such lesions.
Györy, A Z; Roby, H
1977-01-01
1. With the aid of micropuncture techniques, proximal tubular transepithelial concentration differences for Na (deltaC Na) and chloride (deltaC Cl) were measured in kidney cortex slices at bathing fluid Na concentrations from 10 to 400 m-mole. kg-1. Tissue content of water, Na and K was also measured in such slices. Under steady-state conditions of zero net flux of NaCl and water, deltaC Na represents the sum of active Na transport, factored by the tubular permeability coefficient added to a component of flux due to electrical forces. 2. The relation between bathing fluid Na concentraton and deltaC Na appeared sigmoid in form suggesting an allosteric mechanism for the transport step. 3. Transtubular potential difference, calculated from transepithelial Cl distribution ratios, did not appear constant at the various bathing fluid Na concentrations. Correcting for the effect of these potential differences on the value of each deltaC Na did not convert the sigmoid transport curve to a hyperbolic one, confirming the suggested allosteric nature of the active Na transport step. 4. Intracellular Na content varied linearly with bathing fluid Na concentrations implying free entry of this cation into the cell. This also suggests that the sigmoid transport curve is related to the properties of the active Na transport pump. PMID:856986
Laser Initiated Ignition of Liquid Propellant
1991-01-31
containers held in a water bath of constant temperature 70*C. A larger vessel containing approximately 2ml of propellant was also heated in each experiment and...controller. A stirrer and forced water circulation ensured that all samples were kept at the same temperature. The water wai first heated to the final 5... electrolysed samples. 3 .. .. ....... ......................... volume of 10 ....... . 5 ....... I • . ... .. . .... .. ...... .. . . .. . . ... . .61.8 2 22i
Molten salt bath circulation design for an electrolytic cell
Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.
1999-08-17
An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.
The Effect of Fabric Position to the Distribution of Acoustic Pressure Field in Ultrasonic Bath
NASA Astrophysics Data System (ADS)
Gürses, B. O.; Özdemir, A. O.; Tonay, Ö.; Şener, M.; Perinçek, S.
2017-10-01
Nowadays, the use of ultrasonic energy in textile wet processes at industrial-scale is limited. It is largely due to the lack of understanding about design, operational and performance characteristics of the ultrasonic bath, suitable for textile treatments. In the context of this study, the effect of fabric position, as one of the design parameter, to the distribution of acoustic pressure field in ultrasonic bath was investigated. The ultrasonic bath in the size 20×30 cm2 with one transducer at frequency 40 kHz was used in experiments. The cotton fabric with 1 mm thickness was moved along vertical and horizontal directions of the ultrasonic bath. The acoustic field and cavitation volume density in the bath is analyzed by COMSOL Multiphysic. The cavitation volume density is calculated by comparing the pressure points in the bath with cavitation threshold pressure. Consequently, it was found that the position of the textile material in the ultrasonic bath is one of the most important factors to achieve the uniform and maximum acoustic cavitation field. So, it should be taken into consideration during the design of industrial-scale ultrasonic bath used in textile wet processes.
40 CFR 63.341 - Definitions and nomenclature.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control device or a chemical fume suppressant, that is used to reduce chromium emissions from chromium... workpiece. Bath component means the trade or brand name of each component(s) in trivalent chromium plating baths. For trivalent chromium baths, the bath composition is proprietary in most cases. Therefore, the...
40 CFR 63.341 - Definitions and nomenclature.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control device or a chemical fume suppressant, that is used to reduce chromium emissions from chromium... workpiece. Bath component means the trade or brand name of each component(s) in trivalent chromium plating baths. For trivalent chromium baths, the bath composition is proprietary in most cases. Therefore, the...
36 CFR 21.5 - Therapeutic bathing requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Therapeutic bathing requirements. 21.5 Section 21.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths...
36 CFR 21.5 - Therapeutic bathing requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Therapeutic bathing requirements. 21.5 Section 21.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths...
36 CFR 21.5 - Therapeutic bathing requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Therapeutic bathing requirements. 21.5 Section 21.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths...
36 CFR 21.5 - Therapeutic bathing requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Therapeutic bathing requirements. 21.5 Section 21.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths...
36 CFR 21.5 - Therapeutic bathing requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Therapeutic bathing requirements. 21.5 Section 21.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths...
Xu, Li; Wu, Lin; Liu, Tingting; Xing, Wenrong; Cao, Xinsheng; Zhang, Shu; Su, Zongyi
2017-01-01
[Purpose] The aim of our study was to explore the changes in the blood of servicemen in sub-health conditions during a 21-day balneotherapy program. [Subjects and Methods] For this study, 129 servicemen in sub-health condition were recruited. The subjects were randomly divided into either the balneotherapy group (70) or the control group (59). Subjects in the balneotherapy group received whole-body immersion bath therapy in thermomineral water (30 min daily) for 21 days. Their blood samples were examined 1 day before and after balneotherapy. The parameters studied included mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), white blood cell (WBC), lactic acid (LAC), alanine aminotransferase (ALT), glucose (GLU), and triglycerides (TG) levels. [Results] After 21 days of balneotherapy, MCH levels and MCHC increased significantly and WBC counts increased significantly. LAC levels decreased significantly. ALT, GLU, and TG levels decreased significantly. In the control group, there were no statistical differences before and after tap water baths following the same procedure. [Conclusion] A 21-day balneotherapy program significantly improved blood cell counts and blood biochemical indexes and reduced ponogen levels in servicemen in sub-health condition. PMID:28931990
NASA Astrophysics Data System (ADS)
Pranesh Rao, K. M.; Narayan Prabhu, K.
2017-10-01
Martempering is an industrial heat treatment process that requires a quench bath that can operate without undergoing degradation in the temperature range of 423 K to 873 K (150 °C to 600 °C). The quench bath is expected to cool the steel part from the austenizing temperature to quench bath temperature rapidly and uniformly. Molten eutectic NaNO3-KNO3 mixture has been widely used in industry to martemper steel parts. In the present work, the effect of quench bath temperature on the cooling performance of a molten eutectic NaNO3-KNO3 mixture has been studied. An Inconel ASTM D-6200 probe was heated to 1133 K (860 °C) and subsequently quenched in the quench bath maintained at different temperatures. Spatially dependent transient heat flux at the metal-quenchant interface for each bath temperature was calculated using inverse heat conduction technique. Heat transfer occurred only in two stages, namely, nucleate boiling and convective cooling. The mean peak heat flux ( q max) decreased with increase in quench bath temperature, whereas the mean surface temperature corresponding to q max and mean surface temperature at the start of convective cooling stage increased with increase in quench bath temperature. The variation in normalized cooling parameter t 85 along the length of the probe increased with increase in quench bath temperature.
Fujimoto, Sawako; Iwawaki, Yoko; Takishita, Yukie; Yamamoto, Yoko; Murota, Masako; Yoshioka, Saori; Hayano, Azusa; Hosokawa, Toyoshi; Yamanaka, Ryuya
2017-11-01
In palliative care hospitals in Japan, mechanical bathing is conducted to maintain cleanliness. However, the physiological and psychological influence of mechanical bathing on patients has not been sufficiently studied. The objective of this study was to assess, using physiological and psychological indices, the effects of mechanical bathing care for patients in the terminal stage of cancer. Mechanical bathing was performed using a Marine Court SB7000 in a supine or semi-seated position. The heart rate variability analysis method was used to measure autonomic nervous system function. The patients' state of anxiety was assessed using the State-Trait Anxiety Inventory (STAI), a psychological index, and patients' verbal responses were also collected after mechanical bathing. Twenty-four patients were enrolled in this study. Their sympathetic and parasympathetic nervous activity did not differ before and after bathing. A significant difference was found between pre- and post-bathing anxiety, as evaluated by STAI (P < 0.0001). In the patient's verbal responses that was collected, the most frequently mentioned descriptors were 'comfortable' and 'relaxed'. Patients were more relaxed after mechanical bathing according to STAI evaluation and their verbal responses. The findings suggest that the method of bathing used in this study is safe and pain-relieving for terminal stage cancer patients. It is thus possible to provide safe and comfortable care for terminal stage cancer patients using mechanical baths. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Bathing facilities; change rooms; sanitary...
30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Bathing facilities; change rooms; sanitary...
30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Bathing facilities; change rooms; sanitary...
30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bathing facilities; change rooms; sanitary...
Racinais, Sébastien; Blonc, Stephen; Oksa, Juha; Hue, Olivier
2009-01-01
Seven male subjects volunteered to participate in an investigation of whether the diurnal increase in core temperature influences the effects of pre-cooling or passive warm-up on muscular power. Morning (07:00-09:00h) and afternoon (17:00-19:00h) evaluation of maximal power output during a cycling sprint was performed on different days in a control condition (room at 21.8 degrees C, 69% rh), after 30min of pre-cooling in a cold bath (16 degrees C), or after 30min of passive warm-up in a hot bath (38 degrees C). Despite an equivalent increase from morning to afternoon in core temperature in all conditions (+0.4 degrees C, P<0.05), power output displayed a diurnal increase in control condition only. A local cooling or heating of the leg in a neutral environment blunted the diurnal variation in muscular power. Because pre-cooling decreases muscle power, force and velocity irrespective of time-of-day, athletes should strictly avoid any cooling before a sprint exercise. In summary, diurnal variation in muscle power output seems to be more influenced by muscle rather than core temperature.
Davydova, O B; Turova, E A; Grishina, E V
1998-01-01
Patients suffering from insulin-dependent or non-insulin-dependent diabetes mellitus with micro- and macroangiopathy took sodium chloride baths of diverse concentration (30 and 50 g/l). A control group consisted of patients who had taken "neutral" baths. The response to sodium chloride baths was registered in carbohydrate and lipid metabolism, microcirculation, hemorheology, lower limbs circulation, exercise tolerance. Baths with sodium chloride concentrations 50 g/l have advantages, especially in patients with insulin-dependent diabetes mellitus.
Non-Markovian dynamics of fermionic and bosonic systems coupled to several heat baths
NASA Astrophysics Data System (ADS)
Hovhannisyan, A. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.
2018-03-01
Employing the fermionic and bosonic Hamiltonians for the collective oscillator linearly FC-coupled with several heat baths, the analytical expressions for the collective occupation number are derived within the non-Markovian quantum Langevin approach. The master equations for the occupation number of collective subsystem are derived and discussed. In the case of Ohmic dissipation with Lorenzian cutoffs, the possibility of reduction of the system with several heat baths to the system with one heat bath is analytically demonstrated. For the fermionic and bosonic systems, a comparative analysis is performed between the collective subsystem coupled to two heat baths and the reference case of the subsystem coupled to one bath.
Raulji, Chittalsinh M; Clay, Kristin; Velasco, Cruz; Yu, Lolie C
2015-01-01
Infections remain a serious complication in pediatric oncology patients. To determine if daily bathing with Chlorhexidine gluconate can decrease the rate of nosocomial infection in pediatric oncology patients, we reviewed rates of infections in pediatric oncology patients over a 14-month span. Intervention group received daily bath with Chlorhexidine, while the control group did not receive daily bath. The results showed that daily bath with antiseptic chlorhexidine as daily prophylactic antiseptic topical wash leads to decreased infection density amongst the pediatric oncology patients, especially in patients older than 12 years of age. Furthermore, daily chlorhexidine bathing significantly reduced the rate of hospital acquired infection in patients older than 12 years of age. The findings of this study suggest that daily bathing with chlorhexidine may be an effective measure of reducing nosocomial infection in pediatric oncology patients.
Poberskaia, V A; Dement'eva, O I
1997-01-01
Children exposed to low-dose radiation are often treated in sanatoria with mineral baths. Of the latter balneoprocedures widely practiced are sodium chloride (SC) baths with mineralization 20-30 g/l. Mineralization 40 g/l is less frequently used. To specify changes in the function of cardiovascular system induced by SC baths of different concentration (40 versus 20 g/l) 131 senior schoolchildren exposed to low-dose radiation or other environmental pollutants were examined both after a single balneological procedure and after the course treatment (maximum 10 procedures). The baths lasted 8-15 min at water temperature 36-38 OC in a day intervals. The response was assessed by ECG, tetrapolar chest rheography, bicycle exercise. All the children had cardiovascular disorders of non-rheumatic origin. Therapeutic effect was more pronounced after baths with SC concentration 40 g/l. These baths are recommended for improvement of vegetative regulation of the heart, correction of hemodynamic defects. Baths with mineralization 20 g/l are better in upgrading function of the autonomic nervous system.
Kobayashi, Michiko; Oana, Kozue; Kawakami, Yoshiyuki
2014-01-01
Bath water samples were collected from 116 hot springs, 197 public bathhouses, and 38 24-hour home baths in Nagano Prefecture, Japan, during the period of April 2009 to November 2011, for determining the presence and extent of contamination with Legionella and nontuberculous mycobacteria. Cultures positive for Legionella were observed in 123 of the 3,314 bath water samples examined. The distribution and abundance of Legionella and/or combined contamination with Legionella and nontuberculous mycobacteria were investigated to clarify the contamination levels. The abundance of Legionella was demonstrated to correlate considerably with the levels of combined contamination with Legionella and nontuberculous mycobacteria. Legionella spp. were obtained from 61% of the water samples from 24-hour home baths, but only from 3% of the samples from public bathhouses and hot springs. This is despite the fact that a few outbreaks of Legionnaires' disease in Nagano Prefecture as well as other regions of Japan have been traced to bath water contamination. The comparatively higher rate of contamination of the 24-hour home baths is a matter of concern. It is therefore advisable to routinely implement good maintenance of the water basins, particularly of the 24-hour home baths.
NASA Astrophysics Data System (ADS)
Avci, Huseyin
The concept of production of new families of high performance polymers and engineering fibers has been reported many times in the technical literature. Such fibers have various end uses in industrial applications and exhibit the enhanced potential in the challenging areas such as ballistic, automotive, aerospace, bullet-proof vests, energy, and electronics. Since the first commercial synthesis of high polymers by Carothers and Hill, filament manufacturers have looked for ways to increase strength and fibers dimensional stability, thermal degradation resistance, etc., even at extreme conditions. Therefore, studies on the fine structure development and its relation with production conditions during the wet, dry, and melt spinning processes have received much attention by researchers to describe in detail the fundamental aspects of the fiber formation. The production of ultra-high performance fibers at relatively high throughputs by a simple method using fiber-forming polymers via developing an ecologically friendly isothermal bath (ECOB) is the first aim of this study. In this case, polypropylene (PP) was chosen as a semicrystalline thermoplastic polymer which is extensively used in industry and our daily lives. A unique, highly oriented precursor (fa = 0.60), and yet noncrystallized, undrawn fibers were obtained with superior mechanical properties. Fibrillated break, high crystalline and amorphous orientation factors of 0.95 and 0.87, respectively, demonstrate an unusual structural development after only 1.34 draw ratio for the treated fibers. The second melting peak increased 9 °C for the treated fibers, which implies a higher level of molecular ordering and thermodynamically more stable phase. After hot drawing and 1.49 draw ratio, the fibers tenacity was close to 12 g/d, the initial modulus was higher than 150 g/d, and the ultimate elongation was at a break of about 20 %. In the next phase of the research, the effects of horizontal isothermal bath (hIB)11 on the structural development and the production of ultra-high performance as-spun and drawn polypropylene (PP) filaments were investigated. Two different commercial fiber forming PP polymers were used with the melt flow rate of 4.1 and 36 g/10 min. The results demonstrate surprisingly different precursor morphologies for each type of polymer at their optimum process condition. Interestingly, the all treated fibers demonstrated the similar fiber performance having tenacity of about 7 g/d and modulus of 75 g/d for as-spun fibers. After fiber drawing with DR of 1.49, tenacity greater than 12 g/d and modulus higher than 190 g/d were observed. The mean value for the modulus after the drawing process for the high melt flow rate is about 196 g/d. The theoretical modulus of PP is 35--42 GPa17, 275-330 g/d, which demonstrates the hIB fiber's modulus performance is approaching its theoretical maximum values. A key aspect of the third section of this study was to obtain ultra-high performance poly(ethylene terephthalate) fibers (PET) by utilizing a low molecular weight polymer via hIB method. The resulted fibers showed the efficient polymer chain orientation and the highly crystalline and ordered structures. The highest tenacity of more than 8 and 10 g/d were observed for the as-spun and drawn fibers, respectively, after only 1.28 draw ratios. The significant effect of the temperature of hIB spinning system on the fibrillar structure and the precursor's formation of the as-spun fibers was demonstrated. The melting temperature increased 8.51 °C from 254.05 to 262.56 °C when untreated and treated fibers are compared. The most important contribution of this study is that all these various types of polymer precursors for crystallization with different molecular weights after the baths treatments were highly oriented, yet non-crystallized or just showed the initial stages of crystallization. By a subsequent hot drawing process with the low draw ratio (DR< 1.5), the treated fibers showed a well-developed chain orientation and highly crystallized structures with superior mechanical performance.
Soil is the origin for the presence of Naegleria fowleri in the thermal recreational waters.
Moussa, Mirna; Tissot, Océane; Guerlotté, Jérôme; De Jonckheere, Johan F; Talarmin, Antoine
2015-01-01
Naegleria fowleri is found in most geothermal baths of Guadeloupe and has been responsible for the death of a 9-year-old boy who swam in one of these baths in 2008. We wanted to determine the origin for the presence of this amoeba in the water. Water samples were taken at the origin of the geothermal sources and at the arrival in the baths. After filtration, cultures were made and the number of Naegleria present was determined using the most probable number method. Soil samples collected in the proximity of the baths were also tested for the presence of thermophilic amoebae. The species identification was obtained by PCR. During three consecutive months, no Naegleria could be found at the origin of any geothermal source tested. In contrast, N. fowleri was isolated at least once in all baths at the arrival of the water, except one. Thermophilic amoebae could be found in each soil sample, especially near the baths located at a lower altitude, but N. fowleri was only isolated near two baths, which were also the baths most often contaminated with this species. So it appears that the contamination of the water with N. fowleri occurs after emerging from the geothermal source when the water runs over the soil. Therefore, it should be possible to reduce the concentration of N. fowleri in the geothermal baths of Guadeloupe to for example less than 1 N. fowleri/10 L by installing a pipeline between the geothermal sources and the baths and by preventing flooding water from entering the baths after rainfall. By taking these measures, we were able to eliminate N. fowleri from a pool located inside a reeducation clinic.
Kanatani, Jun-Ichi; Isobe, Junko; Norimoto, Shiho; Kimata, Keiko; Mitsui, Chieko; Amemura-Maekawa, Junko; Kura, Fumiaki; Sata, Tetsutaro; Watahiki, Masanori
2017-05-01
We investigated the prevalence of Legionella spp. isolated from shower water in public bath facilities in Toyama Prefecture, Japan. In addition, we analyzed the genetic diversity among Legionella pneumophila isolates from shower water as well as the genetic relationship between isolates from shower water and from stock strains previously analyzed from sputum specimens. The isolates were characterized using serogrouping, 16S rRNA gene sequencing, and sequence-based typing. Legionella spp. were isolated from 31/91 (34.1%) samples derived from 17/37 (45.9%) bath facilities. Isolates from shower water and bath water in each public bath facility were serologically or genetically different, indicating that we need to isolate several L. pneumophila colonies from both bath and shower water to identify public bath facilities as sources of legionellosis. The 61 L. pneumophila isolates from shower water were classified into 39 sequence types (STs) (index of discrimination = 0.974), including 19 new STs. Among the 39 STs, 12 STs match clinical isolates in the European Working Group for Legionella Infections database. Notably, ST505 L. pneumophila SG 1, a strain frequently isolated from patients with legionellosis and from bath water in this area, was isolated from shower water. Pathogenic L. pneumophila strains including ST505 strain were widely distributed in shower water in public bath facilities, with genetic diversity showing several different origins. This study highlights the need to isolate several L. pneumophila colonies from both bath water and shower water to identify public bath facilities as infection sources in legionellosis cases. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
A brain slice bath for physiology and compound microscopy, with dual-sided perifusion.
Heyward, P M
2010-12-01
Contemporary in vitro brain slice studies can employ compound microscopes to identify individual neurons or their processes for physiological recording or imaging. This requires that the bath used to maintain the tissue fits within the working distances of a water-dipping objective and microscope condenser. A common means of achieving this is to maintain thin tissue slices on the glass floor of a recording bath, exposing only one surface of the tissue to oxygenated bathing medium. Emerging evidence suggests that physiology can be compromised by this approach. Flowing medium past both sides of submerged brain slices is optimal, but recording baths utilizing this principle are not readily available for use on compound microscopes. This paper describes a tissue bath designed specifically for microscopy and physiological recording, in which temperature-controlled medium flows past both sides of the slices. A particular feature of this design is the use of concentric mesh rings to support and transport the live tissue without mechanical disturbance. The design is also easily adapted for use with thin acute slices, cultured slices, and acutely dispersed or cultured cells maintained either on cover slips or placed directly on the floor of the bath. The low profile of the bath provides a low angle of approach for electrodes, and allows use of standard condensers, nosepieces and water-dipping objective lenses. If visualization of individual neurons is not required, the bath can be mounted on a simple stand and used with a dissecting microscope. Heating is integral to the bath, and any temperature controller capable of driving a resistive load can be used. The bath is robust, readily constructed and requires minimal maintenance. Full construction and operation details are given. © 2010 The Author Journal of Microscopy © 2010 The Royal Microscopical Society.
Long, Blaine C; Jutte, Lisa S; Knight, Kenneth L
2010-01-01
Thermocouples and electrothermometers are used in therapeutic modality research. Until recently, researchers assumed that these instruments were valid and reliable. To examine 3 different thermocouple types in 5 degrees C, 15 degrees C, 18.4 degrees C, 25 degrees C, and 35 degrees C water baths. Randomized controlled trial. Therapeutic modality laboratory. Eighteen thermocouple leads were inserted through the wall of a foamed polystyrene cooler. The cooler was filled with water. Six thermocouples (2 of each model) were plugged into the 6 channels of the Datalogger and 6 randomly selected channels in the 2 Iso-Thermexes. A mercury thermometer was immersed into the water and was read every 10 seconds for 4 minutes during each of 6 trials. The entire process was repeated for each of 5 water bath temperatures (5 degrees C, 15 degrees C, 18.4 degrees C, 25 degrees C, 35 degrees C). Temperature and absolute temperature differences among 3 thermocouple types (IT-21, IT-18, PT-6) and 3 electrothermometers (Datalogger, Iso-Thermex calibrated from -50 degrees C to 50 degrees C, Iso-Thermex calibrated from -20 degrees C to 80 degrees C). Validity and reliability were dependent on thermocouple type, electrothermometer, and water bath temperature (P < .001; modified Levene P < .05). Statistically, the IT-18 and PT-6 thermocouples were not reliable in each electrothermometer; however, these differences were not practically different from each other. The PT-6 thermocouples were more valid than the IT-18s, and both thermocouple types were more valid than the IT-21s, regardless of water bath temperature (P < .001). The validity and reliability of thermocouples interfaced to an electrothermometer under experimental conditions should be tested before data collection. We also recommend that investigators report the validity, the reliability, and the calculated uncertainty (validity + reliability) of their temperature measurements for therapeutic modalities research. With this information, investigators and clinicians will be better able to interpret and compare results and conclusions.
Ekanem, A P; Obiekezie, A; Kloas, W; Knopf, K
2004-03-01
The ciliate Ichthyophthirius multifiliis is among the most pathogenic parasites of fish maintained in captivity. In the present study, the effects of the crude methanolic extract of leaves of Mucuna pruriens and the petroleum-ether extract of seeds of Carica papaya against I. multifiliis were investigated under in vivo and in vitro conditions. Goldfish (Carassius auratus auratus) infected with the parasites were immersed for 72 h in baths with M. pruriens extract, and for 96 h in baths with C. papaya extract. There was a 90% reduction in numbers of I. multifiliis on fish after treatment in baths of each plant extract at 200 mg l(-1 )compared to untreated controls. Consequently, parasite-induced fish mortality was reduced significantly. A complete interruption of trophont recruitment was achieved by immersion in the M. pruriens extract. In vitro tests led to a 100% mortality of I. multifiliis in 150 mg/l M. pruriens extract, and in 200 mg/l of C. papaya extract after 6 h. Although the active constituents of the medicinal plant extracts are still unknown, we have demonstrated that they have potential for effective control of I. multifiliis.
The Medical Risks and Benefits of Sauna, Steam Bath, and Whirlpool Use.
ERIC Educational Resources Information Center
Duda, Marty
1987-01-01
Saunas, steam baths, and whirlpools--popular fixtures at health clubs--are safe means of relaxation if used properly. Ignoring the recommendations for moderate, commonsense enjoyment of these baths may expose users to health risks, including sudden death, arrhythmias, and skin infections. A guide to safe use of such baths is presented. (Author/CB)
33 CFR 165.104 - Safety Zone: Vessel Launches, Bath Iron Works, Kennebec River, Bath, Maine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION... Bath Iron Works dry dock while it is being moved to and from its moored position at the Bath Iron Works... into or movement within this zone is prohibited unless authorized by the Captain of the Port, Portland...
Effect of Fluid Flow on Zinc Electrodeposits from Acid Chloride Electrolytes. M.S. Thesis
NASA Technical Reports Server (NTRS)
Abdelmassir, A. A.
1982-01-01
Zinc was deposited potentiostatically from acid chloride baths. Once bath chemistry and electrochemistry were controlled, the study was focused on convective mass transfer at horizontal electrodes and its effect on cell performance. A laser schlieren imaging technique allowed in situ observations of flow patterns and their correlation with current transients. Convection was turbulent and mass transfer as a function of Rayleigh number was well correlated by: Sh = 0.14 R to the 1/3 power. Similarly, convection initiation time was correlated by DT/d squared = 38 Ra to the -2/3 power. Time scale of fluctuations was about half the initiation time. Taking the boundary layer thickness as a characteristic length, a critical Rayleigh number for the onset of convection was deduced: Ra sub CR = 5000. Placing the anode on the top of the cathode completely changed the flow pattern but kept the I-t curves identical whereas the use of a cathode grid doubled the limiting current. A well defined plateau in the current voltage curves suggested that hydrogen evolution has been successfully inhibited. Finally, long time deposition showed that convection at horizontal electrodes increased the induction time for dentrite growth by at least a factor of 2 with respect to a vertical wire.
Immediate newborn care practices delay thermoregulation and breastfeeding initiation
Sobel, Howard L; Silvestre, Maria Asuncion A; Mantaring, Jacinto Blas V; Oliveros, Yolanda E; Nyunt-U, Soe
2011-01-01
Aim A deadly nosocomial outbreak in a Philippine hospital drew nationwide attention to neonatal sepsis. Together with specific infection control measures, interventions that protect newborns against infection-related mortality include drying, skin-to-skin contact, delayed cord clamping, breastfeeding initiation and delayed bathing. This evaluation characterized hospital care in the first hours of life with the intent to drive policy change, strategic planning and hospital reform. Methods Trained physicians observed 481 consecutive deliveries in 51 hospitals using a standardized tool to record practices and timing of immediate newborn care procedures. Results Drying, weighing, eye care and vitamin K injections were performed in more than 90% of newborns. Only 9.6% were allowed skin-to-skin contact. Interventions were inappropriately sequenced, e.g. immediate cord clamping (median 12 sec), delayed drying (96.5%) and early bathing (90.0%). While 68.2% were put to the breast, they were separated two minutes later. Unnecessary suctioning was performed in 94.9%. Doctors trained in neonatal resuscitation were 2.5 (1.1–5.7) times more likely to unnecessarily suction vigorous newborns. Two per cent died and 5.7% developed sepsis/pneumonia. Conclusions This minute-by-minute observational assessment revealed that performance and timing of immediate newborn care interventions are below WHO standards and deprive newborns of basic protections against infection and death. PMID:21375583
Study on the method of maintaining bathtub water temperature
NASA Astrophysics Data System (ADS)
Wang, Xiaoyan
2017-05-01
In order to make the water temperature constant and the spillage to its minimum, we use finite element method and grid transformation and have established an optimized model for people in the bathtub both in time and space, which is based on theories of heat convection and heat conduction and three-dimensional second-order equation. For the first question, we have worked out partial differential equations for three-dimensional heat convection. In the meantime, we also create an optimized temperature model in time and space by using initial conditions and boundary conditions. For the second question we have simulated the shape and volume of the tub and the human gestures in the tub based on the first question. As for the shape and volume of the tub, we draw conclusion that the tub whose surface area is little contains water with higher temperature. Thus, when we are designing bathtubs we can decrease the area so that we'll have less loss heat. For different gestures when people are bathing, we have found that gestures have no obvious influence on variations of water temperature. Finally, we did some simulating calculations, and did some analysis on precision and sensitivity
Chemical Reduction of SIM MOX in Molten Lithium Chloride Using Lithium Metal Reductant
NASA Astrophysics Data System (ADS)
Kato, Tetsuya; Usami, Tsuyoshi; Kurata, Masaki; Inoue, Tadashi; Sims, Howard E.; Jenkins, Jan A.
2007-09-01
A simulated spent oxide fuel in a sintered pellet form, which contained the twelve elements U, Pu, Am, Np, Cm, Ce, Nd, Sm, Ba, Zr,Mo, and Pd, was reduced with Li metal in a molten LiCl bath at 923 K. More than 90% of U and Pu were reduced to metal to form a porous alloy without significant change in the Pu/U ratio. Small fractions of Pu were also combined with Pd to form stable alloys. In the gap of the porous U-Pu alloy, the aggregation of the rare-earth (RE) oxide was observed. Some amount of the RE elements and the actinoides leached from the pellet. The leaching ratio of Am to the initially loaded amount was only several percent, which was far from about 80% obtained in the previous ones on simple MOX including U, Pu, and Am. The difference suggests that a large part of Am existed in the RE oxide rather than in the U-Pu alloy. The detection of the RE elements and actinoides in the molten LiCl bath seemed to indicate that they dissolved into the molten LiCl bath containing the oxide ion, which is the by-product of the reduction, as solubility of RE elements was measured in the molten LiCl-Li2O previously.
NASA Astrophysics Data System (ADS)
Yazdanparast, Sanaz
2016-12-01
Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.
Shimmura, T; Azuma, T; Eguchi, Y; Uetake, K; Tanaka, T
2009-01-01
1. Based on our previous studies, we designed a medium-sized furnished cage with a dust bath and nest box on both sides of the cage (MFS) and evaluated its usefulness. 2. We used 180 White Leghorn layers. At the age of 17 weeks, the birds were distributed at random into one of the 4 cage designs: conventional cages (CC; 6 cages and 5 hens per cage), small (SF; 6 cages and 5 hens per cage) and medium furnished cages (MFL; 6 cages and 10 hens per cage) with a 'localised' dust bath and nest box on one side of the cage, and MFS (6 cages and 10 hens per cage). The total allocation of resources per bird was similar for all furnished cage designs. Behaviour, physical condition and production were measured in each cage. 3. Moving was more frequent in MFS and MFL than in CC and SF. The proportion of hens performing aggressive pecking and severe feather pecking was higher in MFL than CC and SF. These aggressive interactions occurred frequently in the dust bath area in MFL; however, these tendencies were not found in MFS. Egg production and egg mass were lower in MFL than in SF, while the production in MFS was similar to those in CC and SF. MFS hens laid eggs on the cage floor more often than in MFL. 4. In conclusion, these results demonstrate the possible usefulness of MFS. However, some inconsistent results and ways of improving MFS design were also identified.
Isolated core vs. superficial cooling effects on virtual maze navigation.
Payne, Jennifer; Cheung, Stephen S
2007-07-01
Cold impairs cognitive performance and is a common occurrence in many survival situations. Altered behavior patterns due to impaired navigation abilities in cold environments are potential problems in lost-person situations. We investigated the separate effects of low core temperature and superficial cooling on a spatially demanding virtual navigation task. There were 12 healthy men who were passively cooled via 15 degrees C water immersion to a core temperature of 36.0 degrees C, then transferred to a warm (40 degrees C) water bath to eliminate superficial shivering while completing a series of 20 virtual computer mazes. In a control condition, subjects rested in a thermoneutral (approximately 35 degrees C) bath for a time-matched period before being transferred to a warm bath for testing. Superficial cooling and distraction were achieved by whole-body immersion in 35 degree water for a time-matched period, followed by lower leg immersion in 10 degree C water for the duration of the navigational tests. Mean completion time and mean error scores for the mazes were not significantly different (p > 0.05) across the core cooling (16.59 +/- 11.54 s, 0.91 +/- 1.86 errors), control (15.40 +/- 8.85 s, 0.82 +/- 1.76 errors), and superficial cooling (15.19 +/- 7.80 s, 0.77 +/- 1.40 errors) conditions. Separately reducing core temperature or increasing cold sensation in the lower extremities did not influence performance on virtual computer mazes, suggesting that navigation is more resistive to cooling than other, simpler cognitive tasks. Further research is warranted to explore navigational ability at progressively lower core and skin temperatures, and in different populations.
Mosher, Ruby A; Coetzee, Johann F; Allen, Portia S; Havel, James A; Griffith, Gary R; Wang, Chong
2014-02-01
To determine the effects of protease inhibitors and holding times and temperatures before processing on the stability of substance P in bovine blood samples. Blood samples obtained from a healthy 6-month-old calf. Blood samples were dispensed into tubes containing exogenous substance P and 1 of 6 degradative enzyme inhibitor treatments: heparin, EDTA, EDTA with 1 of 2 concentrations of aprotinin, or EDTA with 1 of 2 concentrations of a commercially available protease inhibitor cocktail. Plasma was harvested immediately following collection or after 1, 3, 6, 12, or 24 hours of holding at ambient (20.3° to 25.4°C) or ice bath temperatures. Total substance P immunoreactivity was determined with an ELISA; concentrations of the substance P parent molecule, a metabolite composed of the 9 terminal amino acids, and a metabolite composed of the 5 terminal amino acids were determined with liquid chromatography-tandem mass spectrometry. Regarding blood samples processed immediately, no significant differences in substance P concentrations or immunoreactivity were detected among enzyme inhibitor treatments. In blood samples processed at 1 hour of holding, substance P parent molecule concentration was significantly lower for ambient temperature versus ice bath temperature holding conditions; aprotinin was the most effective inhibitor of substance P degradation at the ice bath temperature. The ELISA substance P immunoreactivity was typically lower for blood samples with heparin versus samples with other inhibitors processed at 1 hour of holding in either temperature condition. Results suggested that blood samples should be chilled and plasma harvested within 1 hour after collection to prevent substance P degradation.
The effects of daily bathing on symptoms of patients with bronchial asthma
Arimoto, Yoshihito; Homma, Chie; Takeoka, Shinjiro; Fukusumi, Munehisa; Mouri, Atsuto; Hamamoto, Yoichiro
2016-01-01
Background The influence of bathing in asthma patients is not yet fully known. Objective We conducted an observational study to investigate changes in symptoms and their degree by bathing in asthmatic patients. Methods A questionnaire focusing on ever experienced bathing-induced symptom changes and their degree, as well as contributing factors, was designed and administered to asthmatic patients in the outpatient department of our institute between January 2012 and November 2013. Results Two hundred fifteen cases were recruited. In 60 cases (27.9%), asthmatic symptoms appeared, including 20 cases of chest discomfort (33.3%), 19 cases of cough (31.7%), and 21 cases of wheezing (35.0%). The triggering factors included vapor inhalation (32 cases, 53.3%), hydrostatic pressure on the thorax due to body immersion in the bathtub (26 cases, 43.3%), and sudden change of air temperature (16 cases, 26.7%). Thirty-eight cases (17.7%) experienced improvement in active asthmatic symptoms by bathing. Vapor inhalation was the most common contributing factor (34 cases, 89.5%), followed by warming of the whole body (13 cases, 34.2%). There was no relationship between asthma severity and the appearance of bathing-induced symptoms or improvement of active asthmatic symptoms by bathing. Conclusion The effects of bathing in asthmatic patients widely differed from patient to patient and their etiology includes several factors. For those who suffer from bathing-induced asthma symptoms, preventive methods, such as premedication with bronchodilators before bathing, should be established. This study is registered in the University Hospital Medical Information Network (UMIN) clinical trials registry in Japan with the registration number UMIN000015641. PMID:27141485
Comparison of Foot Bathing and Foot Massage in Chemotherapy-Induced Peripheral Neuropathy.
Park, Ranhee; Park, Chaisoon
2015-01-01
In a clinical setting, patients have been observed to complain of discomfort and to discontinue treatment because of chemotherapy-induced peripheral neuropathy (CIPN), but few data exist regarding the quality of life in these patients in Korea. The purpose of this quasi-experimental study was to analyze the effects of foot bathing and massage in patients with CIPN. Subjects included 48 patients with CIPN, who were hospitalized in C University Hospital. The subjects were alternately assigned to 1 of 2 groups according to their registration order. The interventions consisted of 8 treatments of foot bathing or massage over a period of 2 weeks, at 30 minutes per session, every other day. The foot skin temperature increased significantly in the foot bathing group, whereas it decreased significantly in the massage group. Quality of life was significantly increased in the foot bathing group, whereas it was significantly decreased in the massage group. Although foot bathing and foot massage are both supportive care techniques for CIPN patients, foot bathing was more effective than foot massage on skin temperature, grade of neurotoxicity, and quality of life. Additional well-designed studies are recommended, so that the effectiveness of foot bathing and foot massage is confirmed. Foot bathing is more useful as supportive care with respect to nonpharmacologic interventions for alleviating CIPN and promoting the quality of life in cancer patients.
Costa, P M; Fernandes, P L; Ferreira, H G; Ferreira, K T; Giraldez, F
1987-12-01
1. Membrane potential and conductances and short-circuit current were continuously measured with microelectrodes and conventional electrophysiological techniques in a stripped preparation of frog skin epithelium. The effects of the removal of chloride or sodium ions and the concentration or dilution of the serosal (inner) bathing solution were studied. 2. Chloride- or sodium-free solutions produced a cell depolarization of about 30 mV in parallel with a fall in the short-circuit current. Mucosal and serosal membrane conductances both decreased and the sodium permeability of the mucosal barrier was calculated to fall to about one-half its value in standard Ringer solution. The observed decrease in the short-circuit current is probably related to the combined effect of the decrease in sodium permeability and the decrease in the driving force across the mucosal membrane. 3. The removal of chloride or sodium ions reduced the depolarization caused by serosal perfusion with high-potassium solutions (50 mM-KCl). The ratio of the change in cell membrane potential under short-circuit conditions to the change in the potassium equilibrium potential (delta Ec(s.c.)/delta EK), was 0.59 in standard Ringer solution and 0.26 and 0.24 after the removal of chloride or sodium respectively. The depolarizing effect of barium-containing solutions (2 mM-BaCl2) was also markedly reduced in chloride- or sodium-free solutions, suggesting a decrease of the potassium selectivity of the serosal membrane in these conditions. 4. Increasing the osmolality of the serosal bathing solution produced similar effects, i.e. cell depolarization, fall in the short-circuit current and membrane conductances and reduction of the depolarizing effect of high-potassium and barium solutions. On the contrary, dilution of the serosal bath produced the opposite effects, consistent with an increase in the serosal permeability to potassium. 5. The effects of chloride- or sodium-free solutions were reversed by the dilution of the serosal bath. Cells repolarized when exposed to low-osmolality solutions after being in the absence of serosal chloride or sodium. The repolarization ran in parallel with the restoration of the short-circuit current and the potassium selectivity of the serosal membrane. 6. The results show that the effects produced by the removal of sodium or chloride ions from the serosal bathing solution are most probably mediated by a reduction in cell volume. Cell volume changes would lead to changes in the serosal membrane selectivity to potassium and thus to changes in cell membrane potential and sodium transport.(ABSTRACT TRUNCATED AT 400 WORDS)
Kulkarni, Vrushali M; Rathod, Virendra K
2014-03-01
The present work deals with the mapping of an ultrasonic bath for the maximum extraction of mangiferin from Mangifera indica leaves. I3(-) liberation experiments (chemical transformations) and extraction (physical transformations) were carried out at different locations in an ultrasonic bath and compared. The experimental findings indicated a similar trend in variation in an ultrasonic bath by both these methods. Various parameters such as position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power which affect the extraction yield have been studied in detail. Maximum yield of mangiferin obtained was approximately 31 mg/g at optimized parameters: distance of 2.54 cm above the bottom of the bath, 7 cm diameter of vessel, flat bottom vessel, 6.35 cm liquid height, 122 W input power and 25 kHz frequency. The present work indicates that the position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power have significant effect on the extraction yield. This work can be used as a base for all ultrasonic baths to obtain maximum efficiency for ultrasound assisted extraction. Copyright © 2013 Elsevier B.V. All rights reserved.
Bath for electrolytic reduction of alumina and method therefor
Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.
2002-11-26
An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.
NASA Astrophysics Data System (ADS)
Ashassi-Sorkhabi, H.; Dolati, H.; Parvini-Ahmadi, N.; Manzoori, J.
2002-01-01
Cupronickel alloys are known for their excellent corrosion resistance, especially in marine atmosphere. The development of an appropriate electroless bath involves the use of a reducing agent, complexing and stabilizing compounds and metallic salts. In this work, autocatalytic deposition of Ni-Cu-P alloys (28-95 wt.% Ni, 66-0 wt.% Cu, 7.5-3 wt.% P) has been carried out on 302 b steel sheets from bath containing: NiCl 2·6H 2O, CuCl 2·2H 2O, NaH 2PO 2, Na citrate, sulphosalicilic acid and triethanolamine. The effects of pH, temperature, and bath composition on the hardness and the composition of deposits have been studied. In addition, the deposition rates of alloy, nickel, copper and phosphorus were investigated and optimum conditions were obtained. The average rate of alloy deposition was 9 mg cm -2 h -1 and the optimum pH and temperature were 8.5 and 80 °C, respectively. The chemical stability of bath was desirable, and no spontaneous decomposition occurred. The changes in the structure of deposit by heat treatment were studied by the X-ray diffraction (XRD) method. The XRD patterns indicate that the copper content affects the structure changes. With increasing copper content, the phosphorus content decreased and the crystallinity of the deposits grew. After heat treatment of alloys with lower copper content at 400 °C for 1 h, the crystallization to Ni 3P was observed.
NASA Astrophysics Data System (ADS)
Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar
2017-12-01
Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.
Bath for electrolytic reduction of alumina and method therefor
Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.
2001-07-10
An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.
Quantum Dynamics in Biological Systems
NASA Astrophysics Data System (ADS)
Shim, Sangwoo
In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.
Abdulmalek, Emilia; Arumugam, Mahashanon; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul
2012-01-01
Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99%) under the optimum reaction conditions, including temperature (35 °C), initial H2O2 concentration (30%), H2O2 amount (4.4 mmol), H2O2 addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker. PMID:23202943
A general theoretical framework for decoherence in open and closed systems
NASA Astrophysics Data System (ADS)
Castagnino, Mario; Fortin, Sebastian; Laura, Roberto; Lombardi, Olimpia
2008-08-01
A general theoretical framework for decoherence is proposed, which encompasses formalisms originally devised to deal just with open or closed systems. The conditions for decoherence are clearly stated and the relaxation and decoherence times are compared. Finally, the spin-bath model is developed in detail from the new perspective.
A Study on Sealing Process of Anodized Al Alloy Film
NASA Astrophysics Data System (ADS)
Tsujita, Takeshi; Sato, Hiroshi; Tsukahara, Sonoko; Ishikawa, Yuuichi
Since sealing is an important process to improve the corrosion resistance in practical application of anodized aluminum, we prepared anodic oxide films on A5052 alloy in an oxalic acid bath and a sulfuric acid bath, sealed them at various conditions, and analyzed them by scanning electron microscopy, acid-dissolution examination, admittance measurements and infrared spectroscopy. The pore radius of the oxalic acid anodized film was about 5 times larger than that of sulfuric acid anodized film, while the corrosion resistance of the former showed about 2 times higher value than the latter with the same sealed state and amount of hydroxide formed by sealing process of the former was 6 times larger than the latter, respectively. Steam sealing formed dense hydroxide and boiling water sealing formed big coral-like hydroxide, whereas the corrosion resistance of the film sealed by the former showed about 1.5 times higher value than that sealed by the latter, respectively. Thus microstructure of anodic oxide films and their surface morphology after sealing process clearly depended on their anodizing solution and the sealing condition and showed obvious relation to electric and corrosive properties.
Quantum dynamical framework for Brownian heat engines
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Chaturvedi, S.
2013-07-01
We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well.
Sulphur and skin: from Satan to Saddam!
Leslie, K S; Millington, G W M; Levell, N J
2004-04-01
Since the dawn of time, Beelzebub has been showering fire and brimstone (sulphur) on tortured souls, but the cutaneous effects of this have been poorly described. Sulphur has also been used for centuries as a treatment for many skin conditions, such as fungal infections, scabies, psoriasis, eczema and acne. It has also been used extensively in cosmetic preparations and by cosmetic dermatologists treating conditions such as seborrhoeic eczema. Many natural bathing spas have high levels of sulphur; such balneology has been advocated by medical and cosmetic dermatologists as an effective treatment for cutaneous disorders for more than 500 years. Sulphur was often the active agent in many of the so-called 'patent medicines' that became popular in the mid-nineteenth century. Time has not withered medical practitioners' enthusiasm for sulphur. There are various reports in the medical literature of its current use. However sulphur treatment is not without its risks; a sulphur spring dermatitis has been described from a spa bath in Taiwan. With the satanic threat of bio-terrorism, some dermatologists may be treating the effects of contact with sulphur mustard all too soon.
NASA Astrophysics Data System (ADS)
Huda, Nazmul; Naser, Jamal; Brooks, G. A.; Reuter, M. A.; Matusewicz, R. W.
2012-10-01
A thin-slice computational fluid dynamics (CFD) model of a conventional tuyere blown slag-fuming furnace has been developed in Eulerian multiphase flow approach by employing a three-dimensional (3-D) hybrid unstructured orthographic grid system. The model considers a thin slice of the conventional tuyere blown slag-fuming furnace to investigate details of fluid flow, submerged coal combustion dynamics, coal use behavior, jet penetration behavior, bath interaction conditions, and generation of turbulence in the bath. The model was developed by coupling the CFD with the kinetics equations developed by Richards et al. for a zinc-fuming furnace. The model integrates submerged coal combustion at the tuyere tip and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with several user-defined subroutines in FORTRAN programming language were used to develop the model. The model predicted the velocity, temperature field of the molten slag bath, generated turbulence and vortex, and coal use behavior from the slag bath. The tuyere jet penetration length ( l P) was compared with the equation provided by Hoefele and Brimacombe from isothermal experimental work ( {{l_{{P}} }/{d_{o }} = 10.7( {N^' }_{Fr} } )^{0.46} ( {ρ_{{g}} /ρl } )^{0.35} } ) and found 2.26 times higher, which can be attributed to coal combustion and gas expansion at a high temperature. The jet expansion angle measured for the slag system studied is 85 deg for the specific inlet conditions during the simulation time studied. The highest coal penetration distance was found to be l/L = 0.2, where l is the distance from the tuyere tip along the center line and L is the total length (2.44 m) of the modeled furnace. The model also predicted that 10 pct of the injected coal bypasses the tuyere gas stream uncombusted and carried to the free surface by the tuyere gas stream, which contributes to zinc oxide reduction near the free surface.
... bit first. The American Academy of Pediatrics recommends sponge baths until the umbilical cord stump falls off — ... week or two. To give your baby a sponge bath, you'll need: A warm place with ...
Cerebral autoregulation during whole-body hypothermia and hyperthermia stimulus.
Doering, T J; Aaslid, R; Steuernagel, B; Brix, J; Niederstadt, C; Breull, A; Schneider, B; Fischer, G C
1999-01-01
The purpose of the study contained herein was to investigate the effects of old traditional physiotherapeutic treatments on cerebral autoregulation. Treatment consisted of complete body immersion in cold or warm water baths. Fifteen volunteers were investigated by means of transcranial Doppler sonography and a servo-controlled noninvasive device for blood pressure measuring. One group of 8 volunteers (mean age, 27.2+/-3.5 yr; gender, 3 females/5 males) was subjected to cold baths of 22 degrees C for 20 min Another group of 7 volunteers (mean age, 52.1+/-8.5 yr; gender, 4 females/3 males) took hyperthermic baths at rising water temperatures from 36 degrees to 42 degrees C, increased by 1 degree C every 5 min. Each volunteer in both groups underwent autoregulation tests two to four times before, during, and after the thermic bath. Dynamic autoregulation was measured by the response of cerebral blood flow velocity to a transient decrease of the mean arterial blood pressure, induced by rapid deflation of thigh cuffs. The autoregulation index, i.e., a measure of the speed of change of cerebral autoregulation, was used to quantify the response. Further parameters were core temperature, blood pressure (mm Hg) and CO2et. During hypothermic baths, core temperature decreased by 0.3 degrees C (P = 0.001), measured between preliminary phase and the end of the bath; the autoregulation index decreased significantly (P < 0.05) from 5.3 before the bath to 4.25 during the bath. During hyperthermic baths, the autoregulation index increased from 6.0 to 7.5 and 8.9 (P < 0.001), with an increase of core temperature of 0.4 degrees C. The main cerebral autoregulation system is dependent on changes of core temperature, provoked by hypothermic or hyperthermic whole-body thermostimulus. Application of hyperthermic baths increased the autoregulation index, and hypothermic baths decreased the autoregulation index. Further studies are needed to prove the positive effects of thermo-stimulating water applications on cerebral hemodynamics in patients with cerebral diseases.
Elahi, Ehsan; Abid, Muhammad; Zhang, Huiming; Cui, Weijun; Ul Hasson, Shabeh
2018-06-01
Given the shortage and non-availability of freshwater in Pakistan, wastewater is being used for bathing water buffaloes; however, this has a negative impact on animal welfare. Although there is a vast literature on indirect linkages between wastewater and animal productivity, studies focusing on the direct impacts of water buffaloes bathing in wastewater on animal productivity and economic losses are rare. Therefore, using 360 domestic water buffalo farms, this study examines the expenditure and production losses associated with bathing (in wastewater and freshwater) and non-bathing water buffaloes by employing partial budgeting and resource adjustment component techniques. Furthermore, it investigates the prevalence of animal diseases and associated economic effects using correlation analysis and propensity score matching techniques, respectively. The findings reveal that compared to their counterparts (freshwater bathing and non-bathing water buffaloes), buffaloes bathing in wastewater are at increased risk of clinical mastitis, foot and mouth disease (FMD) and tick infestation. Moreover, the use of wastewater for bathing buffaloes also leads to higher economic and production losses by affecting milk productivity, causing premature culling, and reducing slaughter value. The findings of the double-log model show that economic losses are higher if buffaloes bathe in wastewater within 30 min after milking, as there are more chances that those buffaloes would be exposed to bacterial penetration in the teat ducts, which may result in intramammary infection. According to the propensity score matching method, the higher economic damages per month are associated with buffaloes bathing in wastewater and freshwater, 155 and 110 USD per farm, respectively. The study findings reference the need for policies to restrict wastewater access by water buffaloes, and a regular check of and access to cool clean water wallows for bathing during hot summer days, to reduce excess heat and economic losses, and thus improve animal welfare. Copyright © 2018 Elsevier B.V. All rights reserved.
Corrosion fatigue in nitrocarburized quenched and tempered steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim Khani, M.; Dengel, D.
1996-05-01
In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-{mu}m-thick electroless Ni-P layer, in order to compare corrosion fatigue behaviormore » between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 10{sup 8} cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.« less
Dicks, Kristen V; Lofgren, Eric; Lewis, Sarah S; Moehring, Rebekah W; Sexton, Daniel J; Anderson, Deverick J
2016-07-01
OBJECTIVE To determine whether daily chlorhexidine gluconate (CHG) bathing of intensive care unit (ICU) patients leads to a decrease in hospital-acquired infections (HAIs), particularly infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). DESIGN Interrupted time series analysis. SETTING The study included 33 community hospitals participating in the Duke Infection Control Outreach Network from January 2008 through December 2013. PARTICIPANTS All ICU patients at study hospitals during the study period. METHODS Of the 33 hospitals, 17 hospitals implemented CHG bathing during the study period, and 16 hospitals that did not perform CHG bathing served as controls. Primary pre-specified outcomes included ICU central-line-associated bloodstream infections (CLABSIs), primary bloodstream infections (BSI), ventilator-associated pneumonia (VAP), and catheter-associated urinary tract infections (CAUTIs). MRSA and VRE HAIs were also evaluated. RESULTS Chlorhexidine gluconate (CHG) bathing was associated with a significant downward trend in incidence rates of ICU CLABSI (incidence rate ratio [IRR], 0.96; 95% confidence interval [CI], 0.93-0.99), ICU primary BSI (IRR, 0.96; 95% CI, 0.94-0.99), VRE CLABSIs (IRR, 0.97; 95% CI, 0.97-0.98), and all combined VRE infections (IRR, 0.96; 95% CI, 0.93-1.00). No significant trend in MRSA infection incidence rates was identified prior to or following the implementation of CHG bathing. CONCLUSIONS In this multicenter, real-world analysis of the impact of CHG bathing, hospitals that implemented CHG bathing attained a decrease in ICU CLABSIs, ICU primary BSIs, and VRE CLABSIs. CHG bathing did not affect rates of specific or overall infections due to MRSA. Our findings support daily CHG bathing of ICU patients. Infect Control Hosp Epidemiol 2016;37:791-797.
Bath-Ambience-A Mechatronic System for Assisting the Caregivers of Bedridden People.
Bezerra, Karolina; Machado, José; Carvalho, Vítor; Castro, Marcelo; Costa, Pedro; Matos, Demétrio; Soares, Filomena
2017-05-18
The health of older people is receiving special attention and dedication nowadays, with the aim of increasing their general wellbeing and quality of life. Studies into different aspects of the care of the elderly have found that emphasis should be given to solving problems related to bathing in different situations and environments. In particular, it is important to develop new assistive technologies to streamline and ease the burden of a caregiver's daily tasks. Generally-speaking, in the case of bedridden patients, bathing is typically carried out manually by a caregiver, using towels, sponges, and a water basin. Nevertheless, this apparently simple task needs some precautions in order to avoid the risk of microbial infections, falls and other injuries. With that in mind, this paper presents the design of a portable washing system, called Bath-Ambience, which enables bedridden patients to be bathed efficiently without having to be moved from their position. This portable system can be installed in different situations, both in a domestic setting, and in specialized institutions, and allows the caregiver to perform the bathing tasks without compromising health and safety, thereby making it possible to offer a comfortable and hygienic procedure to patients, improving their quality of life. This paper presents the design of the portable Bath-Ambience washing system, which provides efficient assistance for bathing bedridden patients without moving them to another place. This system is mainly dedicated for integration a smart home application in to allow bathing everywhere.
Bath-Ambience—A Mechatronic System for Assisting the Caregivers of Bedridden People
Bezerra, Karolina; Machado, José; Carvalho, Vítor; Castro, Marcelo; Costa, Pedro; Matos, Demétrio; Soares, Filomena
2017-01-01
The health of older people is receiving special attention and dedication nowadays, with the aim of increasing their general wellbeing and quality of life. Studies into different aspects of the care of the elderly have found that emphasis should be given to solving problems related to bathing in different situations and environments. In particular, it is important to develop new assistive technologies to streamline and ease the burden of a caregiver’s daily tasks. Generally-speaking, in the case of bedridden patients, bathing is typically carried out manually by a caregiver, using towels, sponges, and a water basin. Nevertheless, this apparently simple task needs some precautions in order to avoid the risk of microbial infections, falls and other injuries. With that in mind, this paper presents the design of a portable washing system, called Bath-Ambience, which enables bedridden patients to be bathed efficiently without having to be moved from their position. This portable system can be installed in different situations, both in a domestic setting, and in specialized institutions, and allows the caregiver to perform the bathing tasks without compromising health and safety, thereby making it possible to offer a comfortable and hygienic procedure to patients, improving their quality of life. This paper presents the design of the portable Bath-Ambience washing system, which provides efficient assistance for bathing bedridden patients without moving them to another place. This system is mainly dedicated for integration a smart home application in to allow bathing everywhere. PMID:28524114
NASA Astrophysics Data System (ADS)
Ito, Kosuke; Hayashi, Masahito
2018-01-01
In quantum thermodynamics, effects of finiteness of the baths have been less considered. In particular, there is no general theory which focuses on finiteness of the baths of multiple conserved quantities. Then, we investigate how the optimal performance of generalized heat engines with multiple conserved quantities alters in response to the size of the baths. In the context of general theories of quantum thermodynamics, the size of the baths has been given in terms of the number of identical copies of a system, which does not cover even such a natural scaling as the volume. In consideration of the asymptotic extensivity, we deal with a generic scaling of the baths to naturally include the volume scaling. Based on it, we derive a bound for the performance of generalized heat engines reflecting finite-size effects of the baths, which we call fine-grained generalized Carnot bound. We also construct a protocol to achieve the optimal performance of the engine given by this bound. Finally, applying the obtained general theory, we deal with simple examples of generalized heat engines. As for an example of non-independent-and-identical-distribution scaling and multiple conserved quantities, we investigate a heat engine with two baths composed of an ideal gas exchanging particles, where the volume scaling is applied. The result implies that the mass of the particle explicitly affects the performance of this engine with finite-size baths.
Investigation of “Bath Salts” Use Patterns Within an Online Sample of Users in the United States
Johnson, Patrick S.; Johnson, Matthew W.
2014-01-01
“Bath salts” are synthetic stimulant “legal highs” that have recently been banned in the U.S. Epidemiological data regarding bath salts use are limited. In the present study, 113 individuals in the U.S. reporting use of bath salts completed an anonymous, online survey characterizing demographic, experiential, and psychological variables. Respondents were more often male, 18–24 years old, and Caucasian/white with some college education. Past year use was typically low (≤ 10 days), but marked by repeated dosing. Intranasal was the most frequently reported administration route and subjective effects were similar to other stimulants (e.g., cocaine, amphetamines). Bath salts use was associated with increased sexual desire and sexual HIV risk behavior, and met DSM-5 diagnostic criteria for disordered use in more than half of respondents. Bath salts use persists in the U.S. despite federal bans of cathinone-like constituents. Self-reported stimulant-like effects of bath salts suggest their use as substitutes for traditional illicit stimulants. Data revealed more normative outcomes vis-à-vis extreme accounts by media and medical case reports. However, indications of product abuse potential and sexual risk remain, suggesting bath salts pose potential public health harm. PMID:25364987
NASA Astrophysics Data System (ADS)
Paik, Doo-Jin; Hong, Moon-Hi; Huh, Yoon; Park, Joo Hyun; Chae, Hong-Kook; Park, Seok-Ho; Choun, Si-Youl
2012-06-01
The morphology, chemistry, and crystallographic characteristics of metastable dross particles were identified. These particles are formed during the initial stage of precipitation. The particles had aluminum concentrations of 15 to 80 mass pct, with values that decreased gradually as particle size increased. These metastable dross particles were a mixture of the crystalline phase of FeZn10, which is called the "delta phase," and the high-aluminum amorphous phase, which covered the surface of the crystalline phase. The new "meta Q" concept was proposed to predict the amount of soluble aluminum in the zinc bath by considering nucleation kinetics and particle growth. The results calculated using the "meta Q" concept were compared with the values measured by the aluminum sensor, which were taken during the same period at the commercial galvanizing line. The mean of the absolute values of the differences between the calculated and measured values was 9.7 ppm.
Balsari, Satchit; Greenough, P Gregg; Kazi, Dhruv; Heerboth, Aaron; Dwivedi, Shraddha; Leaning, Jennifer
2016-12-01
India's Kumbh Mela remains the world's largest and longest mass gathering. The 2013 event, where participants undertook a ritual bath, hosted over 70 million Hindu pilgrims during 55 days on a 1936 hectare flood plain at the confluence of the Yamuna and Ganga Rivers. On the holiest bathing days, the population surged. Unlike other religious, cultural, and sports mass gatherings, the Kumbh Mela's administration cannot estimate or limit the participant number. The event created serious and uncommon public health challenges: initiating crowd safety measures where population density and mobility directly contact flowing bodies of water; providing water, sanitation, and hygiene to a population that frequently defecates in the open; and establishing disease surveillance and resource use measures within a temporary health delivery system. We review the world's largest gathering by observing first-hand the public health challenges, plus the preparations for and responses to them. We recommend ways to improve preparedness.
NASA Astrophysics Data System (ADS)
Zingl, Manuel; Nuss, Martin; Bauernfeind, Daniel; Aichhorn, Markus
2018-05-01
Recently solvers for the Anderson impurity model (AIM) working directly on the real-frequency axis have gained much interest. A simple and yet frequently used impurity solver is exact diagonalization (ED), which is based on a discretization of the AIM bath degrees of freedom. Usually, the bath parameters cannot be obtained directly on the real-frequency axis, but have to be determined by a fit procedure on the Matsubara axis. In this work we present an approach where the bath degrees of freedom are first discretized directly on the real-frequency axis using a large number of bath sites (≈ 50). Then, the bath is optimized by unitary transformations such that it separates into two parts that are weakly coupled. One part contains the impurity site and its interacting Green's functions can be determined with ED. The other (larger) part is a non-interacting system containing all the remaining bath sites. Finally, the Green's function of the full AIM is calculated via coupling these two parts with cluster perturbation theory.
NASA Astrophysics Data System (ADS)
Sinnur, H. D.; Samanta, Ashis Kumar; Verma, D. K.; Kaware, Runali
2018-06-01
Besides optimization of conditions of colour extraction from dried anar peel, effect of different single and double mordants, dyeing process variables and UV protective action of anar peels (pomegranate rind i.e. Punica granatum L.) as a natural colourant is studied in this work. Mordants used are potash alum, aluminium sulphate and stannous chloride (as metallic salt mordant) and harda (i.e., myrobolan as natural mordant) from natural source. Relevant results indicate that 50:50 ratio of harda plus potash aluminium sulphate at overall 15% application level offers maximum K/S value and overall good colour fastness than any other combination. After finalizing the mordants, dyeing process variables were studied for standardization of conditions for dyeing cotton khadi fabric with aqueous extract of pomegranate rind. The results indicate that standardized conditions for dyeing are (a) dyeing time : 60 min, (b) dyeing temperature: 80 °C, (c) dye bath MLR : 1:30, (d) dye bath pH : 9.0, (e) max dye concentration : 20% and (f) common salt : 3%. Studies of FTIR, UV scan, Atomic Absorption Spectrophotometry (AAS) and UV Protection Factor (UPF) characters show a medium to good level of ultraviolet protection. Corresponding reaction mechanism amongst mordant/fibre and dye forming giant complex is also reported.
NASA Astrophysics Data System (ADS)
Sinnur, H. D.; Samanta, Ashis Kumar; Verma, D. K.; Kaware, Runali
2017-10-01
Besides optimization of conditions of colour extraction from dried anar peel, effect of different single and double mordants, dyeing process variables and UV protective action of anar peels (pomegranate rind i.e. Punica granatum L.) as a natural colourant is studied in this work. Mordants used are potash alum, aluminium sulphate and stannous chloride (as metallic salt mordant) and harda (i.e., myrobolan as natural mordant) from natural source. Relevant results indicate that 50:50 ratio of harda plus potash aluminium sulphate at overall 15% application level offers maximum K/S value and overall good colour fastness than any other combination. After finalizing the mordants, dyeing process variables were studied for standardization of conditions for dyeing cotton khadi fabric with aqueous extract of pomegranate rind. The results indicate that standardized conditions for dyeing are (a) dyeing time : 60 min, (b) dyeing temperature: 80 °C, (c) dye bath MLR : 1:30, (d) dye bath pH : 9.0, (e) max dye concentration : 20% and (f) common salt : 3%. Studies of FTIR, UV scan, Atomic Absorption Spectrophotometry (AAS) and UV Protection Factor (UPF) characters show a medium to good level of ultraviolet protection. Corresponding reaction mechanism amongst mordant/fibre and dye forming giant complex is also reported.
Chemical bath deposition of semiconductor thin films & nanostructures in novel microreactors
NASA Astrophysics Data System (ADS)
McPeak, Kevin M.
Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures and thin films, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. CBD is traditionally performed in a batch reactor, requiring only a substrate to be immersed in a supersaturated solution of aqueous precursors such as metal salts, complexing agents, and pH buffers. Highlights of CBD include low cost, operation at low temperature and atmospheric pressure, and scalability to large area substrates. In this dissertation, I explore CBD of semiconductor thin films and nanowire arrays in batch and continuous flow microreactors. Microreactors offer many advantages over traditional reactor designs including a reduction in mass transport limitations, precise temperature control and ease of production scale-up by "numbering up". Continuous flow micoreactors offer the unique advantage of providing reaction conditions that are time-invariant but change smoothly as a function of distance down the reaction channel. Growth from a bath whose composition changes along the reactor length results in deposited materials whose properties vary as a function of position on the substrate, essentially creating a combinatorial library. These substrates can be rapidly characterized to identify relationships between growth conditions and material properties or growth mechanisms. I have used CBD in a continuous flow microreactor to deposit ZnO nanowire arrays and CdZnS films whose optoelectronic properties vary as a function of position. The spatially-dependent optoelectronic properties of these materials have been correlated to changes in the composition, structure or growth mechanisms of the materials and ultimately their growth conditions by rigorous spatial characterization. CBD in a continuous flow microreactor, coupled with spatial characterization, provides a new route to understanding the connection between CBD growth conditions and the resulting optoelectronic properties of the film. The high surface-to-volume ratio of a microreactor also lends itself to in situ characterization studies. I demonstrated the first in situ x-ray absorption fine-structure spectroscopy (XAFS) study of CBD. The high sensitivity and ability to characterize liquid, amorphous and crystalline materials simultaneously make in situ XAFS spectroscopy an ideal tool to study the CBD of inorganic nanomaterials.
Float processing of high-temperature complex silicate glasses and float baths used for same
NASA Technical Reports Server (NTRS)
Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)
2000-01-01
A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.
Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
Gelbwaser-Klimovsky, D; Kurizki, G
2014-08-01
We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.
A modern analysis of a historical pediatric disaster: the 1927 Bath school bombing.
Kim, David; Mosher, Benjamin D; Morrison, Chet A; Parker-Lee, Carol; Opreanu, Razvan C; Stevens, Penny; Moore, Sarah; Kepros, John P
2010-10-01
Children have unique anatomy and physiology that may necessitate a unique approach to a pediatric surge. An analysis of the Bath school bombings of 1927, the largest pediatric terrorist disaster in U.S. history, provides an opportunity to gain perspective on pediatric patterns of injury and future disaster preparedness. Eighty-nine contemporary newspaper accounts, the official coroner's inquest, interviews, online resources, and the Michigan state archives of the disaster were reviewed with respect to the demographics, pattern of injury, gender, age, duration of hospitalization, relative distance of each classroom from the blast, and severity of injuries sustained using the Injury Severity Scale (ISS). Eighty-seven children and three teachers were unable to safely evacuate the building; 36 children (41%) were dead on-site, 40 sustained mild injuries (76.9%), nine sustained moderate injuries (17.3%), and one sustained serious injuries (1.9%). Mean ISS scores decreased with increasing relative distance of each classroom from the primary blast, while the classrooms involved in structural collapse had the highest initial mortality and ISS score. Patterns of injury sustained imply a predominance of crush and penetrating trauma. Mean ISS scores and initial mortality by classroom were a function of proximity to the blast and structural collapse. The pattern of injury closely approximates those of other pediatric disasters such as Columbine, Oklahoma City, and 911. The absence of severe abdominal trauma and one reported hospital mortality may reflect an initial under-triage of patients, possibly due to the medical technology of the times. Copyright © 2010 Elsevier Inc. All rights reserved.
Heat-machine control by quantum-state preparation: From quantum engines to refrigerators
NASA Astrophysics Data System (ADS)
Gelbwaser-Klimovsky, D.; Kurizki, G.
2014-08-01
We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.
1987-07-17
of some salts, mainly thiocyanate sodium. With wet spinning are used water/aqueous precipitation baths or organic coagulants (glycerin, hexanetriol ...comparatively small. During utilization of glycerine, isopropyl, butyl, hexanetriol baths into composition of bath for increasing elasticity of fiber...the number of C-atoms in the chain of their molecules. Therefore the glycerine bath is more than "rigid", than hexanetriol , whose effect/action is
Onset and localisation of convection during transient growth of mushy sea ice
NASA Astrophysics Data System (ADS)
Wells, Andrew; Hitchen, Joe
2017-11-01
More than 20 million square kilometres of the polar oceans freeze over each year to form sea ice. Sea ice is a mushy layer: a reactive, porous, multiphase material consisting of ice crystals bathed in liquid brine. Atmospheric cooling generates a density gradient in the interstitial brine, which can drive convection and rejection of brine from the sea ice to force ocean circulation and mixing. We use linear stability analysis and nonlinear numerical simulations to consider the convection in a transiently growing mushy layer. An initial salt water layer is cooled from above via a linearised thermal exchange with the atmosphere, and generates a growing mushy layer with the porosity varying in space and time. We determine how the critical porous-medium Rayleigh number for the onset of convection varies with the surface cooling rate, and the initial temperature and salinity of the solidifying salt water. Differences in the cooling conditions modify the structure of the ice and the resulting convection cells. Weak cooling leads to full-depth convection through ice with slowly varying porosity, whilst stronger cooling leads to localised convection confined to a highly permeable basal layer. These results provide insight into the onset of convective brine drainage from growing sea ice.
Sorption of DNA by diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels.
Tozak, Kabil Özcan; Erzengin, Mahmut; Sargin, Idris; Ünlü, Nuri
2013-01-01
In this study, the DNA sorption performance of diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels were investigated for the purpose of designing a novel adsorbent that can be utilized for DNA purification, separation and immunoadsorption studies such as removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. Poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based monolithic cryogel column embedded with Zn(2+)-diatomite particles was prepared by free radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm). The polymerization reaction was initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After thawing, the monolithic composite cryogels were used for affinity sorption and then subsequent desorption of DNA molecules from aqueous solutions. Diatomite (DA) particles were characterized by XRF and BET method. The characterization of composite cryogel was done through SEM imaging. The effects of pH of the solution, initial DNA concentration, ionic strength, temperature and flow rates on adsorption were investigated to determine the optimum conditions for adsorption/desorption experiments. The particle embedding procedure was shown to yield significantly enhanced adsorption of DNA on the adsorbent. Furthermore, considering its excellent bio-compatibility, p(HEMA) cryogels are promising a candidate for further DNA sorption studies.
Sorption of DNA by diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels
Tozak, Kabil Özcan; Erzengin, Mahmut; Sargin, Idris; Ünlü, Nuri
2013-01-01
In this study, the DNA sorption performance of diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels were investigated for the purpose of designing a novel adsorbent that can be utilized for DNA purification, separation and immunoadsorption studies such as removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. Poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based monolithic cryogel column embedded with Zn2+-diatomite particles was prepared by free radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm). The polymerization reaction was initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After thawing, the monolithic composite cryogels were used for affinity sorption and then subsequent desorption of DNA molecules from aqueous solutions. Diatomite (DA) particles were characterized by XRF and BET method. The characterization of composite cryogel was done through SEM imaging. The effects of pH of the solution, initial DNA concentration, ionic strength, temperature and flow rates on adsorption were investigated to determine the optimum conditions for adsorption/desorption experiments. The particle embedding procedure was shown to yield significantly enhanced adsorption of DNA on the adsorbent. Furthermore, considering its excellent bio-compatibility, p(HEMA) cryogels are promising a candidate for further DNA sorption studies. PMID:26600734
Combination for electrolytic reduction of alumina
Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.
2002-04-30
An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.
López, Iago; Alvarez, César; Gil, José L; Revilla, José A
2012-11-30
Data on the 95th and 90th percentiles of bacteriological quality indicators are used to classify bathing waters in Europe, according to the requirements of Directive 2006/7/EC. However, percentile values and consequently, classification of bathing waters depend both on sampling effort and sample-size, which may undermine an appropriate assessment of bathing water classification. To analyse the influence of sampling effort and sample size on water classification, a bootstrap approach was applied to 55 bacteriological quality datasets of several beaches in the Balearic Islands (Spain). Our results show that the probability of failing the regulatory standards of the Directive is high when sample size is low, due to a higher variability in percentile values. In this way, 49% of the bathing waters reaching an "Excellent" classification (95th percentile of Escherichia coli under 250 cfu/100 ml) can fail the "Excellent" regulatory standard due to sampling strategy, when 23 samples per season are considered. This percentage increases to 81% when 4 samples per season are considered. "Good" regulatory standards can also be failed in bathing waters with an "Excellent" classification as a result of these sampling strategies. The variability in percentile values may affect bathing water classification and is critical for the appropriate design and implementation of bathing water Quality Monitoring and Assessment Programs. Hence, variability of percentile values should be taken into account by authorities if an adequate management of these areas is to be achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.
Mixing Phenomena in a Bottom Blown Copper Smelter: A Water Model Study
NASA Astrophysics Data System (ADS)
Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Akbar Rhamdhani, M.; Nguyen, Anh; Zhao, Baojun
2015-03-01
The first commercial bottom blown oxygen copper smelting furnace has been installed and operated at Dongying Fangyuan Nonferrous Metals since 2008. Significant advantages have been demonstrated in this technology mainly due to its bottom blown oxygen-enriched gas. In this study, a scaled-down 1:12 model was set up to simulate the flow behavior for understanding the mixing phenomena in the furnace. A single lance was used in the present study for gas blowing to establish a reliable research technique and quantitative characterisation of the mixing behavior. Operating parameters such as horizontal distance from the blowing lance, detector depth, bath height, and gas flow rate were adjusted to investigate the mixing time under different conditions. It was found that when the horizontal distance between the lance and detector is within an effective stirring range, the mixing time decreases slightly with increasing the horizontal distance. Outside this range, the mixing time was found to increase with increasing the horizontal distance and it is more significant on the surface. The mixing time always decreases with increasing gas flow rate and bath height. An empirical relationship of mixing time as functions of gas flow rate and bath height has been established first time for the horizontal bottom blowing furnace.
Compact, single-tube scanning tunneling microscope with thermoelectric cooling.
Jobbins, Matthew M; Agostino, Christopher J; Michel, Jolai D; Gans, Ashley R; Kandel, S Alex
2013-10-01
We have designed and built a scanning tunneling microscope with a compact inertial-approach mechanism that fits inside the piezoelectric scanner tube. Rigid construction allows the microscope to be operated without the use of external vibration isolators or acoustic enclosures. Thermoelectric cooling and a water-ice bath are used to increase temperature stability when scanning under ambient conditions.
1989-12-15
epidermal surfaces were exposed to ambient air (220C) during the entire length of the experiment. Penetration of [3H]PbTx-3 into skin layers and receptor...bathed by the receptor fluid and the epidermal surface was exposed to ambient conditions in an en- vironmental chamber. Temperature and relative...DMSO or water. The epidermal surfaces were exposed to ambient conditions in the environmental chamber. In order to determine if constituents leaching
Ultrasonically promoted nitrolysis of DAPT to HMX in ionic liquid.
Hua, Qian; Zhiwen, Ye; Chunxu, Lv
2008-04-01
The present work aims at developing a new process to synthesize HMX from DAPT using ultrasound in ionic liquid. Reaction has been carried out in ultrasonic bath, effect of various parameters such as presence and absence of ultrasound, volume and type of solvent, temperature, concentration of nitrating agent has been investigated with an aim of obtaining the optimum conditions for the synthesis of HMX. It was observed that ultrasonically promoted nitroylsis of DAPT to HMX has exhibited significant enhancement in yield at ambient condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Seogjoo, E-mail: sjang@qc.cuny.edu
2016-06-07
This work provides a detailed derivation of a generalized quantum Fokker-Planck equation (GQFPE) appropriate for photo-induced quantum dynamical processes. The path integral method pioneered by Caldeira and Leggett (CL) [Physica A 121, 587 (1983)] is extended by utilizing a nonequilibrium influence functional applicable to different baths for the ground and the excited electronic states. Both nonequilibrium and non-Markovian effects are accounted for consistently by expanding the paths in the exponents of the influence functional up to the second order with respect to time. This procedure results in approximations involving only single time integrations for the exponents of the influence functionalmore » but with additional time dependent boundary terms that have been ignored in previous works. The boundary terms complicate the derivation of a time evolution equation but do not affect position dependent physical observables or the dynamics in the steady state limit. For an effective density operator with the boundary terms factored out, a time evolution equation is derived, through short time expansion of the effective action and Gaussian integration in analytically continued complex domain of space. This leads to a compact form of the GQFPE with time dependent kernels and additional terms, which renders the resulting equation to be in the Dekker form [Phys. Rep. 80, 1 (1981)]. Major terms of the equation are analyzed for the case of Ohmic spectral density with Drude cutoff, which shows that the new GQFPE satisfies the positive definiteness condition in medium to high temperature limit. Steady state limit of the GQFPE is shown to approach the well-known expression derived by CL in the high temperature and Markovian bath limit and also provides additional corrections due to quantum and non-Markovian effects of the bath.« less
The Mechanism of Isotonic Water Transport
Diamond, Jared M.
1964-01-01
The mechanism by which active solute transport causes water transport in isotonic proportions across epithelial membranes has been investigated. The principle of the experiments was to measure the osmolarity of the transported fluid when the osmolarity of the bathing solution was varied over an eightfold range by varying the NaCl concentration or by adding impermeant non-electrolytes. An in vitro preparation of rabbit gall bladder was suspended in moist oxygen without an outer bathing solution, and the pure transported fluid was collected as it dripped off the serosal surface. Under all conditions the transported fluid was found to approximate an NaCl solution isotonic to whatever bathing solution used. This finding means that the mechanism of isotonic water transport in the gall bladder is neither the double membrane effect nor co-diffusion but rather local osmosis. In other words, active NaCl transport maintains a locally high concentration of solute in some restricted space in the vicinity of the cell membrane, and water follows NaCl in response to this local osmotic gradient. An equation has been derived enabling one to calculate whether the passive water permeability of an organ is high enough to account for complete osmotic equilibration of actively transported solute. By application of this equation, water transport associated with active NaCl transport in the gall bladder cannot go through the channels for water flow under passive conditions, since these channels are grossly too impermeable. Furthermore, solute-linked water transport fails to produce the streaming potentials expected for water flow through these passive channels. Hence solute-linked water transport does not occur in the passive channels but instead involves special structures in the cell membrane, which remain to be identified. PMID:14212146
Statistical Contact Model for Confined Molecules
NASA Astrophysics Data System (ADS)
Santamaria, Ruben; de la Paz, Antonio Alvarez; Roskop, Luke; Adamowicz, Ludwik
2016-08-01
A theory that describes in a realistic form a system of atoms under the effects of temperature and confinement is presented. The theory departs from a Lagrangian of the Zwanzig type and contains the main ingredients for describing a system of atoms immersed in a heat bath that is also formed by atoms. The equations of motion are derived according to Lagrangian mechanics. The application of statistical mechanics to describe the bulk effects greatly reduces the complexity of the equations. The resultant equations of motion are of the Langevin type with the viscosity and the temperature of the heat reservoir able to influence the trajectories of the particles. The pressure effects are introduced mechanically by using a container with an atomic structure immersed in the heat bath. The relevant variables that determine the equation of state are included in the formulation. The theory is illustrated by the derivation of the equation of state for a system with 76 atoms confined inside of a 180-atom fullerene-like cage that is immersed in fluid forming the heat bath at a temperature of 350 K and with the friction coefficient of 3.0 {ps}^{-1}. The atoms are of the type believed to form the cores of the Uranus and Neptune planets. The dynamic and the static pressures of the confined system are varied in the 3-5 KBar and 2-30 MBar ranges, respectively. The formulation can be equally used to analyze chemical reactions under specific conditions of pressure and temperature, determine the structure of clusters with their corresponding equation of state, the conditions for hydrogen storage, etc. The theory is consistent with the principles of thermodynamics and it is intrinsically ergodic, of general use, and the first of this kind.
NASA Astrophysics Data System (ADS)
Jang, Seogjoo
2016-06-01
This work provides a detailed derivation of a generalized quantum Fokker-Planck equation (GQFPE) appropriate for photo-induced quantum dynamical processes. The path integral method pioneered by Caldeira and Leggett (CL) [Physica A 121, 587 (1983)] is extended by utilizing a nonequilibrium influence functional applicable to different baths for the ground and the excited electronic states. Both nonequilibrium and non-Markovian effects are accounted for consistently by expanding the paths in the exponents of the influence functional up to the second order with respect to time. This procedure results in approximations involving only single time integrations for the exponents of the influence functional but with additional time dependent boundary terms that have been ignored in previous works. The boundary terms complicate the derivation of a time evolution equation but do not affect position dependent physical observables or the dynamics in the steady state limit. For an effective density operator with the boundary terms factored out, a time evolution equation is derived, through short time expansion of the effective action and Gaussian integration in analytically continued complex domain of space. This leads to a compact form of the GQFPE with time dependent kernels and additional terms, which renders the resulting equation to be in the Dekker form [Phys. Rep. 80, 1 (1981)]. Major terms of the equation are analyzed for the case of Ohmic spectral density with Drude cutoff, which shows that the new GQFPE satisfies the positive definiteness condition in medium to high temperature limit. Steady state limit of the GQFPE is shown to approach the well-known expression derived by CL in the high temperature and Markovian bath limit and also provides additional corrections due to quantum and non-Markovian effects of the bath.
Assessing self-reported use of new psychoactive substances: The impact of gate questions.
Palamar, Joseph J; Acosta, Patricia; Calderón, Fermín Fernández; Sherman, Scott; Cleland, Charles M
2017-09-01
New psychoactive substances (NPS) continue to emerge; however, few surveys of substance use ask about NPS use. Research is needed to determine how to most effectively query use of NPS and other uncommon drugs. To determine whether prevalence of self-reported lifetime and past-year use differs depending on whether or not queries about NPS use are preceded by "gate questions." Gate questions utilize skip-logic, such that only a "yes" response to the use of specific drug class is followed by more extensive queries of drug use in that drug class. We surveyed 1,048 nightclub and dance festival attendees (42.6% female) entering randomly selected venues in New York City in 2016. Participants were randomized to gate vs. no gate question before each drug category. Analyses focus on eight categories classifying 145 compounds: NBOMe, 2C, DOx, "bath salts" (synthetic cathinones), other stimulants, tryptamines, dissociatives, and non-phenethylamine psychedelics. Participants, however, were asked about specific "bath salts" regardless of their response to the gate question to test reliability. We examined whether prevalence of use of each category differed by gate condition and whether gate effects were moderated by participant demographics. Prevalence of use of DOx, other stimulants, and non-phenethylamine psychedelics was higher without a gate question. Gate effects for other stimulants and non-phenethylamine psychedelics were larger among white participants and those attending parties less frequently. Almost one in ten (9.3%) participants reporting no "bath salt" use via the gate question later reported use of a "bath salt" such as mephedrone, methedrone, or methylone. Omitting gate questions may improve accuracy of data collected via self-report.
NASA Astrophysics Data System (ADS)
Loukil, N.; Feki, M.
2017-07-01
Zn-Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn-Mn co-deposition. The electrochemical results show that with increasing Mn2+ ions concentration in the electrolytic bath, Mn2+ reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn-Mn deposits. A dimensionless graph model was used to analyze the effect of Mn2+ ions concentration on Zn-Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn2+ concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn2+ ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn-Mn coatings. It was found that the Mn content increases with increasing the applied current density jimp and Mn2+ ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn-Mn coatings. The phase structure and surface morphology of Zn-Mn deposits are characterized by means of X-ray diffraction analysis and Scanning Electron Microscopy (SEM), respectively. The Zn-Mn deposited at low current density is tri-phasic and consisting of η-Zn, ζ-MnZn13 and hexagonal close packed ε-Zn-Mn. An increase in current density leads to a transition from crystalline to amorphous structure, arising from the hydroxide inclusions in the Zn-Mn coating at high current density.
NASA Astrophysics Data System (ADS)
Shimodozono, Megumi; Matsumoto, Shuji; Ninomiya, Koji; Miyata, Ryuji; Ogata, Atsuko; Etoh, Seiji; Watanabe, Satoshi; Kawahira, Kazumi
2012-09-01
To preliminarily assess the acute effects of a single warm -water bath (WWB) on serum adipokine activity, we measured serum adiponectin, leptin and other metabolic profiles before, immediately after and 30 minutes after WWB in seven healthy male volunteers (mean age, 39.7 ± 6.0 years; mean body mass index, 21.6 ± 1.8 kg/m2). The subjects were immersed in tap water at 41°C for 10 minutes. Two weeks later, the same subjects underwent a single WWB with a bath additive that included inorganic salts and carbon dioxide (WWB with ISCO2) by the same protocol as for the first WWB. Leptin levels significantly increased immediately after WWB with tap water and ISCO2 (both P < 0.05), and remained significantly higher than those at baseline even 30 minutes after WWB with tap water ( P < 0.05). Adiponectin levels showed a slight, but not significant, increase both immediately after and 30 minutes after WWB with tap water or ISCO2. Some parameters, such as serum total cholesterol, red blood cell count, hemoglobin and hematocrit significantly increased immediately after WWB with tap water or ISCO2 (all P < 0.05), but they all returned to the baseline levels 30 minutes after bathing under both conditions. The sublingual temperature rose significantly after 10 minutes of WWB with tap water (0.96 ± 0.16°C relative to baseline, P < 0.01) and after the same duration of WWB with ISCO2 (1.24 ± 0.34°C relative to baseline, P < 0.01). These findings suggest that a single WWB at 41°C for 10 minutes may modulate leptin and adiponectin profiles in healthy men.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, L.C.; Daniels, J.I.
1991-01-31
Dermal disease can be a significant cause of morbidity among soldiers in a combat setting. For example, among American combat troops in Vietnam, disability from skin disease was one of the single most important medical causes of man-days lost from combat. Currently, the US Army makes shower or bath facilities available to soldiers in the field on a weekly basis. US Army after-action reports and anecdotal descriptions from the field indicate that this may not be an optimal regimen for the maintenance of personal hygiene, especially with respect to diseases of the skin. Determination of the optimal frequency of showeringmore » or bathing for soldiers in an combat setting is complicated by the fact that soldiers in the US Army may be involved in field exercises or combat in many different areas of the world with a variety of climatic conditions. Although certain aspects of the role of environmental factors in the incidence and severity of dermal disease have been documented, the role of hygiene in the potential mitigation of these effects has not been evaluated. The present project entails a comprehensive review and analysis of available literature in order to determine the health impact of shower/bath frequency for soldiers in a combat setting. An integral component of this work is an evaluation of the impact of climate, and microclimate produced by clothing, on the type, frequency, and severity of skin disease. A separate but related area of interest involves evaluating whether the use of antimicrobial soaps or similar products minimize the incidence of skin infections by decreasing populations of disease-causing microorganisms on the skin. 13 refs., 2 figs., 2 tabs.« less
Gait Speed Predicts Incident Disability: A Pooled Analysis
Patel, Kushang V.; Rosano, Caterina; Rubin, Susan M.; Satterfield, Suzanne; Harris, Tamara; Ensrud, Kristine; Orwoll, Eric; Lee, Christine G.; Chandler, Julie M.; Newman, Anne B.; Cauley, Jane A.; Guralnik, Jack M.; Ferrucci, Luigi; Studenski, Stephanie A.
2016-01-01
Background. Functional independence with aging is an important goal for individuals and society. Simple prognostic indicators can inform health promotion and care planning, but evidence is limited by heterogeneity in measures of function. Methods. We performed a pooled analysis of data from seven studies of 27,220 community-dwelling older adults aged 65 or older with baseline gait speed, followed for disability and mortality. Outcomes were incident inability or dependence on another person in bathing or dressing; and difficulty walking ¼ – ½ mile or climbing 10 steps within 3 years. Results. Participants with faster baseline gait had lower rates of incident disability. In subgroups (defined by 0.2 m/s-wide intervals from <0.4 to ≥1.4 m/s) with increasingly greater gait speed, 3-year rates of bathing or dressing dependence trended from 10% to 1% in men, and from 15% to 1% in women, while mobility difficulty trended from 47% to 4% in men and 40% to 6% in women. The age-adjusted relative risk ratio per 0.1 m/s greater speed for bathing or dressing dependence in men was 0.68 (0.57–0.81) and in women: 0.74 (0.66–0.82); for mobility difficulty, men: 0.75 (0.68–0.82), women: 0.73 (0.67–0.80). Results were similar for combined disability and mortality. Effects were largely consistent across subgroups based on age, gender, race, body mass index, prior hospitalization, and selected chronic conditions. In the presence of multiple other risk factors for disability, gait speed significantly increased the area under the receiver operator characteristic curve. Conclusion. In older adults, gait speed predicts 3 year incidence of bathing or dressing dependence, mobility difficulty, and a composite outcome of disability and mortality. PMID:26297942
Quantum refrigerators and the third law of thermodynamics.
Levy, Amikam; Alicki, Robert; Kosloff, Ronnie
2012-06-01
The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined.
[The use of sodium chloride baths in patients with chronic bronchitis].
Anisimkina, A N; Aĭrapetova, N S; Davydova, O B; Doronina, Iu V; Derevnina, N A; Gontar', E V
1996-01-01
80 patients with chronic bronchitis took baths with sodium chloride concentration 20, 40, 60 g/l and temperature 37-38 degrees C. The baths produced a positive effect on central and regional hemodynamics, reduced inflammation and sensitization.
Brown, S.B.; Brown, L.R.; Brown, M.; Moore, K.; Villella, M.; Fitzsimons, J.D.; Williston, B.; Honeyfield, D.C.; Hinterkopf, J.P.; Tillitt, D.E.; Zajicek, J.L.; Wolgamood, M.
2005-01-01
Protocols used for therapeutic thiamine treatments in salmonine early mortality syndrome (EMS) were investigated in lake trout Salvelinus namaycush and coho salmon Oncorhynchus kisutch to assess their efficacy. At least 500 mg of thiamine HCl/L added to egg baths was required to produce a sustained elevation of thiamine content in lake trout eggs. Thiamine uptake from egg baths was not influenced by a pH ranging from 5.5 to 7.5 or by a water hardness between 2 and 200 mg CaCO3/L. There was poorer thiamine uptake when initial thiamine levels were low, suggesting that current treatment regimes may not be as effective when thiamine levels are severely depressed and that higher treatment doses are necessary. Exposure of eggs to the more lipid-soluble thiamine analog allithiamine (1,000 mg/L) during water hardening increased egg thiamine levels by 1.5-2.5 nmol/g and was completely effective at reversing EMS. Another more lipid-soluble thiamine analog, benfotiamine (100 mg/L), reduced EMS but did not produce detectable increases in egg thiamine content. Although benfotiamine may be more effective than thiamine at mitigating EMS, it is more expensive than thiamine HCl or allithiamine. In addition, there still needs to be a more thorough examination of dose-response relationships. We conclude that allithiamine is an alternative to the use of thiamine in egg baths as a therapeutic treatment for salmonid EMS. ?? Copyright by the American Fisheries Society 2005.
Adiabatic Compression Sensitivity of AF-M315E
2015-07-01
the current work is to expand the knowledge base from previous experiments completed at AFRL for AF-M315E in stainless steel U-tubes at room...addressed, to some degree, with the use of clamps and a large stainless steel plate to dissipate any major vibrations. A large preheated bath of 50:50 v/v...autocatalytic chain decomposition in the propellant. This exothermic decomposition decreases the fume -off initiation temperature of the propellant and its
Cleaning and activation of beryllium-copper electron multiplier dynodes.
NASA Technical Reports Server (NTRS)
Pongratz, M. B.
1972-01-01
Description of a cleaning and activation procedure followed in preparing beryllium-copper dynodes for electron multipliers used in sounding-rocket experiments to detect auroral electrons. The initial degreasing step involved a 5-min bath in trichloroethylene in an ultrasonic cleaner. This was followed by an ultrasonic rinse in methanol and by a two-step acid pickling treatment to remove the oxides. Additional rinsing in water and methanol was followed by activation in a stainless-steel RF induction oven.
Peterson, Lance R.; Boehm, Susan; Beaumont, Jennifer L.; Patel, Parul A.; Schora, Donna M.; Peterson, Kari E.; Burdsall, Deborah; Hines, Carolyn; Fausone, Maureen; Robicsek, Ari; Smith, Becky A.
2016-01-01
Background Antibiotic resistance is a challenge in Long Term Care Facilities (LTCFs). The objective was to demonstrate that a novel, minimally invasive program not interfering with activities of daily living (ADL) or socialization could lower methicillin-resistant Staphylococcus aureus (MRSA) disease. Methods This was a prospective, cluster-randomized, non-blinded trial initiated at three LTCFs. During Year 1 units were stratified by type of care and randomized to intervention or control. In Year 2 all units were converted to intervention consisting of universal decolonization using intranasal mupirocin and a chlorhexidine bath performed twice (two decolonization/bathing cycles one month apart) at the start of the intervention period. Subsequently, after initial decolonization, all admissions were screened on site using real-time PCR and those MRSA positive were decolonized, but not isolated. Units received annual instruction on hand hygiene. Enhanced bleach wipe cleaning of flat surfaces was done every four months. Results 16,773 tests were performed. The MRSA infection rate decreased 65% between the baseline (44 infections during 365,809 patient-days) and Year 2 (12 during 287,847 patient-days; p<0.001); significant reduction was observed at each of the LTCFs (p<0.03). Discussion and Conclusion On-site MRSA surveillance with targeted decolonization resulted in a significant decrease in clinical MRSA infection among LTCF residents. PMID:27492790
Additive Benefits of Twice Forest Bathing Trips in Elderly Patients with Chronic Heart Failure.
Mao, Gen Xiang; Cao, Yong Bao; Yang, Yan; Chen, Zhuo Mei; Dong, Jian Hua; Chen, Sha Sha; Wu, Qing; Lyu, Xiao Ling; Jia, Bing Bing; Yan, Jing; Wang, Guo Fu
2018-02-01
Chronic heart failure (CHF), a clinical syndrome resulting from the consequences of various cardiovascular diseases (CVDs), is increasingly becoming a global cause of morbidity and mortality. We had earlier demonstrated that a 4-day forest bathing trip can provide an adjunctive therapeutic influence on patients with CHF. To further investigate the duration of the impact and the optimal frequency of forest bathing trips in patients with CHF, we recruited those subjects who had experienced the first forest bathing trip again after 4 weeks and randomly categorized them into two groups, namely, the urban control group (city) and the forest bathing group (forest). After a second 4-day forest bathing trip, we observed a steady decline in the brain natriuretic peptide levels, a biomarker of heart failure, and an attenuated inflammatory response as well as oxidative stress. Thus, this exploratory study demonstrated the additive benefits of twice forest bathing trips in elderly patients with CHF, which could further pave the way for analyzing the effects of such interventions in CVDs. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
NASA Astrophysics Data System (ADS)
Sofiah, A. G. N.; Kananathan, J.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.
2017-10-01
This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased. From the physical properties properties analysis, it can be concluded that deposition bath temperature influence the physical properties of Ni nanowires.
Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Zhu, Lili; Bai, Shuming
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly inmore » the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.« less
5. UNIT VENTILATOR, MEN'S BATH HALL, SHOWING POSITION AGAINST WALL ...
5. UNIT VENTILATOR, MEN'S BATH HALL, SHOWING POSITION AGAINST WALL ABOVE THE BATHS. - Hot Springs National Park, Bathhouse Row, Ozark Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
New system for bathing bedridden patients
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Staley, R. A.; Payne, P. A.
1973-01-01
Multihead shower facility can be used with minimal patient handling. Waterproof curtain allows patient to bathe with his head out of shower. He can move completely inside shower to wash his face and hair. Main advantage of shower system is time saved in giving bath.
Eubank, L.D.
1958-08-12
Improved flux baths are described for use in conjunction with hot dipped coatings for uranium. The flux bath consists of molten alkali metal, or alkaline earth metal halides. One preferred embodiment comprises a bath containing molten KCl, NaCl, and LiCl in proportions approximating the triple eutectic.
Karpukhin, I V; Li, A A; Gusev, M A
2009-01-01
The paper reports a review of up-to-date methods for the use of white turpentine bath emulsion and yellow turpentine solution in the treatment of chronic prostatitis complicated by excretory pathospermia. The results of bath therapy are presented. It is shown that the efficiency of white turpentine bath emulsion amounted to 69.7% compared with 88.3% in patients treated with the use of yellow turpentine solution.
Solder dross removal apparatus
NASA Technical Reports Server (NTRS)
Webb, Winston S. (Inventor)
1990-01-01
An automatic dross removal apparatus is disclosed for removing dross from the surface of a solder bath in an automated electric component handling system. A rotatable wiper blade is positioned adjacent the solder bath which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit causes a motor to rotate the wiper arm one full rotational cycle each time a pulse is received from a robot controller as a component approaches the solder bath.
Gibson, William; Moss, Penny; Cheng, Tak Ho; Garnier, Alexandre; Wright, Anthony; Wand, Benedict M
2018-03-01
Many factors interact to influence threat perception and the subsequent experience of pain. This study investigated the effect of observing pain (extrinsic threat) and intrinsic threat of pain to oneself on pressure pain threshold (PPT). Forty socially connected pairs of healthy volunteers were threat-primed and randomly allocated to experimental or control roles. An experimental pain modulation paradigm was applied, with non-nociceptive threat cues used as conditioning stimuli. In substudy 1, the extrinsic threat to the experimental participant was observation of the control partner in pain. The control participant underwent hand immersion in noxious and non-noxious water baths in randomized order. Change in the observing participant's PPT from baseline to mid- and postimmersion was calculated. A significant interaction was found for PPT between conditions and test time (F 2,78 = 24.9, P < .005). PPT increased by 23.6% ± 19.3% between baseline and during hand immersion (F 1,39 = 43.7, P < .005). Substudy 2 investigated threat of imminent pain to self. After a 15-minute break, the experimental participant's PPT was retested ("baseline 2"). Threat was primed by suggestion of whole arm immersion in an icier, larger water bath. PPT was tested immediately before anticipated arm immersion, after which the experiment ended. A significant increase in PPT between "baseline 2" and "pre-immersion" was seen (t = -7.6, P = .005), a pain modulatory effect of 25.8 ± 20.7%. Extrinsic and intrinsic threat of pain, in the absence of any afferent input therefore influences pain modulation. This may need to be considered in studies that use noxious afferent input with populations who show dysfunctional pain modulation. The effect on endogenous analgesia of observing another's pain and of threat of pain to oneself was investigated. Extrinsic as well as intrinsic threat cues, in the absence of any afferent input, increased pain thresholds, suggesting that mere threat of pain may initiate analgesic effects in traditional noxious experimental paradigms. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Effect of sauna bathing and beer ingestion on plasma concentrations of purine bases.
Yamamoto, Tetsuya; Moriwaki, Yuji; Ka, Tuneyoshi; Takahashi, Sumio; Tsutsumi, Zenta; Cheng, Jidong; Inokuchi, Taku; Yamamoto, Asako; Hada, Toshikazu
2004-06-01
To determine whether sauna bathing alone or in combination with beer ingestion increases the plasma concentration of uric acid, 5 healthy subjects were tested. Urine and plasma measurements were performed before and after each took a sauna bath, ingested beer, and ingested beer just after taking a sauna bath, with a 2-week interval between each activity. Sauna bathing alone increased the plasma concentrations of uric acid and oxypurines (hypoxanthine and xanthine), and decreased the urinary and fractional excretion of uric acid, while beer ingestion alone increased the plasma concentrations and urinary excretion of uric acid and oxypurines. A combination of both increased the plasma concentration of uric acid and oxypurines, and decreased the urinary and fractional excretion of uric acid, with an increase in the urinary excretion of oxypurines. The increase in plasma concentration of uric acid with the combination protocol was not synergistic as compared to the sum of the increases by each alone. Body weight, urine volume, and the urinary excretion of sodium and chloride via dehydration were decreased following sauna bathing alone. These results suggest that sauna bathing had a relationship with enhanced purine degradation and a decrease in the urinary excretion of uric acid, leading to an increase in the plasma concentration of uric acid. Further, we concluded that extracellular volume loss may affect the common renal transport pathway of uric acid and xanthine. Therefore, it is recommended that patients with gout refrain from drinking alcoholic beverages, including beer, after taking a sauna bath, since the increase in plasma concentration of uric acid following the combination of sauna bathing and beer ingestion was additive.
Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming
NASA Astrophysics Data System (ADS)
Taylan, Fatih
2011-04-01
In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.
Environmental geology of Bath, England
NASA Astrophysics Data System (ADS)
Kellaway, G. A.
1995-10-01
The hot springs of Bath, England, have been of importance to man for hundreds of years. It was a famous spa in Roman times. Subsequently, the springs were used during the 17th through the 20th centuries and extensive urban and commercial properties were developed at Bath using the water for medical and tourist-oriented activities. With urban and commercial development in the area, man's impact on the environment was substantial and typical environmental problems included pollution, land subsidence, or stability that effected construction, drainage, highways, and canals. During the growth of Bath in the 18th and 19th centuries these environmental problems were described by geologist William Smith and Joseph Townsend. Bath and vicinity provides a unique example of environmental geoscience.
Code of Federal Regulations, 2012 CFR
2012-07-01
... electroplating tanks using a trivalent chromium bath. (1) Each owner or operator of an existing, new, or reconstructed decorative chromium electroplating tank that uses a trivalent chromium bath that incorporates a... ingredient in the trivalent chromium bath components purchased from vendors. (2) Each owner or operator of an...
Electrodeposition of molten silicon
De Mattei, Robert C.; Elwell, Dennis; Feigelson, Robert S.
1981-01-01
Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.
Bath salts: they are not what you think.
Wieland, Diane M; Halter, Margaret J; Levine, Ciara
2012-02-01
Psychoactive bath salts are a relatively new group of designer drugs sold as tablets, capsules, or powder and pur-chased in places such as tobacco and convenience stores, gas stations, head shops, and the Internet. Bath salts are stimulant agents that mimic cocaine,lysergic acid diethylamide, methamphetamine, or methylenedioxymethamphetamine (ecstasy). The most common bath salts are the cathinone derivatives 3,4-methylenedioxypyrovalerone(MDPV), 4-methylmethcathinone(mephedrone), and 3,4-methylenedioxy-N-methylcathinone (methylone). The drugs cause intense stimulation, eu-phoria, elevated mood, and a pleasurable "rush" Tachycardia, hypertension,peripheral constriction, chest pain, hallucinations, paranoia, erratic behavior,inattention, lack of memory of substance use, and psychosis have been observed in those who have used bath salts. The U.S. Drug Enforcement Administration recently exercised an emergency authority to name three key ingredients in bath salts as Schedule I, thereby making them illegal to possess or sell in the United States. Nursing implications related to both clinical and educational settings are discussed.
Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath
NASA Astrophysics Data System (ADS)
Yanai, T.; Shiraishi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H.
2015-05-01
We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2.4H2O, and CoCl2.6H2O. The composition of the plated films depended on the amount of FeCl2.4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency.
Effect of Bathroom Aids and Age on Balance Control During Bathing Transfers.
King, Emily C; Novak, Alison C
Bathroom assistive devices are used to improve safety during bathing transfers, but biomechanical evidence to support clinical recommendations is lacking. This study evaluated the effectiveness of common bathroom aids in promoting balance control during bathing transfers. Twenty-six healthy adults (12 young, 14 older) stepped into and out of a slippery bathtub while using a vertical grab bar on the side wall, a horizontal grab bar on the back wall, a bath mat, a side wall touch, or no assistance. Balance control was characterized using center of pressure measures and showed greater instability for older adults. The vertical grab bar and wall touch resulted in the safest (best controlled) transfers. The bath mat provided improved balance control in the axis parallel to the bathtub rim but was equivalent to no assistance perpendicular to the rim, in the direction of obstacle crossing. These results can support clinical recommendations for safe bathing transfers. Copyright © 2017 by the American Occupational Therapy Association, Inc.
Reproducible insulin secretion from isolated rat pancreas preparations using an organ bath.
Morita, Asuka; Ouchi, Motoshi; Terada, Misao; Kon, Hiroe; Kishimoto, Satoko; Satoh, Keitaro; Otani, Naoyuki; Hayashi, Keitaro; Fujita, Tomoe; Inoue, Ken-Ichi; Anzai, Naohiko
2018-02-09
Diabetes mellitus is a lifestyle-related disease that is characterized by inappropriate or diminished insulin secretion. Ex vivo pharmacological studies of hypoglycemic agents are often conducted using perfused pancreatic preparations. Pancreas preparations for organ bath experiments do not require cannulation and are therefore less complex than isolated perfused pancreas preparations. However, previous research has generated almost no data on insulin secretion from pancreas preparations using organ bath preparations. The purpose of this study was to investigate the applicability of isolated rat pancreas preparations using the organ bath technique in the quantitative analysis of insulin secretion from β-cells. We found that insulin secretion significantly declined during incubation in the organ bath, whereas it was maintained in the presence of 1 µM GLP-1. Conversely, amylase secretion exhibited a modest increase during incubation and was not altered in the presence of GLP-1. These results demonstrate that the pancreatic organ bath preparation is a sensitive and reproducible method for the ex vivo assessment of the pharmacological properties of hypoglycemic agents.
NASA Astrophysics Data System (ADS)
Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia
2016-04-01
We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.
CURRENT AND EMERGING TECHNOLOGIES FOR EXTENDING THE LIFETIME OF ELECTROLESS NICKEL PLATING BATHS
The waste treatment and rejuvenation of spent electroless nickel baths has attracted a considerable amount of interest from electroplating shops, electroless nickel suppliers, universities and regulatory agencies due to the finite life of the baths and the associated waste that t...
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-finished steel products by the action of molten salt baths other than those containing sodium hydride. (b... the action of molten salt baths containing sodium hydride. (c) The term batch, sheet and plate means... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420.81...
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-finished steel products by the action of molten salt baths other than those containing sodium hydride. (b... the action of molten salt baths containing sodium hydride. (c) The term batch, sheet and plate means... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420.81...
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420.81...-finished steel products by the action of molten salt baths other than those containing sodium hydride. (b) The term salt bath descaling, reducing means the removal of scale from semi-finished steel products by...
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420.81...-finished steel products by the action of molten salt baths other than those containing sodium hydride. (b) The term salt bath descaling, reducing means the removal of scale from semi-finished steel products by...
40 CFR 63.341 - Definitions and nomenclature.
Code of Federal Regulations, 2012 CFR
2012-07-01
... air pollution control device or a chemical fume suppressant, that is used to reduce chromium emissions... trivalent chromium plating baths. For trivalent chromium baths, the bath composition is proprietary in most... to the surface tension. Trivalent chromium means the form of chromium in a valence state of +3...
21 CFR 890.5110 - Paraffin bath.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Paraffin bath. 890.5110 Section 890.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5110 Paraffin bath. (a...
21 CFR 890.5110 - Paraffin bath.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Paraffin bath. 890.5110 Section 890.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5110 Paraffin bath. (a...
21 CFR 890.5110 - Paraffin bath.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Paraffin bath. 890.5110 Section 890.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5110 Paraffin bath. (a...
21 CFR 890.5110 - Paraffin bath.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Paraffin bath. 890.5110 Section 890.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5110 Paraffin bath. (a...
21 CFR 890.5110 - Paraffin bath.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Paraffin bath. 890.5110 Section 890.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5110 Paraffin bath. (a...
Papaioannou, Agelos; Rigas, George; Papastergiou, Panagiotis; Hadjichristodoulou, Christos
2014-12-02
Worldwide, the aim of managing water is to safeguard human health whilst maintaining sustainable aquatic and associated terrestrial, ecosystems. Because human enteric viruses are the most likely pathogens responsible for waterborne diseases from recreational water use, but detection methods are complex and costly for routine monitoring, it is of great interest to determine the quality of coastal bathing water with a minimum cost and maximum safety. This study handles the assessment and modelling of the microbiological quality data of 2149 seawater bathing areas in Greece over 10-year period (1997-2006) by chemometric methods. Cluster analysis results indicated that the studied bathing beaches are classified in accordance with the seasonality in three groups. Factor analysis was applied to investigate possible determining factors in the groups resulted from the cluster analysis, and also two new parameters were created in each group; VF1 includes E. coli, faecal coliforms and total coliforms and VF2 includes faecal streptococci/enterococci. By applying the cluster analysis in each seasonal group, three new groups of coasts were generated, group A (ultraclean), group B (clean) and group C (contaminated). The above analysis is confirmed by the application of discriminant analysis, and proves that chemometric methods are useful tools for assessment and modeling microbiological quality data of coastal bathing water on a large scale, and thus could attribute to effective and economical monitoring of the quality of coastal bathing water in a country with a big number of bathing coasts, like Greece. Significance for public healthThe microbiological protection of coastal bathing water quality is of great interest for the public health authorities as well as for the economy. The present study proves that this protection can be achieved by monitoring only two microbiological parameters, E. coli and faecal streptococci/enterococci instead four microbiological parameters (the two mentioned above plus Total coliforms and Faecal coliforms) that are usually monitored today. As a consequence, countries, especially those with large quantities of coastal bathing sites, can perform microbiological monitoring of their bathing waters by checking only the mentioned two parameters, thus ensuring economies of scale. Thus, funds can be used in other actions to preserve the quality of coastal water and human health. This in turn, would aid in the assessment of the quality of coastal bathing waters and provide a more timely indication of bathing water quality, hence contributing to the immediate health protection of bathers.
1999-04-01
The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. This image shows the isothermal bath and video system for the EDSE in the Microgravity Development Lab (MDL).
67. Building 102, view of electronic switching amplifier (in retracted ...
67. Building 102, view of electronic switching amplifier (in retracted or open position) with video monitor mounted at top to monitor performance and condition of system in oil bath. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
NASA Astrophysics Data System (ADS)
Mathew, Joissy; Devasia, Sebin; Anila, E. I.
2018-04-01
We report the synthesis of polycrystalline ternary (Cd:Zn)S thin films by hydrothermal assisted chemical bath deposition on glass substrates. X-ray diffraction reveals the hexagonal phase of cadmium zinc sulphide (CZS) film with preferred orientation along the (002) plane and the average grain size to be 22.78 nm. SEM image shows clusters of nano fibers grown on the film. The optical band gap obtained from the optical absorption studies using UV-Vis-NIR spectroscopy is 3.4 eV. Broad and asymmetric emission due to the combination of near band edge emission and emission fromintrinsic point defects was observed in the PL spectrum. The filmexhibit photo conductivity under illumination by light from 32 watts halogen bulb. In dark condition, the I-V curve shows non-linear behavior, whereas ohmic behavior under illumination. The Photo response of film was recorded for the light-on and light-off conditions at intervals of 100 seconds when 10V voltage was applied. We observed fast rise and decay of the photocurrent depicting high photosensitivity. This work present a simple way to obtain photo-detectors and will benefit in optical-electron devices manufacture.
Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study
NASA Astrophysics Data System (ADS)
Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang
2018-01-01
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.
Díaz, P; Linares, M B; Egea, M; Auqui, S M; Garrido, M D
2014-12-01
The aim was to study the effect of the incubation method and TBA reagent (concentration/solvent) on yellow pigment interference in meat products. Distillates from red sausage, sucrose, malondialdehyde and a mixture of sucrose-malondialdehyde were reacted with four different TBA solutions at five different temperature/time relations. Two TBA solutions were prepared at 20mM using 90% glacial acetic acid or 3.86% perchloric acid. In addition, an 80mM TBA solution was prepared using distilled water adjusted to pH4 and another using 0.8% TBA in distilled water. The temperature/time relations were: (1) 35min in a boiling water bath; (2) 70°C/30min; (3) 40°C/90min; (4) room temperature (r.t.) (24°C) in dark conditions for 20h; and (5) 60min in a boiling water bath. The results showed that aqueous or diluted acid solutions of TBA reagent and the application of 100°C for less than 1h provided the best conditions to minimize the presence of yellow pigments and maximize pink pigment formation in meat products. Copyright © 2014 Elsevier Ltd. All rights reserved.
7 CFR 3201.62 - Bath products.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Bath products. 3201.62 Section 3201.62 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.62 Bath products. (a)...
7 CFR 3201.62 - Bath products.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Bath products. 3201.62 Section 3201.62 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.62 Bath products. (a)...
7 CFR 3201.62 - Bath products.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Bath products. 3201.62 Section 3201.62 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.62 Bath products. (a)...
Over the last decade electrodialysis has emerged as an effective technique for removing accumulated reactant counterions (sodium and sulfate) and reaction products (orthophosphite) that interfere with the electroless nickel plating process, thus extending bath life by up to 50 me...
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... from semi-finished steel products by the action of molten salt baths other than those containing sodium... products by the action of molten salt baths containing sodium hydride. (c) The term batch, sheet and plate... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420...
40 CFR 63.347 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... paragraph (h)(3) of this section. (i) Reports associated with trivalent chromium baths. The requirements of...) A statement that a trivalent chromium process that incorporates a wetting agent will be used to comply with § 63.342(e); and (iii) The list of bath components that comprise the trivalent chromium bath...
40 CFR 63.347 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraph (h)(3) of this section. (i) Reports associated with trivalent chromium baths. The requirements of...) A statement that a trivalent chromium process that incorporates a wetting agent will be used to comply with § 63.342(e); and (iii) The list of bath components that comprise the trivalent chromium bath...
40 CFR 63.347 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paragraph (h)(3) of this section. (i) Reports associated with trivalent chromium baths. The requirements of...) A statement that a trivalent chromium process that incorporates a wetting agent will be used to comply with § 63.342(e); and (iii) The list of bath components that comprise the trivalent chromium bath...
40 CFR 63.347 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... paragraph (h)(3) of this section. (i) Reports associated with trivalent chromium baths. The requirements of...) A statement that a trivalent chromium process that incorporates a wetting agent will be used to comply with § 63.342(e); and (iii) The list of bath components that comprise the trivalent chromium bath...
40 CFR 63.347 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paragraph (h)(3) of this section. (i) Reports associated with trivalent chromium baths. The requirements of...) A statement that a trivalent chromium process that incorporates a wetting agent will be used to comply with § 63.342(e); and (iii) The list of bath components that comprise the trivalent chromium bath...
20 CFR 654.412 - Bathing, laundry, and handwashing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Bathing, laundry, and handwashing. (a) Bathing and handwashing facilities, supplied with hot and cold... floor drains. Except in individual family units, separate shower facilities shall be provided each sex. When common use shower facilities for both sexes are in the same building they shall be separated by a...
20 CFR 654.412 - Bathing, laundry, and handwashing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Bathing, laundry, and handwashing. (a) Bathing and handwashing facilities, supplied with hot and cold... floor drains. Except in individual family units, separate shower facilities shall be provided each sex. When common use shower facilities for both sexes are in the same building they shall be separated by a...
20 CFR 654.412 - Bathing, laundry, and handwashing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Bathing, laundry, and handwashing. (a) Bathing and handwashing facilities, supplied with hot and cold... floor drains. Except in individual family units, separate shower facilities shall be provided each sex. When common use shower facilities for both sexes are in the same building they shall be separated by a...
20 CFR 654.412 - Bathing, laundry, and handwashing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Bathing, laundry, and handwashing. (a) Bathing and handwashing facilities, supplied with hot and cold... floor drains. Except in individual family units, separate shower facilities shall be provided each sex. When common use shower facilities for both sexes are in the same building they shall be separated by a...
20 CFR 654.412 - Bathing, laundry, and handwashing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Bathing, laundry, and handwashing. (a) Bathing and handwashing facilities, supplied with hot and cold... floor drains. Except in individual family units, separate shower facilities shall be provided each sex. When common use shower facilities for both sexes are in the same building they shall be separated by a...
30 CFR 75.1712 - Bath houses and toilet facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bath houses and toilet facilities. 75.1712 Section 75.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712 Bath houses...
36 CFR 21.11 - Redemption of bath tickets.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Redemption of bath tickets. 21.11 Section 21.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.11 Redemption of bath tickets. Unused...
36 CFR 21.11 - Redemption of bath tickets.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Redemption of bath tickets. 21.11 Section 21.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.11 Redemption of bath tickets. Unused...
36 CFR 21.11 - Redemption of bath tickets.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Redemption of bath tickets. 21.11 Section 21.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.11 Redemption of bath tickets. Unused...
36 CFR 21.11 - Redemption of bath tickets.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Redemption of bath tickets. 21.11 Section 21.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.11 Redemption of bath tickets. Unused...
36 CFR 21.11 - Redemption of bath tickets.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Redemption of bath tickets. 21.11 Section 21.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.11 Redemption of bath tickets. Unused...
30 CFR 75.1712 - Bath houses and toilet facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bath houses and toilet facilities. 75.1712 Section 75.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712 Bath houses...
21 CFR 740.17 - Foaming detergent bath products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Foaming detergent bath products. 740.17 Section 740.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.17 Foaming detergent bath products...
21 CFR 740.17 - Foaming detergent bath products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Foaming detergent bath products. 740.17 Section 740.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.17 Foaming detergent bath products...
21 CFR 740.17 - Foaming detergent bath products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Foaming detergent bath products. 740.17 Section 740.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.17 Foaming detergent bath products...
21 CFR 740.17 - Foaming detergent bath products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Foaming detergent bath products. 740.17 Section 740.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.17 Foaming detergent bath products...
21 CFR 740.17 - Foaming detergent bath products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Foaming detergent bath products. 740.17 Section 740.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.17 Foaming detergent bath products...
1985-01-01
447 John D. Crowley, Bath Iron Works Corp. 01W Spray Ice Bonding to Superstructure Coatings ..... ............... ... 453 Prof. W.M...20362 John Crowley (202) 692-1304 Bath Iron Works 700 Wastington Street John F. Carter Bath , ME 04530 TIAC (202) 443-3311, Ext. 3709 4999 St. Catherine...22031 vi, (703) 698-6225 David Moore Naval Sea Systems Command Winn Price Code SEA 55X24 Bath Iron Works Washington, DC 20362 700 Washington Street (202
Klemenkov, S V; Davydova, O B; Levitskiĭ, E F; Chashchin, N F; Sharova, O Ia; Kubushko, I V
1999-01-01
73 patients with ischemic heart disease (IHD) and stable angina pectoris of NYHA class I and II underwent balneotherapy. 43 of them took a course of sodium chloride baths, 30 control patients took common water baths. As shown by spiroveloergometry and Holter monitoring, sodium chloride baths are a good training modality in IHD patients. They enhance muscular performance and coronary heart reserve, reduce the mean 24-h number of ventricular extrasystoles by 49.9%, supraventricular extrasystoles by 57.5%.
Solder dross removal apparatus
NASA Technical Reports Server (NTRS)
Webb, Winston S. (Inventor)
1992-01-01
An automatic dross removal apparatus (10) is disclosed for removing dross from the surface of a solder bath (22) in an automated electric component handling system. A rotatable wiper blade (14) is positioned adjacent the solder bath (22) which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit (34) causes a motor (32) to rotate the wiper arm (14) one full rotational cycle each time a pulse is received from a robot controller (44) as a component approaches the solder bath (22).
Osmotic propulsion: the osmotic motor.
Córdova-Figueroa, Ubaldo M; Brady, John F
2008-04-18
A model for self-propulsion of a colloidal particle--the osmotic motor--immersed in a dispersion of "bath" particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.
NASA Astrophysics Data System (ADS)
Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George
2016-07-01
The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel by Zn-Ti alloys.
Collision models in quantum optics
NASA Astrophysics Data System (ADS)
Ciccarello, Francesco
2017-12-01
Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.
Chen, Lipeng; Gelin, Maxim F; Chernyak, Vladimir Y; Domcke, Wolfgang; Zhao, Yang
2016-12-16
The effect of a dissipative environment on the ultrafast nonadiabatic dynamics at conical intersections is analyzed for a two-state two-mode model chosen to represent the S 2 (ππ*)-S 1 (nπ*) conical intersection in pyrazine (the system) which is bilinearly coupled to infinitely many harmonic oscillators in thermal equilibrium (the bath). The system-bath coupling is modeled by the Drude spectral function. The equation of motion for the reduced density matrix of the system is solved numerically exactly with the hierarchy equation of motion method using graphics-processor-unit (GPU) technology. The simulations are valid for arbitrary strength of the system-bath coupling and arbitrary bath memory relaxation time. The present computational studies overcome the limitations of weak system-bath coupling and short memory relaxation time inherent in previous simulations based on multi-level Redfield theory [A. Kühl and W. Domcke, J. Chem. Phys. 2002, 116, 263]. Time evolutions of electronic state populations and time-dependent reduced probability densities of the coupling and tuning modes of the conical intersection have been obtained. It is found that even weak coupling to the bath effectively suppresses the irregular fluctuations of the electronic populations of the isolated two-mode conical intersection. While the population of the upper adiabatic electronic state (S 2 ) is very efficiently quenched by the system-bath coupling, the population of the diabatic ππ* electronic state exhibits long-lived oscillations driven by coherent motion of the tuning mode. Counterintuitively, the coupling to the bath can lead to an enhanced lifetime of the coherence of the tuning mode as a result of effective damping of the highly excited coupling mode, which reduces the strong mode-mode coupling inherent to the conical intersection. The present results extend previous studies of the dissipative dynamics at conical intersections to the nonperturbative regime of system-bath coupling. They pave the way for future first-principles simulations of femtosecond time-resolved four-wave-mixing spectra of chromophores in condensed phases which are nonperturbative in the system dynamics, the system-bath coupling as well as the field-matter coupling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and emergency operation of safety showers and eye washes; storm water; Department of Transportation (DOT) aerosol leak test bath water from non-continuous overflow baths (batch baths) where no cans have burst from the time of the last water change-out; and on-site laboratories from cleaning analytical...
30 CFR 75.1712 - Bath houses and toilet facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... adequate facilities for the miners to change from the clothes worn underground, to provide for the storing of such clothes from shift to shift, and to provide sanitary and bathing facilities. Sanitary toilet... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Bath houses and toilet facilities. 75.1712...
30 CFR 75.1712 - Bath houses and toilet facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... adequate facilities for the miners to change from the clothes worn underground, to provide for the storing of such clothes from shift to shift, and to provide sanitary and bathing facilities. Sanitary toilet... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Bath houses and toilet facilities. 75.1712...
30 CFR 75.1712 - Bath houses and toilet facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... adequate facilities for the miners to change from the clothes worn underground, to provide for the storing of such clothes from shift to shift, and to provide sanitary and bathing facilities. Sanitary toilet... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Bath houses and toilet facilities. 75.1712...
40 CFR 63.11507 - What are my standards and management practices?
Code of Federal Regulations, 2010 CFR
2010-07-01
... chemistry ingredients that are added to replenish the tank bath, as in the original make-up of the tank. (iii) If a wetting agent/fume suppressant is included in the electrolytic process bath chemicals used... to be plated, as practicable. (8) Maintain quality control of chemicals, and chemical and other bath...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and emergency operation of safety showers and eye washes; storm water; Department of Transportation (DOT) aerosol leak test bath water from non-continuous overflow baths (batch baths) where no cans have burst from the time of the last water change-out; and on-site laboratories from cleaning analytical...
36 CFR 21.12 - Lost bath tickets.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Lost bath tickets. 21.12 Section 21.12 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.12 Lost bath tickets. A patron who loses his ticket may...
36 CFR 21.12 - Lost bath tickets.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Lost bath tickets. 21.12 Section 21.12 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.12 Lost bath tickets. A patron who loses his ticket may...
36 CFR 21.12 - Lost bath tickets.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Lost bath tickets. 21.12 Section 21.12 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.12 Lost bath tickets. A patron who loses his ticket may...
36 CFR 21.12 - Lost bath tickets.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Lost bath tickets. 21.12 Section 21.12 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.12 Lost bath tickets. A patron who loses his ticket may...
36 CFR 21.12 - Lost bath tickets.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Lost bath tickets. 21.12 Section 21.12 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.12 Lost bath tickets. A patron who loses his ticket may...
Chemical Safety: Molten Salt Baths Cited as Lab Hazards.
ERIC Educational Resources Information Center
Baum, Rudy
1982-01-01
Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…
1974-08-31
HYDROTHERAPY TO REDUCE INFECTIONS/CLEAN WOUNDS 3L IGIVE HYDROTHERAPY TO INCREASE CIRCULATION 32 IGIVE HYDROTHERAPY FOR IWARM UP’ PRIOR TO EXERCISE 33 IGIVE... HYDROTHERAPY TO HELP PATIENT ACHIEVE RANGE OF MOTION 34 IGIVE CONTRAST BATH 35 IGIVE PARAFFIN BATH TREATMENT 36 IADJUST HYDROTHERAPY BATH ACCORDING TO
Characteristic functions of quantum heat with baths at different temperatures
NASA Astrophysics Data System (ADS)
Aurell, Erik
2018-06-01
This paper is about quantum heat defined as the change in energy of a bath during a process. The presentation takes into account recent developments in classical strong-coupling thermodynamics and addresses a version of quantum heat that satisfies quantum-classical correspondence. The characteristic function and the full counting statistics of quantum heat are shown to be formally similar. The paper further shows that the method can be extended to more than one bath, e.g., two baths at different temperatures, which opens up the prospect of studying correlations and heat flow. The paper extends earlier results on the expected quantum heat in the setting of one bath [E. Aurell and R. Eichhorn, New J. Phys. 17, 065007 (2015), 10.1088/1367-2630/17/6/065007; E. Aurell, Entropy 19, 595 (2017), 10.3390/e19110595].
Mangold, Aaron R; Bravo, Thomas P; Traub, Stephen J; Maher, Steven A; Lipinski, Christopher A
2014-01-01
The use and abuse of designer drugs has been recognized for decades; however there are many derivatives of compounds that make their way into the community. Abuse of compound(s) known on the street as "bath salt" is on the rise. We report the case of a 33-year-old man who complained of "flashbacks" and right arm shaking that followed a night of "bath salt" snorting. The active compound methylenedioxypyrovalerone methamphetamine (MDPV) was confirmed; however, analysis of three different "bath salt" products showed difference in their active components. The patient's symptoms remained stable and he was discharged home after observation in the emergency department with instructions to return for any symptom progression. Practitioners should be aware of the abuse of the compounds and that not all "bath salt" products contain MDPV.
Beaty, Jennifer Sam; Shashidharan, M.
2016-01-01
Anal fissure (fissure-in-ano) is a very common anorectal condition. The exact etiology of this condition is debated; however, there is a clear association with elevated internal anal sphincter pressures. Though hard bowel movements are implicated in fissure etiology, they are not universally present in patients with anal fissures. Half of all patients with fissures heal with nonoperative management such as high fiber diet, sitz baths, and pharmacological agents. When nonoperative management fails, surgical treatment with lateral internal sphincterotomy has a high success rate. In this chapter, we will review the symptoms, pathophysiology, and management of anal fissures. PMID:26929749
NASA Astrophysics Data System (ADS)
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO) systems, and its closely related solvation mode transformation of system-bath coupling Hamiltonian in general. The exact QDT of DBO systems is also used to clarify the validity of conventional QDT formulations that involve Markovian approximation. In Chapter 3, we develop three nonequivalent but all complete second-order QDT (CS-QDT) formulations. Two of them are of the conventional prescriptions in terms of time-local dissipation and memory kernel, respectively. The third one is called the correlated driving-dissipation equations of motion (CODDE). This novel CS-QDT combines the merits of the former two for its advantages in both the application and numerical implementation aspects. Also highlighted is the importance of correlated driving-dissipation effects on the dynamics of the reduced system. In Chapter 4, we construct an exact QDT formalism via the calculus on path integrals. The new theory aims at the efficient evaluation of non-Markovian dissipation beyond the weak system-bath interaction regime in the presence of time-dependent external field. By adopting exponential-like expansions for bath correlation function, hierarchical equations of motion formalism and continued fraction Liouville-space Green's function formalism are established. The latter will soon be used together with the Dyson equation technique for an efficient evaluation of non-perturbative reduced density matrix dynamics. The interplay between system-bath interaction strength, non-Markovian property, and the required level of hierarchy is also studied with the aid of simple spin-boson systems, together with the three proposed schemes to truncate the infinite hierarchy. In Chapter 5, we develop a nonperturbative theory of electron transfer (ET) in Debye solvents. The resulting exact and analytical rate expression is constructed on the basis of the aforementioned continued fraction Liouville-space Green's function formalism, together with the Dyson equation technique. Not only does it recover the celebrated Marcus' inversion and Kramers' turnover behaviors, the new theory also shows some distinct quantum solvation effects that can alter the ET mechanism. Moreover, the present theory predicts further for the ET reaction thermodynamics, such as equilibrium Gibbs free-energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. In Chapter 6, we discuss the constructed QDTs, in terms of their unified mathematical structure that supports a linear dynamics space, and thus facilitates their applications to various physical problems. The involving details are exemplified with the CODDE form of QDT. As the linear space is concerned, we identify the Schrodinger versus Heisenberg picture and the forward versus backward propagation of the reduced, dissipative Liouville dynamics. For applications we discuss the reduced linear response theory and the optimal control problems, in which the correlated effects of non-Markovian dissipation and field driving are shown to be important. In Chapter 7, we turn to quantum transport, i.e., electric current through molecular or mesoscopic systems under finite applied voltage. By viewing the nonequilibrium transport setup as a quantum open system, we develop a reduced-density-matrix approach to quantum transport. The resulting current is explicitly expressed in terms of the molecular reduced density matrix by tracing out the degrees of freedom of the electrodes at finite bias and temperature. We propose a conditional quantum master equation theory, which is an extension of the conventional (or unconditional) QDT by tracing out the well-defined bath subsets individually, instead of the entire bath degrees of freedom. Both the current and the noise spectrum can be conveniently analyzed in terms of the conditional reduced density matrix dynamics. By far, the QDT (including the conditional one) has only been exploited in second-order form. A self-consistent Born approximation for the system-electrode coupling is further proposed to recover all existing nonlinear current-voltage behaviors including the nonequilibrium Kondo effect. Transport theory based on the exact QDT formalism will be developed in future. In Chapter 8, we study the quantum measurement of a qubit with a quantum-point-contact detector. On the basis of a unified quantum master equation (a form of QDT), we study the measurement-induced relaxation and dephasing of the qubit. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. We also derive a conditional quantum master equation for quantum measurement in general, and study the readout characteristics of the qubit measurement. Our theory is applicable to the quantum measurement at arbitrary voltage and temperature. A number of remarkable new features are found and highlighted in concern with their possible relevance to future experiments. In Chapter 9, we discuss the further development of QDT, aiming at an efficient evaluation of many-electron systems. This will be carried out by reducing the many-particle (Fermion or Boson) QDT to a single-particle one by exploring, e.g. the Wick's contraction theorem. It also results in a time-dependent density functional theory (TDDFT) for transport through complex large-scale (e.g. molecules) systems. Primary results of the TDDFT-QDT are reported. In Chapter 10, we summary the thesis, and comment and remark on the future work on both the theoretical and application aspects of QDT.
Synthesis and performance of Zn-Ni-P thin films
NASA Astrophysics Data System (ADS)
Soare, V.; Burada, M.; Constantin, I.; Ghita, M.; Constantin, V.; Miculescu, F.; Popescu, A. M.
2015-03-01
The electroplating of Zn-Ni-P thin film alloys from a sulfate bath containing phosphoric and phosphorous acid was investigated. The bath composition and the deposition parameters were optimized through Hull cell experiments, and the optimum experimental conditions were determined (pH = 2, temperature = 298-313 K, zinc sulfate concentration = 30 g·L-1, EDTA concentration = 15 g·L-1, and current density, = ,1.0-2.0 A·dm-2). The SEM analysis of the coating deposited from the optimum bath revealed fine-grained deposits of the alloy in the presence of EDTA. Optical microscopy analysis indicated an electrodeposited thin film with uniform thickness and good adhesion to the steel substrate. The good adherence of the coatings was also demonstrated by the scratch tests that were performed, with a maximum determined value of 25 N for the critical load. Corrosion resistance tests revealed good protection of the steel substrate by the obtained Zn-Ni-P coatings, with values up to 85.89% for samples with Ni contents higher than 76%. The surface analysis of the thin film samples before and after corrosion was performed by X-ray photoelectron spectroscopy (XPS). Project support by the Partnership Romanian Research Program (PNCDI2), CORZIFILM Project nr.72-221/2008-2011 and “EU (ERDF) and Romanian Government” that allowed for acquisition of the research infrastructure under POS-CEEO 2.2.1 project INFRANANOCHEM-Nr.19/01.03.2009.
Yun, Xiao; Quarini, Giuseppe L
2017-03-13
We demonstrate a method for the study of the heat and mass transfer and of the freezing phenomena in a subcooled brine environment. Our experiment showed that, under the proper conditions, ice can be produced when water is introduced to a bath of cold brine. To make ice form, in addition to having the brine and water mix, the rate of heat transfer must bypass that of mass transfer. When water is introduced in the form of tiny droplets to the brine surface, the mode of heat and mass transfer is by diffusion. The buoyancy stops water from mixing with the brine underneath, but as the ice grows thicker, it slows down the rate of heat transfer, making ice more difficult to grow as a result. When water is introduced inside the brine in the form of a flow, a number of factors are found to influence how much ice can form. Brine temperature and concentration, which are the driving forces of heat and mass transfer, respectively, can affect the water-to-ice conversion ratio; lower bath temperatures and brine concentrations encourage more ice to form. The flow rheology, which can directly affect both the heat and mass transfer coefficients, is also a key factor. In addition, the flow rheology changes the area of contact of the flow with the bulk fluid.
Odorless inhalant toxic encephalopathy in developing countries household: Gas geyser syndrome
Mehta, Anish; Mahale, Rohan; John, Aju Abraham; Abbas, Masoom Mirza; Javali, Mahendra; Acharya, Purushottam; Rangasetty, Srinivasa
2016-01-01
Background: Liquefied petroleum gas geysers are used very frequently for heating water in developing countries such as India. However, these gas geysers emit various toxic gases; one among them is colorless, odorless carbon monoxide (CO). In the past few years, there were reports of unexplained loss of consciousness in the bathroom. However, the exact cause for these episodes has been recognized as toxic encephalopathy due to toxic gases inhalation mainly CO. Objective: To analyze the clinical profile and outcome of patients brought with loss of consciousness in the bathroom while bathing using gas geyser. Materials and Methods: Case records of patients with the diagnosis of gas geyser syndrome from 2013 to 2015 were retrieved and analyzed. Twenty-four cases were identified and included in the study. This was a retrospective, descriptive study. Results: Twenty-four patients were brought to our Emergency Department with loss of consciousness in the bathroom while bathing. Twenty-one cases had loss of consciousness during bathing and recovered spontaneously. Two cases were found dead in the bathroom and were brought to the Department of Forensic Medicine for postmortem. One case was brought in deep altered state of consciousness and succumbed to illness within 1 week. Conclusion: Awareness regarding CO intoxication due to usage of ill-fitted, ill-ventilated gas geyser is necessary as they are entirely preventable conditions. PMID:27114653
Model for calorimetric measurements in an open quantum system
NASA Astrophysics Data System (ADS)
Donvil, Brecht; Muratore-Ginanneschi, Paolo; Pekola, Jukka P.; Schwieger, Kay
2018-05-01
We investigate the experimental setup proposed in New J. Phys. 15, 115006 (2013), 10.1088/1367-2630/15/11/115006 for calorimetric measurements of thermodynamic indicators in an open quantum system. As a theoretical model we consider a periodically driven qubit coupled with a large yet finite electron reservoir, the calorimeter. The calorimeter is initially at equilibrium with an infinite phonon bath. As time elapses, the temperature of the calorimeter varies in consequence of energy exchanges with the qubit and the phonon bath. We show how under weak-coupling assumptions, the evolution of the qubit-calorimeter system can be described by a generalized quantum jump process including as dynamical variable the temperature of the calorimeter. We study the jump process by numeric and analytic methods. Asymptotically with the duration of the drive, the qubit-calorimeter attains a steady state. In this same limit, we use multiscale perturbation theory to derive a Fokker-Planck equation governing the calorimeter temperature distribution. We inquire the properties of the temperature probability distribution close and at the steady state. In particular, we predict the behavior of measurable statistical indicators versus the qubit-calorimeter coupling constant.
[Discovery of a focus of intestinal bilharziasis in te Republic of Djibouti].
Koeck, J L; Modica, C; Tual, F; Czarnecki, E; Fabre, R; Merle, C; Montfort, F; Jouvenin, N; Cavallo, J D
1999-01-01
An unprecedented pocket of intestinal schistosomiasis was discovered in the Republic of Djibouti in 1997. The first cases were diagnosed in French and Djiboutian tourists who presented initial symptoms of bilharzian infection after bathing in the fresh-water basin under Hassan Gari Bira Falls, near Randa. Seventeen cases were subsequently confirmed by detection of anti-schistosome antibodies using indirect hemagglutination (IH) and indirect immunofluorescence (IIF) and/or detection of Schistosoma mansoni eggs in the stool. Further testing was performed in 35 village inhabitants, mostly children, who had been exposed by bathing in the basin. The IH reaction was positive in 28 patients (80 p. 100) including 17 (49 p. 100) with levels greater than 1/64. In 92 p. 100 of cases, IH findings were confirmed by IIF which indicated that association with hypereosinophilia was common. Schistosoma mansoni eggs were found in stools from 7 patients (19 p. 100) who generally displayed mild hypereosinophilia. Information concerning the zone of risk was distributed and control measures were undertaken as widely as possible in Djibouti and abroad.
Kalyanaraman, Ramki; Taz, Humaira; Ruther, Rose E.; ...
2015-02-11
Techniques that can characterize the early stages of thin film deposition from liquid phase processes can aid greatly in our understanding of mechanistic aspects of chemical bath deposition (CBD). Here we have used localized surface plasmon resonance (LSPR) spectroscopy to monitor in-situ the kinetics of early-stage growth of cadmium sulfide (CdS) thin films on Ag nanoparticle on quartz substrates. Real-time shift during CdS deposition showed that the LSPR wavelength red shifted rapidly due to random deposition of CdS on the substrate, but saturated at longer times. LSPR modeling showed that these features could be interpreted as an initial deposition ofmore » CdS islands followed by preferential deposition onto itself. The CdS also showed significantly enhanced Raman signals up to 170 times due to surface enhanced raman scattering (SERS) from the CdS/Ag NP regions. The ex-situ SERS effect supported the LSPR shift suggesting that these techniques could be used to understand nucleation and growth phenomena from the liquid phase.« less
Amemura-Maekawa, Junko; Kura, Fumiaki; Chang, Bin; Suzuki-Hashimoto, Atsuko; Ichinose, Masayuki; Endo, Takuro; Watanabe, Haruo
2008-09-01
To investigate the genetic difference of Legionella pneumophila in human-made environments, we collected isolates of L. pneumophila from bath water (n = 167) and cooling tower water (n = 128) primarily in the Kanto region in 2001 and 2005. The environmental isolates were serogrouped and sequenced for a target region of flaA. A total of 14 types of flaA genotypes were found: 10 from cooling tower water and nine from bath water. The flaA genotypes of isolates from cooling tower water were quite different from those of bath water.
Kamenskaia, N S; Fedorova, N E
1990-01-01
Hydrocortisone phonophoresis (HPP) on the affected joints or balneotherapy with iodine bromine baths as well as the complex of these two modalities were used to treat 197 patients with osteoarthrosis. Thirty-one of the patients had secondary arthrosis due to recurrent gout attacks. Monotherapy with HPP proved beneficial in affection of 1-2 joints whereas the baths appeared preferable in polyosteoarthrosis, its association with spinal osteoarthrosis, arterial hypertension. Combined application of HPP and the baths produced more pronounced and stable effect with the best relief recorded in polyosteoarthrosis, its progression, secondary synovitis.
Gupta, Neeraj; Kumar, Dilip; Palla, Aparna
2017-04-01
Orthodontists are commonly faced with the decision of what to do with debonded or inaccurately positioned brackets. An economical option to this dilemma is to recycle the brackets. Many recycling methods have been proposed, but the optimal bond strength of these recycled brackets needs further evaluation. Objectives: To evaluate and compare the effect of three recycling methods: (i) Sandblasting (ii) Sandblasting / direct flaming (iii) Sandblasting /direct flaming /acid bath solution on shear bond strength (SBS) of stainless steel brackets. Eighty human premolars were bonded with premolar stainless steel brackets as per manufacturer's instructions. The teeth were divided into 4 groups (n=20): Recycling and initial debonding was not done in Control group (Group I). After initial bonding, the brackets in the rest of the three experimental groups were debonded and recycled by following methods: (i) Sandblasting (Group II) (ii) Sandblasting /direct flaming (Group III) (iii) Sandblasting /direct flaming /acid bath solution (Group IV). Further the recycled brackets were bonded. The specimens were then subjected to testing in a Universal machine. The evaluation of the variation of the shear bond strength (SBS) among test groups was done using one-way ANOVA test and inter-experimental group comparison was done by Newman-Keuls multiple post hoc procedure. Group I (8.6510±1.3943MPa) showed the highest bond strength followed by Group II (5.0185±0.9758MPa), Group IV (2.30±0.65MPa) and Group III (2.0455± 0.6196MPa). Statistically significant variations existed in the shear bond strength (SBS) in all groups analyzed except between Group III and Group IV. The following conclusions were drawn from the study: 1. Shear bond strength of new brackets is significantly higher than the recycled brackets. 2. Brackets sandblasted with 90µm aluminium oxide particle air-abrasion showed significantly higher shear bond strength compared to direct flaming/sandblasting and direct flaming/sandblasting/acid bath solution. 3. Sandblasting with 90µm aluminium oxide particle air-abrasion is the simplest, most efficient and hence, the preferred method of recycling debonded brackets. Key words: Orthodontic bracket, recycling, shear bond strength.
NASA Astrophysics Data System (ADS)
Sengupta, Srijan; Patra, Arghya; Jena, Sambedan; Das, Karabi; Das, Siddhartha
2018-03-01
In this study, the electrodeposition of nickel foam by dynamic hydrogen bubble-template method is optimized, and the effects of key deposition parameters (applied voltage and deposition time) and bath composition (concentration of Ni2+, pH of the bath, and roles of Cl- and SO4 2- ions) on pore size, distribution, and morphology and crystal structure are studied. Nickel deposit from 0.1 M NiCl2 bath concentration is able to produce the honeycomb-like structure with regular-sized holes. Honeycomb-like structure with cauliflower morphology is deposited at higher applied voltages of 7, 8, and 9 V; and a critical time (>3 minutes) is required for the development of the foamy structure. Compressive residual stresses are developed in the porous electrodeposits after 30 seconds of deposition time (-189.0 MPa), and the nature of the residual stress remains compressive upto 10 minutes of deposition time (-1098.6 MPa). Effect of pH is more pronounced in a chloride bath compared with a sulfate bath. The increasing nature of pore size in nickel electrodeposits plated from a chloride bath (varying from 21 to 48 μm), and the constant pore size (in the range of 22 to 24 μm) in deposits plated from a sulfate bath, can be ascribed to the striking difference in the magnitude of the corresponding current-time profiles.
The Roman-Irish Bath: Medical/health history as therapeutic assemblage.
Foley, Ronan
2014-04-01
The invention of a new form of hot-air bath in Blarney, Ireland in 1856, variously known in its lifetime as the Roman-Irish or Turkish Bath, acted as the starting point for a the production of a globalised therapeutic landscape. Tracking the diffusion of the Roman-Irish bath template from its local invention in Ireland to a global reach across the Victorian world and recognizing its place within a wider hydrotherapeutic history, this paper frames that diffusion as a valuable empirical addition to assemblage theory. The specific empirical history of the spread of the Roman-Irish/Turkish bath idea is drawn from primary archival and secondary historical sources. It is then discussed and, drawing from work on assemblage theory, analyzed against three broad themes: mobile networks, socio-material practices and contested emergence. The emergent relational geographies of the Roman-Irish Bath identify important roles for the diffusion and transformation of specific medical settings, identities and functions. These were linked in turn to competing social-healing pathways wherein bodies were technologically and morally managed, to produce a more inhabited form of therapeutic assemblage. In all cases the differential diffusion of the bath idea, it's shifting and fractured material forms and multiple inhabitations and discourses were contested and mobile and spoke to an assemblage approach which has ripe potential for exploration across a range of medical/health geography settings. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Faka, M.; Christodoulou, S.; Abate, D.; Ioannou, C.; Hermon, S.
2017-08-01
Roman baths represented a popular social practice of everyday life, cited in numerous literary sources and testified by ample archaeological remains all over the Roman Empire. Although regional studies have contributed extensively to our knowledge about how baths functioned and what was their social role in various regions of the Mediterranean, their study in Cyprus is yet to be developed. Moreover, despite the increasing availability of devices and techniques for 3D documentation, various characteristics, especially in relation to the heating and water supply system of the baths, were omitted and were not properly and accurately documented. The pilot case study outlined in this paper presents the 3D documentation of the Roman bath, excavated in the 1950s, within the area of the Sanctuary of Apollo Hylates at Kourion (Limassol district). The creation of an accurate 3D model of the documented area through image and range based techniques combined with topographic data, allows the detailed analysis of architectural elements and their decorative features. At the same time, it enables accurate measurements of the site, which are used as input for the archaeological interpretation and virtual reconstruction of the original shape of the bath. In addition, this project aims to answer a number of archaeological research questions related to Roman baths such as their architectural features, function mode, and technological elements related to heating techniques.
Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators
Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle
2017-07-27
Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less
NASA Astrophysics Data System (ADS)
Muench, Falk; Oezaslan, Mehtap; Svoboda, Ingrid; Ensinger, Wolfgang
2015-10-01
We present new electroless palladium plating reactions, which can be applied to complex-shaped substrates and lead to homogeneous, dense and conformal palladium films consisting of small nanoparticles. Notably, autocatalytic and surface-selective metal deposition could be achieved on a wide range of materials without sensitization and activation pretreatments. This provides a facile and competitive route to directly deposit well-defined palladium nanofilms on e.g. carbon, paper, polymers or glass substrates. The reactions proceed at mild conditions and are based on easily accessible chemicals (reducing agent: hydrazine; metal source: PdCl2; ligands: ethylenediaminetetraacetic acid (EDTA), acetylacetone). Additionally, the water-soluble capping agent 4-dimethylaminopyridine (DMAP) is employed to increase the bath stability, to ensure the formation of small particles and to improve the film conformity. The great potential of the outlined reactions for micro- and nanofabrication is demonstrated by coating an ion-track etched polycarbonate membrane with a uniform Pd film of approximately 20 nm thickness. The as-prepared membrane is then employed as a highly miniaturized flow reactor, using the reduction of 4-nitrophenol with NaBH4 as a model reaction.
Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle
Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less
NASA Technical Reports Server (NTRS)
Shogrin, Bradley A.; Jones, William R., Jr.; Herrera-Fierro, Pilar
1997-01-01
The boundary-lubrication performance of perfluoropolyether (PFPE) thin films in the presence of passivated 440 C stainless steel is presented. The study utilized a standard ball-on-disc tribometer. Stainless steel surfaces were passivated with one of four techniques: 1) submersion in a chromic acid bath for 30 minutes at 46 C, 2) submersion in a chromic acid bath for 60 minutes at 56 C, 3) submersion in a tricresyl phosphate (TCP) bath for 2 days at 107 C, or 4) UV/Ozone treated for 15 minutes. After passivation, each disc had a 400 A film of PFPE (hexafluoropropene oxide) applied to it reproducibly (+/- 20%) and uniformly (+/- 15%) using a film deposition device. The lifetimes of these films were quantified by measuring the number of sliding wear cycles required to induce an increase in the friction coefficient from an initial value characteristic of the lubricated wear couple to a final, or failure value, characteristic of an unlubricated, unpassivated wear couple. The lubricated lifetime of the 440 C couple was not altered as a result of the various passivation techniques. The resulting surface chemistry of each passivation technique was examined using X-ray Photoelectron Spectroscopy (XPS). It was found that chromic acid passivation altered the Cr to Fe ratio of the surface. TCP passivation resulted in a FePO4 layer on the surface, while UV/Ozone passivation only removed the carbonaceous contamination layer. None of the passivation techniques were found to dramatically increase the oxide film thickness.
Code of Federal Regulations, 2013 CFR
2013-07-01
... equipment; the testing and emergency operation of safety showers and eye washes; storm water; Department of Transportation (DOT) aerosol leak test bath water from non-continuous overflow baths (batch baths) where no cans have burst from the time of the last water change-out; and on-site laboratories from cleaning...
Code of Federal Regulations, 2012 CFR
2012-07-01
... equipment; the testing and emergency operation of safety showers and eye washes; storm water; Department of Transportation (DOT) aerosol leak test bath water from non-continuous overflow baths (batch baths) where no cans have burst from the time of the last water change-out; and on-site laboratories from cleaning...
Code of Federal Regulations, 2014 CFR
2014-07-01
... equipment; the testing and emergency operation of safety showers and eye washes; storm water; Department of Transportation (DOT) aerosol leak test bath water from non-continuous overflow baths (batch baths) where no cans have burst from the time of the last water change-out; and on-site laboratories from cleaning...
33 CFR 334.782 - SUPSHIP Bath Maine Detachment Mobile at AUSTAL, USA, Mobile, AL; restricted area.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false SUPSHIP Bath Maine Detachment... REGULATIONS § 334.782 SUPSHIP Bath Maine Detachment Mobile at AUSTAL, USA, Mobile, AL; restricted area. (a... local military or Naval authority, vessels of the United States Coast Guard, and local or state law...
33 CFR 334.782 - SUPSHIP Bath Maine Detachment Mobile at AUSTAL, USA, Mobile, AL; restricted area.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false SUPSHIP Bath Maine Detachment... REGULATIONS § 334.782 SUPSHIP Bath Maine Detachment Mobile at AUSTAL, USA, Mobile, AL; restricted area. (a... local military or Naval authority, vessels of the United States Coast Guard, and local or state law...
Seegmiller, R.
1957-08-01
An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.
Effectiveness of Mailing "Bathing without a Battle" to All US Nursing Homes
ERIC Educational Resources Information Center
Calleson, Diane C.; Sloane, Philip D.; Cohen, Lauren W.
2006-01-01
An educational CD-ROM/video program was developed to educate nursing home staff about two research-based techniques for reducing agitation and aggression during bathing of persons with Alzheimer's disease, including person-centered showering and the towel bath. This educational program was distributed free of charge to all 15,453 US nursing homes…
1983-07-01
Bathing an infant 22. Bed bath (complete - adult) 23. Back bath (partial - legs, back, abdomen) 24. Bed shampoo (female) 25. Catheter care ( cleansing ...Stool testing 126. Applying condum catheter 127. Removal chest tubes 128. Assisting with vaginal /pelvic examination INDIRECT 1. Admission of a patient
A case–control study of maternal bathing habits and risk for birth defects in offspring
2013-01-01
Background Nearly all women shower or take baths during early pregnancy; however, bathing habits (i.e., shower and bath length and frequency) may be related to the risk of maternal hyperthermia and exposure to water disinfection byproducts, both of which are suspected to increase risk for multiple types of birth defects. Thus, we assessed the relationships between bathing habits during pregnancy and the risk for several nonsyndromic birth defects in offspring. Methods Data for cases with one of 13 types of birth defects and controls from the National Birth Defects Prevention Study delivered during 2000–2007 were evaluated. Logistic regression analyses were conducted separately for each type of birth defect. Results There were few associations between shower frequency or bath frequency or length and risk for birth defects in offspring. The risk for gastroschisis in offspring was increased among women who reported showers lasting ≥15 compared to <15 minutes (adjusted odds ratio: 1.43, 95% confidence interval: 1.18-1.72). In addition, we observed modest increases in the risk for spina bifida, cleft lip with or without cleft palate, and limb reduction defects in offspring of women who showered ≥15 compared to <15 minutes. The results of comparisons among more specific categories of shower length (i.e., <15 minutes versus 15–19, 20–29, and ≥ 30 minutes) were similar. Conclusions Our findings suggest that shower length may be associated with gastroschisis, but the modest associations with other birth defects were not supported by analyses of bath length or bath or shower frequency. Given that showering for ≥15 minutes during pregnancy is very common, further evaluation of the relationship between maternal showering habits and birth defects in offspring is worthwhile. PMID:24131571
NASA Astrophysics Data System (ADS)
de Almeida, M. R. H.; Barbano, E. P.; de Carvalho, M. F.; Tulio, P. C.; Carlos, I. A.
2015-04-01
The galvanostatic technique was used to analyze the electrodeposition of Cu-Zn on to AISI 1010 steel electrode from an alkaline-sorbitol bath with various proportions of the metal ions in the bath: Cu70/Zn30, Cu50/Zn50 and Cu30/Zn70. Coloration of Cu-Zn films were whitish golden, light golden, golden/gray depending on the Cu2+/Zn2+ ratios in the electrodeposition bath, deposition current density (jdep) and charge density (qdep). The highest current efficiency was ∼54.0%, at jdep -1.0 mA cm-2 and qdep 0.40 C cm-2 in the Cu70/Zn30 bath. Energy dispersive spectroscopy indicated that electrodeposits produced from the bath Cu70/Zn30 showed higher Cu content at lower jdep. Also, for same jdep the Cu content increased with qdep. Scanning electron microscopy showed that Cu-Zn electrodeposits of high quality were obtained from the Cu70/Zn30 bath, since the films were fine-grained, except the obtained at jdep -20.0 mA cm-2 and qdep 10.0 C cm-2. Also, these electrodeposits did not present cracks. X-ray analysis of the Cu-Zn electrodeposits obtained at jdep -8.0, -20.0 and -40.0 mA cm-2, in each case, with qdep 2.0 and 10.0 C cm-2, in the Cu70/Zn30 bath, suggested the occurrence of a mixture of the following phases, CuZn, CuZn5 and Cu5Zn8. Galvanostatic electrodeposits of Cu-Zn obtained from sorbitol-alkaline baths exhibited whitish golden color, with good prospects for industrial applications, especially for decorative purposes.
Sattar, Anas A; Jackson, Simon K; Bradley, Graham
2014-03-01
The use of total lipopolysaccharide (LPS) as a rapid biomarker for bacterial pollution was investigated at a bathing and surfing beach during the UK bathing season. The levels of faecal indicator bacteria Escherichia coli (E. coli), the Gram-positive enterococci, and organisms commonly associated with faecal material, such as total coliforms and Bacteroides, were culturally monitored over four months to include a period of heavy rainfall and concomitant pollution. Endotoxin measurement was performed using a kinetic Limulus Amebocyte Lysate (LAL) assay and found to correlate well with all indicators. Levels of LPS in excess of 50 Endotoxin Units (EU) mL(-1) were found to correlate with water that was unsuitable for bathing under the current European regulations. Increases in total LPS, mainly from Gram-negative indicator bacteria, are thus a potential real-time, qualitative method for testing bacterial quality of bathing waters.
"Bath salts" intoxication: a new recreational drug that presents with a familiar toxidrome.
Hall, Christine; Heyd, Christopher; Butler, Chris; Yarema, Mark
2014-03-01
It is important for emergency physicians to be aware of new psychoactive agents being used as recreational drugs. "Bath salts," which include 3,4-methylenedioxypyrovalerone (MDPV), mephedrone, and methylone, are the newest recreational stimulants to appear in Canada. There are currently more than 12 synthetic cathinones marketed as bath salts and used with increasing frequency recreationally. Although these drugs are now illegal in Canada, they are widely available online. We present a case report and discuss bath salts intoxication and its anticipated sympathomimetic toxidrome, treatment strategies, and toxicologic analysis, Treatment should not rely on laboratory confirmation. Since the laboratory identification of such drugs varies by institution and toxicologic assay, physicians should not misconstrue a negative toxicology screen as evidence of no exposure to synthetic cathinones. Illicit bath salts represent an increasing public health concern that involves risk to the user, prehospital personnel, and health care providers.
Non-Markovian decay and dynamics of decoherence in private and public environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dente, A. D.; Zangara, P. R.; Pastawski, H. M.
2011-10-15
We study the decay process in an open system, emphasizing the relevance of the environment's spectral structure. Non-Markovian effects are included to quantitatively analyze the degradation rate of the coherent evolution. The way in which a two-level system is coupled to different environments is specifically addressed: multiple connections to a single bath (public environment) or single connections to multiple baths (private environments). We numerically evaluate the decay rate of a local excitation by using the survival probability and the Loschmidt echo. These rates are compared to analytical results obtained from the standard Fermi golden rule (FGR) in wide band approximation,more » and a self-consistent evaluation that accounts for the bath's memory in cases where an exact analytical solution is possible. We observe that the correlations appearing in a public bath introduce further deviations from the FGR as compared with a private bath.« less
Fluctuation relation for heat exchange in Markovian open quantum systems
NASA Astrophysics Data System (ADS)
Ramezani, M.; Golshani, M.; Rezakhani, A. T.
2018-04-01
A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to the bath) is given by an exponential factor which depends on the amount of heat and the difference between the temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath) drops exponentially with both the amount of heat and the temperature differences of the baths.
Fluctuation relation for heat exchange in Markovian open quantum systems.
Ramezani, M; Golshani, M; Rezakhani, A T
2018-04-01
A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to the bath) is given by an exponential factor which depends on the amount of heat and the difference between the temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath) drops exponentially with both the amount of heat and the temperature differences of the baths.
Preparation of superconductor precursor powders
Bhattacharya, R.
1998-08-04
A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.
Preparation of superconductor precursor powders
Bhattacharya, Raghunath
1998-01-01
A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.
Zbikowska, Elżbieta; Walczak, Maciej; Krawiec, Arkadiusz
2013-01-01
The present study was aimed at investigating the coexistence and interactions between free living amoebae of Naegleria and Hartmannella genera and pathogenic Legionella pneumophila bacteria in thermal saline baths used in balneotherapy in central Poland. Water samples were collected from November 2010 to May 2011 at intervals longer than 1 month. The microorganisms were detected with the use of a very sensitive fluorescence in situ hybridisation method. In addition, the morphology of the amoebae was studied. Despite relatively high salinity level, ranging from 1.5 to 5.0 %, L. pneumophila were found in all investigated baths, although their number never exceeded 10(6) cells dm(-3). Hartmannella were not detected, while Naegleria fowleri were found in one bath. The observation that N. fowleri and L. pneumophila may coexist in thermal saline baths is the first observation emphasising potential threat from these microorganisms in balneotherapy.
Finite-size effect on optimal efficiency of heat engines.
Tajima, Hiroyasu; Hayashi, Masahito
2017-07-01
The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.
NASA Technical Reports Server (NTRS)
Nelson, Mary J.; Groshart, Earl C.
1995-01-01
The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.
Ceylan, Şeyda; Odabaşı, Mehmet
2013-12-01
The aim of this study is to prepare supermacroporous cryogels embedded with Fe(3+)-attached sporopollenin particles (Fe(3++)-ASPs) having large surface area for high DNA adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Fe3+(+)-ASPs was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N´-methylene- bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for DNA adsorption studies. Firstly, Fe3+(+) ions were attached to the sporopollenin particles (SPs), then the supermacroporous PHEMA cryogel with embedded Fe(3++)-ASPs was produced by free radical polymerization using N,N,N´, N´-Tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Optimum conditions of adsorption experiments were performed at pH 6.0 (0.02 M Tris buffer containing 0.2 M NaCl), with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of DNA adsorption from aqueous solution was very high (109 mg/g SPs) with initial concentration of 3 mg/mL. It was observed that DNA could be repeatedly adsorbed and desorbed with this composite cryogel without significant loss of adsorption capacity. As a result, higher amounts of DNA adsorbed these composite cryogels are expected to be good candidate for achieving higher removal of anti-DNA antibodies from systemic lupus erythematosus (SLE) patients plasma.
Ridd, Matthew J; Francis, Nick A; Stuart, Beth; Rumsby, Kate; Chorozoglou, Maria; Becque, Taeko; Roberts, Amanda; Liddiard, Lyn; Nollett, Claire; Hooper, Julie; Prude, Martina; Wood, Wendy; Thomas, Kim S; Thomas-Jones, Emma; Williams, Hywel C; Little, Paul
2018-01-01
Abstract Objectives To determine the clinical effectiveness and cost effectiveness of including emollient bath additives in the management of eczema in children. Design Pragmatic randomised open label superiority trial with two parallel groups. Setting 96 general practices in Wales and western and southern England. Participants 483 children aged 1 to 11 years, fulfilling UK diagnostic criteria for atopic dermatitis. Children with very mild eczema and children who bathed less than once weekly were excluded. Interventions Participants in the intervention group were prescribed emollient bath additives by their usual clinical team to be used regularly for 12 months. The control group were asked to use no bath additives for 12 months. Both groups continued with standard eczema management, including leave-on emollients, and caregivers were given standardised advice on how to wash participants. Main outcome measures The primary outcome was eczema control measured by the patient oriented eczema measure (POEM, scores 0-7 mild, 8-16 moderate, 17-28 severe) weekly for 16 weeks. Secondary outcomes were eczema severity over one year (monthly POEM score from baseline to 52 weeks), number of eczema exacerbations resulting in primary healthcare consultation, disease specific quality of life (dermatitis family impact), generic quality of life (child health utility-9D), utilisation of resources, and type and quantity of topical corticosteroid or topical calcineurin inhibitors prescribed. Results 483 children were randomised and one child was withdrawn, leaving 482 children in the trial: 51% were girls (244/482), 84% were of white ethnicity (447/470), and the mean age was 5 years. 96% (461/482) of participants completed at least one post-baseline POEM, so were included in the analysis, and 77% (370/482) completed questionnaires for more than 80% of the time points for the primary outcome (12/16 weekly questionnaires to 16 weeks). The mean baseline POEM score was 9.5 (SD 5.7) in the bath additives group and 10.1 (SD 5.8) in the no bath additives group. The mean POEM score over the 16 week period was 7.5 (SD. 6.0) in the bath additives group and 8.4 (SD 6.0) in the no bath additives group. No statistically significant difference was found in weekly POEM scores between groups over 16 weeks. After controlling for baseline severity and confounders (ethnicity, topical corticosteroid use, soap substitute use) and allowing for clustering of participants within centres and responses within participants over time, POEM scores in the no bath additives group were 0.41 points higher than in the bath additives group (95% confidence interval −0.27 to 1.10), below the published minimal clinically important difference for POEM of 3 points. The groups did not differ in secondary outcomes, economic outcomes, or adverse effects. Conclusions This trial found no evidence of clinical benefit from including emollient bath additives in the standard management of eczema in children. Further research is needed into optimal regimens for leave-on emollient and soap substitutes. Trial registration Current Controlled Trials ISRCTN84102309. PMID:29724749
Santer, Miriam; Ridd, Matthew J; Francis, Nick A; Stuart, Beth; Rumsby, Kate; Chorozoglou, Maria; Becque, Taeko; Roberts, Amanda; Liddiard, Lyn; Nollett, Claire; Hooper, Julie; Prude, Martina; Wood, Wendy; Thomas, Kim S; Thomas-Jones, Emma; Williams, Hywel C; Little, Paul
2018-05-03
To determine the clinical effectiveness and cost effectiveness of including emollient bath additives in the management of eczema in children. Pragmatic randomised open label superiority trial with two parallel groups. 96 general practices in Wales and western and southern England. 483 children aged 1 to 11 years, fulfilling UK diagnostic criteria for atopic dermatitis. Children with very mild eczema and children who bathed less than once weekly were excluded. Participants in the intervention group were prescribed emollient bath additives by their usual clinical team to be used regularly for 12 months. The control group were asked to use no bath additives for 12 months. Both groups continued with standard eczema management, including leave-on emollients, and caregivers were given standardised advice on how to wash participants. The primary outcome was eczema control measured by the patient oriented eczema measure (POEM, scores 0-7 mild, 8-16 moderate, 17-28 severe) weekly for 16 weeks. Secondary outcomes were eczema severity over one year (monthly POEM score from baseline to 52 weeks), number of eczema exacerbations resulting in primary healthcare consultation, disease specific quality of life (dermatitis family impact), generic quality of life (child health utility-9D), utilisation of resources, and type and quantity of topical corticosteroid or topical calcineurin inhibitors prescribed. 483 children were randomised and one child was withdrawn, leaving 482 children in the trial: 51% were girls (244/482), 84% were of white ethnicity (447/470), and the mean age was 5 years. 96% (461/482) of participants completed at least one post-baseline POEM, so were included in the analysis, and 77% (370/482) completed questionnaires for more than 80% of the time points for the primary outcome (12/16 weekly questionnaires to 16 weeks). The mean baseline POEM score was 9.5 (SD 5.7) in the bath additives group and 10.1 (SD 5.8) in the no bath additives group. The mean POEM score over the 16 week period was 7.5 (SD. 6.0) in the bath additives group and 8.4 (SD 6.0) in the no bath additives group. No statistically significant difference was found in weekly POEM scores between groups over 16 weeks. After controlling for baseline severity and confounders (ethnicity, topical corticosteroid use, soap substitute use) and allowing for clustering of participants within centres and responses within participants over time, POEM scores in the no bath additives group were 0.41 points higher than in the bath additives group (95% confidence interval -0.27 to 1.10), below the published minimal clinically important difference for POEM of 3 points. The groups did not differ in secondary outcomes, economic outcomes, or adverse effects. This trial found no evidence of clinical benefit from including emollient bath additives in the standard management of eczema in children. Further research is needed into optimal regimens for leave-on emollient and soap substitutes. Current Controlled Trials ISRCTN84102309. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei
2016-11-01
Landfill aeration can accelerate the biological degradation of organic waste and reduce methane production; however, it induces nitrous oxide (N2O), a potent greenhouse gas. Nitrification is one of the pathways of N2O generation as a by-product during aerobic condition. This study was initiated to demonstrate the features of N2O production rate from organic solid waste during nitrification under three different temperatures (20°C, 30°C, and 40°C) and three oxygen concentrations (5%, 10%, and 20%) with high moisture content and high substrates' concentration. The experiment was carried out by batch experiment using Erlenmeyer flasks incubated in a shaking water bath for 72 h. A duplicate experiment was carried out in parallel, with addition of 100 Pa of acetylene as a nitrification inhibitor, to investigate nitrifiers' contribution to N2O production. The production rate of N2O ranged between 0.40 × 10(-3) and 1.14 × 10(-3) mg N/g-DM/h under the experimental conditions of this study. The rate of N2O production at 40°C was higher than at 20°C and 30°C. Nitrification was found to be the dominant pathway of N2O production. It was evaluated that optimization of O2 content is one of the crucial parameters in N2O production that may help to minimize greenhouse gas emissions and N turnover during aeration.
Molecular Dynamics Simulations of an Idealized Shock Tube: N2 in Ar Bath Driven by He
NASA Astrophysics Data System (ADS)
Piskulich, Ezekiel Ashe; Sewell, Thomas D.; Thompson, Donald L.
2015-06-01
The dynamics of 10% N2 in Ar initially at 298 K in an idealized shock tube driven by He was studied using molecular dynamics. The simulations were performed using the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. Nitrogen was modeled as a Morse oscillator and non-covalent interactions were approximated by the Buckingham exponential-6 pair potential. The initial pressures in the He driver gas and the driven N2/Ar gas were 1000 atm and 20 atm, respectively. Microcanonical trajectories were followed for 2 ns following release of the driver gas. Results for excitation and subsequent relaxation of the N2, as well as properties of the gas during the simulations, will be reported.
Novel mechanism of dissipation in synthetic rotary motors
NASA Astrophysics Data System (ADS)
Barbu, Corina; Crespi, Vincent
2007-03-01
We study novel mechanisms of dissipation in nanoscale and molecular-scale motors. In traditional treatments of such systems, the background degrees of freedom are integrated out into a thermal bath, and the rotator is coupled directly to this bath via phenomenological terms such as viscous damping or Langevin forces. We have investigated a situation in which one degree of freedom is pulled out from the thermal bath and into the explicit equations of motion, interposed between the bath and the motor. We describe a regime in which the deceleration of an unpowered rotor follows a universal power law, rather than a standard exponential decay.
Bandages and difficulty with bathing: introducing Seal-Tight.
Lindsay, Ellie
2005-06-01
Patients with compression bandages experience difficulty with bathing due to the possibility that bandages may become wet and affect the wound. Bandage and dressing changes resulting from accidental wetting also cost the NHS considerable time and money. This product focus highlights the social and psychological impact on the patient when they are unable to bathe and offers a solution to the problem. Seal-Tight is a product that has been newly placed on the drug tariff, making it widely available to all patients who wear bandages (or plaster casts). Seal-Tight enables the patient to bathe, in some cases for the first time for months or even years.
NASA Astrophysics Data System (ADS)
Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen
2016-10-01
The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.
Bailey, Rachel R.; Stuckey, Dianna R.; Norman, Bryan A.; Duggan, Andrew P.; Bacon, Kristina M.; Connor, Diana L.; Lee, Ingi; Muder, Robert R.; Lee, Bruce Y.
2012-01-01
OBJECTIVE To estimate the economic value of dispensing preoperative home-based chlorhexidine bathing cloth kits to orthopedic patients to prevent surgical site infection (SSI). METHODS A stochastic decision-analytic computer simulation model was developed from the hospital’s perspective depicting the decision of whether to dispense the kits preoperatively to orthopedic patients. We varied patient age, cloth cost, SSI-attributable excess length of stay, cost per bed-day, patient compliance with the regimen, and cloth antimicrobial efficacy to determine which variables were the most significant drivers of the model’s outcomes. RESULTS When all other variables remained at baseline and cloth efficacy was at least 50%, patient compliance only had to be half of baseline (baseline mean, 15.3%; range, 8.23%–20.0%) for chlorhexidine cloths to remain the dominant strategy (ie, less costly and providing better health outcomes). When cloth efficacy fell to 10%, 1.5 times the baseline bathing compliance also afforded dominance of the preoperative bath. CONCLUSIONS The results of our study favor the routine distribution of bathing kits. Even with low patient compliance and cloth efficacy values, distribution of bathing kits is an economically beneficial strategy for the prevention of SSI. PMID:21515977