Sample records for bathymetry

  1. Efficient data assimilation algorithm for bathymetry application

    NASA Astrophysics Data System (ADS)

    Ghorbanidehno, H.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.

    2017-12-01

    Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing techniques. Data assimilation methods combine the remote sensing data and nearshore hydrodynamic models to estimate the unknown bathymetry and the corresponding uncertainties. In particular, several recent efforts have combined Kalman Filter-based techniques such as ensembled-based Kalman filters with indirect video-based observations to address the bathymetry inversion problem. However, these methods often suffer from ensemble collapse and uncertainty underestimation. Here, the Compressed State Kalman Filter (CSKF) method is used to estimate the bathymetry based on observed wave celerity. In order to demonstrate the accuracy and robustness of the CSKF method, we consider twin tests with synthetic observations of wave celerity, while the bathymetry profiles are chosen based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, NC. The first test case is a bathymetry estimation problem for a spatially smooth and temporally constant bathymetry profile. The second test case is a bathymetry estimation problem for a temporally evolving bathymetry from a smooth to a non-smooth profile. For both problems, we compare the results of CSKF with those obtained by the local ensemble transform Kalman filter (LETKF), which is a popular ensemble-based Kalman filter method.

  2. Colored shaded-relief bathymetry, acoustic backscatter, and selected perspective views of the Inner Continental Borderland, southern California

    USGS Publications Warehouse

    Dartnell, Peter; Driscoll, Neal W.; Brothers, Daniel S.; Conrad, James E.; Kluesner, Jared; Kent, Graham; Andrews, Brian D.

    2015-01-01

    In late 2013, Scripps Institution of Oceanography collected multibeam bathymetry and acoustic-backscatter data of the Inner Continental Borderland Region, Southern California. The U.S. Geological Survey Pacific Coastal and Marine Science Center processed these data, and this report provides the data in a number of different formats in addition to a set of map sheets. The data catalog provides the new bathymetry and acoustic-backscatter data, collected mainly in the Gulf of Santa Catalina and San Diego Trough, as well as this new bathymetry data merged with other publically available bathymetry data from the region. Sheet 1 displays a colored shaded-relief bathymetry map of the Inner Continental Borderland generated from the merged bathymetry data. Sheet 2 displays the new acoustic-backscatter data along with other available backscatter data in the region. Sheet 3 displays selected perspective views of the bathymetry data highlighting submarine canyon and channel systems, knolls, and tectonic features.

  3. Improving Watershed-Scale Hydrodynamic Models by Incorporating Synthetic 3D River Bathymetry Network

    NASA Astrophysics Data System (ADS)

    Dey, S.; Saksena, S.; Merwade, V.

    2017-12-01

    Digital Elevation Models (DEMs) have an incomplete representation of river bathymetry, which is critical for simulating river hydrodynamics in flood modeling. Generally, DEMs are augmented with field collected bathymetry data, but such data are available only at individual reaches. Creating a hydrodynamic model covering an entire stream network in the basin requires bathymetry for all streams. This study extends a conceptual bathymetry model, River Channel Morphology Model (RCMM), to estimate the bathymetry for an entire stream network for application in hydrodynamic modeling using a DEM. It is implemented at two large watersheds with different relief and land use characterizations: coastal Guadalupe River basin in Texas with flat terrain and a relatively urban White River basin in Indiana with more relief. After bathymetry incorporation, both watersheds are modeled using HEC-RAS (1D hydraulic model) and Interconnected Pond and Channel Routing (ICPR), a 2-D integrated hydrologic and hydraulic model. A comparison of the streamflow estimated by ICPR at the outlet of the basins indicates that incorporating bathymetry influences streamflow estimates. The inundation maps show that bathymetry has a higher impact on flat terrains of Guadalupe River basin when compared to the White River basin.

  4. Archive of single-beam bathymetry data collected from select areas in Weeks Bay and Weeks Bayou, southwest Louisiana, January 2013

    USGS Publications Warehouse

    DeWitt, Nancy T.; Reich, Christopher D.; Smith, Christopher G.; Reynolds, Billy J.

    2014-01-01

    A team of scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, collected 92 line-kilometers of dual-frequency single-beam bathymetry data in the tidal creeks, bayous, and coastal areas near Weeks Bay, southwest Louisiana. Limited bathymetry data exist for these tidally and meteorologically influenced shallow-water estuarine environments. In order to reduce the present knowledge gap, the objectives of this study were to (1) develop methods for regional inland bathymetry mapping and monitoring, (2) test inland bathymetry mapping system in pilot locations for integrating multiple elevation (aerial and terrestrial lidar) and bathymetry datasets, (3) implement inland bathymetry mapping and monitoring in highly focused sites, and (4) evaluate changes in bathymetry and channel-fill sediment storage using these methods. This report contains single-beam bathymetric data collected between January 14 and 18, 2013. Data were collected from the RV Mako (5-meter vessel) in water depths that ranged from This report serves as an archive of processed bathymetry data. Geographic information system data provided in this document include a 10-meter cell-size interpolated gridded bathymetry surface, and trackline maps. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata. Do not use these data for navigational purposes.

  5. Operational prediction of rip currents using numerical model and nearshore bathymetry from video images

    NASA Astrophysics Data System (ADS)

    Sembiring, L.; Van Ormondt, M.; Van Dongeren, A. R.; Roelvink, J. A.

    2017-07-01

    Rip currents are one of the most dangerous coastal hazards for swimmers. In order to minimize the risk, a coastal operational-process based-model system can be utilized in order to provide forecast of nearshore waves and currents that may endanger beach goers. In this paper, an operational model for rip current prediction by utilizing nearshore bathymetry obtained from video image technique is demonstrated. For the nearshore scale model, XBeach1 is used with which tidal currents, wave induced currents (including the effect of the wave groups) can be simulated simultaneously. Up-to-date bathymetry will be obtained using video images technique, cBathy 2. The system will be tested for the Egmond aan Zee beach, located in the northern part of the Dutch coastline. This paper will test the applicability of bathymetry obtained from video technique to be used as input for the numerical modelling system by comparing simulation results using surveyed bathymetry and model results using video bathymetry. Results show that the video technique is able to produce bathymetry converging towards the ground truth observations. This bathymetry validation will be followed by an example of operational forecasting type of simulation on predicting rip currents. Rip currents flow fields simulated over measured and modeled bathymetries are compared in order to assess the performance of the proposed forecast system.

  6. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  7. Research on bathymetry estimation by Worldview-2 based with the semi-analytical model

    NASA Astrophysics Data System (ADS)

    Sheng, L.; Bai, J.; Zhou, G.-W.; Zhao, Y.; Li, Y.-C.

    2015-04-01

    South Sea Islands of China are far away from the mainland, the reefs takes more than 95% of south sea, and most reefs scatter over interested dispute sensitive area. Thus, the methods of obtaining the reefs bathymetry accurately are urgent to be developed. Common used method, including sonar, airborne laser and remote sensing estimation, are limited by the long distance, large area and sensitive location. Remote sensing data provides an effective way for bathymetry estimation without touching over large area, by the relationship between spectrum information and bathymetry. Aimed at the water quality of the south sea of China, our paper develops a bathymetry estimation method without measured water depth. Firstly the semi-analytical optimization model of the theoretical interpretation models has been studied based on the genetic algorithm to optimize the model. Meanwhile, OpenMP parallel computing algorithm has been introduced to greatly increase the speed of the semi-analytical optimization model. One island of south sea in China is selected as our study area, the measured water depth are used to evaluate the accuracy of bathymetry estimation from Worldview-2 multispectral images. The results show that: the semi-analytical optimization model based on genetic algorithm has good results in our study area;the accuracy of estimated bathymetry in the 0-20 meters shallow water area is accepted.Semi-analytical optimization model based on genetic algorithm solves the problem of the bathymetry estimation without water depth measurement. Generally, our paper provides a new bathymetry estimation method for the sensitive reefs far away from mainland.

  8. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  9. Development of large scale riverine terrain-bathymetry dataset by integrating NHDPlus HR with NED,CoNED and HAND data

    NASA Astrophysics Data System (ADS)

    Li, Z.; Clark, E. P.

    2017-12-01

    Large scale and fine resolution riverine bathymetry data is critical for flood inundation modelingbut not available over the continental United States (CONUS). Previously we implementedbankfull hydraulic geometry based approaches to simulate bathymetry for individual riversusing NHDPlus v2.1 data and 10 m National Elevation Dataset (NED). USGS has recentlydeveloped High Resolution NHD data (NHDPlus HR Beta) (USGS, 2017), and thisenhanced dataset has a significant improvement on its spatial correspondence with 10 m DEM.In this study, we used this high resolution data, specifically NHDFlowline and NHDArea,to create bathymetry/terrain for CONUS river channels and floodplains. A software packageNHDPlus Inundation Modeler v5.0 Beta was developed for this project as an Esri ArcGIShydrological analysis extension. With the updated tools, raw 10 m DEM was first hydrologicallytreated to remove artificial blockages (e.g., overpasses, bridges and eve roadways, etc.) usinglow pass moving window filters. Cross sections were then automatically constructed along eachflowline to extract elevation from the hydrologically treated DEM. In this study, river channelshapes were approximated using quadratic curves to reduce uncertainties from commonly usedtrapezoids. We calculated underneath water channel elevation at each cross section samplingpoint using bankfull channel dimensions that were estimated from physiographicprovince/division based regression equations (Bieger et al. 2015). These elevation points werethen interpolated to generate bathymetry raster. The simulated bathymetry raster wasintegrated with USGS NED and Coastal National Elevation Database (CoNED) (whereveravailable) to make seamless terrain-bathymetry dataset. Channel bathymetry was alsointegrated to the HAND (Height above Nearest Drainage) dataset to improve large scaleinundation modeling. The generated terrain-bathymetry was processed at WatershedBoundary Dataset Hydrologic Unit 4 (WBDHU4) level.

  10. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  11. Estimating River Bathymetry, Roughness, and Discharge from Remote Sensing Measurements of River Height on the River Severn, U.K.

    NASA Astrophysics Data System (ADS)

    Durand, Michael; Neal, Jeff; Rodriguez, Ernesto

    2013-09-01

    The Surface Water and Ocean Topography (SWOT) satellite is a swath-mapping radar interferometer that will provide water elevations over inland water bodies and over the ocean. Here we present a Bayesian algorithm that calculates a best estimate of river bathymetry, roughness coefficient, and discharge based on measurements of river height and slope. On the River Severn, UK, we use gage estimates of height and slope during an in-bank flow event to illustrate algorithm functionality. We validate our estimates of river bathymetry and discharge using in situ measurements. We first assumed that the lateral inflows from smaller tributaries were known. In this case, an accurate inverse to bathymetry and roughness was obtained giving a discharge RMSE of 10 %. We then allowed the lateral inflows to be unknown; accuracy in the bathymetry estimates dropped in this case, giving a discharge RMSE of 36 %. Finally, we explored the case where bathymetry in one reach was known; in this case, discharge RMSE was 15.6 %.

  12. Passive optical remote sensing of Congo River bathymetry using Landsat

    NASA Astrophysics Data System (ADS)

    Ache Rocha Lopes, V.; Trigg, M. A.; O'Loughlin, F.; Laraque, A.

    2014-12-01

    While there have been notable advances in deriving river characteristics such as width, using satellite remote sensing datasets, deriving river bathymetry remains a significant challenge. Bathymetry is fundamental to hydrodynamic modelling of river systems and being able to estimate this parameter remotely would be of great benefit, especially when attempting to model hard to access areas where the collection of field data is difficult. One such region is the Congo Basin, where due to past political instability and large scale there are few studies that characterise river bathymetry. In this study we test whether it is possible to use passive optical remote sensing to estimate the depth of the Congo River using Landsat 8 imagery in the region around Malebo Pool, located just upstream of the Kinshasa gauging station. Methods of estimating bathymetry using remotely sensed datasets have been used extensively for coastal regions and now more recently have been demonstrated as feasible for optically shallow rivers. Previous river bathymetry studies have focused on shallow rivers and have generally used aerial imagery with a finer spatial resolution than Landsat. While the Congo River has relatively low suspended sediment concentration values the application of passive bathymetry estimation to a river of this scale has not been attempted before. Three different analysis methods are tested in this study: 1) a single band algorithm; 2) a log ratio method; and 3) a linear transform method. All three methods require depth data for calibration and in this study area bathymetry measurements are available for three cross-sections resulting in approximately 300 in-situ measurements of depth, which are used in the calibration and validation. The performance of each method is assessed, allowing the feasibility of passive depth measurement in the Congo River to be determined. Considering the scarcity of in-situ bathymetry measurements on the Congo River, even an approximate estimate of depths from these methods will be of considerable value in its hydraulic characterisation.

  13. Coastal bathymetry data collected in 2011 from the Chandeleur Islands, Louisiana

    USGS Publications Warehouse

    DeWitt, Nancy T.; Pfeiffer, William R.; Bernier, Julie C.; Buster, Noreen A.; Miselis, Jennifer L.; Flocks, James G.; Reynolds, Billy J.; Wiese, Dana S.; Kelso, Kyle W.

    2014-01-01

    This report serves as an archive of processed interferometric swath and single-beam bathymetry data. Geographic Iinformation System data products include a 50-meter cell-size interpolated bathymetry grid surface, trackline maps, and point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.

  14. Study of 3D bathymetry modelling using LAPAN Surveillance Unmanned Aerial Vehicle 02 (LSU-02) photo data with stereo photogrammetry technique, Wawaran Beach, Pacitan, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Sari, N. M.; Nugroho, J. T.; Chulafak, G. A.; Kushardono, D.

    2018-05-01

    Coastal is an ecosystem that has unique object and phenomenon. The potential of the aerial photo data with very high spatial resolution covering coastal area is extensive. One of the aerial photo data can be used is LAPAN Surveillance UAV 02 (LSU-02) photo data which is acquired in 2016 with a spatial resolution reaching 10cm. This research aims to create an initial bathymetry model with stereo photogrammetry technique using LSU-02 data. In this research the bathymetry model was made by constructing 3D model with stereo photogrammetry technique that utilizes the dense point cloud created from overlapping of those photos. The result shows that the 3D bathymetry model can be built with stereo photogrammetry technique. It can be seen from the surface and bathymetry transect profile.

  15. How Perturbing Ocean Floor Disturbs Tsunami Waves

    NASA Astrophysics Data System (ADS)

    Salaree, A.; Okal, E.

    2017-12-01

    Bathymetry maps play, perhaps the most crucial role in optimal tsunami simulations. Regardless of the simulation method, on one hand, it is desirable to include every detailed bathymetry feature in the simulation grids in order to predict tsunami amplitudes as accurately as possible, but on the other hand, large grids result in long simulation times. It is therefore, of interest to investigate a "sufficiency" level - if any - for the amount of details in bathymetry grids needed to reconstruct the most important features in tsunami simulations, as obtained from the actual bathymetry. In this context, we use a spherical harmonics series approach to decompose the bathymetry of the Pacific ocean into its components down to a resolution of 4 degrees (l=100) and create bathymetry grids by accumulating the resulting terms. We then use these grids to simulate the tsunami behavior from pure thrust events around the Pacific through the MOST algorithm (e.g. Titov & Synolakis, 1995; Titov & Synolakis, 1998). Our preliminary results reveal that one would only need to consider the sum of the first 40 coefficients (equivalent to a resolution of 1000 km) to reproduce the main components of the "real" results. This would result in simpler simulations, and potentially allowing for more efficient tsunami warning algorithms.

  16. Bathymetry Estimations Using Vicariously Calibrated HICO Data

    DTIC Science & Technology

    2013-07-16

    prototype sensor installed on the International Space Station (ISS) designed to explore the management and capability of a space-borne hyperspectral sensor ...management of the HICO sensor . Bathymetry information is essential for naval operations in coastal regions. However, bathymetry may not be available in... sensors with coarser resolutions. Furthermore, its contiguous hyperspectral range is well suited to be used as input to the Hyperspectral Optimization

  17. Resolving bathymetry from airborne gravity along Greenland fjords

    USGS Publications Warehouse

    Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany L.; Bell, Robin E.

    2015-01-01

    Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.

  18. A Machine Learning Approach to Predicted Bathymetry

    NASA Astrophysics Data System (ADS)

    Wood, W. T.; Elmore, P. A.; Petry, F.

    2017-12-01

    Recent and on-going efforts have shown how machine learning (ML) techniques, incorporating more, and more disparate data than can be interpreted manually, can predict seafloor properties, with uncertainty, where they have not been measured directly. We examine here a ML approach to predicted bathymetry. Our approach employs a paradigm of global bathymetry as an integral component of global geology. From a marine geology and geophysics perspective the bathymetry is the thickness of one layer in an ensemble of layers that inter-relate to varying extents vertically and geospatially. The nature of the multidimensional relationships in these layers between bathymetry, gravity, magnetic field, age, and many other global measures is typically geospatially dependent and non-linear. The advantage of using ML is that these relationships need not be stated explicitly, nor do they need to be approximated with a transfer function - the machine learns them via the data. Fundamentally, ML operates by brute-force searching for multidimensional correlations between desired, but sparsely known data values (in this case water depth), and a multitude of (geologic) predictors. Predictors include quantities known extensively such as remotely sensed measurements (i.e. gravity and magnetics), distance from spreading ridge, trench etc., (and spatial statistics based on these quantities). Estimating bathymetry from an approximate transfer function is inherently model, as well as data limited - complex relationships are explicitly ruled out. The ML is a purely data-driven approach, so only the extent and quality of the available observations limit prediction accuracy. This allows for a system in which new data, of a wide variety of types, can be quickly and easily assimilated into updated bathymetry predictions with quantitative posterior uncertainties.

  19. The Role of Near-Shore Bathymetry During Tsunami Inundation in a Reef Island Setting: A Case Study of Tutuila Island

    NASA Astrophysics Data System (ADS)

    Dilmen, Derya I.; Roe, Gerard H.; Wei, Yong; Titov, Vasily V.

    2018-04-01

    On September 29, 2009 at 17:48 UTC, an M w = 8.1 earthquake in the Tonga Trench generated a tsunami that caused heavy damage across Samoa, American Samoa, and Tonga. One of the worst hits was the volcanic island of Tutuila in American Samoa. Tutuila has a typical tropical island bathymetry setting influenced by coral reefs, and so the event provided an opportunity to evaluate the relationship between tsunami dynamics and the bathymetry in that typical island environment. Previous work has come to differing conclusions regarding how coral reefs affect tsunami dynamics through their influence on bathymetry and dissipation. This study presents numerical simulations of this event with a focus on two main issues: first, how roughness variations affect tsunami run-up and whether different values of Manning's roughness parameter, n, improve the simulated run-up compared to observations; and second, how depth variations in the shelf bathymetry with coral reefs control run-up and inundation on the island coastlines they shield. We find that no single value of n provides a uniformly good match to all observations; and we find substantial bay-to-bay variations in the impact of varying n. The results suggest that there are aspects of tsunami wave dissipation which are not captured by a simplified drag formulation used in shallow-water waves model. The study also suggests that the primary impact of removing the near-shore bathymetry in coral reef environment is to reduce run-up, from which we conclude that, at least in this setting, the impact of the near-shore bathymetry is to increase run-up and inundation.

  20. ICESat-2 bathymetry: an empirical feasibility assessment using MABEL

    NASA Astrophysics Data System (ADS)

    Forfinski, Nick; Parrish, Christopher

    2016-10-01

    The feasibility of deriving bathymetry from data acquired with ATLAS, the photon-counting lidar on NASA's upcoming ICESat-2 satellite, is assessed empirically by examining data from NASA's airborne ICESat-2 simulator, MABEL. The primary objectives of ICESat-2 will be to measure ice-sheet elevations, sea-ice thickness, and global biomass. However, the 6-beam, green-wavelength photon-counting lidar, combined with the 91-day repeat period and near-polar orbit, may provide unique opportunities to measure coastal bathymetry in remote, poorly-mapped areas of the globe. The study focuses on high-probability bottom returns in Keweenaw Bay, Lake Superior, acquired during the "Transit to KPMD" MABEL mission in August, 2012 at an AGL altitude of 20,000 m. Water-surface and bottom returns were identified and manually classified using MABEL Viewer, an in-house prototype data-explorer web application. Water-surface returns were observed in 12 green channels, and bottom returns were observed in 10 channels. Comparing each channel's mean water-surface elevation to a regional NOAA Nowcast water-level estimate revealed channel-specific elevation biases that were corrected for in our bathymetry estimation procedure. Additionally, a first-order refraction correction was applied to each bottom return. Agreement between the refraction-corrected depth profile and NOAA data acquired two years earlier by Fugro LADS with the LADS Mk II airborne system indicates that MABEL reliably detected bathymetry in depths up to 8 m, with an RMS difference of 0.7 m. In addition to feeding coastal bathymetry models, MABEL (and potentially ICESat-2 ATLAS) has the potential to seed algorithms for bathymetry retrieval from passive, multispectral satellite imagery by providing reference depths.

  1. The Role of Near-Shore Bathymetry During Tsunami Inundation in a Reef Island Setting: A Case Study of Tutuila Island

    NASA Astrophysics Data System (ADS)

    Dilmen, Derya I.; Roe, Gerard H.; Wei, Yong; Titov, Vasily V.

    2018-02-01

    On September 29, 2009 at 17:48 UTC, an M w = 8.1 earthquake in the Tonga Trench generated a tsunami that caused heavy damage across Samoa, American Samoa, and Tonga. One of the worst hits was the volcanic island of Tutuila in American Samoa. Tutuila has a typical tropical island bathymetry setting influenced by coral reefs, and so the event provided an opportunity to evaluate the relationship between tsunami dynamics and the bathymetry in that typical island environment. Previous work has come to differing conclusions regarding how coral reefs affect tsunami dynamics through their influence on bathymetry and dissipation. This study presents numerical simulations of this event with a focus on two main issues: first, how roughness variations affect tsunami run-up and whether different values of Manning's roughness parameter, n, improve the simulated run-up compared to observations; and second, how depth variations in the shelf bathymetry with coral reefs control run-up and inundation on the island coastlines they shield. We find that no single value of n provides a uniformly good match to all observations; and we find substantial bay-to-bay variations in the impact of varying n. The results suggest that there are aspects of tsunami wave dissipation which are not captured by a simplified drag formulation used in shallow-water waves model. The study also suggests that the primary impact of removing the near-shore bathymetry in coral reef environment is to reduce run-up, from which we conclude that, at least in this setting, the impact of the near-shore bathymetry is to increase run-up and inundation.

  2. Mapping bathymetry in an active surf zone with the WorldView2 multispectral satellite

    NASA Astrophysics Data System (ADS)

    Trimble, S. M.; Houser, C.; Brander, R.; Chirico, P.

    2015-12-01

    Rip currents are strong, narrow seaward flows of water that originate in the surf zones of many global beaches. They are related to hundreds of international drownings each year, but exact numbers are difficult to calculate due to logistical difficulties in obtaining accurate incident reports. Annual average rip current fatalities are estimated to be ~100, 53 and 21 in the United States (US), Costa Rica, and Australia respectively. Current warning systems (e.g. National Weather Service) do not account for fine resolution nearshore bathymetry because it is difficult to capture. The method shown here could provide frequent, high resolution maps of nearshore bathymetry at a scale required for improved rip prediction and warning. This study demonstrates a method for mapping bathymetry in the surf zone (20m deep and less), specifically within rip channels, because rips form at topographically low spots in the bathymetry as a result of feedback amongst waves, substrate, and antecedent bathymetry. The methods employ the Digital Globe WorldView2 (WV2) multispectral satellite and field measurements of depth to generate maps of the changing bathymetry at two embayed, rip-prone beaches: Playa Cocles, Puerto Viejo de Talamanca, Costa Rica, and Bondi Beach, Sydney, Australia. WV2 has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including 'yellow' (585-625 nm) and 'coastal blue' (400-450 nm). The data is used to classify bottom type and to map depth to the return in multiple bands. The methodology is tested at each site for algorithm consistency between dates, and again for applicability between sites.

  3. Bathymetry and acoustic backscatter data collected in 2010 from Cat Island, Mississippi

    USGS Publications Warehouse

    Buster, Noreen A.; Pfeiffer, William R.; Miselis, Jennifer L.; Kindinger, Jack G.; Wiese, Dana S.; Reynolds, B.J.

    2012-01-01

    Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center (SPCMSC), in collaboration with the U.S. Army Corps of Engineers (USACE), conducted geophysical and sedimentological surveys around Cat Island, the westernmost island in the Mississippi-Alabama barrier island chain (fig. 1). The objectives of the study were to understand the geologic evolution of Cat Island relative to other barrier islands in the northern Gulf of Mexico and to identify relationships between the geologic history, present day morphology, and sediment distribution. This report contains data from the bathymetry and side-scan sonar portion of the study collected during two geophysical cruises. Interferometric swath bathymetry and side-scan sonar data were collected aboard the RV G.K. Gilbert September 7-15, 2010. Single-beam bathymetry was collected in shallow water around the island (< 2 meter (m)) from the RV Streeterville from September 28 to October 2, 2010, to cover the data gap between the landward limit of the previous cruise and the shoreline. This report serves as an archive of processed interferometric swath and single-beam bathymetry and side scan sonar data. GIS data products include a 50-m cell size interpolated gridded bathymetry surface, trackline maps, and an acoustic side-scan sonar image. Additional files include error analysis maps, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FDGC) metadata.

  4. Small Rov Marine Boat for Bathymetry Surveys of Shallow Waters - Potential Implementation in Malaysia

    NASA Astrophysics Data System (ADS)

    Suhari, K. T.; Karim, H.; Gunawan, P. H.; Purwanto, H.

    2017-10-01

    Current practices in bathymetry survey (available method) are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products - economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian' bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling) since it is mostly similar to Malaysia's river characteristics and suggests some improvement for Malaysia best practice.

  5. Bathymetry and acoustic backscatter: outer mainland shelf and slope, Gulf of Santa Catalina, southern California

    USGS Publications Warehouse

    Dartnell, Peter; Conrad, James E.; Ryan, Holly F.; Finlayson, David P.

    2014-01-01

    In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, acquired bathymetry and acoustic-backscatter data from the outer shelf and slope region offshore of southern California. The surveys were conducted as part of the USGS Marine Geohazards Program. Assessment of the hazards posed by offshore faults, submarine landslides, and tsunamis are facilitated by accurate and detailed bathymetric data. The surveys were conducted using the USGS R/V Parke Snavely outfitted with a 100-kHz Reson 7111 multibeam-echosounder system. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  6. River bathymetry estimation based on the floodplains topography.

    NASA Astrophysics Data System (ADS)

    Bureš, Luděk; Máca, Petr; Roub, Radek; Pech, Pavel; Hejduk, Tomáš; Novák, Pavel

    2017-04-01

    Topographic model including River bathymetry (bed topography) is required for hydrodynamic simulation, water quality modelling, flood inundation mapping, sediment transport, ecological and geomorphologic assessments. The most common way to create the river bathymetry is to use of the spatial interpolation of discrete points or cross sections data. The quality of the generated bathymetry is dependent on the quality of the measurements, on the used technology and on the size of input dataset. Extensive measurements are often time consuming and expensive. Other option for creating of the river bathymetry is to use the methods of mathematical modelling. In the presented contribution we created the river bathymetry model. Model is based on the analytical curves. The curves are bent into shape of the cross sections. For the best description of the river bathymetry we need to know the values of the model parameters. For finding these parameters we use of the global optimization methods. The global optimization schemes is based on heuristics inspired by the natural processes. We use new type of DE (differential evolution) for finding the solutions of inverse problems, related to the parameters of mathematical model of river bed surfaces. The presented analysis discuss the dependence of model parameters on the selected characteristics. Selected characteristics are: (1) Topographic characteristics (slope and curvature in the left and right floodplains) determined on the base of DTM 5G (digital terrain model). (2) Optimization scheme. (3) Type of used analytical curves. The novel approach is applied on the three parts of Vltava river in Czech Republic. Each part of the river is described on the base of the point field. The point fields was measured with ADCP probe River surveyor M9. This work was supported by the Technology Agency of the Czech Republic, programme Alpha (project TA04020042 - New technologies bathymetry of rivers and reservoirs to determine their storage capacity and monitor the amount and dynamics of sediments) and Internal Grant Agency of Faculty of Environmental Sciences (CULS) (IGA/20164233). Keywords: bathymetry, global optimization, bed topography References: Merwade, Venkatesh. "Effect of spatial trends on interpolation of river bathymetry." Journal of Hydrology, 371.1, 169-181, 2009. Legleiter, Carl J., and Phaedon C. Kyriakidis. Spatial prediction of river channel topography by kriging. Earth Surface Processes and Landforms, 33.6 , 841-867, 2008. P. Maca and P. Pech and and J. Pavlasek. Comparing the Selected Transfer Functions and Local Optimization Methods for Neural Network Flood Runoff Forecast. Mathematical Problems in Engineering, vol. 2014, Article ID 782351, 10 pages, 2014. M. Jakubcova and P. Maca and and P. Pech. A Comparison of Selected Modifications of the Particle Swarm Optimization Algorithm. Journal of Applied Mathematics, vol. 2014, Article ID 293087, 10 pages, 2014.

  7. Depth-to-basement, sediment-thickness, and bathymetry data for the deep-sea basins offshore of Washington, Oregon, and California

    USGS Publications Warehouse

    Wong, Florence L.; Grim, Muriel S.

    2015-01-01

    Contours and derivative raster files of depth-to-basement, sediment-thickness, and bathymetry data for the area offshore of Washington, Oregon, and California are provided here as GIS-ready shapefiles and GeoTIFF files. The data were used to generate paper maps in 1992 and 1993 from 1984 surveys of the U.S. Exclusive Economic Zone by the U.S. Geological Survey for depth to basement and sediment thickness, and from older data for the bathymetry.

  8. Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    PubMed

    Huybers, Peter; Langmuir, Charles; Katz, Richard F; Ferguson, David; Proistosescu, Cristian; Carbotte, Suzanne

    2016-06-17

    Olive et al (Reports, 16 October 2015, p. 310) argue that ~10% fluctuations in melt supply do not produce appreciable changes in ocean ridge bathymetry on time scales less than 100,000 years and thus cannot reflect sea level forcing. Spectral analysis of bathymetry in a region they highlight as being fault controlled, however, shows strong evidence for a signal from sea level variation. Copyright © 2016, American Association for the Advancement of Science.

  9. Response to Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    PubMed

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S

    2016-07-15

    Tolstoy reports the existence of a characteristic 100 thousand year (ky) period in the bathymetry of fast-spreading seafloor but does not argue that sea level change is a first-order control on seafloor morphology worldwide. Upon evaluating the overlap between tectonic and Milankovitch periodicities across spreading rates, we reemphasize that fast-spreading ridges are the best potential recorders of a sea level signature in seafloor bathymetry. Copyright © 2016, American Association for the Advancement of Science.

  10. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    NASA Astrophysics Data System (ADS)

    Schaap, D.; Schmitt, T.

    2017-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a grid resolution of 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs. Catalogues and the EMODnet DTM are published at the dedicated EMODnet Bathymetry portal including a versatile DTM viewing and downloading service. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM). This continues gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data are included to fill gaps in coverage of the coastal zones. The extra data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 1/16 arc minutes. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be `moving to the cloud' and setting up an EMODnet Collaborative Virtual Environment (CVE) for producing the EMODnet DTMs. The presentation will highlight key details of EMODnet Bathymetry results and the way how challenges of the new HRSM project are approached.

  11. Bathymetry and acoustic backscatter-outer mainland shelf, eastern Santa Barbara Channel, California

    USGS Publications Warehouse

    Dartnell, Peter; Finlayson, David P.; Ritchie, Andrew C.; Cochrane, Guy R.; Erdey, Mercedes D.

    2012-01-01

    In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from the outer shelf region of the eastern Santa Barbara Channel, California. These surveys were conducted in cooperation with the Bureau of Ocean Energy Management (BOEM). BOEM is interested in maps of hard-bottom substrates, particularly natural outcrops that support reef communities in areas near oil and gas extraction activity. The surveys were conducted using the USGS R/V Parke Snavely, outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  12. Bathymetry of Clear Creek Reservoir, Chaffee County, Colorado, 2016

    USGS Publications Warehouse

    Kohn, Michael S.; Kinzel, Paul J.; Mohrmann, Jacob S.

    2017-03-06

    To better characterize the water supply capacity of Clear Creek Reservoir, Chaffee County, Colorado, the U.S. Geological Survey, in cooperation with the Pueblo Board of Water Works and Colorado Mountain College, carried out a bathymetry survey of Clear Creek Reservoir. A bathymetry map of the reservoir is presented here with the elevation-surface area and the elevation-volume relations. The bathymetry survey was carried out June 6–9, 2016, using a man-operated boat-mounted, multibeam echo sounder integrated with a Global Positioning System and a terrestrial survey using real-time kinematic Global Navigation Satellite Systems. The two collected datasets were merged and imported into geographic information system software. The equipment and methods used in this study allowed water-resource managers to maintain typical reservoir operations, eliminating the need to empty the reservoir to carry out the survey.

  13. Bathymetry and digital elevation models of Coyote Creek and Alviso Slough, South San Francisco Bay, California

    USGS Publications Warehouse

    Foxgrover, Amy C.; Finlayson, David P.; Jaffe, Bruce E.; Fregoso, Theresa A.

    2012-01-05

    In 2010 the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center completed three cruises to map the bathymetry of the main channel and shallow intertidal mudflats in the southernmost part of south San Francisco Bay. The three surveys were merged to generate comprehensive maps of Coyote Creek (from Calaveras Point east to the railroad bridge) and Alviso Slough (from the bay to the town of Alviso) to establish baseline bathymetry prior to the breaching of levees adjacent to Alviso and Guadalupe Sloughs as part of the South Bay Salt Pond Restoration Project (http://www.southbayrestoration.org). Since 2010 the USGS has conducted twelve additional surveys to monitor bathymetric change in this region as restoration progresses.The bathymetry surveys were conducted using the state-of-the-art research vessel R/V Parke Snavely outfitted with an interferometric sidescan sonar for swath mapping in extremely shallow water. This publication provides high-resolution bathymetric data collected by the USGS. For the 2010 baseline survey we have merged the bathymetry with aerial lidar data that were collected for the USGS during the same time period to create a seamless, high-resolution digital elevation model (DEM) of the study area. The series of bathymetry datasets are provided at 1 m resolution and the 2010 bathymetric/topographic DEM at 2 m resolution. The data are formatted as both X, Y, Z text files and ESRI Arc ASCII files that are accompanied by Federal Geographic Data Committee (FGDC) compliant metadata.

  14. Efficient Data Assimilation Algorithms for Bathymetry Applications

    NASA Astrophysics Data System (ADS)

    Ghorbanidehno, H.; Kokkinaki, A.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.

    2016-12-01

    Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing monitoring. Data assimilation methods combine monitoring data and models of nearshore dynamics to estimate the unknown bathymetry and the corresponding uncertainties. Existing applications have been limited to the basic Kalman Filter (KF) and the Ensemble Kalman Filter (EnKF). The former can only be applied to low-dimensional problems due to its computational cost; the latter often suffers from ensemble collapse and uncertainty underestimation. This work explores the use of different variants of the Kalman Filter for bathymetry applications. In particular, we compare the performance of the EnKF to the Unscented Kalman Filter and the Hierarchical Kalman Filter, both of which are KF variants for non-linear problems. The objective is to identify which method can better handle the nonlinearities of nearshore physics, while also having a reasonable computational cost. We present two applications; first, the bathymetry of a synthetic one-dimensional cross section normal to the shore is estimated from wave speed measurements. Second, real remote measurements with unknown error statistics are used and compared to in situ bathymetric survey data collected at the USACE Field Research Facility in Duck, NC. We evaluate the information content of different data sets and explore the impact of measurement error and nonlinearities.

  15. Riverine Bathymetry Imaging with Indirect Observations

    NASA Astrophysics Data System (ADS)

    Farthing, M.; Lee, J. H.; Ghorbanidehno, H.; Hesser, T.; Darve, E. F.; Kitanidis, P. K.

    2017-12-01

    Bathymetry, i.e, depth, imaging in a river is of crucial importance for shipping operations and flood management. With advancements in sensor technology and computational resources, various types of indirect measurements can be used to estimate high-resolution riverbed topography. Especially, the use of surface velocity measurements has been actively investigated recently since they are easy to acquire at a low cost in all river conditions and surface velocities are sensitive to the river depth. In this work, we image riverbed topography using depth-averaged quasi-steady velocity observations related to the topography through the 2D shallow water equations (SWE). The principle component geostatistical approach (PCGA), a fast and scalable variational inverse modeling method powered by low-rank representation of covariance matrix structure, is presented and applied to two "twin" riverine bathymetry identification problems. To compare the efficiency and effectiveness of the proposed method, an ensemble-based approach is also applied to the test problems. Results demonstrate that PCGA is superior to the ensemble-based approach in terms of computational effort and accuracy. Especially, the results obtained from PCGA capture small-scale bathymetry features irrespective of the initial guess through the successive linearization of the forward model. Analysis on the direct survey data of the riverine bathymetry used in one of the test problems shows an efficient, parsimonious choice of the solution basis in PCGA so that the number of the numerical model runs used to achieve the inversion results is close to the minimum number that reconstructs the underlying bathymetry.

  16. A new GNSS-enabled floating device as a means for retrieving river bathymetry by assimilation into a hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Matgen, P.; Giustarini, L.

    2012-04-01

    Hydrodynamic models form an important component in flood forecasting systems. Model predictions with reduced uncertainty critically depend on the availability of detailed information about floodplain topography and riverbed bathymetry. While digital elevation models with varying spatial resolutions and accuracy levels are readily available at a global scale and can be used to infer floodplain geometry, bathymetric data is often not available and ground surveys are time and resource intensive. In this general context, our study aims at evaluating the hydrometric value of the Global Navigation Satellite System (GNSS) for bathymetry retrieval. Integrated with satellite telecommunication systems, drifting or anchored floaters equipped with navigation systems such as GPS and Galileo, enable the quasi-continuous measurement and near real-time transmission of water levels and flow velocities, virtually from any point in the world. The presented study investigates the potential of assimilating GNSS-derived water level measurements into a hydraulic model in order to estimate river bathymetry. First, an ensemble of possible bathymetries and roughness parameters was randomly generated using a Monte-Carlo sampling approach. Next, water level measurements provided by a drifting GNSS-equipped buoy were assimilated into a hydrodynamic model using as input a recorded discharge hydrograph and as geometry the generated bathymetry ensemble. Synthetic experiments were carried out with a one-dimensional hydraulic model implemented over a 19 km reach of the Alzette River. A Particle Filter was used as an assimilation algorithm for integrating observation data into the hydraulic model. The synthetic observation, simulating the data obtained from GNSS measurements, was generated using a perturbed forward run of the hydrodynamic model using the true bathymetry (ground survey). The scenario adopted in the data assimilation experiment assumed that during a flood event, a buoy was launched into the water every ten hours. This frequency was considered plausible as the time needed for the buoy to drift from the upstream to the downstream end of the study area is estimated to be less than 6 h. Consequently, a time window of 10 h would allow an operator to launch the buoy at the upstream end, recover it at the downstream end and finally drive back to the upstream end and launch it again into the river channel.This synthetic observation was then assimilated into the hydraulic model. The first results were promising as sequentially assimilating the water level values provided by the synthetic GNSS-equipped buoy allowed gradually rejecting wrong bathymetries and converging toward bathymetries that are consistent with the ground surveyed one.

  17. A drifting GPS buoy for retrieving effective riverbed bathymetry

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Matgen, P.; Giustarini, L.; Teferle, F. N.; Tailliez, C.; Iffly, J.-F.; Corato, G.

    2015-01-01

    Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic modeling. This study aims at evaluating the potential of the Global Navigation Satellite System (GNSS), like for instance Global Positioning System (GPS), for retrieving such data. Drifting buoys equipped with navigation systems such as GPS enable the quasi-continuous measurement of water surface elevation, from virtually any point in the world. The present study investigates the potential of assimilating GNSS-derived water surface elevation measurements into hydraulic models in order to retrieve effective riverbed bathymetry. First tests with a GPS dual-frequency receiver show that the root mean squared error (RMSE) on the elevation measurement equals 30 cm provided that a differential post processing is performed. Next, synthetic observations of a drifting buoy were generated assuming a 30 cm average error of Water Surface Elevation (WSE) measurements. By assimilating the synthetic observation into a 1D-Hydrodynamic model, we show that the riverbed bathymetry can be retrieved with an accuracy of 36 cm. Moreover, the WSEs simulated by the hydrodynamic model using the retrieved bathymetry are in good agreement with the synthetic "truth", exhibiting an RMSE of 27 cm.

  18. Enhancing Deep-Water Low-Resolution Gridded Bathymetry Using Single Image Super-Resolution

    NASA Astrophysics Data System (ADS)

    Elmore, P. A.; Nock, K.; Bonanno, D.; Smith, L.; Ferrini, V. L.; Petry, F. E.

    2017-12-01

    We present research to employ single-image super-resolution (SISR) algorithms to enhance knowledge of the seafloor using the 1-minute GEBCO 2014 grid when 100m grids from high-resolution sonar systems are available for training. Our numerical upscaling experiments of x15 upscaling of the GEBCO grid along three areas of the Eastern Pacific Ocean along mid-ocean ridge systems where we have these 100m gridded bathymetry data sets, which we accept as ground-truth. We show that four SISR algorithms can enhance this low-resolution knowledge of bathymetry versus bicubic or Spline-In-Tension algorithms through upscaling under these conditions: 1) rough topography is present in both training and testing areas and 2) the range of depths and features in the training area contains the range of depths in the enhancement area. We quantitatively judged successful SISR enhancement versus bicubic interpolation when Student's hypothesis testing show significant improvement of the root-mean squared error (RMSE) between upscaled bathymetry and 100m gridded ground-truth bathymetry at p < 0.05. In addition, we found evidence that random forest based SISR methods may provide more robust enhancements versus non-forest based SISR algorithms.

  19. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    USGS Publications Warehouse

    Miller-Corbett, Cynthia

    2016-09-01

    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with the 3D Elevation Program so that data can be integrated with a minimal level of effort. Geomorphic site conditions are known to affect the success and accuracy of light detection and ranging and other bathymetric surveys, and a baseline that includes geomorphic data is recommended to help in evaluation of limitations imposed by geomorphology for surveys completed in the variable physiographic provinces across the United States. The geographic distribution for existing surveys identifies regions where inland bathymetry data have been collected and, conversely, where little or no survey data seem to be available to provide hydrologic and hydraulic information. This distribution, in conjunction with local to regional data needs to characterize and monitor river and lake resources, provides another important set of criteria to propose and guide acquisition of new bathymetry data for the 3D Elevation Program. An initial evaluation of needs can be based on the importance of water resources that provide primary water supplies for communities, agriculture, energy, and ecological systems; the importance of flood plain analyses; and projected population growth across the United States.

  20. Estimation of River Bathymetry from ATI-SAR Data

    NASA Astrophysics Data System (ADS)

    Almeida, T. G.; Walker, D. T.; Farquharson, G.

    2013-12-01

    A framework for estimation of river bathymetry from surface velocity observation data is presented using variational inverse modeling applied to the 2D depth-averaged, shallow-water equations (SWEs) including bottom friction. We start with with a cost function defined by the error between observed and estimated surface velocities, and introduce the SWEs as a constraint on the velocity field. The constrained minimization problem is converted to an unconstrained minimization through the use of Lagrange multipliers, and an adjoint SWE model is developed. The adjoint model solution is used to calculate the gradient of the cost function with respect to river bathymetry. The gradient is used in a descent algorithm to determine the bathymetry that yields a surface velocity field that is a best-fit to the observational data. In applying the algorithm, the 2D depth-averaged flow is computed assuming a known, constant discharge rate and a known, uniform bottom-friction coefficient; a correlation relating surface velocity and depth-averaged velocity is also used. Observation data was collected using a dual beam squinted along-track-interferometric, synthetic-aperture radar (ATI-SAR) system, which provides two independent components of the surface velocity, oriented roughly 30 degrees fore and aft of broadside, offering high-resolution bank-to-bank velocity vector coverage of the river. Data and bathymetry estimation results are presented for two rivers, the Snohomish River near Everett, WA and the upper Sacramento River, north of Colusa, CA. The algorithm results are compared to available measured bathymetry data, with favorable results. General trends show that the water-depth estimates are most accurate in shallow regions, and performance is sensitive to the accuracy of the specified discharge rate and bottom friction coefficient. The results also indicate that, for a given reach, the estimated water depth reaches a maximum that is smaller than the true depth; this apparent maximum depth scales with the true river depth and discharge rate, so that the deepest parts of the river show the largest bathymetry errors.

  1. Water Storage Changes using Floodplain Bathymetry from InSAR and satellite altimetry in the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Lee, H.; Jung, H. C.; Beighley, E.; Alsdorf, D. E.

    2016-12-01

    Extensive wetlands and swamps expand along the Congo River and its tributaries. These wetlands store water and attenuate flood wave during high water season. Substantial dissolved and solid substances are also transported with the water flux, influencing geochemical environment and biogeochemistry processes both in the wetlands and the river. To understand the role of the wetlands in partitioning the surface water and the accompanied material movement, water storage change is one of the most fundamental observations. The water flow through the wetlands is complex, affected by topography, vegetation resistance, and hydraulic variations. Interferometric Synthetic Aperture Radar (InSAR) has been successfully used to map relative water level changes in the vegetated wetlands with high spatial resolution. By examining interferograms generated from ALOS PALSAR along the middle reach of the Congo River floodplain, we found greater water level changes near the Congo mainstem. Integrated analysis of InSAR and Envisat altimetry data has shown that proximal floodplain with higher water level change has lower elevation during dry season. This indicates that the spatial variation of water level change in the Congo floodplain is mostly controlled by floodplain bathymetry. A method based on water level and bathymetry model is proposed to estimate water storage change. The bathymetry model is composed of (1) elevation at the intersection of the floodplain and the river and (2) floodplain bathymetry slope. We first constructed the floodplain bathymetry by selecting an Envisat altimetry profile during low water season to estimate elevation at the intersection of the floodplain and the river. Floodplain bathymetry slope was estimated using InSAR measurements. It is expected that our new method can estimate water storage change with higher temporal resolution corresponding to altimeter's repeat cycle. In addition, given the multi-decadal archive of satellite altimetry measurements, our method suggests a way to estimate interannual water storage change over a long time span in Congo.

  2. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter

    2018-04-01

    Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.

  3. lakemorpho

    EPA Science Inventory

    Lakemorpho provides a number of functions to calculate a standard suite of lake morphometry metrics. Most of the metrics are measurements of the shape of the lake. Metrics that rely on depth have traditionally been calculated with bathymetry data. In the absence of bathymetry dat...

  4. Comparision of Bathymetry and Bottom Characteristics From Hyperspectral Remote Sensing Data and Shipborne Acoustic Measurements

    NASA Astrophysics Data System (ADS)

    McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.

    2002-12-01

    There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types. Acoustic backscatter imagery corresponds well with the AVIRIS data in the middle to outer study area, implying a close correspondence between seafloor character and optical reflectance. AVIRIS data in the inner study area show poorer correspondence with the acoustic facies, indicating greater water column effects (turbidity). Acoustic backscatter as a proxy for bottom albedo, in conjunction with multibeam bathymetry data, will allow for more precise modeling of the optical signal in coastal environments.

  5. MAPPING BATHYMETRY AND BOTTOM TYPE IN A SHALLOW ESTUARY

    EPA Science Inventory

    Bathymetry and bottom type are important in characterizing estuaries and their ecology but hard to map, especially in shallow estuaries. Acoustic backscattering was used to remotely sense these properties in the shallow Slocums River Estuary of Massachusetts. Acoustic pulses were...

  6. Bathymetry and acoustic backscatter: Estero Bay, California

    USGS Publications Warehouse

    Hartwell, Stephen R.; Finlayson, David P.; Dartnell, Peter; Johnson, Samuel Y.

    2013-01-01

    Between July 30 and August 9, 2012, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from Estero Bay, San Luis Obispo, California, under PCMSC Field Activity ID S-05-12-SC. The survey was done using the R/V Parke Snavely outfitted with a multibeam sonar for swath mapping and highly accurate position and orientation equipment for georeferencing. This report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  7. Bathymetry, acoustic backscatter, and seafloor character of Farallon Escarpment and Rittenburg Bank, northern California

    USGS Publications Warehouse

    Dartnell, Peter; Cochrane, Guy R.; Finlayson, David P.

    2014-01-01

    In 2011, scientists from the U.S. Geological Survey’s Coastal and Marine Geology Program acquired bathymetry and acoustic-backscatter data along the upper slope of the Farallon Escarpment and Rittenburg Bank within the Gulf of the Farallones National Marine Sanctuary offshore of the San Francisco Bay area. The surveys were funded by the National Oceanic and Atmospheric Administration’s Deep Sea Coral Research and Technology Program to identify potential deep sea coral habitat prior to planned sampling efforts. Bathymetry and acoustic-backscatter data can be used to map seafloor geology (rock, sand, mud), and slope of the sea floor, both of which are useful for the prediction of deep sea coral habitat. The data also can be used for the prediction of sediment and contaminant budgets and transport, and for the assessment of earthquake and tsunami hazards. The surveys were conducted aboard National Oceanic and Atmospheric Administration’s National Marine Sanctuary Program’s 67-foot-long research vessel Fulmar outfitted with a U.S. Geological Survey 100-kHz Reson 7111 multibeam-echosounder system. This report provides the bathymetry and backscatter data acquired during these surveys, interpretive seafloor character maps in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee metadata.

  8. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas

    NASA Astrophysics Data System (ADS)

    Schaap, Dick M. A.

    2016-04-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODNet) initiative. EMODNet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODNet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODNet is entering its 3rd phase with operational portals providing access to marine data for bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities, complemented by checkpoint projects, analyzing the fitness for purpose of data provision. The EMODNet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets that are indexed with metadata by adopting from SeaDataNet the Common Data Index (CDI) data discovery and access service and the Sextant data products catalogue service. SeaDataNet is a network of major oceanographic data centers around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards such as ISO and OGC. The SeaDataNet portal provides users a number of interrelated meta directories, an extensive range of controlled vocabularies, and the various SeaDataNet standards and tools. SeaDataNet at present gives overview and access to more than 1.8 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centers from 34 countries riparian to European seas. The latest EMODNet Bathymetry DTM has a resolution of 1/8 arc minute * 1/8 arc minute and covers all European sea regions. Use is made of available and gathered surveys and already more than 13.000 surveys have been indexed by 27 European data providers from 15 countries and originating from more than 120 organizations. Also use is made of composite DTMs as generated and maintained by several data providers for their areas of interest. Already 44 composite DTMs are included in the Sextant data products catalogue. For areas without coverage use is made of the latest global DTM of GEBCO who is partner in the EMODNet Bathymetry project. In return GEBCO integrates the EMODNet DTM to achieve an enriched and better result. The catalogue services and the generated EMODNet can be queried and browsed at the dedicated EMODNet Bathymetry portal which also provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. Activities are underway for further refinement following user feedback. The EMODnet DTM is publicly available for downloading in various formats. The presentation will highlight key details of EMODNet Bathymetry project, the recently released EMODNet Digital Bathymetry for all European seas, its portal and its versatile viewer.

  9. Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion

    NASA Astrophysics Data System (ADS)

    Hesser, T.; Farthing, M. W.; Brodie, K.

    2016-02-01

    The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.

  10. Surfzone Currents Over Irregular Bathymetry: Drifter Observations and Numerical Model Results

    NASA Astrophysics Data System (ADS)

    Schmidt, W. E.; Slinn, D. N.; Guza, R. T.

    2002-12-01

    Surfzone currents on alongshore variable bathymetry were observed with recently developed GPS-tracked drifters and numerically modeled with the time-dependent, nonlinear shallow water equations. These currents, forced by alongshore inhomogeneous pressure and radiation stress gradients, contain flow features difficult to resolve with fixed instrument arrays, such as rips, eddies, and meanders. Drifters were repeatedly released and recovered near Scripps Beach, La Jolla, California, in July 2000, 2001, and 2002. The most recent deployment of 10 drifters yielded about 32 hours of drifter data for each 5 hour deployment day. Offshore wave heights were moderate, between 0.3-1.0 m. The bathymetry, measured over a 600-700 m alongshore span with a GPS- and sonar-equipped jetski (2001 and 2002 deployments), was alongshore inhomogeneous primarily where an irregularly shaped bar-trough feature spanned the surf zone. The model simulations suggest that the alongshore inhomogeneous bathymetry strongly influences the location and strength of the observed flow features. Research supported by the California Sea Grant College Program and the Office of Naval Research.

  11. Morphological characterization of coral reefs by combining lidar and MBES data: A case study from Yuanzhi Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yang, Fanlin; Zhang, Hande; Su, Dianpeng; Li, QianQian

    2017-06-01

    The correlation between seafloor morphological features and biological complexity has been identified in numerous recent studies. This research focused on the potential for accurate characterization of coral reefs based on high-resolution bathymetry from multiple sources. A standard deviation (STD) based method for quantitatively characterizing terrain complexity was developed that includes robust estimation to correct for irregular bathymetry and a calibration for the depth-dependent variablity of measurement noise. Airborne lidar and shipborne sonar bathymetry measurements from Yuanzhi Island, South China Sea, were merged to generate seamless high-resolution coverage of coral bathymetry from the shoreline to deep water. The new algorithm was applied to the Yuanzhi Island surveys to generate maps of quantitive terrain complexity, which were then compared to in situ video observations of coral abundance. The terrain complexity parameter is significantly correlated with seafloor coral abundance, demonstrating the potential for accurately and efficiently mapping coral abundance through seafloor surveys, including combinations of surveys using different sensors.

  12. Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Hamilton, Michael K.; Davis, Curtiss O.; Rhea, W. J.; Pilorz, Stuart H.; Carder, Kendall L.

    1993-01-01

    Data on chlorophyll content and bathymetry of Lake Tahoe obtained on August 9, 1990 by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are compared to concurrent in situ surface and in-water measurements. Measured parameters included profiles of percent transmission of monochromatic light, stimulated chlorophyll fluorescence, photosynthetically available radiation, spectral upwelling and downwelling irradiance, and upwelling radiance. Several analyses were performed illustrating the utility of the AVIRIS over a dark water scene. Image-derived chlorophyll concentration compared extremely well with that measured with bottle samples. A bathymetry map of the shallow parts of the lake was constructed which compares favorably with published lake soundings.

  13. Testing of the 4SM Method in the Gulf of California Suggests Field Data Are not Needed to Derive Satellite Bathymetry

    PubMed Central

    Morel, Yann; Waddington, Andrew; Lopez-Calderon, Jorge; Cadena-Roa, Marco; Blanco-Jarvio, Anidia

    2017-01-01

    Satellite-derived bathymetry methods over coastal areas were developed to deliver basic and useful bathymetry information. However, the process is not straightforward, the main limitation being the need for field data. The Self-calibrated Spectral Supervised Shallow-water Modeler (4SM) method was tested to obtain coastal bathymetry without the use of any field data. Using Landsat-8 multispectral images from 2013 to 2016, a bathymetric time series was produced. Groundtruthed depths and an alternative method, Stumpf’s Band Ratio Algorithm, were used to verify the results. Retrieved (4SM) vs groundtruthed depths scored an average r2 (0.90), and a low error (RMSE = 1.47 m). 4SM also showed, over the whole time series, the same average accuracy of the control method (40%). Advantages, limitations and operability under complex atmosphere and water column conditions, and high and low-albedo bottom processing capabilities of 4SM are discussed. In conclusion, the findings suggest that 4SM is as accurate as the commonly used Stumpf’s method, the only difference being the independence of 4SM from previous field data, and the potential to deliver bottom spectral characteristics for further modeling. 4SM thus represents a significant advance in coastal remote sensing potential to obtain bathymetry and optical properties of the marine bottom. PMID:28973993

  14. The impact of bathymetry input on flood simulations

    NASA Astrophysics Data System (ADS)

    Khanam, M.; Cohen, S.

    2017-12-01

    Flood prediction and mitigation systems are inevitable for improving public safety and community resilience all over the worldwide. Hydraulic simulations of flood events are becoming an increasingly efficient tool for studying and predicting flood events and susceptibility. A consistent limitation of hydraulic simulations of riverine dynamics is the lack of information about river bathymetry as most terrain data record water surface elevation. The impact of this limitation on the accuracy on hydraulic simulations of flood has not been well studies over a large range of flood magnitude and modeling frameworks. Advancing our understanding of this topic is timely given emerging national and global efforts for developing automated flood predictions systems (e.g. NOAA National Water Center). Here we study the response of flood simulation to the incorporation of different bathymetry and floodplain surveillance source. Different hydraulic models are compared, Mike-Flood, a 2D hydrodynamic model, and GSSHA, a hydrology/hydraulics model. We test a hypothesis that the impact of inclusion/exclusion of bathymetry data on hydraulic model results will vary in its magnitude as a function of river size. This will allow researcher and stake holders more accurate predictions of flood events providing useful information that will help local communities in a vulnerable flood zone to mitigate flood hazards. Also, it will help to evaluate the accuracy and efficiency of different modeling frameworks and gage their dependency on detailed bathymetry input data.

  15. How does ice sheet loading affect ocean flow around Antarctica?

    NASA Astrophysics Data System (ADS)

    Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.

    2012-12-01

    Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.

  16. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    NASA Astrophysics Data System (ADS)

    Schaap, Dick M. A.; Schmitt, Thierry

    2017-04-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is entering its 3rd phase with operational portals providing access to marine data for bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities, complemented by checkpoint projects, analysing the fitness for purpose of data provision. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a resolution of 1/8 arcminute * 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs from 27 European data providers from 15 countries. For areas without coverage use has been made of the latest GEBCO DTM. The catalogue services and the generated EMODnet DTM have been published at the dedicated EMODnet Bathymetry portal which includes a versatile DTM viewing service that also supports downloading in various formats. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM) as part of the third phase of EMODnet. This new project will continue gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data will be included and in particular to fill gaps in coverage of the coastal zones. The data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 3 arc seconds versus 1/8 arc minutes at present. Moreover local DTMs with even higher resolutions will be produced, where data and data providers permit. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be 'moving to the cloud' and setting up an EMODnet Collaborative Virtual Environment (CVE) for producing the EMODnet DTMs. The presentation will highlight key details of EMODnet Bathymetry results and the way how challenges of the new HRSM project are approached.

  17. St. Johns County, St. Augustine Inlet, FL, Report 1: Historical Analysis and Sediment Budget

    DTIC Science & Technology

    2012-08-01

    Anastasia Island ........................................................ 26  4.5  Alongshore region of influence of the inlet...profile T-129 from 1984 to 2010. ....................................................... 15  Figure 16. Ebb shoal bathymetry, Vilano and Anastasia Islands...2007. ............................................. 17  Figure 17. Ebb shoal bathymetry, Vilano and Anastasia Islands, 2008

  18. Geophysical Surveys of the San Andreas and Crystal Springs Reservoir System Including Seismic-Reflection Profiles and Swath Bathymetry, San Mateo County, California

    USGS Publications Warehouse

    Finlayson, David P.; Triezenberg, Peter J.; Hart, Patrick E.

    2010-01-01

    This report describes geophysical data acquired by the U.S. Geological Survey (USGS) in San Andreas Reservoir and Upper and Lower Crystal Springs Reservoirs, San Mateo County, California, as part of an effort to refine knowledge of the location of traces of the San Andreas Fault within the reservoir system and to provide improved reservoir bathymetry for estimates of reservoir water volume. The surveys were conducted by the Western Coastal and Marine Geology (WCMG) Team of the USGS for the San Francisco Public Utilities Commission (SFPUC). The data were acquired in three separate surveys: (1) in June 2007, personnel from WCMG completed a three-day survey of San Andreas Reservoir, collecting approximately 50 km of high-resolution Chirp subbottom seismic-reflection data; (2) in November 2007, WCMG conducted a swath-bathymetry survey of San Andreas reservoir; and finally (3) in April 2008, WCMG conducted a swath-bathymetry survey of both the upper and lower Crystal Springs Reservoir system. Top of PageFor more information, contact David Finlayson.

  19. Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling

    NASA Astrophysics Data System (ADS)

    Saksena, S.; Dey, S.; Merwade, V.

    2016-12-01

    Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.

  20. Simulation-based investigation of the generality of Lyzenga's multispectral bathymetry formula in Case-1 coral reef water

    NASA Astrophysics Data System (ADS)

    Manessa, Masita Dwi Mandini; Kanno, Ariyo; Sagawa, Tatsuyuki; Sekine, Masahiko; Nurdin, Nurjannah

    2018-01-01

    Lyzenga's multispectral bathymetry formula has attracted considerable interest due to its simplicity. However, there has been little discussion of the effect that variation in optical conditions and bottom types-which commonly appears in coral reef environments-has on this formula's results. The present paper evaluates Lyzenga's multispectral bathymetry formula for a variety of optical conditions and bottom types. A noiseless dataset of above-water remote sensing reflectance from WorldView-2 images over Case-1 shallow coral reef water is simulated using a radiative transfer model. The simulation-based assessment shows that Lyzenga's formula performs robustly, with adequate generality and good accuracy, under a range of conditions. As expected, the influence of bottom type on depth estimation accuracy is far greater than the influence of other optical parameters, i.e., chlorophyll-a concentration and solar zenith angle. Further, based on the simulation dataset, Lyzenga's formula estimates depth when the bottom type is unknown almost as accurately as when the bottom type is known. This study provides a better understanding of Lyzenga's multispectral bathymetry formula under various optical conditions and bottom types.

  1. Modelling the bathymetry of the Antarctic continental shelf

    USGS Publications Warehouse

    ten Brink, Uri S.; Rogers, William P.; Kirkham, R.M.

    1992-01-01

    Continental shelves are typically covered by relatively shallow waters (<200 m) which deepen gradually from the coast to the shelf edge. The continental shelf around Antarctica is deeper than normal (400-700m) and is characterized in many areas by a nearshore trough (up to 1 km deep) that gradually shallows toward the shelf edge. We examine the cause for the unusual shelf bathymetry of Antarctica by 2-D numerical models that simulate the bathymetry along seismic line ODP-119 in Prydz Bay. Line ODP-119 was chosen because it is tied to to 5 ODP boreholes, and because the margin underwent little recent tectonic activity or changes in the glacial drainage pattern. The numerical models incorporate several factors that are likely to influence the bathymetry, such as the load of the ice cap, the isostatic response of the lithosphere, thermal and tectnoic subsidence of the margin, sea level changes, and the patterns of erosion and sedimentation across the margin. The models show that the observed bathymetry can be produced almost entirely by the sum of the outer-shelf sediment loading and inner-shelf unloading and by the load of the slope sediments. A simple statistical mdoel demonstrates that this distribution pattern of erosion and deposition can be generated by multiple cycles of ice sheet advances across the shelf, whereby in each cycle a thin (a few tens of meters) uniform layer of sediments is eroded from under the ice sheet and is redeposited seaward of the grounding line.

  2. RTopo-2: A global high-resolution dataset of ice sheet topography, ice shelf cavity geometry and ocean bathymetry

    NASA Astrophysics Data System (ADS)

    Timmermann, Ralph; Schaffer, Janin

    2016-04-01

    The RTopo-1 data set of Antarctic ice sheet/shelf geometry and global ocean bathymetry has proven useful not only for modelling studies of ice-ocean interaction in the southern hemisphere. Following the spirit of this data set, we introduce a new product (RTopo-2) that contains consistent maps of global ocean bathymetry, upper and lower ice surface topographies for Greenland and Antarctica, and global surface height on a spherical grid with now 30 arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. To achieve a good representation of the fjord and shelf bathymetry around the Greenland continent, we corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Helheim Glacier assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79°N, we incorporated a high-resolution digital bathymetry model including all available multibeam survey data for the region. Radar data for ice surface and ice base topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database.

  3. Seabed topography beneath Larsen C Ice Shelf from seismic soundings

    NASA Astrophysics Data System (ADS)

    Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.

    2014-01-01

    Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-ice shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines was collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-ice shelf oceanic circulation may be affected by ice draft and seabed depth. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general < 10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-ice shelf ocean circulation models.

  4. Seabed topography beneath Larsen C Ice Shelf from seismic soundings

    NASA Astrophysics Data System (ADS)

    Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.

    2013-08-01

    Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines were collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-shelf oceanic circulation may be affected by ice draft and sub-shelf cavity thickness. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general <10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-shelf ocean circulation models.

  5. Integrating Multibeam Backscatter Angular Response, Mosaic and Bathymetry Data for Benthic Habitat Mapping

    PubMed Central

    Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre

    2014-01-01

    Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management. PMID:24824155

  6. Radio-controlled boat for measuring water velocities and bathymetry

    NASA Astrophysics Data System (ADS)

    Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej

    2016-04-01

    Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek RiverSurveyor M9 instrument.

  7. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas

    NASA Astrophysics Data System (ADS)

    Schaap, D.

    2016-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. The EMODnet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets that are indexed with metadata by adopting from SeaDataNet the Common Data Index (CDI) data discovery and access service and the Sextant data products catalogue service. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards such as ISO and OGC. The SeaDataNet portal provides users a number of interrelated meta directories, an extensive range of controlled vocabularies, and the various SeaDataNet standards and tools. SeaDataNet at present gives overview and access to more than 1.8 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. The latest EMODnet Bathymetry DTM has a resolution of 1/8 arcminute * 1/8 arcminute and covers all European sea regions. Use is made of available and gathered surveys and already more than 13.000 surveys have been indexed by 27 European data providers from 15 countries. Also use is made of composite DTMs as generated and maintained by several data providers for their areas of interest. Already 44 composite DTMs are included in the Sextant data products catalogue. For areas without coverage use is made of the latest global DTM of GEBCO who is partner in the EMODnet Bathymetry project. In return GEBCO integrates the EMODnet DTM to achieve an enriched and better result. The catalogue services and the generated EMODnet can be queried and browsed at the dedicated EMODnet Bathymetry portal which also provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. The EMODnet DTM is publicly available for downloading in various formats.

  8. Teleseismic P wave coda from oceanic trench and other bathymetric features

    NASA Astrophysics Data System (ADS)

    Wu, W.; Ni, S.

    2012-12-01

    Teleseismic P waves are essential for studying rupture processes of great earthquakes, either in the back projection method or in finite fault inversion method involving of quantitative waveform modeling. In these studies, P waves are assumed to be direct P waves generated by localized patches of the ruptured fault. However, for some oceanic earthquakes happening near the subductiontrenches or mid-ocean ridges, we observed strong signals between P and PP are often observed on theat telseseismic networkdistances. These P wave coda signals show strong coherence and their amplitudes are sometimes comparable with those of the direct P wave or even higher for some special frequenciesfrequency band. With array analysis, we find that the coda's slowness is very close to that of the direct P wave, suggesting that they are generated near the source region. As the earthquakes occur near the trenches or mid-ocean ridges which are both featured by rapid variation of bathymetry, the coda waves are very probably generated by the scattered surface wave or S wave at the irregular bathymetry. Then, we apply the realistic bathymetry data to calculate the 3D synthetics and the coda can be well predicted by the synthetics. So the topography/bathymetry is confirmed to be the main source of the coda. The coda waves are so strong that it may affect the imaging rupture processes of ocean earthquakes, so the topography/bathymetry effect should be taken into account. However, these strong coda waves can also be used utilized to locate the oceanic earthquakes. The 3D synthetics demonstrate that the coda waves are dependent on both the specific bathymetry and the location of the earthquake. Given the determined bathymetry, the earthquake location can be constrained by the coda, e.g. the distance between trench and the earthquake can be determine from the relative arrival between the P wave and its coda which is generated by the trench. In order to locate the earthquakes using the bathymetry, it is indispensible to get all the 3D synthetics with possible different horizontal locations and depths of the earthquakes. However, the computation will be very expensive if using the numerical simulation in the whole medium. Considering that the complicated structure is only near the source region, we apply ray theory to interface full wave field from spectral-element simulation to get the teleseismic P waves. With this approach, computation efficiency is greatly improved and the relocation of the earthquake can be completed more efficiently. As for the relocation accuracy, it can be as high as 10km for the earthquakes near the trench. So it provides us another, sometimes most favorable, method to locate the ocean earthquakes with ground-truth accuracy.

  9. Determining change of bathymetry with GPR method in Ordu-Giresun, a sea-filled airport in the Black Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf

    2016-04-01

    Ordu-Giresun (OGU) is a newly-constructed airport, the first sea-filled airport in Turkey and in Europe, and the second airport in the world after Osaca-Japan. The airport is between Gulyalı district in Ordu city and Piraziz district in Giresun city in Black Sea -Turkey. A protection breakwater has been constructed by filling a rock approximately 7.435-m long and with an average height of 5.5 m. Then, the Black Sea has been filled until 1 m over the sea level, approximately the area is 1.770.000 m2 wide and includes a runway, aprons and taxiway covered by breakwater. The runway has a 1-m thickness, 3-km length and 45-m width, PCN84 strength, and stone mastic asphalt surface. The aprons has a 240 x 110 m length and PCN110 strength, the taxiway is 250 x 24 m wide. The airport was started to be constructed in July 2011 and it began to serve on 22th May 2015. The aim of this study was to determine the depth of the rock-filled layer and the amount of sinking of the bathymetry which has been determined before filling processing. In addition, before bathymetry determination, unconsolidated sediments had been removed from the bottom of the sea. There were four drilling points to control the sinking of the bathymetry. Therefore, six suitable Ground Penetrating Radar (GPR) profiles were measured, crossing these points with runway and aprons, using 250-MHz and 100-MHz shielded antennas. Starting points of the profiles were in the middle of the runway to merge between depth and thickness changing of the filled layer and bathymetry along the profiles. Surface topography changing was measured spaced 1 m apart with 1 cm sensitivity on each profile. At the same time, similarly the topography changing, bathymetry coordinates was re-arranged along the each profile. Topography corrections were applied to the processed radargrams and then the bottom boundary lines of the rock-filled layer were determined. The maximum height was 3.5 m according to the sea level, which was on the middle point of the runway, representing zero depth of the radargrams of the profiles. To determine the amount of the sinking of the rock filled layer, the first sea level were lined at 3.5 m in depth on the right side depth axes of the radargrams. The second, bathymetry changing lines were placed on the interested radargrams. Finally, differences between the bottom boundary lines of the filled layer and bathymetry lines were compared. The results showed that GPR method could be applied successfully to determine the depth of the rock filled layer in Black Sea and the small amount of the sinking of the bathymetry. Acknowledgement This project has been supported by Cengiz - Içtaş Joint Venture-Turkey. This study is a contribution to the EU funded COST action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu).

  10. An Air-Ocean Coupled Nowcast/Forecast System for the East Asian Marginal Seas

    DTIC Science & Technology

    2000-09-12

    external factors affecting the regional oceanogra- phy. We use a rectilinear grid with horizontal spacing of 0.25° by 0.25° and 23 nonuniform vertical a ... levels . The model uses realistic bathymetry data from the Naval Oceanographic Office Digit~ Bathymetry Data Base with 5 minute resolution (DBDB5). 2.1.2

  11. CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.

    2017-12-01

    The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.

  12. Coastal single-beam bathymetry data collected in 2015 from the Chandeleur Islands, Louisiana

    USGS Publications Warehouse

    Stalk, Chelsea A.; DeWitt, Nancy T.; Bernier, Julie C.; Kindinger, Jack G.; Flocks, James G.; Miselis, Jennifer L.; Locker, Stanley D.; Kelso, Kyle W.; Tuten, Thomas M.

    2017-02-23

    As part of the Louisiana Coastal Protection and Restoration Authority (CPRA) Barrier Island Comprehensive Monitoring Program, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey around the Chandeleur Islands, Louisiana, in June 2015. The goal of the program is to provide long-term data on Louisiana’s barrier islands and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described in this report, along with (1) USGS bathymetry data collected in 2013 as a part of the Barrier Island Evolution Research project covering the northern Chandeleur Islands, and (2) data collected in 2014 in collaboration with the Louisiana CPRA Barrier Island Comprehensive Monitoring Program around Breton Island, will be used to assess bathymetric change since 2006‒2007 as well as serve as a bathymetric control in supporting modeling of future changes in response to restoration and storm impacts. The survey area encompasses approximately 435 square kilometers of nearshore and back-barrier environments around Hewes Point, the Chandeleur Islands, and Curlew and Grand Gosier Shoals. This Data Series serves as an archive of processed single-beam bathymetry data, collected in the nearshore of the Chandeleur Islands, Louisiana, from June 17‒24, 2015, during USGS Field Activity Number 2015-317-FA. Geographic information system data products include a 200-meter-cell-size interpolated bathymetry grid, trackline maps, and xyz point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.

  13. Multibeam bathymetry and selected perspective views offshore San Diego, California

    USGS Publications Warehouse

    Dartnell, Peter; Normark, William R.; Driscoll, Neal W.; Babcock, Jeffrey M.; Gardner, James V.; Kvitek, Rikk G.; Iampietro, Pat J.

    2007-01-01

    This set of two posters consists of a map on one sheet and a set of seven perspective views on the other. The ocean floor image was generated from multibeam-bathymetry data acquired by Federal and local agencies as well as academic institutions including: - U.S. Geological Survey mapped from the La Jolla Canyon south to the US-Mexico border using a Kongsberg Simrad multibeam echosounder system (MBES) (March - April 1998). Data and metadata available at http://pubs.usgs.gov/of/2004/1221/. - Woods Hole Oceanographic Institution and SCRIPPS Institution of Oceanography mapped the majority of the La Jolla Fan Valley including the sea floor to the north and south of the valley using a Seabeam 2100 MBES. Data available at http://www.ngdc.noaa.gov/mgg/bathymetry/multibeam.html. Survey ID, AT07L09, Chief Scientists, Barrie Walden and Joseph Coburn (April 2002). - California State University, Monterey Bay, mapped Scripps Canyon and the head of La Jolla Canyon using a Reson 8101 MBES (October 2001). Data and metadata available at http://seafloor.csumb.edu/SFMLwebDATA.htm. This work was funded by the California Department of Fish and Game California Coastal Conservancy, San Diego Association of Governments (SANDAG), California Department of Fish and Game, and Fugro Pelagos mapped the nearshore region out to about 35-40 m. - The sea floor within this image that has not been mapped with MBES is filled in with interpreted bathymetry gridded from single-beam data available at http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html. Depths are in meters below sea level, which is referenced to Mean Lower Low Water.

  14. High Spatio-Temporal Resolution Bathymetry Estimation and Morphology

    NASA Astrophysics Data System (ADS)

    Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.

    2015-12-01

    In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.

  15. Bathymetry and acoustic backscatter: Elwha River Delta, Washington

    USGS Publications Warehouse

    Finlayson, David P.; Miller, Ian M.; Warrick, Jonathan A.

    2011-01-01

    The surveys were conducted using the R/V Parke Snavely outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment for accurate shallow water operations. This report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  16. Holes in the ocean: Filling voids in bathymetric lidar data

    NASA Astrophysics Data System (ADS)

    Coleman, John B.; Yao, Xiaobai; Jordan, Thomas R.; Madden, Marguertie

    2011-04-01

    The mapping of coral reefs may be efficiently accomplished by the use of airborne laser bathymetry. However, there are often data holes within the bathymetry data which must be filled in order to produce a complete representation of the coral habitat. This study presents a method to fill these data holes through data merging and interpolation. The method first merges ancillary digital sounding data with airborne laser bathymetry data in order to populate data points in all areas but particularly those of data holes. What follows is to generate an elevation surface by spatial interpolation based on the merged data points obtained in the first step. We conduct a case study of the Dry Tortugas National Park in Florida and produced an enhanced digital elevation model in the ocean with this method. Four interpolation techniques, including Kriging, natural neighbor, spline, and inverse distance weighted, are implemented and evaluated on their ability to accurately and realistically represent the shallow-water bathymetry of the study area. The natural neighbor technique is found to be the most effective. Finally, this enhanced digital elevation model is used in conjunction with Ikonos imagery to produce a complete, three-dimensional visualization of the study area.

  17. Modelling submerged coastal environments: Remote sensing technologies, techniques, and comparative analysis

    NASA Astrophysics Data System (ADS)

    Dillon, Chris

    Built upon remote sensing and GIS littoral zone characterization methodologies of the past decade, a series of loosely coupled models aimed to test, compare and synthesize multi-beam SONAR (MBES), Airborne LiDAR Bathymetry (ALB), and satellite based optical data sets in the Gulf of St. Lawrence, Canada, eco-region. Bathymetry and relative intensity metrics for the MBES and ALB data sets were run through a quantitative and qualitative comparison, which included outputs from the Benthic Terrain Modeller (BTM) tool. Substrate classification based on relative intensities of respective data sets and textural indices generated using grey level co-occurrence matrices (GLCM) were investigated. A spatial modelling framework built in ArcGIS(TM) for the derivation of bathymetric data sets from optical satellite imagery was also tested for proof of concept and validation. Where possible, efficiencies and semi-automation for repeatable testing was achieved using ArcGIS(TM) ModelBuilder. The findings from this study could assist future decision makers in the field of coastal management and hydrographic studies. Keywords: Seafloor terrain characterization, Benthic Terrain Modeller (BTM), Multi-beam SONAR, Airborne LiDAR Bathymetry, Satellite Derived Bathymetry, ArcGISTM ModelBuilder, Textural analysis, Substrate classification.

  18. Coastal bathymetry data collected in May 2015 from Fire Island, New York—Wilderness breach and shoreface

    USGS Publications Warehouse

    Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Brenner, Owen T.; Henderson, Rachel E.; Reynolds, Billy J.; Wilson, Kathleen E.

    2017-05-12

    Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island from May 6-20, 2015. The USGS is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach as a part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected with single-beam echo sounders and Global Positioning Systems, which were mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach. Additional bathymetry and elevation data were collected using backpack Global Positioning Systems on flood shoals and in shallow channels within the wilderness breach.

  19. Quantification of Surf Zone Bathymetry from Video Observations of Wave Breaking

    NASA Astrophysics Data System (ADS)

    Aarninkhof, S.; Ruessink, G.

    2002-12-01

    Cost-efficient methods to quantify surf zone bathymetry with high resolution in time and space would be of great value for coastal research and management. Automated video techniques provide the potential to do so. Time-averaged video observations of the nearshore zone show bright intensities at locations where waves preferentially break. Highly similar patterns are found from model simulations of depth-induced wave breaking, which show increasing rates of wave dissipation in shallow areas like sand bars. Thus, video observations of wave breaking - at least qualitatively - reflect sub-merged beach bathymetry. In search of the quantification of this relationship, we present a new model concept to map sub-merged beach bathymetry from time-averaged video images. This is achieved by matching model-predicted and video-observed rates of wave dissipation. First, time-averaged image intensities are sampled along a cross-shore array and interpreted in terms of a wave dissipation parameter. This involves a correction for the effect of persistent foam, which is visible at time-averaged video images but not predicted by common wave propagation models. The dissipation profiles thus obtained are used to update an initial beach bathymetry through optimisation of the match between measured and modelled rates of wave dissipation. The latter is done by raising the bottom elevation in areas where the measured dissipation rate exceeds the computed dissipation and vice versa. Since the model includes video data with high resolution in time (typically multiple images over a tidal cycle), it allows for virtually continous monitoring of surfzone bathymetry . Model tests against a synthetic data set of artificially generated wave dissipation profiles have shown the model's capability to accurately reconstruct beach bathymetry, over a wide range of morphological configurations. Maximum model deviations were found in the case of highly developed bar-trough systems (bar heights up to 4 m) and near the shoreline. Model performance strongly benefits from an increase of wave heights and tidal ranges. At the moment, the model is subject to validation against a data set of multiple-barred beach profiles, surveyed during a 3 week period of stormy wheather in the course of the Coast3D field experiments at Egmond (The Netherlands). Although the video-based estimates of bar bathymetry show a shoreward off-set of the location of the inner bar and vertical deviations of 0.5 (0.8) m near the outer (inner) bar crest, these preliminary results show a promising match in terms of profile shape and the migration of the seaward bar face. Model application at the time scale of months to years is subject to present research. This work was supported by the DIOC Earth Observations of Delft University of Technology, the Delft Cluster program at Delft Hydraulics, the Dutch Ministry of Public Works Rijkswaterstaaat and the EU-funded Coastview project.

  20. Global Paleobathymetry Reconstruction with Realistic Shelf-Slope and Sediment Wedge

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Hinnov, L. A.; Gnanadesikan, A.; Olson, P.

    2013-12-01

    We present paleo-ocean bathymetry reconstructions in a 0.1°x0.1° resolution, using simple geophysical models (Plate Model Equation for oceanic lithosphere), published ages of the ocean floor (Müller et al. 2008), and modern world sediment thickness data (Divins 2003). The motivation is to create realistic paleobathymetry to understand the effect of ocean floor roughness on tides and heat transport in paleoclimate simulations. The values for the parameters in the Plate Model Equation are deduced from Crosby et al. (2006) and are used together with ocean floor age to model Depth to Basement. On top of the Depth to Basement, we added an isostatically adjusted multilayer sediment layer, as indicated from sediment thickness data of the modern oceans and marginal seas (Divins 2003). We also created another version of the sediment layer from the Müller et al. dataset. The Depth to Basement with the appropriate sediment layer together represent a realistic paleobathymetry. A Sediment Wedge was modeled to complement the reconstructed paleobathymetry by extending it to the coastlines. In this process we added a modeled Continental Shelf and Continental Slope to match the extent of the reconstructed paleobathymetry. The Sediment Wedge was prepared by studying the modern ocean where a complete history of seafloor spreading is preserved (north, south and central Atlantic Ocean, Southern Ocean between Australia-Antarctica, and the Pacific Ocean off the west coast of South America). The model takes into account the modern continental shelf-slope structure (as evident from ETOPO1/ETOPO5), tectonic margin type (active vs. passive margin) and age of the latest tectonic activity (USGS & CGMW). Once the complete ocean bathymetry is modeled, we combine it with PALEOMAP (Scotese, 2011) continental reconstructions to produce global paleoworld elevation-bathymetry maps. Modern time (00 Ma) was assumed as a test case. Using the above-described methodology we reconstructed modern ocean bathymetry, starting with age of the oceanic crust. We then reconstructed paleobathymetry for PETM (55 Ma) and Cenomanian-Turonian (90 Ma) times. For each case, the final products are: a) a global depth to basement measurement map based on plate model and EarthByte published age of the ocean crust for modern world; b) global oceanic crust bathymetry maps with a multilayer sediment layer (two versions with two types of sediment layers based on: i) observed total sediment thickness of the modern oceans and marginal seas, and ii) EarthByte-estimated global sediment data for 00 Ma); c) global oceanic bathymetry maps (two versions with two types of sediment layers) with reconstructed shelf and slope; and d) global elevation-bathymetry maps (two versions with two types of sediment layers) with continental elevations (PALEOMAP) and ocean bathymetry. Similar maps for other geological times can be produced using this method provided that ocean crustal age is known.

  1. Characterizing the SWOT discharge error budget on the Sacramento River, CA

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.

  2. Detecting Trend and Seasonal Changes in Bathymetry Derived from HICO Imagery: A Case Study of Shark Bay, Western Australia

    NASA Technical Reports Server (NTRS)

    Garcia, Rodrigo A.; Fearns, Peter R. C. S.; Mckinna, Lachlan I. W.

    2014-01-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) aboard the International Space Station has offered for the first time a dedicated space-borne hyperspectral sensor specifically designed for remote sensing of the coastal environment. However, several processing steps are required to convert calibrated top-of-atmosphere radiances to the desired geophysical parameter(s). These steps add various amounts of uncertainty that can cumulatively render the geophysical parameter imprecise and potentially unusable if the objective is to analyze trends and/or seasonal variability. This research presented here has focused on: (1) atmospheric correction of HICO imagery; (2) retrieval of bathymetry using an improved implementation of a shallow water inversion algorithm; (3) propagation of uncertainty due to environmental noise through the bathymetry retrieval process; (4) issues relating to consistent geo-location of HICO imagery necessary for time series analysis, and; (5) tide height corrections of the retrieved bathymetric dataset. The underlying question of whether a temporal change in depth is detectable above uncertainty is also addressed. To this end, nine HICO images spanning November 2011 to August 2012, over the Shark Bay World Heritage Area, Western Australia, were examined. The results presented indicate that precision of the bathymetric retrievals is dependent on the shallow water inversion algorithm used. Within this study, an average of 70% of pixels for the entire HICO-derived bathymetry dataset achieved a relative uncertainty of less than +/-20%. A per-pixel t-test analysis between derived bathymetry images at successive timestamps revealed observable changes in depth to as low as 0.4 m. However, the present geolocation accuracy of HICO is relatively poor and needs further improvements before extensive time series analysis can be performed.

  3. Global Marine Gravity and Bathymetry at 1-Minute Resolution

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Smith, W. H.

    2008-12-01

    We have developed global gravity and bathymetry grids at 1-minute resolution. Three approaches are used to reduce the error in the satellite-derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS-1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from land to ocean. Third we have used a biharmonic spline interpolation method to construct residual vertical deflection grids. Comparisons between shipboard gravity and the global gravity grid show errors ranging from 2.0 mGal in the Gulf of Mexico to 4.0 mGal in areas with rugged seafloor topography. The largest errors occur on the crests of narrow large seamounts. The bathymetry grid is based on prediction from satellite gravity and available ship soundings. Global soundings were assembled from a wide variety of sources including NGDC/GEODAS, NOAA Coastal Relief, CCOM, IFREMER, JAMSTEC, NSF Polar Programs, UKHO, LDEO, HIG, SIO and numerous miscellaneous contributions. The National Geospatial-intelligence Agency and other volunteering hydrographic offices within the International Hydrographic Organization provided global significant shallow water (< 300 m) soundings derived from their nautical charts. All soundings were converted to a common format and were hand-edited in relation to a smooth bathymetric model. Land elevations and shoreline location are based on a combination SRTM30, GTOPO30, and ICESAT data. A new feature of the bathymetry grid is a matching grid of source identification number that enables one to establish the origin of the depth estimate in each grid cell. Both the gravity and bathymetry grids are freely available.

  4. Combined influence of meso-scale circulation and bathymetry on the foraging behaviour of a diving predator, the king penguin (Aptenodytes patagonicus)

    NASA Astrophysics Data System (ADS)

    Scheffer, Annette; Trathan, Philip N.; Edmonston, Johnnie G.; Bost, Charles-André

    2016-02-01

    Investigating the responses of marine predators to environmental features is of key importance for understanding their foraging behaviour and reproductive success. In this study we examined the foraging behaviour of king penguins breeding at Kerguelen (southern Indian Ocean) in relation to oceanographic and bathymetric features within their foraging ambit. We used ARGOS and Global Positioning System tracking together with Time-Depth-Temperature-Recorders (TDR) to follow the at-sea movements of incubating and brooding king penguins. Combining the penguin behaviour with oceanographic data at the surface through satellite data and at depth through in-situ recordings by the TDRs enabled us to explore how these predators adjusted their horizontal and vertical foraging movements in response to their physical environment. Relating the observed behaviour and oceanographic patterns to local bathymetry lead to a comprehensive picture of the combined influence of bathymetry and meso-scale circulation on the foraging behaviour of king penguins. During both breeding stages king penguins foraged in the area to the south-east of Kerguelen, where they explored an influx of cold waters of southern origin interacting with the Kerguelen Plateau bathymetry. Foraging in the Polar Front and at the thermocline was associated with high prey capture rates. However, foraging trip orientation and water mass utilization suggested that bathymetrically entrained cold-water features provided the most favourable foraging locations. Our study explicitly reports the exploration of bathymetry-related oceanographic features by foraging king penguins. It confirms the presence of Areas of Ecological Significance for marine predators on the Kerguelen Plateau, and suggests the importance of further areas related to the cold-water flow along the shelf break of the Kerguelen Plateau.

  5. Automated estimation of river bathymetry using change detection based on Landsat imagery and river morphological models

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Jagers, B.; Van De Giesen, N.; Baart, F.; van Dam, A.

    2015-12-01

    Free global data sets on river bathymetry at global scale are not yet available. While one of the mostly used free elevation datasets, SRTM, provides data on location and elevation of rivers, its quality usually is very limited. This happens mainly because water mask was derived from older satellite imagery, such as Landsat 5, and also because the radar instruments perform bad near water, especially with the presence of vegetation in riparian zone. Additional corrections are required before it can be used for applications such as higher resolution surface water flow simulations. On the other hand, medium resolution satellite imagery from Landsat mission can be used to estimate water mask changes during the last 40 years. Water mask from Landsat imagery can be derived on per-image basis, in some cases, resulting in up to one thousand water masks. For rivers where significant water mask changes can be observed, this information can be used to improve quality of existing digital elevation models in the range between minimum and maximum observed water levels. Furthermore, we can use this information to further estimate river bathymetry using morphological models. We will evaluate how Landsat imagery can be used to estimate river bathymetry and will point to cases of significant inconsistencies between SRTM and Landsat-based water masks. We will also explore other challenges on a way to automated estimation of river bathymetry using fusion of numerical morphological models and remote sensing data. Some of them include automatic generation of model mesh, estimation of river morphodynamic properties and issues related to spectral method used to analyse optical satellite imagery.

  6. Topobathymetric data for Tampa Bay, Florida

    USGS Publications Warehouse

    Tyler, Dean J.; Zawada, David G.; Nayegandi, A.; Brock, John C.; Crane, M.P.; Yates, Kimberly K.; Smith, Kathryn E. L.

    2007-01-01

    Topobathymetric data (“topobathy”) are a merged rendering of both topography (land elevation) and bathymetry (water depth) to provide a single product useful for inundation mapping and a variety of other applications. These data were developed using one topographic and two bathymetric datasets collected at different dates. Topography was obtained from the U.S. Geological Survey's (USGS) National Elevation Dataset (NED). Bathymetry was provided by NOAA's GEOphysical DAta System (GEODAS). For several nearshore areas within the bay GEODAS data were replaced with high resolution bathymetry acquired by NASA's Experimental Advanced Airborne Research Lidar (EAARL). These data and detailed metadata can be obtained from the USGS Web site: http://gisdata.usgs.gov/website/topobathy/. Data from EAARL and NED were collected under the auspices of the USGS Gulf of Mexico Integrated Science Tampa Bay Study (http://gulfsci.usgs.gov/).

  7. Coastal bathymetry data collected in June 2014 from Fire Island, New York—The wilderness breach and shoreface

    USGS Publications Warehouse

    Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Wilson, Kathleen E.; Henderson, Rachel E.; Brenner, Owen T.; Reynolds, Billy J.; Hansen, Mark E.

    2016-08-02

    Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, collected bathymetric data along the upper shoreface and within the wilderness breach at Fire Island, New York, in June 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the shoreface along Fire Island and model the evolution of the wilderness breach as a part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry was collected with single-beam echo sounders and global positioning systems, mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach. Additional bathymetry was collected using backpack global positioning systems along the flood shoals and shallow channels within the wilderness breach.

  8. The Navy’s Application of Ocean Forecasting to Decision Support

    DTIC Science & Technology

    2014-09-01

    Prediction Center (OPC) website for graphics or the National Operational Model Archive and Distribution System ( NOMADS ) for data files. Regional...inputs: » GLOBE = Global Land One-km Base Elevation » WVS = World Vector Shoreline » DBDB2 = Digital Bathymetry Data Base 2 minute resolution » DBDBV... Digital Bathymetry Data Base variable resolution Oceanography | Vol. 27, No.3130 Very High-Resolution Coastal Circulation Models Nearshore

  9. Automating Nearshore Bathymetry Extraction from Wave Motion in Satellite Optical Imagery

    DTIC Science & Technology

    2012-03-01

    positions and overlap in the electromagnetic spectrum (From DigitalGlobe, 2011b). ..............................18  Figure 9.  STK snap shot of...to-Noise Ratio STK Satellite Tool Kit UTM Universal Transverse Mercator WKB Wave Kinematics Bathymetry xviii THIS PAGE INTENTIONALLY LEFT...planned over the coming months. 21 Figure 9. STK snap shot of WorldView-2 collection pass. C. METHOD The imagery was collected at about 2200Z

  10. High Resolution Bathymetry Estimation Improvement with Single Image Super-Resolution Algorithm Super-Resolution Forests

    DTIC Science & Technology

    2017-01-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate

  11. A 3D unstructured-grid model for Chesapeake Bay: Importance of bathymetry

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Zhang, Yinglong J.; Wang, Harry V.; Friedrichs, Marjorie A. M.; Irby, Isaac D.; Alteljevich, Eli; Valle-Levinson, Arnoldo; Wang, Zhengui; Huang, Hai; Shen, Jian; Du, Jiabi

    2018-07-01

    We extend the 3D unstructured-grid model previously developed for the Upper Chesapeake Bay to cover the entire Bay and its adjacent shelf, and assess its skill in simulating saltwater intrusion and the coastal plume. Recently developed techniques, including a flexible vertical grid system and a 2nd-order, monotone and implicit transport solver are critical in successfully capturing the baroclinic responses. Most importantly, good accuracy is achieved through an accurate representation of the underlying bathymetry, without any smoothing. The model in general exhibits a good skill for all hydrodynamic variables: the averaged root-mean-square errors (RMSE's) in the Bay are 9 cm for sub-tidal frequency elevation, 17 cm/s for 3D velocity time series, 1.5 PSU and 1.9 PSU for surface and bottom salinity respectively, 1.1 °C and 1.6 °C for surface and bottom temperature respectively. On the shelf, the average RMSE for the surface temperature is 1.4 °C. We highlight, through results from sensitivity tests, the central role played by bathymetry in this estuarine system and the detrimental effects, from a common class of bathymetry smoothers, on volumetric and tracer fluxes as well as key processes such as the channel-shoal contrast in the estuary and plume propagation in the coast.

  12. Coastal single-beam bathymetry data collected in 2015 from Raccoon Point to Point Au Fer Island, Louisiana

    USGS Publications Warehouse

    Stalk, Chelsea A.; DeWitt, Nancy T.; Kindinger, Jack L.; Flocks, James G.; Reynolds, Billy J.; Kelso, Kyle W.; Fredericks, Joseph J.; Tuten, Thomas M.

    2017-03-10

    As part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the south-central coast of Louisiana, from Raccoon Point to Point Au Fer Island, in July 2015. The goal of the BICM program is to provide long-term data on Louisiana’s coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described in this report will provide baseline bathymetric information for future research investigating island evolution, sediment transport, and recent and long-term geomorphic change, and will support modeling of future changes in response to restoration and storm impacts. The survey area encompasses more than 300 square kilometers of nearshore environment from Raccoon Point to Point Au Fer Island. This data series serves as an archive of processed single-beam bathymetry data, collected from July 22–29, 2015, under USGS Field Activity Number 2015-320-FA. Geographic information system data products include a 200-meter-cell-size interpolated bathymetry grid, trackline maps, and point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.

  13. Recent applications of acoustic Doppler current profilers

    USGS Publications Warehouse

    Oberg, K.A.; Mueller, David S.

    1994-01-01

    A Broadband acoustic Doppler current profiler (BB-ADCP) is a new instrument being used by the U.S. Geological Survey (USGS) to measure stream discharge and velocities, and bathymetry. During the 1993 Mississippi River flood, more than 160 high-flow BB-ADCP measurements were made by the USGS at eight locations between Quincy and Cairo, Ill., from July 19 to August 20, 1993. A maximum discharge of 31,400 m3/s was measured at St. Louis, Mo., on August 2, 1993. A BB-ADCP also has been used to measure leakage through three control structures near Chicago, Ill. These measurements are unusual in that the average velocity for the measured section was as low as 0.03 m/s. BB-ADCP's are also used in support of studies of scour at bridges. During the recent Mississippi River flood, BB-ADCP's were used to measure water velocities and bathymetry upstream from, next to, and downstream from bridge piers at several bridges over the Mississippi River. Bathymetry data were collected by merging location data from Global Positioning System (GPS) receivers, laser tracking systems, and depths measured by the BB-ADCP. These techniques for collecting bathymetry data were used for documenting the channel formation downstream from the Miller City levee break and scour near two bridges on the Mississippi River.

  14. Inferring river properties with SWOT like data

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre-André; Monnier, Jérôme; Roux, Hélène

    2014-05-01

    Inverse problems in hydraulics are still open questions such as the estimation of river discharges. Remotely sensed measurements of hydrosystems can provide valuable information but adequate methods are still required to exploit it. The future Surface Water and Ocean Topography (SWOT) mission would provide new cartographic measurements of inland water surfaces. The highlight of SWOT will be its almost global coverage and temporal revisits on the order of 1 to 4 times per 22 days repeat cycle [1]. Lots of studies have shown the possibility of retrieving discharge given the river bathymetry or roughness and/or in situ time series. The new challenge is to use SWOT type data to inverse the triplet formed by the roughness, the bathymetry and the discharge. The method presented here is composed of two steps: following an inverse formulation from [2], the first step consists in retrieving an equivalent bathymetry profile of a river given one in situ depth measurement and SWOT like data of the water surface, that is to say water elevation, free surface slope and width. From this equivalent bathymetry, the second step consists in solving mass and Manning equation in the least square sense [3]. Nevertheless, for cases where no in situ measurement of water depth is available, it is still possible to solve a system formed by mass and Manning equations in the least square sense (or with other methods such as Bayesian ones, see e.g. [4]). We show that a good a priori knowledge of bathymetry and roughness is compulsory for such methods. Depending on this a priori knowledge, the inversion of the triplet (roughness, bathymetry, discharge) in SWOT context was evaluated on the Garonne River [5, 6]. The results are presented on 80 km of the Garonne River downstream of Toulouse in France [7]. An equivalent bathymetry is retrieved with less than 10% relative error with SWOT like observations. After that, encouraging results are obtained with less than 10% relative error on the identified discharge. References [1] E. Rodriguez, SWOT science requirements document, JPL document, JPL, 2012. [2] A. Gessese, K. Wa, and M. Sellier, Bathymetry reconstruction based on the zero-inertia shallow water approximation, Theoretical and Computational Fluid Dynamics, vol. 27, no. 5, pp. 721-732, 2013. [3] P. A. Garambois and J. Monnier, Inference of river properties from remotly sensed observations of water surface, under final redaction for HESS, 2014. [4] M. Durand, Sacramento river airswot discharge estimation scenario. http://swotdawg.wordpress.com/2013/04/18/sacramento-river-airswot-discharge-estimation-scenario/, 2013. [5] P. A. Garambois and H. Roux, Garonne River discharge estimation. http://swotdawg.wordpress.com/2013/07/01/garonne-river-discharge-estimation/, 2013. [6] P. A. Garambois and H. Roux, Sensitivity of discharge uncertainty to measurement errors, case of the Garonne River. http://swotdawg.wordpress.com/2013/07/01/sensitivity-of-discharge-uncertainty-to-measurement-errors-case-of-the-garonne-river/, 2013. [7] H. Roux and P. A. Garambois, Tests of reach averaging and manning equation on the Garonne River. http://swotdawg.wordpress.com/2013/07/01/tests-of-reach-averaging-and-manning-equation-on-the-garonne-river/, 2013.

  15. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas

    NASA Astrophysics Data System (ADS)

    Schaap, Dick M. A.

    2015-04-01

    Access to marine data is a key issue for the implementation of the EU Marine Strategy Framework Directive (MSFD). The EU communication 'Marine Knowledge 2020' underpins the importance of data availability and harmonising access to marine data from different sources. The European Marine Observation and Data Network (EMODnet) is a long term marine data initiative from the European Commission Directorate-General for Maritime Affairs and Fisheries (DG MARE) underpinning the Marine Knowledge 2020 strategy. EMODnet is a consortium of organisations assembling European marine data, data products and metadata from diverse sources in a uniform way. The main purpose of EMODnet is to unlock fragmented and hidden marine data resources and to make these available to individuals and organisations (public and private), and to facilitate investment in sustainable coastal and offshore activities through improved access to quality-assured, standardised and harmonised marine data which are interoperable and free of restrictions on use. The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is in the 2nd phase of development with seven sub-portals in operation that provide access to marine data from the following themes: bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities. EMODnet development is a dynamic process so new data, products and functionality are added regularly while portals are continuesly improved to make the service more fit for purpose and user friendly with the help of users and stakeholders. The EMODnet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets, that are indexed with metadata by adopting the SeaDataNet Common Data Index (CDI) data discovery and access service and the SeaDataNet Sextant data products catalogue service. The new EMODnet DTM will have a resolution of 1/8 arcminute * 1/8 arcminute and will cover all European sea regions. Use is made of available and gathered surveys and already more than 10.000 surveys have been indexed by 24 European data providers and originating from more than 120 organisations. Also use is made of composite DTMs as generated and maintained by several data providers for their areas of interest. Already 44 composite DTMs are included in the Sextant data products catalogue. For areas without coverage use is made of the latest global DTM of GEBCO who is partner in the EMODnet Bathymetry project. In return GEBCO integrates the EMODnet DTM to achieve an enriched and better result. The catalogue services and the generated EMODnet can be queried and browsed at the dedicated EMODnet Bathymetry portal which also provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. Activities are underway for further refinement following user feedback. The EMODnet DTM is publicly available for downloading in various formats. The presentation will highlight key details of EMODnet Bathymetry project, its portal and views on the new EMODNet Digital Bathymetry for European seas as to be released early 2015.

  16. Analysis of the possibilities of using aerial photographs to determine the bathymetry in shallow coastal zone of the selected section of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Cieszynski, Lukasz; Furmanczyk, Kazimierz

    2017-04-01

    Bathymetry data for the coastal zone of the Baltic Sea are usually created in profiles based on echo sounding measurements. However, in the shallow coastal zone (up to 4 m depth), the quality and accuracy of data is insufficient because of the spatial variability of the seabed. The green laser - LIDAR - can comprise a solution for studies of such shallow areas. However, this method is still an expensive one and that is why we have decided to use the RGB digital aerial photographs to create a model for mapping the seabed of the shallow coastal zone. So far, in the 60's, researchers in the USA (Musgrove, 1969) and Russia (Zdanowicz, 1963) developed the first method of bathymetry determining from aerial panchromatic (black-white) photographs. This method was adapted for the polish conditions by Furmanczyk in 1975 and in 2014 we have returned to his concept using more advanced techniques of recording and image processing. In our study, we propose to determine the bathymetry in shallow coastal zone of the Baltic Sea by using the digital vertical aerial photographs (both single and multi-channel spectral). These photos are the high-resolution matrix (10 cm per pixel) containing values of the grey level in the individual spectral bands (RGB). This gives great possibilities to determine the bathymetry in order to analyze the changes in the marine coastal zone. Comparing the digital bathymetry maps - obtained by proposed method - in the following periods, you can develop differential maps, which reflect the movements of sea-bottom sediments. This can be used to indicate the most dynamic regions in the examined area. The model is based on the image pixel values and relative depths measured in situ (in selected checkpoints). As a result, the relation of the pixel brightness and sea depth (the algorithm) was defined. Using the algorithm, depth calculations for the whole scene were done and high resolution bathymetric map created. However, the algorithm requires numbers of adjustments resulting from, e.g., the phenomenon of vignetting, distribution of light, or the collapse of the rays of light at the atmosphere - sea interface. We have developed the algorithm with correction formulas and created a final model in MATLAB. It allows one to obtain three-dimensional bathymetry visualization for a specific region from a digital color aerial photograph. This model enables to determine the bathymetry of the most dynamic areas in the marine coastal zone up to 3-4 meters depth with a relatively good accuracy. In addition, the possibility to take pictures from the drone instead of a plane, significantly reduces the cost of the process. In the poster presentation, we will present the model and its results for the area of the Polish west coast. 1. Musgrove R,G., 1969. Photometry for interpretation. Photogrametric Engineering No. 10. 2. Furmańczyk K., 1975. Możliwości praktycznego zastosowania metody fotogrametrycznej do określania głębokości w strefie brzegowej morza. Gdańsk. 3. Zdanowicz W.G., 1963. Primienienije aerometodow dlia issledowanija moria. Leningrad.

  17. Nearshore Measurements From a Small UAV.

    NASA Astrophysics Data System (ADS)

    Holman, R. A.; Brodie, K. L.; Spore, N.

    2016-02-01

    Traditional measurements of nearshore hydrodynamics and evolving bathymetry are expensive and dangerous and must be frequently repeated to track the rapid changes of typical ocean beaches. However, extensive research into remote sensing methods using cameras or radars mounted on fixed towers has resulted in increasingly mature algorithms for estimating bathymetry, currents and wave characteristics. This naturally raises questions about how easily and effectively these algorithms can be applied to optical data from low-cost, easily-available UAV platforms. This paper will address the characteristics and quality of data taken from a small, low-cost UAV, the DJI Phantom. In particular, we will study the stability of imagery from a vehicle `parked' at 300 feet altitude, methods to stabilize remaining wander, and the quality of nearshore bathymetry estimates from the resulting image time series, computed using the cBathy algorithm. Estimates will be compared to ground truth surveys collected at the Field Research Facility at Duck, NC.

  18. Seals map bathymetry of the Antarctic continental shelf

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Costa, Daniel P.; Bolmer, S. Thompson; Goebel, Michael E.; Huckstadt, Luis A.; Jenkins, Adrian; McDonald, Birgitte I.; Shoosmith, Deborah R.

    2010-11-01

    We demonstrate the first use of marine mammal dive-depth data to improve maps of bathymetry in poorly sampled regions of the continental shelf. A group of 57 instrumented elephant seals made on the order of 2 × 105 dives over and near the continental shelf on the western side of the Antarctic Peninsula during five seasons, 2005-2009. Maximum dive depth exceeded 2000 m. For dives made near existing ship tracks with measured water depths H<700 m, ˜30% of dive depths were to the seabed, consistent with expected benthic foraging behavior. By identifying the deepest of multiple dives within small areas as a dive to the seabed, we have developed a map of seal-derived bathymetry. Our map fills in several regions for which trackline data are sparse, significantly improving delineation of troughs crossing the continental shelf of the southern Bellingshausen Sea.

  19. Model-based adaptive 3D sonar reconstruction in reverberating environments.

    PubMed

    Saucan, Augustin-Alexandru; Sintes, Christophe; Chonavel, Thierry; Caillec, Jean-Marc Le

    2015-10-01

    In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction.

  20. Random-access technique for modular bathymetry data storage in a continental shelf wave refraction program

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1974-01-01

    A study was conducted of an alternate method for storage and use of bathymetry data in the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave-refraction computer program. The regional bathymetry array was divided into 105 indexed modules which can be read individually into memory in a nonsequential manner from a peripheral file using special random-access subroutines. In running a sample refraction case, a 75-percent decrease in program field length was achieved by using the random-access storage method in comparison with the conventional method of total regional array storage. This field-length decrease was accompanied by a comparative 5-percent increase in central processing time and a 477-percent increase in the number of operating-system calls. A comparative Langley Research Center computer system cost savings of 68 percent was achieved by using the random-access storage method.

  1. Modeling and Analysis of Integrated Bathymetric and Geodetic Data for Inventory Surveys of Mining Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Ochałek, Agnieszka; Lipecki, Tomasz; Jaśkowski, Wojciech; Jabłoński, Mateusz

    2018-03-01

    The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements - an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.

  2. Combined High-Resolution LIDAR Topography and Multibeam Bathymetry for Northern Resurrection Bay, Seward, Alaska

    USGS Publications Warehouse

    Labay, Keith A.; Haeussler, Peter J.

    2008-01-01

    A new Digital Elevation Model was created using the best available high-resolution topography and multibeam bathymetry surrounding the area of Seward, Alaska. Datasets of (1) LIDAR topography collected for the Kenai Watershed Forum, (2) Seward harbor soundings from the U.S. Army Corp of Engineers, and (3) multibeam bathymetry from the National Oceanic and Atmospheric Administration contributed to the final combined product. These datasets were placed into a common coordinate system, horizontal datum, vertical datum, and data format prior to being combined. The projected coordinate system of Universal Transverse Mercator Zone 6 North American Datum of 1927 was used for the horizontal coordinates. Z-values in meters were referenced to the tidal datum of Mean High Water. Gaps between the datasets were interpolated to create the final seamless 5-meter grid covering the area of interest around Seward, Alaska.

  3. Bathymetry and Acoustic Backscatter: Northern Santa Barbara Channel, Southern California

    USGS Publications Warehouse

    Dartnell, Pete; Finlayson, David; Conrad, Jamie; Cochrane, Guy; Johnson, Samuel

    2010-01-01

    In the summer of 2008, as part of the California Seafloor Mapping Program (CSMP) the U.S. Geological Survey, Coastal and Marine Geology mapped a nearshore region of the northern Santa Barbara Channel in Southern California (fig 1). The CSMP is a cooperative partnership between Federal and State agencies, Universities, and Industry to create a comprehensive coastal/marine geologic and habitat basemap series to support the Marine Life Protection Act (MLPA) inititive. The program is supported by the California Ocean Protection Council and the California Coastal Conservancy. The 2008 mapping collected high resolution bathymetry and acoustic backscatter data using a bathymetric side scan system within State waters from about the 10-m isobath out over 3-nautical miles. This Open-File Report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and FGDC metadata.

  4. NASA/Cousteau ocean bathymetry experiment. Remote bathymetry using high gain LANDSAT data

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.

    1976-01-01

    Satellite remote bathymetry was varified to 22 m depths where water clarity was defined by alpha = .058 1/m and bottom reflection, r(b), was 26%. High gain band 4 and band 5 CCT data from LANDSAT 1 was used for a test site in the Bahama Islands and near Florida. Near Florida where alpha = .11 1/m and r(b) = 20%, depths to 10 m were verified. Depth accuracies within 10% rms were achieved. Position accuracies within one LANDSAT pixel were obtained by reference to the Transit navigation satellites. The Calypso and the Beayondan, two ships, were at anchor on each of the seven days during LANDSAT 1 and 2 overpasses: LORAN C position information was used when the ships were underway making depth transects. Results are expected to be useful for updating charts showing shoals hazardous to navigation or in monitoring changes in nearshore topography.

  5. Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    PubMed

    Tolstoy, Maya

    2016-07-15

    Olive et al (Reports, 16 October 2015, p. 310) and Goff (Technical Comment, 4 September 2015, p. 1065) raise important concerns with respect to recent findings of Milankovitch cycles in seafloor bathymetry. However, their results inherently support that the Southern East Pacific Rise is the optimum place to look for such signals and, in fact, models match those observations quite closely. Copyright © 2016, American Association for the Advancement of Science.

  6. Fast and low-cost method for VBES bathymetry generation in coastal areas

    NASA Astrophysics Data System (ADS)

    Sánchez-Carnero, N.; Aceña, S.; Rodríguez-Pérez, D.; Couñago, E.; Fraile, P.; Freire, J.

    2012-12-01

    Sea floor topography is key information in coastal area management. Nowadays, LiDAR and multibeam technologies provide accurate bathymetries in those areas; however these methodologies are yet too expensive for small customers (fishermen associations, small research groups) willing to keep a periodic surveillance of environmental resources. In this paper, we analyse a simple methodology for vertical beam echosounder (VBES) bathymetric data acquisition and postprocessing, using low-cost means and free customizable tools such as ECOSONS and gvSIG (that is compared with industry standard ArcGIS). Echosounder data was filtered, resampled and, interpolated (using kriging or radial basis functions). Moreover, the presented methodology includes two data correction processes: Monte Carlo simulation, used to reduce GPS errors, and manually applied bathymetric line transformations, both improving the obtained results. As an example, we present the bathymetry of the Ría de Cedeira (Galicia, NW Spain), a good testbed area for coastal bathymetry methodologies given its extension and rich topography. The statistical analysis, performed by direct ground-truthing, rendered an upper bound of 1.7 m error, at 95% confidence level, and 0.7 m r.m.s. (cross-validation provided 30 cm and 25 cm, respectively). The methodology presented is fast and easy to implement, accurate outside transects (accuracy can be estimated), and can be used as a low-cost periodical monitoring method.

  7. Seafloor mapping and benthic habitat GIS for southern California, volume III

    USGS Publications Warehouse

    Cochrane, Guy R.; Golden, Nadine E.; Dartnell, Pete; Schroeder, Donna M.; Finlayson, David P.

    2007-01-01

    From August 8-27, 2005, more than 75 km of the continental shelf (Fig. 1) in water depths of 20-70m southeast of Santa Barbara, were surveyed during the USGS cruise S-1-05-SC (http://walrus.wr.usgs.gov/infobank/s/s105sc/html/s-1-05-sc.meta.html). Both Interferometric sonar and 14 hours of both vertical and oblique georeferenced submarine digital video were collected to (1) obtain geophysical data (bathymetry and acoustic reflectance), (2) examine and record geologic characteristics of the sea floor, and (3) construct maps of seafloor geomorphology and habitat distribution. Substrate distribution is predicted using a modified version of Cochrane and Lafferty (2002) video-supervised statistical classification of sonar data that includes derivatives of bathymetry data. Specific details of the methods can be found in the meatadata of the bathymetry data file. Substrates observed are predominantly sand with some rock. Rocky substrates were restricted primarily to an east-west trending bathymetric high 2,000 m north of oil platforms. This is an updated report (version 2.0) from the earlier 2007-1271 (version 1.0) open-file report. This updated report re-releases the data files in UTM, zone 11, WGS84 coordinates. Also, the bathymetry data has been corrected for a vertical offset discovered in the earlier 2007-1271 (version 1.0) report.

  8. Seafloor bathymetry and gravity from the ALBACORE marine seismic experiment offshore southern California

    NASA Astrophysics Data System (ADS)

    Shintaku, N.; Weeraratne, D. S.; Kohler, M. D.

    2010-12-01

    Although the North America side of the plate boundary surrounding the southern California San Andreas fault region is well studied and instrumented, the Pacific side of this active tectonic boundary is poorly understood. In order to better understand this complex plate boundary offshore, its microplate structures, deformation, and the California Borderland formation, we have recently conducted the first stage of a marine seismic experiment (ALBACORE - Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deploying 34 ocean bottom seismometers offshore southern California in August 2010. We present preliminary data consisting of seafloor bathymetry and free air gravity collected from this experiment. We present high-resolution maps of bathymetry and gravity from the ALBACORE experiment compiled with previous ship track data obtained from the NGDC (National Geophysical Data Center) and the USGS. We use gravity data from Smith and Sandwell and study correlations with ship track bathymetry data for the features described below. We observe new seafloor geomorphological features far offshore and within the Borderland. Steep canyon walls which line the edges of the Murray fracture zone with possible volcanic flows along the canyon floor were mapped by multibeam bathymetry for the first time. Deep crevices juxtaposed with high edifices of intensely deformed plateaus indicate high strain deformation along the arcuate boundary of the Arguello microplate. Small volcanic seamounts are mapped which straddle the Ferrelo fault (Outer Borderland) and San Pedro fault (Inner Borderland), and appear to exhibit fracture and fault displacement of a portion of the volcanic centers in a left-lateral sense. A large landslide is also imaged extending approximately 6 miles in length and 3 miles in width in the Santa Cruz basin directly south of Santa Rosa Island. Deformation associated with capture of Arguello and Patton microplates by the Pacific plate is studied as well as deformation surrounding the Murray fracture zone near the California shore. Faults in the Borderland identified by improved sea floor mapping may indicate offshore earthquake sources.

  9. Surf zone characterization from Unmanned Aerial Vehicle imagery

    NASA Astrophysics Data System (ADS)

    Holman, Rob A.; Holland, K. Todd; Lalejini, Dave M.; Spansel, Steven D.

    2011-11-01

    We investigate the issues and methods for estimating nearshore bathymetry based on wave celerity measurements obtained using time series imagery from small unmanned aircraft systems (SUAS). In contrast to time series imagery from fixed cameras or from larger aircraft, SUAS data are usually short, gappy in time, and unsteady in aim in high frequency ways that are not reflected by the filtered navigation metadata. These issues were first investigated using fixed camera proxy data that have been intentionally degraded to mimic these problems. It has been found that records as short as 50 s or less can yield good bathymetry results. Gaps in records associated with inadvertent look-away during unsteady flight would normally prevent use of the required standard Fast Fourier Transform methods. However, we found that a full Fourier Transform could be implemented on the remaining valid record segments and was effective if at least 50% of total record length remained intact. Errors in image geo-navigation were stabilized based on fixed ground fiducials within a required land portion of the image. The elements of a future method that could remove this requirement were then outlined. Two test SUAS data runs were analyzed and compared to survey ground truth data. A 54-s data run at Eglin Air Force Base on the Gulf of Mexico yielded a good bathymetry product that compared well with survey data (standard deviation of 0.51 m in depths ranging from 0 to 4 m). A shorter (30.5 s) record from Silver Strand Beach (near Coronado) on the US west coast provided a good approximation of the surveyed bathymetry but was excessively deep offshore and had larger errors (1.19 m for true depths ranging from 0 to 6 m), consistent with the short record length. Seventy-three percent of the bathymetry estimates lay within 1 m of the truth for most of the nearshore.

  10. On the sensitivity of the global ocean circulation to reconstructions of paleo-bathymetry

    NASA Astrophysics Data System (ADS)

    Weber, Tobias; Thomas, Maik

    2013-04-01

    The ability to model the long-term evolution of the climate does considerably depend on the accuracy of ocean models and their interaction with the atmosphere. Thereby, the ocean model's behavior with respect to uncertain and changing boundary conditions is of crucial importance. One of the remaining questions is, how different reconstructions of the ocean floor influence the model. Although of general interest, this effect has mostly been neglected, so far. We modeled Pliocene and pre-industrial ocean currents with the Max-Planck-Institute Ocean Model (MPIOM), forced by climatologies derived from an atmospheric and vegetational Global Circulation Model (GCM). We equipped it with different reconstructions of the bathymetry, what allowed us to study the model's sensitivity regarding changes in bathymetry. On the one hand we examined the influence of reconstructions with different locations of major ridges, but the same treatment of the shelf. On the other hand, reconstruction techniques that treated the shelf areas differently were taken into consideration. This leads to different oceanic circulation realizations, which induce changes in deep ocean temperature and salinity. Some of the simulations result in unrealistic behavior, such as an increase in surface temperature by several degrees. Most important, small bathymetric changes in the areas of deep water formation near Greenland and the Antarctic alter the thermohaline circulation strongly. This leads to its complete cessation in some of the simulations and therefore to stationary deep laying ocean masses. This shows that not all bathymetric reconstruction sequences are applicable for the generation of boundary conditions for GCMs. In order to obtain reliable and physically realistic data from the models, the reconstruction method to be used for the paleo-bathymetry also needs to be applied to the present day bathymetry. This reconstruction can then be used in a control simulation which can be validated against measurements. Hereby systematic errors introduced by the reconstruction technique are identified.

  11. GIS Tool for Real-time Decision Making and Analysis of Multidisciplinary Cryosphere Datasets.

    NASA Astrophysics Data System (ADS)

    Roberts, S. D.; Moore, J. A.

    2004-12-01

    In support of the Western Arctic Shelf-Basin Interaction Project(SBI) a web-based interactive mapping server was installed on the USCGC Healy's on-board science computer network during its 2004 spring(HLY-04-02) and summer cruises (HLY-04-03) in the Chukchi and Beaufort Seas. SBI is a National Science Foundation sponsored multi-year and multidisciplinary project studying the biological productivity in the region. The mapping server was developed by the UCAR Joint Office of Science Support(JOSS) using OpenSource GIS tools(University of Minnesota Mapserver and USGS MapSurfer). Additional OpenSource tools such as GMT and MB-Systems were also utilized. The key layers in this system are the current ship track, station locations, multibeam bottom bathymetry, IBCAO bathymetry, DMSP satellite imagery , NOAA AVHRR Sea Surface temperature and all past SBI Project ship tracks and station locations. The ship track and multibeam layers are updated in real-time and the satellite layers are updated daily only during clear weather. In addition to using current high resolution multibeam bathymetry data, a composite high resolution bathymetry layer was created using multibeam data from past cruises in the SBI region. The server provides click-and-drag zooms, pan, feature query, distance measure and lat/lon/depth querys on a polar projection map of the arctic ocean. The main use of the system on the ship was for cruise track and station position planning by the scientists utilizing all available historical data and high resolution bathymetry. It was also the main source of information to all the scientist on board as to the cruise progress and plans. The system permitted on-board scientists to integrate historical cruise information for comparative purposes. A mirror web site was set up on land and the current ship track/station information was copied once a day to this site via a satellite link so people interested SBI research could follow the cruise progress.

  12. Marine magnetotelluric inversion with an unstructured tetrahedral mesh

    NASA Astrophysics Data System (ADS)

    Usui, Yoshiya; Kasaya, Takafumi; Ogawa, Yasuo; Iwamoto, Hisanori

    2018-05-01

    The finite element method using an unstructured tetrahedral mesh is one of the most effective methods for the three-dimensional modelling of marine magnetotelluric data which are strongly affected by bathymetry, because it enables us to incorporate both small-scale and regional-scale bathymetry into a computational mesh with a practical number of elements. The authors applied a three-dimensional inversion scheme using mesh of this type to marine magnetotelluric problems for the first time and verified its applicability. Forward calculations for two bathymetry models demonstrated that the results obtained with an unstructured tetrahedral mesh are close to the reference solutions. To evaluate the forward calculation results, we developed a general TM-mode analytical formulation for a two-dimensional sinusoidal topography. Moreover, synthetic inversion test results confirmed that a three-dimensional inversion scheme with an unstructured tetrahedral mesh enables us to recover subseafloor resistivity structure properly even for a model including a land-sea boundary as well as seafloor undulations. The verified inversion scheme was subsequently applied to a set of marine magnetotelluric data observed around the Iheya North Knoll, the middle Okinawa Trough. Three-dimensional modelling using a mesh with precise bathymetry demonstrated that the data observed around the Iheya North Knoll are strongly affected by bathymetry, especially by the sea-depth differences between the depression of the trough and the shallow East China Sea. The estimated resistivity structure under the knoll is characterized by a conductive surface layer underlain by a resistive layer. The conductive layer implies permeable pelagic/hemi-pelagic sediments, which are consistent with a previous seismological study. Furthermore, the conductive layer has a resistive part immediately below the knoll, which is regarded as the consolidated magma intrusion that formed the knoll. Furthermore, at depth of 10 km, we found that the resistor underneath the knoll extends to the southeast, implying that subseafloor resistivity under the Volcanic Arc Migration Phenomenon (VAMP) area is more resistive than the surroundings due to the presence of consolidated magma.

  13. Experimental modelling of wave amplification over irregular bathymetry for investigations of boulder transport by extreme wave events.

    NASA Astrophysics Data System (ADS)

    O'Boyle, Louise; Whittaker, Trevor; Cox, Ronadh; Elsäßer, Björn

    2017-04-01

    During the winter of 2013-2014 the west coast of Ireland was exposed to 6 storms over a period of 8 weeks with wind speeds equating to hurricane categories 3 and 4. During this period, the largest significant wave height recorded at the Marine Institute M6 wave buoy, approximately 300km from the site, was 13.6m (on 26th January 2014). However, this may not be the largest sea state of that winter, because the buoy stopped logging on 30th January and therefore failed to capture the full winter period. During the February 12th 2014 "Darwin" storm, the Kinsale Energy Gas Platform off Ireland's south coast measured a wave height of 25 m, which remains the highest wave measured off Ireland's coasts[1]. Following these storms, significant dislocation and transportation of boulders and megagravel was observed on the Aran Islands, Co. Galway at elevations of up to 25m above the high water mark and distances up to 220 m inland including numerous clasts with masses >50t, and at least one megagravel block weighing >500t [2]. Clast movements of this magnitude would not have been predicted from the measured wave heights. This highlights a significant gap in our understanding of the relationships between storms and the coastal environment: how are storm waves amplified and modified by interactions with bathymetry? To gain further understanding of wave amplification, especially over steep and irregular bathymetry, we have designed Froude-scaled wave tank experiments using the 3D coastal wave basin facility at Queen's University Belfast. The basin is 18m long by 16m wide with wave generation by means of a 12m wide bank of 24 top hinged, force feedback, sector carrier wave paddles at one end. The basin is equipped with gravel beaches to dissipate wave energy on the remaining three sides, capable of absorbing up to 99% of the incident wave energy, to prevent unwanted reflections. Representative bathymetry for the Aran Islands is modelled in the basin based on a high resolution nearshore multibeam sonar survey. Water surface elevation is recorded using twin-wire resistance type wave probes along a shore-normal bathymetry transect as the waves shoal. Variations in significant wave height and maximum elevation are presented for both regular and irregular bathymetry and for a number of typical North Atlantic sea states. These results are significant for calibration of numerical wave propagation models over irregular bathymetry and for those seeking to understand the magnitude of nearshore extreme wave events. References [1] Met Éireann, 2014, Winter 2013/2014: Monthly Weather Bulletin, December issue, p. 1-5. http://www.met.ie/climate-ireland/weather-events/winterstorms13_14.pdf. [2] Cox, R. et. al., 2016, Movement of boulders and megagravel by storm waves Vol. 18, EGU2016-10535, 2016 EGU General Assembly 2016

  14. Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.

    PubMed

    Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J

    2014-06-15

    A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Modeling Megacusps and Dune Erosion

    NASA Astrophysics Data System (ADS)

    Orzech, M.; Reniers, A. J.; Thornton, E. B.

    2009-12-01

    Megacusps are large, concave, erosional features of beaches, of O(200m) alongshore wavelength, which sometimes occur when rip channel bathymetry is present. It is commonly hypothesized that erosion of the dune and back beach will be greater at the alongshore locations of the megacusp embayments, principally because the beach width is narrower there and larger waves can more easily reach the dune toe (e.g., Short, J. Geol., 1979, Thornton, et al., Mar. Geol., 2007). At present, available field data in southern Monterey Bay provide some support for this hypothesis, but not enough to fully confirm or refute it. This analysis utilizes XBeach, a 2DH nearshore sediment transport model, to test the above hypothesis under a range of wave conditions over several idealized rip-megacusp bathymetries backed by dunes. Model results suggest that while specific wave conditions may result in erosional hot spots at megacusp embayments, other factors such as tides, wave direction, and surf zone bathymetry can often play an equal or stronger role.

  16. Bathymetry data collected in October 2014 from Fire Island, New York—The wilderness breach, shoreface, and bay

    USGS Publications Warehouse

    Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Brenner, Owen T.; Henderson, Rachel E.; Reynolds, Billy J.; Wilson, Kathleen E.

    2017-03-24

    Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, using single-beam echo sounders and global positioning systems mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach, Fire Island Inlet, Narrow Bay, and Great South Bay east of Nicoll Bay. Additional bathymetry and elevation data were collected using backpack and wheel-mounted global positioning systems along the subaerial beach (foreshore and backshore), flood shoals, and shallow channels within the wilderness breach and adjacent shoreface.

  17. Los Angeles and San Diego Margin High-Resolution Multibeam Bathymetry and Backscatter Data

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.; Mayer, Larry A.; Hughes-Clarke, John E.

    2004-01-01

    Summary -- The U.S. Geological Survey in cooperation with the University of New Hampshire and the University of New Brunswick mapped the nearshore regions off Los Angeles and San Diego, California using multibeam echosounders. Multibeam bathymetry and co-registered, corrected acoustic backscatter were collected in water depths ranging from about 3 to 900 m offshore Los Angeles and in water depths ranging from about 17 to 1230 m offshore San Diego. Continuous, 16-m spatial resolution, GIS ready format data of the entire Los Angeles Margin and San Diego Margin are available online as separate USGS Open-File Reports. For ongoing research, the USGS has processed sub-regions within these datasets at finer resolutions. The resolution of each sub-region was determined by the density of soundings within the region. This Open-File Report contains the finer resolution multibeam bathymetry and acoustic backscatter data that the USGS, Western Region, Coastal and Marine Geology Team has processed into GIS ready formats as of April 2004. The data are available in ArcInfo GRID and XYZ formats. See the Los Angeles or San Diego maps for the sub-region locations. These datasets in their present form were not originally intended for publication. The bathymetry and backscatter have data-collection and processing artifacts. These data are being made public to fulfill a Freedom of Information Act request. Care must be taken not to confuse artifacts with real seafloor morphology and acoustic backscatter.

  18. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry

    NASA Astrophysics Data System (ADS)

    Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik; Savstrup Kristensen, Steen; Mayer, Christoph; Morlighem, Mathieu; Steinhage, Daniel

    2016-10-01

    The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies, and global surface height on a spherical grid with now 30 arcsec grid spacing. For this new data set, called RTopo-2, we used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We modified data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ, and Sermilik Fjord, assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centres of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF), and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot, and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database at doi:10.1594/PANGAEA.856844.

  19. Bathymetry and geology of Greenlandic fjords from Operation IceBridge airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Cochran, J. R.; Bell, R. E.; Charles, K.; Dube, J.; McLeish, M.; Burton, B. L.

    2011-12-01

    The Greenland Ice Sheet is drained by outlet glaciers that commonly flow into long, deep fjords. Glacier flow is controlled in part by the topography and geology of the glacier bed, and is also affected by the interaction between ice and sea water in the fjords. This interaction depends on the bathymetry of the fjords, and particularly on the presence of bathymetric sills, which can control the influx of warm, saline water towards the grounding zone. The bathymetry and geology of these fjords provide boundary conditions for models of the behaviour of the glaciers and ice sheet. Greenlandic fjords can be over 100 km long and up to 1000 m deep, with sills a few hundred metres above the bottom of the fjord. Where bathymetry is not well known, the scale of these features makes them appropriate targets for aerogravity surveys. Where bathymetry is known, aerogravity can provide information on the geology of the fjord, but the sometimes narrow, sinuous fjords present challenges for both data acquisition and interpretation. In 2010 and 2011 Operation IceBridge flew the Sander Geophysics AIRGrav system along the axes of more than 40 outlet glaciers distributed around the coast of Greenland. The AIRGrav system has high precision, fast recovery from turns and the capacity for draped flights, all of which improve the quality of data acquisition along fjord axes. Operation IceBridge survey flights are conducted at or lower than 500 m above ground surface, at speeds of ~140 m/s, allowing full amplitude resolution of features larger than ~5 km, and detection of smaller scale features. Fjord axis data are commonly of lower quality than data from grid-based gravity surveys. Interpretation of these data is improved by combining repeated survey lines from both seasons as well as incorporating other datasets, such as radar, and magnetic data from Operation IceBridge, digital elevation models and geological maps. While most fjords were surveyed by a single axial track, surveys of Petermann Glacier include parallel flow lines, allowing new constraints on the bathymetry under its floating ice to be more reliably modelled. This work is a preliminary review of the fjord axes surveyed by Operation IceBridge and presents models of representative fjords. The surveys include major features, such as the fjord in front of Kangerdlugssuaq Glacier and under the the floating ice in front of Petermann, 79 N and Zachariae Glaciers and results identify the limits and applications of IceBridge aerogravity in the Greenland fjords.

  20. A Factor of 2-4 Improvement in Marine Gravity and Predicted Bathymetry from CryoSat, Jason-1, and Envisat Radar Altimetry: Arctic and Coastal Regions

    DTIC Science & Technology

    2013-09-30

    dsandwell@ucsd.edu Award Number: N00014-12-1-0111 http://topex.ucsd.edu LONG-TERM GOALS • Improve our understanding of the ocean basins for...scientific research and Naval operations. OBJECTIVES • Improve global marine gravity maps by a factor of 2 in deep ocean areas and a factor of 4 in...arcsecond bathymetry model (SRTM30_PLUS). • Prepare the next generation of scientists for ocean research. APPROACH 1. Modify waveform

  1. A Factor of 2-4 Improvement in Marine Gravity and Predicted Bathymetry from CryoSat, Jason-1, and Envisat Radar Altimetry: Arctic and Coastal Regions

    DTIC Science & Technology

    2012-09-30

    ucsd.edu Award Number: N00014-12-1-0111 http://topex.ucsd.edu LONG-TERM GOALS • Improve our understanding of the ocean basins for...scientific research and Naval operations. OBJECTIVES • Improve global marine gravity maps by a factor of 2 in deep ocean areas and a factor of 4 in the...arcsecond bathymetry model (SRTM30_PLUS). • Prepare the next generation of scientists for ocean research. APPROACH 1. Modify waveform retracking

  2. Minimal-resource computer program for automatic generation of ocean wave ray or crest diagrams in shoaling waters

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Lecroy, S. R.; Morris, W. D.

    1977-01-01

    A computer program for studying linear ocean wave refraction is described. The program features random-access modular bathymetry data storage. Three bottom topography approximation techniques are available in the program which provide varying degrees of bathymetry data smoothing. Refraction diagrams are generated automatically and can be displayed graphically in three forms: Ray patterns with specified uniform deepwater ray density, ray patterns with controlled nearshore ray density, or crest patterns constructed by using a cubic polynomial to approximate crest segments between adjacent rays.

  3. 2000 Multibeam Sonar Survey of Crater Lake, Oregon - Data, GIS, Images, and Movies

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter

    2001-01-01

    In the summer of 2000, the U.S. Geological Survey, Pacific Seafloor Mapping Project in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire used a state-of-the-art multibeam sonar system to collect high-resolution bathymetry and calibrated, co-registered acoustic backscatter to support both biological and geological research in the Crater Lake area. This interactive CD-ROM contains the multibeam bathymetry and acoustic backscatter data, along with an ESRI ArcExplorer project (and software), images, and movies.

  4. Investigation of Acoustic Vector Sensor Data Processing in the Presence of Highly Variable Bathymetry

    DTIC Science & Technology

    2014-06-01

    shelf 10 region to the north of the canyon. The impact of this 3-dimensional (3D) variable bathymetry, which may be combined with the effects of...weaker arrivals at large negative angles, consistent with the earliest bottom reflections on the left. The impact of the bottom-path reflections from...nzout*(nrout+1)*ny))),’bof’); for ifr =1:64, for ir=1:nrout+1, for iy=1:ny, data=fread(fid3,2*nzout,’float32’); fwrite(fid,data

  5. Bathymetry of Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina, 2008

    USGS Publications Warehouse

    Nagle, D.D.; Campbell, B.G.; Lowery, M.A.

    2009-01-01

    The increasing use and importance of lakes for water supply to communities enhance the need for an accurate methodology to determine lake bathymetry and storage capacity. A global positioning receiver and a fathometer were used to collect position data and water depth in February 2008 at Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina. All collected data were imported into a geographic information system database. A bathymetric surface model, contour map, and stage-area and -volume relations were created from the geographic information database.

  6. Evaluating the potential for near-shore bathymetry on the Majuro Atoll, Republic of the Marshall Islands, using Landsat 8 and WorldView-3 imagery

    USGS Publications Warehouse

    Poppenga, Sandra K.; Palaseanu-Lovejoy, Monica; Gesch, Dean B.; Danielson, Jeffrey J.; Tyler, Dean J.

    2018-04-16

    Satellite-derived near-shore bathymetry (SDB) is becoming an increasingly important method for assessing vulnerability to climate change and natural hazards in low-lying atolls of the northern tropical Pacific Ocean. Satellite imagery has become a cost-effective means for mapping near-shore bathymetry because ships cannot collect soundings safely while operating close to the shore. Also, green laser light detection and ranging (lidar) acquisitions are expensive in remote locations. Previous research has demonstrated that spectral band ratio-based techniques, commonly called the natural logarithm approach, may lead to more precise measurements and modeling of bathymetry because of the phenomenon that different substrates at the same depth have approximately equal ratio values. The goal of this research was to apply the band ratio technique to Landsat 8 at-sensor radiance imagery and WorldView-3 atmospherically corrected imagery in the coastal waters surrounding the Majuro Atoll, Republic of the Marshall Islands, to derive near-shore bathymetry that could be incorporated into a seamless topobathymetric digital elevation model of Majuro. Attenuation of light within the water column was characterized by measuring at-sensor radiance and reflectance at different depths and calculating an attenuation coefficient. Bathymetric lidar data, collected by the U.S. Naval Oceanographic Office in 2006, were used to calibrate the SDB results. The bathymetric lidar yielded a strong linear relation with water depths. The Landsat 8-derived SDB estimates derived from the blue/green band ratio exhibited a water attenuation extinction depth of 6 meters with a coefficient of determination R2=0.9324. Estimates derived from the coastal/red band ratio had an R2=0.9597. At the same extinction depth, SDB estimates derived from WorldView-3 imagery exhibited an R2=0.9574. Because highly dynamic coastal shorelines can be affected by erosion, wetland loss, hurricanes, sea-level rise, urban development, and population growth, consistent bathymetric data are needed to better understand sensitive coastal land/water interfaces in areas subject to coastal disasters.

  7. Bathymetry of Patagonia glacier fjords and glacier ice thickness from high-resolution airborne gravity combined with other data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E.; Rivera, A.; Bunetta, M.

    2012-12-01

    The North and South Patagonia Ice fields are the largest ice masses outside Antarctica in the Southern Hemisphere. During the period 1995-2000, these glaciers lost ice at a rate equivalent to a sea level rise of 0.105 ± 0.001 mm/yr. In more recent years, the glaciers have been thinning more quickly than can be explained by warmer air temperatures and decreased precipitation. A possible cause is an increase in flow speed due to enhanced ablation of the submerged glacier fronts. To understand the dynamics of these glaciers and how they change with time, it is critical to have a detailed view of their ice thickness, the depth of the glacier bed below sea or lake level, how far inland these glaciers remain below sea or lake level, and whether bumps or hollows in the bed may slow down or accelerate their retreat. A grid of free-air gravity data over the Patagonia Glaciers was collected in May 2012 and October 2012, funded by the Gordon and Betty Moore Foundation (GBMF) to measure ice thickness and sea floor bathymetry. This survey combines the Sander Geophysics Limited (SGL) AIRGrav system, SGL laser altimetry and Chilean CECS/UCI ANDREA-2 radar. To obtain high-resolution and high-precision gravity data, the helicopter operates at 50 knots (25.7 m/s) with a grid spacing of 400m and collects gravity data at sub mGal level (1 Gal =1 Galileo = 1 cm/s2) near glacier fronts. We use data from the May 2012 survey to derive preliminarily high-resolution, high-precision thickness estimates and bathymetry maps of Jorge Montt Glacier and San Rafael Glacier. Boat bathymetry data is used to optimize the inversion of gravity over water and radar-derived thickness over glacier ice. The bathymetry maps will provide a breakthrough in our knowledge of the ice fields and enable a new era of glacier modeling and understanding that is not possible at present because ice thickness is not known.

  8. Storm Observations of Persistent Three-Dimensional Shoreline Morphology and Bathymetry Along a Geologically Influenced Shoreface Using X-Band Radar (BASIR)

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.

    2008-12-01

    Accurate predictions of shoreline response to storms are contingent upon coastal-morphodynamic models effectively synthesizing the complex evolving relationships between beach topography, sandbar morphology, nearshore bathymetry, underlying geology, and the nearshore wave-field during storm events. Analysis of "pre" and "post" storm data sets have led to a common theory for event response of the nearshore system: pre-storm three-dimensional bar and shoreline configurations shift to two-dimensional, linear forms post- storm. A lack of data during storms has unfortunately left a gap in our knowledge of how the system explicitly changes during the storm event. This work presents daily observations of the beach and nearshore during high-energy storm events over a spatially extensive field site (order of magnitude: 10 km) using Bar and Swash Imaging Radar (BASIR), a mobile x-band radar system. The field site contains a complexity of features including shore-oblique bars and troughs, heterogeneous sediment, and an erosional hotspot. BASIR data provide observations of the evolution of shoreline and bar morphology, as well as nearshore bathymetry, throughout the storm events. Nearshore bathymetry is calculated using a bathymetry inversion from radar- derived wave celerity measurements. Preliminary results show a relatively stable but non-linear shore-parallel bar and a non-linear shoreline with megacusp and embayment features (order of magnitude: 1 km) that are enhanced during the wave events. Both the shoreline and shore-parallel bar undulate at a similar spatial frequency to the nearshore shore- oblique bar-field. Large-scale shore-oblique bars and troughs remain relatively static in position and morphology throughout the storm events. The persistence of a three-dimensional shoreline, shore-parallel bar, and large-scale shore-oblique bars and troughs, contradicts the idea of event-driven shifts to two- dimensional morphology and suggests that beach and nearshore response to storms may be location specific. We hypothesize that the influence of underlying geology, defined by (1) the introduction of heterogeneous sediment and (2) the possible creation of shore-oblique bars and troughs in the nearshore, may be responsible for the persistence of three-dimensional forms and the associated shoreline hotspots during storm events.

  9. Digital Elevation Model Correction for the thalweg values of Obion River system, TN

    NASA Astrophysics Data System (ADS)

    Dullo, T. T.; Bhuyian, M. N. M.; Hawkins, S. A.; Kalyanapu, A. J.

    2016-12-01

    Obion River system is located in North-West Tennessee and discharges into the Mississippi River. To facilitate US Department of Agriculture (USDA) to estimate water availability for agricultural consumption a one-dimensional HEC-RAS model has been proposed. The model incorporates the major tributaries (north and south), main stem of Obion River along with a segment of the Mississippi River. A one-meter spatial resolution Light Detection and Ranging (LiDAR) derived Digital Elevation Model (DEM) was used as the primary source of topographic data. LiDAR provides fine-resolution terrain data over given extent. However, it lacks in accurate representation of river bathymetry due to limited penetration beyond a certain water depth. This reduces the conveyance along river channel as represented by the DEM and affects the hydrodynamic modeling performance. This research focused on proposing a method to overcome this issue and test the qualitative improvement by the proposed method over an existing technique. Therefore, objective of this research is to compare effectiveness of a HEC-RAS based bathymetry optimization method with an existing hydraulic based DEM correction technique (Bhuyian et al., 2014) for Obion River system in Tennessee. Accuracy of hydrodynamic simulations (upon employing bathymetry from respective sources) would be regarded as the indicator of performance. The aforementioned river system includes nine major reaches with a total river length of 310 km. The bathymetry of the river was represented via 315 cross sections equally spaced at about one km. This study targeted to selecting best practice for treating LiDAR based terrain data over complex river system at a sub-watershed scale.

  10. Complex submarine landsliding processes caused by subduction of large seamounts along the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, Cesar R.; Weinrebe, Wilhelm; von Huene, Roland

    2014-05-01

    Subduction of kms-tall and tens-of-km wide seamounts cause important landsliding events at subduction zones around the word. Along the Middle America Trench, previous work based on regional swath bathymetry maps (with 100 m grids) and multichannel seismic images have shown that seamount subduction produces large-scale slumping and sliding. Some of the mass wasting event may have been catastrophic and numerical modeling has indicated that they may have produced important local tsunamis. We have re-evaluated the structure of several active submarine landlide complexes caused by large seamount subduction using side scan sonar data. The comparison of the side scan sonar data to local high-resolution bathymetry grids indicates that the backscatter data has a resolution that is somewhat similar to that produced by a 10 m bathymetry grid. Although this is an arbitrary comparison, the side scan sonar data provides comparatively much higher resolution information than the previously used regional multibeam bathymetry. We have mapped the geometry and relief of the head and side walls of the complexes, the distribution of scars and the different sediment deposits to produce a new interpretation of the modes of landsliding during subduction of large seamounts. The new higher resolution information shows that landsliding processes are considerably more complex than formerly assumed. Landslides are of notably smaller dimensions that the lower resolution data had previously appear to indicate. However, significantly large events may have occur far more often than earlier interpretations had inferred representing a more common threat that previously assumed.

  11. A Hurricane Hits Home: An Interactive Science Museum Exhibit on Ocean Mapping and Marine Debris

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.; Vasta, D. J.; Gager, N. C.; Fruth, B. W.; LeClair, J.

    2016-12-01

    As part of the outreach component for a project involving the detection and analysis of marine debris generated by Super Storm Sandy, The Center for Coastal and Ocean Mapping / Joint Hydrographic Center partnered with The Seacoast Science Center to develop an interactive museum exhibit that engages the public with a touchscreen based game revolving around the detection and identification of marine debris. "A Hurricane Hits Home" is a multi-station touchscreen exhibit geared towards children, and integrates a portion of a historical wooden shipwreck into its physical design. The game invites museum guests to examine a number of coastal regions and harbors in Sandy affected areas. It teaches visitors about modern mapping technology by having them control boats with multibeam sonars and airplanes with lidar sensors. They drag these vehicles around maps to reveal the underlying bathymetry below the satellite photos. They learn the applications and limitations of sonar and lidar by where the vehicles can and cannot collect survey data (e.g. lidar doesn't work in deep water, and the boat can't go in shallow areas). As users collect bathymetry data, they occasionally reveal marine debris objects on the seafloor. Once all the debris objects in a level have been located, the game challenges them to identify them based on their appearance in the bathymetry data. They must compare the simulated bathymetry images of the debris targets to photos of possible objects, and choose the correct matches to achieve a high score. The exhibit opened January 2016 at the Seacoast Science Center in Rye, NH.

  12. Combining Cluster Analysis and Small Unmanned Aerial Systems (sUAS) for Accurate and Low-cost Bathymetric Surveying

    NASA Astrophysics Data System (ADS)

    Maples, B. L.; Alvarez, L. V.; Moreno, H. A.; Chilson, P. B.; Segales, A.

    2017-12-01

    Given that classical in-situ direct surveying for geomorphological subsurface information in rivers is time-consuming, labor-intensive, costly, and often involves high-risk activities, it is obvious that non-intrusive technologies, like UAS-based, LIDAR-based remote sensing, have a promising potential and benefits in terms of efficient and accurate measurement of channel topography over large areas within a short time; therefore, a tremendous amount of attention has been paid to the development of these techniques. Over the past two decades, efforts have been undertaken to develop a specialized technique that can penetrate the water body and detect the channel bed to derive river and coastal bathymetry. In this research, we develop a low-cost effective technique for water body bathymetry. With the use of a sUAS and a light-weight sonar, the bathymetry and volume of a small reservoir have been surveyed. The sUAS surveying approach is conducted under low altitudes (2 meters from the water) using the sUAS to tow a small boat with the sonar attached. A cluster analysis is conducted to optimize the sUAS data collection and minimize the standard deviation created by under-sampling in areas of highly variable bathymetry, so measurements are densified in regions featured by steep slopes and drastic changes in the reservoir bed. This technique provides flexibility, efficiency, and free-risk to humans while obtaining high-quality information. The irregularly-spaced bathymetric survey is then interpolated using unstructured Triangular Irregular Network (TIN)-based maps to avoid re-gridding or re-sampling issues.

  13. Method of calculating tsunami travel times in the Andaman Sea region

    PubMed Central

    Visuthismajarn, Parichart; Tanavud, Charlchai; Robson, Mark G.

    2014-01-01

    A new model to calculate tsunami travel times in the Andaman Sea region has been developed. The model specifically provides more accurate travel time estimates for tsunamis propagating to Patong Beach on the west coast of Phuket, Thailand. More generally, the model provides better understanding of the influence of the accuracy and resolution of bathymetry data on the accuracy of travel time calculations. The dynamic model is based on solitary wave theory, and a lookup function is used to perform bilinear interpolation of bathymetry along the ray trajectory. The model was calibrated and verified using data from an echosounder record, tsunami photographs, satellite altimetry records, and eyewitness accounts of the tsunami on 26 December 2004. Time differences for 12 representative targets in the Andaman Sea and the Indian Ocean regions were calculated. The model demonstrated satisfactory time differences (<2 min/h), despite the use of low resolution bathymetry (ETOPO2v2). To improve accuracy, the dynamics of wave elevation and a velocity correction term must be considered, particularly for calculations in the nearshore region. PMID:25741129

  14. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    NASA Astrophysics Data System (ADS)

    Wintermeyer, Niklas; Winters, Andrew R.; Gassner, Gregor J.; Kopriva, David A.

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  15. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation

    NASA Astrophysics Data System (ADS)

    Morlighem, M.; Williams, C. N.; Rignot, E.; An, L.; Arndt, J. E.; Bamber, J. L.; Catania, G.; Chauché, N.; Dowdeswell, J. A.; Dorschel, B.; Fenty, I.; Hogan, K.; Howat, I.; Hubbard, A.; Jakobsson, M.; Jordan, T. M.; Kjeldsen, K. K.; Millan, R.; Mayer, L.; Mouginot, J.; Noël, B. P. Y.; O'Cofaigh, C.; Palmer, S.; Rysgaard, S.; Seroussi, H.; Siegert, M. J.; Slabon, P.; Straneo, F.; van den Broeke, M. R.; Weinrebe, W.; Wood, M.; Zinglersen, K. B.

    2017-11-01

    Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.

  16. USACE National Coastal Mapping Program Update

    NASA Astrophysics Data System (ADS)

    Sylvester, C.

    2017-12-01

    The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) formed in 1998 to support the coastal mapping and charting requirements of the USACE, NAVO, NOAA and USGS. This partnership fielded three generations of airborne lidar bathymeters, executed operational data collection programs within the U.S. and overseas, and advanced research and development in airborne lidar bathymetry and complementary technologies. JALBTCX executes a USACE Headquarters-funded National Coastal Mapping Program (NCMP). Initiated in 2004, the NCMP provides high-resolution, high-accuracy elevation and imagery data along the sandy shorelines of the U.S. on a recurring basis. NCMP mapping activities are coordinated with Federal mapping partners through the Interagency Working Group on Ocean and Coastal Mapping and the 3D Elevation Program. The NCMP, currently in it's third cycle, is performing operations along the East Coast in 2017, after having completed surveys along the Gulf Coast in 2016 and conducting emergency response operations in support of Hurricane Matthew. This presentation will provide an overview of JALBTCX, its history in furthering airborne lidar bathymetry technology to meet emerging mapping requirements, current NCMP operations and data products, and Federal mapping coordination activities.

  17. Method of calculating tsunami travel times in the Andaman Sea region.

    PubMed

    Kietpawpan, Monte; Visuthismajarn, Parichart; Tanavud, Charlchai; Robson, Mark G

    2008-07-01

    A new model to calculate tsunami travel times in the Andaman Sea region has been developed. The model specifically provides more accurate travel time estimates for tsunamis propagating to Patong Beach on the west coast of Phuket, Thailand. More generally, the model provides better understanding of the influence of the accuracy and resolution of bathymetry data on the accuracy of travel time calculations. The dynamic model is based on solitary wave theory, and a lookup function is used to perform bilinear interpolation of bathymetry along the ray trajectory. The model was calibrated and verified using data from an echosounder record, tsunami photographs, satellite altimetry records, and eyewitness accounts of the tsunami on 26 December 2004. Time differences for 12 representative targets in the Andaman Sea and the Indian Ocean regions were calculated. The model demonstrated satisfactory time differences (<2 min/h), despite the use of low resolution bathymetry (ETOPO2v2). To improve accuracy, the dynamics of wave elevation and a velocity correction term must be considered, particularly for calculations in the nearshore region.

  18. Earthquakes and faults in southern California (1970-2010)

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Calzia, James P.; Walter, Stephen R.

    2012-01-01

    The map depicts both active and inactive faults and earthquakes magnitude 1.5 to 7.3 in southern California (1970–2010). The bathymetry was generated from digital files from the California Department of Fish And Game, Marine Region, Coastal Bathymetry Project. Elevation data are from the U.S. Geological Survey National Elevation Database. Landsat satellite image is from fourteen Landsat 5 Thematic Mapper scenes collected between 2009 and 2010. Fault data are reproduced with permission from 2006 California Geological Survey and U.S. Geological Survey data. The earthquake data are from the U.S. Geological Survey National Earthquake Information Center.

  19. Maps showing bathymetry and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York, pre-Hurricane Sandy

    USGS Publications Warehouse

    Schwab, William C.; Denny, Jane F.; Baldwin, Wayne E.

    2014-01-01

    The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 2011 by using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface, and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island.

  20. How large is the fault slip at trench in the M=9 Tohoku-oki earthquake?

    NASA Astrophysics Data System (ADS)

    Wang, Kelin; Sun, Tianhaozhe; Fujiwara, Toshiya; Kodaira, Shuichi; He, Jiangheng

    2015-04-01

    It is widely known that coseismic slip breached the trench during the 2011 Mw=9 Tohoku-oki earthquake, responsible for generating a devastating tsunami. For understanding both the mechanics of megathrust rupture and the mechanism of tsunami generation, it is important to know how much fault slip actually occurred at the trench. But the answer has remained elusive because most of the data from this earthquake do not provide adequate near-trench resolution. Seafloor GPS sites were located > 30 km from the trench. Near-trench seafloor pressure records suffered from complex vertical deformation at local scales. Seismic inversion does not have adequate accuracy at the trench. Inversion of tsunami data is highly dependent on the parameterization of the fault near the trench. The severity of the issue is demonstrated by our compilation of rupture models for this earthquake published by ~40 research groups using multiple sets of coseismic observations. In the peak slip area, fault slip at the trench depicted by these models ranges from zero to >90 m. The faults in many models do not reach the trench because of simplification of fault geometry. In this study, we use high-resolution differential bathymetry, that is, bathymetric differences before and after the earthquake, to constrain coseismic slip at and near the trench along a corridor in the area of largest moment release. We use a 3D elastic finite element model including real fault geometry and surface topography to produce Synthetic Differential Bathymetry (SDB) and compare it with the observed differential bathymetry. Earthquakes induce bathymetric changes by shifting the sloping seafloor seaward and by warping the seafloor through internal deformation of rocks. These effects are simulated by our SDB modeling, except for the permanent formation of the upper plate which is like to be limited and localized. Bathymetry data were collected by JAMSTEC in 1999, 2004, and in 2011 right after the M=9 earthquake. Our SDB results indicate that a fault slip of about 60 m at the trench, increasing landward by a few metres over a distance of 50 km, is needed to explain the differential bathymetry data for the time interval of 1999 - 2011. Most of this slip presumably happened during the 2011 earthquake, although very limited aseismic slip from 1999 to just prior to the earthquake cannot be ruled out. The 2004 - 2011 differential bathymetry data would indicate about 45 m near-trench slip, but this estimate is less reliable because the 2004 survey had a very short segment seaward of the trench, causing very large uncertainties in the 2004 - 2011 data.

  1. Bathymetry in Petermann fjord from Operation IceBridge aerogravity

    NASA Astrophysics Data System (ADS)

    Tinto, Kirsty J.; Bell, Robin E.; Cochran, James R.; Münchow, Andreas

    2015-07-01

    Petermann Glacier is a major glacier in northern Greenland, maintaining one of the few remaining floating ice tongues in Greenland. Monitoring programs, such as NASA's Operation IceBridge have surveyed Petermann Glacier over several decades and have found it to be stable in terms of mass balance, velocity and grounding-line position. The future vulnerability of this large glacier to changing ocean temperatures and climate depends on the ocean-ice interactions beneath its floating tongue. These cannot currently be predicted due to a lack of knowledge of the bathymetry underneath the ice tongue. Here we use aerogravity data from Operation IceBridge, together with airborne radar and laser data and shipborne bathymetry-soundings to model the bathymetry beneath the Petermann ice tongue. We find a basement-cored inner sill at 540-610 m depth that results in a water cavity with minimum thickness of 400 m about 25 km from the grounding line. The sill is coincident with the location of the melt rate minimum. Seaward of the sill the fjord is strongly asymmetric. The deepest point occurs on the eastern side of the fjord at 1150 m, 600 m deeper than on the western side. This asymmetry is due to a sedimentary deposit on the western side of the fjord. A 350-410 m-deep outer sill, also mapped by marine surveys, marks the seaward end of the fjord. This outer sill is aligned with the proposed Last Glacial Maximum (LGM) grounding-line position for Petermann Glacier. The inner sill likely provided a stable pinning point for the grounding line in the past, punctuating the retreat of Petermann Glacier since the LGM.

  2. Gravity and Magnetic Signatures of Different Types of Spreading at the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Alodia, G.; Green, C. M.; McCaig, A. M.; Paton, D.; Campbell, S.

    2017-12-01

    In recent years it has been recognised that parts of slow spreading ridges such as the mid-Atlantic Ridge (MAR) are characterised by typical magmatic spreading, while other parts are characterised by the formation of detachment faults and oceanic core complexes (OCC). These different spreading modes can be clearly identified in the near-ridge environment in the bathymetry, with magmatic mode crust characterised by linear fault-bounded ridges, and detachment mode crust by more chaotic bathymetric signatures. The aim of this project is to characterise the magnetic and gravity signatures of lithosphere created by different modes of spreading, with the aim of using these signatures to identify different modes of spreading in ocean-continent transitions where the bathymetry is often hidden beneath sediment. In this presentation, we first characterise different modes of spreading using available high-resolution bathymetry data in the 28-32 N section of the MAR up to 20 My of age. The identified characteristics are then related to the corresponding ship-borne gravity and magnetic data in the same area. As most magnetic anomalies found in the near-axis environment are caused by the remanent magnetisation, it is found that in places where OCCs are present, magnetic anomalies are not as symmetrical as those found in magmatic mode regions. In both gravity and magnetic data, gradients are strongly clustered in the spreading direction in magmatic mode crust, but much more variable in detachment mode. We present a range of parameters extracted from the data that characterise different spreading modes, and use these to test whether transitions between detachment and magmatic mode crust identified in the bathymetry can be readily identified in gravity and magnetic data with different degrees of resolution.

  3. Preliminary studies leading toward the development of a LIDAR bathymetry mapping instrument

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Krenek, Brendan D.; Kunz, Terry D.; Krabill, William; Stetina, Fran

    1993-02-01

    The National Aeronautics and Space Administration (NASA) at Goddard Space Flight Center (GSFC) has developed a laser ranging device (LIDAR) which provides accurate and timely data of earth features. NASA/GSFC recently modified the sensor to include a scanning capability to produce LIDAR swaths. They have also integrated a Global Positioning System (GPS) and an Inertial Navigation System (INS) to accurately determine the absolute aircraft location and aircraft attitude (pitch, yaw, and roll), respectively. The sensor has been flown in research mode by NASA for many years. The LIDAR has been used in different configurations or modes to acquire such data as altimetry (topography), bathymetry (water depth), laser-induced fluorosensing (tracer dye movements, oil spills and oil thickness, chlorophyll and plant stress identification), forestry, and wetland discrimination studies. NASA and HARC are developing a commercial version of the instrument for topographic mapping applications. The next phase of the commercialization project will be to investigate other applications such as wetlands mapping and coastal bathymetry. In this paper we report on preliminary laboratory measurements to determine the feasibility of making accurate depth measurements in relatively shallow water (approximately 2 to 6 feet deep) using a LIDAR system. The LIDAR bathymetry measurements are relatively simple in theory. The water depth is determined by measuring the time interval between the water surface reflection and the bottom surface reflection signals. Depth is then calculated by dividing by the index of refraction of water. However, the measurements are somewhat complicated due to the convolution of the water surface return signal with the bottom surface return signal. Therefore in addition to the laboratory experiments, computer simulations of the data were made to show these convolution effects in the return pulse waveform due to: (1) water depth, and (2) changes in bottom surface reflectivity.

  4. Preliminary Studies Leading Toward the Development of a LIDAR Bathymetry Mapping Instrument

    NASA Technical Reports Server (NTRS)

    Hill, John M.; Krenek, Brendan D.; Kunz, Terry D.; Krabill, William; Stetina, Fran

    1993-01-01

    The National Aeronautics and Space Administration (NASA) at Goddard Space Flight Center (GSFC) has developed a laser ranging device (LIDAR) which provides accurate and timely data of earth features. NASA/GSFC recently modified the sensor to include a scanning capability to produce LIDAR swaths. They have also integrated a Global Positioning System (GPS) and an Inertial Navigation System (INS) to accurately determine the absolute aircraft location and aircraft attitude (pitch, yaw, and roll), respectively. The sensor has been flown in research mode by NASA for many years. The LIDAR has been used in different configurations or modes to acquire such data as altimetry (topography), bathymetry (water depth), laser-induced fluorosensing (tracer dye movements, oil spills and oil thickness, chlorophyll and plant stress identification), forestry, and wetland discrimination studies. NASA and HARC are developing a commercial version of the instrument for topographic mapping applications. The next phase of the commercialization project will be to investigate other applications such as wetlands mapping and coastal bathymetry. In this paper we report on preliminary laboratory measurements to determine the feasibility of making accurate depth measurements in relatively shallow water (approximately 2 to 6 feet deep) using a LIDAR system. The LIDAR bathymetry measurements are relatively simple in theory. The water depth is determined by measuring the time interval between the water surface reflection and the bottom surface reflection signals. Depth is then calculated by dividing by the index of refraction of water. However, the measurements are somewhat complicated due to the convolution of the water surface return signal with the bottom surface return signal. Therefore in addition to the laboratory experiments, computer simulations of the data were made to show these convolution effects in the return pulse waveform due to: (1) water depth, and (2) changes in bottom surface reflectivity.

  5. Archive of Side Scan Sonar and Swath Bathymetry Data collected during USGS Cruise 10CCT02 Offshore of Petit Bois Island Including Petit Bois Pass, Gulf Islands National Seashore, Mississippi, March 2010

    USGS Publications Warehouse

    Pfeiffer, William R.; Flocks, James G.; DeWitt, Nancy T.; Forde, Arnell S.; Kelso, Kyle; Thompson, Phillip R.; Wiese, Dana S.

    2011-01-01

    In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi, and Dauphin Island, Alabama (fig. 1). These efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geologic stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorphological changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and protection for the historical Fort Massachusetts on Ship Island, Mississippi. For more information please refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, seabed backscatter images, and ASCII x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  6. Parameterized Spectral Bathymetric Roughness Using the Nonequispaced Fast Fourier Transform

    NASA Astrophysics Data System (ADS)

    Fabre, David Hanks

    The ocean and acoustic modeling community has specifically asked for roughness from bathymetry. An effort has been undertaken to provide what can be thought of as the high frequency content of bathymetry. By contrast, the low frequency content of bathymetry is the set of contours. The two-dimensional amplitude spectrum calculated with the nonequispaced fast Fourier transform (Kunis, 2006) is exploited as the statistic to provide several parameters of roughness following the method of Fox (1996). When an area is uniformly rough, it is termed isotropically rough. When an area exhibits lineation effects (like in a trough or a ridge line in the bathymetry), the term anisotropically rough is used. A predominant spatial azimuth of lineation summarizes anisotropic roughness. The power law model fit produces a roll-off parameter that also provides insight into the roughness of the area. These four parameters give rise to several derived parameters. Algorithmic accomplishments include reviving Fox's method (1985, 1996) and improving the method with the possibly geophysically more appropriate nonequispaced fast Fourier transform. A new composite parameter, simply the overall integral length of the nonlinear parameterizing function, is used to make within-dataset comparisons. A synthetic dataset and six multibeam datasets covering practically all depth regimes have been analyzed with the tools that have been developed. Data specific contributions include possibly discovering an aspect ratio isotropic cutoff level (less than 1.2), showing a range of spectral fall-off values between about -0.5 for a sandybottomed Gulf of Mexico area, to about -1.8 for a coral reef area just outside of the Saipan harbor. We also rank the targeted type of dataset, the best resolution gridded datasets, from smoothest to roughest using a factor based on the kernel dimensions, a percentage from the windowing operation, all multiplied by the overall integration length.

  7. Estimation of wave phase speed and nearshore bathymetry from video imagery

    USGS Publications Warehouse

    Stockdon, H.F.; Holman, R.A.

    2000-01-01

    A new remote sensing technique based on video image processing has been developed for the estimation of nearshore bathymetry. The shoreward propagation of waves is measured using pixel intensity time series collected at a cross-shore array of locations using remotely operated video cameras. The incident band is identified, and the cross-spectral matrix is calculated for this band. The cross-shore component of wavenumber is found as the gradient in phase of the first complex empirical orthogonal function of this matrix. Water depth is then inferred from linear wave theory's dispersion relationship. Full bathymetry maps may be measured by collecting data in a large array composed of both cross-shore and longshore lines. Data are collected hourly throughout the day, and a stable, daily estimate of bathymetry is calculated from the median of the hourly estimates. The technique was tested using 30 days of hourly data collected at the SandyDuck experiment in Duck, North Carolina, in October 1997. Errors calculated as the difference between estimated depth and ground truth data show a mean bias of -35 cm (rms error = 91 cm). Expressed as a fraction of the true water depth, the mean percent error was 13% (rms error = 34%). Excluding the region of known wave nonlinearities over the bar crest, the accuracy of the technique improved, and the mean (rms) error was -20 cm (75 cm). Additionally, under low-amplitude swells (wave height H ???1 m), the performance of the technique across the entire profile improved to 6% (29%) of the true water depth with a mean (rms) error of -12 cm (71 cm). Copyright 2000 by the American Geophysical Union.

  8. Quantifying the Impacts of Outlet Control Structures on Lake Hydrology and Ecology

    NASA Astrophysics Data System (ADS)

    Budd, B. M.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2012-12-01

    There have been limited studies of the impacts of lake level control structures on stream ecology and lake property erosion. We examine the influence of historical lake level management strategies on Higgins Lake in Michigan, which is regionally known for recreation, fisheries, and scenery. Lake control structures have potentially increased shoreline erosion and seasonally-reduced flow through the outlets, likely impacting fish habitat. Concerns over these issues spurred local land owners to seek a study on the possible hydrologic and ecological impacts of the removal or modification of the control structure. Bathymetry maps are fundamental to understanding and managing lake ecosystems. From the 1930's through the 1950's, these maps were developed for thousands of Michigan inland lakes using soundings lowered through holes cut in winter lake ice. Increased land use change and alterations of lake outlets have likely modified erosion and sedimentation rates of these lake systems. Our research includes bathymetry surveys of Higgins Lake using an Acoustic Doppler Current Profiler (ADCP) and side-scan sonar. The new higher-resolution bathymetry serves as the basis for simulating impacts of potential changes in lake management, on a verity of inpoint including shoreline position and fish habitat.

  9. Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sheehan, Anne Francis

    1991-01-01

    Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.

  10. Bathymetry at the head of the Cape Fear Slide, offshore North Carolina

    USGS Publications Warehouse

    Schmuck, Eric A.; Popenoe, Peter; Paull, Charles K.; Brown, Carol

    1992-01-01

    The Cape Fear Slide is the largest mass-movement that has been observed on the U.S. Atlantic Margin. It is located off the Carolinas on the continental rise in approximately 1,200-5,500 m water depth and extends downslope for over 300 km (Popenoe, 1982). These maps show the bathymetry at the head of the Cape Fear Slide as interpreted from single-channel 3.5 kHz seismic-reflection profiles and mid-range Sea Marc I sidescan sonar imagery (Popenoe, 1985; Popenoe and others, 1991; Schmuck, 1991). The 3.5 kHz data consist of over 1000 km of profiles that were collected in 1988 for the University of North Carolina, Department of Geology. The UNC 3.5 kHz data were used as the main data set in interpreting the bathymetry. The sidescan sonar data were collected in 1980 by the U.S. Geological Survey in cooperation with the Lamont-Doherty Geological Observatory for the U.S. Bureau of Land Management Environmental Studies Program. Only 28 km (5 km swath width) of the sidescan data were used in the interpretation to identify the morphology of the main slump scarp and visible secondary scarps.

  11. Mosaicing of airborne LiDAR bathymetry strips based on Monte Carlo matching

    NASA Astrophysics Data System (ADS)

    Yang, Fanlin; Su, Dianpeng; Zhang, Kai; Ma, Yue; Wang, Mingwei; Yang, Anxiu

    2017-09-01

    This study proposes a new methodology for mosaicing airborne light detection and ranging (LiDAR) bathymetry (ALB) data based on Monte Carlo matching. Various errors occur in ALB data due to imperfect system integration and other interference factors. To account for these errors, a Monte Carlo matching algorithm based on a nonlinear least-squares adjustment model is proposed. First, the raw data of strip overlap areas were filtered according to their relative drift of depths. Second, a Monte Carlo model and nonlinear least-squares adjustment model were combined to obtain seven transformation parameters. Then, the multibeam bathymetric data were used to correct the initial strip during strip mosaicing. Finally, to evaluate the proposed method, the experimental results were compared with the results of the Iterative Closest Points (ICP) and three-dimensional Normal Distributions Transform (3D-NDT) algorithms. The results demonstrate that the algorithm proposed in this study is more robust and effective. When the quality of the raw data is poor, the Monte Carlo matching algorithm can still achieve centimeter-level accuracy for overlapping areas, which meets the accuracy of bathymetry required by IHO Standards for Hydrographic Surveys Special Publication No.44.

  12. ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L.

    2013-01-01

    This software addresses the issue of underwater localization of unmanned vehicles and the inherent drift in their onboard sensors. The software gives a 2 to 3 factor of improvement over the state-of-the-art underwater localization algorithms. The software determines the localization (position, heading) of an AUV (autonomous underwater vehicle) in environments where there is no GPS signal. It accomplishes this using only the commanded position, onboard gyros/accelerometers, and the bathymetry of the bottom provided by an onboard sonar system. The software does not rely on an onboard bathymetry dataset, but instead incrementally determines the position of the AUV while mapping the bottom. In order to enable long-distance underwater navigation by AUVs, a localization method called ULTRA uses registration of the bathymetry data products produced by the onboard forward-looking sonar system for hazard avoidance during a transit to derive the motion and pose of the AUV in order to correct the DR (dead reckoning) estimates. The registration algorithm uses iterative point matching (IPM) combined with surface interpolation of the Iterative Closest Point (ICP) algorithm. This method was used previously at JPL for onboard unmanned ground vehicle localization, and has been optimized for efficient computational and memory use.

  13. Microbialite Morphologies and Distributions-Geoacoustic Survey with an AUV of Pavilion Lake, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Gutsche, J. R.; Trembanis, A. C.

    2010-12-01

    With advances in lake bottom mapping it has been observed that modern microbialites, much like the ancient stromatolites, thrive in freshwater lake environments. Previously collected data shows that a diverse community of living stromatolites are present within Pavilion Lake (Laval et al., 2000, Lim et al., 2009). An additional comprehensive data set was collected in June-July 2010. By building on the previous dataset it is possible to compare two high-resolution geoacoustic datasets. Using Autonomous Underwater Vehicles (AUVs) as exploration platforms to conduct surveys of the lake bottom, very high-resolution sonar data has been collected. The data collected in June-July 2010 is composed of 125 km of AUV trackline. This length of trackline allowed for survey coverage of nearly the entire lake bottom. The Gavia AUV used for this survey collected bathymetry data collocated with backscatter information. The data has been processed and gridded to 1m, with specific high value areas gridded to a finer 0.5m. The bathymetric data was compiled to create a base map of the floor of Pavilion Lake. Backscatter data was also collected and processed using the same 1m grid resolution. After the backscatter data was processed, it was draped over the bathymetry map of Pavilion Lake. The tools offered within the Fledermaus software package allow for the bathymetry data to be analyzed with respect to slope and rugosity. By analyzing this dense phase measuring bathymetric sonar of the lake bottom, with respect to slope and rugosity, it is possible to map the morphological trends of the stromatolites. Additionally, the ability to compare two datasets allows for erosional changes in the lake bottom to be identified. The bathymetry data allows for the quantitative analysis of bed forms within Pavilion Lake, allowing for a better understanding of microbialite morphologies. The backscatter data is increasingly important to the Pavilion Lake project because of the location and general surroundings of the lake. The lake itself is located in a limestone canyon, which frequently sustains erosional episodes. The backscatter data allows for the differentiation between erosional deposits and microbial mounds. The combination of backscatter and bathymetry allows for a further understanding of bedforms and microbialite growth patterns.

  14. Unraveling the channel–lobe transition zone with high-resolution AUV bathymetry: Navy Fan, offshore Baja California, Mexico

    USGS Publications Warehouse

    Carvajal, Cristian; Paull, Charles K.; Caress, David W.; Fildani, Andrea; Lundsten, Eve M.; Anderson, Krystle; Maier, Katherine L.; McGann, Mary; Gwiazda, Roberto; Herguera, Juan Carlos

    2017-01-01

    Ultra-high-resolution (1 m * 1 m * 0.25 m) bathymetry was acquired with an autonomous underwater vehicle (AUV) over a sector of the Navy Fan offshore Baja California. The survey specifically targeted an area where the former interpretation of the fan showed a channel–lobe transition; however, the lobe and the transition were not recognized. Instead, the newly acquired bathymetry shows that the previously identified channel continues basinward changing its overall morphology and stratigraphic architecture, becoming gradually but significantly wider (650–1000 m) and of lower relief (3–4 m). Cores from the channel thalweg recovered mud-poor (< 5%) well-sorted sands, interpreted as deposited by fully turbulent flows. The cores also show several mud-rich (9–18%) poorly sorted sands, probably indicating deposition from more cohesive flows.The high-resolution bathymetry shows large sectors of the seafloor sculpted by elaborate bedforms and scours. The overbank area north of the channel exhibits the most numerous and prominent scours, interpreted to have been largely generated by flow stripping at a bend in the channel. Along high-gradient sectors (more than approximately 1¯) of this area, the scours are largest and deepest. Some of these scours show an erosional headwall and a distal upflow-dipping depositional bulge, forming repetitive bedforms interpreted as erosional cyclic steps associated with locked-in-place trains of hydraulic jumps. The scours seem to coalesce to form an incipient channel, which would likely drive the avulsion of the main channel. Further basinward, average gradients decrease (< 0.6¯ ) and scours become smaller and less deep suggesting a gradient control on erosion. The southern channel margin and adjacent overbank area exhibit a trend of scours that are elongated transverse to flow, that successively repeat themselves basinwards, and that at times merge with sediment waves. Probably these scours are genetically linked to sediment waves, and they may have been formed by cyclic-step-like processes as well. The acquired bathymetry represents a breakthrough in the imaging of the proximal sectors of deep-sea fans, which provides the basis for an accurate morphometric characterization and the understanding of sedimentary processes and morphodynamics associated with the delivery of sediment into the deep sea.

  15. Inference of effective river properties from remotely sensed observations of water surface

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre-André; Monnier, Jérôme

    2015-05-01

    The future SWOT mission (Surface Water and Ocean Topography) will provide cartographic measurements of inland water surfaces (elevation, widths and slope) at an unprecedented spatial and temporal resolution. Given synthetic SWOT like data, forward flow models of hierarchical-complexity are revisited and few inverse formulations are derived and assessed for retrieving the river low flow bathymetry, roughness and discharge (A0, K, Q) . The concept of an effective low flow bathymetry A0 (the real one being never observed) and roughness K , hence an effective river dynamics description, is introduced. The few inverse models elaborated for inferring (A0, K, Q) are analyzed in two contexts: (1) only remotely sensed observations of the water surface (surface elevation, width and slope) are available; (2) one additional water depth measurement (or estimate) is available. The inverse models elaborated are independent of data acquisition dynamics; they are assessed on 91 synthetic test cases sampling a wide range of steady-state river flows (the Froude number varying between 0.05 and 0.5 for 1 km reaches) and in the case of a flood on the Garonne River (France) characterized by large spatio-temporal variabilities. It is demonstrated that the most complete shallow-water like model allowing to separate the roughness and bathymetry terms is the so-called low Froude model. In Case (1), the resulting RMSE on infered discharges are on the order of 15% for first guess errors larger than 50%. An important feature of the present inverse methods is the fairly good accuracy of the discharge Q obtained, while the identified roughness coefficient K includes the measurement errors and the misfit of physics between the real flow and the hypothesis on which the inverse models rely; the later neglecting the unobserved temporal variations of the flow and the inertia effects. A compensation phenomena between the indentifiedvalues of K and the unobserved bathymetry A0 is highlighted, while the present inverse models lead to an effective river dynamics model that is accurate in the range of the discharge variability observed. In Case (2), the effective bathymetry profile for 80 km of the Garonne River is retrieved with 1% relative error only. Next, accurate effective topography-friction pairs and also discharge can be inferred. Finally, defining river reaches from the observation grid tends to average the river properties in each reach, hence tends to smooth the hydraulic variability.

  16. Global Paleobathymetry for the Cenomanian-Turonian (90 Ma)

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.

    2014-12-01

    We present a paleo-ocean bathymetry reconstruction for Cenomanian-Turonian (90 Ma) time in a 0.1°x0.1° resolution for use in paleo-climate studies. Age of the ocean floor for the Cenomanian-Turonian (90 Ma) is from Müller et al. (2008 a,b); coastlines are from the PALEOMAP Project (Scotese, 2011). To reconstruct paleo-ocean bathymetry, we use a plate model equation to model depth to basement (Turcotte and Schubert, 2002). We estimate plate model equation parameter values from measurements of modern oceans (Crosby et al., 2006). On top of the depth to basement, we isostatically add a multilayer sediment model derived from area-corrected sediment thickness data (Divins, 2003; Whittaker et al., 2013). Lastly, we parameterize the modern continental shelf, slope, and rise in a "sediment wedge model" to connect the coastline with the closest ocean crust as defined by Müller et al. (2008 a, b). These parameters are defined using empirical relationships obtained from study of modern ocean transects where a complete rifting history is preserved (Atlantic and Southern oceans), and the closest approach of the respective oceanic crust (Müller et al., 2008a,b) to the coastline. We use the modern ocean as a test, comparing maps and cross sections of modern ocean bathymetry modeled using our reconstruction method with that of ETOPO1 (Amante and Eakins, 2009). Adding sea plateaus and seamounts minimize the difference between our modeled bathymetry and ETOPO1. Finally, we also present a comparison of our reconstructed paleo-bathymetry to that of Müller et al. (2008 a,b) for the Cenomanian-Turonian (90 Ma). References: Amante, C., Eakins, B.W., 2009, NOAA Tech. Memo. NESDIS NGDC-24, 19 p. Crosby, A., McKenzie, D., Sclater, J.G., 2006, Geophysical Journal Int. 166.2, 553-573. Divins, D., 2003, NOAA NGDC, Boulder, CO. Müller, R., Sdrolias, M., Gaina, C., Roest, W., 2008b, Geochemistry, Geophysics, Geosystems, 9, Q04006, doi:10.1029/2007GC001743 Müller, R., Sdrolias, M., Gaina, C., Steinberger, B., Heine, C., 2008a, Science, 319, 1357-1362. Scotese, C., 2011, PALEOMAP Project, Arlington, Texas. Turcotte, D., Schubert, G., 2002, Cambridge University Press, Cambridge, 456 p. Whittaker, J., Goncharov, A., Williams, S., Müller, R., Leitchenkov, G., 2013, Geochemistry, Geophysics, Geosystems. DOI:10.1002/ggge.20181

  17. SeaDataNet II - EMODNet Bathymetry - building a pan-European infrastructure for marine and ocean data management and a digital high resolution bathymetry for European seas

    NASA Astrophysics Data System (ADS)

    Schaap, Dick M. A.; Fichaut, Michele

    2015-04-01

    The second phase of the project SeaDataNet is well underway since October 2011. The main objective is to improve operations and to progress towards an efficient data management infrastructure able to handle the diversity and large volume of data collected via research cruises and monitoring activities in European marine waters and global oceans. The SeaDataNet infrastructure comprises a network of interconnected data centres and a central SeaDataNet portal. The portal provides users a unified and transparent overview of the metadata and controlled access to the large collections of data sets, managed by the interconnected data centres, and the various SeaDataNet standards and tools,. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards of ISO (19115, 19139), OGC (WMS, WFS, CS-W and SWE), and OpenSearch. The population of directories has increased considerably in cooperation and involvement in associated EU projects and initiatives. SeaDataNet now gives overview and access to more than 1.6 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. Access to marine data is also a key issue for the implementation of the EU Marine Strategy Framework Directive (MSFD). The EU communication 'Marine Knowledge 2020' underpins the importance of data availability and harmonising access to marine data from different sources. SeaDataNet qualified itself for an active role in the data management component of the EMODnet (European Marine Observation and Data network) that is promoted in the EU Communication. Starting 2009 EMODnet pilot portals have been initiated for marine data themes: digital bathymetry, chemistry, physical oceanography, geology, biology, and seabed habitat mapping. These portals are being expanded to all European sea regions as part of EMODnet Phase 2, which started mid 2013. EMODnet encourages more data providers to come forward for data sharing and participating in the process of making complete overviews and homogeneous data products. The EMODnet Bathymetry project is very illustrative for the synergy between SeaDataNet and EMODnet and added value of generating public data products. The project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets. The portal provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. A further refinement is taking place as part of phase 2. The presentation will highlight key achievements in SeaDataNet II and give further details and views on the new EMODNet Digital Bathymetry for European seas as to be released early 2015.

  18. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  19. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    USGS Publications Warehouse

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  20. Flow patterns and bathymetric signatures on the delta front of a prograding river delta

    NASA Astrophysics Data System (ADS)

    Shaw, J.; Mohrig, D. C.; Wagner, R. W.

    2016-02-01

    The transition of water between laterally confined channels and the unchannelized delta front controls the growth pattern of river deltas, but is difficult to measure on field-scale deltas. We quantify flow patterns, bathymetry and bathymetric evolution for the subaqueous delta front on the Wax Lake Delta (WLD), a rapidly prograding delta in coastal Louisiana. The flow direction field, mapped using streaklines composed of biogenic slicks on the water surface, shows that a significant portion of flow ( 59%) departs subaqueous channels laterally over the subaqueous margins of the channel seaward of the shoreline. Synoptic datasets of bathymetry and flow direction allow spatial changes in flow velocity to be quantified. Most lateral flow divergence and deceleration occurs within 3-8 channel widths outboard of subaqueous channel margins, rather than downstream of channel tips. In interdistributary bays, deposit elevation decreases with a basinward slope of 2.4 x 10-4 with distance from a channel margin along any flow path. Flow patterns and this slope produce constructional features called interdistributary troughs - topographic lows in the center of interdistributary bays. These data show that flow patterns and bathymetry on the delta front are coupled both at the transition from channelized to unchannelized flow and in the depositional regions outside the distributary network.

  1. Morphology of Shatsky Rise oceanic plateau from high resolution bathymetry

    NASA Astrophysics Data System (ADS)

    Zhang, Jinchang; Sager, William W.; Durkin, William J.

    2017-06-01

    Newly collected, high resolution multi-beam sonar data are combined with previous bathymetry data to produce an improved bathymetric map of Shatsky Rise oceanic plateau. Bathymetry data show that two massifs within Shatsky Rise are immense central volcanoes with gentle flank slopes declining from a central summit. Tamu Massif is a slightly elongated, dome-like volcanic edifice; Ori Massif is square shaped and smaller in area. Several down-to-basin normal faults are observed on the western flank of the massifs but they do not parallel the magnetic lineations, indicating that these faults are probably not related to spreading ridge faulting. Moreover, the faults are observed only on one side of the massifs, which is contrary to expectations from a mechanism of differential subsidence around the massif center. Multi-beam data show many small secondary cones with different shapes and sizes that are widely-distributed on Shatsky Rise massifs, which imply small late-stage magma sources scattered across the surface of the volcanoes in the form of lava flows or explosive volcanism. Erosional channels occur on the flanks of Shatsky Rise volcanoes due to mass wasting and display evidence of down-slope sediment movement. These channels are likely formed by sediments spalling off the edges of summit sediment cap.

  2. Neural networks for the generation of sea bed models using airborne lidar bathymetry data

    NASA Astrophysics Data System (ADS)

    Kogut, Tomasz; Niemeyer, Joachim; Bujakiewicz, Aleksandra

    2016-06-01

    Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project `Investigation on the use of airborne laser bathymetry in hydrographic surveying'. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW), Delaunay Triangulation (TIN), and supervised Artificial Neural Networks (ANN), for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.

  3. Predicted seafloor facies of Central Santa Monica Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.

    2004-01-01

    Summary -- Mapping surficial seafloor facies (sand, silt, muddy sand, rock, etc.) should be the first step in marine geological studies and is crucial when modeling sediment processes, pollution transport, deciphering tectonics, and defining benthic habitats. This report outlines an empirical technique that predicts the distribution of seafloor facies for a large area offshore Los Angeles, CA using high-resolution bathymetry and co-registered, calibrated backscatter from multibeam echosounders (MBES) correlated to ground-truth sediment samples. The technique uses a series of procedures that involve supervised classification and a hierarchical decision tree classification that are now available in advanced image-analysis software packages. Derivative variance images of both bathymetry and acoustic backscatter are calculated from the MBES data and then used in a hierarchical decision-tree framework to classify the MBES data into areas of rock, gravelly muddy sand, muddy sand, and mud. A quantitative accuracy assessment on the classification results is performed using ground-truth sediment samples. The predicted facies map is also ground-truthed using seafloor photographs and high-resolution sub-bottom seismic-reflection profiles. This Open-File Report contains the predicted seafloor facies map as a georeferenced TIFF image along with the multibeam bathymetry and acoustic backscatter data used in the study as well as an explanation of the empirical classification process.

  4. Leatherback Turtle Movements, Dive Behavior, and Habitat Characteristics in Ecoregions of the Northwest Atlantic Ocean

    PubMed Central

    Dodge, Kara L.; Galuardi, Benjamin; Miller, Timothy J.; Lutcavage, Molly E.

    2014-01-01

    Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m−3), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km−1) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging habitat in neritic regions. High-use habitat for leatherbacks in our study occurred in coastal waters of the North American eastern seaboard and eastern Caribbean, putting turtles at heightened risk from land- and ocean-based human activity. PMID:24646920

  5. Characterization of the Navy Fan Channel-to-Lobe Transition: Geomorphology, Gradient, and Structure Imaged through High-Resolution AUV Bathymetry

    NASA Astrophysics Data System (ADS)

    Carvajal, C.; Paull, C. K.; Caress, D. W.; Anderson, K.; Lundsten, E. M.; Gwiazda, R.; Fildani, A.; Dykstra, M.; McGann, M.; Maier, K. L.; Herguera, J. C.

    2016-12-01

    Channel to lobe transition zones (CLTZ) are elusive sectors of the seafloor. They record complex interactions between sediment-gravity flows, flow confinement, and gradient that can result in contrasting geomorphologies. If present, structural controls can add additional intricacies. We illustrate such complexities in the Navy Fan CLTZ offshore California/Mexico using AUV-collected high-resolution (1x1x0.25 m) bathymetry and chirp profiles. The AUV bathymetry images the fine scale details of the seafloor, otherwise unresolved in surface-ship-mounted multibeam bathymetry. Three morphological areas standout that in a direction transverse to sediment transport are: 1) An unconfined area with variable but overall steep gradients (0.5o-1.7o), and considerable erosion shown by numerous large scours that truncate underlying strata. These scours are elongate (<500x180 m), deep (<18 m), asymmetric (steeper proximally), and more prominent along steeper gradients; 2) An area of moderate confinement along a smoother, gentler gradient (0.2o-0.5o; 0.9o locally). This area is 8 km long with a channel (WxD: 233x11 m) that transitions basinwards to low confinement (WxD: 1000x4 m); and 3) An area with an escarpment (<25 m high, <19o) and ridge of the San Clemente Fault. We hypothesize that the erosional morphologies of the unconfined areas reflect swifter turbidity currents due to high gradients, which resulted from relief along the San Clemente Fault and probably from differential seafloor aggradation. In the moderate confinement area, the smoother and gentler seafloor may be related to more efficient sediment dispersal able to transfer/deposit sediment to heal structural relief (though not completely) while avoiding significant local aggradation, hence preventing major gradient build up. In the faulted area, the steep and prominent structure reroutes the sediments. The findings of this study have broad application to any seafloor areas with rapid changes of gradient.

  6. Different key roles of mesoscale oceanographic structures and ocean bathymetry in shaping larval fish distribution pattern: A case study in Sicilian waters in summer 2009

    NASA Astrophysics Data System (ADS)

    Cuttitta, Angela; Quinci, Enza Maria; Patti, Bernardo; Bonomo, Sergio; Bonanno, Angelo; Musco, Marianna; Torri, Marco; Placenti, Francesco; Basilone, Gualtiero; Genovese, Simona; Armeri, Grazia Maria; Spanò, Antonina; Arculeo, Marco; Mazzola, Antonio; Mazzola, Salvatore

    2016-09-01

    Fish larvae data collected in year 2009 were used to examine the effects of particular environmental conditions on the structure of larval assemblages in two oligotrophic Mediterranean areas (the Southern Tyrrhenian Sea and the Strait of Sicily). For this purpose, relationships with environmental variables (temperature, salinity and fluorescence), zooplankton biomass, water circulation and bathymetry are discussed. Hydrodynamic conditions resulted very differently between two study areas. The Southern Tyrrhenian Sea was characterized by moderate shallow circulation compared to the Strait of Sicily. In this framework, distribution pattern of larval density in the Tyrrhenian Sea was mainly driven by bathymetry, due to spawning behavior of adult fish. There, results defined four assemblages: two coastal assemblages dominated by pelagic and demersal families and two oceanic assemblages dominated by mesopelagic species more abundant in western offshore and less abundant in eastern offshore. The assemblage variations in the western side was related to the presence of an anti-cyclonic gyre in the northern side of the Gulf of Palermo, while in the eastern side the effect of circulation was not very strong and the environmental conditions rather than the dispersal of species determined the larval fish communities structure. Otherwise in the Strait of Sicily the currents were the main factor governing the concentration and the assemblage structure. In fact, the distribution of larvae was largely consistent with the branch of the Atlantic Ionian Stream (AIS). Moreover, very complex oceanographic structures (two cyclonic circulations in the western part of the study area and one anti-cyclonic circulation in the eastern part) caused the formation of uncommon spatial distribution of larval fish assemblages, only partially linked to bathymetry of the study area. Typically coastal larvae (pelagic families: Engraulidae and Clupeidae) were mostly concentrated in the offshore areas and off Capo Passero, where the presence of a thermo-haline front maintained their position in an area with favourable conditions for larval fish feeding and growth.

  7. A Decade Remote Sensing River Bathymetry with the Experimental Advanced Airborne Research LiDAR

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.; Skinner, K.

    2012-12-01

    Since 2002, the first generation of the Experimental Advanced Airborne Research LiDAR (EAARL-A) sensor has been deployed for mapping rivers and streams. We present and summarize the results of comparisons between ground truth surveys and bathymetry collected by the EAARL-A sensor in a suite of rivers across the United States. These comparisons include reaches on the Platte River (NE), Boise and Deadwood Rivers (ID), Blue and Colorado Rivers (CO), Klamath and Trinity Rivers (CA), and the Shenandoah River (VA). In addition to diverse channel morphologies (braided, single thread, and meandering) these rivers possess a variety of substrates (sand, gravel, and bedrock) and a wide range of optical characteristics which influence the attenuation and scattering of laser energy through the water column. Root mean square errors between ground truth elevations and those measured by the EAARL-A ranged from 0.15-m in rivers with relatively low turbidity and highly reflective sandy bottoms to over 0.5-m in turbid rivers with less reflective substrates. Mapping accuracy with the EAARL-A has proved challenging in pools where bottom returns are either absent in waveforms or are of such low intensity that they are treated as noise by waveform processing algorithms. Resolving bathymetry in shallow depths where near surface and bottom returns are typically convolved also presents difficulties for waveform processing routines. The results of these evaluations provide an empirical framework to discuss the capabilities and limitations of the EAARL-A sensor as well as previous generations of post-processing software for extracting bathymetry from complex waveforms. These experiences and field studies not only provide benchmarks for the evaluation of the next generation of bathymetric LiDARs for use in river mapping, but also highlight the importance of developing and standardizing more rigorous methods to characterize substrate reflectance and in-situ optical properties at study sites. They also point out the continued necessity of ground truth data for algorithm refinement and survey verification.

  8. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean.

    PubMed

    Dodge, Kara L; Galuardi, Benjamin; Miller, Timothy J; Lutcavage, Molly E

    2014-01-01

    Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m(-3)), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km(-1)) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging habitat in neritic regions. High-use habitat for leatherbacks in our study occurred in coastal waters of the North American eastern seaboard and eastern Caribbean, putting turtles at heightened risk from land- and ocean-based human activity.

  9. A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data.

    PubMed

    Stephens, David; Diesing, Markus

    2014-01-01

    Detailed seabed substrate maps are increasingly in demand for effective planning and management of marine ecosystems and resources. It has become common to use remotely sensed multibeam echosounder data in the form of bathymetry and acoustic backscatter in conjunction with ground-truth sampling data to inform the mapping of seabed substrates. Whilst, until recently, such data sets have typically been classified by expert interpretation, it is now obvious that more objective, faster and repeatable methods of seabed classification are required. This study compares the performances of a range of supervised classification techniques for predicting substrate type from multibeam echosounder data. The study area is located in the North Sea, off the north-east coast of England. A total of 258 ground-truth samples were classified into four substrate classes. Multibeam bathymetry and backscatter data, and a range of secondary features derived from these datasets were used in this study. Six supervised classification techniques were tested: Classification Trees, Support Vector Machines, k-Nearest Neighbour, Neural Networks, Random Forest and Naive Bayes. Each classifier was trained multiple times using different input features, including i) the two primary features of bathymetry and backscatter, ii) a subset of the features chosen by a feature selection process and iii) all of the input features. The predictive performances of the models were validated using a separate test set of ground-truth samples. The statistical significance of model performances relative to a simple baseline model (Nearest Neighbour predictions on bathymetry and backscatter) were tested to assess the benefits of using more sophisticated approaches. The best performing models were tree based methods and Naive Bayes which achieved accuracies of around 0.8 and kappa coefficients of up to 0.5 on the test set. The models that used all input features didn't generally perform well, highlighting the need for some means of feature selection.

  10. Feedback Limiting the Coastal Response to Irregularities in Shelf Bathymetry

    NASA Astrophysics Data System (ADS)

    List, J. H.; Benedet, L.

    2007-12-01

    Observations and engineering studies have shown that non-uniform inner shelf bathymetry can influence longshore sediment transport gradients and create patterns of shoreline change. One classic example is from Grand Isle, Louisiana, where two offshore borrow pits caused two zones of shoreline accretion landward of the pits. In addition to anthropogenic cases, many natural situations exist in which irregularities in coastal planform are thought to result from offshore shoals or depressions. Recent studies using the hydrodynamic model Delft3D have successfully simulated the observed nearshore erosion and accretion patterns landward of an inner shelf borrow pit. An analysis of the momentum balance in a steady-state simulation has demonstrated that both alongshore pressure gradients (due to alongshore variations in wave setup) and radiation stress gradients (terms relevant to alongshore forcing) are important for forcing the initial pattern of nearshore sedimentation in response to the borrow pit. The response of the coast to non-uniform inner shelf bathymetry appears to be limited, however, because observed shoreline undulations are often rather subtle. (An exception may exist in the case of a very high angle wave climate.) Therefore, feedbacks in processes must exist such that growth of the shoreline salient itself modifies the transport processes in a way that limits further growth (assuming the perturbation in inner shelf bathymetry itself remains unchanged). Examination of the Delft3D momentum balance for an inner shelf pit test case demonstrates that after a certain degree of morphologic development the forcing associated with the well-known shoreline smoothing process (a.k.a., diffusion) counteracts the forcing associated with the inner shelf pit, producing a negative feedback which arrests further growth of the shoreline salient. These results provide insights into the physical processes that control shoreline changes behind inner shelf bathymetric anomalies (i.e. man-made dredge pits and natural bathymetric features) and are therefore relevant to the understanding and prediction of shoreline change on many coasts.

  11. Satellite Derived Bathymetry as a Coastal Geo-Intelligence Tool for Alaska

    NASA Astrophysics Data System (ADS)

    Ventura, D. C.

    2017-12-01

    What do marine rescue, navigation safety, resource management, coastal infrastructure management, climate adaptation and resilience, economic investment, habitat protection agencies and institutions all have in common? They all benefit from accurate coastal bathymetric data As Arctic-Related Incidents of National Significance (IoNS) workshop points out, reducing time and cost of collecting coastal bathymetry in the Arctic is fundamental to addressing needs of a multitude of stakeholders. Until recently, high resolution coastal data acquisition involved field mobilization of planes, vessels, and people. Given limited resources, short season and remoteness, this approach results in very modest progress toward filling the Alaska's coastal bathymetry data gap and updating vintage data from circa Captain Cook.After successfully executing Satellite Derived Bathymetry (SDB) projects in other more environmentally suitable locations, Fugro and its partner EOMAP are now assessing suitability SDB technique along the Alaska coast. This includes aaccessing archived satellite data and understanding best environmental conditions for the mapping and defining maximum mapping depth as an initial action to understand potentials for Alaska. Here we leverage the physics-based approach to satellite imagery data extraction to derive water depth and complimentary intelligence such as seafloor habitat mapping and certain water quality parameters, such as clarity, turbidity, sediment and chlorophyll-a concentrations, and seasonal changes. Both new and archive imagery are utilized as part of the process. If successful, the benefits and cost savings of this approach are enormous as repeat rate for data collects like this can be measured in months/years as opposed to decades/centuries. Arctic coasts have multiple vulnerabilities and the rate of change will continue to outpace the budgets. As innovative and learning organizations, Fugro and EOMAP strive to not only share the results of this study, but also to prepare ourselves and our clients for matters associated with use, re-use and retention of high-resolution, high-volume data at higher refresh rates to meet mapping standards and research objectives.

  12. Numerical simulation of tides in Ontario Lacus

    NASA Astrophysics Data System (ADS)

    Vincent, David; Karatekin, Ozgür

    2015-04-01

    Hydrocarbons liquid filled lakes has been recently detected on Titan's surface. Most of these lakes are located in the northern latitudes but there is a substantial lake in the southern latitudes: Ontario Lacus. This lake gets our attention because of possible shoreline changes suggested by Cassini flybys over Ontario Lacus between September 2005 (T7) et January 2010 (T65). The shoreline changes could be due to evaporation-precipitation processes but could also be a consequence of tides. Previous studies showed that the maximal tidal amplitudes of Ontario Lacus would be about 0.2m (for an uniform bathymetry of 20m). In this study we simulate tidal amplitude and currents with SLIM (Second-generation Louvain-la-Neuve Ice-ocean Model, http://sites.uclouvain.be/slim/ ) which resolves 2D shallow water equation on an unstructured mesh. Unstructured mesh prevents problems like mesh discontinuities at poles and allows higher accuracy at some place like coast or straits without drastically increasing computing costs. The tide generating force modeled in this work is the gradient of tidal potential due to titan's obliquity and titan's orbital eccentricity around Saturn (other contribution such as sun tide generating force are unheeded). The uncertain input parameters such as the wind direction and amplitude, bottom friction and thermo-physical properties of hydrocarbons liquids are varied within their expected ranges. SAR data analysis can result in different bathymetry according to the method. We proceed simulations for different bathymetries: tidal amplitudes doesn't change but this is not the case for tidal currents. Using a recent bathymetry deduced from most recent RADAR/SAR observations and a finer mesh, the peak-to peak tidal amplitudes are calculated to be up to 0.6 m. which is more than a factor two larger than the previous results. The maximal offshore tidal currents magnitude is about 0.06 m/s.

  13. Mapping bathymetry and rip channels with WorldView2 multispectral data

    NASA Astrophysics Data System (ADS)

    Trimble, S. M.; Houser, C.

    2014-12-01

    Rip currents are a worldwide coastal hazard that have claimed 616 lives in Costa Rica since 2001 (~50/yr). Lifeguard staff, warning signs, and flag systems have been shown to reduce deaths at rip-prone beaches but are not a perfect system. At Playa Cocles, a popular beach destination along the Caribbean Coast of Costa Rica near Puerto Viejo, lifeguards post flags at the mouth of the 3 to 6 rip currents present each morning. In July 2014, these dangerous currents were measured with floating GPS drogues at speeds up to 3.1 m/s. The purpose of this study is to demonstrate the capability of the Digital Globe WorldView2 (WV2) multispectral satellite for identifying rip channels and mapping bathymetry in the surf zone (20m and less), because rips form at topographically low spots in the bathymetry as a result of feedback amongst waves, substrate, and antecedent bathymetry. WV2 was launched in 2009; it has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including 'yellow' (585-625 nm) and 'coastal blue' (400-450 nm). Using one 25km2 image from 23 December 2009, during the "high season" of tourism, a bathymetric map of Playa Cocles is created and measured for accuracy. Results of the study will assist the Comisión Nacional de Emergencias de Costa Rica and the town of Puerto Viejo by creating a rip current hazard evaluation and prediction system for the rip-prone beach of Playa Cocles. This creation methodology may be repeated for any following dates or other locations in Costa Rica (or anywhere on the globe captured by WV2). Future work will build on this research to determine rip current strength, location, and seasonality from a combination of WV2 satellite information and field data.

  14. Calibration of the 2D Hydrodynamic Model Floodos and Implications of Distributed Friction on Sediment Transport Capacity

    NASA Astrophysics Data System (ADS)

    Croissant, T.; Lague, D.; Davy, P.

    2014-12-01

    Numerical models of floodplain dynamics often use a simplified 1D description of flow hydraulics and sediment transport that cannot fully account for differential friction between vegetated banks and low friction in the main channel. Key parameters of such models are the friction coefficient and the description of the channel bathymetry which strongly influence predicted water depth and velocity, and therefore sediment transport capacity. In this study, we use a newly developed 2D hydrodynamic model, Floodos, whose efficiency is a major advantage for exploring channel morphodynamics from a flood event to millennial time scales. We evaluate the quality of Floodos predictions in the Whataroa river, New Zealand and assess the effect of a spatially distributed friction coefficient (SDFC) on long term sediment transport. Predictions from the model are compared to water depth data from a gauging station located on the Whataroa River in Southern Alps, New Zealand. The Digital Elevation Model (DEM) of the 2.5 km long studied reach is derived from a 2010 LiDAR acquisition with 2 m resolution and an interpolated bathymetry. The several large floods experienced by this river during 2010 allow us to access water depth for a wide range of possible river discharges and to retrieve the scaling between these two parameters. The high resolution DEM used has a non-negligible part of submerged bathymetry that airborne LiDAR was not able to capture. Bathymetry can be reconstructed by interpolation methods that introduce several uncertainties concerning water depth predictions. We address these uncertainties inherent to the interpolation using a simplified channel with a geometry (slope and width) similar to the Whataroa river. We then explore the effect of a SDFC on velocity pattern, water depth and sediment transport capacity and discuss its relevance on long term predictions of sediment transport and channel morphodynamics.

  15. Interactions of Marine Hydrokinetic Devices in Complex Bathymetries: Numerical Simulations in the Chacao Channel in Southern Chile.

    NASA Astrophysics Data System (ADS)

    Soto, K. A.; Escauriaza, C. R.; Richter, D. H.

    2015-12-01

    Many coastal areas in the South Pacific Ocean can provide significant marine energy resources in the near future. The installation of marine hydrokinetic (MHK) devices in these regions will require new approaches to understand physical and environmental processes that are relevant for the installation of turbine arrays, which are also specific of each site. The coastal morphology of the Chacao channel in southern Chile, which separates the Chiloé island from the main continent (41º47'S, 73º31'W) stands out as an important energy resource that can potentially contribute a significant power capacity. This coastal area not only sustains delicate ecosystems with limited anthropic intervention, but it is characterized by a complex bathymetry that can have important effects on the performance of MHK devices and their local impacts. To understand the interactions of the local bathymetry and ambient turbulence with turbine arrays, we carry out a series of numerical simulations with a coherent-structure resolving turbulence model using the actuator disk parameterization. The main objective of this study is to further our understanding on the physical processes associated with the installation of the turbine arrays. We perform simulations with different geometries and inlet boundary conditions, from simple cases in a rectangular channel, to more complex cases that include the high-resolution bathymetry of an extensive area of the Chacao channel. The results show how the interactions between the MHK devices, the local flow, and the bed can affect the energy flux and potential generation in specific sites. The results also provide new insights of local impacts of MHK devices and they can also help to optimize turbine arrays in natural environments. This work has been supported by Fondecyt project 1130940, and the Marine Energy Research & Innovation Center (MERIC) financed by Corfo and based in Santiago, Chile.

  16. Measuring Bathymetry, Runup, and Beach Volume Change during Storms: New Methodology Quantifies Substantial Changes in Cross-Shore Sediment Flux

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.

    2009-12-01

    Accurate predictions of beach change during storms are contingent upon a correct understanding of wave-driven sediment exchange between the beach and nearshore during high energy conditions. Conventional storm data sets use “pre” (often weeks to months prior) and “post” (often many days after the storm in calm conditions) collections of beach topography and nearshore bathymetry to characterize the effects of the storm. These data have led to a common theory for wave-driven event response of the nearshore system, wherein bars and shorelines are smoothed and straightened by strong alongshore currents into two-dimensional, linear forms. Post-storm, the shoreline accretes, bars migrate onshore, and three-dimensional shapes begin to build as low-energy swell returns. Unfortunately, these approaches have left us with a knowledge gap of the extent and timing of erosion and accretion during storms, arguably the most important information both for scientists trying to model storm damage or inundation, and homeowners trying to manage their properties. This work presents the first spatially extensive (10 km alongshore) and temporally high-resolution (dt = 12 hours) quantitative data set of beach volume and nearshore bathymetry evolution during a Nor’easter on North Carolina’s Outer Banks. During the Nor’easter, significant wave height peaked at 3.4 m, and was greater than 2 m for 37 hours, as measured by the Duck FRF 8 m array. Data were collected using CLARIS: Coastal Lidar and Radar Imaging System, a mobile system that couples simultaneous observations of beach topography from a Riegl laser scanner and nearshore bathymetry (out to ~1 km offshore) from X-Band radar-derived celerity measurements (BASIR). The merging of foreshore lidar elevations with 6-min averages of radar-derived swash runup also enables mapping of maximum-runup elevations alongshore during the surveys. Results show that during the storm, neither the shoreline nor nearshore bathymetry returned to a linear system, as shoreline megacusps/embayments and nearshore shore-oblique bars/troughs both persisted and remained aligned throughout the storm. Analysis of beach volume change above the MHW line showed that all of the erosion occurred during the first 24 hours of the storm, as the 8-m significant wave height grew from 1 to 3.5 m at the peak of the storm and wave period increased from 6 to 14 s. In the 12 hours immediately following the storm peak, as long-period swell fell only 1 m, at least 50% of the eroded upper-beach volume returned along the entire study site, with 100% and greater returning along half the study site. This erosion and accretion would be completely unobserved using traditional pre- and post-storm data sets. Maximum runup varied by as much as 2 m alongshore, showing a weak positive correlation with foreshore slope. Maximum runup is the sum of regional tide and surge (pressure and wind-driven) water levels as well as localized wave-driven setup and swash, and thus may have complex alongshore variations where irregular nearshore bathymetry significantly influences shoreline wave-setup.

  17. Bank Topography, Bathymetry, and Current Velocity of the Lower Elwha River, Clallam County, Washington, May 2006

    USGS Publications Warehouse

    Curran, Christopher A.; Konrad, Christopher P.; Dinehart, Randal L.; Moran, Edward H.

    2008-01-01

    The removal of two dams from the mainstem of the Elwha River is expected to cause a broad range of changes to the river and nearby coastal ecosystem. The U.S. Geological Survey has documented aspects of the condition of the river to allow analysis of ecological responses to dam removal. This report documents the bank topography, river bathymetry, and current velocity data collected along the lower 0.5 kilometer of the Elwha River, May 15-17, 2006. This information supplements nearshore and beach surveys done in 2006 as part of the U.S. Geological Survey Coastal Habitats in Puget Sound program near the Elwha River delta in the Strait of Juan de Fuca, Washington.

  18. Analyzing the Broken Ridge area of the Indian Ocean using magnetic and gravity anomaly maps and geoid undulation and bathymetry data

    NASA Technical Reports Server (NTRS)

    Lazarewicz, A. R.; Sailor, R. V. (Principal Investigator)

    1982-01-01

    A higher resolution anomaly map of the Broken Ridge area (2 degree dipole spacing) was produced and reduced to the pole using quiet time data for this area. The map was compared with equally scaled maps of gravity anomaly, geoid undulation, and bathymetry. The ESMAP results were compared with a NASA MAGSAT map derived by averaging data in two-degree bins. A survey simulation was developed to model the accuracy of MAGSAT anomaly maps as a function of satellite altitude, instrument noise level, external noise model, and crustal anomaly field model. A preliminary analysis of the geophysical structure of Broken Ridge is presented and unresolved questions are listed.

  19. Rip currents and alongshore flows in single channels dredged in the surf zone

    NASA Astrophysics Data System (ADS)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-05-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  20. Data assimilation and bathymetric inversion in a two-dimensional horizontal surf zone model

    NASA Astrophysics Data System (ADS)

    Wilson, G. W.; Ã-Zkan-Haller, H. T.; Holman, R. A.

    2010-12-01

    A methodology is described for assimilating observations in a steady state two-dimensional horizontal (2-DH) model of nearshore hydrodynamics (waves and currents), using an ensemble-based statistical estimator. In this application, we treat bathymetry as a model parameter, which is subject to a specified prior uncertainty. The statistical estimator uses state augmentation to produce posterior (inverse, updated) estimates of bathymetry, wave height, and currents, as well as their posterior uncertainties. A case study is presented, using data from a 2-D array of in situ sensors on a natural beach (Duck, NC). The prior bathymetry is obtained by interpolation from recent bathymetric surveys; however, the resulting prior circulation is not in agreement with measurements. After assimilating data (significant wave height and alongshore current), the accuracy of modeled fields is improved, and this is quantified by comparing with observations (both assimilated and unassimilated). Hence, for the present data, 2-DH bathymetric uncertainty is an important source of error in the model and can be quantified and corrected using data assimilation. Here the bathymetric uncertainty is ascribed to inadequate temporal sampling; bathymetric surveys were conducted on a daily basis, but bathymetric change occurred on hourly timescales during storms, such that hydrodynamic model skill was significantly degraded. Further tests are performed to analyze the model sensitivities used in the assimilation and to determine the influence of different observation types and sampling schemes.

  1. Improving the quality of marine geophysical track line data: Along-track analysis

    NASA Astrophysics Data System (ADS)

    Chandler, Michael T.; Wessel, Paul

    2008-02-01

    We have examined 4918 track line geophysics cruises archived at the U.S. National Geophysical Data Center (NGDC) using comprehensive error checking methods. Each cruise was checked for observation outliers, excessive gradients, metadata consistency, and general agreement with satellite altimetry-derived gravity and predicted bathymetry grids. Thresholds for error checking were determined empirically through inspection of histograms for all geophysical values, gradients, and differences with gridded data sampled along ship tracks. Robust regression was used to detect systematic scale and offset errors found by comparing ship bathymetry and free-air anomalies to the corresponding values from global grids. We found many recurring error types in the NGDC archive, including poor navigation, inappropriately scaled or offset data, excessive gradients, and extended offsets in depth and gravity when compared to global grids. While ˜5-10% of bathymetry and free-air gravity records fail our conservative tests, residual magnetic errors may exceed twice this proportion. These errors hinder the effective use of the data and may lead to mistakes in interpretation. To enable the removal of gross errors without over-writing original cruise data, we developed an errata system that concisely reports all errors encountered in a cruise. With such errata files, scientists may share cruise corrections, thereby preventing redundant processing. We have implemented these quality control methods in the modified MGD77 supplement to the Generic Mapping Tools software suite.

  2. Rip currents and alongshore flows in single channels dredged in the surf zone

    USGS Publications Warehouse

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  3. A Seamless, High-Resolution, Coastal Digital Elevation Model (DEM) for Southern California

    USGS Publications Warehouse

    Barnard, Patrick L.; Hoover, Daniel

    2010-01-01

    A seamless, 3-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the Mexican border. The goal was to integrate the most recent, high-resolution datasets available (for example, Light Detection and Ranging (Lidar) topography, multibeam and single beam sonar bathymetry, and Interferometric Synthetic Aperture Radar (IfSAR) topography) into a continuous surface from at least the 20-m isobath to the 20-m elevation contour. This dataset was produced to provide critical boundary conditions (bathymetry and topography) for a modeling effort designed to predict the impacts of severe winter storms on the Southern California coast (Barnard and others, 2009). The hazards model, run in real-time or with prescribed scenarios, incorporates atmospheric information (wind and pressure fields) with a suite of state-of-the-art physical process models (tide, surge, and wave) to enable detailed prediction of water levels, run-up, wave heights, and currents. Research-grade predictions of coastal flooding, inundation, erosion, and cliff failure are also included. The DEM was constructed to define the general shape of nearshore, beach and cliff surfaces as accurately as possible, with less emphasis on the detailed variations in elevation inland of the coast and on bathymetry inside harbors. As a result this DEM should not be used for navigation purposes.

  4. Inversion of gravity and bathymetry in oceanic regions for long-wavelength variations in upper mantle temperature and composition

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Jordan, Thomas H.

    1993-01-01

    Long-wavelength variations in geoid height, bathymetry, and SS-S travel times are all relatable to lateral variations in the characteristic temperature and bulk composition of the upper mantle. The temperature and composition are in turn relatable to mantle convection and the degree of melt extraction from the upper mantle residuum. Thus the combined inversion of the geoid or gravity field, residual bathymetry, and seismic velocity information offers the promise of resolving fundamental aspects of the pattern of mantle dynamics. The use of differential body wave travel times as a measure of seismic velocity information, in particular, permits resolution of lateral variations at scales not resolvable by conventional global or regional-scale seismic tomography with long-period surface waves. These intermediate scale lengths, well resolved in global gravity field models, are crucial for understanding the details of any chemical or physical layering in the mantle and of the characteristics of so-called 'small-scale' convection beneath oceanic lithosphere. In 1991 a three-year project to the NASA Geophysics Program was proposed to carry out a systematic inversion of long-wavelength geoid anomalies, residual bathymetric anomalies, and differential SS-S travel time delays for the lateral variation in characteristic temperature and bulk composition of the oceanic upper mantle. The project was funded as a three-year award, beginning on 1 Jan. 1992.

  5. Using high-resolution multibeam bathymetry to identify seafloor surface rupture along the Palos Verdes fault complex in offshore Southern California

    USGS Publications Warehouse

    Marlow, M. S.; Gardner, J.V.; Normark, W.R.

    2000-01-01

    Recently acquired high-resolution multibeam bathymetric data reveal several linear traces that are the surficial expressions of seafloor rupture of Holocene faults on the upper continental slope southeast of the Palos Verdes Peninsula. High-resolution multichannel and boomer seismic-reflection profiles show that these linear ruptures are the surficial expressions of Holocene faults with vertical to steep dips. The most prominent fault on the multibeam bathymetry is about 10 km to the west of the mapped trace of the Palos Verdes fault and extends for at least 14 km between the shelf edge and the base of the continental slope. This fault is informally called the Avalon Knoll fault for the nearby geographic feature of that name. Seismic-reflection profiles show that the Avalon Knoll fault is part of a northwest-trending complex of faults and anticlinal uplifts that are evident as scarps and bathymetric highs on the multibeam bathymetry. This fault complex may extend onshore and contribute to the missing balance of Quaternary uplift determined for the Palos Verdes Hills and not accounted for by vertical uplift along the onshore Palos Verdes fault. We investigate the extent of the newly located offshore Avalon Knoll fault and use this mapped fault length to estimate likely minimum magnitudes for events along this fault.

  6. Use of an UROV to develop 3-D optical models of submarine environments

    NASA Astrophysics Data System (ADS)

    Null, W. D.; Landry, B. J.

    2017-12-01

    The ability to rapidly obtain high-fidelity bathymetry is crucial for a broad range of engineering, scientific, and defense applications ranging from bridge scour, bedform morphodynamics, and coral reef health to unexploded ordnance detection and monitoring. The present work introduces the use of an Underwater Remotely Operated Vehicle (UROV) to develop 3-D optical models of submarine environments. The UROV used a Raspberry Pi camera mounted to a small servo which allowed for pitch control. Prior to video data collection, in situ camera calibration was conducted with the system. Multiple image frames were extracted from the underwater video for 3D reconstruction using Structure from Motion (SFM). This system provides a simple and cost effective solution to obtaining detailed bathymetry in optically clear submarine environments.

  7. Approaching bathymetry estimation from high resolution multispectral satellite images using a neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Corucci, Linda; Masini, Andrea; Cococcioni, Marco

    2011-01-01

    This paper addresses bathymetry estimation from high resolution multispectral satellite images by proposing an accurate supervised method, based on a neuro-fuzzy approach. The method is applied to two Quickbird images of the same area, acquired in different years and meteorological conditions, and is validated using truth data. Performance is studied in different realistic situations of in situ data availability. The method allows to achieve a mean standard deviation of 36.7 cm for estimated water depths in the range [-18, -1] m. When only data collected along a closed path are used as a training set, a mean STD of 45 cm is obtained. The effect of both meteorological conditions and training set size reduction on the overall performance is also investigated.

  8. New constraints on the structure of Hess Deep from regional- and micro-bathymetry data acquired during RRS James Cook in Jan-Feb 2008 (JC021)

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Ferrini, V. L.; MacLeod, C. J.; Teagle, D. A.; Gillis, K. M.; Cazenave, P. W.; Hurst, S. D.; Scientific Party, J.

    2008-12-01

    In January-February 2008, new geophysical and geological data were acquired in Hess Deep using the RRS James Cook and the British ROV Isis. Hess Deep provides a tectonic window into oceanic crust emplaced by fast seafloor spreading at the East Pacific Rise, thereby offering the opportunity to test competing hypotheses for oceanic crustal accretion. The goal of this cruise was to collect datasets that can constrain the structure and composition of the lower crustal section exposed in the south-facing slope of the Intrarift Ridge just north of the Deep, and thus provide insights into the emplacement of gabbroic lower crust at fast spreading rates. Additionally, the acquired datasets provide site survey data for IODP Proposal 551-Full. The following datasets were acquired during JC021: 1) regional multibeam bathymetry survey complemented with sub-bottom profiler (SBP) data (in selected areas), 2) two micro-bathymetry surveys, and 3) seafloor rock samples acquired with an ROV. Here we present grids of regional multibeam and microbathymetry data following post-cruise processing. Regional multibeam bathymetry were acquired using the hull-mounted Kongsberg Simrad EM120 system (12 kHz). These data provide new coverage of the northern flank of the rift as far east as 100°W, which show that it comprises of a series of 50- to 100-km-long en echelon segments. Both E-W and NE-SW striking features are observed in the immediate vicinity of the Deep, including in a newly covered region to the SW of the rift tip. Such features might arise due to the rotation of the Galapagos microplate(s), as proposed by other authors. The ROV Isis acquired micro-bathymetry data in two areas using a Simrad SM2000 (200 kHz) multibeam sonar. Data were acquired at a nominal altitude of ~100 m and speed of 0.3 kts to facilitate high-resolution mapping of seabed features and also permit coverage of two relatively large areas. Swath widths were ~200- 350 m depending on noise and seabed characteristics. Following the cruise, we reprocessed navigation and sonar data using software tools developed through National Deep Submergence Facility (USA) to 1) regenerate seafloor picks with more robust algorithm, 2) incorporate high-resolution navigation (which could not be included in shipboard processing) and 3) correct for attitude variations. The first survey covers a ~15 km2 area on the south-facing slope of the Intrarift Ridge immediately north of the Deep, where lower crustal gabbros have been sampled by Isis during JC021 and by dredging and other deep submergence vehicles during previous cruises. This area also contains the highest priority drill sites from IODP Proposal 551-Full. The second survey covers a ~5.5 km2 area on the Intrarift Ridge and its southern flank, including the location of ODP Site 894. Both grids show structures that strike both E-W and NE-SW, similar to what is observed at a larger scale in the regional bathymetry data. The first survey area also contains a series of sedimented benches, which might be suitable drilling targets. The second survey is characterized by steep scarps that predominantly strike NE-SW. These features were observed to correspond to sizable cliffs during seafloor operations with Isis.

  9. Archive of bathymetry data collected in South Florida from 1995 to 2015

    USGS Publications Warehouse

    Hansen, Mark Erik; DeWitt, Nancy T.; Reynolds, Billy J.

    2017-08-10

    DescriptionLand development and alterations of the ecosystem in south Florida over the past 100 years have decreased freshwater and increased nutrient flows into many of Florida's estuaries, bays, and coastal regions. As a result, there has been a decrease in the water quality in many of these critical habitats, often prompting seagrass die-offs and reduced fish and aquatic life populations. Restoration of water quality in many of these habitats will depend partly upon using numerical-circulation and sediment-transport models to establish water-quality targets and to assess progress toward reaching restoration targets. Application of these models is often complicated because of complex sea floor topography and tidal flow regimes. Consequently, accurate and modern sea-floor or bathymetry maps are critical for numerical modeling research. Modern bathymetry data sets will also permit a comparison to historical data in order to help assess sea-floor changes within these critical habitats. New and detailed data sets also support marine biology studies to help understand migratory and feeding habitats of marine life.This data series is a compilation of 13 mapping projects conducted in south Florida between 1995 and 2015 and archives more than 45 million bathymetric soundings. Data were collected primarily with a single beam sound navigation and ranging (sonar) system called SANDS developed by the U.S. Geological Survey (USGS) in 1993. Bathymetry data for the Estero Bay project were supplemented with the National Aeronautics and Space Administration's (NASA) Experimental Advanced Airborne Research Lidar (EAARL) system. Data from eight rivers in southwest Florida were collected with an interferometric swath bathymetry system. The projects represented in this data series were funded by the USGS Coastal and Marine Geology Program (CMGP), the USGS South Florida Ecosystem Restoration Project- formally named Placed Based Studies, and other non-Federal agencies. The purpose of the data collection for all these projects was to support one or more of the following scientific aspects: numerical model applications, sea floor change analysis, or marine habitat investigations.This report serves as an archive of processed bathymetry sounding data, digital bathymetric contours, digital bathymetric maps, sea floor surface grids, and formal Federal Geographic Data Committee (FGDC) metadata. Refer to the Abbreviations page for explanations of acronyms and abbreviations used in this report. Since 2006, the USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier or Field Activity Number (FAN) for each field data collection. Projects described in this report conducted prior to 2006 do not have a FAN.Data from the 13 projects presented in this report provided critical hydrographic information to support multiple science projects in south Florida. The projects and the types of sounding data collected are:Florida Bay (1995-1999) - single-beamLake Okeechobee (2001) - single-beamTampa Bay (2001-2004) - single-beamCaloosahatchee River (2002)- single-beamEstero Bay to Matlacha Pass and offshore to Wiggins Pass (2003) - single-beam and airborne lidarNorth and Northwest Forks of the Loxahatchee and Lower St. Lucie Rivers (2003) - single-beamSouth Charlotte Harbor and offshore Sanibel Island (2003-2004) - single-beamShark River and Trout Creek (2004) - single-beam and interferometric swathSouthwest Florida Rivers (2004) - interferometric swathOffshore from Wiggins Pass to Cape Romano (2005) - single-beamTen Thousand Islands (2009) - single-beamLemon Bay (2011) - single-beamSouthwest Florida Rivers (2015) - interferometric swath

  10. Velocity, bathymetry, and transverse mixing characteristics of the Ohio River upstream from Cincinnati, Ohio, October 2004-March 2006

    USGS Publications Warehouse

    Koltun, G.F.; Ostheimer, Chad J.; Griffin, Michael S.

    2006-01-01

    Velocity, bathymetry, and transverse (cross-channel) mixing characteristics were studied in a 34-mile study reach of the Ohio River extending from the lower pool of the Captain Anthony Meldahl Lock and Dam, near Willow Grove, Ky, to just downstream from the confluence of the Licking and Ohio Rivers, near Newport, Ky. Information gathered in this study ultimately will be used to parameterize hydrodynamic and water-quality models that are being developed for the study reach. Velocity data were measured at an average cross-section spacing of about 2,200 feet by means of boat-mounted acoustic Doppler current profilers (ADCPs). ADCP data were postprocessed to create text files describing the three-dimensional velocity characteristics in each transect. Bathymetry data were measured at an average transect spacing of about 800 feet by means of a boat-mounted single-beam echosounder. Depth information obtained from the echosounder were postprocessed with water-surface slope and elevation information collected during the surveys to compute stream-bed elevations. The bathymetry data were written to text files formatted as a series of space-delimited x-, y-, and z-coordinates. Two separate dye-tracer studies were done on different days in overlapping stream segments in an 18.3-mile section of the study reach to assess transverse mixing characteristics in the Ohio River. Rhodamine WT dye was injected into the river at a constant rate, and concentrations were measured in downstream cross sections, generally spaced 1 to 2 miles apart. The dye was injected near the Kentucky shoreline during the first study and near the Ohio shoreline during the second study. Dye concentrations were measured along transects in the river by means of calibrated fluorometers equipped with flow-through chambers, automatic temperature compensation, and internal data loggers. The use of flow-through chambers permitted water to be pumped continuously out of the river from selected depths and through the fluorometer for measurement as the boat traversed the river. Time-tagged concentration readings were joined with horizontal coordinate data simultaneously captured from a differentially corrected Global Positioning System (GPS) device to create a plain-text, comma-separated variable file containing spatially tagged dye-concentration data. Plots showing the transverse variation in relative dye concentration indicate that, within the stream segments sampled, complete transverse mixing of the dye did not occur. In addition, the highest concentrations of dye tended to be nearest the side of the river from which the dye was injected. Velocity, bathymetry, and dye-concentration data collected during this study are available for Internet download by means of hyperlinks in this report. Data contained in this report were collected between October 2004 and March 2006.

  11. Ross Ice Shelf, Antarctica: Bathymetry, Structural Geology and Ocean Circulation from New IcePod Airborne Geophysical Data

    NASA Astrophysics Data System (ADS)

    Siddoway, C. S.; Tinto, K. J.; Bell, R. E.; Padman, L.; Fricker, H. A.; Springer, S. R.

    2016-12-01

    Rock exposures in the Ford Ranges, Marie Byrd Land (MBL), on the eastern margin of the Ross Embayment, contain direct evidence of the geological processes that led to formation of West Antarctica's continental lithosphere. Processes include wide regional extension, volcanism, and thermal reequilibration, with creation of crustal structures that are prone to reactivation today. Marie Byrd Land is tectonically active, as is evident from Late Pleistocene to Holocene eruptive centers, englacial volcanic tephra as young as 2200 years, a site of magma propagation inferred from POLEnet seismic records, and the occurrence of a 2012 earthquake cluster of magnitude M4.4 to M5.5 north of Edward VII Peninsula. However, the lithosphere underlying the Ross Ice Shelf (RIS) is poorly known due to the thick cover of shelf ice floating on the ocean, difficult to penetrate by satellite remote sensing or other methods. Airborne geophysical data for the Ford Ranges and the Ross Ice Shelf (RIS) suggest that the rock formations and structures that underlie MBL continue beneath the RIS. Notable features known in outcrop and detected/inferred from potential fields data are Pleistocene or younger mafic volcanic centers and Cretaceous core complexes, both likely associated with wrench faults. The Ford Ranges legacy dataset that now provides a fundamental basis for sub-RIS geological interpretation is a product of research in coastal MBL led by B.P. Luyendyk from 1989 - 2006. To improve our knowledge of lithospheric evolution, identify active faults and prospective zones of volcanism/heat flow, and to determine the sub-RIS bathymetry, the RIS sector is being explored via new Icepod aerogeophysics acquisition during the ROSETTA-Ice project (Ross Ocean and ice Shelf Environment, and Tectonic setting Through Aerogeophysical surveys and modeling), now underway over this vast under-explored sector of the Ross Embayment. ROSETTA-Ice collects and employs new gravity data with magnetics to delineate sediments, bedrock geological units, and faults beneath the RIS, then model bathymetry. This poster will share preliminary results and interpretations. The improved characterization of the subglacial geology and bathymetry will aid in refinement of the tectonic framework and models of oceanographic circulation, with bearing on RIS stability.

  12. Towards AEM bathymetry and conductivity estimation in very shallow hypersaline waters of the Coorong, South Australia

    NASA Astrophysics Data System (ADS)

    Vrbancich, Julian

    2013-01-01

    The Coorong is a shallow (typically 1.5m) narrow coastal lagoon extending ~110km parallel to the coastline, and forms an extensive wetland area of international significance. It is divided into two lagoons, the North and South lagoons. The northern lagoon section opens into the mouth of the Murray River and the southern lagoon section is essentially closed, being connected to the North Lagoon via a choke point. During periods of extended drought where there is no flooding to flush the lagoon system, hypersalinisation gradually increases, especially in the southern lagoon section where salinity may be in excess of four times that of seawater. A helicopter time-domain EM (TEM) system was flown along the Coorong, as extensive flood waters from Queensland (2010) were reaching the North Lagoon lowering the salinity. The derived bathymetry from TEM data was shown to be in fair agreement with known bathymetry in areas of high salinity. The conductivities of waters ranging from saline to hypersaline in the North Lagoon and upper half of the South Lagoon, and underlying sediment, was estimated from inversion of TEM data using the known water depth as a fixed parameter. The derived conductivity varied from ~1.6S/m in the north of the North Lagoon to ~8-10S/m at its southern end and in the South Lagoon. These values underestimate the known strong salinity gradient (~0.6 to ~13S/m respectively) observed from a sparse distribution of fixed conductivity meters located in the Coorong. The application of AEM in this region is challenging because of the very large range of water conductivities and because the average water depths are comparable to the typical residuals between known depths and depths derived from AEM data in previous studies in Australian coastal waters. These results do however show that AEM has the potential to remotely map shallow water depths, and water conductivity gradients using known bathymetry to monitor hypersalinisation in these significant wetland areas where changes in the ecology have been linked to high salinity.

  13. Detailed surveys of the transform margin morphology in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E.; Paull, C. K.; Caress, D. W.; Thomas, H.; Gwiazda, R.; Herguera, J.; McGann, M. L.; Edwards, B. D.; Hinojosa, A.; Mejia Mercado, B.; Sanchez, A.; Conlin, D.; Thompson, D.

    2012-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) conducted detailed surveys of the seafloor morphology at nine representative sections of the North American - Pacific Plate boundary on the floor of the Gulf of California during a two-ship expedition in March and April 2012. One of the objectives of this program was to better understand how the fault is manifested on the seafloor and whether any secondary deformation adjacent to the fault can be observed. An autonomous underwater vehicle (AUV) provided detailed bathymetry of the seafloor, and a remotely operated vehicle (ROV) allowed ground-truth observations and sampling of the surveyed area. The AUV surveys provide high-resolution multibeam bathymetry with a vertical precision of 0.15 m, horizontal resolution of 1.0 and 2-10 kHz CHIRP seismic reflection profiles. Each of the surveys covered ~ 14 km2 areas and were spread out over 400 m, between water depths of 350 and 2800 m and separated by three seafloor spreading centers. The bathymetry shows the morphology of these fault zones in unprecedented detail. The maps allowed the active fault trace to be located so that it could be inspected and the seafloor sampled during ROV dives. The bathymetry from a representative survey on the southern side of the Guaymas Basin shows an obvious NW-SE lineation, only a few meters wide, formed by distinct scarps and/or troughs on the seafloor, and inferred to be the trace of the active fault. CHIRP profiles show offsets in reflecting horizons extend to the modern seafloor, further supporting the concept that these lineations are the trace of the active fault. This survey is unique in that an extensive section of the seafloor and near subsurface contains a wave-like fabric that only occurs on the North American side of the fault, with crests that run ~ E-W, characteristically ~ 3 m in amplitude and ~ 100 in wavelength. Ultimately, whether this fabric is a result of a depositional process or structural deformation associated with the regional tectonics is unclear. However, this was the only morphology observed that suggests secondary deformation.

  14. High Resolution Modelling of the Congo River's Multi-Threaded Main Stem Hydraulics

    NASA Astrophysics Data System (ADS)

    Carr, A. B.; Trigg, M.; Tshimanga, R.; Neal, J. C.; Borman, D.; Smith, M. W.; Bola, G.; Kabuya, P.; Mushie, C. A.; Tschumbu, C. L.

    2017-12-01

    We present the results of a summer 2017 field campaign by members of the Congo River users Hydraulics and Morphology (CRuHM) project, and a subsequent reach-scale hydraulic modelling study on the Congo's main stem. Sonar bathymetry, ADCP transects, and water surface elevation data have been collected along the Congo's heavily multi-threaded middle reach, which exhibits complex in-channel hydraulic processes that are not well understood. To model the entire basin's hydrodynamics, these in-channel hydraulic processes must be parameterised since it is not computationally feasible to represent them explicitly. Furthermore, recent research suggests that relative to other large global rivers, in-channel flows on the Congo represent a relatively large proportion of total flow through the river-floodplain system. We therefore regard sufficient representation of in-channel hydraulic processes as a Congo River hydrodynamic research priority. To enable explicit representation of in-channel hydraulics, we develop a reach-scale (70 km), high resolution hydraulic model. Simulation of flow through individual channel threads provides new information on flow depths and velocities, and will be used to inform the parameterisation of a broader basin-scale hydrodynamic model. The basin-scale model will ultimately be used to investigate floodplain fluxes, flood wave attenuation, and the impact of future hydrological change scenarios on basin hydrodynamics. This presentation will focus on the methodology we use to develop a reach-scale bathymetric DEM. The bathymetry of only a small proportion of channel threads can realistically be captured, necessitating some estimation of the bathymetry of channels not surveyed. We explore different approaches to this bathymetry estimation, and the extent to which it influences hydraulic model predictions. The CRuHM project is a consortium comprising the Universities of Kinshasa, Rhodes, Dar es Salaam, Bristol, and Leeds, and is funded by Royal Society-DFID Africa Capacity Building Initiative. The project aims to strengthen institutional research capacity and advance our understanding of the hydrology, hydrodynamics and sediment dynamics of the world's second largest river system through fieldwork and development of numerical models.

  15. Studying Near-Trench Characteristics of the 2011 Tohoku-Oki Megathrust Rupture Using Differential Multi-Beam Bathymetry before and after the Earthquake

    NASA Astrophysics Data System (ADS)

    Sun, T.; Fujiwara, T.; Kodaira, S.; Wang, K.; He, J.

    2014-12-01

    Large coseismic motion (up to ~ 31 m) of seafloor GPS sites during the 2011 M 9 Tohoku earthquake suggests large rupture at shallow depths of the megathrust. However, compilation of all published rupture models, constrained by the near-field seafloor geodetic observation and also various other datasets, shows large uncertainties in the slip of the most near-trench (within ~ 50 km from the trench) part of the megathrust. Repeated multi-beam bathymetry surveys that cover the trench axis, carried out by Japan Agency for Marine-Earth Science and Technology, for the first time recorded coseismic deformation in a megathrust earthquake at the trench. In previous studies of the differential bathymetry (DB) before and after the earthquake to determine coseismic fault slip, only the rigid-body translation component of the upper plate deformation was considered. In this work, we construct Synthetic Differential Bathymetry (SDB) using an elastic deformation model and make comparisons with the observed DB. We use a 3-D elastic Finite Element model with actual fault geometry of the Japan trench subduction zone and allowing the rupture to breach the trench. The SDB can well predict short-wavelength variations in the observed DB. Our tests using different coseismic slip models show that the internal elastic deformation of the hanging wall plays an important role in generating DB. Comparing the SDB with the observed DB suggests that the largest slip is located within ~ 50 km from the trench. The SDB proves to be the most effective tool to evaluate the performance of different rupture models in predicting near-trench slip. Our SDB work will further explore the updip slip variation. The SDB may help to constrain the slip gradient in the updip direction and may help to determine whether the large shallow slip in the Tohoku earthquake plateaued at the trench or before reaching the trench. Resolving these issues will provide some of the key tests for various competing models that were proposed to explain the large shallow rupture in this event.

  16. A coupled-mode model for the hydroelastic analysis of large floating bodies over variable bathymetry regions

    NASA Astrophysics Data System (ADS)

    Belibassakis, K. A.; Athanassoulis, G. A.

    2005-05-01

    The consistent coupled-mode theory (Athanassoulis & Belibassakis, J. Fluid Mech. vol. 389, 1999, p. 275) is extended and applied to the hydroelastic analysis of large floating bodies of shallow draught or ice sheets of small and uniform thickness, lying over variable bathymetry regions. A parallel-contour bathymetry is assumed, characterized by a continuous depth function of the form h( {x,y}) {=} h( x ), attaining constant, but possibly different, values in the semi-infinite regions x {<} a and x {>} b. We consider the scattering problem of harmonic, obliquely incident, surface waves, under the combined effects of variable bathymetry and a floating elastic plate, extending from x {=} a to x {=} b and {-} infty {<} y{<}infty . Under the assumption of small-amplitude incident waves and small plate deflections, the hydroelastic problem is formulated within the context of linearized water-wave and thin-elastic-plate theory. The problem is reformulated as a transition problem in a bounded domain, for which an equivalent, Luke-type (unconstrained), variational principle is given. In order to consistently treat the wave field beneath the elastic floating plate, down to the sloping bottom boundary, a complete, local, hydroelastic-mode series expansion of the wave field is used, enhanced by an appropriate sloping-bottom mode. The latter enables the consistent satisfaction of the Neumann bottom-boundary condition on a general topography. By introducing this expansion into the variational principle, an equivalent coupled-mode system of horizontal equations in the plate region (a {≤} x {≤} b) is derived. Boundary conditions are also provided by the variational principle, ensuring the complete matching of the wave field at the vertical interfaces (x{=}a and x{=}b), and the requirements that the edges of the plate are free of moment and shear force. Numerical results concerning floating structures lying over flat, shoaling and corrugated seabeds are presented and compared, and the effects of wave direction, bottom slope and bottom corrugations on the hydroelastic response are presented and discussed. The present method can be easily extended to the fully three-dimensional hydroelastic problem, including bodies or structures characterized by variable thickness (draught), flexural rigidity and mass distributions.

  17. New Crustal Boundary Revealed Beneath the Ross Ice Shelf, Antarctica, through ROSETTA-Ice Integrated Aerogeophysics, Geology, and Ocean Research

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Bell, R. E.; Lockett, A.; Wilner, J.

    2017-12-01

    Now submerged within marine plateaus and rises bordering Antarctica, Australia and Zealandia, the East Gondwana accretionary margin was a belt of terranes and stitched by magmatic arcs, later stretched into continental ribbons separated by narrow elongate rifts. This crustal architecture is known from marine geophysical exploration and ocean drilling of the mid-latitude coastal plateaus and rises. A concealed sector of the former East Gondwana margin that underlies the Ross Ice Shelf (RIS), Antarctica, is the focus of ROSETTA-ICE, a new airborne data acquisition campaign that explores the crustal makeup, tectonic boundaries and seafloor bathymetry beneath RIS. Gravimeters and a magnetometer are deployed by LC130 aircraft surveying along E-W lines spaced at 10 km, and N-S tie lines at 55 km, connect 1970s points (RIGGS) for controls on ocean depth and gravity. The ROSETTA-ICE survey, 2/3 completed thus far, provides magnetic anomalies, Werner depth-to-basement solutions, a new gravity-based bathymetric model at 20-km resolution, and a new crustal density map tied to the 1970s data. Surprisingly, the data reveal that the major lithospheric boundary separating East and West Antarctica lies 300 km east of the Transantarctic Mountains, beneath the floating RIS. The East and West regions have contrasting geophysical characteristics and bathymetry, with relatively dense lithosphere, low amplitude magnetic anomalies, and deep bathymetry on the East Antarctica side, and high amplitude magnetic anomalies, lower overall density and shallower water depths on the West Antarctic side. The Central High, a basement structure cored at DSDP Site 270 and seismically imaged in the Ross Sea, continues beneath RIS as a faulted but coherent crustal ribbon coincident with the tectonic boundary. The continuity of Gondwana margin crustal architecture discovered beneath the West Antarctic Ice Sheet requires a revision of the existing tectonic framework. The sub-RIS narrow rift basins and transfer zones, and the crustal boundary that is well-separated from the Transantarctic Mountains front, control the bathymetry, impart the large-scale patterning within and upon the base of the ice sheet, influence oceanographic circulation, and therefore are of import for Ross Ice Shelf stability.

  18. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of ice stream behavior. The crustal boundary governs the interaction between these systems exerts a fundamental control on the stability of the Ross Ice Shelf.

  19. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes

    NASA Astrophysics Data System (ADS)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.

    2015-12-01

    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  20. Anomalous Structure of Oceanic Lithosphere in the North Atlantic and Arctic Oceans: A Preliminary Analysis Based on Bathymetry, Gravity and Crustal Structure

    NASA Astrophysics Data System (ADS)

    Barantsrva, O.

    2014-12-01

    We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results, which we use to examine factors that control variations in bathymetry, sedimentary and crustal thicknesses in these anomalous oceanic domains.

  1. Modeling Water-Surface Elevations and Virtual Shorelines for the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Magirl, Christopher S.; Breedlove, Michael J.; Webb, Robert H.; Griffiths, Peter G.

    2008-01-01

    Using widely-available software intended for modeling rivers, a new one-dimensional hydraulic model was developed for the Colorado River through Grand Canyon from Lees Ferry to Diamond Creek. Solving one-dimensional equations of energy and continuity, the model predicts stage for a known steady-state discharge at specific locations, or cross sections, along the river corridor. This model uses 2,680 cross sections built with high-resolution digital topography of ground locations away from the river flowing at a discharge of 227 m3/s; synthetic bathymetry was created for topography submerged below the 227 m3/s water surface. The synthetic bathymetry was created by adjusting the water depth at each cross section up or down until the model?s predicted water-surface elevation closely matched a known water surface. This approach is unorthodox and offers a technique to construct one-dimensional hydraulic models of bedrock-controlled rivers where bathymetric data have not been collected. An analysis of this modeling approach shows that while effective in enabling a useful model, the synthetic bathymetry can differ from the actual bathymetry. The known water-surface profile was measured using elevation data collected in 2000 and 2002, and the model can simulate discharges up to 5,900 m3/s. In addition to the hydraulic model, GIS-based techniques were used to estimate virtual shorelines and construct inundation maps. The error of the hydraulic model in predicting stage is within 0.4 m for discharges less than 1,300 m3/s. Between 1,300-2,500 m3/s, the model accuracy is about 1.0 m, and for discharges between 2,500-5,900 m3/s, the model accuracy is on the order of 1.5 m. In the absence of large floods on the flow-regulated Colorado River in Grand Canyon, the new hydraulic model and the accompanying inundation maps are a useful resource for researchers interested in water depths, shorelines, and stage-discharge curves for flows within the river corridor with 2002 topographic conditions.

  2. Gravity model for the North Atlantic ocean mantle: results, uncertainties and links to regional geodynamics

    NASA Astrophysics Data System (ADS)

    Barantsrva, O.; Artemieva, I. M.; Thybo, H.

    2015-12-01

    We present the results of gravity modeling for the North Atlantic region based on interpretation of GOCE gravity satellite data. First, to separate the gravity signal caused by density anomalies within the crust and the upper mantle, we subtract the lower harmonics in the gravity field, which are presumably caused by deep density structure of the Earth (the core and the lower mantle). Next, the gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crustal model. Our "basic model" is constrained by a recent regional seismic model EUNAseis for the crustal structure (Artemieva and Thybo, 2013); for bathymetry and topography we use a global ETOPO1 model by NOAA. We test sensitivity of the results to different input parameters, such as bathymetry, crustal structure, and gravity field. For bathymetry, we additionally use GEBCO data; for crustal correction - a global model CRUST 1.0 (Laske, 2013); for gravity - EGM2008 (Pavlis, 2012). Sensitivity analysis shows that uncertainty in the crustal structure produces the largest deviation from "the basic model". Use of different bathymetry data has little effect on the final results, comparable to the interpolation error. The difference in mantle residual gravity models based on GOCE and EMG2008 gravity data is 5-10 mGal. The results based on two crustal models have a similar pattern, but differ significantly in amplitude (ca. 250 mGal) for the Greenland-Faroe Ridge. The results demonstrate the presence of a strong gravity and density heterogeneity in the upper mantle in the North Atlantic region. A number of mantle residual gravity anomalies are robust features, independent of the choice of model parameters. This include (i) a sharp contrast at the continent-ocean transition, (ii) positive mantle gravity anomalies associated with continental fragments (microcontinents) in the North Atlantic ocean; (iii) negative mantle gravity anomalies which mark regions with anomalous oceanic mantle and the Mid-Atlantic Ridge. To understand better a complex geodynamics mosaic in the region, we compare our results with regional geochemical data (Korenaga and Klemen, 2000), and find that residual mantle gravity anomalies are well correlated with anomalies in epsilon-Nd and iron-depletion.

  3. Mapping the Gaps: Building a pipeline for contributing and accessing crowdsourced bathymetry data

    NASA Astrophysics Data System (ADS)

    Rosenberg, A. M.; Jencks, J. H.; Robertson, E.; Reed, A.

    2017-12-01

    Both the Moon and Mars have been more comprehensively mapped than the Earth's oceans. Notably, less than 15% of the world's deep ocean and 50% of the world's coastal waters (<200m) have been measured directly. A knowledge of the depth and shape of the seafloor underpins the safe, sustainable, cost effective execution of almost every human activity that takes place at sea, yet most of the seafloor remains virtually unmapped, unobserved, and unexplored. Since 2014, the International Hydrographic Organization (IHO) has encouraged innovative supplementary data-gathering and data-maximizing initiatives to increase knowledge of the bathymetry of the seas, oceans and coastal waters including crowdsourced bathymetry (CSB). CSB can be used to identify areas where nautical charts are inadequate or applied to charts when the source and uncertainties of the data are well understood. The key to successful CSB efforts is volunteer observers who operate vessels-of-opportunity in places where charts are poor or where the seafloor is dynamic and hydrographic assets are not easily available. NOAA chairs the IHO CSB Working Group and hosts the IHO Data Centre for Digital Bathymetry (IHO DCDB) at NOAA's National Centers for Environmental Information (NCEI). NCEI has been working to enhance the infrastructure and interface of the DCDB to provide archiving, discovery, display and retrieval of CSB contributed from mariners around the world. NCEI, in partnership with NOAA's Office of Coast Survey and Rose Point Navigation Systems, established a citizen science pilot program in 2015 to harvest CSB from Electronic Navigation Systems. Today, data providers can submit xyz, csv, or geoJSON for automated ingest, while other formats can be accommodated with minimal system code changes. Like most marine geophysical datasets at NCEI, users can discover, filter, and request CSB data via a map viewer (https://maps.ngdc.noaa.gov/viewers/csb/). Now that the CSB pipeline has been established, NCEI has begun to plan future work that includes expanding the current infrastructure to account for increasing data volumes and implementing a point storage technology that would allow results to be dynamically generated and displayed through heat maps, while continuing to increase the number of data contributors to the IHO CSB initiative.

  4. Sea-floor texture and physiographic zones of the inner continental shelf from Salisbury to Nahant, Massachusetts, including the Merrimack Embayment and Western Massachusetts Bay

    USGS Publications Warehouse

    Pendleton, Elizabeth E.; Barnhardt, Walter A.; Baldwin, Wayne E.; Foster, David S.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.

    2015-10-26

    A series of maps that describe the distribution and texture of sea-floor sediments and physiographic zones of Massachusetts State waters from Nahant to Salisbury, Massachusetts, including western Massachusetts Bay, have been produced by using high-resolution geophysical data (interferometric and multibeam swath bathymetry, lidar bathymetry, backscatter intensity, and seismic reflection profiles), sediment samples, and bottom photographs. These interpretations are intended to aid statewide efforts to inventory and manage coastal and marine resources, link with existing data interpretations, and provide information for research focused on coastal evolution and environmental change. Marine geologic mapping of the inner continental shelf of Massachusetts is a statewide cooperative effort of the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management.

  5. High-resolution geophysical data from the inner continental shelf—Buzzards Bay, Massachusetts

    USGS Publications Warehouse

    Ackerman, Seth D.; Andrews, Brian D.; Foster, David S.; Baldwin, Wayne E.; Schwab, William C.

    2012-01-01

    The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have cooperated to map approximately 410 square kilometers (km²) of the inner continental shelf in Buzzards Bay, Massachusetts. This report contains geophysical data collected by the USGS on three cruises conducted in 2009, 2010, and 2011, and additional bathymetry data collected by the National Oceanic and Atmospheric Administration in 2004. The geophysical data include (1) swath bathymetry using interferometric sonar and multibeam echosounder systems, (2) acoustic backscatter from sidescan sonar, and (3) seismic-reflection profiles from a chirp subbottom profiler. These spatial data support research on the Quaternary evolution of Buzzards Bay, the influence of sea-level change and sediment supply on coastal evolution, and efforts to understand the type, distribution, and quality of subtidal marine habitats in the coastal ocean of Massachusetts.

  6. Transient Invariant and Quasi-Invariant Structures in an Example of an Aperiodically Time Dependent Fluid Flow

    NASA Astrophysics Data System (ADS)

    Fortunati, Alessandro; Wiggins, Stephen

    Starting from the concept of invariant KAM tori for nearly-integrable Hamiltonian systems with periodic or quasi-periodic nonautonomous perturbation, the paper analyzes the “analogue” of this class of invariant objects when the dependence on time is aperiodic. The investigation is carried out in a model motivated by the problem of a traveling wave in a channel over a smooth, quasi- and asymptotically flat (from which the “transient” feature) bathymetry, representing a case in which the described structures play the role of barriers to fluid transport in phase space. The paper provides computational evidence for the existence of transient structures also for “large” values of the perturbation size, as a complement to the rigorous results already proven by the first author for real-analytic bathymetry functions.

  7. Tidal Response to Sea-Level Rise in Different Types of Estuaries: The Importance of Length, Bathymetry, and Geometry

    NASA Astrophysics Data System (ADS)

    Du, Jiabi; Shen, Jian; Zhang, Yinglong J.; Ye, Fei; Liu, Zhuo; Wang, Zhengui; Wang, Ya Ping; Yu, Xin; Sisson, Mac; Wang, Harry V.

    2018-01-01

    Tidal response to sea-level rise (SLR) varies in different coastal systems. To provide a generic pattern of tidal response to SLR, a systematic investigation was conducted using numerical techniques applied to idealized and realistic estuaries, with model results cross-checked by analytical solutions. Our results reveal that the response of tidal range to SLR is nonlinear, spatially heterogeneous, and highly affected by the length and bathymetry of an estuary and weakly affected by the estuary convergence with an exception of strong convergence. Contrary to the common assumption that SLR leads to a weakened bottom friction, resulting in increased tidal amplitude, we demonstrate that tidal range is likely to decrease in short estuaries and in estuaries with a narrow channel and large low-lying shallow areas.

  8. An empirical model of the tidal currents in the Gulf of the Farallones

    USGS Publications Warehouse

    Steger, J.M.; Collins, C.A.; Schwing, F.B.; Noble, M.; Garfield, N.; Steiner, M.T.

    1998-01-01

    Candela et al. (1990, 1992) showed that tides in an open ocean region can be resolved using velocity data from a ship-mounted ADCP. We use their method to build a spatially varying model of the tidal currents in the Gulf of the Farallones, an area of complicated bathymetry where the tidal velocities in some parts of the region are weak compared to the mean currents. We describe the tidal fields for the M2, S2, K1, and O1 constituents and show that this method is sensitive to the model parameters and the quantity of input data. In areas with complex bathymetry and tidal structures, a large amount of spatial data is needed to resolve the tides. A method of estimating the associated errors inherent in the model is described.

  9. Oceanographic influences on the sea ice cover in the Sea of Okhotsk

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Parkinson, C. L.

    1981-01-01

    Sea ice conditions in the Sea of Okhotsk, as determined by satellite images from the electrically scanning microwave radiometer on board Nimbus 5, were analyzed in conjunction with the known oceanography. In particular, the sea ice coverage was compared with the bottom bathymetry and the surface currents, water temperatures, and salinity. It is found that ice forms first in cold, shallow, low salinity waters. Once formed, the ice seems to drift in a direction approximating the Okhotsk-Kuril current system. Two basic patterns of ice edge positioning which persist for significant periods were identified as a rectangular structure and a wedge structure. Each of these is strongly correlated with the bathymetry of the region and with the known current system, suggesting that convective depth and ocean currents play an important role in determining ice patterns.

  10. Optimizing spectral wave estimates with adjoint-based sensitivity maps

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Veeramony, Jay; Flampouris, Stylianos

    2014-04-01

    A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height ( H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model-data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point.

  11. High-resolution bathymetry as a primary exploration tool for seafloor massive sulfide deposits - lessons learned from exploration on the Mid-Atlantic and Juan de Fuca Ridges, and northern Lau Basin

    NASA Astrophysics Data System (ADS)

    Jamieson, J. W.; Clague, D. A.; Petersen, S.; Yeo, I. A.; Escartin, J.; Kwasnitschka, T.

    2016-12-01

    High-resolution, autonomous underwater vehicle (AUV)-derived multibeam bathymetry is increasingly being used as an exploration tool for delineating the size and extent of hydrothermal vent fields and associated seafloor massive sulfide deposits. However, because of the limited amount of seafloor that can be surveyed during a single dive, and the challenges associated with distinguishing hydrothermal chimneys and mounds from other volcanic and tectonic features using solely bathymetric data, AUV mapping surveys have largely been employed as a secondary exploration tool once hydrothermal sites have been discovered using other exploration methods such as plume, self-potential and TV surveys, or ROV and submersible dives. Visual ground-truthing is often required to attain an acceptable level of confidence in the hydrothermal origin of features identified in AUV-derived bathymetry. Here, we present examples of high-resolution bathymetric surveys of vent fields from a variety of tectonic environments, including slow- and intermediate-rate mid-ocean ridges, oceanic core complexes and back arc basins. Results illustrate the diversity of sulfide deposit morphologies, and the challenges associated with identifying hydrothermal features in different tectonic environments. We present a developing set of criteria that can be used to distinguish hydrothermal deposits in bathymetric data, and how AUV surveys can be used either on their own or in conjunction with other exploration techniques as a primary exploration tool.

  12. Using the in-line component for fixed-wing EM 1D inversion

    NASA Astrophysics Data System (ADS)

    Smiarowski, Adam

    2015-09-01

    Numerous authors have discussed the utility of multicomponent measurements. Generally speaking, for a vertical-oriented dipole source, the measured vertical component couples to horizontal planar bodies while the horizontal in-line component couples best to vertical planar targets. For layered-earth cases, helicopter EM systems have little or no in-line component response and as a result much of the in-line signal is due to receiver coil rotation and appears as noise. In contrast to this, the in-line component of a fixed-wing airborne electromagnetic (AEM) system with large transmitter-receiver offset can be substantial, exceeding the vertical component in conductive areas. This paper compares the in-line and vertical response of a fixed-wing airborne electromagnetic (AEM) system using a half-space model and calculates sensitivity functions. The a posteriori inversion model parameter uncertainty matrix is calculated for a bathymetry model (conductive layer over more resistive half-space) for two inversion cases; use of vertical component alone is compared to joint inversion of vertical and in-line components. The joint inversion is able to better resolve model parameters. An example is then provided using field data from a bathymetry survey to compare the joint inversion to vertical component only inversion. For each inversion set, the difference between the inverted water depth and ship-measured bathymetry is calculated. The result is in general agreement with that expected from the a posteriori inversion model parameter uncertainty calculation.

  13. Scaling depth-induced wave-breaking in two-dimensional spectral wave models

    NASA Astrophysics Data System (ADS)

    Salmon, J. E.; Holthuijsen, L. H.; Zijlema, M.; van Vledder, G. Ph.; Pietrzak, J. D.

    2015-03-01

    Wave breaking in shallow water is still poorly understood and needs to be better parameterized in 2D spectral wave models. Significant wave heights over horizontal bathymetries are typically under-predicted in locally generated wave conditions and over-predicted in non-locally generated conditions. A joint scaling dependent on both local bottom slope and normalized wave number is presented and is shown to resolve these issues. Compared to the 12 wave breaking parameterizations considered in this study, this joint scaling demonstrates significant improvements, up to ∼50% error reduction, over 1D horizontal bathymetries for both locally and non-locally generated waves. In order to account for the inherent differences between uni-directional (1D) and directionally spread (2D) wave conditions, an extension of the wave breaking dissipation models is presented. By including the effects of wave directionality, rms-errors for the significant wave height are reduced for the best performing parameterizations in conditions with strong directional spreading. With this extension, our joint scaling improves modeling skill for significant wave heights over a verification data set of 11 different 1D laboratory bathymetries, 3 shallow lakes and 4 coastal sites. The corresponding averaged normalized rms-error for significant wave height in the 2D cases varied between 8% and 27%. In comparison, using the default setting with a constant scaling, as used in most presently operating 2D spectral wave models, gave equivalent errors between 15% and 38%.

  14. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply

    NASA Astrophysics Data System (ADS)

    Olive, Jean-Arthur; Behn, Mark; Ito, Garrett; Escartin, Javier; Buck, Roger; Howell, Samuel

    2016-04-01

    Abyssal hills are the most common topographic feature on the surface of the solid Earth, yet the detailed mechanisms through which they are formed remain a matter of debate. Classical seafloor observations suggest hills acquire their shape at mid-ocean ridges through a combination of normal faulting and volcanic accretion. However, recent studies have proposed that the fabric of the seafloor reflects rapid fluctuations in ridge magma supply caused by oscillations in sea level modulating the partial melting process beneath the ridge [Crowley et al., 2015, Science]. In order to move this debate forward, we propose a modeling framework relating the magma supply of a mid-ocean ridge to the morphology of the seafloor it produces, i.e., the spacing and amplitude of abyssal hills. We specifically assess whether fluctuations in melt supply of a given periodicity can be recorded in seafloor bathymetry through (1) static compensation of crustal thickness oscillations, (2) volcanic extrusion, and (3) fault growth modulated by dike injection. We find that topography-building processes are generally insensitive to fluctuations in melt supply on time scales shorter than ~50-100 kyr. Further, we show that the characteristic wavelengths found in seafloor bathymetry across all spreading rates are best explained by simple tectono-magmatic interaction models, and require no periodic (climatic) forcing. Finally, we explore different spreading regimes where a smaller amplitude sea-level signal super-imposed on the dominant faulting signal could be most easily resolved.

  15. Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope

    NASA Astrophysics Data System (ADS)

    Saylam, Kutalmis; Brown, Rebecca A.; Hupp, John R.

    2017-06-01

    Airborne Lidar bathymetry (ALB) is an effective and a rapidly advancing technology for mapping and characterizing shallow coastal water zones as well as inland fresh-water basins such as rivers and lakes. The ability of light beams to detect and traverse shallow water columns has provided valuable information about unmapped and often poorly understood coastal and inland water bodies of the world. Estimating ALB survey results at varying water clarity and depth conditions is essential for realizing project expectations and preparing budgets accordingly. In remote locations of the world where in situ water clarity measurements are not feasible or possible, using multiband satellite imagery can be an effective tool for estimating and addressing such considerations. For this purpose, we studied and classified reflected electromagnetic energy from selected water bodies acquired by RapidEye sensor and then correlated findings with ALB survey results. This study was focused not on accurately measuring depth from optical bathymetry but rather on using multiband satellite imagery to quickly predict ALB survey results and identify potentially turbid water bodies with limited depth penetration. For this study, we constructed an in-house algorithm to confirm ALB survey findings using bathymetric waveform information. The study findings are expected to contribute to the ongoing understanding of forecasting ALB survey expectations in unknown and varying water conditions, especially in remote and inaccessible parts of the world.

  16. 30 CFR 251.12 - Submission, inspection, and selection of geophysical data and information collected under a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 251.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT..., shallow and deep subbottom profiles, bathymetry, sidescan sonar, gravity and magnetic surveys, and special...

  17. Coastal Bathymetry Using Satellite Observation in Support of Intelligence Preparation of the Environment

    DTIC Science & Technology

    2011-09-01

    Sensor ..........................................................................25 2. The Environment for Visualizing Images 4.7 (ENVI......DEM Digital Elevation Model ENVI Environment for Visualizing Images HADR Humanitarian and Disaster Relief IfSAR Interferometric Synthetic Aperture

  18. Publications - RI 2016-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in ; Bathymetry; Coastal; Coastal and River; Earthquake Related Slope Failure; Emergency Preparedness; Engineering

  19. 30 CFR 551.12 - Submission, inspection, and selection of geophysical data and information collected under a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 551.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... profiles, bathymetry, sidescan sonar, gravity and magnetic surveys, and special studies such as refraction...

  20. 30 CFR 551.12 - Submission, inspection, and selection of geophysical data and information collected under a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 551.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... profiles, bathymetry, sidescan sonar, gravity and magnetic surveys, and special studies such as refraction...

  1. 30 CFR 551.12 - Submission, inspection, and selection of geophysical data and information collected under a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 551.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... profiles, bathymetry, sidescan sonar, gravity and magnetic surveys, and special studies such as refraction...

  2. Publications - RDF 2015-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in -bay Shapefile 24.5 M Metadata - Read me Keywords Bathymetry; Bering Sea; Chukchi Sea; Coastal; Gambell

  3. 30 CFR 282.5 - Disclosure of data and information to the public.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) in compliance with stipulations or orders concerning protection of environmental aspects of the lease may be made available to the public 60 days after...

  4. Distribution of runup heights of the December 26, 2004 tsunami in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Choi, Byung Ho; Hong, Sung Jin; Pelinovsky, Efim

    2006-07-01

    A massive earthquake with magnitude 9.3 occurred on December 26, 2004 off the northern Sumatra generated huge tsunami waves affected many coastal countries in the Indian Ocean. A number of field surveys have been performed after this tsunami event; in particular, several surveys in the south/east coast of India, Andaman and Nicobar Islands, Sri Lanka, Sumatra, Malaysia, and Thailand have been organized by the Korean Society of Coastal and Ocean Engineers from January to August 2005. Spatial distribution of the tsunami runup is used to analyze the distribution function of the wave heights on different coasts. Theoretical interpretation of this distribution is associated with random coastal bathymetry and coastline led to the log-normal functions. Observed data also are in a very good agreement with log-normal distribution confirming the important role of the variable ocean bathymetry in the formation of the irregular wave height distribution along the coasts.

  5. Simulations and analysis of asteroid-generated tsunamis using the shallow water equations

    NASA Astrophysics Data System (ADS)

    Berger, M. J.; LeVeque, R. J.; Weiss, R.

    2016-12-01

    We discuss tsunami propagation for asteroid-generated air bursts and water impacts. We present simulations for a range of conditions using the GeoClaw simulation software. Examples include meteors that span 5 to 250 MT of kinetic energy, and use bathymetry from the U.S. coastline. We also study radially symmetric one-dimensional equations to better explore the nature and decay rate of waves generated by air burst pressure disturbances traveling at the speed of sound in air, which is much greater than the gravity wave speed of the tsunami generated. One-dimensional simulations along a transect of bathymetry are also used to explore the resolution needed for the full two-dimensional simulations, which are much more expensive even with the use of adaptive mesh refinement due to the short wave lengths of these tsunamis. For this same reason, shallow water equations may be inadequate and we also discuss dispersive effects.

  6. Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Durand, Michael; Andreadis, Konstantinos M.; Alsdorf, Douglas E.; Lettenmaier, Dennis P.; Moller, Delwyn; Wilson, Matthew

    2008-10-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would provide measurements of water surface elevation (WSE) for characterization of storage change and discharge. River channel bathymetry is a significant source of uncertainty in estimating discharge from WSE measurements, however. In this paper, we demonstrate an ensemble-based data assimilation (DA) methodology for estimating bathymetric depth and slope from WSE measurements and the LISFLOOD-FP hydrodynamic model. We performed two proof-of-concept experiments using synthetically generated SWOT measurements. The experiments demonstrated that bathymetric depth and slope can be estimated to within 3.0 microradians or 50 cm, respectively, using SWOT WSE measurements, within the context of our DA and modeling framework. We found that channel bathymetry estimation accuracy is relatively insensitive to SWOT measurement error, because uncertainty in LISFLOOD-FP inputs (such as channel roughness and upstream boundary conditions) is likely to be of greater magnitude than measurement error.

  7. A nearshore processes field experiment at Cape Hatteras, North Carolina, U.S.A.

    USGS Publications Warehouse

    List, Jeffrey H.; Warner, John C.; Thieler, E. Robert; Haas, Kevin; Voulgaris, George; McNinch, Jesse E.; Brodie, Katherine L.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    A month-long field experiment focused on the nearshore hydrodynamics of Diamond Shoals adjacent to Cape Hatteras Point, North Carolina, was conducted in February 2010. The objectives of this multi-institutional experiment were to test hypotheses related to Diamond Shoals as a sink in the regional sediment budget and to provide data for evaluating numerical models. The experiment included in-situ instrumentation for measuring waves and currents; a video camera system for measuring surface currents at a nearshore transect; a radar system for measuring regional surface currents over Diamond Shoals and the adjacent coast; a vehicle-based scanning lidar and radar system for mapping beach topography, nearshore wave breaking intensity, bathymetry (through wave celerity inversion), and wave direction; and an amphibious vehicle system for surveying single-beam bathymetry. Preliminary results from wave and current measurements suggest that shoal-building processes were active during the experiment.

  8. Bathymetry of the Wilderness breach at Fire Island, New York, June 2013

    USGS Publications Warehouse

    Brownell, Andrew T.; Hapke, Cheryl J.; Spore, Nicholas J.; McNinch, Jesse E.

    2015-01-01

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, collaborated with the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina, to collect shallow water bathymetric data of the Wilderness breach on Fire Island, New York, in June 2013. The breach formed in October 2012 during Hurricane Sandy, and the USGS is involved in a post-Sandy effort to map, monitor, and model the morphologic evolution of the breach as part of Hurricane Sandy Supplemental Project GS2-2B: Linking Coastal Vulnerability and Process, Fire Island. This publication includes a bathymetric dataset of the breach and the adjacent nearshore on the ocean side of the island. The objective of the data collection and analysis is to map the bathymetry of the primary breach channel, ebb shoal, and nearshore bar system.

  9. Hyperspectral remote sensing of coral reefs: Deriving bathymetry, aquatic optical properties and a benthic spectral unmixing classification using AVIRIS data in the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Goodman, James Ansell

    My research focuses on the development and application of hyperspectral remote sensing as a valuable component in the assessment and management of coral ecosystems. Remote sensing provides an important quantitative ability to investigate the spatial dynamics of coral health and evaluate the impacts of local, regional and global change on this important natural resource. Furthermore, advances in detector capabilities and analysis methods, particularly with respect to hyperspectral remote sensing, are also increasing the accuracy and level of effectiveness of the resulting data products. Using imagery of Kaneohe Bay and French Frigate Shoals in the Hawaiian Islands, acquired in 2000 by NASA's Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), I developed, applied and evaluated algorithms for analyzing coral reefs using hyperspectral remote sensing data. Research included developing methods for acquiring in situ underwater reflectance, collecting spectral measurements of the dominant bottom components in Kaneohe Bay, applying atmospheric correction and sunglint removal algorithms, employing a semianalytical optimization model to derive bathymetry and aquatic optical properties, and developing a linear unmixing approach for deriving bottom composition. Additionally, algorithm development focused on using fundamental scientific principles to facilitate the portability of methods to diverse geographic locations and across variable environmental conditions. Assessments of this methodology compared favorably with available field measurements and habitat information, and the overall analysis demonstrated the capacity to derive information on water properties, bathymetry and habitat composition. Thus, results illustrated a successful approach for extracting environmental information and habitat composition from a coral reef environment using hyperspectral remote sensing.

  10. Nearshore coastal bathymetry data collected in 2016 from West Ship Island to Horn Island, Gulf Islands National Seashore, Mississippi

    USGS Publications Warehouse

    DeWitt, Nancy T.; Stalk, Chelsea A.; Fredericks, Jake J.; Flocks, James G.; Kelso, Kyle W.; Farmer, Andrew S.; Tuten, Thomas M.; Buster, Noreen A.

    2018-04-13

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, in cooperation with the U.S. Army Corps of Engineers, Mobile District, conducted bathymetric surveys of the nearshore waters surrounding Ship and Horn Islands, Gulf Islands National Seashore, Mississippi. The objective of this study was to establish base-level elevation conditions around West Ship, East Ship, and Horn Islands and their associated active littoral system prior to restoration activities. These activities include the closure of Camille Cut and the placement of sediment in the littoral zone of East Ship Island. These surveys can be compared with future surveys to monitor sediment migration patterns post-restoration and can also be measured against historic bathymetric datasets to further our understanding of island evolution.The USGS collected 667 line-kilometers (km) of single-beam bathymetry data and 844 line-km of interferometric swath bathymetry data in July 2016 under Field Activity Number 2016-347-FA. Data are provided in three datums: (1) the International Terrestrial Reference Frame of 2000 (ellipsoid height); (2) the North American Datum of 1983 (NAD83) CORS96 realization and the North American Vertical Datum of 1988 with respect to the GEOID12B model (orthometric height); and (3) NAD83 (CORS96) and Mean Lower Low Water (tidal datum). Data products, including x,y,zpoint datasets, trackline shapefiles, digital and handwritten Field Activity Collection Systems logs, 50-meter digital elevation model, and formal Federal Geographic Data Committee metadata, are available for download.

  11. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-02-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (<50 m wide) rivers from remotely sensed data by coupling high-resolution imagery with one-dimensional hydraulic modeling at so-called virtual gauging stations. These locations were identified as locations where the river contracted under low flows, exposing a substantial portion of the river bed. Topography of the exposed river bed was photogrammetrically extracted from high-resolution aerial imagery while the geometry of the remaining inundated portion of the channel was approximated based on adjacent bank topography and maximum depth assumptions. Full channel bathymetry was used to create hydraulic models that encompassed virtual gauging stations. Discharge for each aerial survey was estimated with the hydraulic model by matching modeled and remotely sensed wetted widths. Based on these results, synthetic width-discharge rating curves were produced for each virtual gauging station. In situ observations were used to determine the accuracy of wetted widths extracted from imagery (mean error 0.36 m), extracted bathymetry (mean vertical RMSE 0.23 m), and discharge (mean percent error 7% with a standard deviation of 6%). Sensitivity analyses were conducted to determine the influence of inundated channel bathymetry and roughness parameters on estimated discharge. Comparison of synthetic rating curves produced through sensitivity analyses show that reasonable ranges of parameter values result in mean percent errors in predicted discharges of 12%-27%.

  12. 3-D seismic study into the origin of a large seafloor depression on the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Pecher, I. A.; Waghorn, K. A.; Strachan, L. J.; Crutchley, G. J.; Bialas, J.; Sarkar, S.; Davy, B. W.; Papenberg, C. A.; Koch, S.; Eckardt, T.; Kroeger, K. F.; Rose, P. S.; Coffin, R. B.

    2014-12-01

    Vast areas of the Chatham Rise, east of New Zealand's South Island, are covered by circular to elliptical seafloor depressions. Distribution and size of these seafloor depressions appear to be linked to bathymetry: Small depressions several hundred meters in diameter are found in a depth range of ~500-800 m while two types of larger depressions with 2-5 km and >10 km in diameter, respectively, are present in water depths of 800-1100 m. Here we evaluate 3-D seismic reflection data acquired off the R/V Sonne in 2013 over one of the 2-5 km large depressions. We interpret that the seafloor bathymetry associated with the 2-5 km depressions was most likely created by contour current erosion and deposition. These contourite features are underlain by structures that indicate upward fluid flow, including polygonal fault networks and a conical feature that we interpret to result from sediment re-mobilization. We also discovered a set of smaller buried depressions immediately beneath the contourites. These features are directly connected to the stratigraphy containing the conical feature through sets of polygonal faults which truncate against the base of the paleo-depressions. We interpret these depressions as paleo-pockmarks resulting from fluid expulsion, presumably including gas. Based on interpretation and age correlation of a regional-scale seismic line, the paleo-pockmarks could be as old as 5.5 Ma. We suggest the resulting paleo-topography provided the initial roughness required to form mounded contourite deposits that lead to depressions in seafloor bathymetry.

  13. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters

    NASA Astrophysics Data System (ADS)

    Ierodiaconou, Daniel; Schimel, Alexandre C. G.; Kennedy, David; Monk, Jacquomo; Gaylard, Grace; Young, Mary; Diesing, Markus; Rattray, Alex

    2018-06-01

    Habitat mapping data are increasingly being recognised for their importance in underpinning marine spatial planning. The ability to collect ultra-high resolution (cm) multibeam echosounder (MBES) data in shallow waters has facilitated understanding of the fine-scale distribution of benthic habitats in these areas that are often prone to human disturbance. Developing quantitative and objective approaches to integrate MBES data with ground observations for predictive modelling is essential for ensuring repeatability and providing confidence measures for habitat mapping products. Whilst supervised classification approaches are becoming more common, users are often faced with a decision whether to implement a pixel based (PB) or an object based (OB) image analysis approach, with often limited understanding of the potential influence of that decision on final map products and relative importance of data inputs to patterns observed. In this study, we apply an ensemble learning approach capable of integrating PB and OB Image Analysis from ultra-high resolution MBES bathymetry and backscatter data for mapping benthic habitats in Refuge Cove, a temperate coastal embayment in south-east Australia. We demonstrate the relative importance of PB and OB seafloor derivatives for the five broad benthic habitats that dominate the site. We found that OB and PB approaches performed well with differences in classification accuracy but not discernible statistically. However, a model incorporating elements of both approaches proved to be significantly more accurate than OB or PB methods alone and demonstrate the benefits of using MBES bathymetry and backscatter combined for class discrimination.

  14. Bathymetry and Near-River Topography of the Naches and Yakima Rivers at Union Gap and Selah Gap, Yakima County, Washington, August 2008

    USGS Publications Warehouse

    Mastin, M.C.; Fosness, R.L.

    2009-01-01

    Yakima County is collaborating with the Bureau of Reclamation on a study of the hydraulics and sediment-transport in the lower Naches River and in the Yakima River between Union Gap and Selah Gap in Washington. River bathymetry and topographic data of the river channels are needed for the study to construct hydraulic models. River survey data were available for most of the study area, but river bathymetry and near-river topography were not available for Selah Gap, near the confluence of the Naches and Yakima Rivers, and for Union Gap. In August 2008, the U.S. Geological Survey surveyed the areas where data were not available. If possible, the surveys were made with a boat-mounted, single-beam echo sounder attached to a survey-grade Real-Time Kinematic (RTK) global positioning system (GPS). An RTK GPS rover was used on a walking survey of the river banks, shallow river areas, and river bed areas that were impenetrable to the echo sounder because of high densities of macrophytes. After the data were edited, 95,654 bathymetric points from the boat survey with the echo sounder and 1,069 points from the walking survey with the GPS rover were used in the study. The points covered 4.6 kilometers on the Yakima River and 0.6 kilometers on the Naches River. GPS-surveyed points checked within 0.014 to 0.047 meters in the horizontal direction and -0.036 to 0.078 meters in the vertical direction compared to previously established survey control points

  15. Bathymetry and absorbitivity of Titan's Ontario Lacus

    USGS Publications Warehouse

    Hayes, A.G.; Wolf, A.S.; Aharonson, O.; Zebker, H.; Lorenz, R.; Kirk, R.L.; Paillou, P.; Lunine, J.; Wye, L.; Callahan, P.; Wall, S.; Elachi, C.

    2010-01-01

    Ontario Lacus is the largest and best characterized lake in Titan's south polar region. In June and July 2009, the Cassini RADAR acquired its first Synthetic Aperture Radar (SAR) images of the area. Together with closest approach altimetry acquired in December 2008, these observations provide a unique opportunity to study the lake's nearshore bathymetry and complex refractive properties. Average radar backscatter is observed to decrease exponentially with distance from the local shoreline. This behavior is consistent with attenuation through a deepening layer of liquid and, if local topography is known, can be used to derive absorptive dielectric properties. Accordingly, we estimate nearshore topography from a radar altimetry profile that intersects the shoreline on the East and West sides of the lake. We then analyze SAR backscatter in these regions to determine the imaginary component of the liquid's complex index of refraction (Kappa). The derived value, Kappa = (6.1-1.3+1.7) x 10-4, corresponds to a loss tangent of tan Delta = (9.2-2.0+2.5) x 10-4 and is consistent with a composition dominated by liquid hydrocarbons. This value can be used to test compositional models once the microwave optical properties of candidate materials have been measured. In areas that do not intersect altimetry profiles, relative slopes can be calculated assuming the index of refraction is constant throughout the liquid. Accordingly, we construct a coarse bathymetry map for the nearshore region by measuring bathymetric slopes for eleven additional areas around the lake. These slopes vary by a factor of ~5 and correlate well with observed shoreline morphologies.

  16. 30 CFR 550.197 - Data and information to be made available to the public or for limited inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (2) Data or information is collected with high-resolution systems (e.g., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) to comply with safety or environmental protection requirements...

  17. 30 CFR 550.197 - Data and information to be made available to the public or for limited inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (2) Data or information is collected with high-resolution systems (e.g., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) to comply with safety or environmental protection requirements...

  18. 30 CFR 550.197 - Data and information to be made available to the public or for limited inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (2) Data or information is collected with high-resolution systems (e.g., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) to comply with safety or environmental protection requirements...

  19. Auv Multibeam Bathymetry and Sidescan Survey of the SS Montebello wreck Offshore Cambria CA

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Thomas, H.; Conlin, D.; Thompson, D.; Paull, C. K.

    2010-12-01

    An MBARI Mapping AUV survey of the SS Montebello wreck offshore Cambria, CA collected high-resolution multibeam bathymetry and sidescan imagery of the vessel and the surrounding seafloor. The Montebello was an oil tanker that was torpedoed and sunk about 11 km offshore in 275 m water depth by a Japanese submarine on December 23, 1941. The Montebello was loaded with 3,000,000 gallons of crude oil, and there is no evidence that significant leakage of that cargo occurred at the time of the sinking or in the 69 years since. The California Department of Fish and Game’s Office of Spill Prevention and Response (OSPR) commissioned the AUV survey as part of a multi-agency Montebello Task Force effort to assess the potential pollution threat. The survey data will be used to determine the extent and general character of the wreckage for a pending Task Force report and to guide any future ROV dive or assessment activity . The AUV surveyed the wreck site from altitudes of 75 and 25 m; the low-altitude high-resolution survey consists of a grid with a 50 m line spacing both parallel and orthogonal to the ship. The 200 kHz multibeam bathymetry images the wreck from both above and from the sides with an 0.5 m lateral resolution. The combination of soundings from all of the survey lines results in a three-dimensional distribution of soundings that delineates the external morphology and some of the internal structure of the wreck. 410 kHz chirp sidescan sonar data also image the site from both directions. The bathymetry data indicate that the Montebello was pitched forward down when it impacted the bottom, crushing and breaking off the bow section. Both forward and aft deckhouses are largely intact, and in fact the multibeam images the individual decks within those structures. About half of the forward mast remains, both amidships masts and the smokestack are missing. A good deal of the deck piping and equipment appears intact, and aside from the bow, the ship’s sides appear intact. The rudder is intact but leaning to port. The multibeam also imaged a considerable fish population above and around the wreck site.

  20. Bathymetry mapping using a GPS-sonar equipped remote control boat: Application in waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco

    2014-05-01

    Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge distribution, but also in calculating sludge accumulation rates, and in evaluating pond hydraulic efficiency (e.g., as input bathymetry for computational fluid dynamics models). This technology is not limited to application for wastewater management, and could potentially have a wider application in the monitoring of other small to medium water bodies, including reservoirs, channels, recreational water bodies, river beds, mine tailings dams and commercial ports.

  1. New Approaches to the Sea-Floor Mapping: Results From the GEBCO-NF Alumni Team's Technique Developments in Preparation to the Shell Ocean Discovery XPRIZE 2017.

    NASA Astrophysics Data System (ADS)

    Bazhenova, E.; Zarayskaya, Y.; Wigley, R. A.; Anderson, R.; Falconer, R. K. H.; Kearns, T.; Martin, T.; Minami, H.; Roperez, J.; Rosedee, A.; Sade, H.; Seeboruth, S.; Simpson, B.; Sumiyoshi, M.; Tinmouth, N.; Zwolak, K.

    2017-12-01

    In preparation for the XPRIZE 2017 Round 1, a new sea-floor mapping system has been assembled based on an Unmanned Surface Vessel (USV) coupled with an Autonomous Underwater Vehicle (AUV). USV operation allows reducing logistics costs, while the AUV provides enhanced maneuverability and high accuracy of stabilization for the mapping missions. The AUV is equipped with a high-resolution interferometric synthetic aperture sonar (HISAS) and a multibeam sonar (MBES), covering a wide bathymetry swath and the nadir, respectively. Typically operating at 20 to 40 m altitude, the HISAS is capable of providing SAS imagery with 4 x 4 cm resolution and bathymetry with 40 x 40 cm resolution throughout the swath. Smaller areas of interest (50 x 50 m) can be further examined using the Spot processing technique, to produce SAS imagery with 2 x 2 cm resolution and high- resolution SAS bathymetry with 5 x 5 cm resolution. This allows multi-aspect imaging and examination of seabed geological features at different scales. Advanced data post-processing can be performed to produce 3D images of objects and explore their structure using the shadow contrast and shape. Being an interferometric system, the HISAS collects data for both imagery and bathymetry in the same swath. This improves the robustness for SAS in areas with significant relief. In the standard survey mode, the HISAS can typically collect SAS data at 2.6 km2/hr over relatively flat ground. Another limiting factor to the HISAS data coverage and quality is the vehicle stability influenced by downslope and cross currents and the resulting vehicle's speed. From experience, the best coverage occurs at a vehicle speed of around 2 m/s. At slower speeds the vehicle starts to lose steerage leading to degradation of tracking and navigation performance, which harms the focusing algorithm that creates the SAS data. For the AUV mission planning in unknown areas or in case of highly variable conditions at the study site, MBES reconnaissance data can be acquired at higher altitudes prior to running the AUV close to the seabed. Additionally, the MBES is used to collect the acoustic bottom reflectivity (backscatter) data, which allows further sea-floor characterization and potentially description of sediment types and marine bottom habitats, such as coral reefs, deep sea hydrothermal vents etc.

  2. Mid-Ocean Ridge Melt Supply and Glacial Cycles: A 3D EPR Study of Crustal Thickness, Layer 2A, and Bathymetry

    NASA Astrophysics Data System (ADS)

    Boulahanis, B.; Aghaei, O.; Carbotte, S. M.; Huybers, P. J.; Langmuir, C. H.; Nedimovic, M. R.; Carton, H. D.; Canales, J. P.

    2017-12-01

    Recent studies suggest that eustatic sea level fluctuations induced by glacial cycles in the Pleistocene may influence mantle-melting and volcanic eruptions at mid-ocean ridges (MOR), with models predicting variation in oceanic crustal thickness linked to sea level change. Previous analyses of seafloor bathymetry as a proxy for crustal thickness show significant spectral energy at frequencies linked to Milankovitch cycles of 1/23, 1/41, and 1/100 ky-1, however the effects of faulting in seafloor relief and its spectral characteristics are difficult to separate from climatic signals. Here we investigate the hypothesis of climate driven periodicity in MOR magmatism through spectral analysis, time series comparisons, and statistical characterization of bathymetry data, seismic layer 2A thickness (as a proxy for extrusive volcanism), and seafloor-to-Moho thickness (as a proxy for total magma production). We utilize information from a three-dimensional multichannel seismic study of the East Pacific Rise and its flanks from 9°36`N to 9°57`N. We compare these datasets to the paleoclimate "LR04" benthic δ18O stack. The seismic dataset covers 770 km2 and provides resolution of Moho for 92% of the imaged region. This is the only existing high-resolution 3-D image across oceanic crust, making it ideal for assessing the possibility that glacial cycles modulate magma supply at fast spreading MORs. The layer 2A grid extends 9 km (170 ky) from the ridge axis, while Moho imaging extends to a maximum of 16 km (310 ky). Initial results from the East Pacific Rise show a relationship between sea level and both crustal thickness and sea floor depth, consistent with the hypothesis that magma supply to MORs may be modulated by glacial cycles. Analysis of crustal thickness and bathymetry data reveals spectral peaks at Milankovitch frequencies of 1/100 ky-1 and 1/41 ky-1 where datasets extend sufficiently far from the ridge. The layer 2A grid does not extend sufficiently far from the ridge to be conclusive. Correlations between sea level and crustal thickness suggest a lag of 65 ky between sea level forcing and crustal thickness response. A further lag of 25 ky is observed between crustal thickness variations and seafloor depth change, which we attribute to the finite width of the crustal formation zone.

  3. Using bathymetry and reflective seismic profiles to tests a suspected link between melt flux and cumulative fault heave at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Haughton, G.; Murton, B. J.; Le Bas, T.; Henstock, T.

    2017-12-01

    The interplay between magma supply and spreading rate is believed to play a major role in determining large scale seafloor morphology. Here we use bathymetry to test this relationship in areas with similar spreading rates and differing magma supplies. By using open source bathymetry data we have developed a repeatable, automated method for categorising seafloor cumulative fault heave and then attempt to identify the controlling variables. We measure the total apparent fault heave along axis and off-axis at 29°N and 60°N on the Mid-Atlantic Ridge then compare this to proxies for deformation and magma supply. Two approaches are adopted for identifying faults: one using bathymetry and the other spreading-parallel seismic reflection data. The first re-examines the orthogonally spreading Broken Spur segment (26°N) spreading at 23 mm yr-1 (full rate). The other examines the Reykjanes Ridge (60°N) spreading obliquely at 21 mm yr-1 (full rate), which may be influenced by the Icelandic hotspot. Each have contrasting residual depth and structure, with the former being typical of slow spreading ridges, with marked axial valleys, whereas the latter is more typical of fast spreading ridge morphology, with smooth axial rise. We find that high total heave (indicating high tectonic spreading) on the Broken Spur segment does not correlate with high mantle Bouguer anomalies (indicating thin crust and low melt flux). From this we hypothesise that total heave on the large scale at the Broken Spur segment is not controlled by crustal thickness or melt supply. At the Raykjanes Ridge, V-shaped ridges have thicker crust (measured seismically) which converge south of Iceland. These are thought to reflect transient (every 4-6 Myrs) pulses of hot mantle radiating away from the Iceland plume. We find ridge-symmetrical variation in fault heave but with a lower frequency (6-8 Myrs) and longer wavelength (3-7 Myrs) than the V-shaped ridges. Our analysis shows that plume pulses do not correlate with cumulative fault heave. Our results raise questions about the relationship between melt flux and tectonic stretching. Other factors may be more significant such as spreading geometry, lithospheric temperature, hydrothermal alteration, or mantle heterogeneities that may not be reflected in melt productivity or faulting.

  4. Morphology, structure, composition and build-up processes of the active channel-mouth lobe complex of the Congo deep-sea fan with inputs from remotely operated underwater vehicle (ROV) multibeam and video surveys

    NASA Astrophysics Data System (ADS)

    Dennielou, Bernard; Droz, Laurence; Babonneau, Nathalie; Jacq, Céline; Bonnel, Cédric; Picot, Marie; Le Saout, Morgane; Saout, Yohan; Bez, Martine; Savoye, Bruno; Olu, Karine; Rabouille, Christophe

    2017-08-01

    The detailed structure and composition of turbiditic channel-mouth lobes is still largely unknown because they commonly lie at abyssal water depths, are very thin and are therefore beyond the resolution of hull-mound acoustic tools. The morphology, structure and composition of the Congo turbiditic channel-mouth lobe complex (90×40 km; 2525 km2) were investigated with hull-mounted swath bathymetry, air gun seismics, 3.5 kHz sub-bottom profiler, sediment piston cores and also with high-resolution multibeam bathymetry and video acquired with a Remote Operating Vehicle (ROV). The lobe complex lies 760 km off the Congo River mouth in the Angola abyssal plain between 4740 and 5030 m deep. It is active and is fed by turbidity currents that deposit several centimetres of sediment per century. The lobe complex is subdivided into five lobes that have prograded. The lobes are dominantly muddy. Sand represents ca. 13% of the deposits and is restricted to the feeding channel and distributaries. The overall lobe body is composed of thin muddy to silty turbidites. The whole lobe complex is characterized by in situ mass wasting (slumps, debrites). The 1-m-resolution bathymetry shows pervasive slidings and block avalanches on the edges of the feeding channel and the channel mouth indicating that sliding occurs early and continuously in the lobe build-up. Mass wasting is interpreted as a consequence of very-high accumulation rates, over-steepening and erosion along the channels and is therefore an intrinsic process of lobe building. The bifurcation of feeding channels is probably triggered when the gradient in the distributaries at the top of a lobe becomes flat and when turbidity currents find their way on the higher gradient on the lobe side. It may also be triggered by mass wasting on the lobe side. When a new lobe develops, the abandoned lobes continue to collect significant turbiditic deposits from the feeding channel spillover, so that the whole lobe complex remains active. A conceptual lithostratigraphic model is proposed for five morpho-sedimentary environments: lobe rims, lobe body, distributaries, levees, feeding channel. This study shows that high-resolution bathymetry ROV observations are necessary to fully understand the build-up processes of modern channel-mouth lobes.

  5. Evidence for small-scale convection in the Pacific and Atlantic upper mantle from joint analysis of surface wave phase velocity and seafloor bathymetry

    NASA Astrophysics Data System (ADS)

    Ma, Z.; Dalton, C. A.

    2017-12-01

    It has been long observed that the rate of seafloor subsidence in the Pacific Ocean is lower than predicted by half-space cooling at ages older than 70 Myr. The magnitude, geographical distribution, onset time, and physical origin of the flattening are fundamental to our understanding of the evolution of oceanic lithosphere, and give important constraints on the Earth's heat budget and ocean volume throughout its history. However, none of these quantities is well established even after a long history of debates. Here, we present evidence from bathymetry and seismic tomography for the wide-scale operation of small-scale convection in the Pacific and Atlantic upper mantle. We track the temporal evolution of surface wave phase velocity and seafloor topography along age trajectories, which connect each piece of seafloor with the ridge segment that created it. The half-space cooling model (HSCM) and plate cooling model are used to predict the age dependence of phase velocity and bathymetry and to identify, for each age trajectory, the age at which the HSCM fails to explain the observations. The phase velocity and bathymetry are analyzed independently and yet yield identical results for more than 80% of points. We observe a wide range of ages at which the HSCM fails in the Atlantic and a much narrower range in the Pacific. We find that the age at which the HSCM fails is anti-correlated with the present-day depth of the ridge axis, with younger failure ages corresponding to deeper ridge axes and therefore colder mantle beneath the ridge.Such dependence is best explained by the small-scale convection model in which the effective viscosity of the lithosphere is regulated by the dehydration process that happens at the mid-ocean ridges. Decompression melting at a ridge removes water from the mantle and generates a depleted, dehydrated, and viscous layer. Since high mantle potential temperatures cause decompression melting to begin at greater depths, the thickness of the dehydrated layer is expected to scale with potential temperature. Moreover, numerical models have shown that such rheological layering controls the onset time of small-scale convection, with delayed onset for thicker layers. Our results therefore suggest that the stability of oceanic lithosphere is governed by the extent of melting at the ridge that created it.

  6. GLOBE (Global Oceanographic Bathymetry Explorer) : an innovative and generic software combining all necessary functionalities for cruise preparation, for collection, linking, processing and display of scientific data acquired during sea cruises, and for exporting data and information to the main marine data centers and networks.

    NASA Astrophysics Data System (ADS)

    Sinquin, J. M.; Sorribas, J.

    2014-12-01

    Within the EUROFLEETS project, and linked to the EMODNet and Geo-Seas European projects, GLOBE (Global Oceanographic Bathymetry Explorer) is an innovative and generic software. I. INTRODUCTION The first version can be used onboard during the survey to get a quick overview of acquired data, or later, to re-process data with accurate environmental data. II. MAIN FUNCTIONALITIES The version shown at AGU-2014 will present several key items : - 3D visualization: DTM multi-layers from EMODNet, - Water Column echogram, Seismic lines, ... - Bathymetry Plug-In: manual and automatic data cleaning, integration of EMODNet methodology to introduce CDI concept, filtering, spline, data gridding, ... - Backscatter with compensation, - Tectonic toolset, - Photo/Video Plug-In - Navigation 3D including tide correction, MRU corrections, GPS offsets correction, - WMS/WFS interfaces. III. FOCUS ON EMODNET One of the main objectives of the EMODNet European project is to elaborate a common processing flow for gridding the bathymetry data and for generating harmonized digital terrain model (DTM) : this flow includes the definition of the DTM characteristics (geodetic parameters, grid spacing, interpolation and smoothing parameters…) and also the specifications of a set of layers which enrich the basic depth layer : statistical layers (sounding density, standard deviation,…) and an innovative data source layer which indicates the source of the soundings and and which is linked and collects to the associated metadata. GLOBE Software provides the required tools for applying this methodology and is offered to the project partners. V. FOCUS ON THE TECTONIC TOOLSET The tectonic toolset allows the user to associate any DTM to 3D rotation movements. These rotations represent the movement of tectonic plates along discrete time lines (from 200 million years ago to now). One rotation is described by its axes, its value angle and its date. GLOBE can display the movement of tectonic plates, represented by a DTM, at different geological times. The same movements can be operated for geotiff images or GMT files representing grids for any kind of data. The free software GLOBE3D is a product of Ifremer and is funded by Carnot-Edrome

  7. Bathymetry of Torssukatak fjord and one century of glacier stability

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E. J.; Morlighem, M.

    2017-12-01

    Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet(GrIS) mass balance as they control 90% of the ice discharge into the ocean. Warm air temperatures thin the glaciers from the top to unground ice fronts from the bed. Warm oceans erode the submerged grounded ice, causing the grounding line to retreat. To interpret the recent and future evolution of two outlet glaciers, Sermeq Avangnardleq (AVA) and Sermeq Kujatdleq (KUJ) in central West Greenland, flowing into the ice-choked Torssukatak fjord (TOR), we need to know their ice thickness and bed topography and the fjord bathymetry. Here, we present a novel mapping of the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high resolution airborne gravity data from AIRGrav collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with submilligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We also employ MultiBeam Echo Sounding data (MBES) collected in the fjord since 2009. We had to wait until the summer of 2016, during Ocean Melting Greenland (OMG), to map the fjord bathymetry near the ice fronts for the first time. We constrain the 3D inversion of the gravity data with MBES in the fjord and a reconstruction of the glacier bed topography using mass conservation (MC) on land ice. The seamless topography obtained across the grounding line reveal the presence of a 300-m sill for AVA, which explains why this glacier has been stable for a century, despite changes in surface melt and ocean-induced melt and the presence of a deep fjord (800 m) in front of the glacier. For KUJ, we also reveal the presence of a wide sill (300 m depth) near the current ice front which explains its stability and the stranding of iceberg debris in front of the glacier. The results shed new light on the evolution of these glaciers and explain their apparent stability. The data also reveal the presence of a deep bed upstream, indicating a potential for rapid retreat if ocean and surface melting are able to dislodge the glaciers from their stabilizing sills. This work was funded by NASA Cryosphere Program and from a grant by the Gordon and Betty Moore Foundation.

  8. Seafloor mapping of the southeast Iberian margin (from Cabo de Palos to Cabo de Gata)

    NASA Astrophysics Data System (ADS)

    Lastras, Galderic; Leon, César; Elvira, Elena; Pascual, Laura; Muñoz, Araceli; de Cárdenas, Enrique; Acosta, Juan; Canals, Miquel

    2014-05-01

    We present the multibeam bathymetry and derived maps of the southeast Iberian margin from Cabo de Palos to Cabo de Gata, 37º35'N to 35º45'N and 2º10'W to 0º20'E, from the coastline down to the Algero-Balearic abyssal plain at depths exceeding 2600 m. The edition of of the maps is carried out within the Complementary Action VALORPLAT ("Scientific valorisation of multibeam bathymetry data from the Spanish continental shelf and slope"), funded by the Spanish Ministry of Economy and Competitivity. The multibeam bathymetry data of the slope and abyssal plain were obtained during different surveys in 2004, 2006 and 2007 on board R/V Vizconde de Eza with a Simrad EM300 multibeam echo-sounder as part of the CAPESME Project, a collaboration between the Spanish Institute of Oceanography (IEO) and General Secretariat of Fisheries (SGP), primarily aiming at creating maps of the fishing grounds of the Mediterranean continental margins of Spain. Multibeam bathymetry data from the continental shelf were obtained within the ESPACE project, also in a cooperative frame between IEO and SGP. The map series is constituted by a general map at 1:400,000 scale and 14 detailed maps at 1:75,000 scale, which include inset maps on slope gradients and seafloor nature (rock or sediment type), the later obtained with rock dredges and Shipeck sediment dredges. Both the detailed maps and the general map are available in paper print, and the whole collection is also distributed in an edited USB. The geological features displayed in the different maps include the continental shelf, with abundant geomorphic features indicative of past sea-level changes, the continental slope carved by the Palos, Tiñoso, Cartagena Este, Cartagena Oeste, Águilas, Almanzora, Alias, Garrucha and Gata submarine canyons, the Mazarrón, Palomares and Al-Mansour escarpments, the Abubácer, Maimonides and Yusuf ridges, the Águilas and Al-Mansour seamounts, and the Algero-Balearic abyssal plain where prominent halokinetic deformation structures have been observed. The edited maps are available from the MAGRAMA (Ministerio de Agricultura, Alimentación y Medio Ambiente) publication store (https://aplicaciones.magrama.es/tienda/index.jsp).

  9. Sea Floor off San Diego, California

    USGS Publications Warehouse

    Dartnell, Peter; Gibbons, Helen

    2009-01-01

    Ocean-floor image generated from multibeam-bathymetry data acquired by the U.S. Geological Survey (USGS); Woods Hole Oceanographic Institution; Scripps Institution of Oceanography; California State University, Monterey Bay; and Fugro Pelagos. To learn more, visit http://pubs.usgs.gov/sim/2007/2959/.

  10. BATHYMETRIC IRREGULARITIES, JET FORMATION, AND SUBSEQUENT MIXING PROCESSES

    EPA Science Inventory

    It is well known that bathymetric contours influence and steer currents and that irregularities in bathymetry contribute to the formation of aquatic non-buoyant jets and buoyant plumes. For example, bathymetric irregularities can channel flow through canyons or accelerate flow ov...

  11. Archive of single-beam bathymetry data collected during USGS cruise 07CCT01 nearshore of Fort Massachusetts and within Camille Cut, West and East Ship Islands, Gulf Islands National Seashore, Mississippi, July 2007

    USGS Publications Warehouse

    DeWitt, Nancy T.; Flocks, James G.; Reynolds, B.J.; Hansen, Mark

    2012-01-01

    The Gulf Islands National Seashore (GUIS) is composed of a series of barrier islands along the Mississippi - Alabama coastline. Historically these islands have undergone long-term shoreline change. The devastation of Hurricane Katrina in 2005 prompted questions about the stability of the barrier islands and their potential response to future storm impacts. Additionally, there was concern from the National Park Service (NPS) about the preservation of the historical Fort Massachusetts, located on West Ship Island. During the early 1900s, Ship Island was an individual island. In 1969 Hurricane Camille breached Ship Island, widening the cut and splitting it into what is now known as West Ship Island and East Ship Island. In July of 2007, the U.S. Geological Survey (USGS) was able to provide the NPS with a small bathymetric survey of Camille Cut using high-resolution single-beam bathymetry. This provided GUIS with a post-Katrina assessment of the bathymetry in Camille Cut and along the northern shoreline directly in front of Fort Massachusetts. Ultimately, this survey became an initial bathymetry dataset toward a larger USGS effort included in the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project (http://ngom.usgs.gov/gomsc/mscip/). This report serves as an archive of the processed single-beam bathymetry. Data products herein include gridded and interpolated digital depth surfaces and x,y,z data products. Additional files include trackline maps, navigation files, geographic information system (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Scanned images of the handwritten FACS logs and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for description of acronyms and abbreviations used in this report or hold the cursor over an acronym for a pop-up explanation. The USGS St. Petersburg Coastal and Marine Science Center assigns a unique identifier to each cruise or field activity. For example, 07CCT01 tells us the data were collected in 2007 for the Coastal Change and Transport (CCT) study and the data were collected during the first (01) field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. Data were collected using a 26-foot (ft) Glacier Bay catamaran. The single-beam transducers were sled mounted on a rail attached between the catamaran hulls. Navigation was acquired using HYPACK, Inc., Hypack version 4.3a.7.1 and differentially corrected using land-based GPS stations. See the digital FACS equipment log for details about the acquisition equipment used. Raw datasets were stored digitally and processed systematically using NovAtel's Waypoint GrafNav version 7.6, SANDS version 3.7, and ESRI ArcGIS version 9.3.1. For more information on processing refer to the Equipment and Processing page.

  12. ROV seafloor surveys combining 5-cm lateral resolution multibeam bathymetry with color stereo photographic imagery

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Rock, S. M.; Risi, M.; Padial, J. A.

    2013-12-01

    The Monterey Bay Aquarium Research Institute is developing a low altitude, high-resolution seafloor mapping capability that combines multibeam sonar with stereo photographic imagery. The goal is to obtain spatially quantitative, repeatable renderings of the seafloor with fidelity at scales of 5 cm or better from altitudes of 2-3 m. The initial test surveys using this sensor system are being conducted from a remotely operated vehicle (ROV). Ultimately we intend to field this survey system from an autonomous underwater vehicle (AUV). This presentation focuses on the current sensor configuration, methods for data processing, and results from recent test surveys. Bathymetry data are collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 2-m altitude, the nadir beams have a 1.7-cm acrosstrack and 3.5 cm alongtrack footprint. Dual Allied Vision Technology GX1920 2.8 Mpixel color cameras provide color stereo photography of the seafloor. The camera housings have been fitted with corrective optics achieving a 90° field of view through a dome port. Illumination is provided by dual 100J xenon strobes. Position, depth, and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz RDI Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS Kalman filter is aided by the DVL velocity and pressure data, achieving navigational drift rates less than 0.05% of the distance traveled during surveys. The sensors are mounted onto a toolsled fitted below MBARI's ROV Doc Ricketts with the sonars, cameras and strobes all pointed vertically down. During surveys the ROV flies at a 2-m altitude at speeds of 0.1-0.2 m/s. During a four-day R/V Western Flyer cruise in June 2013, we successfully collected multibeam and camera survey data from a 2-m altitude at three sites in the deep Monterey Canyon axis. The surveys lines were spaced 1.5-m and were flown at speeds of 0.1-0.2-m/s while the sonars pinged at 3 Hz and the cameras operated at 0.5 Hz. All three low-altitude surveys are at ~2850 m depth and lie within the 1-m lateral resolution bathymetry of a 2009, 50-m altitude MBARI Mapping AUV survey. Site 1 has the greatest topography, being centered on a 15 m diameter, 7 m high flat boulder surrounded by an 80 m diameter, 6 m deep scour pit. Site 2 is located within a field of ~3-m high apparent sediment waves with ~80-m wavelengths. Site 0 is flat and includes chemosynthetic clam communities. At a 2 m altitude, the multibeam bathymetry swath is more than 7 m wide and the camera images are 4 m wide. Following navigation adjustment to match features in overlapping bathymetry swaths, we achieve 5-cm lateral resolution topography overlain with ~1-mm scale photographic imagery.

  13. Airborne Lidar Bathymetry: The SHOALS System

    DTIC Science & Technology

    2016-05-09

    response. SHOALS’ first mission in this capacity was at East Pass, a tidal inlet located on the Florida Panhandle near Destin. Hurricane Opal , a...East Pass for example, the SHOALS survey following Hurricane Opal allowed precise determination of unsafe channel depths and allowed accurate

  14. Wave-Current Interaction in Coastal Inlets and River Mouths

    DTIC Science & Technology

    2014-09-30

    the Astoria Canyon buoy operated by the Coastal Data Information Program ( CDIP , buoy # 46248). Three-dimensional current fields and bathymetry were...bar show considerable differences. The SWAN model uses observations from CDIP buoy # 46248 as boundary condition; three- dimensional current data and

  15. Probabilistic Prediction of Riverine Bathymetry

    DTIC Science & Technology

    2011-09-30

    planned a substantial data field collection effort on the Hanford Reach of the Columbia River near Richland, WA, which represents an ideal testing...4 Figure 2. 82-km Hanford Reach of the Columbia River (WA) IMPACT/APPLICATIONS The developed methods are directly applicable to video

  16. River Discharge and Bathymetry Estimation from Hydraulic Inversion of Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2015-12-01

    We developed an inversion model for river bathymetry and discharge estimation based on measurements of surface currents, water surface elevation and shoreline coordinates. The model uses a simplification of the 2D depth-averaged steady shallow water equations based on a streamline following system of coordinates and assumes spatially uniform bed friction coefficient and eddy viscosity. The spatial resolution of the predicted bathymetry is related to the resolution of the surface currents measurements. The discharge is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The inversion model was tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID. The measurements were obtained in August 2010 when the discharge was about 223 m3/s and the maximum river depth was about 6.5 m. Surface currents covering a 10 km reach with 8 m spatial resolution were estimated from airborne infrared video and were converted to depth-averaged currents using acoustic Doppler current profiler (ADCP) measurements along eight cross-stream transects. The streamwise profile of the water surface elevation was measured using real-time kinematic GPS from a drifting platform. The value of the friction coefficient was obtained from forward calibration simulations that minimized the difference between the predicted and measured velocity and water level along the river thalweg. The predicted along/cross-channel water depth variation was compared to the depth measured with a multibeam echo sounder. The rms error between the measured and predicted depth along the thalweg was found to be about 60cm and the estimated discharge was 5% smaller than the discharge measured by the ADCP.

  17. Orbital, Rotational and Climatic Interactions: Energy Dissipation and Angular Momentum Exchange in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.

    2001-01-01

    A numerical ocean tide model has been developed and tested using highly accurate TOPEX/Poseidon (T/P) tidal solutions. The hydrodynamic model is based on time stepping a finite difference approximation to the non-linear shallow water equations. Two novel features of our implementation are a rigorous treatment of self attraction and loading (SAL), and a physically based parameterization for internal tide (IT) radiation drag. The model was run for a range of grid resolutions, and with variations in model parameters and bathymetry. For a rational treatment of SAL and IT drag, the model run at high resolution (1/12 degree) fits the T/P solutions to within 5 cm RMS in the open ocean. Both the rigorous SAL treatment and the IT drag parameterization are required to obtain solutions of this quality. The sensitivity of the solution to perturbations in bathymetry suggest that the fit to T/P is probably now limited by errors in this critical input. Since the model is not constrained by any data, we can test the effect of dropping sea-level to match estimated bathymetry from the last glacial maximum (LGM). Our results suggest that the 100 m drop in sea-level in the LGM would have significantly increased tidal amplitudes in the North Atlantic, and increased overall tidal dissipation by about 40%. However, details in tidal solutions for the past 20 ka are sensitive to the assumed stratification. IT drag accounts for a significant fraction of dissipation, especially in the LGM when large areas of present day shallow sea were exposed, and this parameter is poorly constrained at present.

  18. Inferring Source Regions and Supply Mechanisms of Iron in the Southern Ocean from Satellite Data

    NASA Astrophysics Data System (ADS)

    Graham, R. M.

    2016-02-01

    In many biogeochemical models a large shelf sediment iron flux is prescribed through the seafloor over all areas of bathymetry shallower than 1000 m. Here we infer the likely location of shelf sediment iron sources by identifying where mean annual satellite chlorophyll concentrations are enhanced over shallow bathymetry ( < 1000 m). We show that mean annual chlorophyll concentrations are not visibly enhanced over areas of shallow bathymetry located more than 500 km from a coastline. Chlorophyll concentrations > 2 mg m-3are only found within 50 km of a continental or island coastline. These results suggest that large sedimentary iron fluxes only exist on continental or island shelves. Large sedimentary iron fluxes are unlikely to be found on isolated seamounts and submerged plateaus. We further compare satellite chlorophyll concentrations to the position of ocean fronts to assess the relative role of horizontal advection and upwelling for supplying iron to the ocean surface. Sharp gradients in chlorophyll concentrations are observed across western boundary currents. Large chlorophyll blooms develop where western boundary currents detach from the continental shelves and turn eastwards into the Southern Ocean. Chlorophyll concentrations are enhanced along contours of sea surface height extending off continental and island shelves. These observations support the hypothesis that bioavailable iron from continental shelves is entrained into western boundary currents and advected into the Sub-Antarctic Zone along the Dynamical Subtropical Front. Likewise, iron from island shelves is entrained into nearby fronts and advected downstream. Mean annual chlorophyll concentrations are very low in open ocean regions with large modelled upwelling velocities, where fronts cross over topographic ridges. These results suggests that open ocean upwelling is unlikely to deliver iron to the surface from deep sources such as hydrothermal vents.

  19. The western submerged sector of the Ischia volcanic island (Tyrrhenian Sea, Italy): new insights into its volcano-tectonic evolution

    NASA Astrophysics Data System (ADS)

    Passaro, Salvatore; de Alteriis, Giovanni; Milano, Girolamo; Fedi, Maurizio; Florio, Giovanni

    2010-05-01

    The Island of Ischia is a volcanic complex located in the northern boundary of the Gulf of Naples (south-eastern Tyrrhenian Sea, Italy). The island represents only the 30% of a larger, E-W trending, volcanic ridge and likely controlled by a regional tectonic lineament. Despite the many geo-volcanological and geophysical investigations conducted on the island since long time, still little is the knowledge of its offshore. Several marine surveys have been carried out over the past 10 years from IAMC - CNR research institute (Naples, Italy) mostly in the frame of INGV and GNV projects, funded by Italy Civil Protection Department. Such surveys have largely improved the knowledge of the entire volcanic complex. Multibeam bathymetry surveys has revealed several, previously unexpected, morphological and morphostructural features. Moreover some structural patterns and volcano alignments offshore show similarities with those occurring at a regional scale in the Campania region and, locally, between the island of Procida and Phlegrean Fields. Here we report the joint interpretation of geophysical data focused on the western underwater sector of the island. Interpretation was chiefly based on processing/inversion of magnetic data in turn constrained by bathymetry and seismic reflection profiles. Magnetic data, acquired by the IAMC during two different cruises in 2000 and 2002 onboard of the Urania R/V oceanographic vessel, put in evidence that the western seafloor of Ischia is characterized by the presence of a strong residual magnetic anomaly field of complex behaviour, somewhere correlated to local bathymetry. These two last methods allowed to define and distinguish between undersea and subsurface magnetic (i.e. magmatic) basement. Interpretation was also constrained by seismological data.

  20. Use of acoustic technology to define hydraulic characteristics of an estuary near the Mississippi Gulf Coast

    USGS Publications Warehouse

    Van Wilson, K.

    2004-01-01

    An Acoustic Doppler Current Profiler (ADCP) was used on the Jourdan River at Interstate Highway 10 near Kiln, Mississippi, in 1996 to measure three-dimensional velocity vectors and water depths and in 1998, in combination with a global positioning system, to define channel bathymetry in the vicinity of the bridge. During a 25-hour period on September 19-20, 1996, 117 consecutive measurements of stage and discharge were obtained throughout a complete tidal cycle. These measurements were obtained during the time of year when headwater flows were minimal, and, therefore, the tidal-affected flow conditions were noticeable. The stage ranged from only 0.7 to 2.8 ft above sea level, but discharge ranged from 3,980 ft3/s flowing upstream to 5,580 ft 3/s flowing downstream. The average discharge during the 25-hour period was only 80 ft3/s flowing downstream. By using the ADCP, full downstream flow, bi-directional flow, and full upstream flow conditions were identified. If conventional measurement techniques had been used, the bi-directional flow conditions could not have been detected since flow direction would have been based on what was seen at the water surface. These measurements were used to define the lower range of the stage-storage-volume relation inland of the highway. On June 10, 1998, the ADCP, in combination with a global positional system, was used to define channel bathymetry for the river reach from about 3,500 ft upstream to about 2,500 ft downstream of the bridge. The bathymetry was compared to past soundings obtained in the vicinity of the bridge; as much as 18 ft of total scour was indicated to have occurred at a bridge pier. Copyright ASCE 2004.

  1. Modification of deep waters in Marguerite Bay, western Antarctic Peninsula, caused by topographic overflows

    NASA Astrophysics Data System (ADS)

    Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander

    2017-05-01

    Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.

  2. SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows

    NASA Astrophysics Data System (ADS)

    Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu

    2017-12-01

    A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.

  3. Generation of Wind Waves in the Persian Gulf: A Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kaihatu, J. M.

    2010-12-01

    The Persian Gulf is a long shallow basin located between the Arabian Peninsula and Iran. Wind-wave generation processes in the region are often affected by the shamal, a strong wind caused by the passage of cold fronts over the mountains of Turkey and Kurdistan. This can set up sudden energetic wind seas, hampering marine traffic. It is not immediately clear whether present wind-wave models can predict this intense, short-term growth and evolution under these conditions. Furthermore, few wave measurements or models studies have been performed in this area. In advance of a wind-wave generation experiment to be conducted off the Qatar coast, we performed a climatological study of the wind wave environment in the Persian Gulf. Using the SWAN wave model as a baseline of the state of the art, five years (2004-2008)of wind field model hindcasts from COAMPS are used as forcing.To investigate the sensitivity of the results to bathymetry, the climatological analysis was run twice more, with refraction or wave breaking deactivated, in turn. The results do not show significant differences with and without refraction, which implies the wind-wave process in Persian Gulf is less dominated by the variation of bathymetry. However the results show that a large amount of wave is dissipated by wave breaking. Wide, flat and shallow bathymetry in Persian Gulf results in a long-fetch scenario, particularly for waves arriving from the northwest. It implies that long period wind-generated waves can be fully generated in this region. Wave height is therefore fully grown by the long-fetch condition, so as to lead in higher possibility of wave breaking and energy dissipation.

  4. Top predators in relation to bathymetry, ice and krill during austral winter in Marguerite Bay, Antarctica

    USGS Publications Warehouse

    Ribic, C.A.; Chapman, E.; Fraser, William R.; Lawson, G.L.; Wiebe, P.H.

    2008-01-01

    A key hypothesis guiding the US Southern Ocean Global Ocean Ecosystems Dynamics (US SO GLOBEC) program is that deep across-shelf troughs facilitate the transport of warm and nutrient-rich waters onto the continental shelf of the Western Antarctic Peninsula, resulting in enhanced winter production and prey availability to top predators. We tested aspects of this hypothesis during austral winter by assessing the distribution of the resident pack-ice top predators in relation to these deep across-shelf troughs and by investigating associations between top predators and their prey. Surveys were conducted July-August 2001 and August-September 2002 in Marguerite Bay, Antarctica, with a focus on the main across-shelf trough in the bay, Marguerite Trough. The common pack-ice seabird species were snow petrel (Pagodroma nivea, 1.2 individuals km-2), Antarctic petrel (Thalassoica antarctica, 0.3 individuals km-2), and Ade??lie penguin (Pygoscelis adeliae, 0.5 individuals km-2). The most common pack-ice pinniped was crabeater seal (Lobodon carcinophagus). During both winters, snow and Antarctic petrels were associated with low sea-ice concentrations independent of Marguerite Trough, while Ade??lie penguins occurred in association with this trough. Krill concentrations, both shallow and deep, also were associated with Ade??lie penguin and snow petrel distributions. During both winters, crabeater seal occurrence was associated with deep krill concentrations and with regions of lower chlorophyll concentration. The area of lower chlorophyll concentrations occurred in an area with complex bathymetry close to land and heavy ice concentrations. Complex or unusual bathymetry via its influence on physical and biological processes appears to be one of the keys to understanding how top predators survive during the winter in this Antarctic region. ?? 2007 Elsevier Ltd. All rights reserved.

  5. High-resolution barotropic tide modelling in the South China Sea

    NASA Astrophysics Data System (ADS)

    Luu, Quang-Hung; Tkalich, Pavel

    2016-04-01

    The South China Sea (SCS) links two of the largest open oceans, the Pacific and the Indian, mainly through the Luzon-Taiwan Straits in the northeast and the Malacca-Karimata Straits in the southwest, respectively. It has a rhino-like shape of 3000-km long, whose belly is contiguous to Vietnam and back leans on the Philippines. The highly irregular topography includes the Gulf of Tonkin in the north, the Gulf Thailand in the southwest, and several small islands in the middle of SCS (i.e., the Spratly and the Paracels) resulting in complicated astronomic tides and tidal dynamics in this region. In this study, we present high-resolution simulation of tides in the SCS using the Semi-Implicit Eulerian-Lagrangian Finite-Element (SELFE) model. We derive the bathymetry from the Shuttle Radar Topography Mission (SMRT) 15-arc second dataset, one of the finest global topography data sources. Our particular interest is to resolve small bathymetry features and islands in the middle of the SCS which we obtained by digitizing very-high resolution satellite images (30-m accuracy). An unstructured triangular mesh comprising of up to 5 million nodes is generated to resolve these features with very high accuracy, while maintaining fairly coarse resolution in rest of the domain. The model is configured to run in barotropic mode by forcing harmonic oscillations from FES2012 global tide predictions along open boundaries, adjusted to account for volume transport at key channels in the SCS. Computed surface elevations and currents agree well with available tide predictions and measurements. Sensitivity study is performed to analyze the role of the small bathymetry features on distorting tides in the SCS.

  6. Dynamics of Cross-Shore Thermal Exchange Over Nonuniform Bathymetry

    NASA Astrophysics Data System (ADS)

    Safaie, A.; Davis, K. A.; Pawlak, G. R.

    2016-02-01

    The hydrodynamics of cross-shelf circulation on the inner shelf influence coastal ecosystems through the transport of heat, salt, nutrients, and planktonic organisms. While cross-shelf exchange on wide continental shelves has received a fair amount of attention in literature, the mechanisms for cross-shelf exchange on narrow shelves with steep, rough, and highly irregular bathymetry, characteristic of coral reef shorelines, is not well understood. Previous observational studies from reefs at Eilat, Israel and Oahu, Hawaii, have demonstrated the importance of surface heat flux in driving cross-shore transport. While both sites experienced offshore surface flow during daytime warming periods and offshore flow near the bed during nighttime cooling, the phase differences between the surface heat fluxes and thermal responses at the two sites indicate different dynamic flow regimes based on momentum and thermal balances. This study examines the dynamical structure of thermally driven flows using numerical modeling to investigate the hypothesis that thermally driven baroclinic exchange is important to cross-shore circulation for tropical coastlines. We use the open-source Regional Ocean Modeling System (ROMS), a free-surface, three-dimensional circulation model, considering a simple wedge case with uniform bathymetry in the alongshore direction, and heat flux applied uniformly to the surface. We examine different flow regimes using scaling of the momentum and thermal balance equations. We also explore the parameter space for the momentum balance describing cross-shore thermal exchange, and thoroughly characterize the exchange structure by investigating the dominant forcing regimes, the mechanisms responsible for modulating thermal circulation, and the effects of temporal variations in vertical mixing and heating/cooling buoyancy flux. Results are compared against existing data sets to evaluate the ability of the model to represent these flows.

  7. Modeled and Observed Transitions Between Rip Currents and Alongshore Flows

    NASA Astrophysics Data System (ADS)

    Moulton, M.; Elgar, S.; Warner, J. C.; Raubenheimer, B.

    2014-12-01

    Predictions of rip currents, alongshore currents, and the temporal transitions between these circulation patterns are important for swimmer safety and for estimating the transport of sediments, biota, and pollutants in the nearshore. Here, field observations are combined with hydrodynamic modeling to determine the dominant processes that lead rip currents to turn on and off with changing waves, bathymetry, and tidal elevation. Waves, currents, mean sea levels, and bathymetry were measured near and within five shore-perpendicular channels (on average 2-m deep, 30-m wide) that were dredged with the propellers of a landing craft at different times on a long straight Atlantic Ocean beach near Duck, NC in summer 2012. The circulation was measured for a range of incident wave conditions and channel sizes, and included rapid transitions between strong (0.5 to 1 m/s) rip current jets flowing offshore through the channels and alongshore currents flowing across the channels with no rip currents. Meandering alongshore currents (alongshore currents combined with an offshore jet at the downstream edge of the channel) also were observed. Circulation patterns near and within idealized rip channels simulated with COAWST (a three-dimensional phase-averaged model that couples ROMS and SWAN) are compared with the observations. In addition, the model is used to investigate the hydrodynamic response to a range of wave conditions (angle, height, period) and bathymetries (channel width, depth, and length; tidal elevations; shape of sandbar or terrace). Rip current speeds are largest for the deepest perturbations, and decrease as incident wave angles become more oblique. For obliquely incident waves, the rip currents are shifted in the direction of the alongshore flow, with an increasing shift for increasing alongshore current speed or increasing bathymetric perturbation depth.

  8. Theoretical and numerical investigations towards a new geoid model for the Mediterranean Sea - The GEOMED2 project

    NASA Astrophysics Data System (ADS)

    Barzaghi, Riccardo; Vergos, Georgios S.; Albertella, Alberta; Carrion, Daniela; Cazzaniga, Noemi; Tziavos, Ilias N.; Grigoriadis, Vassilios N.; Natsiopoulos, Dimitrios A.; Bruinsma, Sean; Bonvalot, Sylvain; Lequentrec-Lalancette, Marie-Françoise; Bonnefond, Pascal; Knudsen, Per; Andersen, Ole; Simav, Mehmet; Yildiz, Hasan; Basic, Tomislav; Gil, Antonio J.

    2016-04-01

    The unique features of the Mediterranean Sea, with its large gravity variations, complex circulation, and geodynamic peculiarities have always constituted this semi-enclosed sea area as a unique geodetic, geodynamics and ocean laboratory. The main scope of the GEOMED 2 project is the collection of all available gravity, topography/bathymetry and satellite altimetry data in order to improve the representation of the marine geoid and estimate the Mean Dynamic sea surface Topography (MDT) and the circulation with higher accuracy and resolution. Within GEOMED2, the data employed are land and marine gravity data, GOCE/GRACE based Global Geopotential Models and a combination after proper validation of MISTRAL, HOMONIM and SRTM/bathymetry terrain models. In this work we present the results achieved for an inner test region spanning the Adriatic Sea area, bounded between 36o < φ < 48o and 10o < λ < 22o. Within this test region, the available terrain/bathymetry models have been evaluated in terms of their contribution to geoid modeling, the processing methodologies have been tested in terms of the provided geoid accuracy and finally some preliminary results on the MDT determination have been compiled. The aforementioned will server as the guide for the Mediterranean-wide marine geoid estimation. The processing methodology was based on the well-known remove-compute-restore method following both stochastic and spectral methods. Classic least-squares collocation (LSC) with errors has been employed, along with fast Fourier transform (FFT)-based techniques, the Least-Squares Modification of Stokes' Formula (KTH) method and windowed LSC. All methods have been evaluated against in-situ collocated GPS/Levelling geoid heights, using EGM2008 as a reference, in order to conclude on the one(s) to be used for the basin-wide geoid evaluation.

  9. New imaging of submarine landslides from the 1964 earthquake near Whittier, Alaska, and a comparison to failures in other Alaskan fjords

    USGS Publications Warehouse

    Haeussler, Peter J.; Parsons, Thomas E.; Finlayson, David P.; Hart, Patrick J.; Chaytor, Jason D.; Ryan, Holly F; Lee, Homa J.; Labay, Keith A.; Peterson, Andrew; Liberty, Lee

    2014-01-01

    The 1964 Alaska M w 9.2 earthquake triggered numerous submarine slope failures in fjords of southern Alaska. These failures generated local tsunamis, such as at Whittier, where they inundated the town within 4 min of the beginning of shaking. Run-up was up to 32 m, with 13 casualties. We collected new multibeam bathymetry and high-resolution sparker seismic data in Passage Canal, and we examined bathymetry changes before and after the earthquake. The data reveal the debris flow deposit from the 1964 landslides, which covers the western 5 km of the fjord bottom. Individual blocks in the flow are up to 145-m wide and 25-m tall. Bathymetry changes show the mass transfer deposits originated from the fjord head and Whittier Creek deltas and had a volume of about 42 million m3. The 1964 deposit has an average thickness of ∼5.4 m. Beyond the debris flow, the failures likely deposited a ∼4.6-m thick megaturbidite in a distal basin. We have studied the 1964 submarine landslides in three fjords. All involved failure of the fjord-head delta. All failures eroded basin-floor sediments and incorporated them as they travelled. All the failures deposited blocks, but their size and travel distances varied greatly. We find a correlation between maximum block size and maximum tsunami run-up regardless of the volume of the slides. Lastly, the fjord’s margins were influenced by increased supply of glacial sediments during the little ice age, which along with a long interseismic interval (∼900 years) may have caused the 1964 earthquake to produce particularly numerous and large submarine landslides.

  10. The Seamount Catalog in EarthRef.org

    NASA Astrophysics Data System (ADS)

    Gotberg, N. K.; Koppers, A. A.; Staudigel, H.; Perez, J.

    2004-12-01

    Seamounts are important to research and education in many scientific fields, providing a wide range of data on physical, chemical, biological and geological processes. In order to make a diverse set of seamount data accessible we have developed the Seamount Catalog in EarthRef.org, available through the http://earthref.org/databases/SC/. The primary goal of the Seamount Catalog is to provide access to digital data files on a large assortment of interdisciplinary seamount research. The catalog can be searched at a variety of ability or expert levels allowing it to be used from basic education to advanced research. Each seamount is described in terms of its location, height, volume, elongation, azimuth, irregularity, rifts, morphological classification and relation to other features. GEBCO (General Bathymetric Chart of the Ocean) gazetteer data (2002; 2003) is included in the database in order to provide information on the history, discovery and names of the seamounts. Screen-optimized bathymetry maps, grid files and the original multibeam data files are available for online viewing with higher resolution downloadable versions (AI, PS, PDF) also offered. The data files for each seamount include a map made from the multibeam data only, a map made from Smith and Sandwell's (1996) predicted bathymetry, a merged map incorporating both data sets, and a map showing the differences between the two data sets. We are working towards expanding the Seamount Catalog by integrating bathymetry data from various sources, developing and linking disciplinary reference models, and integrating information from multiple disciplines and from the literature. We hope to create a data integrative environment that provides access to seamount data and the tools needed for working with that data.

  11. Velocity mapping in the Lower Congo River: a first look at the unique bathymetry and hydrodynamics of Bulu Reach

    USGS Publications Warehouse

    Jackson, P. Ryan; Oberg, Kevin A.; Gardiner, Ned; Shelton, John

    2009-01-01

    The lower Congo River is one of the deepest, most powerful, and most biologically diverse stretches of river on Earth. The river’s 270 m decent from Malebo Pool though the gorges of the Crystal Mountains to the Atlantic Ocean (498 km downstream) is riddled with rapids, cataracts, and deep pools. Much of the lower Congo is a mystery from a hydraulics perspective. However, this stretch of the river is a hotbed for biologists who are documenting evolution in action within the diverse, but isolated, fish populations. Biologists theorize that isolation of fish populations within the lower Congo is due to barriers presented by flow structure and bathymetry. To investigate this theory, scientists from the U.S. Geological Survey and American Museum of Natural History teamed up with an expedition crew from National Geographic in 2008 to map flow velocity and bathymetry within target reaches in the lower Congo River using acoustic Doppler current profilers (ADCPs) and echo sounders. Simultaneous biological and water quality sampling was also completed. This paper presents some preliminary results from this expedition, specifically with regard to the velocity structure andbathymetry. Results show that the flow in the bedrock controlled Bulu reach of the lower Congo is highly energetic. Turbulent and secondary flow structures can span the full depth of flow (up to 165 m), while coherent bank-to-bank cross-channel flow structures are absent. Regions of flow separation near the banks are isolated from one another and from the opposite bank by high shear, high velocity zones with depth-averaged flow velocities that can exceed 4 m/s.

  12. Topobathymetric elevation model development using a new methodology: Coastal National Elevation Database

    USGS Publications Warehouse

    Danielson, Jeffrey J.; Poppenga, Sandra K.; Brock, John C.; Evans, Gayla A.; Tyler, Dean; Gesch, Dean B.; Thatcher, Cindy A.; Barras, John

    2016-01-01

    During the coming decades, coastlines will respond to widely predicted sea-level rise, storm surge, and coastalinundation flooding from disastrous events. Because physical processes in coastal environments are controlled by the geomorphology of over-the-land topography and underwater bathymetry, many applications of geospatial data in coastal environments require detailed knowledge of the near-shore topography and bathymetry. In this paper, an updated methodology used by the U.S. Geological Survey Coastal National Elevation Database (CoNED) Applications Project is presented for developing coastal topobathymetric elevation models (TBDEMs) from multiple topographic data sources with adjacent intertidal topobathymetric and offshore bathymetric sources to generate seamlessly integrated TBDEMs. This repeatable, updatable, and logically consistent methodology assimilates topographic data (land elevation) and bathymetry (water depth) into a seamless coastal elevation model. Within the overarching framework, vertical datum transformations are standardized in a workflow that interweaves spatially consistent interpolation (gridding) techniques with a land/water boundary mask delineation approach. Output gridded raster TBDEMs are stacked into a file storage system of mosaic datasets within an Esri ArcGIS geodatabase for efficient updating while maintaining current and updated spatially referenced metadata. Topobathymetric data provide a required seamless elevation product for several science application studies, such as shoreline delineation, coastal inundation mapping, sediment-transport, sea-level rise, storm surge models, and tsunami impact assessment. These detailed coastal elevation data are critical to depict regions prone to climate change impacts and are essential to planners and managers responsible for mitigating the associated risks and costs to both human communities and ecosystems. The CoNED methodology approach has been used to construct integrated TBDEM models in Mobile Bay, the northern Gulf of Mexico, San Francisco Bay, the Hurricane Sandy region, and southern California.

  13. Hydrogeomorphic and Anthropogenic Influences on Water Quality, Habitat, and Fish of Great Lakes Coastal Wetlands

    EPA Science Inventory

    Great Lakes coastal wetlands represent a dynamic interface between coastal watersheds and the open lake. Compared to the adjacent lakes, these wetlands have generally warmer water, reduced wave energy, shallow bathymetry, higher productivity, and structurally complex vegetated h...

  14. Preliminary bathymetry; Ester Passage to Eaglek Island, Alaska

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    A map, scale 1:20,000, shows water depths, rocks, and hazards to navigation. These data are noted on track lines run by the Research Vessel Growler in Alaskan waters, where data on navigation shown on published charts are nonexistant, preliminary, or out dated. (USGS)

  15. Preliminary bathymetry; approaches to Unakwik Inlet, Alaska

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    A map, scale 1:20,000, shows water depths, rocks, and hazards to navigation. These data are noted on track lines run by the Research Vessel Growler in Alaskan waters, where data on navigation shown on published charts are nonexistant, preliminary, or out dated. (USGS)

  16. Wave-Current Interaction in Coastal Inlets and River Mouths

    DTIC Science & Technology

    2013-09-30

    Astoria Canyon buoy operated by the Coastal Data Information Program ( CDIP , buoy # 46248). Three-dimensional current fields and bathymetry were...The model was initialized with wave measurements from CDIP buoy 46248 located at the tip of the Astoria Canyon, and uses modeled current fields

  17. Shallow Water Bathymetry using the REMUS 100 Autonomous Underwater Vehicle

    DTIC Science & Technology

    2013-12-01

    potentially meeting IHO Standards for Hydrographic Surveys, are advertised but Kongsberg Hydroid do not recommend the REMUS 100 as a platform for...data set. Outlier soundings due to measurement errors have been discarded Figure 28: REMUS 100 depth soundings in isometric projection, coloured

  18. No estuarine intertidal bathymetry? No worries! Estimating intertidal depth contours from readily available GIS data

    EPA Science Inventory

    The importance of littoral elevation to the distribution of intertidal species has long been a cornerstone of estuarine ecology and its historical importance to navigation cannot be understated. However, historically, intertidal elevation measurements have been sparse likely due ...

  19. Predicting Maximum Lake Depth from Surrounding Topography

    EPA Science Inventory

    Lake volume aids understanding of the physical and ecological dynamics of lakes, yet is often not readily available. The data needed to calculate lake volume (i.e. bathymetry) are usually only collected on a lake by lake basis and are difficult to obtain across broad regions. ...

  20. FORAGE FISH AND ZOOPLANKTON COMMUNITY COMPOSITION IN WESTERN LAKE SUPERIOR

    EPA Science Inventory

    We assessed the abundance, size, and species composition of the fish and zooplankton communities of western Lake Superior during 1996 and 1997. Data were analyzed for 3 ecoregions (Duluth-Superior (1), Apostle Islands (2), Minnesota coast (3) differing in lake bathymetry, phsiodo...

  1. Distribution of intertidal eelgrass (Zostera marina L.) with bathymetry in three Pacific Northwest estuaries

    EPA Science Inventory

    Distributions of native intertidal eelgrass (Zostera marina L.) and non-vegetated substrates in three coastal estuaries of the Pacific Northwest (PNW) were determined using color infrared (CIR) aerial orthophotography during daylight low tides. Comparison of the digital classif...

  2. Effects of Mackenzie River Discharge and Bathymetry on Sea Ice in the Beaufort Sea

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Hall, D. K.; Rigor, I. G; Li, P.; Neumann, G.

    2014-01-01

    Mackenzie River discharge and bathymetry effects on sea ice in the Beaufort Sea are examined in 2012 when Arctic sea ice extent hit a record low. Satellite-derived sea surface temperature revealed warmer waters closer to river mouths. By 5 July 2012, Mackenzie warm waters occupied most of an open water area about 316,000 sq km. Surface temperature in a common open water area increased by 6.5 C between 14 June and 5 July 2012, before and after the river waters broke through a recurrent landfast ice barrier formed over the shallow seafloor offshore the Mackenzie Delta. In 2012, melting by warm river waters was especially effective when the strong Beaufort Gyre fragmented sea ice into unconsolidated floes. The Mackenzie and other large rivers can transport an enormous amount of heat across immense continental watersheds into the Arctic Ocean, constituting a stark contrast to the Antarctic that has no such rivers to affect sea ice.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintermeyer, Niklas; Winters, Andrew R., E-mail: awinters@math.uni-koeln.de; Gassner, Gregor J.

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving schememore » we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.« less

  4. Impact of sea-level rise on cross-shore sediment transport on fetch-limited barrier reef island beaches under modal and cyclonic conditions.

    PubMed

    Baldock, T E; Golshani, A; Atkinson, A; Shimamoto, T; Wu, S; Callaghan, D P; Mumby, P J

    2015-08-15

    A one-dimensional wave model is combined with an analytical sediment transport model to investigate the likely influence of sea-level rise on net cross-shore sediment transport on fetch-limited barrier reef and lagoon island beaches. The modelling considers if changes in the nearshore wave height and wave period in the lagoon induced by different water levels over the reef flat are likely to lead to net offshore or onshore movement of sediment. The results indicate that the effects of SLR on net sediment movement are highly variable and controlled by the bathymetry of the reef and lagoon. A significant range of reef-lagoon bathymetry, and notably shallow and narrow reefs, appears to lead hydrodynamic conditions and beaches that are likely to be stable or even accrete under SLR. Loss of reef structural complexity, particularly on the reef flat, increases the chance of sediment transport away from beaches and offshore. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Resilience of branching and massive corals to wave loading under sea level rise--a coupled computational fluid dynamics-structural analysis.

    PubMed

    Baldock, Tom E; Karampour, Hassan; Sleep, Rachael; Vyltla, Anisha; Albermani, Faris; Golshani, Aliasghar; Callaghan, David P; Roff, George; Mumby, Peter J

    2014-09-15

    Measurements of coral structural strength are coupled with a fluid dynamics-structural analysis to investigate the resilience of coral to wave loading under sea level rise and a typical Great Barrier Reef lagoon wave climate. The measured structural properties were used to determine the wave conditions and flow velocities that lead to structural failure. Hydrodynamic modelling was subsequently used to investigate the type of the bathymetry where coral is most vulnerable to breakage under cyclonic wave conditions, and how sea level rise (SLR) changes this vulnerability. Massive corals are determined not to be vulnerable to wave induced structural damage, whereas branching corals are susceptible at wave induced orbital velocities exceeding 0.5m/s. Model results from a large suite of idealised bathymetry suggest that SLR of 1m or a loss of skeleton strength of order 25% significantly increases the area of reef flat where branching corals are exposed to damaging wave induced flows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Differences in Reservoir Bathymetry, Area, and Capacity Between December 20-22, 2005, and June 16-19, 2008, for Lower Taum Sauk Reservoir, Reynolds County, Missouri

    USGS Publications Warehouse

    Wilson, Gary L.; Richards, Joseph M.

    2008-01-01

    On December 14, 2005, the embankment of the upper reservoir at the Taum Sauk pump storage facility, Reynolds County, Missouri, catastrophically failed and flooded the East Fork Black River, depositing debris and sediment in Johnson's Shut-Ins State Park, the lower Taum Sauk Reservoir, and downstream in the Black River (location map). A bathymetric survey conducted December 20-22, 2005, documented the bathymetry of the lower Taum Sauk Reservoir after the upper reservoir failure (Rydlund, 2006). After subsequent excavation of sediment and debris from the lower reservoir by Ameren Union Electric (UE), the U.S. Geological Survey (USGS), in collaboration with Roux Associates Inc., conducted a bathymetric survey of the lower Taum Sauk Reservoir on June 16-19, 2008, to prepare a current (2008) bathymetric map (fig. 1) for the lower reservoir, establish a current (2008) elevation-area and capacity table, and determine reservoir area and capacity differences between the 2005 and 2008 bathymetric surveys.

  7. Satellite-Derived Bathymetry: Accuracy Assessment on Depths Derivation Algorithm for Shallow Water Area

    NASA Astrophysics Data System (ADS)

    Said, N. M.; Mahmud, M. R.; Hasan, R. C.

    2017-10-01

    Over the years, the acquisition technique of bathymetric data has evolved from a shipborne platform to airborne and presently, utilising space-borne acquisition. The extensive development of remote sensing technology has brought in the new revolution to the hydrographic surveying. Satellite-Derived Bathymetry (SDB), a space-borne acquisition technique which derives bathymetric data from high-resolution multispectral satellite imagery for various purposes recently considered as a new promising technology in the hydrographic surveying industry. Inspiring by this latest developments, a comprehensive study was initiated by National Hydrographic Centre (NHC) and Universiti Teknologi Malaysia (UTM) to analyse SDB as a means for shallow water area acquisition. By adopting additional adjustment in calibration stage, a marginal improvement discovered on the outcomes from both Stumpf and Lyzenga algorithms where the RMSE values for the derived (predicted) depths were 1.432 meters and 1.728 meters respectively. This paper would deliberate in detail the findings from the study especially on the accuracy level and practicality of SDB over the tropical environmental setting in Malaysia.

  8. Swath Bathymetry Surveys of the Monterey Bay Area from Point Ano Nuevo to Moss Landing, San Mateo, Santa Cruz, and Monterey Counties, California

    USGS Publications Warehouse

    Ritchie, Andrew C.; Finlayson, David P.; Logan, Joshua B.

    2010-01-01

    This report describes swath bathymetry and backscatter data acquired by the U.S. Geological Survey on the continental shelf within the Monterey Bay National Marine Sanctuary between Point A?o Nuevo and Moss Landing, in San Mateo, Santa Cruz, and Monterey Counties, Calif. The survey was done for the California Seafloor Mapping Program (CSMP), in field activities S-7-09-MB and S-10-09-MB, by the Western Coastal and Marine Geology (WCMG) Team of the U.S. Geological Survey (USGS). The data were aquired in two seperate surveys: (1) between August 13, 2009 and September 3, 2009, personnel from WCMG completed field activity S-7-09-MB, from Point A?o Nuevo south to Table Rock, as well as a block west of Soquel Canyon; (2) between October 12 and December 16, 2009, WCMG conducted field activity S-10-09-MB, surveying between Table Rock and Moss Landing.

  9. Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Fenty, I.; Xu, Y.; Cai, C.; Velicogna, I.; Cofaigh, C. Ó.; Dowdeswell, J. A.; Weinrebe, W.; Catania, G.; Duncan, D.

    2016-03-01

    Marine-terminating glaciers play a critical role in controlling Greenland's ice sheet mass balance. Their frontal margins interact vigorously with the ocean, but our understanding of this interaction is limited, in part, by a lack of bathymetry data. Here we present a multibeam echo sounding survey of 14 glacial fjords in the Uummannaq and Vaigat fjords, west Greenland, which extends from the continental shelf to the glacier fronts. The data reveal valleys with shallow sills, overdeepenings (>1300 m) from glacial erosion, and seafloor depths 100-1000 m deeper than in existing charts. Where fjords are deep enough, we detect the pervasive presence of warm, salty Atlantic Water (AW) (>2.5°C) with high melt potential, but we also find numerous glaciers grounded on shallow (<200 m) sills, standing in cold (<1°C) waters in otherwise deep fjords, i.e., with reduced melt potential. Bathymetric observations extending to the glacier fronts are critical to understand the glacier evolution.

  10. Single-beam bathymetry data collected in 2015 from Grand Bay, Alabama-Mississippi

    USGS Publications Warehouse

    DeWitt, Nancy T.; Stalk, Chelsea A.; Smith, Christopher G.; Locker, Stanley D.; Fredericks, Jake J.; McCloskey, Terrence A.; Wheaton, Cathryn J.

    2017-12-01

    As part of the Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open-bay, and tidal creek environments of Grand Bay, Alabama-Mississippi, from May to June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along the northern Gulf of Mexico, specifically Grand Bay, Alabama-Mississippi; Vermilion Bay, Louisiana; and, along the east coast, within Chincoteague Bay, Virginia-Maryland. The data described in this report provide baseline bathymetric information for future research investigating wetland-marsh evolution, sediment transport, erosion, recent and long-term geomorphic change, and can also support the modeling of changes in response to restoration and storm impacts. The survey area encompasses more than 40 square kilometers of Grand Bay’s waters.

  11. Predicting Waves in the Pacific Northwest of the US

    NASA Astrophysics Data System (ADS)

    Ozkan-Haller, H. T.; Oskamp, J. A.; Garcia, G.; Kassem, S.; McNutt, J.

    2010-12-01

    The Pacific Northwest region of the US is characterized by an energetic deep water wave climate with large swell and sea waves that can approach from multiple directions. As these waves propagate from the open ocean over the continental shelf towards shore, they are affected by the underwater topography (or bathymetry) of the shelf. The US West Coast shelf is characterized by complicated bathymetry with numerous canyons and large banks. Such features can at places focus wave energy and at others divert waves away. As a result the wave field near the coast (in 10-50m water depth) varies significantly along the coast. Although a comprehensive prediction and validation effort for waves exists for the California shoreline, it is currently lacking for the Pacific Northwest shorelines. Herein, we present comprehensive long-term wave model simulations for several regions within the Oregon coastline, show validation of the results with existing nearshore observations, and discuss the dominant dynamics responsible for the observed wave transformation.

  12. A GIS Library of Multibeam Data for Massachusetts Bay and the Stellwagen Bank National Marine Sanctuary, Offshore of Boston, Massachusetts

    USGS Publications Warehouse

    Butman, Bradford; Valentine, Page C.; Middleton, Tammie J.; Danforth, William W.

    2007-01-01

    Introduction The U.S. Geological Survey (USGS) has mapped the sea floor of the Stellwagen Bank National Marine Sanctuary and western Massachusetts Bay, offshore of Boston, Massachusetts (figure 1a, figure 1b). The mapping was carried out using a Simrad Subsea EM1000 Multibeam Echo Sounder (95 kHz) on the Frederick G. Creed on four cruises between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. This GIS Library contains images and grids of bathymetry, shaded relief bathymetry, and backscatter intensity data from these surveys in an Environmental Systems Research Institute (http://www.esri.com) (ESRI) ArcMap 9.1 Geographic Information System (GIS) project. The shapefiles, images, grids and associated metadata may also be downloaded individually. Descriptions and interpretations of the data are available in a series of published maps.

  13. Wave Period and Coastal Bathymetry Estimations from Satellite Images

    NASA Astrophysics Data System (ADS)

    Danilo, Celine; Melgani, Farid

    2016-08-01

    We present an approach for wave period and coastal water depth estimation. The approach based on wave observations, is entirely independent of ancillary data and can theoretically be applied to SAR or optical images. In order to demonstrate its feasibility we apply our method to more than 50 Sentinel-1A images of the Hawaiian Islands, well-known for its long waves. Six wave buoys are available to compare our results with in-situ measurements. The results on Sentinel-1A images show that half of the images were unsuitable for applying the method (no swell or wavelength too small to be captured by the SAR). On the other half, 78% of the estimated wave periods are in accordance with buoy measurements. In addition, we present preliminary results of the estimation of the coastal water depth on a Landsat-8 image (with characteristics close to Sentinel-2A). With a squared correlation coefficient of 0.7 for ground truth measurement, this approach reveals promising results for monitoring coastal bathymetry.

  14. Bathymetry of Lake Manatee, Manatee County, Florida, 2009

    USGS Publications Warehouse

    Bellino, Jason C.; Pfeiffer, William R.

    2010-01-01

    Lake Manatee, located in central Manatee County, Florida, is the principal drinking-water source for Manatee and Sarasota Counties. The drainage basin of Lake Manatee encompasses about 120 square miles, and the reservoir covers a surface area of about 1,450 acres at an elevation of 38.8 feet above NAVD 88 or 39.7 feet above NGVD 29. The full pool water-surface elevation is 39.1 feet above NAVD 88 (40.0 feet above NGVD 29), and the estimated minimum usable elevation is 25.1 feet above NAVD 88 (26.0 feet above NGVD 29). The minimum usable elevation is based on the elevation of water intake structures. Manatee County has used the stage/volume relation that was developed from the original survey in the 1960s to estimate the volume of water available for consumption. Concerns about potential changes in storage capacity of the Lake Manatee reservoir, coupled with a recent drought, led to this bathymetry mapping effort.

  15. Bathymetry in the Classroom

    ERIC Educational Resources Information Center

    Michael, Kurt Y.

    2013-01-01

    The "Titanic" caught the attention and imagination of the public when, in 1985, the sunken ship was discovered 370 miles off the coast of Newfoundland (PBS, 2012). Since that time, scientists have conducted numerous expeditions using high-resolution SONAR working in tandem with remote-operated vehicles (ROV) to collect information used…

  16. MN GIS/LIS Consortium Annual Conference and Workshops, Rochester, MN, October 1-3, 2014

    EPA Science Inventory

    We mapped the distribution of multiple ecosystem services in the Saint Louis River Area of Concern (SLR AOC) under current and reported extreme lake levels. Services were mapped using measured or modeled natural features (i.e., bathymetry, vegetation, fetch, habitat, contaminated...

  17. Archive of U.S. Geological Survey selected single-beam bathymetry datasets, 1969-2000

    USGS Publications Warehouse

    Schreppel, Heather A.; Degnan, Carolyn H.; Dadisman, Shawn V.; Metzger, Dan R.

    2013-01-01

    New national programs, as well as natural and man-made disasters, have raised awareness about the need to find new and improved ways to share information about the coastal and marine environment with a wide-ranging public audience. The U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) has begun a large-scale effort to incorporate the program's published, digital geophysical data into a single point of access known as the Coastal and Marine Geoscience Data System (CMGDS) (http://cmgds.marine.usgs.gov/). To aid in data discovery, work is also being done to import CMGP data into highly visible data and information resources, such as the National Oceanic and Atmospheric Administration's (NOAA) National Geophysical Data Center (NGDC) and two widely used Earth-science tools, GeoMapApp (GMA) (http://www.geomapapp.org) and Virtual Ocean (VO) (http://www.virtualocean.org/). This task of the CMGP Integrated Data Management System project will help support information exchange with partners, regional planning groups, and the public, as well as facilitate integrated spatial-data analysis. Sharing USGS-CMGP geophysical data via CMGDS, NGDC, GMA, and VO will aid data discovery and enable the data to support new purposes beyond those for which the data were originally intended. In order to make data available to NGDC, and from there into GMA and VO, the data must be reformatted into a standard exchange format and published. In 1977, a group of geophysical data managers from the public and private sectors developed the MGD77 format as the standard exchange format for geophysical data. In 2010, a tab-delimited version of the format was added as MGD77T (Hittelman and others, 1977). The MGD77T geophysical data format can include bathymetry, magnetics, gravity, and seismic navigation data. It is used for the transmission of data between marine institutions, data centers, and can be used by various software programs as an exchange format. A header (documentation) file and data file are created for each survey (Hittelman and others, 1977). More details about the MGD77T format are available at http://www.ngdc.noaa.gov/mgg/dat/geodas/docs/mgd77.pdf (74MB PDF). This archive describes the detailed steps used to convert single-beam bathymetry and navigation files into the MGD77T format (Hittelman and others, 1977) for submission to NGDC and formal Federal Geographic Data Committee (FGDC) (http://www.fgdc.gov/metadata) metadata as a publication of these single-beam bathymetry datasets.

  18. Importance of large-scale bathymetry features on 2011 Tohoku tsunami waveforms through comparison of simulations with the spatially dense ALBACORE OBS array data

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Lynett, P. J.; Legg, M. R.; Weeraratne, D. S.

    2012-12-01

    In March 2011, a deployment of ocean bottom seismometers (OBSs) off the coast of Southern California recorded the tsunami resulting from the Mw=9.0 Tohoku, Japan earthquake with very high spatial resolution. The ALBACORE (Asthenosphere and Lithosphere Broadband Architecture from the California Offshore Region Experiment) OBS array spanned a region that was 150 km north-south by 400 km east-west, extending into deep open ocean west of the Patton escarpment. In that array, 22 stations with a spacing of 75 km had differential pressure gauges (DPGs) that recorded water pressure waveform data continuously at 50 samples/second. The DPG tsunami records across the entire array show multiple large-amplitude, coherent phases arriving one hour to more than 36 hours after the initial tsunami phase. To determine the source of the large-amplitude coherent phases, gravity ocean wave propagation calculations were carried out for the Pacific Ocean. Simulated pressure waveforms were compared with data for the ALBACORE stations, as well as for the NOAA DART buoys. The linear, non-dispersive shallow-water simulations include bottom frictional effects, and use the USGS NEIC Tohoku slip model and ETOPO2 (two-minute spatial resolution) bathymetry. The predicted travel times of the initial arrivals are found to be less than 1% different from the observed travel times in the southern California ALBACORE DPG data. In order to gauge the effects of large-scale features in Pacific Ocean bathymetry, several large-scale features were individually removed, and simulations were carried out for the modified bathymetry. The removed features include the Emperor Seamount chain, Hawaiian Islands, Oceania, French Polynesia, and the South American coastline. The results show that the removal of these features has an effect on the arrival time of the phases that depends on the feature proximity to the direct path, but their removal does not have a significant effect on the frequency content or phase amplitudes of the waves. The direct paths recorded in Southern California indicate that the tsunami wave did not interfere with distant above-water features such as the Aleutians, but was diffracted around Point Conception in the California coastline and around southern California islands. It is more likely that the scattered phases are the result of wave reflections off the western Japan coastline, or interactions with local structures such as the central-southern California coastline, plateaus beneath the Channel Islands, and the Patton Escarpment.

  19. Bathymetric Changes Shaped by Longshore Currents on a Natural Beach

    NASA Astrophysics Data System (ADS)

    Reilly, W. L.; Slinn, D.; Plant, N.

    2004-12-01

    The goal of the project is to simulate beach morphology on time scales of hours to days. Our approach is to develop finite difference solutions from a coupled modeling system consisting of existing nearshore circulation, wave, and sediment flux models. We initialize the model with bathymetry from a dense data set north of the pier at the Field Research Facility (FRF) in Duck, NC. We integrate the model system forward in time and compare the results of the hind-cast of the beach evolution with the field observations. The model domain extends 1000 meters in the alongshore direction and 500 meters in the cross-shore direction with 5 meter grid spacing. The bathymetry is interpolated and filtered from CRAB transects. A second-degree exponential smoothing method is used to return the cross-shore beach profile near the edges of the modeled domain back to the mean alongshore profile, because the circulation model implements periodic boundary conditions in the alongshore direction. The offshore wave height and direction are taken from the 8-meter bipod at the FRF and input to the wave-model, SWAN (Spectral Wave Nearshore), with a Gaussian-shaped frequency spectrum and a directional spreading of 5 degrees. A constant depth induced wave breaking parameter of 0.73 is used. The resulting calculated wave induced force per unit surface area (gradient of the radiation stress) output from SWAN is used to drive the currents in the circulation model. The circulation model is based on the free-surface non-linear shallow water equations and uses the fourth order compact scheme to calculate spatial derivatives and a third order Adams-Bashforth time discretization scheme. Free slip, symmetry boundary conditions are applied at both the shoreline and offshore boundaries. The time averaged sediment flux is calculated at each location after one hour of circulation. The sediment flux model is based on the approach of Bagnold and includes approximations for both bed-load and suspended load. The bathymetry is then updated by computing the divergence of the time averaged sediment fluxes. The process is then repeated using the updated bathymetry in both SWAN and the circulation model. The cycle continues for a simulation of 10 hours. The results of bathymetric change vary for different time-dependent wave conditions and initial bathymetric profiles. Typical results indicate that for wave heights on the order of one meter, shoreline advancement and sandbar evolution is observed on the order of tens of centimeters.

  20. ACOUSTIC IDENTIFICATION OF NEAR-SHORE SUBSTRATES IN THE GREAT LAKES

    EPA Science Inventory

    Geo-referenced acoustic information is being used more often in research as a viable tool for everything from simple bathymetry to fisheries research and paleo-sediment studies. In the summer of 2002 geo-referenced acoustic soundings (QTC 4?) were recorded for ~20 km of lake bot...

  1. Evaluation of LIDAR for Automating Recognition of Roads and Trails Beneath Forest Canopy

    DTIC Science & Technology

    2011-09-01

    Measurement Unit InSAR Interferometric Synthetic Aperture Radar ISS International Space Station JALBTCX Joint Airborne LiDAR Bathymetry Technical Center of...California police arrest 100 over marijuana growing. Retrieved July 29, 2011, from http://www.bbc.co.uk/news/world–us–canada–14351501 Contreras, M

  2. Frontiers of Remote Sensing of the Oceans and Troposphere from Air and Space Platforms

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Several areas of remote sensing are addressed including: future satellite systems; air-sea interaction/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; sea ice; and impact of remote sensing on synoptic analysis/forecasting.

  3. 30 CFR 282.5 - Disclosure of data and information to the public.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... public. 282.5 Section 282.5 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT... (including, but not limited to, bathymetry, side-scan sonar, subbottom profiler, and magnetometer) in compliance with stipulations or orders concerning protection of environmental aspects of the lease may be...

  4. 30 CFR 282.5 - Disclosure of data and information to the public.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... public. 282.5 Section 282.5 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT... (including, but not limited to, bathymetry, side-scan sonar, subbottom profiler, and magnetometer) in compliance with stipulations or orders concerning protection of environmental aspects of the lease may be...

  5. 30 CFR 282.5 - Disclosure of data and information to the public.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... public. 282.5 Section 282.5 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT... (including, but not limited to, bathymetry, side-scan sonar, subbottom profiler, and magnetometer) in compliance with stipulations or orders concerning protection of environmental aspects of the lease may be...

  6. 30 CFR 280.51 - What types of geophysical data and information must I submit to MMS?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., shallow and deep subbottom profiles, bathymetry, sidescan sonar, gravity and magnetic surveys, and special... and of a quality suitable for processing; (c) Processed geophysical information derived from seismic... interpretive evaluation, reflecting state-of-the-art processing techniques; and (d) Other geophysical data...

  7. Observations of storm morphodynamics using Coastal Lidar and Radar Imaging System (CLARIS): Importance of wave refraction and dissipation over complex surf-zone morphology at a shoreline erosional hotspot

    NASA Astrophysics Data System (ADS)

    Brodie, Katherine L.

    Elevated water levels and large waves during storms cause beach erosion, overwash, and coastal flooding, particularly along barrier island coastlines. While predictions of storm tracks have greatly improved over the last decade, predictions of maximum water levels and variations in the extent of damage along a coastline need improvement. In particular, physics based models still cannot explain why some regions along a relatively straight coastline may experience significant erosion and overwash during a storm, while nearby locations remain seemingly unchanged. Correct predictions of both the timing of erosion and variations in the magnitude of erosion along the coast will be useful to both emergency managers and homeowners preparing for an approaching storm. Unfortunately, research on the impact of a storm to the beach has mainly been derived from "pre" and "post" storm surveys of beach topography and nearshore bathymetry during calm conditions. This has created a lack of data during storms from which to ground-truth model predictions and test hypotheses that explain variations in erosion along a coastline. We have developed Coastal Lidar and Radar Imaging System (CLARIS), a mobile system that combines a terrestrial scanning laser and an X-band marine radar system using precise motion and location information. CLARIS can operate during storms, measuring beach topography, nearshore bathymetry (from radar-derived wave speed measurements), surf-zone wave parameters, and maximum water levels remotely. In this dissertation, we present details on the development, design, and testing of CLARIS and then use CLARIS to observe a 10 km section of coastline in Kitty Hawk and Kill Devil Hills on the Outer Banks of North Carolina every 12 hours during a Nor'Easter (peak wave height in 8 m of water depth = 3.4 m). High decadal rates of shoreline change as well as heightened erosion during storms have previously been documented to occur within the field site. In addition, complex bathymetric features that traverse the surf-zone into the nearshore are present along the southern six kilometers of the field site. In addition to the CLARIS observations, we model wave propagation over the complex nearshore bathymetry for the same storm event. Data reveal that the complex nearshore bathymetry is mirrored by kilometer scale undulations in the shoreline, and that both morphologies persist during storms, contrary to common observations of shoreline and surf-zone linearization by large storm waves. We hypothesize that wave refraction over the complex nearshore bathymetry forces flow patterns which may enhance or stabilize the shoreline and surf-zone morphology during storms. In addition, our semi-daily surveys of the beach indicate that spatial and temporal patterns of erosion are strongly correlated to the steepness of the waves. Along more than half the study site, fifty percent or more of the erosion that occurred during the first 12 hours of the storm was recovered within 24 hours of the peak of the storm as waves remained large (>2.5 m), but transitioned to long period swell. In addition, spatial variations in the amount of beach volume change during the building portion of the storm were strongly correlated with observed wave dissipation within the inner surf zone, as opposed to predicted inundation elevations or alongshore variations in wave height.

  8. A Real-Time Coastal Ocean Prediction Experiment for MREA04

    DTIC Science & Technology

    2008-01-01

    coastal ocean prediction experiment for MREA04 Dong S. Ko *, Paul J. Martin, Clark D. Rowley, Ruth H. Preller Naval Research Laborator ,: S ’ntis Space...Jourml of Marine Svstem 69 t200S) 17 28 and various data streams for ocean bathymetry, clima - global ONFS or from a higher resolution regional ONFS

  9. What Geoscience Experts and Novices Look At, and What They See, When Viewing Data Visualizations

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Shipley, Thomas F.; Boone, Alexander P.; Straccia, Frances

    2016-01-01

    This study examines how geoscience experts and novices make meaning from an iconic type of data visualization: shaded relief images of bathymetry and topography. Participants examined, described, and interpreted a global image, two high-resolution seafloor images, and 2 high-resolution continental images, while having their gaze direction…

  10. A variable resolution right TIN approach for gridded oceanographic data

    NASA Astrophysics Data System (ADS)

    Marks, David; Elmore, Paul; Blain, Cheryl Ann; Bourgeois, Brian; Petry, Frederick; Ferrini, Vicki

    2017-12-01

    Many oceanographic applications require multi resolution representation of gridded data such as for bathymetric data. Although triangular irregular networks (TINs) allow for variable resolution, they do not provide a gridded structure. Right TINs (RTINs) are compatible with a gridded structure. We explored the use of two approaches for RTINs termed top-down and bottom-up implementations. We illustrate why the latter is most appropriate for gridded data and describe for this technique how the data can be thinned. While both the top-down and bottom-up approaches accurately preserve the surface morphology of any given region, the top-down method of vertex placement can fail to match the actual vertex locations of the underlying grid in many instances, resulting in obscured topology/bathymetry. Finally we describe the use of the bottom-up approach and data thinning in two applications. The first is to provide thinned, variable resolution bathymetry data for tests of storm surge and inundation modeling, in particular hurricane Katrina. Secondly we consider the use of the approach for an application to an oceanographic data grid of 3-D ocean temperature.

  11. Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA

    USGS Publications Warehouse

    Andrews, Brian D.; Brothers, Laura L.; Barnhardt, Walter A.

    2010-01-01

    Seafloor pockmarks occur worldwide and may represent millions of m3 of continental shelf erosion, but few numerical analyses of their morphology and spatial distribution of pockmarks exist. We introduce a quantitative definition of pockmark morphology and, based on this definition, propose a three-step geomorphometric method to identify and extract pockmarks from high-resolution swath bathymetry. We apply this GIS-implemented approach to 25 km2 of bathymetry collected in the Belfast Bay, Maine USA pockmark field. Our model extracted 1767 pockmarks and found a linear pockmark depth-to-diameter ratio for pockmarks field-wide. Mean pockmark depth is 7.6 m and mean diameter is 84.8 m. Pockmark distribution is non-random, and nearly half of the field's pockmarks occur in chains. The most prominent chains are oriented semi-normal to the steepest gradient in Holocene sediment thickness. A descriptive model yields field-wide spatial statistics indicating that pockmarks are distributed in non-random clusters. Results enable quantitative comparison of pockmarks in fields worldwide as well as similar concave features, such as impact craters, dolines, or salt pools.

  12. Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun

    2015-06-01

    Accurate mapping and effective monitoring of benthic habitat in the Florida Keys are critical in developing management strategies for this valuable coral reef ecosystem. For this study, a framework was designed for automated benthic habitat mapping by combining multiple data sources (hyperspectral, aerial photography, and bathymetry data) and four contemporary imagery processing techniques (data fusion, Object-based Image Analysis (OBIA), machine learning, and ensemble analysis). In the framework, 1-m digital aerial photograph was first merged with 17-m hyperspectral imagery and 10-m bathymetry data using a pixel/feature-level fusion strategy. The fused dataset was then preclassified by three machine learning algorithms (Random Forest, Support Vector Machines, and k-Nearest Neighbor). Final object-based habitat maps were produced through ensemble analysis of outcomes from three classifiers. The framework was tested for classifying a group-level (3-class) and code-level (9-class) habitats in a portion of the Florida Keys. Informative and accurate habitat maps were achieved with an overall accuracy of 88.5% and 83.5% for the group-level and code-level classifications, respectively.

  13. Bathymetry, morphology, and lakebed geologic characteristics of potential Kokanee salmon spawning habitat in Lake Pend Oreille, Bayview and Lakeview quadrangles, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; Dux, Andrew M.

    2013-01-01

    Kokanee salmon (Oncorhynchus nerka) are a keystone species in Lake Pend Oreille in northern Idaho, historically supporting a high-yield recreational fishery and serving as the primary prey for the threatened native bull trout (Salvelinus confluentus) and the Gerrard-strain rainbow trout (Oncorhynchus mykiss). After 1965, the kokanee population rapidly declined and has remained at a low level of abundance. Lake Pend Oreille is one of the deepest lakes in the United States, the largest lake in Idaho, and home to the U.S. Navy Acoustic Research Detachment Base. The U.S. Geological Survey and Idaho Department of Fish and Game are mapping the bathymetry, morphology, and the lakebed geologic units and embeddedness of potential kokanee salmon spawning habitat in Lake Pend Oreille. Relations between lake morphology, lakebed geologic units, and substrate embeddedness are characterized for the shore zone, rise zone, and open water in bays and the main stem of the lake. This detailed knowledge of physical habitat along the shoreline of Lake Pend Oreille is necessary to better evaluate and develop kokanee recovery actions.

  14. Preliminary bathymetry of Northwestern Fiord and Neoglacial changes of Northwestern Glacier

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    The first preliminary bathymetry (at 1:20,000 scale) and other scientific investigations of Northwestern Fiord, Alaska, were conducted by the Research Vessel Growler in 1978, disclosing this 10.5-mile-long branched waterway to be a deep basin enclosed by a terminal-moraine shoal. The basin was formerly filled by Northwestern Glacier, which began a drastic retreat around 1909 and reached the head of the main arm around 1960. Soundings and profiles show the main channel to be as much as 970 feet deep and to have the typical U shape of a severely glacially eroded valley; since the glacier 's retreat, sediments have formed nearly level deposits in the deepest reaches, while the rest of the basin has a hard, rocky bottom. Preneoglacial forest debris dated by carbon-14 indicates Northwestern Glacier to have advanced into the fiord prior to 1,385 years before present (B.P.); a branch glacier evidently advanced into forest 1,635 years B.P. The combined glaciers from several arms culminated on the present terminal-moraine shoal around 1894. (USGS)

  15. Geomorphology of unique reefs on the western Canadian shelf: sponge reefs mapped by multibeam bathymetry

    NASA Astrophysics Data System (ADS)

    Conway, Kim W.; Barrie, J. Vaughn; Krautter, Manfred

    2005-09-01

    Multibeam imagery of siliceous sponge reefs (Hexactinellida, Hexactinosida) reveals the setting, form, and organization of five reef complexes on the western Canadian continental shelf. The reefs are built by framework skeleton sponges which trap clay-rich sediments resulting in a distinctive pattern of low intensity backscatter from the reefs that colonize more reflective glacial sediments of higher backscatter intensity. Bathymetry and backscatter maps show the distribution and form of reefs in two large complexes in the Queen Charlotte Basin (QCB) covering hundreds of km2, and three smaller reef complexes in the Georgia Basin (GB). Ridges up to 7 km long and 21 m in height, together with diversely shaped, coalescing bioherms and biostromes form the principal reef shape in the QCB whereas chains of wave-form, streamlined mounds up to 14 m in height have developed in the GB. Reef initiation is dependent on the distribution of high backscatter-intensity relict glacial surfaces, and the variation in reef complex morphology is probably the result of tidally driven, near seabed currents.

  16. Bathymetry from fusion of airborne hyperspectral and laser data

    NASA Astrophysics Data System (ADS)

    Kappus, Mary E.; Davis, Curtiss O.; Rhea, W. Joseph

    1998-10-01

    Airborne hyperspectral and nadir-viewing laser data can be combined to ascertain shallow water bathymetry. The combination emphasizes the advances and overcomes the disadvantages of each method used alone. For laser systems, both the hardware and software for obtaining off-nadir measurement are complicated and expensive, while for the nadir view the conversion of laser pulse travel time to depth is straightforward. The hyperspectral systems can easily collect data in a full swath, but interpretation for water depth requires careful calibration and correction for transmittance through the atmosphere and water. Relative depths are apparent in displays of several subsets of hyperspectral data, for example, single blue-green wavelengths, endmembers that represent the pure water component of the data, or ratios of deep to shallow water endmembers. A relationship between one of these values and the depth measured by the aligned nadir laser can be determined, and then applied to the rest of the swath to obtain depth in physical units for the entire area covered. We demonstrate this technique using bathymetric charts as a proxy for laser data, and hyperspectral data taken by AVIRIS over Lake Tahoe and Key West.

  17. Automatic classification techniques for type of sediment map from multibeam sonar data

    NASA Astrophysics Data System (ADS)

    Zakariya, R.; Abdullah, M. A.; Che Hasan, R.; Khalil, I.

    2018-02-01

    Sediment map can be important information for various applications such as oil drilling, environmental and pollution study. A study on sediment mapping was conducted at a natural reef (rock) in Pulau Payar using Sound Navigation and Ranging (SONAR) technology which is Multibeam Echosounder R2-Sonic. This study aims to determine sediment type by obtaining backscatter and bathymetry data from multibeam echosounder. Ground truth data were used to verify the classification produced. The method used to analyze ground truth samples consists of particle size analysis (PSA) and dry sieving methods. Different analysis being carried out due to different sizes of sediment sample obtained. The smaller size was analyzed using PSA with the brand CILAS while bigger size sediment was analyzed using sieve. For multibeam, data acquisition includes backscatter strength and bathymetry data were processed using QINSy, Qimera, and ArcGIS. This study shows the capability of multibeam data to differentiate the four types of sediments which are i) very coarse sand, ii) coarse sand, iii) very coarse silt and coarse silt. The accuracy was reported as 92.31% overall accuracy and 0.88 kappa coefficient.

  18. Geomorphic characterization of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.

    2013-01-01

    The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.

  19. Archive of side scan sonar and swath bathymetry data collected during USGS cruise 10CCT03 offshore of the Gulf Islands National Seashore, Mississippi, from East Ship Island, Mississippi, to Dauphin Island, Alabama, April 2010

    USGS Publications Warehouse

    DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Gibson, James N.; Wiese, Dana S.

    2012-01-01

    Data were collected aboard the U.S. Army Corps of Engineers (USACE) SV Irvington, a 56-foot (ft) Kvichak Marine Industries, Inc., catamaran (fig. 2). Side scan sonar and multibeam bathymetry data were collected simultaneously along the tracklines. The side scan sonar towfish was towed off the starboard side just slightly behind the vessel, close to the seafloor. The multibeam transducer was attached to a retractable strut-arm lowered between the catamaran hulls. Navigation was acquired with an Applanix POS MV and differentially corrected using the broadcast signal from a local National Geodetic Survey (NGS) Continuously Operating Reference Station (CORS) beacon. See the digital FACS equipment log for details about the acquisition equipment used. Raw datasets were stored digitally and processed using HYPACK Inc., HYSWEEP software at the USACE Mobile, Ala., District office. For more information on processing refer to the Equipment and Processing page. Chirp seismic data were also collected during this survey and are archived separately.

  20. Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland

    NASA Astrophysics Data System (ADS)

    Kjellerup Kjeldsen, Kristian; Weinrebe, Reimer Wilhelm; Bendtsen, Jørgen; Anker Bjørk, Anders; Kjær, Kurt Henrik

    2017-08-01

    We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1-2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater. Data are available through the PANGAEA website at https://doi.pangaea.de/10.1594/PANGAEA.860627.

  1. Application of remote sensing techniques to hydrography with emphasis on bathymetry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Meireles, D. S.

    1980-01-01

    Remote sensing techniques are utilized for the determination of hydrographic characteristics, with emphasis in bathymetry. Two sensor systems were utilized: the Metric Camera Wild RC-10 and the Multispectral Scanner of LANDSAT Satellite (MSS-LANDSAT). From photographs of the metric camera, data of photographic density of points with known depth are obtained. A correlation between the variables density x depth is calculated through a regression straight line. From this line, the depth of points with known photographic density is determined. The LANDSAT MSS images are interpreted automatically in the Iterative Multispectral Analysis System (I-100) with the obtention of point subareas with the same gray level. With some simplifications done, it is assumed that the depth of a point is directly related with its gray level. Subareas with points of the same depth are then determined and isobathymetric curves are drawn. The coast line is obtained through the sensor systems already mentioned. Advantages and limitations of the techniques and of the sensor systems utilized are discussed and the results are compared with ground truth.

  2. A radar map of Titan Seas: Tidal dissipation and ocean mixing through the throat of Kraken

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Kirk, Randolph L.; Hayes, Alexander G.; Anderson, Yanhua Z.; Lunine, Jonathan I.; Tokano, Tetsuya; Turtle, Elizabeth P.; Malaska, Michael J.; Soderblom, Jason M.; Lucas, Antoine; Karatekin, Özgür; Wall, Stephen D.

    2014-07-01

    We present a radar map of the Titan’s seas, with bathymetry estimated as proportional to distance from the nearest shore. This naïve analytic bathymetry, scaled to a recent radar sounding of Ligeia Mare, suggests a total liquid volume of ∼32,000 km3, at the low end of estimates made in 2008 when mapping coverage was incomplete. We note that Kraken Mare has two principal basins, separated by a narrow (∼17 km wide, ∼40 km long) strait we refer to as the ‘throat’. Tidal currents in this strait may be dramatic (∼0.5 m/s), generating observable effects such as dynamic topography, whirlpools, and acoustic noise, much like tidal races on Earth such as the Corryvreckan off Scotland. If tidal flow through this strait is the dominant mixing process, the two basins take ∼20 Earth years to exchange their liquid inventory. Thus compositional differences over seasonal timescales may exist, but the composition of solutes (and thus evaporites) over Croll-Milankovich timescales should be homogenized.

  3. End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion (SfM) technology

    USGS Publications Warehouse

    Storlazzi, Curt; Dartnell, Peter; Hatcher, Gerry; Gibbs, Ann E.

    2016-01-01

    The rugosity or complexity of the seafloor has been shown to be an important ecological parameter for fish, algae, and corals. Historically, rugosity has been measured either using simple and subjective manual methods such as ‘chain-and-tape’ or complicated and expensive geophysical methods. Here, we demonstrate the application of structure-from-motion (SfM) photogrammetry to generate high-resolution, three-dimensional bathymetric models of a fringing reef from existing underwater video collected to characterize the seafloor. SfM techniques are capable of achieving spatial resolution that can be orders of magnitude greater than large-scale lidar and sonar mapping of coral reef ecosystems. The resulting data provide finer-scale measurements of bathymetry and rugosity that are more applicable to ecological studies of coral reefs than provided by the more expensive and time-consuming geophysical methods. Utilizing SfM techniques for characterizing the benthic habitat proved to be more effective and quantitatively powerful than conventional methods and thus might portend the end of the ‘chain-and-tape’ method for measuring benthic complexity.

  4. Controls on the T Phase Energy Fluxes Recorded on Juan Fernandez Island by Continental Seismic Wave Paths and Nazca Bathymetry

    NASA Astrophysics Data System (ADS)

    Sáez, Miguel; Ruiz, Sergio

    2018-03-01

    T phases from 54 South American earthquakes with Mw > 5.2 are observed at a broadband station on Juan Fernandez Island. We computed the T phase energy flux (TPEF) values of the seismograms. The TPEF values show a large dispersion that can be explained by considering the tectonic characteristics of the South American plate and the Nazca plate bathymetry. The TPEFs generated by the 2015 Illapel and 2017 Valparaíso seismic sequences were controlled by the positions of the interface events along the dip. The central and downdip interplate earthquakes were more efficient in the generation of T phases than the near-trench interplate earthquakes (depths of <15 km). The variations in the generation efficiency with depth are explained by the continental raypaths of the body waves and the incidence angles of waves entering the sound fixing and ranging channel. Additionally, we observed differences in the TPEFs from both earthquake sequences that were controlled by seamounts atop the Nazca plate along the T phase paths.

  5. Study of the marine environment of the northern Gulf of California

    NASA Technical Reports Server (NTRS)

    Hendrickson, J. R. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Preliminary analysis of the first three months of ERTS-1 imagery have revealed that the MSS images have particular utility for study of turbidity patterns, current phenomena, and bathymetry throughout the test area. Early indications are that well defined spatial distributions of turbidity exist in the northern Gulf of California, and that for any one point in time, these distributions vary with depth. From a single set of images, as many as 3 turbidity maps may be generated, each indicating a vertical spatial relationship of the turbidity masses. The spatial distribution of turbidity masses depend partially upon the coincident currents. In the band of deepest penetration, a map can be gathered which roughly corresponds to the bathymetry of the area. The extreme tides in the northern Gulf of California result in vast areas which can be classified as intertidal mud flats. Information on the amount of exposure at the varying tidal states is important in analysis of these mud flat areas as nursery ground for Mexican commercial fisheries.

  6. Pathways of warm water to the Northeast Greenland outlet glaciers

    NASA Astrophysics Data System (ADS)

    Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula

    2015-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat transport towards the base of the 79°N-Glacier.

  7. The M6 1799 Vendée intraplate earthquake (France) : characterizing the active fault with a multidisciplinary approach.

    NASA Astrophysics Data System (ADS)

    Kaub, C.; Perrot, J.; Le Roy, P., Sr.; Authemayou, C.; Bollinger, L.; Hebert, H.; Geoffroy, L.

    2017-12-01

    The coastal Vendee (France) is located to the south of the intraplate Armorican area. This region is affected by a system of dominantly NW-SE trending shear zones and faults inherited from a long and poly-phased tectonic history since Variscan times. This area currently presents a moderate background seismic activity, but was affected by a significant historical earthquake (magnitude M 6) on the 1799 January 25th. This event generated particularly strong site effects in a Neogene basin located along a major onshore/offshore discontinuity bounding the basin, the Machecoul fault. The objective of this study is to identify and qualify active faults potentially responsible for such major seismic event in order to better constrain the seismic hazard of this area. We adopt for this purpose a multidisciplinary approach including an onshore seismological survey, high-resolution low-penetration offshore seismic data (CHIRP echo sounder, Sparker source and single channel streamer), high-resolution interferometric sonar bathymetry (GeoSwath), compilation of onshore drilling database (BSS, BRGM), and quantitative geomorphology In the meantime, the seismicity of the area was characterized by a network of 10 REFTEK stations, deployed since January 2016 around the Bay of Bourgneuf (MACHE network). About 50 local earthquakes, with coda magnitudes ranging from 0.5 to 3.1 and local magnitude ranging from 0.2 to 2.9 were identified so far. This new database complement a local earthquake catalog acquired since 2011 from previous regional networks. We surveyed the fault segments offshore, in the Bay of Bourgneuf, analyzing 700 km of high-resolution seismic profiles and 40 km² of high-resolution bathymetry acquired during the RETZ1 (2016) and RETZ2 (2017) campaigns, in addition to HR-bathymetry along the fault scarp. Those data are interpreted in conjunction with onshore wells to determine if (and since when) the Machecoul fault controlled tectonically the Neogene sedimentation.

  8. Simulation of landslide and tsunami of the 1741 Oshima-Oshima eruption in Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Ioki, K.; Yanagisawa, H.; Tanioka, Y.; Kawakami, G.; Kase, Y.; Nishina, K.; Hirose, W.; Ishimaru, S.

    2017-12-01

    The 1741 tsunami was generated by the Oshima-Oshima sector collapse in the southwestern Hokkaido, Japan. The tsunami caused great damage along the coast of Japan Sea in Oshima and Tsugaru peninsula and was the largest scale generated in the Japan sea. By the survey of tsunami deposits, at the coast of Okushiri Island and Hiyama in Hokkaido, tsunami deposits of this tsunami were found. In this study, the landslide and tsunami by the Oshima-Oshima eruption were modeled to explain distribution of debris deposits, tsunami heights by historical records, and distribution of tsunami deposits. First, region of landslide and debris deposits were made out from the bathymetry based on the bathymetry survey data (Satake and Kato, 2001) in the north slope of Oshima-Oshima. In addition, topography before the sector collapse and landslide volume were re-estimated. The volume of landslide was estimated at 2.2 km3. Based on those data, the landslide and tsunami were simulated using two-layer model considered soil mass and water mass. The model was made improvements the integrated model of landslide and tsunami (Yanagisawa et al., 2014). The angle of internal friction was calculated 4 cases, included the bottom friction term in soil mass, to affect the movement of landslide. The Manning's roughness coefficient was calculated 5 cases, included the bottom friction term in soil mass, to affect the generation of tsunami. By the parameter study, optimal solutions were found. As the results, soil mass slid slowly submarine slope and stopped after about 15 minutes. Distribution of computed debris deposits agree relatively well with region of debris deposits made out from the bathymetry. On the other hand, the first wave of tsunami was generated during 1 minute that soil mass was sliding. Calculated tsunami heights match with historical records along the coast of Okushiri and Hiyama in Hokkaido. Calculated inundation area of tsunami cover distribution of tsunami deposits found by tsunami deposits survey in Okushiri and Hiyama coast.

  9. Hands-on Marine Geology and Geophysics Field Instruction at the University of Texas

    NASA Astrophysics Data System (ADS)

    Saustrup, S.; Gulick, S. P. S.; Goff, J. A.; Fernandez, R.; Davis, M. B.; Duncan, D.

    2015-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in its ninth year, the course provides instruction in survey design, data acquisition, processing, interpretation, and visualization. Methods covered include seismic reflection, multibeam bathymetry, sidescan sonar, and sediment sampling. The emphasis of the course is team-oriented, hands-on, field training in real-world situations. The course begins with classroom instruction covering the field area and field methods, followed by a week of at-sea field work in 4-student teams. The students then return to the classroom where they integrate, interpret, and visualize data using industry-standard software. The teams present results in a series of professional-level final presentations before academic and industry supporters. Our rotating field areas provide ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf . In the field, student teams rotate between two research vessels: the smaller vessel, the Jackson School's newly-commissioned R/V Scott Petty (26 feet LOA), is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta (82 feet LOA) is used for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibracoring. Teams also rotate through a field laboratory performing processing of geophysical data and sediment samples. This past year's course in Freeport, Texas proceeded unabated despite concurrent record-breaking rainfall and flooding, which offered students a unique opportunity to observe and image, in real time, flood-related bedform migration on a time scale of hours. The data also allowed an in-class opportunity to examine natural and anthropogenic processes recorded in the river and coastal morphology and stratigraphy. http://www.ig.utexas.edu/research/mgg/courses/geof348K/

  10. Seep Detection using E/V Nautilus Integrated Seafloor Mapping and Remotely Operated Vehicles on the United States West Coast

    NASA Astrophysics Data System (ADS)

    Gee, L. J.; Raineault, N.; Kane, R.; Saunders, M.; Heffron, E.; Embley, R. W.; Merle, S. G.

    2017-12-01

    Exploration Vessel (E/V) Nautilus has been mapping the seafloor off the west coast of the United States, from Washington to California, for the past three years with a Kongsberg EM302 multibeam sonar. This system simultaneously collects bathymetry, seafloor and water column backscatter data, allowing an integrated approach to mapping to more completely characterize a region, and has identified over 1,000 seafloor seeps. Hydrographic multibeam sonars like the EM302 were designed for mapping the bathymetry. It is only in the last decade that major mapping projects included an integrated approach that utilizes the seabed and water column backscatter information in addition to the bathymetry. Nautilus mapping in the Eastern Pacific over the past three years has included a number of seep-specific expeditions, and utilized and adapted the preliminary mapping guidelines that have emerged from research. The likelihood of seep detection is affected by many factors: the environment: seabed geomorphology, surficial sediment, seep location/depth, regional oceanography and biology, the nature of the seeps themselves: size variation, varying flux, depth, and transience, the detection system: design of hydrographic multibeam sonars limits use for water column detection, the platform: variations in the vessel and operations such as noise, speed, and swath overlap. Nautilus integrated seafloor mapping provided multiple indicators of seep locations, but it remains difficult to assess the probability of seep detection. Even when seeps were detected, they have not always been located during ROV dives. However, the presence of associated features (methane hydrate and bacterial mats) serve as evidence of potential seep activity and reinforce the transient nature of the seeps. Not detecting a seep in the water column data does not necessarily indicate that there is not a seep at a given location, but with multiple passes over an area and by the use of other contextual data, an area may be classified as likely or unlikely to host seeps.

  11. Bedforms, Channel Formation, and Flow Stripping in the Navy Fan, Offshore Baja California

    NASA Astrophysics Data System (ADS)

    Carvajal, C.; Paull, C. K.; Caress, D. W.; Fildani, A.; Lundsten, E. M.; Anderson, K.; Maier, K. L.; McGann, M.; Gwiazda, R.; Herguera, J. C.

    2017-12-01

    Deep-sea fans store some of the largest volumes of siliciclastic sediment in marine basins. These sandy accumulations record the history of sediment transfer from land to sea, serving as direct records of the geologic history of the continents. Despite their importance, deep-sea fans are difficult to study due to their remote locations in thousands of meters of water depth. In addition, deep-sea fans have a low relief, and geomorphological changes important for the evolution of the fan are often too subtle to be adequately resolved by 3D seismic data or surface-ship bathymetry. To improve our understanding of deep-sea fans, an autonomous underwater vehicle (AUV) was used to acquire high-resolution bathymetry and sub-bottom CHIRP profiles in the proximal sectors of the Navy Fan, offshore Baja California. A remotely operated vehicle was also used to acquire vibracores. The 1-m grid resolution bathymetry shows the seafloor geomorphology in extreme detail revealing different kinds of bedforms, which in combination with the vibracores help to interpret the sedimentary processes active during the Holocene. Morphological elements in the survey area include a main channel, numerous scours, an incipient channel, sediment waves, and a fault escarpment. Several of the scours are interpreted to result from flow stripping at a bend in the main channel. Along high gradient sectors (e.g. > 1o), the scours form bedforms with an erosionally truncated headwall immediately followed down-dip by an upflow accreting sedimentary bulge. These bedforms, the presence of clean sands in the scours and the high gradients suggest that these scours are net-erosional cyclic steps. Scours seem to coalesce along the sediment transport direction to form an incipient channel with abundant rip-up clast gravels. Elsewhere in the survey area, scours are elongated and intimately associated with sediment waves. The acquired dataset illustrates that deep-sea fans may show a variety of processes and geomorphologies, difficult to infer with the use of low-resolution data.

  12. Effect of harbor modifications on the tsunami vulnerability of Crescent City, California

    NASA Astrophysics Data System (ADS)

    Dengler, L.; Uslu, B.

    2008-12-01

    Crescent City, California has experienced more damaging tsunami events in historic times than any other location on the West Coast of the United States. Thirty-one tsunamis have been observed at Crescent City since a tide gauge was established in 1933, including eleven events with maximum peak to trough wave range exceeding one meter and four that caused damage. The most damaging event occurred in 1964 as a result of the great Alaska earthquake. The ensuing tsunami flooded 29 city blocks and killed 11 in the Crescent City area. As a result of the 1964 tsunami and redevelopment projects, the Crescent City harbor was significantly modified in the early 1970s. A 200 x 300 meter small boat basin was carved into the preexisting shore line, a 123 meter dog leg extension was added to the central breakwater and significant deepening occurred on the eastern side of the harbor. In 2006, a Mw 8.3 earthquake in the Kuril Islands generated a moderate Pacific-wide tsunami. The only location with significant damage was the Crescent City harbor where strong currents damaged docks and boats, causing an estimated 9.2 million (US dollars) in damages. Strong currents estimated by the Harbor Master at 12 knots were observed near the entrance to the small boat basin. Past earthquakes from the northwestern Pacific including the 1933 M 8.3 Sanriku Japan earthquake may have produced similar amplitudes at Crescent City to the 2006 event but caused no damage. We have obtained the pre-modification harbor bathymetry and use the MOST model to compare tsunami water heights and current velocities for the 1933 and 2006 sources using modern and pre- modification bathymetry. We also examine model the 1964 inundation using the actual bathymetry and compare the results to numerical simulations that have only used the modern data.

  13. Tsunami simulations of the 1867 Virgin Island earthquake: Constraints on epicenter location and fault parameters

    USGS Publications Warehouse

    Barkan, Roy; ten Brink, Uri S.

    2010-01-01

    The 18 November 1867 Virgin Island earthquake and the tsunami that closely followed caused considerable loss of life and damage in several places in the northeast Caribbean region. The earthquake was likely a manifestation of the complex tectonic deformation of the Anegada Passage, which cuts across the Antilles island arc between the Virgin Islands and the Lesser Antilles. In this article, we attempt to characterize the 1867 earthquake with respect to fault orientation, rake, dip, fault dimensions, and first tsunami wave propagating phase, using tsunami simulations that employ high-resolution multibeam bathymetry. In addition, we present new geophysical and geological observations from the region of the suggested earthquake source. Results of our tsunami simulations based on relative amplitude comparison limit the earthquake source to be along the northern wall of the Virgin Islands basin, as suggested by Reid and Taber (1920), or on the carbonate platform north of the basin, and not in the Virgin Islands basin, as commonly assumed. The numerical simulations suggest the 1867 fault was striking 120°–135° and had a mixed normal and left-lateral motion. First propagating wave phase analysis suggests a fault striking 300°–315° is also possible. The best-fitting rupture length was found to be relatively small (50 km), probably indicating the earthquake had a moment magnitude of ∼7.2. Detailed multibeam echo sounder surveys of the Anegada Passage bathymetry between St. Croix and St. Thomas reveal a scarp, which cuts the northern wall of the Virgin Islands basin. High-resolution seismic profiles further indicate it to be a reasonable fault candidate. However, the fault orientation and the orientation of other subparallel faults in the area are more compatible with right-lateral motion. For the other possible source region, no clear disruption in the bathymetry or seismic profiles was found on the carbonate platform north of the basin.

  14. Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Afshari, Shahab; Tavakoly, Ahmad A.; Rajib, Mohammad Adnan; Zheng, Xing; Follum, Michael L.; Omranian, Ehsan; Fekete, Balázs M.

    2018-01-01

    The objective of this study is to compare two new generation low-complexity tools, AutoRoute and Height Above the Nearest Drainage (HAND), with a two-dimensional hydrodynamic model (Hydrologic Engineering Center-River Analysis System, HEC-RAS 2D). The assessment was conducted on two hydrologically different and geographically distant test-cases in the United States, including the 16,900 km2 Cedar River (CR) watershed in Iowa and a 62 km2 domain along the Black Warrior River (BWR) in Alabama. For BWR, twelve different configurations were set up for each of the models, including four different terrain setups (e.g. with and without channel bathymetry and a levee), and three flooding conditions representing moderate to extreme hazards at 10-, 100-, and 500-year return periods. For the CR watershed, models were compared with a simplistic terrain setup (without bathymetry and any form of hydraulic controls) and one flooding condition (100-year return period). Input streamflow forcing data representing these hypothetical events were constructed by applying a new fusion approach on National Water Model outputs. Simulated inundation extent and depth from AutoRoute, HAND, and HEC-RAS 2D were compared with one another and with the corresponding FEMA reference estimates. Irrespective of the configurations, the low-complexity models were able to produce inundation extents similar to HEC-RAS 2D, with AutoRoute showing slightly higher accuracy than the HAND model. Among four terrain setups, the one including both levee and channel bathymetry showed lowest fitness score on the spatial agreement of inundation extent, due to the weak physical representation of low-complexity models compared to a hydrodynamic model. For inundation depth, the low-complexity models showed an overestimating tendency, especially in the deeper segments of the channel. Based on such reasonably good prediction skills, low-complexity flood models can be considered as a suitable alternative for fast predictions in large-scale hyper-resolution operational frameworks, without completely overriding hydrodynamic models' efficacy.

  15. Discovery of Marine Datasets and Geospatial Metadata Visualization

    NASA Astrophysics Data System (ADS)

    Schwehr, K. D.; Brennan, R. T.; Sellars, J.; Smith, S.

    2009-12-01

    NOAA's National Geophysical Data Center (NGDC) provides the deep archive of US multibeam sonar hydrographic surveys. NOAA stores the data as Bathymetric Attributed Grids (BAG; http://www.opennavsurf.org/) that are HDF5 formatted files containing gridded bathymetry, gridded uncertainty, and XML metadata. While NGDC provides the deep store and a basic ERSI ArcIMS interface to the data, additional tools need to be created to increase the frequency with which researchers discover hydrographic surveys that might be beneficial for their research. Using Open Source tools, we have created a draft of a Google Earth visualization of NOAA's complete collection of BAG files as of March 2009. Each survey is represented as a bounding box, an optional preview image of the survey data, and a pop up placemark. The placemark contains a brief summary of the metadata and links to directly download of the BAG survey files and the complete metadata file. Each survey is time tagged so that users can search both in space and time for surveys that meet their needs. By creating this visualization, we aim to make the entire process of data discovery, validation of relevance, and download much more efficient for research scientists who may not be familiar with NOAA's hydrographic survey efforts or the BAG format. In the process of creating this demonstration, we have identified a number of improvements that can be made to the hydrographic survey process in order to make the results easier to use especially with respect to metadata generation. With the combination of the NGDC deep archiving infrastructure, a Google Earth virtual globe visualization, and GeoRSS feeds of updates, we hope to increase the utilization of these high-quality gridded bathymetry. This workflow applies equally well to LIDAR topography and bathymetry. Additionally, with proper referencing and geotagging in journal publications, we hope to close the loop and help the community create a true “Geospatial Scholar” infrastructure.

  16. High-Resolution Geomorphometry of Seamounts of the Young Walvis Ridge Guyot Province

    NASA Astrophysics Data System (ADS)

    Schnur, S. R.; Koppers, A. A.

    2012-12-01

    In February and March 2012, cruise MV1203 surveyed and dredged seamounts at the young end of the Walvis Ridge hotspot trail in the South Atlantic. The scientific goals were to better understand the hotspot origins of the Walvis Ridge by collecting rock samples for high-precision 40Ar/39Ar geochronology and by investigating the relationship between seamount morphology and different mechanisms of intra-plate volcanism. The area had until now been only sparsely-sampled, and most of the seamounts had never been mapped with multibeam. Here we present a geomorphometric analysis of edifice size and shape parameters from 74 seamounts of the young Walvis Ridge guyot province. The base data for each seamount consists of Simrad EM122 multibeam bathymetry combined with bathymetry from the SRTM30 PLUS compilation (V7.0: Becker et al., 2009; Sandwell and Smith, 2009), gridded at 180 m resolution. Multibeam coverage of individual seamounts ranges from 100% for small seamounts to 15% for large seamounts, with most seamounts having at least 50% coverage. Most of this data focuses on seamount flanks rather than flat guyot tops, covering the areas of greatest topographic variability even for seamounts with relatively low multibeam coverage. For each seamount we quantify edifice height, perimeter, volume, elongation, azimuth, irregularity and distance to nearest neighbor. These variables are compared to the age of the underlying crust, distance to the Mid-Atlantic Ridge and distance from the Etendeka flood basalts of Namibia, which are thought to signal the initial stages of hotspot volcanism at the old end of the chain. Additionally we assess how the addition of high resolution data affects these geomorphologic parameters. We will present an overview of the cruise outcomes as well as highlight unusual features observed in the new bathymetry and backscatter data. The cruise data suggest that the young Walvis Ridge guyot province holds great potential for further exploration and multidisciplinary research.

  17. Numerical Temperature And Fluid-Flow Modelling For The Topographic Effects On Hydrothermal Circulation; A case study in Lucy Strike Vent Field

    NASA Astrophysics Data System (ADS)

    Erçetin, Engin; Düşünür Doǧan, Doǧa

    2017-04-01

    The aim of the study is to present a numerical temperature and fluid-flow modelling for the topographic effects on hydrothermal circulation. Bathymetry can create a major disturbance on fluid flow pattern. ANSYS Fluent Computational fluid dynamics software is used for simulations. Coupled fluid flow and temperature quations are solved using a 2-Dimensional control volume finite difference approach. Darcy's law is assumed to hold, the fluid is considered to be anormal Boussinesq incompressible fluid neglecting inertial effects. Several topographic models were simulated and both temperature and fluid flow calculations obtained for this study. The preliminary simulations examine the effect of a ingle bathymetric high on a single plume and the secondary study of simulations investigates the effect of multiple bathymetric highs on multiple plume. The simulations were also performed for the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge (MAR), one of the best studied regions along the MAR, where a 3.4 km deep magma chamber extending 6 km along-axis is found at its center. The Lucky Strike segment displays a transitional morphology between that of the FAMOUS - North FAMOUS segments, which are characterized by well-developed axial valleys typical of slow-spreading segments, and that of the Menez Gwen segment, characterized by an axial high at the segment center. Lucky Strike Segment hosts a central volcano and active vent field located at the segment center and thus constitutes an excellent case study to simulate the effects of bathymetry on fluid flow. Results demonstrate that bathymetric relief has an important influence on hydrothermal flow. Subsurface pressure alterations can be formed by bathymetric highs, for this reason, bathymetric relief ought to be considered while simulating hydrothermal circulation systems. Results of this study suggest the dominant effect of bathymetric highs on fluid flow pattern and Darcy velocities will be presented. Keywords: Hydrothermal Circulation, Lucky Strike, Bathymetry - Topography, Vent Location, Fluid Flow, Numerical Modelling

  18. Bathymetry and capacity of Blackfoot Reservoir, Caribou County, Idaho, 2011

    USGS Publications Warehouse

    Wood, Molly S.; Skinner, Kenneth D.; Fosness, Ryan L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Shoshone-Bannock Tribes, surveyed the bathymetry and selected above-water sections of Blackfoot Reservoir, Caribou County, Idaho, in 2011. Reservoir operators manage releases from Government Dam on Blackfoot Reservoir based on a stage-capacity relation developed about the time of dam construction in the early 1900s. Reservoir operation directly affects the amount of water that is available for irrigation of agricultural land on the Fort Hall Indian Reservation and surrounding areas. The USGS surveyed the below-water sections of the reservoir using a multibeam echosounder and real-time kinematic global positioning system (RTK-GPS) equipment at full reservoir pool in June 2011, covering elevations from 6,090 to 6,119 feet (ft) above the North American Vertical Datum of 1988 (NAVD 88). The USGS used data from a light detection and ranging (LiDAR) survey performed in 2000 to map reservoir bathymetry from 6,116 to 6,124 ft NAVD 88, which were mostly in depths too shallow to measure with the multibeam echosounder, and most of the above-water section of the reservoir (above 6,124 ft NAVD 88). Selected points and bank erosional features were surveyed by the USGS using RTK-GPS and a total station at low reservoir pool in September 2011 to supplement and verify the LiDAR data. The stage-capacity relation was revised and presented in a tabular format. The datasets show a 2.0-percent decrease in capacity from the original survey, due to sedimentation or differences in accuracy between surveys. A 1.3-percent error also was detected in the previously used capacity table and measured water-level elevation because of questionable reference elevation at monitoring stations near Government Dam. Reservoir capacity in 2011 at design maximum pool of 6,124 ft above NAVD 88 was 333,500 acre-ft.

  19. Ensuring Safety of Navigation: A Three-Tiered Approach

    NASA Astrophysics Data System (ADS)

    Johnson, S. D.; Thompson, M.; Brazier, D.

    2014-12-01

    The primary responsibility of the Hydrographic Department at the Naval Oceanographic Office (NAVOCEANO) is to support US Navy surface and sub-surface Safety of Navigation (SoN) requirements. These requirements are interpreted, surveys are conducted, and accurate products are compiled and archived for future exploitation. For a number of years NAVOCEANO has employed a two-tiered data-basing structure to support SoN. The first tier (Data Warehouse, or DWH) provides access to the full-resolution sonar and lidar data. DWH preserves the original data such that any scale product can be built. The second tier (Digital Bathymetric Database - Variable resolution, or DBDB-V) served as the final archive for SoN chart scale, gridded products compiled from source bathymetry. DBDB-V has been incorporated into numerous DoD tactical decision aids and serves as the foundation bathymetry for ocean modeling. With the evolution of higher density survey systems and the addition of high-resolution gridded bathymetry product requirements, a two-tiered model did not provide an efficient solution for SoN. The two-tiered approach required scientists to exploit full-resolution data in order to build any higher resolution product. A new perspective on the archival and exploitation of source data was required. This new perspective has taken the form of a third tier, the Navigation Surface Database (NSDB). NSDB is an SQLite relational database populated with International Hydrographic Organization (IHO), S-102 compliant Bathymetric Attributed Grids (BAGs). BAGs archived within NSDB are developed at the highest resolution that the collection sensor system can support and contain nodal estimates for depth, uncertainty, separation values and metadata. Gridded surface analysis efforts culminate in the generation of the source resolution BAG files and their storage within NSDB. Exploitation of these resources eliminates the time and effort needed to re-grid and re-analyze native source file formats.

  20. Generation, propagation and run-up of tsunamis due to the Chicxulub impact event

    NASA Astrophysics Data System (ADS)

    Weisz, R.; Wuennenmann, K.; Bahlburg, H.

    2003-04-01

    The Chicxulub impact event can be investigated in (1) local, (2) regional and in (3) global scales. Our investigations focus on the regional scale, especially on the influence of tsunami waves on the coast around the Gulf of Mexico caused by the impact. During an impact two types of tsunamis are generated. The first wave is known as the "rim wave" and is generated in front of the ejecta curtain. The second one is linked to the late modification stage of the impact and results from the collapsing cavity of water. We designate this wave as "collapse wave". The "rim wave" and "collapse wave" are able to propagate over long distances, without a significant loss of wave amplitude. Corresponding to the amplitudes, the waves have a potentially large influence on the coastal areas. Run-up distance and run-up height can be used as parameters for describing this influence. We are utilizing a multimaterial hydrocode (SALE) to simulate the generation of tsunami waves. The propagation of the waves is based on the non-linear shallow water theory, because tsunami waves are defined to be long waves. The position of the coast line varies according to the tsunami run-up and is implemented with open boundary conditions. We show with our investigations (1) the generation of tsunami waves due to shallow water impacts, (2) wave damping during propagation, and (3) the influence of the "rim wave" and the "collapse wave" on the coastal areas. Here, we present our first results from numerical modeling of tsunami waves owing to a Chicxulub sized impactor. The characteristics of the “rim wave” depend on the size of the bolide and the water depth. However, the amplitude and velocity of the “collapse wave” is only determined by the water depth in the impact area. The numerical modeling of the tsunami propagation and run-up is calculated along a section from the impact point towards to the west and gives the moderate damping of both waves and the run-up on the coastal area. As a first approximation, the bathymetric data, used in the wave propagation and run-up, correspond to a linearized bathymetry of the Recent Gulf of Mexico. The linearized bathymetry allows to study the influence of the bathymetry on wave propagation and run-up. Additionally, we give preliminary results of the implementation of the two-dimensional propagation and run-up model for arbitrary bathymetries. The two-dimensional wave propagation model will enable us to more realistically asses the influence of the impact-related tsunamis on the coasts around the Gulf of Mexico due to the Chicxulub impact event.

  1. A geomorphologist's dream come true: synoptic high resolution river bathymetry with the latest generation of airborne dual wavelength lidar

    NASA Astrophysics Data System (ADS)

    Lague, Dimitri; Launeau, Patrick; Michon, Cyril; Gouraud, Emmanuel; Juge, Cyril; Gentile, William; Hubert-Moy, Laurence; Crave, Alain

    2016-04-01

    Airborne, terrestrial lidar and Structure From Motion have dramatically changed our approach of geomorphology, from low density/precision data, to a wealth of data with a precision adequate to actually measure topographic change across multiple scales, and its relation to vegetation. Yet, an important limitation in the context of fluvial geomorphology has been the inability of these techniques to penetrate water due to the use of NIR laser wavelengths or to the complexity of accounting for water refraction in SFM. Coastal bathymetric systems using a green lidar can penetrate clear water up to 50 m but have a resolution too coarse and deployment costs that are prohibitive for fluvial research and management. After early prototypes of narrow aperture green lidar (e.g., EEARL NASA), major lidar manufacturer are now releasing dual wavelength laser system that offer water penetration consistent with shallow fluvial bathymetry at very high resolution (> 10 pts/m²) and deployment costs that makes the technology, finally accessible. This offers unique opportunities to obtain synoptic high resolution, high precision data for academic research as well as for fluvial environment management (flood risk mapping, navigability,…). In this presentation, we report on the deployment of the latest generation Teledyne-Optech Titan dual-wavelength lidar (1064 nm + 532 nm) owned by the University of Nantes and Rennes. The instrument has been deployed over several fluvial and lacustrine environments in France. We present results and recommendation on how to optimize the bathymetric cover as a function of aerial and aquatic vegetation cover and the hydrology regime of the river. In the surveyed rivers, the penetration depth varies from 0.5 to 4 m with discrete echoes (i.e., onboard detection), heavily impacted by water clarity and bottom reflectance. Simple post-processing of the full waveform record allows to recover an additional 20 % depth. As for other lidar techniques, the main challenge lies in the post-processing of the massive amount of data generated by the instrument (typically 10 billions points for 60 km of rivers). Yet the very high density of the raw point cloud data (40 pts/m² on topography, 20 pts/m² on bathymetry) and the full waveform nature of the signal offers new opportunities to develop classification and change detection algorithms. In this context, we present a new automated workflow to extract automatically the water surface (a critical aspect for refraction correction) and submerged data in highly complex fluvial environments based on a combined analysis of the 1064 nm and 532 nm channels. We conclude that topo-bathymetric lidar is getting close to being an operational technique for fluvial bathymetry offering a vast range of applications in hydrology, ecohydrology, geomorphology and river management.

  2. Assessing the variability of glacier lake bathymetries and potential peak discharge based on large-scale measurements in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Cochachin, Alejo; Huggel, Christian; Salazar, Cesar; Haeberli, Wilfried; Frey, Holger

    2015-04-01

    Over timescales of hundreds to thousands of years ice masses in mountains produced erosion in bedrock and subglacial sediment, including the formation of overdeepenings and large moraine dams that now serve as basins for glacial lakes. Satellite based studies found a total of 8355 glacial lakes in Peru, whereof 830 lakes were observed in the Cordillera Blanca. Some of them have caused major disasters due to glacial lake outburst floods in the past decades. On the other hand, in view of shrinking glaciers, changing water resources, and formation of new lakes, glacial lakes could have a function as water reservoirs in the future. Here we present unprecedented bathymetric studies of 124 glacial lakes in the Cordillera Blanca, Huallanca, Huayhuash and Raura in the regions of Ancash, Huanuco and Lima. Measurements were carried out using a boat equipped with GPS, a total station and an echo sounder to measure the depth of the lakes. Autocad Civil 3D Land and ArcGIS were used to process the data and generate digital topographies of the lake bathymetries, and analyze parameters such as lake area, length and width, and depth and volume. Based on that, we calculated empirical equations for mean depth as related to (1) area, (2) maximum length, and (3) maximum width. We then applied these three equations to all 830 glacial lakes of the Cordillera Blanca to estimate their volumes. Eventually we used three relations from the literature to assess the peak discharge of potential lake outburst floods, based on lake volumes, resulting in 3 x 3 peak discharge estimates. In terms of lake topography and geomorphology results indicate that the maximum depth is located in the center part for bedrock lakes, and in the back part for lakes in moraine material. Best correlations are found for mean depth and maximum width, however, all three empirical relations show a large spread, reflecting the wide range of natural lake bathymetries. Volumes of the 124 lakes with bathymetries amount to 0.9 km3 while the volume of all glacial lakes of the Cordillera Blanca ranges between 1.15 and 1.29 km3. The small difference in volume of the large lake sample as compared to the smaller sample of bathymetrically surveyed lakes is due to the large size of the measured lakes. The different distributions for lake volume and peak discharge indicate the range of variability in such estimates, and provides valuable first-order information for management and adaptation efforts in the field of water resources and flood prevention.

  3. Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie

    2013-04-01

    It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness, incorporates a lithosphere thermal gravity anomaly correction and uses sediment thicknesses from 2D seismic data. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The difference between the sediment corrected RDA and the "synthetic" gravity derived RDA gives the component of the RDA which is not due to variations in oceanic crustal thickness. This RDA corrected for sediment loading and crustal thickness variation has a magnitude between +600m and +1000m (corresponding to anomalous uplift) and is comparable to that reported (+1km) by Lucazeau et al. (2008). We are unable to distinguish whether this anomalous uplift is due to mantle dynamic topography or anomalous subsidence with respect to classical rift model predictions.

  4. On the Estimation of Errors in Sparse Bathymetric Geophysical Data Sets

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Calder, B.; Mayer, L.; Armstrong, A.

    2001-05-01

    There is a growing demand in the geophysical community for better regional representations of the world ocean's bathymetry. However, given the vastness of the oceans and the relative limited coverage of even the most modern mapping systems, it is likely that many of the older data sets will remain part of our cumulative database for several more decades. Therefore, regional bathymetrical compilations that are based on a mixture of historic and contemporary data sets will have to remain the standard. This raises the problem of assembling bathymetric compilations and utilizing data sets not only with a heterogeneous cover but also with a wide range of accuracies. In combining these data to regularly spaced grids of bathymetric values, which the majority of numerical procedures in earth sciences require, we are often forced to use a complex interpolation scheme due to the sparseness and irregularity of the input data points. Consequently, we are faced with the difficult task of assessing the confidence that we can assign to the final grid product, a task that is not usually addressed in most bathymetric compilations. We approach the problem of assessing the confidence via a direct-simulation Monte Carlo method. We start with a small subset of data from the International Bathymetric Chart of the Arctic Ocean (IBCAO) grid model [Jakobsson et al., 2000]. This grid is compiled from a mixture of data sources ranging from single beam soundings with available metadata to spot soundings with no available metadata, to digitized contours; the test dataset shows examples of all of these types. From this database, we assign a priori error variances based on available meta-data, and when this is not available, based on a worst-case scenario in an essentially heuristic manner. We then generate a number of synthetic datasets by randomly perturbing the base data using normally distributed random variates, scaled according to the predicted error model. These datasets are then re-gridded using the same methodology as the original product, generating a set of plausible grid models of the regional bathymetry that we can use for standard error estimates. Finally, we repeat the entire random estimation process and analyze each run's standard error grids in order to examine sampling bias and variance in the predictions. The final products of the estimation are a collection of standard error grids, which we combine with the source data density in order to create a grid that contains information about the bathymetry model's reliability. Jakobsson, M., Cherkis, N., Woodward, J., Coakley, B., and Macnab, R., 2000, A new grid of Arctic bathymetry: A significant resource for scientists and mapmakers, EOS Transactions, American Geophysical Union, v. 81, no. 9, p. 89, 93, 96.

  5. Recent Updates to SWANFAR (registered trademark), a 5DVAR Data Assimilation System for SWAN

    DTIC Science & Technology

    2016-11-10

    earized system was tested with datasets from Duck , NC, by Walker (2006) and later by Veeramony et al. (2010). Both studies demonstrated that, for...Warrior Free-Floating Buoy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2.2 Duck , NC...11 8 Domain for one-week non-stationary assimilation at Duck , NC. Color contours indicate bathymetry. From right

  6. 30 CFR 580.51 - What types of geophysical data and information must I submit to BOEM?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What types of geophysical data and information must I submit to BOEM? 580.51 Section 580.51 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... not limited to, shallow and deep subbottom profiles, bathymetry, sidescan sonar, gravity and magnetic...

  7. 30 CFR 580.51 - What types of geophysical data and information must I submit to BOEM?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What types of geophysical data and information must I submit to BOEM? 580.51 Section 580.51 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... not limited to, shallow and deep subbottom profiles, bathymetry, sidescan sonar, gravity and magnetic...

  8. 30 CFR 580.51 - What types of geophysical data and information must I submit to BOEM?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What types of geophysical data and information must I submit to BOEM? 580.51 Section 580.51 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... not limited to, shallow and deep subbottom profiles, bathymetry, sidescan sonar, gravity and magnetic...

  9. Guidance for Subaqueous Dredged Material Capping.

    DTIC Science & Technology

    1998-06-01

    from Ambrose Channel , over the contaminated sediments. At least two intermediate sur- veys and additional capping were required before capping was...organisms to a given bioturbation depth; reducing contami- nant flux rates to achieve specific sediment, pore water, or water column target...bathymetry, bottom slopes, cur- rents, water depths, water column density stratification, erosion/accretion trends, proximity to navigation channels

  10. Optical Remote Sensing of Benthic Habitats and Bathymetry in Coastal Environments at Lee Stocking Island, Bahamas: A Comparative Spectral Classification Approach

    DTIC Science & Technology

    2002-07-04

    Emmanuel Boss and Ronald Zaneveld for IOP measurements; Jeffrey Bowles, Mary Kappus , Megan Carney, and Bosch Aerospace for PHILLS data collection; and...Opt. Express 10: 210–221. , M. KAPPUS , J. BOWLES, J. FISHER, J. ANTONIADES, AND M. CARNEY. 1999. Calibration, characterization, and first results with

  11. North Jetty Performance and Entrance Navigation Channel Maintenance, Grays Harbor, Washington. Volume 2. Appendices

    DTIC Science & Technology

    2004-06-01

    Rectified Infrared Aerial Photos Image112-4 flown on 9/9/01. F22 Appendix F Shoreline and Bathymetry Data Map registration and digitizing...Division 108( WW2 ), 163-179. Soulsby, R. L., and Whitehouse, R. J. S. W. (1997). “Threshold of sediment motion in coastal environments,” Proceeings

  12. Derivation of River Bathymetry Using Imagery from Unmanned Aerial Vehicles (UAV)

    DTIC Science & Technology

    2011-09-01

    9 1. Kootenai River, Bonners Ferry, Idaho ...of time. For this research, two different types proxy data were found that met this criteria. 1. Kootenai River, Bonners Ferry, Idaho One of the...south through the Rocky, Purcell, and Salish Mountains into Montana and Idaho . It then turns back north where it empties into Kootenai Lake in

  13. The Secret of the Svalbard Sea Ice Barrier

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Van Woert, Michael L.; Neumann, Gregory

    2004-01-01

    An elongated sea ice feature called the Svalbard sea ice barrier rapidly formed over an area in the Barents Sea to the east of Svalbard posing navigation hazards. The secret of its formation lies in the bottom bathymetry that governs the distribution of cold Arctic waters masses, which impacts sea ice growth on the water surface.

  14. Swath Mapping of the New Jersey and Northern California Margins and Statistical Characterization of the Shelf and Slope Bathymetry

    DTIC Science & Technology

    1997-09-30

    Contours are in meters. Illuminati on is from the top of the image. Center of image is at ap proximately 39•25’ N, 73•oo·w. Figure 1 b. Conditional simulation of above image, using statistical model derived from the data.

  15. Characterization of Underwater Sounds Produced by a Backhoe Dredge Excavating Rock and Gravel

    DTIC Science & Technology

    2012-12-01

    bathymetry, hydrodynamic conditions, prevalence of non-dredging ambient sounds), this study fills important knowledge gaps that contribute to better... Beaver Mackenzie, peak spectral levels were 122 dB at 190 m with a peak frequency of 120 Hz. Received levels in the 20- to 1000-Hz band were 133 dB

  16. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    DTIC Science & Technology

    2013-09-30

    of a hydraulic jump around Jetty A. We also obverse the signature of a soliton wave east of Jetty A ( ). West of the mouth, the orbital velocity of...surface flows. (B) Plan view of the bathymetry [Jesse McNinch] (color contours, red is 1 m depth, dark blue is 10 m depth) and near surface flows

  17. Glossary of Water Resources Terms. Taft Campus Occasional Paper No. X.

    ERIC Educational Resources Information Center

    Vogl, Robert; Vogl, Sonia

    A product of the Department of Outdoor Teacher Education Program at Northern Illinois University, this glossary of water resources terms includes 87 briefly defined entries. Examples of the terms and definitions presented are: Acidity (presence of acids in the water which produce a pH below seven); Bathymetry (study of lake bottom contours);…

  18. 4-D Current Experiment Using AUV and HF-Radar

    DTIC Science & Technology

    1998-01-01

    the NICOP project at FAU. RESULTS Measurements of bathymetry, current and CTD measurements were acquired in shallow water on 5 and 11 Dec 97 in a lawn ... mower pattern (An et al., 1998). These surveys were conducted over about a 3 h period at a constant water depth of 7 m in the vicinity of an ADCP. On

  19. CMS-Wave Model: Part 3: Grid Nesting and Application Example for Rhode Island South Shore Regional Sediment Management Study

    DTIC Science & Technology

    2010-07-01

    CDIP 154 (NDBC 44097) in 48-m water depth. Figure 5 shows the extent of the regional bathymetry grid and five nested child grids covering the...directional spectra from the nearest offshore buoy ( CDIP 154). The water level along the ocean boundary is from the Le Provost database. In the

  20. Merging Imagery and Models for River Current Prediction

    DTIC Science & Technology

    2011-01-01

    synthetically generated bathymetry. Measured Batbymel ry Synthetic Batbymel rj Mooring Mean Difference (nn/s) Correlation Mian Difference (cm s...8217orrelal ion Al Mi 0.90 27 077 A 2 17 0.86 21 n 36 Bl 17 0.87 21 B2 17 0.89 2 1 DJO 133 li , 0.87 23 0.87 is that mean differences between tlie

  1. Bathymetry and capacity of Chambers Lake, Chester County, Pennsylvania

    USGS Publications Warehouse

    Gyves, Matthew C.

    2015-10-26

    This report describes the methods used to create a bathymetric map of Chambers Lake for the computation of reservoir storage capacity as of September 2014. The product is a bathymetric map and a table showing the storage capacity of the reservoir at 2-foot increments from minimum usable elevation up to full capacity at the crest of the auxiliary spillway.

  2. Data Analysis of Airborne Electromagnetic Bathymetry.

    DTIC Science & Technology

    1985-04-01

    7 AD-R 58 889 DATA ANALYSIS OF AIRBORNE ELECTROMAGNETIC BRTHYMETRY i/i (U) NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL STRTION MS R ZOLLINGER...Naval Ocean Research and Development Activity NSTL, Mississippi 39529 NORDA Report 93 April 1985 AD-A158 809 - Data Analysis of Airborne Electromagnetic ...8217 - Foreword CI Airborne electromagnetic (AEM) systems have traditionally been used for detecting anomalous conductors in the

  3. Effects of habitat quality and ambient hyporheic flows on salmon spawning site selection

    Treesearch

    Rohan Benjankar; Daniele Tonina; Alessandra Marzadri; Jim McKean; Daniel J. Isaak

    2016-01-01

    Understanding the role of stream hydrologic and morphologic variables on the selection of spawning sites by salmonid fishes at high resolution across broad scales is needed for effective habitat restoration and protection. Here we used remotely sensed meter-scale channel bathymetry for a 13.5 km reach of Chinook salmon spawning stream in central Idaho to...

  4. Preliminary bathymetry of McCarty Fiord and Neoglacial changes of McCarty Glacier, Alaska

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    Preliminary bathymetry (at 1:20,000 scale) and other scientific studies of McCarty Fiord, Alaska, Conducted by the Research Vessel Growler in 1978, showed this 15 mile-long waterway to be a narrow, deeply scoured basin enclosed by a terminal-moraine shoal. This valley was formerly filled by McCarty Glacier, which began a drastic retreat shortly after 1909; the glacier reached shallow water at the head of the fiord around 1960. The relative rate of retreat in deep water and on land is disclosed by the slower melting of stagnent ice left in a side valley. Soundings and profiles show the main channel to extend to a depth as great as 957 feet and to have the typical ' U ' shape of a glacier-eroded valley; since the glacier 's retreat, sediments have formed a nearly level deposit in the deepest part of the fiord. Old forest debris dated by carbon-14 indicates that a neoglacial advance of the glacier began before 3,395 years B.P. (before present); by 1,500 B.P. the glacier filled most of the fiord, and before the glacier culminated its advance around 1860 , two glacier-dammed lakes were formed in side valleys. (USGS)

  5. Preliminary bathymetry of Aialik Bay and Neoglacial changes of Aialik and Pederson glaciers, Alaska

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    Preliminary bathymetry (at 1:20,000 scale) and scientific studies of Aialik Bay, Alaska, by the Research Vessel Growler in 1978 disclose that the head of the bay consists of a deep basin enclosed by a terminal-moraine shoal. A much smaller basin, into which Aialik Glacier discharges icebergs, is located west of two islands and a submarine ridge. Comparison of 1978 soundings with U.S. Coast and Geodetic Survey (now National Oceanic and Atmospheric Administration) data obtained in 1912 shows shoaling of about 64 feet in the deepest part of the small basin nearest the glacier and of about 40 feet in the large basin. The time of retreat of Aialik Glacier from the moraine bar is unknown; a faint ' trimline ' is still visible in the forest on the east side of the fiord, and a carbon-14 date suggests the retreat could have taken place as recently as 1800. The time of Aialik Glcier 's neoglacial advance to the moraine is unknown. Pederson Glacier, which terminates in part in a tidal lagoon or lake, has retreated about 0.90 mile from a moraine judged by Grant and Higgins to have been in contact with the ice about 1896. (USGS)

  6. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay

    USGS Publications Warehouse

    Hanes, D.M.; Erikson, L.H.

    2013-01-01

    Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.

  7. Bathymetry, Chirp and Deep Crustal Structure of the Santos Basin SÃO Paulo Ridge Complex (sbspr)

    NASA Astrophysics Data System (ADS)

    Aslanian, D.; Klingelhoefer, F.; Moulin, M.; Schnurle, P.; Rabineau, M.; Afilhado, A.; Roest, W. R.; Feld, A.; Evain, M.; Rochat, A.; Rousic, D.; Rigoti, C. A.; Capechi, E.; Bochenek, G.; Viana, A. R.; Magnavita, L. P.; Szatmari, P.; Neto, M.; Soares, J. P.; Fuck, R. A.; Paula Ribas, M.; De Lima, M.; Corela, C.; Duarte, J.; Matias, L. M.; OBS Team of Sanba Cruise

    2011-12-01

    The SanBa (Santos Basin- Seismic Research experiment) research experiment is a joint project of the Department of Marine Geosciences (IFREMER: Institut Français de Recherche pour l'Exploitation de la MER, France), the Laboratory of "Oceanic Domain" (Institut Universitaire et Européen de la Mer, France), the Faculdade de Ciências da Universidade de Lisboa (Lattex and CGUL, Portugal), the Universidade de Brasilia (Brazil) and PETROBRAS. Its aim is to test hypotheses that have been proposed such as the existence of failed rift and a micro-block (Moulin et al., GSL submitted) or the presence of exhumed mantle on its south-eastern part (Zalan et al., AAPG 2009). Six wide-angle seismic data were acquired together with coincident deep frequency reflection seismic data during the SanBa cruise in Dec 2010 - Jan. 2011 (total > 850 Nm). Chirp and Bathymetry were also acquired during the cruise. The preliminary results suggest a very thin crust (< 5km) in the center and in the south-eastern part of the SBSPR. Both refraction and reflection data present a clear signal of the Moho in the distalmost part of the study area, which seems to preclude the exhumed mantle hypothesis."

  8. Geologic interpretation and multibeam bathymetry of the sea floor in southeastern Long Island Sound

    USGS Publications Warehouse

    Poppe, Lawrence J.; Ackerman, Seth D.; Doran, Elizabeth F.; Moser, Marc S.; Stewart, Helen F.; Forfinski, Nicholas A.; Gardner, Uther L.; Keene, Jennifer A.

    2006-01-01

    Digital terrain models (DTMs) produced from multibeam echosounder (MBES) bathymetric data provide valuable base maps for marine geological interpretations (e.g. Todd and others, 1999; Mosher and Thomson, 2002; ten Brink and others, 2004; Poppe and others, 2006a,b). These maps help define the geological variability of the sea floor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, monitoring, and management activities. The bathymetric survey interpreted herein (National Oceanic and Atmospheric Administration (NOAA) survey H11255) covers roughly 95 km? of sea floor in southeastern Long Island Sound (fig. 1). This bathymetry has been examined in relation to seismic reflection data collected concurrently, as well as archived seismic profiles acquired as part of a long-standing geologic mapping partnership between the State of Connecticut and the U.S. Geological Survey (USGS). The objective of this work was to use these geophysical data sets to interpret geomorphological attributes of the sea floor in terms of the Quaternary geologic history and modern sedimentary processes within Long Island Sound.

  9. High-Resolution Digital Terrain Models of the Sacramento/San Joaquin Delta Region, California

    USGS Publications Warehouse

    Coons, Tom; Soulard, Christopher E.; Knowles, Noah

    2008-01-01

    The U.S. Geological Survey (USGS) Western Region Geographic Science Center, in conjunction with the USGS Water Resources Western Branch of Regional Research, has developed a high-resolution elevation dataset covering the Sacramento/San Joaquin Delta region of California. The elevation data were compiled photogrammically from aerial photography (May 2002) with a scale of 1:15,000. The resulting dataset has a 10-meter horizontal resolution grid of elevation values. The vertical accuracy was determined to be 1 meter. Two versions of the elevation data are available: the first dataset has all water coded as zero, whereas the second dataset has bathymetry data merged with the elevation data. The projection of both datasets is set to UTM Zone 10, NAD 1983. The elevation data are clipped into files that spatially approximate 7.5-minute USGS quadrangles, with about 100 meters of overlap to facilitate combining the files into larger regions without data gaps. The files are named after the 7.5-minute USGS quadrangles that cover the same general spatial extent. File names that include a suffix (_b) indicate that the bathymetry data are included (for example, sac_east versus sac_east_b). These files are provided in ESRI Grid format.

  10. Spatial patterns in assemblage structures of pelagic forage fish and zooplankton in western Lake Superior

    USGS Publications Warehouse

    Johnson, Timothy B.; Hoff, Michael H.; Trebitz, Anett S.; Bronte, Charles R.; Corry, Timothy D.; Kitchell, James F.; Lozano, Stephen J.; Mason, Doran M.; Scharold, Jill V.; Schram, Stephen T.; Schreiner, Donald R.

    2004-01-01

    We assessed abundance, size, and species composition of forage fish and zooplankton communities of western Lake Superior during August 1996 and July 1997. Data were analyzed for three ecoregions (Duluth-Superior, Apostle Islands, and the open lake) differing in bathymetry and limnological and biological patterns. Zooplankton abundance was three times higher in the Duluth-Superior and Apostle Islands regions than in the open lake due to the large numbers of rotifers. Copepods were far more abundant than Cladocera in all ecoregions. Mean zooplankton size was larger in the open lake due to dominance by large calanoid copepods although size of individual taxa was similar among ecoregions. Forage fish abundance and biomass was highest in the Apostle Islands region and lowest in the open lake ecoregion. Lake herring (Coregonus artedi), rainbow smelt (Osmerus mordax) and deepwater ciscoes (Coregonus spp.) comprised over 90% of the abundance and biomass of fishes caught in midwater trawls and recorded with hydroacoustics. Growth and condition of fish was good, suggesting they were not resource limited. Fish and zooplankton assemblages differed among the three ecoregions of western Lake Superior, due to a combination of physical and limnological factors related to bathymetry and landscape position.

  11. Comparison of maximum runup through analytical and numerical approaches for different fault parameters estimates

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.; Wronna, M.; Baptista, M. A.; Miranda, J. M. A.

    2017-12-01

    The one-dimensional analytical runup theory in combination with near shore synthetic waveforms is a promising tool for tsunami rapid early warning systems. Its application in realistic cases with complex bathymetry and initial wave condition from inverse modelling have shown that maximum runup values can be estimated reasonably well. In this study we generate a simplistic bathymetry domains which resemble realistic near-shore features. We investigate the accuracy of the analytical runup formulae to the variation of fault source parameters and near-shore bathymetric features. To do this we systematically vary the fault plane parameters to compute the initial tsunami wave condition. Subsequently, we use the initial conditions to run the numerical tsunami model using coupled system of four nested grids and compare the results to the analytical estimates. Variation of the dip angle of the fault plane showed that analytical estimates have less than 10% difference for angles 5-45 degrees in a simple bathymetric domain. These results shows that the use of analytical formulae for fast run up estimates constitutes a very promising approach in a simple bathymetric domain and might be implemented in Hazard Mapping and Early Warning.

  12. Active Deformation along the Southern End of the Tosco-Abreojos Fault System: New Insights from Multibeam Swath Bathymetry

    NASA Astrophysics Data System (ADS)

    Michaud, François; Calmus, Thierry; Ratzov, Gueorgui; Royer, Jean-Yves; Sosson, Marc; Bigot-Cormier, Florence; Bandy, William; Mortera Gutiérrez, Carlos

    2011-08-01

    The relative motion of the Pacific plate with respect to the North America plate is partitioned between transcurrent faults located along the western margin of Baja California and transform faults and spreading ridges in the Gulf of California. However, the amount of right lateral offset along the Baja California western margin is still debated. We revisited multibeam swath bathymetry data along the southern end of the Tosco-Abreojos fault system. In this area the depths are less than 1,000 m and allow a finer gridding at 60 m cell spacing. This improved resolution unveils several transcurrent right lateral faults offsetting the seafloor and canyons, which can be used as markers to quantify local offsets. The seafloor of the southern end of the Tosco-Abreojos fault system (south of 24°N) displays NW-SE elongated bathymetric highs and lows, suggesting a transtensional tectonic regime associated with the formation of pull-apart basins. In such an active tectonic context, submarine canyon networks are unstable. Using the deformation rate inferred from kinematic predictions and pull-apart geometry, we suggest a minimum age for the reorganization of the canyon network.

  13. Numerical modeling of convective instabilities in internal solitary waves of depression shoaling over gentle slopes

    NASA Astrophysics Data System (ADS)

    Rivera, Gustavo; Diamessis, Peter

    2016-11-01

    The shoaling of an internal solitary wave (ISW) of depression over gentle slopes is explored through fully nonlinear and non-hydrostatic simulations based on a high-accuracy deformed spectral multidomain penalty method. As recently observed in the South China Sea, in high-amplitude shoaling ISWs, the along-wave current can exceed the wave celerity resulting in convective instabilities. If the slope is less than 3%, the wave does not disintegrate as in the case of steeper slope shoaling but, instead, maintains its symmetric shape; the above convective instability may drive the formation of a turbulent recirculating core. The sensitivity of convective instabilities in an ISW is examined as a function of the bathymetric slope and wave steepness. ISWs are simulated propagating over both idealized and realistic bathymetry. Emphasis is placed on the structure of the above instabilities, the persistence of trapped cores and their potential for particle entrainment and transport. Additionally, the role of the baroclinic background current on the development of convective instabilities is explored. A preliminary understanding is obtained of the transition to turbulence within a high-amplitude ISW shoaling over progressively varying bathymetry.

  14. Bounding the error on bottom estimation for multi-angle swath bathymetry sonar

    NASA Astrophysics Data System (ADS)

    Mullins, Geoff K.; Bird, John S.

    2005-04-01

    With the recent introduction of multi-angle swath bathymetry (MASB) sonar to the commercial marketplace (e.g., Benthos Inc., C3D sonar, 2004), additions must be made to the current sonar lexicon. The correct interpretation of measurements made with MASB sonar, which uses filled transducer arrays to compute angle-of-arrival information (AOA) from backscattered signal, is essential not only for mapping, but for applications such as statistical bottom classification. In this paper it is shown that aside from uncorrelated channel to channel noise, there exists a tradeoff between effects that govern the error bounds on bottom estimation for surfaces having shallow grazing angle and surfaces distributed along a radial arc centered at the transducer. In the first case, as the bottom aligns with the radial direction to the receiver, footprint shift and shallow grazing angle effects dominate the uncertainty in physical bottom position (surface aligns along a single AOA). Alternatively, if signal from a radial arc arrives, a single AOA is usually estimated (not necessarily at the average location of the surface). Through theoretical treatment, simulation, and field measurements, the aforementioned factors affecting MASB bottom mapping are examined. [Work supported by NSERC.

  15. Capturing remote mixing due to internal tides using multi-scale modeling tool: SOMAR-LES

    NASA Astrophysics Data System (ADS)

    Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu

    2016-11-01

    Internal tides that are generated during the interaction of an oscillating barotropic tide with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal tides. These internal tides dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal tides is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal tide generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal tide in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.

  16. Localized water reverberation phases and its impact on back-projection images

    NASA Astrophysics Data System (ADS)

    Yue, H.; Castillo, J.; Yu, C.; Meng, L.; Zhan, Z.

    2017-12-01

    Coherent radiators imaged by back-projections (BP) are commonly interpreted as part of the rupture process. Nevertheless, artifacts introduced by structure related phases are rarely discriminated from the rupture process. In this study, we adopt the logic of empirical Greens' function analysis (EGF) to discriminate between rupture and structure effect. We re-examine the waveforms and BP images of the 2012 Mw 7.2 Indian Ocean earthquake and an EGF event (Mw 6.2). The P wave codas of both events present similar shape with characteristic period of approximately 10 s, which are back-projected as coherent radiators near the trench. S wave BP doesn't image energy radiation near the trench. We interpret those coda waves as localized water reverberation phases excited near the trench. We perform a 2D waveform modeling using realistic bathymetry model, and find that the sharp near-trench bathymetry traps the acoustic water waves forming localized reverberation phases. These waves can be imaged as coherent near-trench radiators with similar features as that in the observations. We present a set of methodology to discriminate between the rupture and propagation effects in BP images, which can serve as a criterion of subevent identification.

  17. Greenland's 20th Century retreat illuminated - great spatial variability with strong connections to subglacial topography and fjord bathymetry

    NASA Astrophysics Data System (ADS)

    Bjork, A. A.; Kjeldsen, K. K.; Boeckel, M. V.; Korsgaard, N. J.; Fenty, I. G.; Khan, S. A.; Mouginot, J.; Morlighem, M.; Rignot, E. J.; Dowdeswell, J. A.; Kjaer, K. H.

    2017-12-01

    Mass loss acceleration from the Greenland Ice Sheet is a dominant contributor in recent global sea-level rise, and has been for several decades. While ice sheet wide mass loss has recently been documented from the end of the Little Ice Age (c. 1900 CE) to the 1980s, the detailed changes during this period remain poorly known. In this study, we map glacier margins of Greenland's 310 largest outlet glaciers in order to get the full picture of the 20th Century mass loss. We take advantage of the rich history of aerial photography over Greenland and combine photos from archives in Denmark, Norway, United Kingdom, and United States. We supplement the historical aerial photographs with declassified US spy satellite imagery and recent satellite imagery to document glacial retreat and advance on a decadal scale. With recent advances in bathymetry mapping and subglacial topography mapping, we are able to show that spatial differences in retreat throughout the last 100 years are largely controlled by the underlying topography. Our study further highlights hotspots of past rapid mass loss in Greenland, and discusses implications for periods of regional stability and advance.

  18. Marine benthic habitat mapping of the West Arm, Glacier Bay National Park and Preserve, Alaska

    USGS Publications Warehouse

    Hodson, Timothy O.; Cochrane, Guy R.; Powell, Ross D.

    2013-01-01

    Seafloor geology and potential benthic habitats were mapped in West Arm, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, groundtruthed observations, and geological interpretations. The West Arm of Glacier Bay is a recently deglaciated fjord system under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the recently developed Coastal and Marine Ecological Classification Standard (CMECS) by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Due to the high flux of glacially sourced fines, mud is the dominant substrate within the West Arm. Water-column characteristics are addressed using a combination of CTD and circulation model results. We also present sediment accumulation data derived from differential bathymetry. These data show the West Arm is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The results of these analyses serve as a test of the CMECS classification scheme and as a baseline for ongoing and future mapping efforts and correlations between seafloor substrate, benthic habitats, and glacimarine processes.

  19. Helmholtz and parabolic equation solutions to a benchmark problem in ocean acoustics.

    PubMed

    Larsson, Elisabeth; Abrahamsson, Leif

    2003-05-01

    The Helmholtz equation (HE) describes wave propagation in applications such as acoustics and electromagnetics. For realistic problems, solving the HE is often too expensive. Instead, approximations like the parabolic wave equation (PE) are used. For low-frequency shallow-water environments, one persistent problem is to assess the accuracy of the PE model. In this work, a recently developed HE solver that can handle a smoothly varying bathymetry, variable material properties, and layered materials, is used for an investigation of the errors in PE solutions. In the HE solver, a preconditioned Krylov subspace method is applied to the discretized equations. The preconditioner combines domain decomposition and fast transform techniques. A benchmark problem with upslope-downslope propagation over a penetrable lossy seamount is solved. The numerical experiments show that, for the same bathymetry, a soft and slow bottom gives very similar HE and PE solutions, whereas the PE model is far from accurate for a hard and fast bottom. A first attempt to estimate the error is made by computing the relative deviation from the energy balance for the PE solution. This measure gives an indication of the magnitude of the error, but cannot be used as a strict error bound.

  20. Seafloor habitat mapping of the New York Bight incorporating sidescan sonar data

    USGS Publications Warehouse

    Lathrop, R.G.; Cole, M.; Senyk, N.; Butman, B.

    2006-01-01

    The efficacy of using sidescan sonar imagery, image classification algorithms and geographic information system (GIS) techniques to characterize the seafloor bottom of the New York Bight were assessed. The resulting seafloor bottom type map was compared with fish trawl survey data to determine whether there were any discernable habitat associations. An unsupervised classification with 20 spectral classes was produced using the sidescan sonar imagery, bathymetry and secondarily derived spatial heterogeneity to characterize homogenous regions within the study area. The spectral classes, geologic interpretations of the study region, bathymetry and a bottom landform index were used to produce a seafloor bottom type map of 9 different bottom types. Examination of sediment sample data by bottom type indicated that each bottom type class had a distinct composition of sediments. Analysis of adult summer flounder, Paralichthys dentatus, and adult silver hake, Merluccius bilinearis, presence/absence data from trawl surveys did not show evidence of strong associations between the species distributions and seafloor bottom type. However, the absence of strong habitat associations may be more attributable to the coarse scale and geographic uncertainty of the trawl sampling data than conclusive evidence that no habitat associations exist for these two species. ?? 2006 Elsevier Ltd. All rights reserved.

  1. Archive of side scan sonar and swath bathymetry data collected during USGS cruise 10CCT01 offshore of Cat Island, Gulf Islands National Seashore, Mississippi, March 2010

    USGS Publications Warehouse

    DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Wiese, Dana S.

    2010-01-01

    In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys east of Cat Island, Mississippi (fig. 1). The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and provide protection for the historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, surface images, and x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten FACS logs and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report or hold the cursor over an acronym for a pop-up explanation. The USGS St. Petersburg Coastal and Marine Science Center assigns a unique identifier to each cruise or field activity. For example, 10CCT01 tells us the data were collected in 2010 for the Coastal Change and Transport (CCT) study and the data were collected during the first field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. Data were collected using a 26-foot (ft) Glacier Bay Catamaran. Side scan sonar and interferometric swath bathymetry data were collected simultaneously along the tracklines. The side scan sonar towfish was towed off the port side just slightly behind the vessel, close to the seafloor. The interferometric swath transducer was sled-mounted on a rail attached between the catamaran hulls. During the survey the sled is secured into position. Navigation was acquired with a CodaOctopus Octopus F190 Precision Attitude and Positioning System and differentially corrected with OmniSTAR. See the digital FACS equipment log for details about the acquisition equipment used. Both raw datasets were stored digitally and processed using CARIS HIPS and SIPS software at the USGS St. Petersburg Coastal and Marine Science Center. For more information on processing refer to the Equipment and Processing page. Post-processing of the swath dataset revealed a motion artifact that is attributed to movement of the pole that the swath transducers are attached to in relation to the boat. The survey took place in the winter months, in which strong winds and rough waves contributed to a reduction in data quality. The rough seas contributed to both the movement of the pole and the very high noise base seen in the raw amplitude data of the side scan sonar. Chirp data were also collected during this survey and are archived separately.

  2. Daily hydro- and morphodynamic simulations at Duck, NC, USA using Delft3D

    NASA Astrophysics Data System (ADS)

    Penko, Allison; Veeramony, Jay; Palmsten, Margaret; Bak, Spicer; Brodie, Katherine; Hesser, Tyler

    2017-04-01

    Operational forecasting of the coastal nearshore has wide ranging societal and humanitarian benefits, specifically for the prediction of natural hazards due to extreme storm events. However, understanding the model limitations and uncertainty is as equally important as the predictions themselves. By comparing and contrasting the predictions of multiple high-resolution models in a location with near real-time collection of observations, we are able to perform a vigorous analysis of the model results in order to achieve more robust and certain predictions. In collaboration with the U.S. Army Corps of Engineers Field Research Facility (USACE FRF) as part of the Coastal Model Test Bed (CMTB) project, we have set up Delft3D at Duck, NC, USA to run in near-real time, driven by measured wave data at the boundary. The CMTB at the USACE FRF allows for the unique integration of operational wave, circulation, and morphology models with real-time observations. The FRF has an extensive array of in-situ and remotely sensed oceanographic, bathymetric, and meteorological data that is broadcast in near-real time onto a publically accessible server. Wave, current, and bed elevation instruments are permanently installed across the model domain including 2 waverider buoys in 17-m and 26-m water depths at 3.5-km and 17-km offshore, respectively, that record directional wave data every 30-min. Here, we present the workflow and output of the Delft3D hydro- and morphodynamic simulations at Duck, and show the tactical benefits and operational potential of such a system. A nested Delft3D simulation runs a parent grid that extends 12-km in the along-shore and 3.5-km in the cross-shore with 50-m resolution and a maximum depth of approximately 17-m. The bathymetry for the parent grid was obtained from a regional digital elevation model (DEM) generated by the Federal Emergency Management Agency (FEMA). The inner nested grid extends 1.8-km in the along-shore and 1-km in the cross-shore with 5-m resolution and a maximum depth of approximately 8-m. The inner nested grid initial model bathymetry is set to either the predicted bathymetry from the previous day's simulation or a survey, whichever is more recent. Delft3D-WAVE runs in the parent grid and is driven with the real-time spectral wave measurements from the waverider buoy in 17-m depth. The spectral output from Delft3D-WAVE in the parent grid is then used as the boundary condition for the inner nested high-resolution grid, in which the coupled Delft3D wave-flow-morphology model is run. The model results are then compared to the wave, current, and bathymetry observations collected at the FRF as well as other models that are run in the CMTB.

  3. Polyhedral shape model for terrain correction of gravity and gravity gradient data based on an adaptive mesh

    NASA Astrophysics Data System (ADS)

    Guo, Zhikui; Chen, Chao; Tao, Chunhui

    2016-04-01

    Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model tests and field applications indicate that the adaptive terrain correction method can be adopted as a rapid and accurate tool of marine gravity data processing. References Davis, K. &Kass, M.A. & Li, Y., 2011. Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization, EXPLOR GEOPHYS, 42, 88-97. Sandwell, D.T., Müller, R.D., Smith, W.H., Garcia, E. & Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure, SCIENCE, 346, 65-67. Tao, C., Li, H., Jin, X., Zhou, J., Wu, T., He, Y., Deng, X., Gu, C., Zhang, G. & Liu, W., 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge, CHINESE SCI BULL, 59, 2266-2276. Tsoulis, D., 2012. Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals, GEOPHYSICS, 77, F1-F11.

  4. Comparing wave shoaling methods used in large-scale coastal evolution modeling

    NASA Astrophysics Data System (ADS)

    Limber, P. W.; Adams, P. N.; Murray, A.

    2013-12-01

    A variety of methods are available to simulate wave propagation from the deep ocean to the surf zone. They range from simple and computationally fast (e.g. linear wave theory applied to shore-parallel bathymetric contours) to complicated and computationally intense (e.g., Delft's ';Simulating WAves Nearshore', or SWAN, model applied to complex bathymetry). Despite their differences, the goal of each method is the same with respect to coastline evolution modeling: to link offshore waves with rates of (and gradients in) alongshore sediment transport. Choosing a shoaling technique for modeling coastline evolution should be partly informed by the spatial and temporal scales of the model, as well as the model's intent (is it simulating a specific coastline, or exploring generic coastline dynamics?). However, the particular advantages and disadvantages of each technique, and how the advantages/disadvantages vary over different model spatial and temporal scales, are not always clear. We present a wave shoaling model that simultaneously computes breaking wave heights and angles using three increasingly complex wave shoaling routines: the most basic approach assuming shore-parallel bathymetric contours, a wave ray tracing method that includes wave energy convergence and divergence and non-shore-parallel contours, and a spectral wave model (SWAN). Initial results show reasonable agreement between wave models along a flat shoreline for small (1 m) wave heights, low wave angles (0 to 10 degrees), and simple bathymetry. But, as wave heights and angles increase, bathymetry becomes more variable, and the shoreline shape becomes sinuous, the model results begin to diverge. This causes different gradients in alongshore sediment transport between model runs employing different shoaling techniques and, therefore, different coastline behavior. Because SWAN does not approximate wave breaking (which drives alongshore sediment transport) we use a routine to extract grid cells from SWAN output where wave height is approximately one-half of the water depth (a standard wave breaking threshold). The goal of this modeling exercise is to understand under what conditions a simple wave model is sufficient for simulating coastline evolution, and when using a more complex shoaling routine can optimize a coastline model. The Coastline Evolution Model (CEM; Ashton and Murray, 2006) is used to show how different shoaling routines affect modeled coastline behavior. The CEM currently includes the most basic wave shoaling approach to simulate cape and spit formation. We will instead couple it to SWAN, using the insight from the comprehensive wave model (above) to guide its application. This will allow waves transformed over complex bathymetry, such as cape-associated shoals and ridges, to be input for the CEM so that large-scale coastline behavior can be addressed in less idealized environments. Ashton, A., and Murray, A.B., 2006, High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes: Journal of Geophysical Research, v. 111, p. F04011, doi:10.1029/2005JF000422.

  5. Newly Collected Multibeam Swath Bathymetry Data Herald a New Phase in Gas-hydrate Research on Lake Baikal

    NASA Astrophysics Data System (ADS)

    Naudts, L.; Khlystov, O.; Khabuev, A.; Seminskiy, I.; Casier, R.; Cuylaerts, M.; 'chenko, P., General; Synaeve, J.; Vlamynck, N.; de Batist, M. A.; Grachev, M. A.

    2009-12-01

    Lake Baikal is a large rift lake in Southern Siberia (Russian Federation). It occupies the three central depressions of the Baikal Rift Zone (BRZ): i.e. the Southern, Central and Northern Baikal Basins. Rifting started ca. 30 Ma ago and is still active with a present-day average extension rate of about 4 mm/yr. With a depth of 1637 m, Lake Baikal is the deepest lake in the World. It also holds 20 % of the world’s liquid surface fresh water, which makes it the largest lake in the World in terms of volume. Lake Baikal is also the only freshwater lake in the World with demonstrated occurrences of gas hydrates in its sedimentary infill. Methane hydrates are stable at water depths below 375 m. The presence of hydrates in the sedimentary infill is evidenced by a widespread BSR. Hydrates have also been encountered locally, in the near-bottom sediments of mud-volcano-like structures. In the summer of 2009, the lake floor has been mapped with multibeam swath bathymetry for the first time during a two-month-long survey with RV Titov. Swath bathymetry data were acquired with RCMG’s mobile 50 kHz SeaBeam 1050 multibeam system. In total 12600 km of echosounder tracks were sailed covering 15000 km2, including the Academician Ridge Accommodation Zone, the Central Baikal Basin, the Selenga Delta Accommodation Zone en the South Baikal Basin. In general, the lake floor was mapped starting from water depths of about -200 m to -1637 m, with an average survey depth of -1000 m. The new bathymetric data image the lake-floor morphology in unprecedented detail, revealing many small- and large-scall morphosedimentary, morphostructural and fluid-flow-related features, many of which were hitherto unknown. Known mud-volcano provinces in the Southern and Central Baikal Basins (i.e. the Posolsky Bank mud-volcano province, the Kukuy Canyon mud volcano province and the Olkhon Gate mud-volcano province) were mapped in detail, and several new, often isolated, mud-volcano-like structures were discovered. In addition, different possible fluid-flow features were identified in front of the Selenga Delta. Also the gas-hydrate-bearing areas around the oil seeps of Gorevoi Utes and the methane seeps of Goloustnoye have been mapped in detail, revealing that these hydrate occurrences are not associated with mud-volcano-like structures. The multibeam mapping survey coincided with the 2nd season of exploration of the lake floor by manned MIR submersibles (http://baikalfund.ru/eng/projects/expedition/index.wbp). Several of the MIR dives focused on features imaged by the new bathymetry data, such as gas-hydrate occurrences at methane seeps and oil seeps and in the mud-volcano-like structures, and gas seeps and fluid-flow phenomena along active fault scarps. The multibeam mapping survey was conducted in the framework of SBRAS project 17.8 and FWO Flanders project 1.5.198.09.

  6. Shallow Water Laser Bathymetry: Accomplishments and Applications

    DTIC Science & Technology

    2016-05-12

    developed specifically to detect underwater mines , such as the Airborne Laser Radar Mine Sensor (ALARMS) built by Optech for the U.S. Defense...borne mine detection based upon an earlier proven ALB receiver configuration, was developed from urgent requirements related to the Persian Gulf War...resolution depiction of a large area which had recently been mined for a neighboring beach restoration project, it highlighted the capability for

  7. NOAA National Ocean Service Remote Sensing Applications and Concept of Operations

    DTIC Science & Technology

    2007-01-01

    remote sensing technologies to monitor harmful algal blooms, hypoxia, coral bleaching , contamination, land use changes and bathymetry, and making the...NOAA’s Polar Environmental Satellites are used to help predict the likelihood of mass coral bleaching events. Both intensity and duration of...abnormally warm surface temperatures are used to help predict coral bleaching events. When a temperature anomaly reaches a critically high value or

  8. Communicating Coastal Risk Analysis in an Age of Climate Change

    DTIC Science & Technology

    2011-10-01

    extratropical storm systems); the geometry and geomorphology of the area (regional and local bathymetry and topography, including rivers, marshes, and...at risk from coastal hazards including storm surge inundation, precipitation driven flooding, waves, and coastal erosion. This population segment...will likely be exposed to increased risk as impacts of a changing climate are felt through elevated sea levels and potentially increased storm

  9. Bathymetry of the Republic of the Marshall Islands and vicinity

    USGS Publications Warehouse

    Hein, James R.; Wong, Florence L.; Mosier, Dan L.

    1999-01-01

    The bathymetric map of the Republic of the Marshall Islands and vicinity is bounded by a window of latitude 3 to 17 degrees North, longitude 153 to 175 degrees East. The map was compiled from surveys conducted by the USGS, Korean Ocean Research and Development Institute, and published gridded data. In addition to national jurisdictions, island and atoll coastlines are indicated on the map.

  10. Stochastic Forcing for Ocean Uncertainty Prediction

    DTIC Science & Technology

    2013-09-30

    using the desired dynamics and the fitting of that velocity field to the bathymetry, coasts and discretization for the desired simulation. New algorithms...numerical bias is removed. Pdfs of the forecast errors are shown to capture and evolve non- Gaussian statistics. Comparing the Kullback - Leibler ...advances in collaborative sea exercises of opportunity vi) Strengthen existing and initiate new collaborations with NRL, using and leveraging the MIT

  11. Automated Quantification of Gradient Defined Features

    DTIC Science & Technology

    2008-09-01

    defined features in submarine environments. The technique utilizes MATLAB scripts to convert bathymetry data into a gradient dataset, produce gradient...maps, and most importantly, automate the process of defining and characterizing gradient defined features such as flows, faults, landslide scarps, folds...convergent plate margin hosts a series of large serpentinite mud volcanoes (Fig. 1). One of the largest of these active mud volcanoes is Big Blue

  12. A Program for Storing Oceanographic Data on Magnetic Tape

    DTIC Science & Technology

    1975-03-31

    PRCPeR (TMA.TNlt.TDX.X^A.YNA.x^B.YMB’.XDtVD) SCPUTES THE X-Y cesHri^ATts ra» PLSTTING BATHYMETRY PRSGBA^ER ■ LE8N LA LU- itPE - C9DE...R IBM 1130 INPUT, IDEP MT ■ OUTPUT, KCDF KCDM MTDC INTERNAL NUDF WUDF WUOM wCaR • UNCBRRECTtn nfePTH IN FATHfiMS MATTHEWS TABLE

  13. Southeast Florida Sediment Assessment and Needs Determination (SAND) Study

    DTIC Science & Technology

    2014-09-01

    of previous studies, geophysical, geotechnical, and geomorphic data sets in their analysis, primarily deviating from one another in controlling... geomorphic features of the continental shelf north of latitude N26º 40’ (geographically around the upland location of Lake Worth Inlet, Florida) by cross...2012 NOAA bathymetry, recent borings, and historical seismic data to delineate shoal, flat, rock exposure, and other geomorphic boundaries. The

  14. Structure and Variability of Internal Tides in Luzon Strait

    DTIC Science & Technology

    2016-09-14

    suggestions of outside individuals or concerns which have been communicated to the Laboratory in confidence. This paper (does ) (does not X ) contain...generated where the barotropic tides force stratified water over underwater bathymetry, are thought to provide a significant fraction of the 2 TW of energy...required to maintain abyssal stratification and the meridional overturning circulation (Munk and Wunsch 1998). They contribute to oceanmixing through a

  15. 2008 Joint United States-Canadian program to explore the limits of the Extended Continental Shelf aboard the U.S. Coast Guard cutter Healy--Cruise HLY0806

    USGS Publications Warehouse

    Childs, Jonathan R.; Triezenberg, Peter J.; Danforth, William W.

    2012-01-01

    In September 2008, the U.S. Geological Survey (USGS), in cooperation with Natural Resources Canada, Geological Survey of Canada (GSC), conducted bathymetric and geophysical surveys in the Arctic Beaufort Sea aboard the U.S. Coast Guard cutter USCGC Healy. The principal objective of this mission to the high Arctic was to acquire data in support of delineation of the outer limits of the U.S. and Canadian Extended Continental Shelf (ECS) in the Arctic Ocean in accordance with the provisions of Article 76 of the Law of the Sea Convention. The Healy was accompanied by the Canadian Coast Guard icebreaker Louis S. St- Laurent. The science parties on the two vessels consisted principally of staff from the USGS (Healy), and the GSC and the Canadian Hydrographic Service (Louis). The crew included marine mammal and Native-community observers, ice observers, and biologists conducting research of opportunity in the Arctic Ocean. The joint survey proved an unqualified success. The Healy collected 5,528 km of swath (multibeam) bathymetry (38,806 km2) and CHIRP subbottom profile data, with accompanying marine gravity measurements. The Louis acquired 2,817 km of multichannel seismic (airgun) deep-penetration reflection-profile data along 12 continuous lines, as well as 35 sonobuoy refraction stations and accompanying single-beam bathymetry. The coordinated efforts of the two vessels resulted in seismic-reflection profile data of much higher quality and continuity than if the data had been acquired with a single vessel alone. Equipment failure rate of the seismic equipment gear aboard the Louis was greatly improved with the advantage of having a leading icebreaker. When ice conditions proved too severe to deploy the seismic system, the Louis led the Healy, resulting in much improved quality of the swath bathymetry and CHIRP sub-bottom data in comparison with data collected by the Healy in the lead or working alone. Ancillary science objectives, including ice observations, deployment of ice-monitoring buoys and water-column sampling for biologic (phytoplankton) studies, were also successfully accomplished.

  16. A simple scaling model for smooth vs. rough bathymetry along hotspot tracks

    NASA Astrophysics Data System (ADS)

    Orellana Rovirosa, F.; Richards, M. A.

    2016-12-01

    Oceanic hotspot tracks exhibit a remarkable variety of morphologies, both in terms of volcanic seamounts/ocean islands, as well as broader bathymetric swells. A conspicuous feature is that although most hotspot tracks are characterized by "rough" topography, due mainly to volcanic construction, a number are much "smoother," and likely dominated more by the thermal/dynamic swell and crustal intrusion. Examples of relatively smooth tracks include the Nazca Ridge , Carnegie/Cocos/Galápagos, Walvis Ridge, Rio Grande Rise, Iceland, and Kerguelen and much of the Ninety-east Ridge; contrasting with rough and discontinuous seamount chains such Easter/Sala y Gomez, Tristan-Gough, Louisville, Emperor, and much of the Hawaiian ridge. Previous studies have pointed out the role of age, lithospheric thickness, and the plume strength; on the style of the associated bathymetry. Here, we take a systematic approach that emphasizes remarkable along-track changes from smooth to rough topography, e.g., the rough Sala y Gomez and smooth Nazca Ridge portions of the Easter Island hotspot track. Considering the primary controls to be hotspot swell volume flux Qs, the plate-hotspot relative speed v, and the lithospheric elastic thickness D, we suggest that such transitions are controlled by the dimensionless parameter R = sqrt(Qs / v) / D, which is roughly a measure of the heat available from the plume to the heat necessary to thermally attenuate the overlying lithosphere. For very thin (young) lithosphere, such as at the Galápagos platform, igneous intrusion into the hot, weak lithosphere and lower crust may dominate the topographic expression of the hotspot, whereas older lithosphere will support large volcanoes built from magmas passing through more intact lithosphere. Using data from observational studies on mantle-plume buoyancy fluxes, gravity, bathymetry, and tectonic reconstructions, we show that R is a good predictor of bathymetric style: for R<2 hotspot tracks are rough, and for R>3 they are smooth. This analysis therefore gives a straightforward and quantitative framework for interpreting the topographic/bathymetric expressions of oceanic hotspot tracks.

  17. A method to calibrate channel friction and bathymetry parameters of a Sub-Grid hydraulic model using SAR flood images

    NASA Astrophysics Data System (ADS)

    Wood, M.; Neal, J. C.; Hostache, R.; Corato, G.; Chini, M.; Giustarini, L.; Matgen, P.; Wagener, T.; Bates, P. D.

    2015-12-01

    Synthetic Aperture Radar (SAR) satellites are capable of all-weather day and night observations that can discriminate between land and smooth open water surfaces over large scales. Because of this there has been much interest in the use of SAR satellite data to improve our understanding of water processes, in particular for fluvial flood inundation mechanisms. Past studies prove that integrating SAR derived data with hydraulic models can improve simulations of flooding. However while much of this work focusses on improving model channel roughness values or inflows in ungauged catchments, improvement of model bathymetry is often overlooked. The provision of good bathymetric data is critical to the performance of hydraulic models but there are only a small number of ways to obtain bathymetry information where no direct measurements exist. Spatially distributed river depths are also rarely available. We present a methodology for calibration of model average channel depth and roughness parameters concurrently using SAR images of flood extent and a Sub-Grid model utilising hydraulic geometry concepts. The methodology uses real data from the European Space Agency's archive of ENVISAT[1] Wide Swath Mode images of the River Severn between Worcester and Tewkesbury during flood peaks between 2007 and 2010. Historic ENVISAT WSM images are currently free and easy to access from archive but the methodology can be applied with any available SAR data. The approach makes use of the SAR image processing algorithm of Giustarini[2] et al. (2013) to generate binary flood maps. A unique feature of the calibration methodology is to also use parameter 'identifiability' to locate the parameters with higher accuracy from a pre-assigned range (adopting the DYNIA method proposed by Wagener[3] et al., 2003). [1] https://gpod.eo.esa.int/services/ [2] Giustarini. 2013. 'A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X'. IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 4. [3] Wagener. 2003. 'Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis'. Hydrol. Process. 17, 455-476.

  18. High-Resolution Geologic Mapping in the Eastern Manus Basin

    NASA Astrophysics Data System (ADS)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D. R.

    2011-12-01

    AUV-based microbathymetry combined with ROV video data was used to create the first high-resolution geologic maps of two hydrothermal active areas in the eastern Manus Basin: North Su volcano and PACManus hydrothermal field on Pual Ridge. The data were recorded in 2006 and 2011 during the research cruises Magellan-06 operated by the Woods Hole Oceanographic Institution and BAMBUS (SO-216) operated by MARUM / University Bremen. High accuracy underwater navigation transponder-based and Posidonia systems allowed us to combine video data with bathymetry. The navigation on both cruises was very precise (m-scale) and navigation offsets were less than 10 m. We conducted detailed geologic mapping and sampling to identify the seafloor volcanic and hydrothermal features and created highly detailed maps that provide a comprehensive picture of the seafloor and vent distribution in the eastern Manus Basin. Several different types of dacite lava morphology were mapped, including pillow lava, lobate flows and massive block lava. We have compiled all available information on rock chemistry, fluid and temperature measurements, video data, bathymetry and navigation data into a GIS database. We find that, in contrast to the tectonic control on vent distribution at slow spreading mid-ocean ridges, the pathways of upwelling hydrothermal vent fluids at PACManus are dominated by volcanic features, such as lava domes and thick, massive block lava flows. Vent fields are developed preferentially along the margins of major flow units, probably because the cores of these units are impermeable to fluid flow, while the autobrecciated outer parts of the flows are not. In the North Su area, a comparison of seafloor maps from 2006 and 2011 reveals recent volcanic activity, which has strongly modified the bathymetry and hydrothermal vent distribution on the southern flank of the volcano. An ash cone with multiple small craters on the SW flank of the North-Su volcano that didn't exist in 2006 was mapped in 2011. Also, magmatic degassing was much more vigorous in 2011, with large accumulations of liquid sulfur (from disproportionation of magmatic SO2) as well as extensive bubbling of supercritical and liquid CO2.

  19. Mapping seabed geomorphology in the Inner Hebrides, Scotland; Bathymetric records of ice streaming and retreat

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Finlayson, Andrew; Bradwell, Tom; Arosio, Riccardo; Howe, John

    2014-05-01

    Approximately 7,000 km² of new bathymetry have been stitched together with onshore airborne radar data, both gridded at 5m resolution, to map and describe the submarine glacial landscape of the Inner Hebrides sector of the former British-Irish Ice Sheet (BIIS). As part of the MAREMAP Project (http://www.maremap.ac.uk), and to build on previous work (Howe et al., 2012), we are using recently acquired swath bathymetry data, collected primarily by the UKHO Civil Hydrography Programme, to characterise the geomorphology, sea-bed sediments, and bedrock geology of the Inner Hebrides region. Mapping has revealed an extensive array of well-preserved glacigenic landforms on the seabed associated with key stages of ice flow and retreat of the BIIS following the Last Glacial Maximum. On multiple submarine rock platforms and within overdeepened troughs, diverse assemblages of glacially streamlined landforms are present, forming a geomorphic continuum between rock drumlins and mega-flutes. Superimposed streamlined bedforms indicate different phases of fast flow at the ice sheet bed, and the convergence of flow sets suggest that ice sheet flow was organised into faster flowing topographically controlled corridors. Across the region, the streamlined landforms occur within a geographically controlled zone, semi-independent of the underlying geology. This is consistent with the onset zone of the Hebrides Ice Stream, as previously postulated (Howe et al., 2012). Submarine moraine ridges are observed widely across the survey area: within sea lochs, atop rock platforms and superimposed on glacially streamlined bedforms, as well as pinned to topographic highs (i.e. islands). Some retreat patterns reveal clear glacial recession towards respective catchments, while others are more ambiguous and are the focus of ongoing work. The bathymetry data notably reveal more geomorphic evidence of glaciation than adjacent land records, thus providing the opportunity to reassess onshore mapping where clear offshore examples may provide insights into poorly understood terrestrial geological and geomorphological features. And importantly, these new data provide the opportunity to greatly improve offshore geology maps of the region, which are in increasing demand by governmental, commercial, and conservation groups.

  20. Increased ocean-induced melting triggers glacier retreat in northwest and southeast Greenland

    NASA Astrophysics Data System (ADS)

    Wood, M.; Rignot, E. J.; Fenty, I. G.; Menemenlis, D.; Millan, R.; Morlighem, M.; Mouginot, J.

    2017-12-01

    Over the past 30 years, the tidewater glaciers of northwest, central west, and southeast Greenland have exhibited widespread retreat, yet we observe different behaviors from one glacier to the next, sometimes within the same fjord. This retreat has been synchronous with oceanic warming in Baffin Bay and the Irminger Sea. Here, we estimate the ocean-induced melt rate of marine-terminating glaciers in these sectors of the Greenland Ice Sheet using simulations from the MITgcm ocean model for various water depths, ocean thermal forcing (TF) and subglacial water fluxes (SG). We use water depth from Ocean Melting Greenland (OMG) bathymetry and inverted airborne gravity, ocean thermal forcing from the Estimating the Circulation and Climate of the Ocean (Phase II, ECCO2) combined with CTD data from 2012 and 2015, and time series of subglacial water flux combining runoff production from the 1-km Regional Atmospheric Climate Model (RACMO2.3) with basal melt beneath land ice from the JPL/UCI ISSM model. Time series of melt rates are formed as a function of grounding line depth, SG flux and TF. We compare the results with the history of ice velocity and ice front retreat to quantify the impact of ice melt by the ocean over past three decades. We find that the timing of ice front retreat coincides with enhanced ocean-induced melt and that abrupt retreat is induced when additional ablation exceeds the magnitude of natural seasonal variations of the glacier front. Sverdrup Gletscher, Umiamako Isbrae, and the northern branch Puisortoq Gletscher in northwest, central west, and southwest Greenland, respectively, began multi-kilometer retreats coincident with ocean warming and enhanced melt. Limited retreat is observed where the bathymetry is shallow, on a prograde slope or glacier is stuck on a sill, e.g. Ussing Braeer in the northwest, Sermeq Avannarleq in central west, and Skinfaxe Gletscher in the southeast. These results illustrate the sensitivity of glaciers to changes in oceanic forcing and the modulating effect of bathymetry on their rate and magnitude of retreat. This work was carried out under a grant with NASA Cryosphere Program and for the EVS-2 Ocean Melting Greenland (OMG) mission.

  1. Mapping and Mitigating the International Rip Current Health Hazard

    NASA Astrophysics Data System (ADS)

    Trimble, S. M.; Houser, C.

    2016-12-01

    Rip currents are concentrated seaward flows of water originating in the surf zones of beaches. Rips cause hundreds of international drownings each year. Calculating exact numbers is barred by logistical difficulties in obtaining accurate incident reports, but annual rip current fatalities are estimated at 100, 53 and 21 in the United States (US), Costa Rica, and Australia respectively. Notably, Australia's lifeguards rescue 17,600 swimmers from rips each year. This project addresses the geophysical, social, and systematic causes of fatalities in hopes of decreasing the global number of rip-related deaths. We demonstrate a novel method for mapping bathymetry in the surf zone (20m deep or less), specifically within rip channels (topographic low spots in the nearshore that result from feedback amongst waves, substrate, and antecedent bathymetry). We calculate bathymetry using 8-band multispectral imagery from the Digital Globe WorldView2 (WV2) satellite and field measurements of depth, generating maps of the changing nearshore at two embayed, rip-prone beaches: Playa Cocles, Costa Rica, and Bondi Beach, Australia. WV2 has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including `yellow' (585-625 nm) and `coastal blue' (400-450 nm). Methods are tested for consistency amongst dates and locations. Previous research shows drownings result from a combination of the physical environment with personal and group behaviors; for this reason we build on rip-detection by evaluating tourists' and locals' knowledge and understanding of their beach's rip behavior. By combining the geomorphologic maps developed from WV2 with interview data, we evaluate how the physical environment dictates the exposure of certain swimmers. Controls include rip channel location, beach access points, and environmental factors favored by swimmers. The project serves as an evaluation of the landscape's creation of a physical feature that becomes a hazard when vulnerable humans swim into it. Results are meant to inform policy makers so that they may implement the methods: developing frequent nearshore maps to observe rip channel behavior, designing beach access controls informed by morphology, posting informative signs in ideal locations, and funding lifeguard programs.

  2. Observations of Seafloor Roughness in a Tidally Modulated Inlet

    NASA Astrophysics Data System (ADS)

    Lippmann, T. C.; Hunt, J.

    2014-12-01

    The vertical structure of shallow water flows are influenced by the presence of a bottom boundary layer, which spans the water column for long period waves or mean flows. The nature of the boundary is determined in part by the roughness elements that make up the seafloor, and includes sometimes complex undulations associated with regular and irregular shaped bedforms whose scales range several orders of magnitude from orbital wave ripples (10-1 m) to mega-ripples (100 m) and even larger features (101-103) such as sand waves, bars, and dunes. Modeling efforts often parameterize the effects of roughness elements on flow fields, depending on the complexity of the boundary layer formulations. The problem is exacerbated by the transient nature of bedforms and their large spatial extent and variability. This is particularly important in high flow areas with large sediment transport, such as tidally dominated sandy inlets like New River Inlet, NC. Quantification of small scale seafloor variability over large spatial areas requires the use of mobile platforms that can measure with fine scale (order cm) accuracy in wide swaths. The problem is difficult in shallow water where waves and currents are large, and water clarity is often limited. In this work, we present results from bathymetric surveys obtained with the Coastal Bathymetry Survey System, a personal watercraft equipped with a Imagenex multibeam acoustic echosounder and Applanix POS-MV 320 GPS-aided inertial measurement unit. This system is able to measure shallow water seafloor bathymetry and backscatter intensity with very fine scale (10-1 m) resolution and over relatively large scales (103 m) in the presence of high waves and currents. Wavenumber spectra show that the noise floor of the resolved multibeam bathymetry is on the order of 2.5 - 5 cm in amplitude, depending on water depths ranging 2 - 6 m, and about 30 cm in wavelength. Seafloor roughness elements are estimated from wavenumber spectra across the inlet from bathymetric maps of the seafloor obtained with 10-25 cm horizontal resolution. Implications of the effects of the bottom variability on the vertical structure of the currents will be discussed. This work was supported by ONR and NOAA.

  3. Effects of Harbor Modification on Crescent City, California's Tsunami Vulnerability

    NASA Astrophysics Data System (ADS)

    Dengler, Lori; Uslu, Burak

    2011-06-01

    More damaging tsunamis have impacted Crescent City, California in historic times than any other location on the West Coast of the USA. Crescent City's harbor has undergone significant modification since the early 20th century, including construction of several breakwaters, dredging, and a 200 × 300 m2 small boat basin. In 2006, a M w 8.3 earthquake in the Kuril Islands generated a moderate Pacific-wide tsunami. Crescent City recorded the highest amplitudes of any tide gauge in the Pacific and was the only location to experience structural damage. Strong currents damaged docks and boats within the small boat basin, causing more than US 20 million in damage and replacement costs. We examine how modifications to Crescent City's harbor may have affected its vulnerability to moderate tsunamis such as the 2006 event. A bathymetric grid of the basin was constructed based on US Army Corps of Engineers soundings in 1964 and 1965 before the construction of the small boat basin. The method of splitting tsunamis was used to estimate tsunami water heights and current velocities at several locations in the harbor using both the 1964-1965 grid and the 2006 bathymetric grid for the 2006 Kuril event and a similar-sized source along the Sanriku coast of Japan. Model velocity outputs are compared for the two different bathymetries at the tide gauge location and at six additional computational sites in the harbor. The largest difference between the two grids is at the small boat basin entrance, where the 2006 bathymetry produces currents over three times the strength of the currents produced by the 1965 bathymetry. Peak currents from a Sanriku event are comparable to those produced by the 2006 event, and within the boat basin may have been higher. The modifications of the harbor, and in particular the addition of the small boat basin, appear to have contributed to the high current velocities and resulting damage in 2006 and help to explain why the 1933 M w 8.4-8.7 Sanriku tsunami caused no damage at Crescent City.

  4. The nutritional nexus: linking niche, habitat variability and prey composition in a generalist marine predator.

    PubMed

    Machovsky-Capuska, Gabriel E; Miller, Mark G R; Silva, Fabiola R O; Amiot, Christophe; Stockin, Karen A; Senior, Alistair M; Schuckard, Rob; Melville, David; Raubenheimer, David

    2018-06-05

    1.Our understanding of the niche concept will remain limited while the quantity and range of different food types eaten remains a dominant proxy for niche breadth, as this does not account for the broad ecological context that governs diet. Linking nutrition, physiology and behaviour are critical to predict the extent to which a species adjusts its nutritional niche breadth at the levels of prey ("prey composition niche", defined as the range of prey compositions eaten), and diet ("realized nutritional niche" is the range of diets composed through feeding on the prey). 2.Here we studied adult-chick rearing Australasian gannets (Morus serrator) to propose an integrative approach using sea surface temperature anomalies (SSTa), geographic location and bathymetry over different years, to explore their relationship with the nutritional composition of prey and diets (i.e., prey composition and nutritional niche breadth), habitat use and foraging behavior. 3.We found that gannets feed on prey that varied widely in their nutritional composition (have a broad prey composition niche), and composed diets from these prey that likewise varied in composition (have a broad realized nutritional niche), suggesting generalism at two levels of macronutrient selection. 4.Across seasons, we established "nutritional landscapes" (hereafter nutriscapes), linking the nutritional content of prey (wet mass protein to-lipid ratio -P:L-) to the most likely geographic area of capture and bathymetry. Nutriscapes varied in their P:L from 6.06 to 15.28, over time, space and bathymetry (0 to 150 m). 5.During warm water events (strong positive SSTa), gannets expanded their foraging habitat, increased their foraging trip duration and consumed prey and diets with low macronutrient content (wet mass proportions of P and L). They were also constrained to the smallest prey composition and realized nutritional niche breadths. 6.Our findings are consistent with previous suggestions that dietary generalism evolves in heterogeneous environments, and provide a framework for understanding the nutritional goals in wild marine predators and how these goals drive ecological interactions and are, in turn, ultimately shaped by environmental fluctuations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Sedimentation and bathymetry changes in Suisun Bay: 1867-1990

    USGS Publications Warehouse

    Cappiella, Karen; Malzone, Chris; Smith, Richard; Jaffe, Bruce

    1999-01-01

    Understanding patterns of historical erosion and deposition in San Francisco Bay is crucial in managing such issues as locating deposits of sediment-associated contaminants, and the restoration of wetland areas. These problems were addressed by quantitatively examining historical hydrographic surveys. The data from five hydrographic surveys, made from 1867 to 1990, were analyzed using surface modeling software to determine long-term changes in the sediment system of Suisun Bay and surrounding areas. A surface grid displaying the bathymetry was created for each survey period, and the bathymetric change between survey periods was computed by differencing these grids. Patterns and volumes of erosion and deposition, sedimentation rates, and shoreline changes were derived from the resulting change grids. Approximately 115 million cubic meters of sediment were deposited in the Suisun Bay area from 1867 to 1887, the majority of which was debris from hydraulic gold mining in the Sierra Nevada. Just under two-thirds of the area of the study site was depositional during this time period, while less than one-third of it was erosional. However, over the entire study period, the Suisun Bay area lost sediment, indicating that a large amount of erosion occurred from1887 to 1990. In fact, this area lost sediment during each of the change periods between 1887 and 1990. Because erosion and deposition are processes that may vary over space and time, further analyses of more specific areas were done to examine spatial and temporal patterns. The change in the Suisun Bay area from being a largely depositional environment to an erosional one is the result of a combination of several factors. These factors include the regulation and subsequent cessation of hydraulic mining practices, and the increase in flood control and water distribution projects that have decreased sediment supply to the bay by reducing the frequency and duration of peak flow conditions. Another pattern shown by the changing bathymetry is the substantial decrease in the area of tidal flat (defined in this study as the area between mean lower low water and the shoreline), particularly in Grizzly Bay and Honker Bay. These tidal flats are important to the bay ecosystem, providing stability and biologic diversity.

  6. Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data

    NASA Astrophysics Data System (ADS)

    Peukert, Anne; Schoening, Timm; Alevizos, Evangelos; Köser, Kevin; Kwasnitschka, Tom; Greinert, Jens

    2018-04-01

    In this study, ship- and autonomous underwater vehicle (AUV)-based multibeam data from the German ferromanganese-nodule (Mn-nodule) license area in the Clarion-Clipperton Zone (CCZ; eastern Pacific) are linked to ground-truth data from optical imaging. Photographs obtained by an AUV enable semi-quantitative assessments of nodule coverage at a spatial resolution in the range of meters. Together with high-resolution AUV bathymetry, this revealed a correlation of small-scale terrain variations ( < 5 m horizontally, < 1 m vertically) with nodule coverage. In the presented data set, increased nodule coverage could be correlated with slopes > 1.8° and concave terrain. On a more regional scale, factors such as the geological setting (existence of horst and graben structures, sediment thickness, outcropping basement) and influence of bottom currents seem to play an essential role for the spatial variation of nodule coverage and the related hard substrate habitat. AUV imagery was also successfully employed to map the distribution of resettled sediment following a disturbance and sediment cloud generation during a sampling deployment of an epibenthic sledge. Data from before and after the disturbance allow a direct assessment of the impact. Automated image processing analyzed the nodule coverage at the seafloor, revealing nodule blanketing by resettling of suspended sediment within 16 h after the disturbance. The visually detectable impact was spatially limited to a maximum of 100 m distance from the disturbance track, downstream of the bottom water current. A correlation with high-resolution AUV bathymetry reveals that the blanketing pattern varies in extent by tens of meters, strictly following the bathymetry, even in areas of only slightly undulating seafloor ( < 1 m vertical change). These results highlight the importance of detailed terrain knowledge when engaging in resource assessment studies for nodule abundance estimates and defining mineable areas. At the same time, it shows the importance of high-resolution mapping for detailed benthic habitat studies that show a heterogeneity at scales of 10 to 100 m. Terrain knowledge is also needed to determine the scale of the impact by seafloor sediment blanketing during mining operations.

  7. Satellite derived bathymetry: mapping the Irish coastline

    NASA Astrophysics Data System (ADS)

    Monteys, X.; Cahalane, C.; Harris, P.; Hanafin, J.

    2017-12-01

    Ireland has a varied coastline in excess of 3000 km in length largely characterized by extended shallow environments. The coastal shallow water zone can be a challenging and costly environment in which to acquire bathymetry and other oceanographic data using traditional survey methods or airborne LiDAR techniques as demonstrated in the Irish INFOMAR program. Thus, large coastal areas in Ireland, and much of the coastal zone worldwide remain unmapped using modern techniques and is poorly understood. Earth Observations (EO) missions are currently being used to derive timely, cost effective, and quality controlled information for mapping and monitoring coastal environments. Different wavelengths of the solar light penetrate the water column to different depths and are routinely sensed by EO satellites. A large selection of multispectral imagery (MS) from many platforms were examined, as well as from small aircrafts and drones. A number of bays representing very different coastal environments were explored in turn. The project's workflow is created by building a catalogue of satellite and field bathymetric data to assess the suitability of imagery captured at a range of spatial, spectral and temporal resolutions. Turbidity indices are derived from the multispectral information. Finally, a number of spatial regression models using water-leaving radiance parameters and field calibration data are examined. Our assessment reveals that spatial regression algorithms have the potential to significantly improve the accuracy of the predictions up to 10m WD and offer a better handle on the error and uncertainty budget. The four spatial models investigated show better adjustments than the basic non-spatial model. Accuracy of the predictions is better than 10% WD at 95% confidence. Future work will focus on improving the accuracy of the predictions incorporating an analytical model in conjunction with improved empirical methods. The recently launched ESA Sentinel 2 will become the primary focus of study. Satellite bathymetry and coastal mapping products, and remarkably, their repeatability over time, can offer solutions to important coastal zone management issues and address key challenges in the critical line between shoreline changes and human activity, particularly in the light of future climate change scenarios.

  8. Empirical water depth predictions in Dublin Bay based on satellite EO multispectral imagery and multibeam data using spatially weighted geographical analysis

    NASA Astrophysics Data System (ADS)

    Monteys, Xavier; Harris, Paul; Caloca, Silvia

    2014-05-01

    The coastal shallow water zone can be a challenging and expensive environment within which to acquire bathymetry and other oceanographic data using traditional survey methods. Dangers and limited swath coverage make some of these areas unfeasible to survey using ship borne systems, and turbidity can preclude marine LIDAR. As a result, an extensive part of the coastline worldwide remains completely unmapped. Satellite EO multispectral data, after processing, allows timely, cost efficient and quality controlled information to be used for planning, monitoring, and regulating coastal environments. It has the potential to deliver repetitive derivation of medium resolution bathymetry, coastal water properties and seafloor characteristics in shallow waters. Over the last 30 years satellite passive imaging methods for bathymetry extraction, implementing analytical or empirical methods, have had a limited success predicting water depths. Different wavelengths of the solar light penetrate the water column to varying depths. They can provide acceptable results up to 20 m but become less accurate in deeper waters. The study area is located in the inner part of Dublin Bay, on the East coast of Ireland. The region investigated is a C-shaped inlet covering an area of 10 km long and 5 km wide with water depths ranging from 0 to 10 m. The methodology employed on this research uses a ratio of reflectance from SPOT 5 satellite bands, differing to standard linear transform algorithms. High accuracy water depths were derived using multibeam data. The final empirical model uses spatially weighted geographical tools to retrieve predicted depths. The results of this paper confirm that SPOT satellite scenes are suitable to predict depths using empirical models in very shallow embayments. Spatial regression models show better adjustments in the predictions over non-spatial models. The spatial regression equation used provides realistic results down to 6 m below the water surface, with reliable and error controlled depths. Bathymetric extraction approaches involving satellite imagery data are regarded as a fast, successful and economically advantageous solution to automatic water depth calculation in shallow and complex environments.

  9. One-meter topobathymetric digital elevation model for Majuro Atoll, Republic of the Marshall Islands, 1944 to 2016

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Poppenga, Sandra K.; Danielson, Jeffrey J.; Tyler, Dean J.; Gesch, Dean B.; Kottermair, Maria; Jalandoni, Andrea; Carlson, Edward; Thatcher, Cindy A.; Barbee, Matthew M.

    2018-03-30

    Atoll and island coastal communities are highly exposed to sea-level rise, tsunamis, storm surges, rogue waves, king tides, and the occasional combination of multiple factors, such as high regional sea levels, extreme high local tides, and unusually strong wave set-up. The elevation of most of these atolls averages just under 3 meters (m), with many areas roughly at sea level. The lack of high-resolution topographic data has been identified as a critical data gap for hazard vulnerability and adaptation efforts and for high-resolution inundation modeling for atoll nations. Modern topographic survey equipment and airborne lidar surveys can be very difficult and costly to deploy. Therefore, unmanned aircraft systems (UAS) were investigated for collecting overlapping imagery to generate topographic digital elevation models (DEMs). Medium- and high-resolution satellite imagery (Landsat 8 and WorldView-3) was investigated to derive nearshore bathymetry.The Republic of the Marshall Islands is associated with the United States through a Compact of Free Association, and Majuro Atoll is home to the capital city of Majuro and the largest population of the Republic of the Marshall Islands. The only elevation datasets currently available for the entire Majuro Atoll are the Shuttle Radar Topography Mission and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version 2 elevation data, which have a 30-m grid-cell spacing and a 8-m vertical root mean square error (RMSE). Both these datasets have inadequate spatial resolution and vertical accuracy for inundation modeling.The final topobathymetric DEM (TBDEM) developed for Majuro Atoll is derived from various data sources including charts, soundings, acoustic sonar, and UAS and satellite imagery spanning over 70 years of data collection (1944 to 2016) on different sections of the atoll. The RMSE of the TBDEM over the land area is 0.197 m using over 70,000 Global Navigation Satellite System real-time kinematic survey points for validation, and 1.066 m for Landsat 8 and 1.112 m for WorldView-3 derived bathymetry using over 16,000 and 9,000 lidar bathymetry points, respectively.

  10. Geophysical Mapping of the South Carolina Atlantic Offshore for Wind Energy Development

    NASA Astrophysics Data System (ADS)

    Knapp, C. C.; Brantley, D.; Battista, B.; Gayes, P. T.; Knapp, J. H.; White, S. M.

    2016-12-01

    The submerged continental margin of the southeastern United States records a geologic history of continental collision during Paleozoic time (500-300 Mya), and subsequent continental rifting and break-up with associated magmatism during early Mesozoic time (230-180 Mya). Subsequent development as a passive continental margin has resulted in accumulation of a thick sedimentary cover deposited through numerous cycles of sea level change on the margin. Themost recent phase of deposition (Pleistocene; <1.8 Ma) took place during repeated, large-scale (120 m) sea-level changes which resulted in extensive exposure and inundation of the shelf. The shallow subsurface of the near-shore environment under consideration for wind energy development requires thorough analysis of seabed bottom type, seafloor roughness and geomorphology, potential sites of cultural resources and features such as active and inactive faults, filled channels, and potential slope instabilities which would have a considerable potential impact on siting of installations for wind energy. To this end, a geophysical survey has been conducted to further refine future wind farm locations. The study is focused on the inner shelf from 18 to 26 km offshore of North Myrtle Beach, SC and a second smaller area offshore of Georgetown, SC. The collaborative effort is generating multibeam, side scan sonar, chirp sub-bottom and magnetometer data. Seafloor acoustic backscatter is derived from the same instrument acquiring the bathymetry. Bathymetry shows a radial distribution of coast-perpendicular features that transition between two coastal processes: 1) there is the sediment distribution caused by longshore currents and wave energy, and 2) there are areas related to the coastal inlets that disrupt the primary sedimentation patterns and impose patterns of terrestrial sedimentation such as those from rivers, deltas and estuaries. There are numerous systems tracts and channels acting on the seafloor over time in the region. All the data collected as part of this project will be interpreted and integrated in the same domain using Schlumberger's Petrel™ software package in order to create high resolution images including 1) seabed morphology and bathymetry, and 2) high resolution models of the subsurface structure and stratigraphy.

  11. Quantifying the Bering Strait Oceanic Fluxes and their Impacts on Sea-Ice and Water Properties in the Chukchi and Beaufort Seas and Western Arctic Ocean for 2013-2014

    DTIC Science & Technology

    2013-09-30

    Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard Space...of Arctic bathymetry aids scientists and map makers, Eos Trans., 81(9), 89, 93, 96. Weingartner, T. J., S. Danielson, Y. Sasaki, V. Pavlov , and M

  12. Verification and Validation of the Coastal Modeling System. Report 2: CMS-Wave

    DTIC Science & Technology

    2011-12-01

    Figure 44. Offshore bathymetry showing NDBC and CDIP buoy locations. ........................................ 70 Figure 45. CMS-Wave modeling domain...the four measurement stations. During the same time intervals, offshore wave information was available from a Coastal Data Information Program ( CDIP ...were conducted with a grid of 236 × 398 cells with variable cell spacing of 30 to 200 m (see Figure 28). Directional wave spectra from CDIP 036 served

  13. An Analysis of Wind Power Development in the Town of Hull, MA_Appendix 4_Geophysical Survey Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Christopher

    2013-06-30

    CR Environmental, Inc. (CR) was contracted by GZA GeoEnvironmental, Inc. (GZA) to perform hydrographic and geophysical surveys of an approximately 3.35 square mile area off the eastern shore of Hull, Massachusetts. Survey components included: • Single-beam bathymetry; • 100-kHz and 500-kHz side scan sonar; • Magnetometry; and • Low to mid-frequency sub-bottom profiling.

  14. Littoral Sediment Budget for the Mississippi Sound Barrier Islands

    DTIC Science & Technology

    2012-07-01

    Sound are driven by longshore transport processes associated with storm and normal wave and current conditions. Although beach erosion and washover...from storm impacts (Figure 1.1). Figure 1.1. High-altitude imagery of the northern Gulf of Mexico between New Orleans, LA and Pensacola, FL...increasing storm damage. A comprehensive evaluation of storm impacts requires analysis of historical shoreline and bathymetry data sets to document the

  15. Detailed scour measurements around a debris accumulation

    USGS Publications Warehouse

    Mueller, David S.; Parola, Arthur C.

    1998-01-01

    Detailed scour measurements were made at Farm-Market 2004 over the Brazos River near Lake Jackson, Tex. during flooding in October 1994. Woody debris accumulations on bents 6, 7, and 8 obstructed flow through the bridge, causing scour of the streambed. Measurements at the site included three-dimensional velocities, channel bathymetry, water-surface elevations, water-surface slope, and discharge. Channel geometry upstream from the bridge caused approach conditions to be nonuniform.

  16. Modeling Surfzone/Inner-shelf Exchange

    DTIC Science & Technology

    2013-09-30

    goal here is the use a wave-resolving Boussinesq model to figure out how to parameterize the vorticity generation due to short-crested breaking of...individual waves. The Boussinesq model funwaveC used here, developed by the PI and distributed as open-source software, has been val- idated in ONR funded...shading of bottom bathymetry, mooring locations (green squares) and the local co-ordinate system (black arrows). Positive x is directed towards the

  17. Analysis of 3-D Propagation Effects Due to Environmental Variability

    DTIC Science & Technology

    2014-09-30

    two directions over a region of the Monterey Bay Canyon. The directions coincided with data collected of humpback whale vocalizations that...FY13, various whale vocalizations were recorded on a directional sensor in Monterey Bay that displayed significant bearing ambiguity. The bathymetry...recorder at the time of the whale vocalizations being examined. 4 Figure 2: 3-D MMPE test case results for a constant slope surface over a

  18. Integrated synoptic surveys using an autonomous underwater vehicle and manned boats

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    Traditional surface-water surveys are being combined with autonomous technology to produce integrated surveys of bathymetry, water quality, and velocity in inland lakes and reservoirs. This new technology provides valuable, high-resolution, integrated data that allow a systems-based approach to understanding common environmental problems. This fact sheet presents several example applications of integrated surveys within inland lakes and coastal Lake Michigan and Lake Erie.

  19. Ray Modeling Methods for Range Dependent Ocean Environments

    DTIC Science & Technology

    1983-12-01

    the eikonal equation, gives rise to equations for ray paths which are perpendicular to the wave fronts. Equation II.4, the transport equation, leads... databases for use by MEDUSA. The author has assisted in the installation of MEDUSA at computer facilities which possess databases containing archives of...sound velocity profiles, bathymetry, and bottom loss data. At each computer site, programs convert the archival data retrieved by the database system

  20. New aerogravity and aeromagnetic anomaly data over Lomonosov Ridge and adjacent areas for bathymetric and tectonic mapping

    NASA Astrophysics Data System (ADS)

    Dossing, A.; Olesen, A. V.; Forsberg, R.

    2010-12-01

    Results of an 800 x 800 km aero-gravity and aeromagnetic survey (LOMGRAV) of the southern Lomonosov Ridge and surrounding area are presented. The survey was acquired by the Danish National Space Center, DTU in cooperation with National Resources Canada in spring 2009 as a net of ~NE-SW flight lines spaced 8-10 km apart. Nominal flight level was 2000 ft. We have compiled a detailed 2.5x2.5 km gravity anomaly grid based on the LOMGRAV data and existing data from the southern Arctic Ocean (NRL98/99) and the North Greenland continental margin (KMS98/99). The gravity grid reveals detailed, elongated high-low anomaly patterns over the Lomonosov Ridge which is interpreted as the presence of narrow ridges and subbasins. Distinct local topography is also interpreted over the southernmost part of the Lomonosov Ridge where existing bathymetry compilations suggest a smooth topography due to the lack of data. A new bathymetry model is presented for the region predicted by formalized inversion of the available gravity data. Finally, a detailed magnetic anomaly grid has been compiled from the LOMGRAV data and existing NRL98/99 and PMAP data. New tectonic features are revealed, particularly in the Amerasia Basin, compared with existing magnetic anomaly data from the region.

  1. Preliminary bathymetry of Blackstone Bay and Neoglacial changes of Blackstone Glaciers, Alaska

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    Preliminary bathymetry (at 1:20,000 scale) and scientific studies of Blackstone Bay Alaska, by the Research Vessel Growler in 1978 disclose that the head of the bay consists of two basins separated by Willard Island and a submarine ridge. Both basins are closed on the north by terminal-moraine bars where Blackstone Glacier and its tributaries terminated as recently as about A.D. 1350; a carbon-14 date of 580 years before present on Badger Point, and old trees farther up the bay, disclose that the glaciers retreated to two narrow inlets at the head of the bay before 1400. The inlets were still glacier-covered until at least 1909. Glaciers in both inlets have continued to retreat; at present they terminate at the head of tidewater, where they discharge small icebergs. Only relatively thin sediments have accumulated in the eastern basin south of the terminal-moraine bar, and most of the bottom is hard and irregular as disclosed by soundings and profiles. The northern part of Blackstone Bay is very deep; at more than 1,100 feet below sea level a large, level accumulation of sediment is present which is presumably as much as 1,000 feet deep and has been accumulating since late Pleistocene glaciers retreated. (USGS)

  2. The effect of bathymetric filtering on nearshore process model results

    USGS Publications Warehouse

    Plant, N.G.; Edwards, K.L.; Kaihatu, J.M.; Veeramony, J.; Hsu, L.; Holland, K.T.

    2009-01-01

    Nearshore wave and flow model results are shown to exhibit a strong sensitivity to the resolution of the input bathymetry. In this analysis, bathymetric resolution was varied by applying smoothing filters to high-resolution survey data to produce a number of bathymetric grid surfaces. We demonstrate that the sensitivity of model-predicted wave height and flow to variations in bathymetric resolution had different characteristics. Wave height predictions were most sensitive to resolution of cross-shore variability associated with the structure of nearshore sandbars. Flow predictions were most sensitive to the resolution of intermediate scale alongshore variability associated with the prominent sandbar rhythmicity. Flow sensitivity increased in cases where a sandbar was closer to shore and shallower. Perhaps the most surprising implication of these results is that the interpolation and smoothing of bathymetric data could be optimized differently for the wave and flow models. We show that errors between observed and modeled flow and wave heights are well predicted by comparing model simulation results using progressively filtered bathymetry to results from the highest resolution simulation. The damage done by over smoothing or inadequate sampling can therefore be estimated using model simulations. We conclude that the ability to quantify prediction errors will be useful for supporting future data assimilation efforts that require this information.

  3. Recent Advances in Bathymetric Surveying of Continental Shelf Regions Using Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Holland, K. T.; Calantoni, J.; Slocum, D.

    2016-02-01

    Obtaining bathymetric observations within the continental shelf in areas closer to the shore is often time consuming and dangerous, especially when uncharted shoals and rocks present safety concerns to survey ships and launches. However, surveys in these regions are critically important to numerical simulation of oceanographic processes, as bathymetry serves as the bottom boundary condition in operational forecasting models. We will present recent progress in bathymetric surveying using both traditional vessels retrofitted for autonomous operations and relatively inexpensive, small team deployable, Autonomous Underwater Vehicles (AUV). Both systems include either high-resolution multibeam echo sounders or interferometric sidescan sonar sensors with integrated inertial navigation system capabilities consistent with present commercial-grade survey operations. The advantages and limitations of these two configurations employing both unmanned and autonomous strategies are compared using results from several recent survey operations. We will demonstrate how sensor data collected from unmanned platforms can augment or even replace traditional data collection technologies. Oceanographic observations (e.g., sound speed, temperature and currents) collected simultaneously with bathymetry using autonomous technologies provide additional opportunities for advanced data assimilation in numerical forecasts. Discussion focuses on our vision for unmanned and autonomous systems working in conjunction with manned or in-situ systems to optimally and simultaneously collect data in environmentally hostile or difficult to reach areas.

  4. Probing Small Lakes on Titan Using the Cassini RADAR Altimeter

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, M.; Poggiali, V.; Hayes, A.; Lunine, J. I.; Seu, R.; Lorenz, R. D.; Mitri, G.; Mitchell, K. L.; Janssen, M. A.; Casarano, D.; Notarnicola, C.; Le Gall, A. A.

    2017-12-01

    The T126 Cassini's final flyby of Titan has offered a unique opportunity to observe an area in the Northern Polar terrain, where several small - medium size (10 - 50 km) hydrocarbon lakes are present and have been previously imaged by Cassini. The successful observation allowed the radar to operate at the closest approach over several small lakes, using its altimetry mode for the investigation of depth and liquid composition. Herein we present the result of a dedicate processing previously applied to altimetric data acquired over Ligeia Mare where the radar revealed the bathymetry and composition of the sea [1,2]. We show that, the optimal geometry condition met during the T126 fly-by allowed the radar to probe Titan's lakes revealing that such small liquid bodies can exceed one-hundred meters of depth. [1] M. Mastrogiuseppe et al. (2014, Mar.). The bathymetry of a Titan Sea. Geophysical Research Letters. [Online]. 41 (5), pp. 1432-1437. Available: http://dx.doi.org/10.1002/2013GL058618 [2] M.Mastrogiuseppe et al. (2016, Oct). Radar Sounding Using the Cassini Altimeter: Waveform Modeling and Monte Carlo Approach for Data Inversion of Observations of Titan's Seas, IEEE Transactions On Geoscience And Remote Sensing, Vol. 54, No. 10, doi: 10.1109/TGRS.2016.2563426.

  5. Novel Measurements and Techniques for Outlet Glacier Fjord Ice/Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Behar, A.; Howat, I. M.; Holland, D. M.; Ahlstrom, A. P.; Larsen, S. H.

    2014-12-01

    Glacier fjord bathymetry and conditions indicate that they play fundamental roles for outlet glacier dynamics and thus knowledge of these parameters is extremely beneficial to upcoming models that predict changes. In particular, the bathymetry of a fjord gives important information about the exchange between fjord waters close to marine-terminating glaciers and the shelf and ocean. Currently, only sparse bathymetric data near the ice fronts are available for the majority of fjords in Greenland. The challenge in obtaining these measurements is that the fjord melange environment is a terrible one for mechanical gear, or ship or any other kind of access. There is hope however, and this work focuses on novel ways of obtaining this data using a multitude of upcoming technologies and techniques that are now being tested and planned. The span of the techniques described include but are not limited to: 1) manned helicopter-based live-reading instruments and deployable/retriavable sensor packages http://www.motionterra.com/fjord/ 2) remote or autonomous unmanned miniature boats (Depth/CTD), and 3) UAV's that either read live data or deploy small sensors that can telemeter their data (ice-flow trackers, image acquisition, etc.). A review of current results obtained at Jakobshavn and Upernavik Glaciers will be given as well as a description of the techniques and hardware used.

  6. LLWBCS changes through surface mesoscale activity and baroclinic tides in the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Gourdeau, L.; Djath, B.; Ganachaud, A. S.; Tchilibou, M. L.; Verron, J. A.; Jouanno, J.

    2016-02-01

    In the south west Pacific, the Solomon Sea is on the pathway of the Low Latitudes Western Boundary Currents that connect the subtropics to the equator. Changes in their strengths, or in their water mass properties may have implication for ENSO and its low frequency modulation. During their transit in the Solomon Sea, the salinity maximum at thermocline level, characteristic of the South Pacific Tropical Waters (SPTW), is largely eroded. Different mechanisms could explain such salt erosion whose current/bathymetry interaction, internal tides, eddy activity. The Solomon Sea is an area of high level of eddy kinetic energy (EKE), especially in the surface layers, and its complex bathymetry is favourable for generation and dissipation of internal tides. Based on high resolution modelling, glider, and altimetric data mesoscale eddies observed at the surface are analysed in their 4D aspects. Their role on water mass transformation is explored. These eddies may affect the surface layers (σ<23.3) and the upper thermocline waters (23.3< σ <24.3), but they cannot explained the erosion of the salinity maximum below. Simulations with and without explicit tides provide a description of baroclinic tides in the Solomon Sea. Their role on water mixing is evaluated, especially for the SPTW.

  7. Application of the marine Ex-Bz transient system for delineating near shore resistive targets

    NASA Astrophysics Data System (ADS)

    Levi, Eldad; Goldman, Mark

    2017-09-01

    Under certain conditions, multidimensional coastal effect significantly enhances relative target response of the broadside transient marine Ex-Bz system. The effect is caused by a redistribution of the induced currents between the resistive target and the sea bottom compared to that existing in a 1-D geometry. As a result, the effect strongly depends on specific geoelectric conditions in the near-shore environment. The first study of the effect in the Mediterranean coast of central Israel was addressing shallow groundwater problem under specific geoelectric, hydrogeological and geomorphological conditions. Under different conditions (e.g. deep targets and sharp near-shore bathymetry), the influence of the effect on target response might be significantly different. More general analysis carried out in this study comprises various geoelectric scenarios that include both shallow and deep resistive targets at different distances from the shore line as well as various geometries of the target and the near-shore bathymetry. The study includes three major exploration aspects of the system, namely signal detectability, lateral and vertical resolution. Taking into account poor lateral resolution of the classical frequency domain CSEM and the limited application in shallow sea, the described broadside transient Ex-Bz system might represent a desired alternative for delineating shallow and deep resistive targets in transition zone.

  8. Setting the scene for SWOT: global maps of river reach hydrodynamic variables

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Durand, Michael; Pavelsky, Tamlin; Lion, Christine; Allen, George

    2017-04-01

    Credible and reliable characterization of discharge from the Surface Water and Ocean Topography (SWOT) mission using the Manning-based algorithms needs a prior estimate constraining reach-scale channel roughness, base flow and river bathymetry. For some places, any one of those variables may exist locally or even regionally as a measurement, which is often only at a station, or sometimes as a basin-wide model estimate. However, to date none of those exist at the scale required for SWOT and thus need to be mapped at a continental scale. The prior estimates will be employed for producing initial discharge estimates, which will be used as starting-guesses for the various Manning-based algorithms, to be refined using the SWOT measurements themselves. A multitude of reach-scale variables were derived, including Landsat-based width, SRTM slope and accumulation area. As a possible starting point for building the prior database of low flow, river bathymetry and channel roughness estimates, we employed a variety of sources, including data from all GRDC records, simulations from the long-time runs of the global water balance model (WBM), and reach-based calculations from hydraulic geometry relationships as well as Manning's equation. Here, we present the first global maps of this prior database with some initial validation, caveats and prospective uses.

  9. Sea-floor geology and character offshore of Rocky Point, New York

    USGS Publications Warehouse

    Poppe, L.J.; McMullen, K.Y.; Ackerman, S.D.; Blackwood, D.S.; Irwin, B.J.; Schaer, J.D.; Lewit, P.G.; Doran, E.F.

    2010-01-01

    The U.S. Geological Survey (USGS), the Connecticut Department of Environmental Protection, and the National Oceanic and Atmospheric Administration (NOAA) have been working cooperatively to interpret surficial sea-floor geology along the coast of the Northeastern United States. NOAA survey H11445 in eastern Long Island Sound, offshore of Plum Island, New York, covers an area of about 12 square kilometers. Multibeam bathymetry and sidescan-sonar imagery from the survey, as well as sediment and photographic data from 13 stations occupied during a USGS verification cruise are used to delineate sea-floor features and characterize the environment. Bathymetry gradually deepens offshore to over 100 meters in a depression in the northwest part of the study area and reaches 60 meters in Plum Gut, a channel between Plum Island and Orient Point. Sand waves are present on a shoal north of Plum Island and in several smaller areas around the basin. Sand-wave asymmetry indicates that counter-clockwise net sediment transport maintains the shoal. Sand is prevalent where there is low backscatter in the sidescan-sonar imagery. Gravel and boulder areas are submerged lag deposits produced from the Harbor Hill-Orient Point-Fishers Island moraine segment and are found adjacent to the shorelines and just north of Plum Island, where high backscatter is present in the sidescan-sonar imagery.

  10. Different responses of chlorophyll-a concentration and Sea Surface Temperature (SST) on southeasterly wind blowing in the Sunda Strait

    NASA Astrophysics Data System (ADS)

    Wirasatriya, A.; Kunarso; Maslukah, L.; Satriadi, A.; Armanto, R. D.

    2018-03-01

    During southeast monsoon, along the western coast of Sumatra Island and southern coast of Java Island are known as the coastal upwelling areas denoted by the occurrence of Sea Surface Temperature (SST) cooling and chlorophyll-a blooming. Located between Sumatra and Java Islands, Sunda Strait waters may give different response to the southeasterly wind blowing above. Using SST and chlorophyll-a data obtained from daily MODIS level 3 during 2006–2016, this study demonstrated the evidence on how bathymetry and topography modified the effect of southeasterly wind on the spatial variability of SST and chlorophyll-a. All datasets were composed into monthly and monthly climatology. The area in the center of Sunda Strait had the lowest chlorophyll-a concentration and the warmest SST during the peak of upwelling season. The deep bottom topography and the absence of barrier land prevented the generation of wind driven coastal upwelling. However, the chlorophyll-a concentration in this area had the highest correlation with the wind speed which means that the variation of chlorophyll-a concentration in this area was highly depended on the variability of wind. On the other hand, the areas with shallow bathymetry and in front of Panaitan and Java Islands had higher chlorophyll-a concentration and cooler SSTs.

  11. SeaDataNet II - EMODNet - building a pan-European infrastructure for marine and ocean data management

    NASA Astrophysics Data System (ADS)

    Schaap, Dick M. A.; Fichaut, Michele

    2014-05-01

    The second phase of the project SeaDataNet is well underway since October 2011 and is making good progress. The main objective is to improve operations and to progress towards an efficient data management infrastructure able to handle the diversity and large volume of data collected via research cruises and monitoring activities in European marine waters and global oceans. The SeaDataNet infrastructure comprises a network of interconnected data centres and a central SeaDataNet portal. The portal provides users a unified and transparent overview of the metadata and controlled access to the large collections of data sets, managed by the interconnected data centres, and the various SeaDataNet standards and tools,. Recently the 1st Innovation Cycle has been completed, including upgrading of the CDI Data Discovery and Access service to ISO 19139 and making it fully INSPIRE compliant. The extensive SeaDataNet Vocabularies have been upgraded too and implemented for all SeaDataNet European metadata directories. SeaDataNet is setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards of ISO (19115, 19139), OGC (WMS, WFS, CS-W and SWE), and OpenSearch. The population of directories has also increased considerably in cooperation and involvement in associated EU projects and initiatives. SeaDataNet now gives overview and access to more than 1.4 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 90 connected data centres from 30 countries riparian to European seas. Access to marine data is also a key issue for the implementation of the EU Marine Strategy Framework Directive (MSFD). The EU communication 'Marine Knowledge 2020' underpins the importance of data availability and harmonising access to marine data from different sources. SeaDataNet qualified itself for leading the data management component of the EMODNet (European Marine Observation and Data Network) that is promoted in the EU Communication. In the past 4 years EMODNet portals have been initiated for marine data themes: digital bathymetry, chemistry, physical oceanography, geology, biology, and seabed habitat mapping. These portals are now being expanded to all European seas in successor projects, which started mid 2013 from EU DG MARE. EMODNet encourages more data providers to come forward for data sharing and participating in the process of making complete overviews and homogeneous data products. The EMODNet Bathymetry project is very illustrative for the synergy with SeaDataNet and added value of generating public data products. The project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets. The portal provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. A further refinement is taking place in the new phase. The presentation will give information on present services of the SeaDataNet infrastructure and services, highlight key achievements in SeaDataNet II so far, and give further insights in the EMODNet Bathymetry progress.

  12. X-Band wave radar system for monitoring and risk management of the coastal infrastructures

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco

    2017-04-01

    The presence of the infrastructures in coastal region entails an increase of the sea level and the shift of the sediment on the bottom with a continuous change of the coastline. In order to preserve the coastline, it has been necessary to resort the use of applications coastal engineering, as the construction of the breakwaters for preventing the coastal erosion. In this frame, the knowledge of the sea state parameters, as wavelength, period and significant wave height and of surface current and bathymetry can be used for the harbor operations and to prevent environmental disasters. In the last years, the study of the coastal phenomena and monitoring of the sea waves impact on the coastal infrastructures through the analysis of images acquired by marine X-band radars is of great interest [1-3]. The possibility to observe the sea surface from radar images is due to the fact that the X-band electromagnetic waves interact with the sea capillary waves (Bragg resonance), which ride on the gravity waves. However, the image acquired by a X-band radar is not the direct representation of the sea state, but it represents the sea surface as seen by the radar. Accordingly, to estimate the sea state parameters as, direction, wavelength, period of dominant waves, the significant wave height as well as the bathymetry and surface current, through a time stack of radar data are required advanced data processing procedures. In particular, in the coastal areas due to the non-uniformity of sea surface current and bathymetry fields is necessary a local analysis of the sea state parameters. In order to analyze the data acquired in coastal area an inversion procedure defined "Local Method" is adopted, which is based on the spatial partitioning of the investigated area in partially overlapping sub-areas. In addition, the analysis of the sea spectrum of each sub-area allows us to retrieve the local sea state parameters. In particular, this local analysis allows us to detect the reflected waves from the coastal infrastructures, e.g. from the harbor jetties. In fact, the reflected waves may significantly complicate the harbour activities (e.g., berthing operations), as they interfere with the oncoming waves thus creating a confused sea [2]. References [1] G. Ludeno, C. Brandini, C. Lugni, D. Arturi, A. Natale, F. Soldovieri, B. Gozzini, F. Serafino, "Remocean System for the Detection of the Reflected Waves from the Costa Concordia Ship Wreck", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.7, no.3, pp.3011-3018, July 2014. [2] G. Ludeno, F. Reale, F. Dentale, E. Pugliese Carratelli, A. Natale, F. Soldovieri, F. Serafino "An X-Band Radar System for Bathymetry and Wave Field Analysis in Harbor Area", Sensors, Vol.15, no.1, pp. 1691-1707, January 2015. [3] F. Raffa, G. Ludeno, B. Patti, F. Soldovieri, S. Mazzola, and F. Serafino, "X-band wave radar for coastal upwelling detection off the southern coast of Sicily.", Journal of Atmospheric and Oceanic Technology, January 2017, Vol. 34, No. 1, Published online on 22 Dec 2016.

  13. Multi-Temporal Analysis of Landsat Imagery for Bathymetry.

    DTIC Science & Technology

    1983-05-01

    this data set, typical results obtained when these data were used to implement proposed procedures, an interpretation of these analyses, and based...warping, etc.) have been carried out * as described in section 3.4 and the DIPS operator manuals . For each date * the best available parameter...1982. 5. Digital Image Processing System User’s Manual DBA Systems, Inc., Under Contract DMA800-78-C-0101, 8 November 1979. 6. Naylor, L.D. Status of

  14. High Pass Filtering of Satellite Altimeter Data,

    DTIC Science & Technology

    1982-10-01

    bathymetry [7] and filtered data tracks (N = 3, X = 200 km) near the Clipperton Fracture Zone just East of the Christmas Island Ridge. Along the multiple...We also notice a negative signature associated with the Clipperton Fracture Zone and extending over all the tracks. It may indicate a trough covered...in Mid-Pacific Seamount Province..Mid-Iat tic and near the Western Clipperton Fracture Zone respectively. These charts arc to he overlaid by Figures

  15. Measurement and Mapping of Riverine Environments by Optical Remote Sensing

    DTIC Science & Technology

    2011-09-30

    proceeded to the publication stage, including a two-part paper describing our work on spectrally-based bathymetric mapping of the Platte River in...copies of these papers are available from the Principal Investigator upon request. For the purposes of this annual report, we emphasize our recently...we receive the actual data, we will use these images to evaluate the feasibility of retrieving, from space , information on the bathymetry, bottom type

  16. Design Analysis of a Space Based Chromotomographic Hyperspectral Imaging Experiment

    DTIC Science & Technology

    2010-03-01

    Tilt Platforms S-340 Platform Recommended Models Mirror Aluminum Aluminum S-340.Ax Invar Zerodur glass S-340.ix Titanium BK7 glass S-340.Tx Steel S-340...composed of a telescope, two grating spectrometers, calibration lamps, and focal plane electronics and cooling system. The telescope is a three mirror ...advanced hyperspectral imager for coastal bathymetry is that the experiment will closely mirror that of the proposed space-based chromotomographic hy

  17. Determining Heterogeneous Bottom Friction Distributions using a Numerical Wave Model

    DTIC Science & Technology

    2007-08-11

    dissipation in this study. For a bathymetry inversion, how- ever, we would expect E to be more concentrated because of Easting Meters the local efTect of...numerical wave model, bottom dissipation , data assimilation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE...obviously, dissipation of wave energy as waves addition to its use in improving wave forecasting, assimi- propagate) as demonstrated in recent work

  18. Finite Element Barotropic Model for the Indian and Western Pacific OceanBasin: Tidal Model Data Comparisons and Sensitivities

    DTIC Science & Technology

    2018-01-11

    From - To) 01/11/2018 Final Technical Report June 01 2016 - Dec 30 2017 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Finite - Element Barotropic Model...grid finite - element barotropic fully hydrodynamic model in order to understand the shallow-water dynamics of the Indian Ocean and Western Pacific Ocean...dissipative dissipative processes are explored. 15. SUBJECTTERMS finite - element , unstructured grid, barotropic tides, bathymetry, internal tide

  19. Continental shelf GIS for the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Wong, F.L.; Eittreim, S.L.

    2002-01-01

    A marine sanctuary is an environment where the interests of science and society meet. Land and marine managers need access to the best scientific data available that describe the environment and environmental processes in sanctuaries. The sidescan sonar imagery, bathymetry, sample analyses and other data discussed in the papers in this volume have been made available as a U.S. Geological Survey CDROM publication. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Buried Underwater Munitions and Clutter Discrimination

    DTIC Science & Technology

    2010-10-01

    closest point of approach of the cylinder. The k space amplitude beam pattern, sin Δ( ) Δ , in Stanton’s treatment is obtained from the Fourier ...simple modifications to be useful here. First, the amplitude of the incident plane wave P0 should be replaced by P1r0/r, where P1 is the magnitude of...Instrument Source Information Site Selec- tion MACC Phase I Input Location Resolution Age Bathymetry SEA Ltd. SWATHPlus McNinch

  1. Coastal Bathymetry Using 8-Color Multispectral Satellite Observation of Wave Motion

    DTIC Science & Technology

    2010-09-01

    Wave Motion 6. AUTHOR(S) Bradley L. McCarthy 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School...Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A 10. SPONSORING...MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official

  2. Estimating Tsunami Runup with Fault Plane Parameters

    NASA Astrophysics Data System (ADS)

    Sepulveda, I.; Liu, P. L. F.

    2016-12-01

    The forecasting of tsunami runup has often been done by solving numerical models. The execution times, however, make them unsuitable for the purpose of warning. We offer an alternative method that provides analytical relationship between the runup height, the fault plane parameters and the characteristic of coastal bathymetry. The method uses the model of Okada (1985) to estimate the coseismic deformation and the corresponding sea surface displacement (η(x,0)). Once the tsunami waves are generated, Carrier & Greenspan (1958) solution (C&G) is adopted to yield analytical expressions for the shoreline elevation and velocity. Two types of problems are investigated. In the first, the bathymetry is modeled as a constant slope that is connected to a constant depth region, where a seismic event occurs. This is a boundary value problem (BVP). In the second, the bathymetry is further simplified as a constant slope, on which a seismic event occurs. This is an initial value problem (IVP). Both problems are depicted in Figure 1. We derive runup solutions in terms of the fault parameters. The earthquake is associated with vertical coseismic seafloor displacements by using Okada's elastic model. In addition to the simplifications considered in Okada's model, we further assume (1) a strike parallel to the shoreline, (2) a very long rupture area and (3) a fast earthquake so surface elevation mimics the seafloor displacements. Then the tsunami origin is modeled in terms of the fault depth (d), fault width (W), fault slip (s) and dip angle (δ). We describe the solution for the BVP. Madsen & Schaeffer (2010) utilized C&G to derive solutions for the shoreline elevation of sinusoidal waves imposed in the offshore boundary. A linear superposition of this solution represents any arbitrary incident wave. Furthermore, we can prescribe the boundary condition at the toe of sloping beach by adopting the linear shallow wave equations in the constant depth area. By means of a dimensional analysis, the runup R is determined by Eq.1. Kanoglu (2004) derived a non-dimensional expression for long wave runup originated over a sloping beach. In our work we determine an analytical expression for a sinusoidal initial condition. Following the same procedure as the BVP, the expression for the runup R in the IVP is given by Eq.2. The curves F1 and F2 are plotted in Figure 2.

  3. Bed topography of Jakobshavn Isbræ, Greenland from high-resolution gravity data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E. J.; Morlighem, M.; Paden, J. D.; Holland, D. M.

    2015-12-01

    Jakobshavn Isbræ (JKS) is one of the largest marine terminating outlet glaciers in Greenland, feeding a fjord about 800 m deep in the west coast. JKS sped up more than twofold since 2002 and contributed nearly 1 mm of global sea level rise during the period from 2000 to 2011. Holland et al. (2008) posit that these changes coincided with a change in ocean conditions beneath the former ice tongue, yet little is known about the depth of the glacier at its grounding line and upstream of the grounding line and the sea floor depth of the fjord is not well known either. Here, we present a new approach to infer the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line of JKS using high-resolution airborne gravity data from AirGRAV. AirGRAV data were collected in August 2012 from a helicopter platform. The data combined with radio echo sounding data, discrete point soundings in the fjord and the mass conservation approach on land ice. AirGRAV acquired a 500m spacing grid of free-air gravity data at 50 knots with sub-milligal accuracy, i.e. much higher than NASA Operation IceBridge (OIB)'s 5.2km resolution at 290 knots. We use a 3D inversion of the gravity data combining our observations and a forward modeling of the surrounding gravity field, and constrained at the boundary by radar echo soundings and point bathymetry. We reconstruct seamless bed topography at the grounding line that matches interior data and the sea floor bathymetry. The results reveal the true depth at the elbow of the terminal valley and the bed reversal in the proximity of the current grounding line. The analysis provides guidelines for future gravity survey of narrow fjords in terms of spatial resolution and gravity precision. The results also demonstrate the practicality of using high resolution gravity survey to resolve bed topography near glacier snouts, in places where radar sounding has been significantly challenged in the past. The inversion results are critical to re-interpret the recent evolution of JKS and reduce uncertainties in projecting its future contribution to sea level. This work was conducted at UCI and at Caltech's Jet Propulsion Laboratory under a contract with the Gordon and Betty More Foundation and with NASA's Cryospheric Science Program.

  4. Seafloor Displacement after the 2011 Tohoku-oki Earthquake in the Northern Japan Trench Examined by Repeated Bathymetric Surveys

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; dos Santos Ferreira, C.; Bachmann, A. K.; Strasser, M.; Wefer, G.; Sun, T.; Kanamatsu, T.; Kodaira, S.

    2017-12-01

    Maximum tsunami height caused by the 11 March 2011 Tohoku-oki earthquake was observed at the coast of Sanriku, the northern Tohoku, Japan [The 2011 Tohoku Earthquake Tsunami Joint Survey Group, 2011]. In order to explain the tsunami source, some papers have introduced additional large slip of the megathrust up to 36 m in the shallow part near the northern Japan Trench [e.g. Satake et al., BSSA 2013]. Alternatively, others preferred to put a large change in seafloor elevation, 90 m uplift and down-drop, associated with a submarine landslide along the lower trench slope [e.g. Tappin et al., Marine Geol. 2014]. We conducted repeated multibeam bathymetric surveys offshore Sanriku in 2016 and also 2012. We examined seafloor displacement for tsunami source by means of the difference in bathymetry before and after the earthquake. Acquired two bathymetric survey tracks are crossing the trench at 39.2°N and 39.5°N. These tracks overlap the Satake et al. [2013]'s slip area and also the Tappin et al. [2014]'s landslide area. The German research vessel Sonne performed the surveys along the same tracks (SO219A, SO251A cruises). Previous survey tracks had been obtained by the JAMSTEC R/V Kairei in 2007 and 2010 (KR07-08, KR10-12 cruises). Horizontal and vertical seafloor displacements were estimated by comparison of the bathymetry before and after the earthquake. Apparent offsets of the absolute values of depth soundings and the uncertainty of ship position were examined on the seaward side because the seaward was thought to have suffered little change from the earthquake. The horizontal displacement was estimated by calculating the offset distance to maximize cross-correlation of the bathymetry dataset. The seafloor displacements were less than 20 m in trenchward horizontal displacement and several meters in vertical displacement, these values are within the ranges of error of the analysis, and relatively small displacements are evaluated. Thus localized very large fault slip or very large submarine landslide is unlikely at least on the two survey tracks. However, there are coherent relative differences in the seafloor elevation on the landward trench slopes along the trench axis, which suggests a qualitative interpretation that the outermost lower slope was uplifted and the middle slope and the mid-slope terrace subsided.

  5. GeoMapApp as a platform for visualizing marine data from Polar Regions

    NASA Astrophysics Data System (ADS)

    Nitsche, F. O.; Ryan, W. B.; Carbotte, S. M.; Ferrini, V.; Goodwillie, A. M.; O'hara, S. H.; Weissel, R.; McLain, K.; Chinhong, C.; Arko, R. A.; Chan, S.; Morton, J. J.; Pomeroy, D.

    2012-12-01

    To maximize the investment in expensive fieldwork the resulting data should be re-used as much as possible. In addition, unnecessary duplication of data collection effort should be avoided. This becomes even more important if access to field areas is as difficult and expensive as it is in Polar Regions. Making existing data discoverable in an easy to use platform is key to improve re-use and avoid duplication. A common obstacle is that use of existing data is often limited to specialists who know of the data existence and also have the right tools to view and analyze these data. GeoMapApp is a free, interactive, map based tool that allows users to discover, visualize, and analyze a large number of data sets. In addition to a global view, it provides polar map projections for displaying data in Arctic and Antarctic areas. Data that have currently been added to the system include Arctic swath bathymetry data collected from the USCG icebreaker Healy. These data are collected almost continuously including from cruises where bathymetry is not the main objective and for which existence of the acquired data may not be well known. In contrast, existence of seismic data from the Antarctic continental margin is well known in the seismic community. They are archived at and can be accessed through the Antarctic Seismic Data Library System (SDLS). Incorporating these data into GeoMapApp makes an even broader community aware of these data and the custom interface, which includes capabilities to visualize and explore these data, allows users without specific software or knowledge of the underlying data format to access the data. In addition to investigating these datasets, GeoMapApp provides links to the actual data sources to allow specialists the opportunity to re-use the original data. Important identification of data sources and data references are achieved on different levels. For access to the actual Antarctic seismic data GeoMapApp links to the SDLS site, where users have to register before downloading the data and where they are informed about data owners. For the swath bathymetry data GeoMapApp links to an IEDA/MGDS web page for each cruise containing detailed information about investigators and surveys.

  6. Composition, seasonal change and bathymetry of Ligeia Mare, Titan, derived from its 2.2-cm thermal emission

    NASA Astrophysics Data System (ADS)

    Le Gall, A. A.; Malaska, M.; Lorenz, R. D.; Janssen, M. A.; Tokano, T.; Hayes, A.; Lunine, J. I.; Veyssière, G.; Mastrogiuseppe, M.; Karatekin, O.; Encrenaz, P.

    2015-12-01

    For the last 10 years, the Cassini RADAR has been exploring Saturn's moon Titan, the only planetary body besides Earth whose surface presently exhibits significant accumulations of liquids in the forms of lakes and seas. In particular, the passive Radiometer that is incorporated in this instrument has been recording the 2.2 cm-wavelength thermal emission from Titan's three seas. Radiometry observations provide new information beyond the active radar reflection data. In this paper, we analyze the radiometry observations collected from Feb. 2007 to July 2013 over one of these seas, Ligeia Mare, with the goal of providing constrains on its liquid composition, seafloor nature, bathymetry, and dynamics. In light of the two-layer model we have developed for this analysis, we find that the dielectric constant of the sea liquid is most likely smaller than 1.8, suggesting that the composition of Ligeia Mare is dominated by liquid methane rather than liquid ethane (although a ternary methane-ethane-nitrogen mixture cannot be ruled out). This result is further supported by the value we infer for the liquid loss tangent of 3-5×10-5. This value is in agreement with the one first published by Mastrogiuseppe et al. (2014) based on active radar observation. A high methane concentration suggests that Ligeia Mare is either a sea from which ethane has been removed by crustal interaction, or a sea primarely fed by methane-rich precipitation, or both. For the seafloor, a dielectric constant of 2.6-2.9±0.9 is determined. Though this result is not very constraining, we favor a scenario where the floor of Ligeia Mare is covered by a sludge of compacted and possibly nitrile-rich organic material formed by the deposition of photochemical haze or by rain-washing of the nearby shores. These results are then used to convert the radiometry mosaic of Ligeia Mare into a qualitative low-resolution bathymetry map. Lastly, we establish limits on the physical temperature variation of the sea between Feb. 2007 to July 2013, namely less than 2 K, providing a constraint on the relative amounts of solar heating and evaporative cooling currently being explored in ocean circulation models.

  7. Repeated surveys by acoustic Doppler current profiler for flow and sediment dynamics in a tidal river

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment concentration. Spatial analyses of ADCP data showed that a strategy of repeated surveys and flow-field interpolation has the potential to simplify computation of flow and sediment discharge through complex waterways. The use of trade, product, industry, or firm names in this report is for descriptive purposes only and does not constitute endorsement of products by the US Government. ?? 2005 Elsevier B.V. All rights reserved.

  8. Archive of bathymetry and backscatter data collected in 2014 nearshore Breton and Gosier Islands, Breton National Wildlife Refuge, Louisiana

    USGS Publications Warehouse

    DeWitt, Nancy T.; Fredericks, Jake J.; Flocks, James G.; Miselis, Jennifer L.; Locker, Stanley D.; Kindinger, Jack G.; Bernier, Julie C.; Kelso, Kyle W.; Reynolds, Billy J.; Wiese, Dana S.; Browning, Trevor

    2016-08-01

    As part of the Barrier Island Monitoring Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off Breton and Gosier Islands, Louisiana, in July and August of 2014. To assist the United States Fish and Wildlife Service (USFWS) with restoration planning efforts, the USGS was tasked with answering fundamental questions about the physical environment of the southern Chandeleur Islands, including the geology, morphology, and oceanography. Baseline data needed to answer these questions were either insufficient or missing. The USGS conducted a comprehensive geologic investigation in the summer of 2014, collecting geophysical and sedimentological data.Breton Island, located at the southern end of the Chandeleur Island chain in southeastern Louisiana, was recognized as a natural, globally significant nesting sanctuary for several bird species and was established as the Breton National Wildlife Refuge (NWR) in 1904. The areal extent of Breton Island has diminished 90 percent since 1920. Land loss is attributed to ongoing relative sea-level rise, diminished sediment supply, and storm impacts. The bird population on Breton Island has also declined over the years, most notably after Hurricane George in 1998 and after Hurricane Katrina in 2015; the latter completely submerged the island. Despite decreasing habitable acreage, migratory seabirds continue to return and nest on Breton Island. To prevent the island from being submerged in the future, and to protect, stabilize, and provide more nesting and foraging areas for the bird population, the USFWS proposed a restoration effort to rebuild Breton Island to its pre-Katrina footprint.This data series serves as an archive of processed interferometric swath and single-beam bathymetry data, and side-scan sonar data, collected in the nearshore of Breton and Gosier Islands, NWR, Louisiana. The data were collected during two USGS cruises (USGS Field Activity Numbers 2014-314-FA and 2014-317-FA) in July and August 2014. Geographic information system data products include a 100-meter-cell-size interpolated bathymetry grid, trackline maps, and point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.NOTE: These data are scientific in nature and are not to be used for navigation. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  9. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude magnetic anomalies, and deep bathymetry. The West Antarctic side displays high amplitude magnetic anomalies, lower densities and shallower water depths. The geologically-controlled bathymetry influences the access of water masses capable of basal melting into the ice shelf cavity with the deep troughs on the East Antarctic side facilitating melting.

  10. Exploring SWOT discharge algorithm accuracy on the Sacramento River

    NASA Astrophysics Data System (ADS)

    Durand, M. T.; Yoon, Y.; Rodriguez, E.; Minear, J. T.; Andreadis, K.; Pavelsky, T. M.; Alsdorf, D. E.; Smith, L. C.; Bales, J. D.

    2012-12-01

    Scheduled for launch in 2019, the Surface Water and Ocean Topography (SWOT) satellite mission will utilize a Ka-band radar interferometer to measure river heights, widths, and slopes, globally, as well as characterize storage change in lakes and ocean surface dynamics with a spatial resolution ranging from 10 - 70 m, with temporal revisits on the order of a week. A discharge algorithm has been formulated to solve the inverse problem of characterizing river bathymetry and the roughness coefficient from SWOT observations. The algorithm uses a Bayesian Markov Chain estimation approach, treats rivers as sets of interconnected reaches (typically 5 km - 10 km in length), and produces best estimates of river bathymetry, roughness coefficient, and discharge, given SWOT observables. AirSWOT (the airborne version of SWOT) consists of a radar interferometer similar to SWOT, but mounted aboard an aircraft. AirSWOT spatial resolution will range from 1 - 35 m. In early 2013, AirSWOT will perform several flights over the Sacramento River, capturing river height, width, and slope at several different flow conditions. The Sacramento River presents an excellent target given that the river includes some stretches heavily affected by management (diversions, bypasses, etc.). AirSWOT measurements will be used to validate SWOT observation performance, but are also a unique opportunity for testing and demonstrating the capabilities and limitations of the discharge algorithm. This study uses HEC-RAS simulations of the Sacramento River to first, characterize expected discharge algorithm accuracy on the Sacramento River, and second to explore the required AirSWOT measurements needed to perform a successful inverse with the discharge algorithm. We focus on several specific research questions affecting algorithm performance: 1) To what extent do lateral inflows confound algorithm performance? We examine the ~100 km stretch of river from Colusa, CA to the Yolo Bypass, and investigate how the varying degrees of lateral flows affect algorithm performance. 2) To what extent does a simple slope-area method (i.e. Manning's equation) applied to river reaches accurately describe river discharge? 3) How accurately does the algorithm perform an inversion to accurately describe the river bathymetry and roughness coefficient? Finally, we explore the sensitivity of the algorithm to the number of AirSWOT flights and AirSWOT measurement precision for various river flow scenarios.

  11. Understanding changes in ice dynamics of southeast Greenland glaciers from high resolution gravimetry data and satellite remote sensing observations

    NASA Astrophysics Data System (ADS)

    Millan, R.; Rignot, E. J.; Mouginot, J.; Menemenlis, D.; Morlighem, M.; Wood, M.

    2016-12-01

    Southeast Greenland has been one of the largest contributors to ice mass losses in Greenland in the last few decades mostly as a result of changes in ice dynamics, and to a lesser extent due to the steady increase in runoff. In 1996, the region was thinning up to the ice divide (Krabill et al., 1999) and the change were clearly of ice dynamics nature. Ice-ocean interactions played a central role in triggering a faster, systematic retreat around year 2002-2005 as water of Atlantic origin started to intrude the fjords in larger amounts due to a change in oceanic circulation in the Irminger sea. The glacier response varied significantly from one glacier to the next in response to the oceanic change, which we attribute to variatioins in fjord bathymetry, geometry control on the glaciers and calving speed of the glaciers. This region is however characterized by a dearth of topography data: the fjords have never been mapped and bed topography is challenging to obtain with radio echo sounding techniques. Here, we employ a combination of Operation IceBridge (OIB) high-resolution airborne gravity from 2016, Ocean Melting Greenland (OMG) EVS-2 mission low resolution gravity from 2016, and OMG bathymetry data from 2016 to map the bed elevation of the glaciers and fjords over the entire southeast Greenland combining gravity, thickness, and bathymetry. The data reveal the true depth of the fjords and the glacier thickness at the ice front, in a seamless fashion. We combine these data with a history of ice discharge combining estimates of ice thickness with a time series of ice velocity going back to the early 1990s. We form a time series of ice discharge, glacier per glacier, which is compared with surface mass balance from the RACMO 1-km downscaled model. We compare the results with simulations of ice melt along the calving faces of the glaciers to draw conclusions about the sensitivity of each glacier to climate forcing and re-interpret their pattern of retreat in the last few decades. The simulation of ice melt employ the MITgcm ocean model constrained by water depth, thermal forcing from ECCO2 model and subglacial water fluxes from RACMO. This work was performed at UCI/JPL under a contract with NASA.

  12. Enterprise Terrain Data Standards for Joint Training

    DTIC Science & Technology

    2017-10-03

    e.g., bombs /shells, vehicles, etc.) or environmental factors (e.g., weather). • Riverine and ocean surface and bathymetry. o Wave/swell generation...Attachment 2 Terrain Generation Capability St an da rd iz ed S ch em a & At tr ib ut es...F or m at Pl at fo rm In de pe nd en t O pe ra tin g Sy st em In de pe nd en t Geospatial Source & Industry Formats Utilized by the Specification

  13. Coastal Environment, Bathymetry and Physical Oceanography along the Beaufort, Chukchi and Bering Seas.

    DTIC Science & Technology

    1980-01-01

    Unit No. 347 , Vol. III, Chukchi-Beaufort Sea, 409 pp. 3. Hopkins, D.M. and R.W. Hartz, 1978, Coastal morphology, coastal erosion, and barrier islands of...U.S. Department of Commerce, Alaska Outer Continental Shelf Environmental Assessment Program Final Report, Research Unit No. 347 , vol. III, Chukchi...Assessment Program Final Report, Research Univ No. 347 , vol. II, Bering Sea, 443 pp. 3. U.S. Department of Commerce, 1964, Pacific and Arctic Coasts

  14. Proceedings of the U.S. Army Corps of Engineers Surveying Conference Held at Jacksonville, Florida on 4-8 February 1985,

    DTIC Science & Technology

    1985-02-01

    Institute of Technology. He spent many years at Woods Hole, and his primary interests are in the application of signal processing to the problems of...steel caisson island to perform conventional bathymetry surveys, a special system was required. This system which was contructed and used during the...National Ecological Research Areas. o USGS anticipates contacting COE for assistance in updating energy transportation maps, and maps showing port

  15. Geomorphic modeling of macro-tidal embayment with extensive tidal flats: Skagit Bay, Washington

    DTIC Science & Technology

    2012-09-30

    integrated Delft3D-MOR submodel. Measured river discharge, predicted tides, bathymetry, wind , and density-driven flow were incorporated into the model...supplied with sediment initially. Water temperature and salinity at the tidal boundary were adapted from (Moore et al., 2008). Wind forcing was...tide range varied from 2.4 m at Deception Pass to 3.5 m at Crescent Harbor. Because observations have indicated that wind -generated waves may be

  16. Global Bathymetric Prediction For Ocean Modeling and Marine Geophysics

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Smith, Walter H. F.; Sichoix, Lydie; Frey, Herbert V. (Technical Monitor)

    2001-01-01

    We proposed to construct a complete bathymetric map of the oceans at a 3-10 km resolution by combining all of the available depth soundings collected over the past 30 years with high resolution marine gravity information provided by the Geosat, ERS-1/2, and Topex/Poseidon altimeters. Detailed bathymetry is essential for understanding physical oceanography and marine geophysics. Currents and tides are controlled by the overall shapes of the ocean basins as well as the smaller sharp ocean ridges and seamounts. Because erosion rates are low in the deep oceans, detailed bathymetry reveals the mantle convection patterns, the plate boundaries, the cooling/subsidence of the oceanic lithosphere, the oceanic plateaus, and the distribution of off-ridge volcanoes. We proposed to: (1) Accumulate all available depth soundings collected over the past 30 years; (2) Use the short wavelength (< 160 km) satellite gravity information to interpolate between sparse ship soundings; (3) Improve the resolution of the marine gravity field using enhanced estimates along repeat altimeter profiles together with the dense altimeter measurements; (4) Refine/improve bathymetric predictions using the improved resolution gravity field and also by investigating computer-intensive methods for bathymetric prediction such as inverse theory; and (5) Produce a 'Globe of the Earth' similar to the globe of Venus prepared by the NASA Magellan investigation. This will also include the best available digital land data.

  17. Do rivers really obey power-laws? Using continuous high resolution measurements to define bankfull channel and evaluate downstream hydraulic-scaling over large changes in drainage area

    NASA Astrophysics Data System (ADS)

    Scher, C.; Tennant, C.; Larsen, L.; Bellugi, D. G.

    2016-12-01

    Advances in remote-sensing technology allow for cost-effective, accurate, high-resolution mapping of river-channel topography and shallow aquatic bathymetry over large spatial scales. A combination of near-infrared and green spectra airborne laser swath mapping was used to map river channel bathymetry and watershed geometry over 90+ river-kilometers (75-1175 km2) of the Greys River in Wyoming. The day of flight wetted channel was identified from green LiDAR returns, and more than 1800 valley-bottom cross-sections were extracted at regular 50-m intervals. The bankfull channel geometry was identified using a "watershed-based" algorithm that incrementally filled local minima to a "spill" point, thereby constraining areas of local convergence and delineating all the potential channels along the cross-section for each distinct "spill stage." Multiple potential channels in alluvial floodplains and lack of clearly defined channel banks in bedrock reaches challenge identification of the bankfull channel based on topology alone. Here we combine a variety of topological measures, geometrical considerations, and stage levels to define a stage-dependent bankfull channel geometry, and compare the results with day of flight wetted channel data. Initial results suggest that channel hydraulic geometry and basin hydrology power-law scaling may not accurately capture downstream channel adjustments for rivers draining complex mountain topography.

  18. Investigations on the Possibilities of Monitoring Coastal Changes Including Shallow Under Water Areas with Uas Photo Bathmetry

    NASA Astrophysics Data System (ADS)

    Grenzdörffer, G. J.; Naumann, M.

    2016-06-01

    UAS become a very valuable tool for coastal morphology. Not only for mapping but also for change detection and a better understanding of processes along and across the shore. This contribution investigates the possibilities of UAS to determine the water depth in clear shallow waters by means of the so called "photo bathymetry". From the results of several test flights it became clear that three factors influence the ability and the accuracy of bathymetric sea floor measurements. Firstly, weather conditions. Sunny weather is not always good. Due to the high image resolution the sunlight gets focussed even in very small waves causing moving patterns on shallow grounds with high reflection properties, such as sand. This effect invisible under overcast weather conditions. Waves, may also introduce problems and mismatches. Secondly the quality and the accuracy of the georeferencing with SFM algorithms. As multi image key point matching will not work over water, the proposed approach will only work for projects closely to the coastline with enough control on the land. Thirdly the software used and the intensity of post processing and filtering. Refraction correction and the final interpolation of the point cloud into a DTM are the last steps. If everything is done appropriately, accuracies in the bathymetry in the range of 10 - 50 cm, depending on the water depth are possible.

  19. Discharge estimation in ungauged basins through variational data assimilation : The potential of the SWOT mission.

    NASA Astrophysics Data System (ADS)

    Oubanas, H.; Gejadze, I.; Malaterre, P. O.; Durand, M. T.; Wei, R.; Frasson, R. P. M.; Domeneghetti, A.

    2017-12-01

    This work investigates the estimation of river discharge from simulated observations of the forthcoming Surface Water and Ocean Topography (SWOT) mission, to be launched in 2021, using a variant of the standard variational data assimilation method `4D-Var'. The hydrology SWOT simulator, developed at the Jet Propulsion Laboratory (JPL) has been used to simulate the expected performance of the KaRIn instrument onboard the satellite, producing synthetic SWOT observations of height and width, at each satellite overpass. SWOT data products were synthesized at the spatial scale of 200 m along the river centerline. Using a 1.5D full Saint-Venant hydraulic model, variational data assimilation simultaneously estimates the inflow discharge, river bathymetry and bed roughness. The proposed method has been designed for an application to fully ungauged basins; therefore, the prior information is derived from the SWOT observations only and the globally available ancillary information. Two reaches of the Po and Sacramento Rivers of about 130 km and 150 km, respectively, have been considered in this study. Discharge was successfully recovered at the overpass time with a relative-root-mean-square error of 16% and 12.3% for the Po and Sacramento Rivers, respectively. The estimates of the bed level and the roughness coefficient demonstrate a local improvement; however they may not provide reliable global information of the river bathymetry and roughness.

  20. Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013

    NASA Astrophysics Data System (ADS)

    Selyuzhenok, V.; Krumpen, T.; Mahoney, A.; Janout, M.; Gerdes, R.

    2015-12-01

    Along with changes in sea ice extent, thickness, and drift speed, Arctic sea ice regime is characterized by a decrease of fast ice season and reduction of fast ice extent. The most extensive fast ice cover in the Arctic develops in the southeastern Laptev Sea. Using weekly operational sea ice charts produced by Arctic and Antarctic Research Institute (AARI, Russia) from 1999 to 2013, we identified five main key events that characterize the annual evolution of fast ice in the southeastern Laptev Sea. Linking the occurrence of the key events with the atmospheric forcing, bathymetry, freezeup, and melt onset, we examined the processes driving annual fast ice cycle. The analysis revealed that fast ice in the region is sensitive to thermodynamic processes throughout a season, while the wind has a strong influence only on the first stages of fast ice development. The maximal fast ice extent is closely linked to the bathymetry and local topography and is primarily defined by the location of shoals, where fast ice is likely grounded. The annual fast ice cycle shows significant changes over the period of investigation, with tendencies toward later fast ice formation and earlier breakup. These tendencies result in an overall decrease of the fast ice season by 2.8 d/yr, which is significantly higher than previously reported trends.

  1. Three-dimensional estimate of the lithospheric effective elastic thickness of the Line ridge

    NASA Astrophysics Data System (ADS)

    Hu, Minzhang; Li, Jiancheng; Jin, Taoyong; Xu, Xinyu; Xing, Lelin; Shen, Chongyang; Li, Hui

    2015-09-01

    Using a new bathymetry grid formed with vertical gravity gradient anomalies and ship soundings (BAT_VGG), a 1° × 1° lithospheric effective elastic thickness (Te) grid of the Line ridge was calculated with the moving window admittance technique. As a comparison, both the GEBCO_08 and SIO V15.1 bathymetry datasets were used to calculate Te as well. The results show that BAT_VGG is suitable for the calculation of lithospheric effective elastic thickness. The lithospheric effective elastic thickness of the Line ridge is shown to be low, in the range of 5.5-13 km, with an average of 8 km and a standard deviation of 1.3 km. Using the plate cooling model as a reference, most of the effective elastic thicknesses are controlled by the 150-300 °C isotherm. Seamounts are primarily present in two zones, with lithospheric ages of 20-35 Ma and 40-60 Ma, at the time of loading. Unlike the Hawaiian-Emperor chain, the lithospheric effective elastic thickness of the Line ridge does not change monotonously. The tectonic setting of the Line ridge is discussed in detail based on our Te results and the seamount ages collected from the literature. The results show that thermal and fracture activities must have played an important role in the origin and evolution of the ridge.

  2. The impacts of Segura River (Spain) channelization on the coastal seabed.

    PubMed

    Aragonés, L; Pagán, J I; López, M P; García-Barba, J

    2016-02-01

    Human actions over rivers and coasts have generated great changes along seaboard. In order to know future development of those changes, it is necessary to understand the development of the coast during the past. When there is a complex morphologic system as a result of the combination of natural elements with human construction elements, the study of the abovementioned changes requires a wider perspective than the one provided by traditional two-dimensional methods. Thus, the Geographic Information Systems (GIS) become a suitable tool for that kind of studies. In this work, GIS are used to understand changes in bathymetry, sediments properties and transport, as well as surface variations of plant species occurred in the Segura River mouth (Spain) within a period of 17 years due to the channelization of the river low course. The methodology followed here implies the integration of data coming from different sources and with different formats in a GIS, what allows for a spatial analysis. Results obtained show the grain-size spatial distribution for every period of time studied, as well as bathymetry changes and seabed morphology. It can be concluded that the construction works carried out in the riverbed have affected sediment grain-size in the area. Clays have nearly disappeared and consequently there is a descent of seabed level that affects plant species, such as Posidonia oceanica. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Bank Erosion, Mass Wasting, Water Clarity, Bathymetry and a Sediment Budget Along the Dam-Regulated Lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Schenk, Edward R.; Hupp, Cliff R.; Richter, Jean M.; Kroes, Daniel E.

    2010-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability, floodplain inundation patterns, and channel morphology. Most of the world's largest rivers have been dammed, which has prompted management efforts to mitigate dam effects. Three high dams (completed between 1953 and 1963) occur along the Piedmont portion of the Roanoke River, North Carolina; just downstream, the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, more than 700 bank erosion pins were installed along 124 bank transects. Additionally, discrete measurements of channel bathymetry, water clarity, and presence or absence of mass wasting were documented along the entire 153-kilometer-long study reach. Amounts of bank erosion in combination with prior estimates of floodplain deposition were used to develop a bank erosion and floodplain deposition sediment budget for the lower river. Present bank erosion rates are relatively high [mean 42 milimeters per year (mm/yr)] and are greatest along the middle reaches (mean 60 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates such that erosion rate maxima have migrated downstream. Mass wasting and water clarity also peak along the middle reaches.

  4. Surficial geology of the sea floor in west-central Long Island Sound as shown by sidescan-sonar imagery

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; DiGiacomo-Cohen, M. L.; Moser, M.S.; Christman, E.B.

    2005-01-01

    We used sidescan-sonar imagery detailing almost 300 km2 of the sea floor in west-central Long Island Sound in conjunction with bathymetry, sediment samples, bottom video, and seismic data to interpret the area's surficial geology. The distribution of sediments and sedimentary environments interpreted from these data sets represents the Quaternary geology, regional bathymetry, and effects of modern tidal- and wave-driven currents. Four distinct sedimentary environments consisting of 1) fine-grained deposition, 2) sorting and reworking, 3) coarse-grained bedload transport, and 4) erosion or nondeposition, were identified and mapped. Relatively low-energy environments prevail where deposition of clayey silts occurs in deeper water throughout the central part of the study area, and in the protected areas of the far northeastern corner. As low-energy environments transition to relatively high-energy environments, sorting and reworking of sand, silty sand, and sand-silt-clay takes place on the flanks of the shoals and over smaller bathymetric highs. Environments of coarse-grained bedload transport, distinguished by sandy sediments with current-derived bedforms, are located on an unnamed shoal in the northwestern part of the study area and directly to the south of this on Stratford Shoal. High-energy conditions are reflected by environments of erosion or nondeposition, which occur on bathymetric highs where gravel and gravelly sediments are present.

  5. Seafloor terrain analysis and geomorphology of the greater Los Angeles Margin and San Pedro Basin, Southern California

    USGS Publications Warehouse

    Dartnell, P.; Gardner, J.V.

    2009-01-01

    The seafloor off greater Los Angeles, California, has been extensively studied for the past century. Terrain analysis of recently compiled multibeam bathymetry reveals the detailed seafloor morphology along the Los Angeles Margin and San Pedro Basin. The terrain analysis uses the multibeam bathymetry to calculate two seafloor indices, a seafloor slope, and a Topographic Position Index. The derived grids along with depth are analyzed in a hierarchical, decision-tree classification to delineate six seafloor provinces-high-relief shelf, low-relief shelf, steep-basin slope, gentle-basin slope, gullies and canyons, and basins. Rock outcrops protrude in places above the generally smooth continental shelf. Gullies incise the steep-basin slopes, and some submarine canyons extend from the coastline to the basin floor. San Pedro Basin is separated from the Santa Monica Basin to the north by a ridge consisting of the Redondo Knoll and the Redondo Submarine Canyon delta. An 865-m-deep sill separates the two basins. Water depths of San Pedro Basin are ??100 m deeper than those in the San Diego Trough to the south, and three passes breach a ridge that separates the San Pedro Basin from the San Diego Trough. Information gained from this study can be used as base maps for such future studies as tectonic reconstructions, identifying sedimentary processes, tracking pollution transport, and defining benthic habitats. ?? 2009 The Geological Society of America.

  6. Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.

    2016-02-01

    Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.

  7. Fine-scale movements and habitat use of juvenile southern flounder Paralichthys lethostigma in an estuarine seascape.

    PubMed

    Furey, N B; Dance, M A; Rooker, J R

    2013-05-01

    Habitat use of juvenile southern flounder Paralichthys lethostigma was examined within a shallow estuarine seascape during June and July 2011 using acoustic telemetry. Fine-scale movement and habitat use of P. lethostigma was investigated with an acoustic positioning system placed in a seascape that varied in habitat type, physicochemical conditions and bathymetry. The use of different habitat types was examined with Euclidean distance-based analyses, and generalized additive models were used to determine the relative importance of habitat type relative to physicochemical conditions and bathymetry. Tracks of P. lethostigma ranged in distance between 1477 and 8582 m and speed was 4·2 ± 1·1 m min⁻¹ (mean ± s.e.) for all P. lethostigma combined. Depth, slope and habitat type had the most influence on P. lethostigma occurrence and deep sandy areas with shallow slopes were used most frequently. In addition, depth use by P. lethostigma was influenced by tidal cycles, indicating habitat use varies temporally and is dynamic. Finally, temperatures <30·5° C were used more than warmer waters within the study area. The results successfully identify movements by juvenile P. lethostigma, and indicate that definitions of essential habitats need to account for dynamics in habitat use. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  8. Marine benthic habitat mapping of Muir Inlet, Glacier Bay National Park and Preserve, Alaska, with an evaluation of the Coastal and Marine Ecological Classification Standard III

    USGS Publications Warehouse

    Trusel, Luke D.; Cochrane, Guy R.; Etherington, Lisa L.; Powell, Ross D.; Mayer, Larry A.

    2010-01-01

    Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes.

  9. Surficial geology of the sea floor in Long Island Sound offshore of Plum Island, New York

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Danforth, W.W.; Blackwood, D.S.; Schaer, J.D.; Ostapenko, A.J.; Glomb, K.A.; Doran, E.F.

    2010-01-01

    The U.S. Geological Survey (USGS), the Connecticut Department of Environmental Protection, and the National Oceanic and Atmospheric Administration (NOAA) have been working cooperatively to interpret surficial sea-floor geology along the coast of the Northeastern United States. NOAA survey H11445 in eastern Long Island Sound, offshore of Plum Island, New York, covers an area of about 12 square kilometers. Multibeam bathymetry and sidescan-sonar imagery from the survey, as well as sediment and photographic data from 13 stations occupied during a USGS verification cruise are used to delineate sea-floor features and characterize the environment. Bathymetry gradually deepens offshore to over 100 meters in a depression in the northwest part of the study area and reaches 60 meters in Plum Gut, a channel between Plum Island and Orient Point. Sand waves are present on a shoal north of Plum Island and in several smaller areas around the basin. Sand-wave asymmetry indicates that counter-clockwise net sediment transport maintains the shoal. Sand is prevalent where there is low backscatter in the sidescan-sonar imagery. Gravel and boulder areas are submerged lag deposits produced from the Harbor Hill-Orient Point-Fishers Island moraine segment and are found adjacent to the shorelines and just north of Plum Island, where high backscatter is present in the sidescan-sonar imagery.

  10. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    USGS Publications Warehouse

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  11. Intelligent identification of remnant ridge edges in region west of Yongxing Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Guo, Jing; Cai, Guanqiang; Wang, Dawei

    2018-02-01

    Edge detection enables identification of geomorphologic unit boundaries and thus assists with geomorphical mapping. In this paper, an intelligent edge identification method is proposed and image processing techniques are applied to multi-beam bathymetry data. To accomplish this, a color image is generated by the bathymetry, and a weighted method is used to convert the color image to a gray image. As the quality of the image has a significant influence on edge detection, different filter methods are applied to the gray image for de-noising. The peak signal-to-noise ratio and mean square error are calculated to evaluate which filter method is most appropriate for depth image filtering and the edge is subsequently detected using an image binarization method. Traditional image binarization methods cannot manage the complicated uneven seafloor, and therefore a binarization method is proposed that is based on the difference between image pixel values; the appropriate threshold for image binarization is estimated according to the probability distribution of pixel value differences between two adjacent pixels in horizontal and vertical directions, respectively. Finally, an eight-neighborhood frame is adopted to thin the binary image, connect the intermittent edge, and implement contour extraction. Experimental results show that the method described here can recognize the main boundaries of geomorphologic units. In addition, the proposed automatic edge identification method avoids use of subjective judgment, and reduces time and labor costs.

  12. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).

  13. Advances in the Study of Moving Sediments and Evolving Seabeds

    NASA Astrophysics Data System (ADS)

    Davies, Alan G.; Thorne, Peter D.

    2008-01-01

    Sands and mud are continually being transported around the world’s coastal seas due to the action of tides, wind and waves. The transport of these sediments modifies the boundary between the land and the sea, changing and reshaping its form. Sometimes the nearshore bathymetry evolves slowly over long time periods, at other times more rapidly due to natural episodic events or the introduction of manmade structures at the shoreline. For over half a century we have been trying to understand the physics of sediment transport processes and formulate predictive models. Although significant progress has been made, our capability to forecast the future behaviour of the coastal zone from basic principles is still relatively poor. However, innovative acoustic techniques for studying the fundamentals of sediment movement experimentally are now providing new insights, and it is expected that such observations, coupled with developing theoretical works, will allow us to take further steps towards the goal of predicting the evolution of coastlines and coastal bathymetry. This paper presents an overview of our existing predictive capabilities, primarily in the field of non-cohesive sediment transport, and highlights how new acoustic techniques are enabling our modelling efforts to achieve greater sophistication and accuracy. The paper is aimed at coastal scientists and managers seeking to understand how detailed physical studies can contribute to the improvement of coastal area models and, hence, inform coastal zone management strategies.

  14. Determination of water depth with high-resolution satellite imagery over variable bottom types

    USGS Publications Warehouse

    Stumpf, Richard P.; Holderied, Kristine; Sinclair, Mark

    2003-01-01

    A standard algorithm for determining depth in clear water from passive sensors exists; but it requires tuning of five parameters and does not retrieve depths where the bottom has an extremely low albedo. To address these issues, we developed an empirical solution using a ratio of reflectances that has only two tunable parameters and can be applied to low-albedo features. The two algorithms--the standard linear transform and the new ratio transform--were compared through analysis of IKONOS satellite imagery against lidar bathymetry. The coefficients for the ratio algorithm were tuned manually to a few depths from a nautical chart, yet performed as well as the linear algorithm tuned using multiple linear regression against the lidar. Both algorithms compensate for variable bottom type and albedo (sand, pavement, algae, coral) and retrieve bathymetry in water depths of less than 10-15 m. However, the linear transform does not distinguish depths >15 m and is more subject to variability across the studied atolls. The ratio transform can, in clear water, retrieve depths in >25 m of water and shows greater stability between different areas. It also performs slightly better in scattering turbidity than the linear transform. The ratio algorithm is somewhat noisier and cannot always adequately resolve fine morphology (structures smaller than 4-5 pixels) in water depths >15-20 m. In general, the ratio transform is more robust than the linear transform.

  15. The effects of a local moderate tsunami in the Dover Strait on the French and English main harbors of the English Channel

    NASA Astrophysics Data System (ADS)

    Clément, Cécile; Gailler, Audrey; Heinrich, Philippe; Hélène, Hébert; Loevenbruck, Anne

    2017-04-01

    The Dover Strait is regularly shaken by small to moderate earthquakes which can be felt in the nearby cities Boulogne-Sur-Mer, Calais, Dover and Folkestone. Three destructive events have been documented during the Middle Ages including 1580 Dover Strait earthquake which has been largely felt in London. The isoseimal map of this main event shows a maximum MSK paleointensity of VIII in Calais and VII in Dover [Neilson et al 1984; Melville et al. 1996]. The Dover Strait has been studied using seismic-reflection method [Garcia-Moreno et al. 2014], seafloor sampling, boreholes and gravity anomaly [Everaerts and Mansy 2001], yet the actual tectonic context of the area stays hard to understand because of the lack of recent seafloor deformation and of large recent seismic events. Among other things the occurrence of a tsunamigenic earthquake is not totally impossible [Roger and Gunnell 2011]. We propose several numerical simulations of tsunamis where the seismic scenari are chosen according to the latest fault activity study of the area [Garcia-Moreno et al. 2014]. We used strike-slip and normal mechanisms for magnitudes ranging from 6.0 to 7.0. The propagation of the tsunamis from the source to the French an English coasts is made using a bathymetry with a grid step of 20m realized by the SHOM (Service Hydrographique et Océanographique de la Marine) within the TANDEM project. Using synthetic gauges, we measure the water elevation prediction at the entrance of the main harbours. We push the investigation further for the case of Boulogne-Sur-Mer where the available topography-bathymetry map has a grid step of 10m. This fine bathymetry map enables to modelize the bassins and the embankments inside the harbor and thus to study the resonance of the site. Moreover Boulogne harbor is equipped with a maregraph that we use to compare the synthetic data with real water height registration. Using maregraph recording of rough sea or storm, we are able to evaluate the relevance of our resonance parameters. The method set up for studying the harbor resonance can be applied to the others site as soon as more detailed bathymetry will be available. Acknowledgments: This work is supported by the French national research agency (ANR) programme TANDEM in the frame of "Investissements d'Avenir", under the grant ANR-11-RSNR-00023-01 Bibliography: Neilson et al 1984, The London earthquake of 1580, April 6, Eng Geol, 20, 113-141 Melville et al. 1996, Historical seismicity of the Strait of Dover-Pas de Calais, Terra Nova, 8, 626-647 Garcia-Moreno et al. 2014, Fault activity in the epicentral area of the 1580 Dover Strait earthquake (northwestern Europe), Geophys J Int, 201, 528-542 Everaerts and Mansy 2001, Le filtrage des anomalies gravimétriques; une clé pour la compréhension des structures tectoniques du Boulonnais et de l'Artois (France), Bulletin de la Société Géologique de France, 172, 267-274 Roger and Gunnell 2011, Vulnerability of the Dover Strait to coseismic tsunami hazards: insights from numerical modelling, Geophys J Int, 188, 680-686

  16. Wave propagation against current : a study of the effects of vertical shears of the mean current on the geometrical focusing of water waves

    NASA Astrophysics Data System (ADS)

    Charland, Jenna; Touboul, Julien; Rey, Vincent

    2013-04-01

    Wave propagation against current : a study of the effects of vertical shears of the mean current on the geometrical focusing of water waves J. Charland * **, J. Touboul **, V. Rey ** jenna.charland@univ-tln.fr * Direction Générale de l'Armement, CNRS Délégation Normandie ** Université de Toulon, 83957 La Garde, France Mediterranean Institute of Oceanography (MIO) Aix Marseille Université, 13288 Marseille, France CNRS/INSU, IRD, MIO, UM 110 In the nearshore area, both wave propagation and currents are influenced by the bathymetry. For a better understanding of wave - current interactions in the presence of a 3D bathymetry, a large scale experiment was carried out in the Ocean Basin FIRST, Toulon, France. The 3D bathymetry consisted of two symmetric underwater mounds on both sides in the mean wave direction. The water depth at the top the mounds was hm=1,5m, the slopes of the mounds were of about 1:3, the water depth was h=3 m elsewhere. For opposite current conditions (U of order 0.30m/s), a huge focusing of the wave up to twice its incident amplitude was observed in the central part of the basin for T=1.4s. Since deep water conditions are verified, the wave amplification is ascribed to the current field. The mean velocity fields at a water depth hC=0.25m was measured by the use of an electromagnetic current meter. The results have been published in Rey et al [4]. The elliptic form of the "mild slope" equation including a uniform current on the water column (Chen et al [1]) was then used for the calculations. The calculated wave amplification of factor 1.2 is significantly smaller than observed experimentally (factor 2). So, the purpose of this study is to understand the physical processes which explain this gap. As demonstrated by Kharif & Pelinovsky [2], geometrical focusing of waves is able to modify significantly the local wave amplitude. We consider this process here. Since vertical velocity profiles measured at some locations have shown significant vertical shears, further theoretical expansions have considered this shearing following the hypothesis proposed by Kirby [3]. A numerical solver for this new equation is being developed. Results obtained with this new equation will be compared to a new set of experiments. This comparison will allow us to quantify the role of a sheared current in the geometrical focusing of the wave. References : [1] W. Chen, V. Panchang, and Z. Demirbilek. On the modeling of wave-current interaction using the elliptic mild-slope wave equation. Ocean Engineering, 32 :2135-2164, 2005. [2] C. Kharif and E. Pelinovsky. Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics B/Fluids, 22 : 603-634, 2003 [3] J. T. Kirby. A note on linear surface wave-current interaction over slowly varying topography. Journal of Geophysical Research, 89(C1) : 745-747, January 20 1984. [4] V. Rey, F. Guinot, and J. Touboul. Large scale experimental study of wave current interactions in presence of a 3d bathymetry. Genoa : s.n., 2011. International Maritime Association of the Mediterranean.

  17. Profiles of gamma-ray and magnetic data from aerial surveys over the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.; Riggle, Frederic E.

    1999-01-01

    This publication contains images for the conterminous U.S. generated from geophysical data, software for displaying and analyzing the images, and software for displaying and examining the profile data from the aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry.

  18. Annotated Bibliography of the Lower Chesapeake Bay: Current Literature of Biological, Chemical, Geological and Physical Studies.

    DTIC Science & Technology

    1984-01-31

    Bathymetry and Sediment Transport,,. 75 F.Degn ........ 8 IV Physical: 81 A. Circulation . ........ * 82 B. Temperature and Salinity ) . .. 84 C. Tides...Chesapeake Bay was spread in the lover half of the seed area in the James River in 1959-1960. Low salinities inhibit the development of infections, with...minimal infections occurring where salinities do not exceed 15-20 ppt in late summer and fall. The oysters expel the pathogen in early spring, usually in

  19. Response to Comment on "Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply".

    PubMed

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S

    2016-06-17

    Huybers et al present new bathymetric spectra from an intermediate-spreading ridge as evidence for a primary contribution of sea level cycles to the morphology of the seafloor. Although we acknowledge the possibility that sea level-modulated magmatic constructions may be superimposed on a first-order tectonic fabric, we emphasize the difficulty of deciphering these different contributions in the frequency domain alone. Copyright © 2016, American Association for the Advancement of Science.

  20. The Gulf Stream Pathway and the Impacts of the Eddy-Driven Abyssal Circulation and the Deep Western Boundary Current

    DTIC Science & Technology

    2008-07-06

    bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The...small values below the sill depth in all of the simulations. e The upper ocean northward flow of the meridional overturning circulation (MOC) is...plus the northward upper ocean flow (14 Sv) of the meridional overturning circulation (MOC). The mean Gulf Stream IR northwall pathway ±lrr from

  1. Mapping, Charting, and Geodesy Division Abstracts of Publications, Presentations and Transitions: 1991

    DTIC Science & Technology

    1992-05-01

    Clark, T.H. Fay, Multispectral I Bathymetry Programs: A Users Guide, NTN 95. Myrick, S., M. Lohrenz, Data Base Design Document for the Digital Map...Computer1 Software in the A-12 Digital Map Set, NTN 162. Myrick, S., M. Lohrenz, P. Wischow, M. Trenchard, S. Tyskiewicz, J. Kaufman, MDFF I HELP...Shaw, K, D. Byman, S. Carter, M. Kalcic, M. Clawson, M. Harris, A Summary of the i Collected Data from a Survey of Navy Digital MC&G Requirements

  2. Impact of Remote Forcing, Model Resolution and Bathymetry on Predictions of Currents on the Shelf

    DTIC Science & Technology

    2013-01-01

    San Diego467. Zamudio, L. Hogan , P.J., Metzger. E.J.. 2008 . Summer generation of the southern Gulf of California eddy train. J. Geophys. Res. 113...1987; Zamudio et al., 2008 . 2011). These anomalies therefore represent remote forcing which will impact the Monterey Bay area, and a smaller region...Werner. F.. Wilkin . J., 2009. U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography 22 (2). 64-75. Chelton

  3. Mode 2 Internal Wave Generation and Propagation Near the New Jersey (USA) Shelf Break -Early Fall Season

    DTIC Science & Technology

    2015-03-13

    forcing at the right wall consisted of a free surface displacement of 0.48 m varying as sin(t) with a period of 12.4 hours. The bottom was flat with...be formed by flow over the local bathymetry. Simulations using the Shen Non- hydrostatic Model for Coastal Oceans (SNMCO) replicated the observed... pressure gage, and temperature and salinity vs. depth and range measurements. Numerical simulations which replicate aspects of the of the two

  4. Persian Gulf Response to a Wintertime Shamal Wind Event

    DTIC Science & Technology

    2010-01-01

    26 "’lÖF^B ^^H H7^V??I K ^rB^S IT .’, . 2 i. SST diff - ^ S ^^> • fl THC IP •« 30 28 26 24 22 20 18...during the August- September period (Thoppil and Hogan, submitted for publication). Because of the narrow, shallow and irregular nature of bathy...metry, these eddies remain stationary or trapped by the bottom topography until they dissipate locally. They have clear signatures in the surface

  5. Lidar postcards

    USGS Publications Warehouse

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.

  6. Influence of Inlet / Shoal Complex on Adjacent Shorelines via Inlet Sink Method

    DTIC Science & Technology

    2012-07-01

    Figure 4. Ebb shoal bathymetry, Vilano and Anastasia Islands, October 2010. -40 -30 -20 -10 0 10 20 30 -1000 0 1000 2000 3000 4000...at Anastasia State Park was accretional over all time periods from R-123 to R-125, and was both erosional and accretional through R-128. All time...submerged platform fronting Anastasia State Park (Morphologic Zones 6 and 7 in Fig. 11) which can either be considered part of: 1. a continuous beach

  7. Saco Bay, Maine: Sediment Budget for Late Twentieth Century to Present

    DTIC Science & Technology

    2016-02-01

    determined that sediment flux was variable, depending on bathymetry and input wave conditions. Despite these variations in conditions, there is no obvious...DETAILS, SACO BAY, MAINE V3. Last update: 11 September 2014 Units are yd3/year. Source1 = bluffs, river influx, wind . Sink1 = wind -blown loss or...Beach05 (B05), Pine Point QSource1 1,600 Wind transport (from Kelley et al. 2005). DeltaV 1,600 Dune accumulation 1859–1991 (from Kelley et al. 2005

  8. Radar Remote Sensing of Waves and Currents in the Nearshore Zone

    DTIC Science & Technology

    2006-01-01

    and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.

  9. Integration and Field Trials of a High-Resolution Multi-beam Sonar on the Remote Mine hunting Vehicle Dorado

    DTIC Science & Technology

    2003-12-01

    Minehunting System (RMS), is a semi-submersible, remotely controlled drone designed to tow an actively stabilized sidescan sonar towfish. The multi... comparativement aux véhicules sous-marins autonomes, ils offrent le positionnement DGPS, la commande en temps réel et la télémesure, en plus...minehunting vehicle. The Reson 8125 multi-beam bathymetric sonar is designed to acquire high-resolution (of order cm) bathymetry in a 240- beam swath 120

  10. Towards Next Generation Ocean Models: Novel Discontinuous Galerkin Schemes for 2D Unsteady Biogeochemical Models

    DTIC Science & Technology

    2009-09-01

    The bottom bathymetry contains a half -ellipse with minor axis of 20 units in x and 100 units in z centered at (x, y) = (0,−100) This elliptical...preconditioned and un-preconditioned A matrix are plotted on the complex plane . MG with ILU(0) smoother In this test, a proper MG scheme is combined with a...University of Waterloo (2007) Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of

  11. West Adriatic Coastal Water Excursions into the East Adriatic

    DTIC Science & Technology

    2009-01-15

    anticyclonic eddies in the Gulf of Manfredonia which can form in the lee of the WAC flow around Cape Gargano (Burrage et al., 2009-this issue), although the...caused it to remain trapped in the lee of Cape Gargano. In the presence of stepwise bathymetry only (SW2 runs, Fig. 16), the initial flow was generally...L., Wang, J.D., Lee , T.N., 1996. The fate of river discharge on the continental shelf: 1. Modeling the river plume and the inner shelf coastal

  12. Application of the Coastal and Marine Ecological Classification Standard Using Satellite-Derived and Modeled Data Products for Pelagic Habitats in the Northern Gulf of Mexico

    DTIC Science & Technology

    2013-12-10

    intertidal vegetation . Comments from resource managers requested products incor- porating bathymetry and sediment data. To further build on the...and availability of intertidal vegetation are other key factors in successful movement into the estuary for brown shrimp, both of these data were...distribution of intertidal vegetation . The NWI classes EEM1 and EEM2 are the two classes into which intertidal vegeta- tion falls in Galveston. On the ground

  13. Impact of the Fraser River Geometry on Tides and the River Plumes in a Model of the Fraser River Plume

    NASA Astrophysics Data System (ADS)

    Liu, J.; Allen, S. E.; Soontiens, N. K.

    2016-02-01

    Fraser River is the largest river on the west coast of Canada. It empties into the Strait of Georgia, which is a large, semi-enclosed body of water between Vancouver Island and the mainland of British Columbia. We have developed a three-dimensional model of the Strait of Georgia, including the Fraser River plume, using the NEMO model in its regional configuration. This operational model produces daily nowcasts and forecasts for salinity, temperature, currents and sea surface heights. Observational data available for evaluation of the model includes daily British Columbia ferry salinity data, profile data and surface drifter data. The salinity of the modelled Fraser River plume agrees well with ferry based measurements of salinity. However, large discrepencies exist between the modelled and observed position of the plume. Modelled surface currents compared to drifter observations show that the model has too strong along-strait velocities and too weak cross-strait velocities. We investigated the impact of river geometry. A sensitivity experiment was performed comparing the original, short, shallow river channel to an extended and deepened river channel. With the latter bathymetry, tidal amplitudes within Fraser River correspond well with observations. Comparisons to drifter tracks show that the surface currents have been improved with the new bathymetry. However, substantial discrepencies remain. We will discuss how reducing vertical eddy viscosity and other changes further improve the modelled position of the plume.

  14. Illustrations of the importance of mass wasting in the evolution of continental margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratson, L.; Ryan, W.; Twichell, D.

    1990-05-01

    Side-looking sonar imagery and swath bathymetry from a variety of contemporary continental slopes all display erosional scars and debris aprons, illustrating the importance of mass wasting in the evolution of continental margins. The continental slopes examined include slopes fed directly from the fronts of ice sheets, slopes adjacent to continental shelves that were the sites of glacial outwash, slopes supplied exclusively by fluvial drainage, slopes at carbonate platforms, and slopes on accretionary prisms. Examples are drawn from the Atlantic Ocean, the Gulf of Mexico, and the Mediterranean Sea in both passive and active continental margin settings. The sonar imagery andmore » bathymetry used in this study indicate that continental slopes in different tectonic and climatic environments show similar forms of mass wasting. However, in some cases the dominant mode of erosion and/or the overall degree of mass wasting appears to be distinct to particular sedimentary environments. Timing of both recent and older exhumed erosional surfaces identified in the imagery and in seismic reflection profiles is obtained by ground truth observations using submersibles, towed camera sleds, drilling, and coring. These observations suggest that eustatic fluctuations common to all the margins examined do not explain the range in magnitude and areal density of the observed mass wasting. More localized factors such as lithology, diagenesis, pore fluid conditions, sediment supply rates, and seismic ground motion appear to have a major influence in the evolution of erosional scars and their corresponding unconformities.« less

  15. Basement structures over Rio Grande Rise from gravity inversion

    NASA Astrophysics Data System (ADS)

    Constantino, Renata Regina; Hackspacher, Peter Christian; de Souza, Iata Anderson; Lima Costa, Iago Sousa

    2017-04-01

    The basement depth in the Rio Grande Rise (RGR), South Atlantic, is estimated from combining gravity data obtained from satellite altimetry, marine surveys, bathymetry, sediment thickness and crustal thickness information. We formulate a crustal model of the region by inverse gravity modeling. The effect of the sediment layer is evaluated using the global sediment thickness model of National Oceanic and Atmospheric Administration (NOAA) and fitting the sediment compaction model to observed density values from Deep Sea Drilling Project (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the inversion process. The modeled Moho depth values vary between 6 and 27 km over the area, being thicker under the RGR and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied to gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. We find several short-wavelengths structures not present in the bathymetry data. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. An interesting NS structure that goes from 34°S and extends through de São Paulo Ridge may be related to the South Atlantic Opening and could reveal an extinct spreading center.

  16. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry

    NASA Astrophysics Data System (ADS)

    Wang, Chisheng; Li, Qingquan; Liu, Yanxiong; Wu, Guofeng; Liu, Peng; Ding, Xiaoli

    2015-03-01

    Due to the low-cost and lightweight units, single-wavelength LiDAR bathymetric systems are an ideal option for shallow-water (<12 m) bathymetry. However, one disadvantage of such systems is the lack of near-infrared and Raman channels, which results in difficulties in extracting the water surface. Therefore, the choice of a suitable waveform processing method is extremely important to guarantee the accuracy of the bathymetric retrieval. In this paper, we test six algorithms for single-wavelength bathymetric waveform processing, i.e. peak detection (PD), the average square difference function (ASDF), Gaussian decomposition (GD), quadrilateral fitting (QF), Richardson-Lucy deconvolution (RLD), and Wiener filter deconvolution (WD). To date, most of these algorithms have previously only been applied in topographic LiDAR waveforms captured over land. A simulated dataset and an Optech Aquarius dataset were used to assess the algorithms, with the focus being on their capability of extracting the depth and the bottom response. The influences of a number of water and equipment parameters were also investigated by the use of a Monte Carlo method. The results showed that the RLD method had a superior performance in terms of a high detection rate and low errors in the retrieved depth and magnitude. The attenuation coefficient, noise level, water depth, and bottom reflectance had significant influences on the measurement error of the retrieved depth, while the effects of scan angle and water surface roughness were not so obvious.

  17. Mapping lava morphology of the Galapagos Spreading Center at 92°W: fuzzy logic provides a classification of high-resolution bathymetry and backscatter

    NASA Astrophysics Data System (ADS)

    McClinton, J. T.; White, S. M.; Sinton, J. M.; Rubin, K. H.; Bowles, J. A.

    2010-12-01

    Differences in axial lava morphology along the Galapagos Spreading Center (GSC) can indicate variations in magma supply and emplacement dynamics due to the influence of the adjacent Galapagos hot spot. Unfortunately, the ability to discriminate fine-scale lava morphology has historically been limited to observations of the small coverage areas of towed camera surveys and submersible operations. This research presents a neuro-fuzzy approach to automated seafloor classification using spatially coincident, high-resolution bathymetry and backscatter data. The classification method implements a Sugeno-type fuzzy inference system trained by a multi-layered adaptive neural network and is capable of rapidly classifying seafloor morphology based on attributes of surface geometry and texture. The system has been applied to the 92°W segment of the western GSC in order to quantify coverage areas and distributions of pillow, lobate, and sheet lava morphology. An accuracy assessment has been performed on the classification results. The resulting classified maps provide a high-resolution view of GSC axial morphology and indicate the study area terrain is approximately 40% pillow flows, 40% lobate and sheet flows, and 10% fissured or faulted area, with about 10% of the study area unclassifiable. Fine-scale features such as eruptive fissures, tumuli, and individual pillowed lava flow fronts are also visible. Although this system has been applied to lava morphology, its design and implementation are applicable to other undersea mapping applications.

  18. A synopsis of X-band radar-derived results from New River Inlet, NC (May 2012): Wave transformation, bathymetry, and tidal currents

    NASA Astrophysics Data System (ADS)

    Honegger, D. A.; Haller, M. C.; Diaz Mendez, G. M.; Pittman, R.; Catalan, P. A.

    2012-12-01

    Land-based X-band marine radar observations were collected as part of the month-long DARLA-MURI / RIVET-DRI field experiment at New River Inlet, NC in May 2012. Here we present a synopsis of preliminary results utilizing microwave radar backscatter time series collected from an antenna located 400 m inside the inlet mouth and with a footprint spanning 1000 m beyond the ebb shoals. Two crucial factors in the forcing and constraining of nearshore numerical models are accurate bathymetry and offshore variability in the wave field. Image time series of radar backscatter from surface gravity waves can be utilized to infer these parameters over a large swath and during times of poor optical visibility. Presented are radar-derived wavenumber vector maps obtained from the Plant et al. (2008) algorithm and bathymetric estimates as calculated using Holman et al. (JGR, in review). We also evaluate the effects of tidal currents on the wave directions and depth inversion accuracy. In addition, shifts in the average wave breaking patterns at tidal frequencies shed light on depth- (and possibly current-) induced breaking as a function of tide level and tidal current velocity, while shifts over longer timescales imply bedform movement during the course of the experiment. Lastly, lowpass filtered radar image time series of backscatter intensity are shown to identify the structure and propagation of tidal plume fronts and multiscale ebb jets at the offshore shoal boundary.

  19. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    NASA Astrophysics Data System (ADS)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  20. Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Jacobs, S. S.; Tinto, K. J.; Bell, R. E.

    2014-05-01

    Ice shelves play key roles in stabilizing Antarctica's ice sheets, maintaining its high albedo and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry are important for assessing ocean-ice interactions and modeling ice response to climate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces a large volume of meltwater, but is close to being in overall mass balance. Here we invert NASA Operation IceBridge (OIB) airborne gravity data over the Abbot region to obtain sub-ice bathymetry, and combine OIB elevation and ice thickness measurements to estimate ice draft. A series of asymmetric fault-bounded basins formed during rifting of Zealandia from Antarctica underlie the Abbot Ice Shelf west of 94° W and the Cosgrove Ice Shelf to the south. Sub-ice water column depths along OIB flight lines are sufficiently deep to allow warm deep and thermocline waters observed near the western Abbot ice front to circulate through much of the ice shelf cavity. An average ice shelf draft of ~200 m, 15% less than the Bedmap2 compilation, coincides with the summer transition between the ocean surface mixed layer and upper thermocline. Thick ice streams feeding the Abbot cross relatively stable grounding lines and are rapidly thinned by the warmest inflow. While the ice shelf is presently in equilibrium, the overall correspondence between draft distribution and thermocline depth indicates sensitivity to changes in characteristics of the ocean surface and deep waters.

Top