Global Marine Gravity and Bathymetry at 1-Minute Resolution
NASA Astrophysics Data System (ADS)
Sandwell, D. T.; Smith, W. H.
2008-12-01
We have developed global gravity and bathymetry grids at 1-minute resolution. Three approaches are used to reduce the error in the satellite-derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS-1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from land to ocean. Third we have used a biharmonic spline interpolation method to construct residual vertical deflection grids. Comparisons between shipboard gravity and the global gravity grid show errors ranging from 2.0 mGal in the Gulf of Mexico to 4.0 mGal in areas with rugged seafloor topography. The largest errors occur on the crests of narrow large seamounts. The bathymetry grid is based on prediction from satellite gravity and available ship soundings. Global soundings were assembled from a wide variety of sources including NGDC/GEODAS, NOAA Coastal Relief, CCOM, IFREMER, JAMSTEC, NSF Polar Programs, UKHO, LDEO, HIG, SIO and numerous miscellaneous contributions. The National Geospatial-intelligence Agency and other volunteering hydrographic offices within the International Hydrographic Organization provided global significant shallow water (< 300 m) soundings derived from their nautical charts. All soundings were converted to a common format and were hand-edited in relation to a smooth bathymetric model. Land elevations and shoreline location are based on a combination SRTM30, GTOPO30, and ICESAT data. A new feature of the bathymetry grid is a matching grid of source identification number that enables one to establish the origin of the depth estimate in each grid cell. Both the gravity and bathymetry grids are freely available.
Using the in-line component for fixed-wing EM 1D inversion
NASA Astrophysics Data System (ADS)
Smiarowski, Adam
2015-09-01
Numerous authors have discussed the utility of multicomponent measurements. Generally speaking, for a vertical-oriented dipole source, the measured vertical component couples to horizontal planar bodies while the horizontal in-line component couples best to vertical planar targets. For layered-earth cases, helicopter EM systems have little or no in-line component response and as a result much of the in-line signal is due to receiver coil rotation and appears as noise. In contrast to this, the in-line component of a fixed-wing airborne electromagnetic (AEM) system with large transmitter-receiver offset can be substantial, exceeding the vertical component in conductive areas. This paper compares the in-line and vertical response of a fixed-wing airborne electromagnetic (AEM) system using a half-space model and calculates sensitivity functions. The a posteriori inversion model parameter uncertainty matrix is calculated for a bathymetry model (conductive layer over more resistive half-space) for two inversion cases; use of vertical component alone is compared to joint inversion of vertical and in-line components. The joint inversion is able to better resolve model parameters. An example is then provided using field data from a bathymetry survey to compare the joint inversion to vertical component only inversion. For each inversion set, the difference between the inverted water depth and ship-measured bathymetry is calculated. The result is in general agreement with that expected from the a posteriori inversion model parameter uncertainty calculation.
An Air-Ocean Coupled Nowcast/Forecast System for the East Asian Marginal Seas
2000-09-12
external factors affecting the regional oceanogra- phy. We use a rectilinear grid with horizontal spacing of 0.25° by 0.25° and 23 nonuniform vertical a ... levels . The model uses realistic bathymetry data from the Naval Oceanographic Office Digit~ Bathymetry Data Base with 5 minute resolution (DBDB5). 2.1.2
Seafloor mapping and benthic habitat GIS for southern California, volume III
Cochrane, Guy R.; Golden, Nadine E.; Dartnell, Pete; Schroeder, Donna M.; Finlayson, David P.
2007-01-01
From August 8-27, 2005, more than 75 km of the continental shelf (Fig. 1) in water depths of 20-70m southeast of Santa Barbara, were surveyed during the USGS cruise S-1-05-SC (http://walrus.wr.usgs.gov/infobank/s/s105sc/html/s-1-05-sc.meta.html). Both Interferometric sonar and 14 hours of both vertical and oblique georeferenced submarine digital video were collected to (1) obtain geophysical data (bathymetry and acoustic reflectance), (2) examine and record geologic characteristics of the sea floor, and (3) construct maps of seafloor geomorphology and habitat distribution. Substrate distribution is predicted using a modified version of Cochrane and Lafferty (2002) video-supervised statistical classification of sonar data that includes derivatives of bathymetry data. Specific details of the methods can be found in the meatadata of the bathymetry data file. Substrates observed are predominantly sand with some rock. Rocky substrates were restricted primarily to an east-west trending bathymetric high 2,000 m north of oil platforms. This is an updated report (version 2.0) from the earlier 2007-1271 (version 1.0) open-file report. This updated report re-releases the data files in UTM, zone 11, WGS84 coordinates. Also, the bathymetry data has been corrected for a vertical offset discovered in the earlier 2007-1271 (version 1.0) report.
Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator
NASA Astrophysics Data System (ADS)
Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.
2017-12-01
Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.
Detailed surveys of the transform margin morphology in the Gulf of California
NASA Astrophysics Data System (ADS)
Anderson, K.; Lundsten, E.; Paull, C. K.; Caress, D. W.; Thomas, H.; Gwiazda, R.; Herguera, J.; McGann, M. L.; Edwards, B. D.; Hinojosa, A.; Mejia Mercado, B.; Sanchez, A.; Conlin, D.; Thompson, D.
2012-12-01
The Monterey Bay Aquarium Research Institute (MBARI) conducted detailed surveys of the seafloor morphology at nine representative sections of the North American - Pacific Plate boundary on the floor of the Gulf of California during a two-ship expedition in March and April 2012. One of the objectives of this program was to better understand how the fault is manifested on the seafloor and whether any secondary deformation adjacent to the fault can be observed. An autonomous underwater vehicle (AUV) provided detailed bathymetry of the seafloor, and a remotely operated vehicle (ROV) allowed ground-truth observations and sampling of the surveyed area. The AUV surveys provide high-resolution multibeam bathymetry with a vertical precision of 0.15 m, horizontal resolution of 1.0 and 2-10 kHz CHIRP seismic reflection profiles. Each of the surveys covered ~ 14 km2 areas and were spread out over 400 m, between water depths of 350 and 2800 m and separated by three seafloor spreading centers. The bathymetry shows the morphology of these fault zones in unprecedented detail. The maps allowed the active fault trace to be located so that it could be inspected and the seafloor sampled during ROV dives. The bathymetry from a representative survey on the southern side of the Guaymas Basin shows an obvious NW-SE lineation, only a few meters wide, formed by distinct scarps and/or troughs on the seafloor, and inferred to be the trace of the active fault. CHIRP profiles show offsets in reflecting horizons extend to the modern seafloor, further supporting the concept that these lineations are the trace of the active fault. This survey is unique in that an extensive section of the seafloor and near subsurface contains a wave-like fabric that only occurs on the North American side of the fault, with crests that run ~ E-W, characteristically ~ 3 m in amplitude and ~ 100 in wavelength. Ultimately, whether this fabric is a result of a depositional process or structural deformation associated with the regional tectonics is unclear. However, this was the only morphology observed that suggests secondary deformation.
Photogrammetric Data Set, 1957-2000, and Bathymetric Measurements for Columbia Glacier, Alaska
Krimmel, Robert M.
2001-01-01
Major changes in the length, speed, surface altitude, and calving rate of Columbia Glacier, Alaska have been recorded with stereo vertical photography acquired on 119 dates from 1957 to 2000. Photogrammetric analysis of this photographic record has resulted in precise measurement of these changes. From 1982 to 2000 Columbia Glacier retreated 12 kilometers, reduced its thickness by as much as 400 meters, increased its speed from about 5 to 30 meters per day, and increased its calving rate from 3 to 18 million cubic meters per day. All photogrammetric data for Columbia Glacier from 1957 to 2000 are included in this report, as well as supplemental data of ice-dammed lake surface levels, stagnant ice ablation rate, forebay bathymetry, ground control, and camera calibrations. These data are contained in 481 files, all preserved on a CD-ROM included with this report.
Labay, Keith A.; Haeussler, Peter J.
2008-01-01
A new Digital Elevation Model was created using the best available high-resolution topography and multibeam bathymetry surrounding the area of Seward, Alaska. Datasets of (1) LIDAR topography collected for the Kenai Watershed Forum, (2) Seward harbor soundings from the U.S. Army Corp of Engineers, and (3) multibeam bathymetry from the National Oceanic and Atmospheric Administration contributed to the final combined product. These datasets were placed into a common coordinate system, horizontal datum, vertical datum, and data format prior to being combined. The projected coordinate system of Universal Transverse Mercator Zone 6 North American Datum of 1927 was used for the horizontal coordinates. Z-values in meters were referenced to the tidal datum of Mean High Water. Gaps between the datasets were interpolated to create the final seamless 5-meter grid covering the area of interest around Seward, Alaska.
A Machine Learning Approach to Predicted Bathymetry
NASA Astrophysics Data System (ADS)
Wood, W. T.; Elmore, P. A.; Petry, F.
2017-12-01
Recent and on-going efforts have shown how machine learning (ML) techniques, incorporating more, and more disparate data than can be interpreted manually, can predict seafloor properties, with uncertainty, where they have not been measured directly. We examine here a ML approach to predicted bathymetry. Our approach employs a paradigm of global bathymetry as an integral component of global geology. From a marine geology and geophysics perspective the bathymetry is the thickness of one layer in an ensemble of layers that inter-relate to varying extents vertically and geospatially. The nature of the multidimensional relationships in these layers between bathymetry, gravity, magnetic field, age, and many other global measures is typically geospatially dependent and non-linear. The advantage of using ML is that these relationships need not be stated explicitly, nor do they need to be approximated with a transfer function - the machine learns them via the data. Fundamentally, ML operates by brute-force searching for multidimensional correlations between desired, but sparsely known data values (in this case water depth), and a multitude of (geologic) predictors. Predictors include quantities known extensively such as remotely sensed measurements (i.e. gravity and magnetics), distance from spreading ridge, trench etc., (and spatial statistics based on these quantities). Estimating bathymetry from an approximate transfer function is inherently model, as well as data limited - complex relationships are explicitly ruled out. The ML is a purely data-driven approach, so only the extent and quality of the available observations limit prediction accuracy. This allows for a system in which new data, of a wide variety of types, can be quickly and easily assimilated into updated bathymetry predictions with quantitative posterior uncertainties.
NASA Astrophysics Data System (ADS)
Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Maier, K. L.; McGann, M.; Herguera, J. C.; Gwiazda, R.; Arregui, S.; Barrientos, L. A.
2015-12-01
The Monterey Bay Aquarium Research Institute (MBARI) conducted detailed surveys at selected sites on the seafloor along the Bahia Soledad Fault offshore of Northern Baja California, Mexico, during a two-ship expedition in the spring of 2015. The Bahia Soledad Fault is a NNW-trending strike-slip fault that is likely continuous with the San Diego Trough Fault offshore of San Diego, California. Constraining the style of deformation, continuity, and slip rate along this fault system is critical to characterizing the seismic hazards to the adjacent coastal areas extending from Los Angeles to Ensenada. Detailed morphologic surveys were conducted using an autonomous underwater vehicle (AUV) to provide ultra high-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m). The AUV also carried a 2-10 kHz chirp sub-bottom profiler and an Edgetech 110kHz and 410kHz sidescan. The two sites along the Bahia Soledad Fault each run ~6 km along the fault with ~1.8 km wide footprint. The resulting bathymetry shows these fault zones are marked with distinct lineations that are flanked by ~1 km long elongated ridges and depressions which are interpreted to be transpressional pop-up structures and transtensional pull-apart basins up to 100 m of relief. Offset seismic reflectors that extend to near the seafloor confirm that these lineations are fault scarps. The detailed bathymetric maps and sub-bottom profiles were used to locate key sites where deformed stratigraphic horizons along the fault are within 1.5 m of the seafloor. These areas were sampled using a remotely operated vehicle (ROV) equipped with a vibracoring system capable of collecting precisely located cores that are up to 1.5 m long. The coupled use of multibeam imagery and surgically-collected stratigraphic samples will enable to constrain the frequency and timing of recent movements on this fault which will be useful to incorporated into future seismic hazard assessment.
Marlow, M. S.; Gardner, J.V.; Normark, W.R.
2000-01-01
Recently acquired high-resolution multibeam bathymetric data reveal several linear traces that are the surficial expressions of seafloor rupture of Holocene faults on the upper continental slope southeast of the Palos Verdes Peninsula. High-resolution multichannel and boomer seismic-reflection profiles show that these linear ruptures are the surficial expressions of Holocene faults with vertical to steep dips. The most prominent fault on the multibeam bathymetry is about 10 km to the west of the mapped trace of the Palos Verdes fault and extends for at least 14 km between the shelf edge and the base of the continental slope. This fault is informally called the Avalon Knoll fault for the nearby geographic feature of that name. Seismic-reflection profiles show that the Avalon Knoll fault is part of a northwest-trending complex of faults and anticlinal uplifts that are evident as scarps and bathymetric highs on the multibeam bathymetry. This fault complex may extend onshore and contribute to the missing balance of Quaternary uplift determined for the Palos Verdes Hills and not accounted for by vertical uplift along the onshore Palos Verdes fault. We investigate the extent of the newly located offshore Avalon Knoll fault and use this mapped fault length to estimate likely minimum magnitudes for events along this fault.
NASA Astrophysics Data System (ADS)
Profe, Jörn; Höfle, Bernhard
2017-04-01
Tufas are secondary carbonate precipitations which occur ubiquitously in karstic environments. Thus, freshwater tufas are increasingly noticed as a high-resolution terrestrial paleoclimate archive. However, complex interactions between climate, hydrology and geomorphology drive tufa landscapes as a self-organizing system that creates a patchy transition zone between land and water at the decimeter scale. These feedbacks challenge the modern analogue technique to understand paleo-tufa evolution and require a detailed 3D characterization of tufa geomorphometry to better understand their shaping processes in relation to channel bed morphology. Due to the complex geometric nature of tufa landscapes and predominant land-water transition zones, new remote sensing techniques such as airborne sub-meter footprint LiDAR topo-bathymetry (ALTB) are necessary to enable a detailed 3D description. Using the Riegl VQ-820-G at the Kaisinger Brunnenbach, Germany, we successfully detected submerged and subaerial tufas with maximum total dam heights from 0.3 m up to 1.6 m (cf. Profe et al. 2016). In addition, slope and openness derived from a high-resolution digital terrain model (DTM) with 0.2 m spatial resolution provide insights into barrage morphology and orientation. We found that longitudinal slope analysis along the river course relates tufa morphology to channel bed morphology. Raster-based data quality control of the LiDAR topo-bathymetric DTM reveals an overall vertical data precision of 3 cm and an overall vertical data accuracy of 15.4 cm (1σ) (Profe et al. 2016). The 3D characterization of tufa landscapes facilitates the identification of monitoring and drilling sites for subsequent hydrological and geochemical studies that deepen our knowledge about the complex barrage formation processes. In the advent of UAV-borne LiDAR platforms, we are convinced that it becomes possible to reduce data uncertainty and to better represent e.g. tufa overhangs, vegetation cover and incorporated plant material. Furthermore, our findings may foster research in other disciplines that work on small-scale land-water transition zones and are interested in a detailed 3D geomorphometric description derived from 3D point clouds directly. Reference: Profe, J., Höfle, B., Hämmerle, M., Steinbacher, F., Yang, M.-S., Schröder-Ritzrau, A., Frank, N., 2016. Characterizing tufa barrages in relation to channel bed morphology in a small karstic river by airborne LiDAR topo-bathymetry. Proceedings of the Geologists' Association 127: 664-675. doi:10.1016/j.pgeola.2016.10.004
NASA Astrophysics Data System (ADS)
Flinders, Ashton F.; Mayer, Larry A.; Calder, Brian A.; Armstrong, Andrew A.
2014-05-01
We document a new high-resolution multibeam bathymetry compilation for the Canada Basin and Chukchi Borderland in the Arctic Ocean - United States Arctic Multibeam Compilation (USAMBC Version 1.0). The compilation preserves the highest native resolution of the bathymetric data, allowing for more detailed interpretation of seafloor morphology than has been previously possible. The compilation was created from multibeam bathymetry data available through openly accessible government and academic repositories. Much of the new data was collected during dedicated mapping cruises in support of the United States effort to map extended continental shelf regions beyond the 200 nm Exclusive Economic Zone. Data quality was evaluated using nadir-beam crossover-error statistics, making it possible to assess the precision of multibeam depth soundings collected from a wide range of vessels and sonar systems. Data were compiled into a single high-resolution grid through a vertical stacking method, preserving the highest quality data source in any specific grid cell. The crossover-error analysis and method of data compilation can be applied to other multi-source multibeam data sets, and is particularly useful for government agencies targeting extended continental shelf regions but with limited hydrographic capabilities. Both the gridded compilation and an easily distributed geospatial PDF map are freely available through the University of New Hampshire's Center for Coastal and Ocean Mapping (ccom.unh.edu/theme/law-sea). The geospatial pdf is a full resolution, small file-size product that supports interpretation of Arctic seafloor morphology without the need for specialized gridding/visualization software.
A 3D unstructured-grid model for Chesapeake Bay: Importance of bathymetry
NASA Astrophysics Data System (ADS)
Ye, Fei; Zhang, Yinglong J.; Wang, Harry V.; Friedrichs, Marjorie A. M.; Irby, Isaac D.; Alteljevich, Eli; Valle-Levinson, Arnoldo; Wang, Zhengui; Huang, Hai; Shen, Jian; Du, Jiabi
2018-07-01
We extend the 3D unstructured-grid model previously developed for the Upper Chesapeake Bay to cover the entire Bay and its adjacent shelf, and assess its skill in simulating saltwater intrusion and the coastal plume. Recently developed techniques, including a flexible vertical grid system and a 2nd-order, monotone and implicit transport solver are critical in successfully capturing the baroclinic responses. Most importantly, good accuracy is achieved through an accurate representation of the underlying bathymetry, without any smoothing. The model in general exhibits a good skill for all hydrodynamic variables: the averaged root-mean-square errors (RMSE's) in the Bay are 9 cm for sub-tidal frequency elevation, 17 cm/s for 3D velocity time series, 1.5 PSU and 1.9 PSU for surface and bottom salinity respectively, 1.1 °C and 1.6 °C for surface and bottom temperature respectively. On the shelf, the average RMSE for the surface temperature is 1.4 °C. We highlight, through results from sensitivity tests, the central role played by bathymetry in this estuarine system and the detrimental effects, from a common class of bathymetry smoothers, on volumetric and tracer fluxes as well as key processes such as the channel-shoal contrast in the estuary and plume propagation in the coast.
Airborne Lidar Bathymetry: The SHOALS System
2016-05-09
response. SHOALS’ first mission in this capacity was at East Pass, a tidal inlet located on the Florida Panhandle near Destin. Hurricane Opal , a...East Pass for example, the SHOALS survey following Hurricane Opal allowed precise determination of unsafe channel depths and allowed accurate
NASA Astrophysics Data System (ADS)
An, L.; Rignot, E.; Rivera, A.; Bunetta, M.
2012-12-01
The North and South Patagonia Ice fields are the largest ice masses outside Antarctica in the Southern Hemisphere. During the period 1995-2000, these glaciers lost ice at a rate equivalent to a sea level rise of 0.105 ± 0.001 mm/yr. In more recent years, the glaciers have been thinning more quickly than can be explained by warmer air temperatures and decreased precipitation. A possible cause is an increase in flow speed due to enhanced ablation of the submerged glacier fronts. To understand the dynamics of these glaciers and how they change with time, it is critical to have a detailed view of their ice thickness, the depth of the glacier bed below sea or lake level, how far inland these glaciers remain below sea or lake level, and whether bumps or hollows in the bed may slow down or accelerate their retreat. A grid of free-air gravity data over the Patagonia Glaciers was collected in May 2012 and October 2012, funded by the Gordon and Betty Moore Foundation (GBMF) to measure ice thickness and sea floor bathymetry. This survey combines the Sander Geophysics Limited (SGL) AIRGrav system, SGL laser altimetry and Chilean CECS/UCI ANDREA-2 radar. To obtain high-resolution and high-precision gravity data, the helicopter operates at 50 knots (25.7 m/s) with a grid spacing of 400m and collects gravity data at sub mGal level (1 Gal =1 Galileo = 1 cm/s2) near glacier fronts. We use data from the May 2012 survey to derive preliminarily high-resolution, high-precision thickness estimates and bathymetry maps of Jorge Montt Glacier and San Rafael Glacier. Boat bathymetry data is used to optimize the inversion of gravity over water and radar-derived thickness over glacier ice. The bathymetry maps will provide a breakthrough in our knowledge of the ice fields and enable a new era of glacier modeling and understanding that is not possible at present because ice thickness is not known.
Fast and low-cost method for VBES bathymetry generation in coastal areas
NASA Astrophysics Data System (ADS)
Sánchez-Carnero, N.; Aceña, S.; Rodríguez-Pérez, D.; Couñago, E.; Fraile, P.; Freire, J.
2012-12-01
Sea floor topography is key information in coastal area management. Nowadays, LiDAR and multibeam technologies provide accurate bathymetries in those areas; however these methodologies are yet too expensive for small customers (fishermen associations, small research groups) willing to keep a periodic surveillance of environmental resources. In this paper, we analyse a simple methodology for vertical beam echosounder (VBES) bathymetric data acquisition and postprocessing, using low-cost means and free customizable tools such as ECOSONS and gvSIG (that is compared with industry standard ArcGIS). Echosounder data was filtered, resampled and, interpolated (using kriging or radial basis functions). Moreover, the presented methodology includes two data correction processes: Monte Carlo simulation, used to reduce GPS errors, and manually applied bathymetric line transformations, both improving the obtained results. As an example, we present the bathymetry of the Ría de Cedeira (Galicia, NW Spain), a good testbed area for coastal bathymetry methodologies given its extension and rich topography. The statistical analysis, performed by direct ground-truthing, rendered an upper bound of 1.7 m error, at 95% confidence level, and 0.7 m r.m.s. (cross-validation provided 30 cm and 25 cm, respectively). The methodology presented is fast and easy to implement, accurate outside transects (accuracy can be estimated), and can be used as a low-cost periodical monitoring method.
NASA Astrophysics Data System (ADS)
Scheffer, Annette; Trathan, Philip N.; Edmonston, Johnnie G.; Bost, Charles-André
2016-02-01
Investigating the responses of marine predators to environmental features is of key importance for understanding their foraging behaviour and reproductive success. In this study we examined the foraging behaviour of king penguins breeding at Kerguelen (southern Indian Ocean) in relation to oceanographic and bathymetric features within their foraging ambit. We used ARGOS and Global Positioning System tracking together with Time-Depth-Temperature-Recorders (TDR) to follow the at-sea movements of incubating and brooding king penguins. Combining the penguin behaviour with oceanographic data at the surface through satellite data and at depth through in-situ recordings by the TDRs enabled us to explore how these predators adjusted their horizontal and vertical foraging movements in response to their physical environment. Relating the observed behaviour and oceanographic patterns to local bathymetry lead to a comprehensive picture of the combined influence of bathymetry and meso-scale circulation on the foraging behaviour of king penguins. During both breeding stages king penguins foraged in the area to the south-east of Kerguelen, where they explored an influx of cold waters of southern origin interacting with the Kerguelen Plateau bathymetry. Foraging in the Polar Front and at the thermocline was associated with high prey capture rates. However, foraging trip orientation and water mass utilization suggested that bathymetrically entrained cold-water features provided the most favourable foraging locations. Our study explicitly reports the exploration of bathymetry-related oceanographic features by foraging king penguins. It confirms the presence of Areas of Ecological Significance for marine predators on the Kerguelen Plateau, and suggests the importance of further areas related to the cold-water flow along the shelf break of the Kerguelen Plateau.
CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation
NASA Astrophysics Data System (ADS)
Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.
2017-12-01
The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.
NASA Astrophysics Data System (ADS)
McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.
2002-12-01
There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types. Acoustic backscatter imagery corresponds well with the AVIRIS data in the middle to outer study area, implying a close correspondence between seafloor character and optical reflectance. AVIRIS data in the inner study area show poorer correspondence with the acoustic facies, indicating greater water column effects (turbidity). Acoustic backscatter as a proxy for bottom albedo, in conjunction with multibeam bathymetry data, will allow for more precise modeling of the optical signal in coastal environments.
NASA Astrophysics Data System (ADS)
Caress, D. W.; Clague, D. A.; Paduan, J. B.; Thomas, H. J.; Chadwick, W. W., Jr.; Nooner, S. L.; Yoerger, D.
2016-12-01
Axial Seamount is an intensely studied submarine hotspot volcano on the Juan de Fuca Ridge that erupted in 1998, 2011, and 2015. MBARI Mapping AUV surveys during 2006-2009 obtained nearly complete 1 m resolution topographic coverage of the Axial Seamount summit, including the caldera, the caldera rim, and the south rift zone. Surveys following both recent eruptions mapped new lava flows and extended coverage of the caldera rim and the north and south rifts. These include 2011 (post-eruption), 2014, and 2016 MBARI Mapping AUV surveys and 2015 (post-eruption) WHOI AUV Sentry surveys. These AUVs use 200 kHz or 400 kHz multibeam sonars operated from 50 m to 75 m altitudes to achieve 1 m lateral resolution and 0.1 m vertical precision. Differencing repeat surveys allows detection of topographic change > 0.2 m, a capability used to map the extent, morphology and volume of lava flows emplaced by the 2011 and 2015 eruptions. In situ pressure observations show the uplift and subsidence of the caldera center associated with pre-eruption inflation and co-eruption deflation of the sub-caldera magma chamber has a 2.5-3.5 m magnitude, and thus can be observed by repeat AUV surveys. A survey pattern crossing the caldera interior both E-W and N-S and extending 8 km down the south rift was established in 2011 that has been repeated in 2014, 2015, and 2016. The 2015 surveys established a larger, asterisk-shaped survey pattern extending about 4 km outside the caldera walls along seven lines that has now been repeated in 2016. Repeat survey comparison reveals the vertical deformation pattern of the eruption cycle. Between 2011 and 2014 the uplift has a maximum of 1.8 m near the caldera center, and diminishes steadily away from this site. Between 2014 and 2015 there is a 1.0 m subsidence of the caldera center associated with the April 2015 eruption. The comparison of the 2011 and 2015 surveys shows that the caldera floor is slightly uplifted four months after the 2015 eruption relative to four months after the 2011 eruption. Results incorporating the new 2016 surveys will be presented. These results are consistent with 1 cm precision pressure benchmark observations on the caldera and south rift by Chadwick and Nooner. Our AUV mapping method is less precise than pressure benchmark data but measures the deformation pattern over a larger, spatially continuous area.
NASA Technical Reports Server (NTRS)
Garcia, Rodrigo A.; Fearns, Peter R. C. S.; Mckinna, Lachlan I. W.
2014-01-01
The Hyperspectral Imager for the Coastal Ocean (HICO) aboard the International Space Station has offered for the first time a dedicated space-borne hyperspectral sensor specifically designed for remote sensing of the coastal environment. However, several processing steps are required to convert calibrated top-of-atmosphere radiances to the desired geophysical parameter(s). These steps add various amounts of uncertainty that can cumulatively render the geophysical parameter imprecise and potentially unusable if the objective is to analyze trends and/or seasonal variability. This research presented here has focused on: (1) atmospheric correction of HICO imagery; (2) retrieval of bathymetry using an improved implementation of a shallow water inversion algorithm; (3) propagation of uncertainty due to environmental noise through the bathymetry retrieval process; (4) issues relating to consistent geo-location of HICO imagery necessary for time series analysis, and; (5) tide height corrections of the retrieved bathymetric dataset. The underlying question of whether a temporal change in depth is detectable above uncertainty is also addressed. To this end, nine HICO images spanning November 2011 to August 2012, over the Shark Bay World Heritage Area, Western Australia, were examined. The results presented indicate that precision of the bathymetric retrievals is dependent on the shallow water inversion algorithm used. Within this study, an average of 70% of pixels for the entire HICO-derived bathymetry dataset achieved a relative uncertainty of less than +/-20%. A per-pixel t-test analysis between derived bathymetry images at successive timestamps revealed observable changes in depth to as low as 0.4 m. However, the present geolocation accuracy of HICO is relatively poor and needs further improvements before extensive time series analysis can be performed.
High precision detector robot arm system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Chu, Yong
A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.
Neural networks for the generation of sea bed models using airborne lidar bathymetry data
NASA Astrophysics Data System (ADS)
Kogut, Tomasz; Niemeyer, Joachim; Bujakiewicz, Aleksandra
2016-06-01
Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project `Investigation on the use of airborne laser bathymetry in hydrographic surveying'. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW), Delaunay Triangulation (TIN), and supervised Artificial Neural Networks (ANN), for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.
NASA Astrophysics Data System (ADS)
Papoutsellis, Christos; Athanassoulis, Gerassimos; Charalampopoulos, Alexis-Tzianni
2017-04-01
In this work, we investigate the transformations that solitary surface waves undergo during their interaction with uneven seabed and/or fully reflective vertical boundaries. This is accomplished by performing simulations using a non-local Hamiltonian formulation, taking into account full nonlinearity and dispersion, in the presence of variable seabed [1]. This formulation is based on an exact coupled-mode representation of the velocity potential, leading to efficient and accurate computations of the Dirichlet to Neumann operator, required in Zakharov/Craig-Sulem formulation [2], [3]. In addition, it allows for the efficient computation of wave kinematics (velocity, acceleration) and the pressure field, in the time-dependent fluid domain, up to its physical boundaries. Such computations are performed for the case of high-amplitude solitary waves interacting with varying bathymetry and/or a vertical wall, shedding light to their kinematics and dynamics. More specifically, we first consider two benchmark cases, namely the transformation of solitary waves over a plane beach [4], and the reflection of solitary waves on a vertical wall [5]. As a further step, results on the scattering/reflection of a solitary wave due to an undulating seabed, and on the disintegration of a solitary wave travelling form shallow to deep water are also presented. References:[1] G.A. Athanassoulis. & Ch.E. Papoutsellis, in Volume 7: Ocean Engineering, ASME, OMAE2015-41452, p. V007T06A029 (2015)[2] W. Craig, C. Sulem, J. Comp. Phys. 108, 73-83 (1993) [3] V. Zakharov, J. Appl. Mech. Tech. Phys 9, 86-94 (1968)[4] S. Grilli, R. Subramanya, T. Svendsen. & J. Veeramony, J. Waterway, Port, Coastal, Ocean Eng. 120(6), 609-628. (1994)[5] Y.Y. Chen, C. Kharif , J.H. Yang, H.C. Hsu, J. Touboul & J. Chambarel, Eur. J. Mech B-Fluid 49, 20-28 (2015)
NASA Astrophysics Data System (ADS)
Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.
2009-12-01
Airborne bathymetric Light Detection and Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly being deployed in fluvial environments. While the adaptation of this technology to rivers and streams would appear to be straightforward, currently technical challenges remain with regard to achieving high levels of vertical accuracy and precision when mapping bathymetry in shallow fluvial settings. Collectively these mapping errors have a direct bearing on hydraulic model predictions made using these data. We compared channel surveys conducted along the Platte River, Nebraska, and the Trinity River, California, using conventional ground-based methods with those made with the hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). In the turbid and braided Platte River, a bathymetric-waveform processing algorithm was shown to enhance the definition of thalweg channels over a more simplified, first-surface waveform processing algorithm. Consequently flow simulations using data processed with the shallow bathymetric algorithm resulted in improved prediction of wetted area relative to the first-surface algorithm, when compared to the wetted area in concurrent aerial imagery. However, when compared to using conventionally collected data for flow modeling, the inundation extent was over predicted with the EAARL topography due to higher bed elevations measured by the LiDAR. In the relatively clear, meandering Trinity River, bathymetric processing algorithms were capable of defining a 3 meter deep pool. However, a similar bias in depth measurement was observed, with the LiDAR measuring the elevation of the river bottom above its actual position, resulting in a predicted water surface higher than that measured by field data. This contribution addresses the challenge of making bathymetric measurements with the EAARL in different environmental conditions encountered in fluvial settings, explores technical issues related to reliably detecting the water surface and river bottom, and illustrates the impact of using LiDAR data and current processing techniques to produce above and below water topographic surfaces for hydraulic modeling and habitat applications.
NASA Astrophysics Data System (ADS)
Guo, Zhikui; Chen, Chao; Tao, Chunhui
2016-04-01
Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model tests and field applications indicate that the adaptive terrain correction method can be adopted as a rapid and accurate tool of marine gravity data processing. References Davis, K. &Kass, M.A. & Li, Y., 2011. Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization, EXPLOR GEOPHYS, 42, 88-97. Sandwell, D.T., Müller, R.D., Smith, W.H., Garcia, E. & Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure, SCIENCE, 346, 65-67. Tao, C., Li, H., Jin, X., Zhou, J., Wu, T., He, Y., Deng, X., Gu, C., Zhang, G. & Liu, W., 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge, CHINESE SCI BULL, 59, 2266-2276. Tsoulis, D., 2012. Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals, GEOPHYSICS, 77, F1-F11.
NASA Astrophysics Data System (ADS)
Charland, Jenna; Touboul, Julien; Rey, Vincent
2013-04-01
Wave propagation against current : a study of the effects of vertical shears of the mean current on the geometrical focusing of water waves J. Charland * **, J. Touboul **, V. Rey ** jenna.charland@univ-tln.fr * Direction Générale de l'Armement, CNRS Délégation Normandie ** Université de Toulon, 83957 La Garde, France Mediterranean Institute of Oceanography (MIO) Aix Marseille Université, 13288 Marseille, France CNRS/INSU, IRD, MIO, UM 110 In the nearshore area, both wave propagation and currents are influenced by the bathymetry. For a better understanding of wave - current interactions in the presence of a 3D bathymetry, a large scale experiment was carried out in the Ocean Basin FIRST, Toulon, France. The 3D bathymetry consisted of two symmetric underwater mounds on both sides in the mean wave direction. The water depth at the top the mounds was hm=1,5m, the slopes of the mounds were of about 1:3, the water depth was h=3 m elsewhere. For opposite current conditions (U of order 0.30m/s), a huge focusing of the wave up to twice its incident amplitude was observed in the central part of the basin for T=1.4s. Since deep water conditions are verified, the wave amplification is ascribed to the current field. The mean velocity fields at a water depth hC=0.25m was measured by the use of an electromagnetic current meter. The results have been published in Rey et al [4]. The elliptic form of the "mild slope" equation including a uniform current on the water column (Chen et al [1]) was then used for the calculations. The calculated wave amplification of factor 1.2 is significantly smaller than observed experimentally (factor 2). So, the purpose of this study is to understand the physical processes which explain this gap. As demonstrated by Kharif & Pelinovsky [2], geometrical focusing of waves is able to modify significantly the local wave amplitude. We consider this process here. Since vertical velocity profiles measured at some locations have shown significant vertical shears, further theoretical expansions have considered this shearing following the hypothesis proposed by Kirby [3]. A numerical solver for this new equation is being developed. Results obtained with this new equation will be compared to a new set of experiments. This comparison will allow us to quantify the role of a sheared current in the geometrical focusing of the wave. References : [1] W. Chen, V. Panchang, and Z. Demirbilek. On the modeling of wave-current interaction using the elliptic mild-slope wave equation. Ocean Engineering, 32 :2135-2164, 2005. [2] C. Kharif and E. Pelinovsky. Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics B/Fluids, 22 : 603-634, 2003 [3] J. T. Kirby. A note on linear surface wave-current interaction over slowly varying topography. Journal of Geophysical Research, 89(C1) : 745-747, January 20 1984. [4] V. Rey, F. Guinot, and J. Touboul. Large scale experimental study of wave current interactions in presence of a 3d bathymetry. Genoa : s.n., 2011. International Maritime Association of the Mediterranean.
Marine magnetotelluric inversion with an unstructured tetrahedral mesh
NASA Astrophysics Data System (ADS)
Usui, Yoshiya; Kasaya, Takafumi; Ogawa, Yasuo; Iwamoto, Hisanori
2018-05-01
The finite element method using an unstructured tetrahedral mesh is one of the most effective methods for the three-dimensional modelling of marine magnetotelluric data which are strongly affected by bathymetry, because it enables us to incorporate both small-scale and regional-scale bathymetry into a computational mesh with a practical number of elements. The authors applied a three-dimensional inversion scheme using mesh of this type to marine magnetotelluric problems for the first time and verified its applicability. Forward calculations for two bathymetry models demonstrated that the results obtained with an unstructured tetrahedral mesh are close to the reference solutions. To evaluate the forward calculation results, we developed a general TM-mode analytical formulation for a two-dimensional sinusoidal topography. Moreover, synthetic inversion test results confirmed that a three-dimensional inversion scheme with an unstructured tetrahedral mesh enables us to recover subseafloor resistivity structure properly even for a model including a land-sea boundary as well as seafloor undulations. The verified inversion scheme was subsequently applied to a set of marine magnetotelluric data observed around the Iheya North Knoll, the middle Okinawa Trough. Three-dimensional modelling using a mesh with precise bathymetry demonstrated that the data observed around the Iheya North Knoll are strongly affected by bathymetry, especially by the sea-depth differences between the depression of the trough and the shallow East China Sea. The estimated resistivity structure under the knoll is characterized by a conductive surface layer underlain by a resistive layer. The conductive layer implies permeable pelagic/hemi-pelagic sediments, which are consistent with a previous seismological study. Furthermore, the conductive layer has a resistive part immediately below the knoll, which is regarded as the consolidated magma intrusion that formed the knoll. Furthermore, at depth of 10 km, we found that the resistor underneath the knoll extends to the southeast, implying that subseafloor resistivity under the Volcanic Arc Migration Phenomenon (VAMP) area is more resistive than the surroundings due to the presence of consolidated magma.
Rip currents and alongshore flows in single channels dredged in the surf zone
NASA Astrophysics Data System (ADS)
Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh
2017-05-01
To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.
Rip currents and alongshore flows in single channels dredged in the surf zone
Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh
2017-01-01
To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.
NASA Astrophysics Data System (ADS)
Lague, Dimitri; Launeau, Patrick; Michon, Cyril; Gouraud, Emmanuel; Juge, Cyril; Gentile, William; Hubert-Moy, Laurence; Crave, Alain
2016-04-01
Airborne, terrestrial lidar and Structure From Motion have dramatically changed our approach of geomorphology, from low density/precision data, to a wealth of data with a precision adequate to actually measure topographic change across multiple scales, and its relation to vegetation. Yet, an important limitation in the context of fluvial geomorphology has been the inability of these techniques to penetrate water due to the use of NIR laser wavelengths or to the complexity of accounting for water refraction in SFM. Coastal bathymetric systems using a green lidar can penetrate clear water up to 50 m but have a resolution too coarse and deployment costs that are prohibitive for fluvial research and management. After early prototypes of narrow aperture green lidar (e.g., EEARL NASA), major lidar manufacturer are now releasing dual wavelength laser system that offer water penetration consistent with shallow fluvial bathymetry at very high resolution (> 10 pts/m²) and deployment costs that makes the technology, finally accessible. This offers unique opportunities to obtain synoptic high resolution, high precision data for academic research as well as for fluvial environment management (flood risk mapping, navigability,…). In this presentation, we report on the deployment of the latest generation Teledyne-Optech Titan dual-wavelength lidar (1064 nm + 532 nm) owned by the University of Nantes and Rennes. The instrument has been deployed over several fluvial and lacustrine environments in France. We present results and recommendation on how to optimize the bathymetric cover as a function of aerial and aquatic vegetation cover and the hydrology regime of the river. In the surveyed rivers, the penetration depth varies from 0.5 to 4 m with discrete echoes (i.e., onboard detection), heavily impacted by water clarity and bottom reflectance. Simple post-processing of the full waveform record allows to recover an additional 20 % depth. As for other lidar techniques, the main challenge lies in the post-processing of the massive amount of data generated by the instrument (typically 10 billions points for 60 km of rivers). Yet the very high density of the raw point cloud data (40 pts/m² on topography, 20 pts/m² on bathymetry) and the full waveform nature of the signal offers new opportunities to develop classification and change detection algorithms. In this context, we present a new automated workflow to extract automatically the water surface (a critical aspect for refraction correction) and submerged data in highly complex fluvial environments based on a combined analysis of the 1064 nm and 532 nm channels. We conclude that topo-bathymetric lidar is getting close to being an operational technique for fluvial bathymetry offering a vast range of applications in hydrology, ecohydrology, geomorphology and river management.
Quantification of Surf Zone Bathymetry from Video Observations of Wave Breaking
NASA Astrophysics Data System (ADS)
Aarninkhof, S.; Ruessink, G.
2002-12-01
Cost-efficient methods to quantify surf zone bathymetry with high resolution in time and space would be of great value for coastal research and management. Automated video techniques provide the potential to do so. Time-averaged video observations of the nearshore zone show bright intensities at locations where waves preferentially break. Highly similar patterns are found from model simulations of depth-induced wave breaking, which show increasing rates of wave dissipation in shallow areas like sand bars. Thus, video observations of wave breaking - at least qualitatively - reflect sub-merged beach bathymetry. In search of the quantification of this relationship, we present a new model concept to map sub-merged beach bathymetry from time-averaged video images. This is achieved by matching model-predicted and video-observed rates of wave dissipation. First, time-averaged image intensities are sampled along a cross-shore array and interpreted in terms of a wave dissipation parameter. This involves a correction for the effect of persistent foam, which is visible at time-averaged video images but not predicted by common wave propagation models. The dissipation profiles thus obtained are used to update an initial beach bathymetry through optimisation of the match between measured and modelled rates of wave dissipation. The latter is done by raising the bottom elevation in areas where the measured dissipation rate exceeds the computed dissipation and vice versa. Since the model includes video data with high resolution in time (typically multiple images over a tidal cycle), it allows for virtually continous monitoring of surfzone bathymetry . Model tests against a synthetic data set of artificially generated wave dissipation profiles have shown the model's capability to accurately reconstruct beach bathymetry, over a wide range of morphological configurations. Maximum model deviations were found in the case of highly developed bar-trough systems (bar heights up to 4 m) and near the shoreline. Model performance strongly benefits from an increase of wave heights and tidal ranges. At the moment, the model is subject to validation against a data set of multiple-barred beach profiles, surveyed during a 3 week period of stormy wheather in the course of the Coast3D field experiments at Egmond (The Netherlands). Although the video-based estimates of bar bathymetry show a shoreward off-set of the location of the inner bar and vertical deviations of 0.5 (0.8) m near the outer (inner) bar crest, these preliminary results show a promising match in terms of profile shape and the migration of the seaward bar face. Model application at the time scale of months to years is subject to present research. This work was supported by the DIOC Earth Observations of Delft University of Technology, the Delft Cluster program at Delft Hydraulics, the Dutch Ministry of Public Works Rijkswaterstaaat and the EU-funded Coastview project.
NASA Astrophysics Data System (ADS)
Caress, D. W.; Paull, C. K.; Dallimore, S.; Lundsten, E. M.; Anderson, K.; Gwiazda, R.; Melling, H.; Lundsten, L.; Graves, D.; Thomas, H. J.; Cote, M.
2017-12-01
Two active submarine mud volcano sites located at 420 and 740 m depths on the margin of the Canadian Beaufort Sea were mapped in 2013 and again in 2016 using the same survey line pattern allowing detection of change over three years. The surveys were conducted using MBARI's mapping AUVs which fields a 200 kHz or 400 kHz multibeam sonar, a 1-6 kHz chirp sub-bottom profiler, and a 110 kHz chirp sidescan from a 50 m altitude. The resulting bathymetry has 1 m lateral resolution and 0.1 m vertical precision and sidescan mosaics have 1 m lateral resolution. Vertical changes of ≥0.2 m are observable by differencing repeat surveys. These features were also visited with MBARI's miniROV, which was outfitted for these dives with a manipulator mounted temperature probe. The 420 m mud volcano is nearly circular, 1100 m across, flat-topped, and superimposed on the pre-existing smooth slope. The central plateau has low relief <3 m consisting of concentric rings and ovoid mounds that appear to reflect distinct eruptions at shifting locations. The 740 m site contains 3 mud volcanoes, most prominently a 630 m wide, 30 m high flat-topped plateau with about 4 m of relief similar to the 420 m feature plus a 5 m high cone on the southern rim. North of this plateau is a smooth-textured conically shaped feature also standing about 30 m above the floor of the subsidence structure. Sidescan mosaics reveal significant changes in backscatter patterns at both mud volcano sites between surveys. Comparison of bathymetry also reveals new flows of up to 1.8 m thickness at both sites, as well as subtle spreading of the flat plateaus rims. An active mudflow was encountered during a miniROV dive on a high backscatter target at the 740 m site. This tongue of mud was observed to be slowly flowing downslope. The ROV temperature probe inserted 2 cm into the flow measured 23°C, compared to ambient water (-0.4°C), indicating the rapid ascent of the mud from considerable subsurface depths. Bubbles (presumably methane) were escaping from the active mudflow. Combining seafloor mapping with ROV observations indicates that new sediment flows with entrained methane bubbles exhibit very high backscatter which rapidly changes to very low backscatter following degassing of the smooth, bare mud. To our knowledge this is the first time an eruption on a submarine mud volcano has been observed.
Observations of Seafloor Roughness in a Tidally Modulated Inlet
NASA Astrophysics Data System (ADS)
Lippmann, T. C.; Hunt, J.
2014-12-01
The vertical structure of shallow water flows are influenced by the presence of a bottom boundary layer, which spans the water column for long period waves or mean flows. The nature of the boundary is determined in part by the roughness elements that make up the seafloor, and includes sometimes complex undulations associated with regular and irregular shaped bedforms whose scales range several orders of magnitude from orbital wave ripples (10-1 m) to mega-ripples (100 m) and even larger features (101-103) such as sand waves, bars, and dunes. Modeling efforts often parameterize the effects of roughness elements on flow fields, depending on the complexity of the boundary layer formulations. The problem is exacerbated by the transient nature of bedforms and their large spatial extent and variability. This is particularly important in high flow areas with large sediment transport, such as tidally dominated sandy inlets like New River Inlet, NC. Quantification of small scale seafloor variability over large spatial areas requires the use of mobile platforms that can measure with fine scale (order cm) accuracy in wide swaths. The problem is difficult in shallow water where waves and currents are large, and water clarity is often limited. In this work, we present results from bathymetric surveys obtained with the Coastal Bathymetry Survey System, a personal watercraft equipped with a Imagenex multibeam acoustic echosounder and Applanix POS-MV 320 GPS-aided inertial measurement unit. This system is able to measure shallow water seafloor bathymetry and backscatter intensity with very fine scale (10-1 m) resolution and over relatively large scales (103 m) in the presence of high waves and currents. Wavenumber spectra show that the noise floor of the resolved multibeam bathymetry is on the order of 2.5 - 5 cm in amplitude, depending on water depths ranging 2 - 6 m, and about 30 cm in wavelength. Seafloor roughness elements are estimated from wavenumber spectra across the inlet from bathymetric maps of the seafloor obtained with 10-25 cm horizontal resolution. Implications of the effects of the bottom variability on the vertical structure of the currents will be discussed. This work was supported by ONR and NOAA.
NASA Astrophysics Data System (ADS)
Peukert, Anne; Schoening, Timm; Alevizos, Evangelos; Köser, Kevin; Kwasnitschka, Tom; Greinert, Jens
2018-04-01
In this study, ship- and autonomous underwater vehicle (AUV)-based multibeam data from the German ferromanganese-nodule (Mn-nodule) license area in the Clarion-Clipperton Zone (CCZ; eastern Pacific) are linked to ground-truth data from optical imaging. Photographs obtained by an AUV enable semi-quantitative assessments of nodule coverage at a spatial resolution in the range of meters. Together with high-resolution AUV bathymetry, this revealed a correlation of small-scale terrain variations ( < 5 m horizontally, < 1 m vertically) with nodule coverage. In the presented data set, increased nodule coverage could be correlated with slopes > 1.8° and concave terrain. On a more regional scale, factors such as the geological setting (existence of horst and graben structures, sediment thickness, outcropping basement) and influence of bottom currents seem to play an essential role for the spatial variation of nodule coverage and the related hard substrate habitat. AUV imagery was also successfully employed to map the distribution of resettled sediment following a disturbance and sediment cloud generation during a sampling deployment of an epibenthic sledge. Data from before and after the disturbance
allow a direct assessment of the impact. Automated image processing analyzed the nodule coverage at the seafloor, revealing nodule blanketing by resettling of suspended sediment within 16 h after the disturbance. The visually detectable impact was spatially limited to a maximum of 100 m distance from the disturbance track, downstream of the bottom water current. A correlation with high-resolution AUV bathymetry reveals that the blanketing pattern varies in extent by tens of meters, strictly following the bathymetry, even in areas of only slightly undulating seafloor ( < 1 m vertical change). These results highlight the importance of detailed terrain knowledge when engaging in resource assessment studies for nodule abundance estimates and defining mineable areas. At the same time, it shows the importance of high-resolution mapping for detailed benthic habitat studies that show a heterogeneity at scales of 10 to 100 m. Terrain knowledge is also needed to determine the scale of the impact by seafloor sediment blanketing during mining operations.
Palaseanu-Lovejoy, Monica; Poppenga, Sandra K.; Danielson, Jeffrey J.; Tyler, Dean J.; Gesch, Dean B.; Kottermair, Maria; Jalandoni, Andrea; Carlson, Edward; Thatcher, Cindy A.; Barbee, Matthew M.
2018-03-30
Atoll and island coastal communities are highly exposed to sea-level rise, tsunamis, storm surges, rogue waves, king tides, and the occasional combination of multiple factors, such as high regional sea levels, extreme high local tides, and unusually strong wave set-up. The elevation of most of these atolls averages just under 3 meters (m), with many areas roughly at sea level. The lack of high-resolution topographic data has been identified as a critical data gap for hazard vulnerability and adaptation efforts and for high-resolution inundation modeling for atoll nations. Modern topographic survey equipment and airborne lidar surveys can be very difficult and costly to deploy. Therefore, unmanned aircraft systems (UAS) were investigated for collecting overlapping imagery to generate topographic digital elevation models (DEMs). Medium- and high-resolution satellite imagery (Landsat 8 and WorldView-3) was investigated to derive nearshore bathymetry.The Republic of the Marshall Islands is associated with the United States through a Compact of Free Association, and Majuro Atoll is home to the capital city of Majuro and the largest population of the Republic of the Marshall Islands. The only elevation datasets currently available for the entire Majuro Atoll are the Shuttle Radar Topography Mission and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version 2 elevation data, which have a 30-m grid-cell spacing and a 8-m vertical root mean square error (RMSE). Both these datasets have inadequate spatial resolution and vertical accuracy for inundation modeling.The final topobathymetric DEM (TBDEM) developed for Majuro Atoll is derived from various data sources including charts, soundings, acoustic sonar, and UAS and satellite imagery spanning over 70 years of data collection (1944 to 2016) on different sections of the atoll. The RMSE of the TBDEM over the land area is 0.197 m using over 70,000 Global Navigation Satellite System real-time kinematic survey points for validation, and 1.066 m for Landsat 8 and 1.112 m for WorldView-3 derived bathymetry using over 16,000 and 9,000 lidar bathymetry points, respectively.
Investigating Summer Thermal Stratification in Lake Ontario
NASA Astrophysics Data System (ADS)
James, S. C.; Arifin, R. R.; Craig, P. M.; Hamlet, A. F.
2017-12-01
Seasonal temperature variations establish strong vertical density gradients (thermoclines) between the epilimnion and hypolimnion. Accurate simulation of vertical mixing and seasonal stratification of large lakes is a crucial element of the thermodynamic coupling between lakes and the atmosphere in integrated models. Time-varying thermal stratification patterns can be accurately simulated with the versatile Environmental Fluid Dynamics Code (EFDC). Lake Ontario bathymetry was interpolated onto a 2-km-resolution curvilinear grid with vertical layering using a new approach in EFDC+, the so-called "sigma-zed" coordinate system which allows the number of vertical layers to be varied based on water depth. Inflow from the Niagara River and outflow to the St. Lawrence River in conjunction with hourly meteorological data from seven local weather stations plus three-hourly data from the North American Regional Reanalysis govern the hydrodynamic and thermodynamic responses of the Lake. EFDC+'s evaporation algorithm was updated to more accurately simulate net surface heat fluxes. A new vertical mixing scheme from Vinçon-Leite that implements different eddy diffusivity formulations above and below the thermocline was compared to results from the original Mellor-Yamada vertical mixing scheme. The model was calibrated by adjusting solar-radiation absorption coefficients in addition to background horizontal and vertical mixing parameters. Model skill was evaluated by comparing measured and simulated vertical temperature profiles at shallow (20 m) and deep (180 m) locations on the Lake. These model improvements, especially the new sigma-zed vertical discretization, accurately capture thermal-stratification patterns with low root-mean-squared errors when using the Vinçon-Leite vertical mixing scheme.
NASA Astrophysics Data System (ADS)
Cieszynski, Lukasz; Furmanczyk, Kazimierz
2017-04-01
Bathymetry data for the coastal zone of the Baltic Sea are usually created in profiles based on echo sounding measurements. However, in the shallow coastal zone (up to 4 m depth), the quality and accuracy of data is insufficient because of the spatial variability of the seabed. The green laser - LIDAR - can comprise a solution for studies of such shallow areas. However, this method is still an expensive one and that is why we have decided to use the RGB digital aerial photographs to create a model for mapping the seabed of the shallow coastal zone. So far, in the 60's, researchers in the USA (Musgrove, 1969) and Russia (Zdanowicz, 1963) developed the first method of bathymetry determining from aerial panchromatic (black-white) photographs. This method was adapted for the polish conditions by Furmanczyk in 1975 and in 2014 we have returned to his concept using more advanced techniques of recording and image processing. In our study, we propose to determine the bathymetry in shallow coastal zone of the Baltic Sea by using the digital vertical aerial photographs (both single and multi-channel spectral). These photos are the high-resolution matrix (10 cm per pixel) containing values of the grey level in the individual spectral bands (RGB). This gives great possibilities to determine the bathymetry in order to analyze the changes in the marine coastal zone. Comparing the digital bathymetry maps - obtained by proposed method - in the following periods, you can develop differential maps, which reflect the movements of sea-bottom sediments. This can be used to indicate the most dynamic regions in the examined area. The model is based on the image pixel values and relative depths measured in situ (in selected checkpoints). As a result, the relation of the pixel brightness and sea depth (the algorithm) was defined. Using the algorithm, depth calculations for the whole scene were done and high resolution bathymetric map created. However, the algorithm requires numbers of adjustments resulting from, e.g., the phenomenon of vignetting, distribution of light, or the collapse of the rays of light at the atmosphere - sea interface. We have developed the algorithm with correction formulas and created a final model in MATLAB. It allows one to obtain three-dimensional bathymetry visualization for a specific region from a digital color aerial photograph. This model enables to determine the bathymetry of the most dynamic areas in the marine coastal zone up to 3-4 meters depth with a relatively good accuracy. In addition, the possibility to take pictures from the drone instead of a plane, significantly reduces the cost of the process. In the poster presentation, we will present the model and its results for the area of the Polish west coast. 1. Musgrove R,G., 1969. Photometry for interpretation. Photogrametric Engineering No. 10. 2. Furmańczyk K., 1975. Możliwości praktycznego zastosowania metody fotogrametrycznej do określania głębokości w strefie brzegowej morza. Gdańsk. 3. Zdanowicz W.G., 1963. Primienienije aerometodow dlia issledowanija moria. Leningrad.
Poppenga, Sandra K.; Palaseanu-Lovejoy, Monica; Gesch, Dean B.; Danielson, Jeffrey J.; Tyler, Dean J.
2018-04-16
Satellite-derived near-shore bathymetry (SDB) is becoming an increasingly important method for assessing vulnerability to climate change and natural hazards in low-lying atolls of the northern tropical Pacific Ocean. Satellite imagery has become a cost-effective means for mapping near-shore bathymetry because ships cannot collect soundings safely while operating close to the shore. Also, green laser light detection and ranging (lidar) acquisitions are expensive in remote locations. Previous research has demonstrated that spectral band ratio-based techniques, commonly called the natural logarithm approach, may lead to more precise measurements and modeling of bathymetry because of the phenomenon that different substrates at the same depth have approximately equal ratio values. The goal of this research was to apply the band ratio technique to Landsat 8 at-sensor radiance imagery and WorldView-3 atmospherically corrected imagery in the coastal waters surrounding the Majuro Atoll, Republic of the Marshall Islands, to derive near-shore bathymetry that could be incorporated into a seamless topobathymetric digital elevation model of Majuro. Attenuation of light within the water column was characterized by measuring at-sensor radiance and reflectance at different depths and calculating an attenuation coefficient. Bathymetric lidar data, collected by the U.S. Naval Oceanographic Office in 2006, were used to calibrate the SDB results. The bathymetric lidar yielded a strong linear relation with water depths. The Landsat 8-derived SDB estimates derived from the blue/green band ratio exhibited a water attenuation extinction depth of 6 meters with a coefficient of determination R2=0.9324. Estimates derived from the coastal/red band ratio had an R2=0.9597. At the same extinction depth, SDB estimates derived from WorldView-3 imagery exhibited an R2=0.9574. Because highly dynamic coastal shorelines can be affected by erosion, wetland loss, hurricanes, sea-level rise, urban development, and population growth, consistent bathymetric data are needed to better understand sensitive coastal land/water interfaces in areas subject to coastal disasters.
Study of the marine environment of the northern Gulf of California
NASA Technical Reports Server (NTRS)
Hendrickson, J. R. (Principal Investigator)
1972-01-01
The author has identified the following significant results. Preliminary analysis of the first three months of ERTS-1 imagery have revealed that the MSS images have particular utility for study of turbidity patterns, current phenomena, and bathymetry throughout the test area. Early indications are that well defined spatial distributions of turbidity exist in the northern Gulf of California, and that for any one point in time, these distributions vary with depth. From a single set of images, as many as 3 turbidity maps may be generated, each indicating a vertical spatial relationship of the turbidity masses. The spatial distribution of turbidity masses depend partially upon the coincident currents. In the band of deepest penetration, a map can be gathered which roughly corresponds to the bathymetry of the area. The extreme tides in the northern Gulf of California result in vast areas which can be classified as intertidal mud flats. Information on the amount of exposure at the varying tidal states is important in analysis of these mud flat areas as nursery ground for Mexican commercial fisheries.
Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea
NASA Astrophysics Data System (ADS)
Cardona, Yuley; Bracco, Annalisa
The South China Sea is a marginal basin with a complex circulation influenced by the East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale eddy field and the near-inertial energy distribution display large spatial variability and they strongly influence the oceanic transport and mixing. With an ensemble of numerical integrations using a regional ocean model, this work investigates how the temporal resolution of the atmospheric forcing fields modifies the horizontal and vertical velocity patterns and impacts the transport properties in the basin. The response of the mesoscale circulation in the South China Sea is investigated under three different forcing conditions: monthly, daily and 6-hourly momentum and heat fluxes. While the horizontal circulation does not display significant differences, the representation of the vertical velocity field displays high sensitivity to the frequency of the wind forcing. If the wind field contains energy at the inertial frequency or higher (daily and 6-hourly cases), then submesoscale fronts, vortex Rossby waves and near inertial waves are excited as ageostrophic expression of the vigorous eddy field. Those quasi- and near-inertial waves dominate the vertical velocity field in the mixed layer (vortex Rossby waves) and below the first hundred meters (near inertial waves) and they are responsible for the differences in the vertical transport properties under the various forcing fields as quantified by frequency spectra, vertical velocity profiles and vertical dispersion of Lagrangian tracers.
Bathymetry and geology of Greenlandic fjords from Operation IceBridge airborne gravimetry
NASA Astrophysics Data System (ADS)
Tinto, K. J.; Cochran, J. R.; Bell, R. E.; Charles, K.; Dube, J.; McLeish, M.; Burton, B. L.
2011-12-01
The Greenland Ice Sheet is drained by outlet glaciers that commonly flow into long, deep fjords. Glacier flow is controlled in part by the topography and geology of the glacier bed, and is also affected by the interaction between ice and sea water in the fjords. This interaction depends on the bathymetry of the fjords, and particularly on the presence of bathymetric sills, which can control the influx of warm, saline water towards the grounding zone. The bathymetry and geology of these fjords provide boundary conditions for models of the behaviour of the glaciers and ice sheet. Greenlandic fjords can be over 100 km long and up to 1000 m deep, with sills a few hundred metres above the bottom of the fjord. Where bathymetry is not well known, the scale of these features makes them appropriate targets for aerogravity surveys. Where bathymetry is known, aerogravity can provide information on the geology of the fjord, but the sometimes narrow, sinuous fjords present challenges for both data acquisition and interpretation. In 2010 and 2011 Operation IceBridge flew the Sander Geophysics AIRGrav system along the axes of more than 40 outlet glaciers distributed around the coast of Greenland. The AIRGrav system has high precision, fast recovery from turns and the capacity for draped flights, all of which improve the quality of data acquisition along fjord axes. Operation IceBridge survey flights are conducted at or lower than 500 m above ground surface, at speeds of ~140 m/s, allowing full amplitude resolution of features larger than ~5 km, and detection of smaller scale features. Fjord axis data are commonly of lower quality than data from grid-based gravity surveys. Interpretation of these data is improved by combining repeated survey lines from both seasons as well as incorporating other datasets, such as radar, and magnetic data from Operation IceBridge, digital elevation models and geological maps. While most fjords were surveyed by a single axial track, surveys of Petermann Glacier include parallel flow lines, allowing new constraints on the bathymetry under its floating ice to be more reliably modelled. This work is a preliminary review of the fjord axes surveyed by Operation IceBridge and presents models of representative fjords. The surveys include major features, such as the fjord in front of Kangerdlugssuaq Glacier and under the the floating ice in front of Petermann, 79 N and Zachariae Glaciers and results identify the limits and applications of IceBridge aerogravity in the Greenland fjords.
GPS vertical axis performance enhancement for helicopter precision landing approach
NASA Technical Reports Server (NTRS)
Denaro, Robert P.; Beser, Jacques
1986-01-01
Several areas were investigated for improving vertical accuracy for a rotorcraft using the differential Global Positioning System (GPS) during a landing approach. Continuous deltaranging was studied and the potential improvement achieved by estimating acceleration was studied by comparing the performance on a constant acceleration turn and a rough landing profile of several filters: a position-velocity (PV) filter, a position-velocity-constant acceleration (PVAC) filter, and a position-velocity-turning acceleration (PVAT) filter. In overall statistics, the PVAC filter was found to be most efficient with the more complex PVAT performing equally well. Vertical performance was not significantly different among the filters. Satellite selection algorithms based on vertical errors only (vertical dilution of precision or VDOP) and even-weighted cross-track and vertical errors (XVDOP) were tested. The inclusion of an altimeter was studied by modifying the PVAC filter to include a baro bias estimate. Improved vertical accuracy during degraded DOP conditions resulted. Flight test results for raw differential results excluding filter effects indicated that the differential performance significantly improved overall navigation accuracy. A landing glidepath steering algorithm was devised which exploits the flexibility of GPS in determining precise relative position. A method for propagating the steering command over the GPS update interval was implemented.
DeWitt, Nancy T.; Stalk, Chelsea A.; Fredericks, Jake J.; Flocks, James G.; Kelso, Kyle W.; Farmer, Andrew S.; Tuten, Thomas M.; Buster, Noreen A.
2018-04-13
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, in cooperation with the U.S. Army Corps of Engineers, Mobile District, conducted bathymetric surveys of the nearshore waters surrounding Ship and Horn Islands, Gulf Islands National Seashore, Mississippi. The objective of this study was to establish base-level elevation conditions around West Ship, East Ship, and Horn Islands and their associated active littoral system prior to restoration activities. These activities include the closure of Camille Cut and the placement of sediment in the littoral zone of East Ship Island. These surveys can be compared with future surveys to monitor sediment migration patterns post-restoration and can also be measured against historic bathymetric datasets to further our understanding of island evolution.The USGS collected 667 line-kilometers (km) of single-beam bathymetry data and 844 line-km of interferometric swath bathymetry data in July 2016 under Field Activity Number 2016-347-FA. Data are provided in three datums: (1) the International Terrestrial Reference Frame of 2000 (ellipsoid height); (2) the North American Datum of 1983 (NAD83) CORS96 realization and the North American Vertical Datum of 1988 with respect to the GEOID12B model (orthometric height); and (3) NAD83 (CORS96) and Mean Lower Low Water (tidal datum). Data products, including x,y,zpoint datasets, trackline shapefiles, digital and handwritten Field Activity Collection Systems logs, 50-meter digital elevation model, and formal Federal Geographic Data Committee metadata, are available for download.
Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery
NASA Astrophysics Data System (ADS)
King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.
2018-02-01
Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (<50 m wide) rivers from remotely sensed data by coupling high-resolution imagery with one-dimensional hydraulic modeling at so-called virtual gauging stations. These locations were identified as locations where the river contracted under low flows, exposing a substantial portion of the river bed. Topography of the exposed river bed was photogrammetrically extracted from high-resolution aerial imagery while the geometry of the remaining inundated portion of the channel was approximated based on adjacent bank topography and maximum depth assumptions. Full channel bathymetry was used to create hydraulic models that encompassed virtual gauging stations. Discharge for each aerial survey was estimated with the hydraulic model by matching modeled and remotely sensed wetted widths. Based on these results, synthetic width-discharge rating curves were produced for each virtual gauging station. In situ observations were used to determine the accuracy of wetted widths extracted from imagery (mean error 0.36 m), extracted bathymetry (mean vertical RMSE 0.23 m), and discharge (mean percent error 7% with a standard deviation of 6%). Sensitivity analyses were conducted to determine the influence of inundated channel bathymetry and roughness parameters on estimated discharge. Comparison of synthetic rating curves produced through sensitivity analyses show that reasonable ranges of parameter values result in mean percent errors in predicted discharges of 12%-27%.
Mastin, M.C.; Fosness, R.L.
2009-01-01
Yakima County is collaborating with the Bureau of Reclamation on a study of the hydraulics and sediment-transport in the lower Naches River and in the Yakima River between Union Gap and Selah Gap in Washington. River bathymetry and topographic data of the river channels are needed for the study to construct hydraulic models. River survey data were available for most of the study area, but river bathymetry and near-river topography were not available for Selah Gap, near the confluence of the Naches and Yakima Rivers, and for Union Gap. In August 2008, the U.S. Geological Survey surveyed the areas where data were not available. If possible, the surveys were made with a boat-mounted, single-beam echo sounder attached to a survey-grade Real-Time Kinematic (RTK) global positioning system (GPS). An RTK GPS rover was used on a walking survey of the river banks, shallow river areas, and river bed areas that were impenetrable to the echo sounder because of high densities of macrophytes. After the data were edited, 95,654 bathymetric points from the boat survey with the echo sounder and 1,069 points from the walking survey with the GPS rover were used in the study. The points covered 4.6 kilometers on the Yakima River and 0.6 kilometers on the Naches River. GPS-surveyed points checked within 0.014 to 0.047 meters in the horizontal direction and -0.036 to 0.078 meters in the vertical direction compared to previously established survey control points
Internal tidal mixing as a control on continental margin ecosystems
NASA Astrophysics Data System (ADS)
Sharples, Jonathan; Moore, C. Mark; Hickman, Anna E.; Holligan, Patrick M.; Tweddle, Jacqueline F.; Palmer, Matthew R.; Simpson, John H.
2009-12-01
We show that a breaking internal tide at a shelf edge is a fundamental control on the structural and functional properties of ecosystems. Contrasts in vertical mixing of nitrate between the shelf and the open ocean correspond with horizontal and vertical changes in phytoplankton communities, with largest cells found in surface waters at the shelf edge. Intense fishing activity is commonly seen at continental shelf edges, targeting spawning fish stocks. We suggest that the internal tide, a globally ubiquitous physical process at steep shelf edge bathymetry, supports shelf edge fisheries by providing large-celled phytoplankton for first-feeding fish larvae. The repeatability of the internal tide removes fish from the need to time spawning with a spring bloom. Also, with large phytoplankton cells dominating particulate organic carbon export, the internal tides could be an important influence on spatial and temporal variability in patterns of global carbon sequestration in deep water and sediments.
NASA Astrophysics Data System (ADS)
Goldberg, D. N.; Snow, K.; Holland, P.; Jordan, J. R.; Campin, J.-M.; Heimbach, P.; Arthern, R.; Jenkins, A.
2018-05-01
Synchronous coupling is developed between an ice sheet model and a z-coordinate ocean model (the MITgcm). A previously-developed scheme to allow continuous vertical movement of the ice-ocean interface of a floating ice shelf ("vertical coupling") is built upon to allow continuous movement of the grounding line, or point of floatation of the ice sheet ("horizontal coupling"). Horizontal coupling is implemented through the maintenance of a thin layer of ocean ( ∼ 1 m) under grounded ice, which is inflated into the real ocean as the ice ungrounds. This is accomplished through a modification of the ocean model's nonlinear free surface evolution in a manner akin to a hydrological model in the presence of steep bathymetry. The coupled model is applied to a number of idealized geometries and shown to successfully represent ocean-forced marine ice sheet retreat while maintaining a continuous ocean circulation.
Vertical high-precision Michelson wavemeter
NASA Astrophysics Data System (ADS)
Morales, A.; de Urquijo, J.; Mendoza, A.
1993-01-01
We have designed and tested a traveling, Michelson-type vertical wavemeter for the wavelength measurement of tunable continuous-wave lasers in the visible part of the spectrum. The interferometer has two movable corner cubes, suspending vertically from a driving setup resembling Atwood's machine. To reduce the fraction-of-fringe error, a vernier-type coincidence circuit was used. Although simple, this wavemeter has a relative precision of 3.2 parts in 109 for an overall fringe count of about 7×106.
How large is the fault slip at trench in the M=9 Tohoku-oki earthquake?
NASA Astrophysics Data System (ADS)
Wang, Kelin; Sun, Tianhaozhe; Fujiwara, Toshiya; Kodaira, Shuichi; He, Jiangheng
2015-04-01
It is widely known that coseismic slip breached the trench during the 2011 Mw=9 Tohoku-oki earthquake, responsible for generating a devastating tsunami. For understanding both the mechanics of megathrust rupture and the mechanism of tsunami generation, it is important to know how much fault slip actually occurred at the trench. But the answer has remained elusive because most of the data from this earthquake do not provide adequate near-trench resolution. Seafloor GPS sites were located > 30 km from the trench. Near-trench seafloor pressure records suffered from complex vertical deformation at local scales. Seismic inversion does not have adequate accuracy at the trench. Inversion of tsunami data is highly dependent on the parameterization of the fault near the trench. The severity of the issue is demonstrated by our compilation of rupture models for this earthquake published by ~40 research groups using multiple sets of coseismic observations. In the peak slip area, fault slip at the trench depicted by these models ranges from zero to >90 m. The faults in many models do not reach the trench because of simplification of fault geometry. In this study, we use high-resolution differential bathymetry, that is, bathymetric differences before and after the earthquake, to constrain coseismic slip at and near the trench along a corridor in the area of largest moment release. We use a 3D elastic finite element model including real fault geometry and surface topography to produce Synthetic Differential Bathymetry (SDB) and compare it with the observed differential bathymetry. Earthquakes induce bathymetric changes by shifting the sloping seafloor seaward and by warping the seafloor through internal deformation of rocks. These effects are simulated by our SDB modeling, except for the permanent formation of the upper plate which is like to be limited and localized. Bathymetry data were collected by JAMSTEC in 1999, 2004, and in 2011 right after the M=9 earthquake. Our SDB results indicate that a fault slip of about 60 m at the trench, increasing landward by a few metres over a distance of 50 km, is needed to explain the differential bathymetry data for the time interval of 1999 - 2011. Most of this slip presumably happened during the 2011 earthquake, although very limited aseismic slip from 1999 to just prior to the earthquake cannot be ruled out. The 2004 - 2011 differential bathymetry data would indicate about 45 m near-trench slip, but this estimate is less reliable because the 2004 survey had a very short segment seaward of the trench, causing very large uncertainties in the 2004 - 2011 data.
NASA Astrophysics Data System (ADS)
Fujiwara, T.; dos Santos Ferreira, C.; Bachmann, A. K.; Strasser, M.; Wefer, G.; Sun, T.; Kanamatsu, T.; Kodaira, S.
2017-12-01
Maximum tsunami height caused by the 11 March 2011 Tohoku-oki earthquake was observed at the coast of Sanriku, the northern Tohoku, Japan [The 2011 Tohoku Earthquake Tsunami Joint Survey Group, 2011]. In order to explain the tsunami source, some papers have introduced additional large slip of the megathrust up to 36 m in the shallow part near the northern Japan Trench [e.g. Satake et al., BSSA 2013]. Alternatively, others preferred to put a large change in seafloor elevation, 90 m uplift and down-drop, associated with a submarine landslide along the lower trench slope [e.g. Tappin et al., Marine Geol. 2014]. We conducted repeated multibeam bathymetric surveys offshore Sanriku in 2016 and also 2012. We examined seafloor displacement for tsunami source by means of the difference in bathymetry before and after the earthquake. Acquired two bathymetric survey tracks are crossing the trench at 39.2°N and 39.5°N. These tracks overlap the Satake et al. [2013]'s slip area and also the Tappin et al. [2014]'s landslide area. The German research vessel Sonne performed the surveys along the same tracks (SO219A, SO251A cruises). Previous survey tracks had been obtained by the JAMSTEC R/V Kairei in 2007 and 2010 (KR07-08, KR10-12 cruises). Horizontal and vertical seafloor displacements were estimated by comparison of the bathymetry before and after the earthquake. Apparent offsets of the absolute values of depth soundings and the uncertainty of ship position were examined on the seaward side because the seaward was thought to have suffered little change from the earthquake. The horizontal displacement was estimated by calculating the offset distance to maximize cross-correlation of the bathymetry dataset. The seafloor displacements were less than 20 m in trenchward horizontal displacement and several meters in vertical displacement, these values are within the ranges of error of the analysis, and relatively small displacements are evaluated. Thus localized very large fault slip or very large submarine landslide is unlikely at least on the two survey tracks. However, there are coherent relative differences in the seafloor elevation on the landward trench slopes along the trench axis, which suggests a qualitative interpretation that the outermost lower slope was uplifted and the middle slope and the mid-slope terrace subsided.
Efficient data assimilation algorithm for bathymetry application
NASA Astrophysics Data System (ADS)
Ghorbanidehno, H.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.
2017-12-01
Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing techniques. Data assimilation methods combine the remote sensing data and nearshore hydrodynamic models to estimate the unknown bathymetry and the corresponding uncertainties. In particular, several recent efforts have combined Kalman Filter-based techniques such as ensembled-based Kalman filters with indirect video-based observations to address the bathymetry inversion problem. However, these methods often suffer from ensemble collapse and uncertainty underestimation. Here, the Compressed State Kalman Filter (CSKF) method is used to estimate the bathymetry based on observed wave celerity. In order to demonstrate the accuracy and robustness of the CSKF method, we consider twin tests with synthetic observations of wave celerity, while the bathymetry profiles are chosen based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, NC. The first test case is a bathymetry estimation problem for a spatially smooth and temporally constant bathymetry profile. The second test case is a bathymetry estimation problem for a temporally evolving bathymetry from a smooth to a non-smooth profile. For both problems, we compare the results of CSKF with those obtained by the local ensemble transform Kalman filter (LETKF), which is a popular ensemble-based Kalman filter method.
High-Resolution Digital Terrain Models of the Sacramento/San Joaquin Delta Region, California
Coons, Tom; Soulard, Christopher E.; Knowles, Noah
2008-01-01
The U.S. Geological Survey (USGS) Western Region Geographic Science Center, in conjunction with the USGS Water Resources Western Branch of Regional Research, has developed a high-resolution elevation dataset covering the Sacramento/San Joaquin Delta region of California. The elevation data were compiled photogrammically from aerial photography (May 2002) with a scale of 1:15,000. The resulting dataset has a 10-meter horizontal resolution grid of elevation values. The vertical accuracy was determined to be 1 meter. Two versions of the elevation data are available: the first dataset has all water coded as zero, whereas the second dataset has bathymetry data merged with the elevation data. The projection of both datasets is set to UTM Zone 10, NAD 1983. The elevation data are clipped into files that spatially approximate 7.5-minute USGS quadrangles, with about 100 meters of overlap to facilitate combining the files into larger regions without data gaps. The files are named after the 7.5-minute USGS quadrangles that cover the same general spatial extent. File names that include a suffix (_b) indicate that the bathymetry data are included (for example, sac_east versus sac_east_b). These files are provided in ESRI Grid format.
NASA Astrophysics Data System (ADS)
Belibassakis, K. A.; Athanassoulis, G. A.
2005-05-01
The consistent coupled-mode theory (Athanassoulis & Belibassakis, J. Fluid Mech. vol. 389, 1999, p. 275) is extended and applied to the hydroelastic analysis of large floating bodies of shallow draught or ice sheets of small and uniform thickness, lying over variable bathymetry regions. A parallel-contour bathymetry is assumed, characterized by a continuous depth function of the form h( {x,y}) {=} h( x ), attaining constant, but possibly different, values in the semi-infinite regions x {<} a and x {>} b. We consider the scattering problem of harmonic, obliquely incident, surface waves, under the combined effects of variable bathymetry and a floating elastic plate, extending from x {=} a to x {=} b and {-} infty {<} y{<}infty . Under the assumption of small-amplitude incident waves and small plate deflections, the hydroelastic problem is formulated within the context of linearized water-wave and thin-elastic-plate theory. The problem is reformulated as a transition problem in a bounded domain, for which an equivalent, Luke-type (unconstrained), variational principle is given. In order to consistently treat the wave field beneath the elastic floating plate, down to the sloping bottom boundary, a complete, local, hydroelastic-mode series expansion of the wave field is used, enhanced by an appropriate sloping-bottom mode. The latter enables the consistent satisfaction of the Neumann bottom-boundary condition on a general topography. By introducing this expansion into the variational principle, an equivalent coupled-mode system of horizontal equations in the plate region (a {≤} x {≤} b) is derived. Boundary conditions are also provided by the variational principle, ensuring the complete matching of the wave field at the vertical interfaces (x{=}a and x{=}b), and the requirements that the edges of the plate are free of moment and shear force. Numerical results concerning floating structures lying over flat, shoaling and corrugated seabeds are presented and compared, and the effects of wave direction, bottom slope and bottom corrugations on the hydroelastic response are presented and discussed. The present method can be easily extended to the fully three-dimensional hydroelastic problem, including bodies or structures characterized by variable thickness (draught), flexural rigidity and mass distributions.
NASA Astrophysics Data System (ADS)
Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander
2017-05-01
Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.
Dynamics of Cross-Shore Thermal Exchange Over Nonuniform Bathymetry
NASA Astrophysics Data System (ADS)
Safaie, A.; Davis, K. A.; Pawlak, G. R.
2016-02-01
The hydrodynamics of cross-shelf circulation on the inner shelf influence coastal ecosystems through the transport of heat, salt, nutrients, and planktonic organisms. While cross-shelf exchange on wide continental shelves has received a fair amount of attention in literature, the mechanisms for cross-shelf exchange on narrow shelves with steep, rough, and highly irregular bathymetry, characteristic of coral reef shorelines, is not well understood. Previous observational studies from reefs at Eilat, Israel and Oahu, Hawaii, have demonstrated the importance of surface heat flux in driving cross-shore transport. While both sites experienced offshore surface flow during daytime warming periods and offshore flow near the bed during nighttime cooling, the phase differences between the surface heat fluxes and thermal responses at the two sites indicate different dynamic flow regimes based on momentum and thermal balances. This study examines the dynamical structure of thermally driven flows using numerical modeling to investigate the hypothesis that thermally driven baroclinic exchange is important to cross-shore circulation for tropical coastlines. We use the open-source Regional Ocean Modeling System (ROMS), a free-surface, three-dimensional circulation model, considering a simple wedge case with uniform bathymetry in the alongshore direction, and heat flux applied uniformly to the surface. We examine different flow regimes using scaling of the momentum and thermal balance equations. We also explore the parameter space for the momentum balance describing cross-shore thermal exchange, and thoroughly characterize the exchange structure by investigating the dominant forcing regimes, the mechanisms responsible for modulating thermal circulation, and the effects of temporal variations in vertical mixing and heating/cooling buoyancy flux. Results are compared against existing data sets to evaluate the ability of the model to represent these flows.
Danielson, Jeffrey J.; Poppenga, Sandra K.; Brock, John C.; Evans, Gayla A.; Tyler, Dean; Gesch, Dean B.; Thatcher, Cindy A.; Barras, John
2016-01-01
During the coming decades, coastlines will respond to widely predicted sea-level rise, storm surge, and coastalinundation flooding from disastrous events. Because physical processes in coastal environments are controlled by the geomorphology of over-the-land topography and underwater bathymetry, many applications of geospatial data in coastal environments require detailed knowledge of the near-shore topography and bathymetry. In this paper, an updated methodology used by the U.S. Geological Survey Coastal National Elevation Database (CoNED) Applications Project is presented for developing coastal topobathymetric elevation models (TBDEMs) from multiple topographic data sources with adjacent intertidal topobathymetric and offshore bathymetric sources to generate seamlessly integrated TBDEMs. This repeatable, updatable, and logically consistent methodology assimilates topographic data (land elevation) and bathymetry (water depth) into a seamless coastal elevation model. Within the overarching framework, vertical datum transformations are standardized in a workflow that interweaves spatially consistent interpolation (gridding) techniques with a land/water boundary mask delineation approach. Output gridded raster TBDEMs are stacked into a file storage system of mosaic datasets within an Esri ArcGIS geodatabase for efficient updating while maintaining current and updated spatially referenced metadata. Topobathymetric data provide a required seamless elevation product for several science application studies, such as shoreline delineation, coastal inundation mapping, sediment-transport, sea-level rise, storm surge models, and tsunami impact assessment. These detailed coastal elevation data are critical to depict regions prone to climate change impacts and are essential to planners and managers responsible for mitigating the associated risks and costs to both human communities and ecosystems. The CoNED methodology approach has been used to construct integrated TBDEM models in Mobile Bay, the northern Gulf of Mexico, San Francisco Bay, the Hurricane Sandy region, and southern California.
Dartnell, Peter; Driscoll, Neal W.; Brothers, Daniel S.; Conrad, James E.; Kluesner, Jared; Kent, Graham; Andrews, Brian D.
2015-01-01
In late 2013, Scripps Institution of Oceanography collected multibeam bathymetry and acoustic-backscatter data of the Inner Continental Borderland Region, Southern California. The U.S. Geological Survey Pacific Coastal and Marine Science Center processed these data, and this report provides the data in a number of different formats in addition to a set of map sheets. The data catalog provides the new bathymetry and acoustic-backscatter data, collected mainly in the Gulf of Santa Catalina and San Diego Trough, as well as this new bathymetry data merged with other publically available bathymetry data from the region. Sheet 1 displays a colored shaded-relief bathymetry map of the Inner Continental Borderland generated from the merged bathymetry data. Sheet 2 displays the new acoustic-backscatter data along with other available backscatter data in the region. Sheet 3 displays selected perspective views of the bathymetry data highlighting submarine canyon and channel systems, knolls, and tectonic features.
Improving Watershed-Scale Hydrodynamic Models by Incorporating Synthetic 3D River Bathymetry Network
NASA Astrophysics Data System (ADS)
Dey, S.; Saksena, S.; Merwade, V.
2017-12-01
Digital Elevation Models (DEMs) have an incomplete representation of river bathymetry, which is critical for simulating river hydrodynamics in flood modeling. Generally, DEMs are augmented with field collected bathymetry data, but such data are available only at individual reaches. Creating a hydrodynamic model covering an entire stream network in the basin requires bathymetry for all streams. This study extends a conceptual bathymetry model, River Channel Morphology Model (RCMM), to estimate the bathymetry for an entire stream network for application in hydrodynamic modeling using a DEM. It is implemented at two large watersheds with different relief and land use characterizations: coastal Guadalupe River basin in Texas with flat terrain and a relatively urban White River basin in Indiana with more relief. After bathymetry incorporation, both watersheds are modeled using HEC-RAS (1D hydraulic model) and Interconnected Pond and Channel Routing (ICPR), a 2-D integrated hydrologic and hydraulic model. A comparison of the streamflow estimated by ICPR at the outlet of the basins indicates that incorporating bathymetry influences streamflow estimates. The inundation maps show that bathymetry has a higher impact on flat terrains of Guadalupe River basin when compared to the White River basin.
DeWitt, Nancy T.; Reich, Christopher D.; Smith, Christopher G.; Reynolds, Billy J.
2014-01-01
A team of scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, collected 92 line-kilometers of dual-frequency single-beam bathymetry data in the tidal creeks, bayous, and coastal areas near Weeks Bay, southwest Louisiana. Limited bathymetry data exist for these tidally and meteorologically influenced shallow-water estuarine environments. In order to reduce the present knowledge gap, the objectives of this study were to (1) develop methods for regional inland bathymetry mapping and monitoring, (2) test inland bathymetry mapping system in pilot locations for integrating multiple elevation (aerial and terrestrial lidar) and bathymetry datasets, (3) implement inland bathymetry mapping and monitoring in highly focused sites, and (4) evaluate changes in bathymetry and channel-fill sediment storage using these methods. This report contains single-beam bathymetric data collected between January 14 and 18, 2013. Data were collected from the RV Mako (5-meter vessel) in water depths that ranged from This report serves as an archive of processed bathymetry data. Geographic information system data provided in this document include a 10-meter cell-size interpolated gridded bathymetry surface, and trackline maps. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata. Do not use these data for navigational purposes.
Novel Polarization Techniques and Instrumentation for Glacial Melt Pond Laser Bathymetry
NASA Astrophysics Data System (ADS)
Barton-Grimley, R. A.; Gisler, A.; Thayer, J. P.; Stillwell, R. A.; Grigsby, S.; Crowley, G.
2015-12-01
Melt ponds contribute significantly to the feedback processes that serve to amplify the polar response to climate change. A substantial volume of melt water is found in shallow ponds during the Arctic summer on the Greenland Ice Sheet, which have consequences on glacial dynamics and ice loss, however, the water content and subsurface topography of the ponds has proven difficult to measure. The need for instrumentation to provide high-resolution depth measurements in shallow water is addressed by utilizing novel polarization discrimination techniques in a high repetition rate, low power, 532nm photon counting lidar system. Recent advances demonstrate the ability to achieve kHz acquisition rates with a depth precision of 1cm. Use of this technique eliminates the necessity for short laser pulses and high-bandwidth detectors and instead provides a less complex, smaller, and more economical solution to airborne lidar instrumentation. Recent deployment of the lidar system aboard the NASA DC-8 research aircraft, during the 2015 NASA SARP campaign, provided critical engineering data and experience to facilitate further advancement of an airborne bathymetric lidar system for melt pond studies. Signal performance from flight indicates a 50 cm horizontal ground resolution at nominal altitudes below 1000 feet above ground level, and also indicates that maintaining a vertical precision of 1cm is achievable, though these results will be further examined. Results from the DC-8 aircraft deployment are promising, and the modest system size opens up the possibility for future integration into a UAS. This presentation will highlight the measurement capabilities of this novel lidar system, and explore polarization scattering properties of laser light with snow, ice, liquid water. System performance metrics will be evaluated for operating during summer periods in the Polar Regions and discuss the scientific contribution to Cryosphere research - most notably the depth and subsurface ice topography of glacial melt ponds.
NASA Astrophysics Data System (ADS)
Vrabec, M.; Slavec, P.; Poglajen, S.; Busetti, M.
2012-04-01
We use multibeam and parametric subbottom sonar data, complemented with multichannel and high-resolution single-channel seismic profiles, to investigate sea-bottom morphology and subbottom sediment structure in the south-eastern half of the Gulf of Trieste, northern Adriatic Sea. The study area comprises 180 km2 of predominantly flat seabed with the water depth from 20 to 25 m. Pre-Quaternary basement consists of Mesozoic-Paleogene carbonate platform unit, overlain by Eocene marls and sandstones, covered by up to 300 m thick Quaternary sediments of predominantly continental origin. The uppermost few meters of sediment consist of Holocene fine-grained marine deposits. Structurally, the investigated area belongs to the imbricated rim of the Adriatic microplate and is dissected by several NE-dipping low-angle thrusts with up to several kms of displacement. The thrusts are cut by younger NE-SW-trending steeply dipping faults with sinistral and/or normal offset, mapped onshore. The continuation of those faults into the offshore area is suggested by mismatch of thrust structures between parallel seismic profiles. Geodetic data on present-day tectonic activity is controversial. Whereas the Adriatic microplate is currently moving northwards towards Eurasia at the rate of 2-4 mm/yr, the GNSS data show no measurable deformation in the Gulf of Trieste. On the other hand, onshore precise-levelling data suggest localized vertical motions in the range of 1 mm/yr, interpreted as an indication of thrust activity. High-resolution swath bathymetry revealed several current-related erosional and depositional features such as gullies and megadunes with up to 5 m of relief. The most conspicuous seabed morphological features are pre-Holocene river channels preserved in low-erosion submarine environment, which make excellent markers for studying the long-term geomorphological evolution of the area. The WNW-ESE-trending paleo-Rižana river is characterized by highly sinuous meandering channels. Sequential profiles perpendicular to the river course suggest consistent ~NE-ward lateral shifting of channels, parallel with inclination of the present-day seabed and with the present-day lateral gradient in channel depth. A longitudinal profile of the Rižana river plain revealed downstream increase in elevation of the stream bed, visible both from seabed bathymetry and from vertical position of channel lag deposits in subbottom sonar profiles. These observations suggest post-depositional tectonic tilting of the fluvial sediments that could be related either to activation of NE-dipping thrusts in the pre-Quaternary basement, or to minor anticlinal folding associated with Quaternary transpressional faulting along NW-SE-trending zones, implied from seismic profiles NW-ward of our study area. An enigmatic low-sinuosity channel feature runs along the coastline in the NE-SW direction and crosses the paleo-Rižana channel. Subbottom sonar profiles show asymmetric channel geometry and strong reflectors (channel lag deposits?) at the channel bottom, typical of other documented river channels in the area. This feature is vertically offset by a NE-SW-trending linear morphological flexure that corresponds in location and orientation to the onshore Monte Spaccato fault. Subbottom profiling revealed in several places an abrupt truncation of horizontal reflectors that could be manifestation of faulting. These indications of Late Quaternary - Holocene tectonic activity may have important implications for seismic hazard in the heavily populated coastal area of the Gulf of Trieste.
NASA Technical Reports Server (NTRS)
Schroeder, J. A.; Merrick, V. K.
1990-01-01
Several control and display concepts were evaluated on a variable-stability helicopter prior to future evaluations on a modified Harrier. The control and display concepts had been developed to enable precise hover maneuvers, station keeping, and vertical landings in simulated zero-visibility conditions and had been evaluated extensively in previous piloted simulations. Flight evaluations early in the program revealed several inadequacies in the display drive laws that were later corrected using an alternative design approach that integrated the control and display characteristics with the desired guidance law. While hooded, three pilots performed landing-pad captures followed by vertical landings with attitude-rate, attitude, and translation-velocity-command control systems. The latter control system incorporated a modified version of state-rate-feedback implicit-model following. Precise landing within 2 ft of the desired touchdown point were achieved.
NASA Astrophysics Data System (ADS)
Mali, V. K.; Kuiry, S. N.
2015-12-01
Comprehensive understanding of the river flow dynamics with varying topography in a real field is very intricate and difficult. Conventional experimental methods based on manual data collection are time consuming and prone to many errors. Recently, remotely sensed satellite imageries are at the best to provide necessary information for large area provided the high resolution but which are very expensive and untimely, consequently, attaining accurate river bathymetry from relatively course resolution and untimely imageries are inaccurate and impractical. Despite of that, these data are often being used to calibrate the river flow models, though these models require highly accurate morpho-dynamic data in order to predict the flow field precisely. Under this circumstance, these data could be supplemented through experimental observations in a physical model with modern techniques. This paper proposes a methodology to generate highly accurate river bathymetry and water surface (WS) profile for a physical model of river network system using CRP technique. For the task accomplishment, a number of DSLR Nikon D5300 cameras (mounted at 3.5 m above the river bed) were used to capture the images of the physical model and the flooding scenarios during the experiments. During experiment, non-specular materials were introduced at the inlet and images were taken simultaneously from different orientations and altitudes with significant overlap of 80%. Ground control points were surveyed using two ultrasonic sensors with ±0.5 mm vertical accuracy. The captured images are, then processed in PhotoScan software to generate the DEM and WS profile. The generated data were then passed through statistical analysis to identify errors. Accuracy of WS profile was limited by extent and density of non-specular powder and stereo-matching discrepancies. Furthermore, several factors of camera including orientation, illumination and altitude of camera. The CRP technique for a large scale physical model can significantly reduce the time and manual labour and avoids human errors in taking data using point gauge. Obtained highly accurate DEM and WS profile can be used in mathematical models for accurate prediction of river dynamics. This study would be very helpful for sediment transport study and can also be extended for real case studies.
NASA Astrophysics Data System (ADS)
Méndez Incera, F. J.; Erikson, L. H.; Ruggiero, P.; Barnard, P.; Camus, P.; Rueda Zamora, A. C.
2014-12-01
Comprehensive understanding of the river flow dynamics with varying topography in a real field is very intricate and difficult. Conventional experimental methods based on manual data collection are time consuming and prone to many errors. Recently, remotely sensed satellite imageries are at the best to provide necessary information for large area provided the high resolution but which are very expensive and untimely, consequently, attaining accurate river bathymetry from relatively course resolution and untimely imageries are inaccurate and impractical. Despite of that, these data are often being used to calibrate the river flow models, though these models require highly accurate morpho-dynamic data in order to predict the flow field precisely. Under this circumstance, these data could be supplemented through experimental observations in a physical model with modern techniques. This paper proposes a methodology to generate highly accurate river bathymetry and water surface (WS) profile for a physical model of river network system using CRP technique. For the task accomplishment, a number of DSLR Nikon D5300 cameras (mounted at 3.5 m above the river bed) were used to capture the images of the physical model and the flooding scenarios during the experiments. During experiment, non-specular materials were introduced at the inlet and images were taken simultaneously from different orientations and altitudes with significant overlap of 80%. Ground control points were surveyed using two ultrasonic sensors with ±0.5 mm vertical accuracy. The captured images are, then processed in PhotoScan software to generate the DEM and WS profile. The generated data were then passed through statistical analysis to identify errors. Accuracy of WS profile was limited by extent and density of non-specular powder and stereo-matching discrepancies. Furthermore, several factors of camera including orientation, illumination and altitude of camera. The CRP technique for a large scale physical model can significantly reduce the time and manual labour and avoids human errors in taking data using point gauge. Obtained highly accurate DEM and WS profile can be used in mathematical models for accurate prediction of river dynamics. This study would be very helpful for sediment transport study and can also be extended for real case studies.
Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment
NASA Technical Reports Server (NTRS)
Martin, Chreston F.; Krabill, William B.; Manizade, Serdar S.; Russell, Rob L.; Sonntag, John G.; Swift, Robert N.; Yungel, James K.
2012-01-01
Description of NASA Airborn Topographic Mapper (ATM) lidar calibration procedures including analysis of the accuracy and consistancy of various ATM instrument parameters and the resulting influence on topographic elevation measurements. The ATM elevations measurements from a nominal operating altitude 500 to 750 m above the ice surface was found to be: Horizontal Accuracy 74 cm, Horizontal Precision 14 cm, Vertical Accuracy 6.6 cm, Vertical Precision 3 cm.
NASA Astrophysics Data System (ADS)
Sembiring, L.; Van Ormondt, M.; Van Dongeren, A. R.; Roelvink, J. A.
2017-07-01
Rip currents are one of the most dangerous coastal hazards for swimmers. In order to minimize the risk, a coastal operational-process based-model system can be utilized in order to provide forecast of nearshore waves and currents that may endanger beach goers. In this paper, an operational model for rip current prediction by utilizing nearshore bathymetry obtained from video image technique is demonstrated. For the nearshore scale model, XBeach1 is used with which tidal currents, wave induced currents (including the effect of the wave groups) can be simulated simultaneously. Up-to-date bathymetry will be obtained using video images technique, cBathy 2. The system will be tested for the Egmond aan Zee beach, located in the northern part of the Dutch coastline. This paper will test the applicability of bathymetry obtained from video technique to be used as input for the numerical modelling system by comparing simulation results using surveyed bathymetry and model results using video bathymetry. Results show that the video technique is able to produce bathymetry converging towards the ground truth observations. This bathymetry validation will be followed by an example of operational forecasting type of simulation on predicting rip currents. Rip currents flow fields simulated over measured and modeled bathymetries are compared in order to assess the performance of the proposed forecast system.
NASA Astrophysics Data System (ADS)
Gawronek, Pelagia; Makuch, Maria
2017-12-01
The classical measurements of stability of railway bridge, in the context of determining the vertical displacements of the object, consisted on precise leveling of girders and trigonometric leveling of controlled points (fixed into girders' surface). The construction elements, which were measured in two ways, in real terms belonged to the same vertical planes. Altitude measurements of construction were carried out during periodic structural stability tests and during static load tests of bridge by train. The specificity of displacement measurements, the type of measured object and the rail land surveying measurement conditions were determinants to define methodology of altitude measurement. The article presents compatibility of vertical displacements of steel railway bridge, which were developed in two measurement methods. In conclusion, the authors proposed the optimum concept of determining the vertical displacements of girders by using precise and trigonometric leveling (in terms of accuracy, safety and economy of measurement).
Application of the marine Ex-Bz transient system for delineating near shore resistive targets
NASA Astrophysics Data System (ADS)
Levi, Eldad; Goldman, Mark
2017-09-01
Under certain conditions, multidimensional coastal effect significantly enhances relative target response of the broadside transient marine Ex-Bz system. The effect is caused by a redistribution of the induced currents between the resistive target and the sea bottom compared to that existing in a 1-D geometry. As a result, the effect strongly depends on specific geoelectric conditions in the near-shore environment. The first study of the effect in the Mediterranean coast of central Israel was addressing shallow groundwater problem under specific geoelectric, hydrogeological and geomorphological conditions. Under different conditions (e.g. deep targets and sharp near-shore bathymetry), the influence of the effect on target response might be significantly different. More general analysis carried out in this study comprises various geoelectric scenarios that include both shallow and deep resistive targets at different distances from the shore line as well as various geometries of the target and the near-shore bathymetry. The study includes three major exploration aspects of the system, namely signal detectability, lateral and vertical resolution. Taking into account poor lateral resolution of the classical frequency domain CSEM and the limited application in shallow sea, the described broadside transient Ex-Bz system might represent a desired alternative for delineating shallow and deep resistive targets in transition zone.
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.; Dick, H. J.; Faul, U.
2005-12-01
Large degrees (up to 90°) of tectonic rotation may be the norm at slow-spreading, non-volcanic ridges. Vertically upwelling mantle beneath all mid-ocean ridges must undergo corner flow to move horizontally with the spreading plate. Because little or no volcanic crust is produced at some slow-spreading ridges, the uppermost lithospheric mantle must undergo this rotation in the regime of localized, rather than distributed deformation. Anomalous paleomagnetic inclinations in peridotite and gabbro cores drilled near the 15-20 Fracture Zone (Mid-Atlantic Ridge, ODP Leg 209) support such large rotations, with sub-Curie-temperature rotations up to 90° (Garces et al., 2004). Here, we present two end-member tectonic mechanisms, with supporting data from Leg 209 cores and bathymetry, to show how rotation is accomplished via extensional faults and shear zones: 1) long-lived detachment faults, and 2) multiple generations of high-angle normal faults. Detachment faults accommodate rotation by having a moderate to steep dip at depth, and rotating to horizontal through a rolling hinge as the footwall is tectonically denuded. Multiple generations of high-angle normal faults accommodate large rotations in a domino fashion; early faults become inactive when rotated to inopportune slip angles, and are cut by younger high-angle faults. Thus, each generation of high-angle faults accommodates part of the total rotation. There is likely a gradation between the domino and detachment mechanisms; transition from domino to detachment faulting occurs when a single domino fault remains active at inopportune slip angles and evolves into a detachment that accommodates all corner flow for that region. In both cases, the original attitude of layering within mantle-emplaced gabbro bodies must be significantly different than present day observed attitudes; sub-horizontal bodies may have been formed sub-vertically and vice-versa. Leg 209 cores record an average major brittle fault spacing of approximately 100 m, suggesting that the width of individual rotating fault blocks may be on the order of 100-200 m. Numerous fault bounded domino slices could therefore be formed within a 10km wide axial valley, with large rotations (and commensurate extension) leading to the exposure of 1km wide shallow-dipping fault surfaces, as are seen in the 15-20 FZ region bathymetry. The region's bathymetry is dominated by irregular, low-relief ridges that were likely formed by domino faulting of lithosphere with a small elastic thickness. The region contains relatively few corrugated detachment fault domes, suggesting that domino faulting may be the normal mode of lithospheric corner flow at non-volcanic ridges.
Salmen, F S; de Oliveira, T F M; Gabrielli, M A C; Pereira Filho, V A; Real Gabrielli, M F
2018-06-01
The aim of this study was to evaluate the precision of bimaxillary surgery performed to correct vertical maxillary excess, when the procedure is sequenced with mandibular surgery first or maxillary surgery first. Thirty-two patients, divided into two groups, were included in this retrospective study. Group 1 comprised patients who received bimaxillary surgery following the classical sequence with repositioning of the maxilla first. Patients in group 2 received bimaxillary surgery, but the mandible was operated on first. The precision of the maxillomandibular repositioning was determined by comparison of the digital prediction and postoperative tracings superimposed on the cranial base. The data were tabulated and analyzed statistically. In this sample, both surgical sequences provided adequate clinical accuracy. The classical sequence, repositioning the maxilla first, resulted in greater accuracy for A-point and the upper incisor edge vertical position. Repositioning the mandible first allowed greater precision in the vertical position of pogonion. In conclusion, although both surgical sequences may be used, repositioning the mandible first will result in greater imprecision in relation to the predictive tracing than repositioning the maxilla first. The classical sequence resulted in greater accuracy in the vertical position of the maxilla, which is key for aesthetics. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Research on bathymetry estimation by Worldview-2 based with the semi-analytical model
NASA Astrophysics Data System (ADS)
Sheng, L.; Bai, J.; Zhou, G.-W.; Zhao, Y.; Li, Y.-C.
2015-04-01
South Sea Islands of China are far away from the mainland, the reefs takes more than 95% of south sea, and most reefs scatter over interested dispute sensitive area. Thus, the methods of obtaining the reefs bathymetry accurately are urgent to be developed. Common used method, including sonar, airborne laser and remote sensing estimation, are limited by the long distance, large area and sensitive location. Remote sensing data provides an effective way for bathymetry estimation without touching over large area, by the relationship between spectrum information and bathymetry. Aimed at the water quality of the south sea of China, our paper develops a bathymetry estimation method without measured water depth. Firstly the semi-analytical optimization model of the theoretical interpretation models has been studied based on the genetic algorithm to optimize the model. Meanwhile, OpenMP parallel computing algorithm has been introduced to greatly increase the speed of the semi-analytical optimization model. One island of south sea in China is selected as our study area, the measured water depth are used to evaluate the accuracy of bathymetry estimation from Worldview-2 multispectral images. The results show that: the semi-analytical optimization model based on genetic algorithm has good results in our study area;the accuracy of estimated bathymetry in the 0-20 meters shallow water area is accepted.Semi-analytical optimization model based on genetic algorithm solves the problem of the bathymetry estimation without water depth measurement. Generally, our paper provides a new bathymetry estimation method for the sensitive reefs far away from mainland.
Goers, G.F.
1987-11-10
A three-axis control for precisely and conveniently adjusting items such as mirrors and lenses is disclosed. The adjuster apparatus includes a vertical stack of three rotatable adjusters. Rotation of the first effects vertical translation, whereas the second and third are eccentric assemblies which interact to effect movement along two angled axes perpendicular to the vertical axis. 13 figs.
Goers, George F.
1987-01-01
A three-axis control for precisely and conveniently adjusting items such as irrors and lenses is disclosed. The adjuster apparatus includes a vertical stack of three rotatable adjusters. Rotation of the first effects vertical translation, whereas the second and third are eccentric assemblies which interact to effect movement along two angled axes perpendicular to the vertical axis.
Vertical Corner Feature Based Precise Vehicle Localization Using 3D LIDAR in Urban Area
Im, Jun-Hyuck; Im, Sung-Hyuck; Jee, Gyu-In
2016-01-01
Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m. PMID:27517936
Using computational modeling of river flow with remotely sensed data to infer channel bathymetry
Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Shimizu, Y.
2012-01-01
As part of an ongoing investigation into the use of computational river flow and morphodynamic models for the purpose of correcting and extending remotely sensed river datasets, a simple method for inferring channel bathymetry is developed and discussed. The method is based on an inversion of the equations expressing conservation of mass and momentum to develop equations that can be solved for depth given known values of vertically-averaged velocity and water-surface elevation. The ultimate goal of this work is to combine imperfect remotely sensed data on river planform, water-surface elevation and water-surface velocity in order to estimate depth and other physical parameters of river channels. In this paper, the technique is examined using synthetic data sets that are developed directly from the application of forward two-and three-dimensional flow models. These data sets are constrained to satisfy conservation of mass and momentum, unlike typical remotely sensed field data sets. This provides a better understanding of the process and also allows assessment of how simple inaccuracies in remotely sensed estimates might propagate into depth estimates. The technique is applied to three simple cases: First, depth is extracted from a synthetic dataset of vertically averaged velocity and water-surface elevation; second, depth is extracted from the same data set but with a normally-distributed random error added to the water-surface elevation; third, depth is extracted from a synthetic data set for the same river reach using computed water-surface velocities (in place of depth-integrated values) and water-surface elevations. In each case, the extracted depths are compared to the actual measured depths used to construct the synthetic data sets (with two- and three-dimensional flow models). Errors in water-surface elevation and velocity that are very small degrade depth estimates and cannot be recovered. Errors in depth estimates associated with assuming water-surface velocities equal to depth-integrated velocities are substantial, but can be reduced with simple corrections.
Development of a seamless multisource topographic/bathymetric elevation model of Tampa Bay
Gesch, D.; Wilson, R.
2001-01-01
Many applications of geospatial data in coastal environments require knowledge of the nearshore topography and bathymetry. However, because existing topographic and bathymetric data have been collected independently for different purposes, it has been difficult to use them together at the land/water interface owing to differences in format, projection, resolution, accuracy, and datums. As a first step toward solving the problems of integrating diverse coastal datasets, the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) are collaborating on a joint demonstration project to merge their data for the Tampa Bay region of Florida. The best available topographic and bathymetric data were extracted from the USGS National Elevation Dataset and the NOAA hydrographic survey database, respectively. Before being merged, the topographic and bathymetric datasets were processed with standard geographic information system tools to place them in a common horizontal reference frame. Also, a key part of the preprocessing was transformation to a common vertical reference through the use of VDatum, a new tool created by NOAA's National Geodetic Survey for vertical datum conversions. The final merged product is a seamless topographic/bathymetric model covering the Tampa Bay region at a grid spacing of 1 arc-second. Topographic LIDAR data were processed and merged with the bathymetry to demonstrate the incorporation of recent third party data sources for several test areas. A primary application of a merged topographic/bathymetric elevation model is for user-defined shoreline delineation, in which the user decides on the tidal condition (for example, low or high water) to be superimposed on the elevation data to determine the spatial position of the water line. Such a use of merged topographic/bathymetric data could lead to the development of a shoreline zone, which could reduce redundant mapping efforts by federal, state, and local agencies by allowing them to customize their portrayals of the shoreline using a standard baseline elevation dataset.
Acoustic tracking of sperm whales in the Gulf of Alaska using a two-element vertical array and tags.
Mathias, Delphine; Thode, Aaron M; Straley, Jan; Andrews, Russel D
2013-09-01
Between 15 and 17 August 2010, a simple two-element vertical array was deployed off the continental slope of Southeast Alaska in 1200 m water depth. The array was attached to a vertical buoy line used to mark each end of a longline fishing set, at 300 m depth, close to the sound-speed minimum of the deep-water profile. The buoy line also served as a depredation decoy, attracting seven sperm whales to the area. One animal was tagged with both a LIMPET dive depth-transmitting satellite and bioacoustic "B-probe" tag. Both tag datasets were used as an independent check of various passive acoustic schemes for tracking the whale in depth and range, which exploited the elevation angles and relative arrival times of multiple ray paths recorded on the array. Analytical tracking formulas were viable up to 2 km range, but only numerical propagation models yielded accurate locations up to at least 35 km range at Beaufort sea state 3. Neither localization approach required knowledge of the local bottom bathymetry. The tracking system was successfully used to estimate the source level of an individual sperm whale's "clicks" and "creaks" and predict the maximum detection range of the signals as a function of sea state.
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.
2015-04-01
We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.
NASA Astrophysics Data System (ADS)
Li, Z.; Clark, E. P.
2017-12-01
Large scale and fine resolution riverine bathymetry data is critical for flood inundation modelingbut not available over the continental United States (CONUS). Previously we implementedbankfull hydraulic geometry based approaches to simulate bathymetry for individual riversusing NHDPlus v2.1 data and 10 m National Elevation Dataset (NED). USGS has recentlydeveloped High Resolution NHD data (NHDPlus HR Beta) (USGS, 2017), and thisenhanced dataset has a significant improvement on its spatial correspondence with 10 m DEM.In this study, we used this high resolution data, specifically NHDFlowline and NHDArea,to create bathymetry/terrain for CONUS river channels and floodplains. A software packageNHDPlus Inundation Modeler v5.0 Beta was developed for this project as an Esri ArcGIShydrological analysis extension. With the updated tools, raw 10 m DEM was first hydrologicallytreated to remove artificial blockages (e.g., overpasses, bridges and eve roadways, etc.) usinglow pass moving window filters. Cross sections were then automatically constructed along eachflowline to extract elevation from the hydrologically treated DEM. In this study, river channelshapes were approximated using quadratic curves to reduce uncertainties from commonly usedtrapezoids. We calculated underneath water channel elevation at each cross section samplingpoint using bankfull channel dimensions that were estimated from physiographicprovince/division based regression equations (Bieger et al. 2015). These elevation points werethen interpolated to generate bathymetry raster. The simulated bathymetry raster wasintegrated with USGS NED and Coastal National Elevation Database (CoNED) (whereveravailable) to make seamless terrain-bathymetry dataset. Channel bathymetry was alsointegrated to the HAND (Height above Nearest Drainage) dataset to improve large scaleinundation modeling. The generated terrain-bathymetry was processed at WatershedBoundary Dataset Hydrologic Unit 4 (WBDHU4) level.
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.
2015-09-01
We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.
Bathymetry and capacity of Blackfoot Reservoir, Caribou County, Idaho, 2011
Wood, Molly S.; Skinner, Kenneth D.; Fosness, Ryan L.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with the Shoshone-Bannock Tribes, surveyed the bathymetry and selected above-water sections of Blackfoot Reservoir, Caribou County, Idaho, in 2011. Reservoir operators manage releases from Government Dam on Blackfoot Reservoir based on a stage-capacity relation developed about the time of dam construction in the early 1900s. Reservoir operation directly affects the amount of water that is available for irrigation of agricultural land on the Fort Hall Indian Reservation and surrounding areas. The USGS surveyed the below-water sections of the reservoir using a multibeam echosounder and real-time kinematic global positioning system (RTK-GPS) equipment at full reservoir pool in June 2011, covering elevations from 6,090 to 6,119 feet (ft) above the North American Vertical Datum of 1988 (NAVD 88). The USGS used data from a light detection and ranging (LiDAR) survey performed in 2000 to map reservoir bathymetry from 6,116 to 6,124 ft NAVD 88, which were mostly in depths too shallow to measure with the multibeam echosounder, and most of the above-water section of the reservoir (above 6,124 ft NAVD 88). Selected points and bank erosional features were surveyed by the USGS using RTK-GPS and a total station at low reservoir pool in September 2011 to supplement and verify the LiDAR data. The stage-capacity relation was revised and presented in a tabular format. The datasets show a 2.0-percent decrease in capacity from the original survey, due to sedimentation or differences in accuracy between surveys. A 1.3-percent error also was detected in the previously used capacity table and measured water-level elevation because of questionable reference elevation at monitoring stations near Government Dam. Reservoir capacity in 2011 at design maximum pool of 6,124 ft above NAVD 88 was 333,500 acre-ft.
NASA Astrophysics Data System (ADS)
Durand, Michael; Neal, Jeff; Rodriguez, Ernesto
2013-09-01
The Surface Water and Ocean Topography (SWOT) satellite is a swath-mapping radar interferometer that will provide water elevations over inland water bodies and over the ocean. Here we present a Bayesian algorithm that calculates a best estimate of river bathymetry, roughness coefficient, and discharge based on measurements of river height and slope. On the River Severn, UK, we use gage estimates of height and slope during an in-bank flow event to illustrate algorithm functionality. We validate our estimates of river bathymetry and discharge using in situ measurements. We first assumed that the lateral inflows from smaller tributaries were known. In this case, an accurate inverse to bathymetry and roughness was obtained giving a discharge RMSE of 10 %. We then allowed the lateral inflows to be unknown; accuracy in the bathymetry estimates dropped in this case, giving a discharge RMSE of 36 %. Finally, we explored the case where bathymetry in one reach was known; in this case, discharge RMSE was 15.6 %.
Error analysis of high-rate GNSS precise point positioning for seismic wave measurement
NASA Astrophysics Data System (ADS)
Shu, Yuanming; Shi, Yun; Xu, Peiliang; Niu, Xiaoji; Liu, Jingnan
2017-06-01
High-rate GNSS precise point positioning (PPP) has been playing a more and more important role in providing precise positioning information in fast time-varying environments. Although kinematic PPP is commonly known to have a precision of a few centimeters, the precision of high-rate PPP within a short period of time has been reported recently with experiments to reach a few millimeters in the horizontal components and sub-centimeters in the vertical component to measure seismic motion, which is several times better than the conventional kinematic PPP practice. To fully understand the mechanism of mystified excellent performance of high-rate PPP within a short period of time, we have carried out a theoretical error analysis of PPP and conducted the corresponding simulations within a short period of time. The theoretical analysis has clearly indicated that the high-rate PPP errors consist of two types: the residual systematic errors at the starting epoch, which affect high-rate PPP through the change of satellite geometry, and the time-varying systematic errors between the starting epoch and the current epoch. Both the theoretical error analysis and simulated results are fully consistent with and thus have unambiguously confirmed the reported high precision of high-rate PPP, which has been further affirmed here by the real data experiments, indicating that high-rate PPP can indeed achieve the millimeter level of precision in the horizontal components and the sub-centimeter level of precision in the vertical component to measure motion within a short period of time. The simulation results have clearly shown that the random noise of carrier phases and higher order ionospheric errors are two major factors to affect the precision of high-rate PPP within a short period of time. The experiments with real data have also indicated that the precision of PPP solutions can degrade to the cm level in both the horizontal and vertical components, if the geometry of satellites is rather poor with a large DOP value.
Mapping nuclear craters on Enewetak Atoll, Marshall Islands
Hampson, John C., Jr.
1986-01-01
In 1984, the U.S. Geological Survey conducted a detailed geologic analysis of two nuclear test craters at Enewetak Atoll, Marshall Islands, on behalf of the Defense Nuclear Agency. A multidisciplinary task force mapped the morphology, surface character, and subsurface structure of two craters, OAK and KOA. The field mapping techniques include echo sounding, sidescan sonar imaging, single-channel and multichannel seismic reflection profiling, a seismic refraction survey, and scuba and submersible operations. All operations had to be navigated precisely and correlatable with subsequent drilling and sampling operations. Mapping with a high degree of precision at scales as large as 1:1500 required corrections that often are not considered in marine mapping. Corrections were applied to the bathymetric data for location of the echo- sounding transducer relative to the navigation transponder on the ship and for transducer depth, speed of sound, and tidal variations. Sidescan sonar, single-channel seismic reflection, and scuba and submersible data were correlated in depth and map position with the bathymetric data to provide a precise, internally consistent data set. The multichannel and refraction surveys were conducted independently but compared well with bathymetry. Examples drawn from processing the bathymetric, sidescan sonar, and single- channel reflection data help illustrate problems and procedures in precision mapping.
NASA Astrophysics Data System (ADS)
Koloskov, Evgenii
2017-04-01
The report examines modern hydrographic technologies for the Russian northern seas investigations. The new hydro acoustics methods for seabed study are discussed. It presents stages of seafloor relief studies in the Russian Arctic seas since the 1950s and the obtained results. At the beginning of the 21st century an entirely new phase of bathymetric investigations began with the use of Multibeam Echosounders (MB) and modern hydrographic software. The software tools to process and analyze the bathymetry, and more recently to characterize the seabed from the backscatter, are available in a majority of modern sonar systems. Besides the bathymetry and sonar data, modern MB can produce water column images. These hydrographic technologies provide the possibility to achieve a high level of the seafloor topography. The latest generation of hydrographic MB now has the ability to provide the water column images along with the seafloor. The gas seeps from multibeam water column data can be distantly discerned against the seabed relief background with the aid of the Fledermause software package ("FMMidwater" module). The ability to integrate the water column data with the seafoor and other information,in an integrated geospatial and temporal environment, enhanced the analysis and interpretation of the data which is essential for marine geological research and investigations. The modern hydrographic equipment presents the ability to integrate the MB digital relief models (DTM) and sub bottom profiler data. This provide the possibility to obtain not only the detailed seabed topography, but also the additional information concerning the structure of under bottom soil layers and presence of the endogenous objects in near bottom environment. The importance of the hydrographic software tools needed to process and analyze the bathymetry and water column data are emphasized. The practical importance of the water column and bottom profiler data processing for the submarine gas-hydrates survey is stated. The attention is paid to the implementation of the parametric sub bottom profilers - the low frequency sonar for the sea bottom vertical section investigation. The ability for the integrated presentation of the multibeam bathymetry and vertical curtains in the 3D environment are discussed. As an example of the modern swath survey results achieved with Kongsberg EM2040CD MB and hydrographic information technology QINSy/ Fledermause, are discussed and presented. This survey was performed for the RosNeft company in the Kara sea. Recommendations for the implementation of the multi beam echo sounder and parametric sub bottom profiler for the combined hydrographic and submarine gas-hydrates survey in the Russian northern seas are delivered.The gas-hydrate survey guidelines using MB and QINSy/Fledermause software are provided. The hydrographic software tools used to process and analyze the bathymetry can create the seafloor DTM with the high degree of resolution and provide 3D visualization.These new possibilities provide such realistic view of the sea bottom relief and environment that can be characterized as the marine landscapes. Thus it became possible to investigate the relief morphological peculiarities and obtain the information about the relief genesis. This opens the new opportunities for using the acoustic techniques for varies types of marine activity including the bottom environmental study. The appearance of the bottom thermokarst activity derived from the high resolution DTM generated from the real time MB data is presented. The bottom thermokarst provides the potential threat for underwater pipelines and other submarine communications. The arctic bottom relief peculiarities are also covered including grounded hummock traces and dome-shaped elevations. The investigation of such bottom land forms has become possible recently as the result of implementing the wide swath survey methods. Such unique relief features are in general related to seabed gas venting in the form of the submarine gas-hydrates seeps. The opportunities for investigation of the morphological relief peculiarities and getting the new information is mportant also for varies types of marine activity including the marine ecology study. The arctic sea specific microrelief images are provided to show the abnormality of the bottom surface. The main attention is paid to specific and bottom features such as trenches the grounded hummock traces and dome-shaped elevations of the Pingo-type-unique forms of microrelief usually confined to the bottom gas flow in the form of methane emissions. The attention is also paid to the consequences of the global climate change and its influence on the bottom sole. Key words: hydrographic technologies, hydro acoustics methods, swathe survey, sea bottom vertical section, submarine gas-hydrates, submarine permafrost, seafloor gas venting,multi beam echo sounder, parametric sub bottom profiler.
Three-dimensional estimate of the lithospheric effective elastic thickness of the Line ridge
NASA Astrophysics Data System (ADS)
Hu, Minzhang; Li, Jiancheng; Jin, Taoyong; Xu, Xinyu; Xing, Lelin; Shen, Chongyang; Li, Hui
2015-09-01
Using a new bathymetry grid formed with vertical gravity gradient anomalies and ship soundings (BAT_VGG), a 1° × 1° lithospheric effective elastic thickness (Te) grid of the Line ridge was calculated with the moving window admittance technique. As a comparison, both the GEBCO_08 and SIO V15.1 bathymetry datasets were used to calculate Te as well. The results show that BAT_VGG is suitable for the calculation of lithospheric effective elastic thickness. The lithospheric effective elastic thickness of the Line ridge is shown to be low, in the range of 5.5-13 km, with an average of 8 km and a standard deviation of 1.3 km. Using the plate cooling model as a reference, most of the effective elastic thicknesses are controlled by the 150-300 °C isotherm. Seamounts are primarily present in two zones, with lithospheric ages of 20-35 Ma and 40-60 Ma, at the time of loading. Unlike the Hawaiian-Emperor chain, the lithospheric effective elastic thickness of the Line ridge does not change monotonously. The tectonic setting of the Line ridge is discussed in detail based on our Te results and the seamount ages collected from the literature. The results show that thermal and fracture activities must have played an important role in the origin and evolution of the ridge.
Intelligent identification of remnant ridge edges in region west of Yongxing Island, South China Sea
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Guo, Jing; Cai, Guanqiang; Wang, Dawei
2018-02-01
Edge detection enables identification of geomorphologic unit boundaries and thus assists with geomorphical mapping. In this paper, an intelligent edge identification method is proposed and image processing techniques are applied to multi-beam bathymetry data. To accomplish this, a color image is generated by the bathymetry, and a weighted method is used to convert the color image to a gray image. As the quality of the image has a significant influence on edge detection, different filter methods are applied to the gray image for de-noising. The peak signal-to-noise ratio and mean square error are calculated to evaluate which filter method is most appropriate for depth image filtering and the edge is subsequently detected using an image binarization method. Traditional image binarization methods cannot manage the complicated uneven seafloor, and therefore a binarization method is proposed that is based on the difference between image pixel values; the appropriate threshold for image binarization is estimated according to the probability distribution of pixel value differences between two adjacent pixels in horizontal and vertical directions, respectively. Finally, an eight-neighborhood frame is adopted to thin the binary image, connect the intermittent edge, and implement contour extraction. Experimental results show that the method described here can recognize the main boundaries of geomorphologic units. In addition, the proposed automatic edge identification method avoids use of subjective judgment, and reduces time and labor costs.
Differential absorption radar techniques: water vapor retrievals
NASA Astrophysics Data System (ADS)
Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone
2016-06-01
Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.
NASA Astrophysics Data System (ADS)
Fabre, M.; Moysan, M.; Graindorge, D.; Jean-Frederic, L.; Philippon, M. M.; Marcaillou, B.; Léticée, J. L.
2015-12-01
Volcano-tectonic history of the Caribbean plate provides direct insight onto the dynamic of the North American Plate westward subduction. Basse-Terre Island is a volcanic chain that belongs to the Lesser Antilles active volcanic arc with a southward decreasing age of volcanism from 3 Ma to present day.We investigate records of vertical motion along Basse-Terre through a morphostructural analysis of the Pleistocene-Holocene shallow-water carbonate platforms and associated terraces that surround Basse-Terre Island. This study is based on new high-resolution bathymetric and dense seismic data acquired during the GEOTREF oceanographic survey (2015, February). Our bathymetric and topographic Digital Terrain Model together with the "Litto3D" Lidar data (IGN/SHOM) images the island topography and the platform bathymetry to a depth of 200m with horizontal and vertical resolutions of 5m and ~cm respectively. This detailed study highlights the morphostructure of terraces built during the last transgression in order to identify and quantify their vertical motions. We analyze inherited morphology and structures of the forearc that affect the platform to discuss effects of the regional tectonics context. A particular emphasis is put on the influence of the NW-SE arc parallel transtensive Montserrat-Bouillante fault system onto the platform geometry. At last, the distribution of Basse-Terre terraces is compared with terraces distribution around other Lesser Antilles island and the Bahamas stable margin platform. We aim at discriminating the influence of the Pleistocene global sea-level rise from the one of tectonic vertical deformations.
NASA Astrophysics Data System (ADS)
Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco
2014-05-01
Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge distribution, but also in calculating sludge accumulation rates, and in evaluating pond hydraulic efficiency (e.g., as input bathymetry for computational fluid dynamics models). This technology is not limited to application for wastewater management, and could potentially have a wider application in the monitoring of other small to medium water bodies, including reservoirs, channels, recreational water bodies, river beds, mine tailings dams and commercial ports.
Investigations on vertical crustal movements in the Venezuelan Andes by gravimetric methods
NASA Technical Reports Server (NTRS)
Drewes, H.
1978-01-01
A precise gravimetric network has been installed in the Venezuelan Andes to study eventual gravity changes due to vertical tectonic movements. The design and the measurements of the network are described and the accuracy is estimated. In the center of the region a local gravity network has been reobserved three times. The detected variations are discussed. In order to obtain a genuine statement as far as possible about the significance of observed gravity changes, requirements for the procedure of monitoring precise gravity networks are pointed out.
Unification of height systems in the frame of GGOS
NASA Astrophysics Data System (ADS)
Sánchez, Laura
2015-04-01
Most of the existing vertical reference systems do not fulfil the accuracy requirements of modern Geodesy. They refer to local sea surface levels, are stationary (do not consider variations in time), realize different physical height types (orthometric, normal, normal-orthometric, etc.), and their combination in a global frame presents uncertainties at the metre level. To provide a precise geodetic infrastructure for monitoring the Earth system, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), promotes the standardization of the height systems worldwide. The main purpose is to establish a global gravity field-related vertical reference system that (1) supports a highly-precise (at cm-level) combination of physical and geometric heights worldwide, (2) allows the unification of all existing local height datums, and (3) guarantees vertical coordinates with global consistency (the same accuracy everywhere) and long-term stability (the same order of accuracy at any time). Under this umbrella, the present contribution concentrates on the definition and realization of a conventional global vertical reference system; the standardization of the geodetic data referring to the existing height systems; and the formulation of appropriate strategies for the precise transformation of the local height datums into the global vertical reference system. The proposed vertical reference system is based on two components: a geometric component consisting of ellipsoidal heights as coordinates and a level ellipsoid as the reference surface, and a physical component comprising geopotential numbers as coordinates and an equipotential surface defined by a conventional W0 value as the reference surface. The definition of the physical component is based on potential parameters in order to provide reference to any type of physical heights (normal, orthometric, etc.). The conversion of geopotential numbers into metric heights and the modelling of the reference surface (geoid or quasigeoid determination) are considered as steps of the realization. The vertical datum unification strategy is based on (1) the physical connection of height datums to determine their discrepancies, (2) joint analysis of satellite altimetry and tide gauge records to determine time variations of sea level at reference tide gauges, (3) combination of geometrical and physical heights in a well-distributed and high-precise reference frame to estimate the relationship between the individual vertical levels and the global one, and (4) analysis of GNSS time series at reference tide gauges to separate crustal movements from sea level changes. The final vertical transformation parameters are provided by the common adjustment of the observation equations derived from these methods.
Passive optical remote sensing of Congo River bathymetry using Landsat
NASA Astrophysics Data System (ADS)
Ache Rocha Lopes, V.; Trigg, M. A.; O'Loughlin, F.; Laraque, A.
2014-12-01
While there have been notable advances in deriving river characteristics such as width, using satellite remote sensing datasets, deriving river bathymetry remains a significant challenge. Bathymetry is fundamental to hydrodynamic modelling of river systems and being able to estimate this parameter remotely would be of great benefit, especially when attempting to model hard to access areas where the collection of field data is difficult. One such region is the Congo Basin, where due to past political instability and large scale there are few studies that characterise river bathymetry. In this study we test whether it is possible to use passive optical remote sensing to estimate the depth of the Congo River using Landsat 8 imagery in the region around Malebo Pool, located just upstream of the Kinshasa gauging station. Methods of estimating bathymetry using remotely sensed datasets have been used extensively for coastal regions and now more recently have been demonstrated as feasible for optically shallow rivers. Previous river bathymetry studies have focused on shallow rivers and have generally used aerial imagery with a finer spatial resolution than Landsat. While the Congo River has relatively low suspended sediment concentration values the application of passive bathymetry estimation to a river of this scale has not been attempted before. Three different analysis methods are tested in this study: 1) a single band algorithm; 2) a log ratio method; and 3) a linear transform method. All three methods require depth data for calibration and in this study area bathymetry measurements are available for three cross-sections resulting in approximately 300 in-situ measurements of depth, which are used in the calibration and validation. The performance of each method is assessed, allowing the feasibility of passive depth measurement in the Congo River to be determined. Considering the scarcity of in-situ bathymetry measurements on the Congo River, even an approximate estimate of depths from these methods will be of considerable value in its hydraulic characterisation.
Precision monitoring of bridge deck curvature change during replacement.
DOT National Transportation Integrated Search
2016-05-01
This project was focused on development and deployment of a system for monitoring vertical : displacement in bridge decks and bridge spans. The system uses high precision wireless inclinometer : sensors to monitor inclinations at various points of a ...
Microgravimetry and the Measurement and Application of Gravity Gradients,
1980-06-01
Neumann, R., 1972, High precision gravimetry--recent develop- ments: Report to Paris Commission of E.A.E.G., Compagnie Generale de Geophysique , Massy...experimentation on vertical gradient: Compagnie Generale de Geophysique , Massy, France. 12. Fajklewicz, Z. J., 1976, Gravity vertical gradient
Coastal bathymetry data collected in 2011 from the Chandeleur Islands, Louisiana
DeWitt, Nancy T.; Pfeiffer, William R.; Bernier, Julie C.; Buster, Noreen A.; Miselis, Jennifer L.; Flocks, James G.; Reynolds, Billy J.; Wiese, Dana S.; Kelso, Kyle W.
2014-01-01
This report serves as an archive of processed interferometric swath and single-beam bathymetry data. Geographic Iinformation System data products include a 50-meter cell-size interpolated bathymetry grid surface, trackline maps, and point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.
NASA Astrophysics Data System (ADS)
Sari, N. M.; Nugroho, J. T.; Chulafak, G. A.; Kushardono, D.
2018-05-01
Coastal is an ecosystem that has unique object and phenomenon. The potential of the aerial photo data with very high spatial resolution covering coastal area is extensive. One of the aerial photo data can be used is LAPAN Surveillance UAV 02 (LSU-02) photo data which is acquired in 2016 with a spatial resolution reaching 10cm. This research aims to create an initial bathymetry model with stereo photogrammetry technique using LSU-02 data. In this research the bathymetry model was made by constructing 3D model with stereo photogrammetry technique that utilizes the dense point cloud created from overlapping of those photos. The result shows that the 3D bathymetry model can be built with stereo photogrammetry technique. It can be seen from the surface and bathymetry transect profile.
Choosing a DIVA: a comparison of emerging digital imagery vegetation analysis techniques
Jorgensen, Christopher F.; Stutzman, Ryan J.; Anderson, Lars C.; Decker, Suzanne E.; Powell, Larkin A.; Schacht, Walter H.; Fontaine, Joseph J.
2013-01-01
Question: What is the precision of five methods of measuring vegetation structure using ground-based digital imagery and processing techniques? Location: Lincoln, Nebraska, USA Methods: Vertical herbaceous cover was recorded using digital imagery techniques at two distinct locations in a mixed-grass prairie. The precision of five ground-based digital imagery vegetation analysis (DIVA) methods for measuring vegetation structure was tested using a split-split plot analysis of covariance. Variability within each DIVA technique was estimated using coefficient of variation of mean percentage cover. Results: Vertical herbaceous cover estimates differed among DIVA techniques. Additionally, environmental conditions affected the vertical vegetation obstruction estimates for certain digital imagery methods, while other techniques were more adept at handling various conditions. Overall, percentage vegetation cover values differed among techniques, but the precision of four of the five techniques was consistently high. Conclusions: DIVA procedures are sufficient for measuring various heights and densities of standing herbaceous cover. Moreover, digital imagery techniques can reduce measurement error associated with multiple observers' standing herbaceous cover estimates, allowing greater opportunity to detect patterns associated with vegetation structure.
40 CFR 75.41 - Precision criteria.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...
40 CFR 75.41 - Precision criteria.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...
40 CFR 75.41 - Precision criteria.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...
40 CFR 75.41 - Precision criteria.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...
40 CFR 75.41 - Precision criteria.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...
How Perturbing Ocean Floor Disturbs Tsunami Waves
NASA Astrophysics Data System (ADS)
Salaree, A.; Okal, E.
2017-12-01
Bathymetry maps play, perhaps the most crucial role in optimal tsunami simulations. Regardless of the simulation method, on one hand, it is desirable to include every detailed bathymetry feature in the simulation grids in order to predict tsunami amplitudes as accurately as possible, but on the other hand, large grids result in long simulation times. It is therefore, of interest to investigate a "sufficiency" level - if any - for the amount of details in bathymetry grids needed to reconstruct the most important features in tsunami simulations, as obtained from the actual bathymetry. In this context, we use a spherical harmonics series approach to decompose the bathymetry of the Pacific ocean into its components down to a resolution of 4 degrees (l=100) and create bathymetry grids by accumulating the resulting terms. We then use these grids to simulate the tsunami behavior from pure thrust events around the Pacific through the MOST algorithm (e.g. Titov & Synolakis, 1995; Titov & Synolakis, 1998). Our preliminary results reveal that one would only need to consider the sum of the first 40 coefficients (equivalent to a resolution of 1000 km) to reproduce the main components of the "real" results. This would result in simpler simulations, and potentially allowing for more efficient tsunami warning algorithms.
High-Resolution Geomorphometry of Seamounts of the Young Walvis Ridge Guyot Province
NASA Astrophysics Data System (ADS)
Schnur, S. R.; Koppers, A. A.
2012-12-01
In February and March 2012, cruise MV1203 surveyed and dredged seamounts at the young end of the Walvis Ridge hotspot trail in the South Atlantic. The scientific goals were to better understand the hotspot origins of the Walvis Ridge by collecting rock samples for high-precision 40Ar/39Ar geochronology and by investigating the relationship between seamount morphology and different mechanisms of intra-plate volcanism. The area had until now been only sparsely-sampled, and most of the seamounts had never been mapped with multibeam. Here we present a geomorphometric analysis of edifice size and shape parameters from 74 seamounts of the young Walvis Ridge guyot province. The base data for each seamount consists of Simrad EM122 multibeam bathymetry combined with bathymetry from the SRTM30 PLUS compilation (V7.0: Becker et al., 2009; Sandwell and Smith, 2009), gridded at 180 m resolution. Multibeam coverage of individual seamounts ranges from 100% for small seamounts to 15% for large seamounts, with most seamounts having at least 50% coverage. Most of this data focuses on seamount flanks rather than flat guyot tops, covering the areas of greatest topographic variability even for seamounts with relatively low multibeam coverage. For each seamount we quantify edifice height, perimeter, volume, elongation, azimuth, irregularity and distance to nearest neighbor. These variables are compared to the age of the underlying crust, distance to the Mid-Atlantic Ridge and distance from the Etendeka flood basalts of Namibia, which are thought to signal the initial stages of hotspot volcanism at the old end of the chain. Additionally we assess how the addition of high resolution data affects these geomorphologic parameters. We will present an overview of the cruise outcomes as well as highlight unusual features observed in the new bathymetry and backscatter data. The cruise data suggest that the young Walvis Ridge guyot province holds great potential for further exploration and multidisciplinary research.
Fabrication of precision high quality facets on molecular beam epitaxy material
Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.
2001-01-01
Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.
Precision monitoring of bridge deck curvature change during replacement : research summary.
DOT National Transportation Integrated Search
2016-05-01
The goal of this project was to introduce a novel method for long term : monitoring of vertical displacement and change in curvature in highway bridge : decks. The method used an array of high precision wireless inclination (tilt) : sensors to consta...
Bathymetry Estimations Using Vicariously Calibrated HICO Data
2013-07-16
prototype sensor installed on the International Space Station (ISS) designed to explore the management and capability of a space-borne hyperspectral sensor ...management of the HICO sensor . Bathymetry information is essential for naval operations in coastal regions. However, bathymetry may not be available in... sensors with coarser resolutions. Furthermore, its contiguous hyperspectral range is well suited to be used as input to the Hyperspectral Optimization
Kaplinski, Matt; Hazel, Joseph E.; Grams, Paul E.; Davis, Philip A.
2014-01-01
Digital elevation models (DEMs) of eleven 2–5 kilometer reaches of the Colorado River ecosystem (CRE) in Grand Canyon were constructed from repeat bathymetric and topographic surveys collected between August 2000 and December 2004. The DEMs will be used by researchers to study the effects of Glen Canyon Dam (GCD) operations on the sediment resources of the CRE in Grand Canyon by quantifying morphological changes and sediment transfer within and among the study reaches. Airborne surveys collected light detection and ranging (lidar) and photogrammetric data, whereas ground topographic and bathymetric data were collected simultaneously on river trips. Surveys were conducted in August 2000, September 2000, May 2002, May 2004, November 2004, and December 2004. The aerial lidar and photogrammetric data were merged with the ground topographic and bathymetric data to create DEMs of the study areas with a grid resolution of 1 meter. For each survey period, the vertical component of uncertainty (specifically, reproducibility or precision) was estimated for each data type (lidar/photogrammetry, ground surveys, bathymetry) and for two different types of bed-surface texture (smooth and rough). The resulting DEMs from this study are a valuable contribution to ongoing efforts in assessing the effects of GCD operations on the CRE. The DEMs can be used to map the spatial characteristics of geomorphic change within the study reaches and to estimate sediment budgets for different time periods by calculating the difference in sediment volume between surveys. In addition, the DEMs provide essential boundary conditions for numerical models of sediment transport and deposition, as well as help define the spatial distribution of habitat for fisheries investigations.
NASA Astrophysics Data System (ADS)
Liu, J.; Allen, S. E.; Soontiens, N. K.
2016-02-01
Fraser River is the largest river on the west coast of Canada. It empties into the Strait of Georgia, which is a large, semi-enclosed body of water between Vancouver Island and the mainland of British Columbia. We have developed a three-dimensional model of the Strait of Georgia, including the Fraser River plume, using the NEMO model in its regional configuration. This operational model produces daily nowcasts and forecasts for salinity, temperature, currents and sea surface heights. Observational data available for evaluation of the model includes daily British Columbia ferry salinity data, profile data and surface drifter data. The salinity of the modelled Fraser River plume agrees well with ferry based measurements of salinity. However, large discrepencies exist between the modelled and observed position of the plume. Modelled surface currents compared to drifter observations show that the model has too strong along-strait velocities and too weak cross-strait velocities. We investigated the impact of river geometry. A sensitivity experiment was performed comparing the original, short, shallow river channel to an extended and deepened river channel. With the latter bathymetry, tidal amplitudes within Fraser River correspond well with observations. Comparisons to drifter tracks show that the surface currents have been improved with the new bathymetry. However, substantial discrepencies remain. We will discuss how reducing vertical eddy viscosity and other changes further improve the modelled position of the plume.
Chaytor, Jason D.; Demopoulos, Amanda W. J.; ten Brink, Uri S.; Baxter, Christopher D. P.; Quattrini, Andrea M.; Brothers, Daniel S.; Lamarche, Geoffroy; Mountjoy, Joshu; Bull, Suzanne; Hubble, Tom; Krastel, Sebastian; Lane, Emily; Micallef, Aaron; Moscardelli, Lorena; Mueller, Christof; Pecher, Ingo; Woelz, Susanne
2016-01-01
Over the last few years, canyons along the northern U.S. Atlantic continental margin have been the focus of intensive research examining canyon evolution, submarine geohazards, benthic ecology and deep-sea coral habitat. New high-resolution multibeam bathymetry and Remotely Operated Vehicle (ROV) dives in the major shelf-breaching and minor slope canyons, provided the opportunity to investigate the size of, and processes responsible for, canyon wall failures. The canyons cut through thick Late Cretaceous to Recent mixed siliciclastic and carbonate-rich lithologies which impart a primary control on the style of failures observed. Broad-scale canyon morphology across much of the margin can be correlated to the exposed lithology. Near vertical walls, sedimented benches, talus slopes, and canyon floor debris aprons were present in most canyons. The extent of these features depends on canyon wall cohesion and level of internal fracturing, and resistance to biological and chemical erosion. Evidence of brittle failure over different spatial and temporal scales, physical abrasion by downslope moving flows, and bioerosion, in the form of burrows and surficial scrape marks provide insight into the modification processes active in these canyons. The presence of sessile fauna, including long-lived, slow growing corals and sponges, on canyon walls, especially those affected by failure provide a critical, but as yet, poorly understood chronological record of geologic processes within these systems.
Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO
NASA Astrophysics Data System (ADS)
Marks, K. M.; Smith, W. H. F.; Sandwell, D. T.
2010-09-01
We analyze errors in the global bathymetry models of Smith and Sandwell that combine satellite altimetry with acoustic soundings and shorelines to estimate depths. Versions of these models have been incorporated into Google Earth and the General Bathymetric Chart of the Oceans (GEBCO). We use Japan Agency for Marine-Earth Science and Technology (JAMSTEC) multibeam surveys not previously incorporated into the models as "ground truth" to compare against model versions 7.2 through 12.1, defining vertical differences as "errors." Overall error statistics improve over time: 50th percentile errors declined from 57 to 55 to 49 m, and 90th percentile errors declined from 257 to 235 to 219 m, in versions 8.2, 11.1 and 12.1. This improvement is partly due to an increasing number of soundings incorporated into successive models, and partly to improvements in the satellite gravity model. Inspection of specific sites reveals that changes in the algorithms used to interpolate across survey gaps with altimetry have affected some errors. Versions 9.1 through 11.1 show a bias in the scaling from gravity in milliGals to topography in meters that affected the 15-160 km wavelength band. Regionally averaged (>160 km wavelength) depths have accumulated error over successive versions 9 through 11. These problems have been mitigated in version 12.1, which shows no systematic variation of errors with depth. Even so, version 12.1 is in some respects not as good as version 8.2, which employed a different algorithm.
NASA Astrophysics Data System (ADS)
Pan, Feifei; Wang, Cheng; Xi, Xiaohuan
2016-09-01
Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning's coefficient with the water level from the channel bed lowest elevation to the bank-full level. The constructed SDR curve with the vertical variation of the Manning's coefficient reduced the RMSE in the estimated river discharges to 83.9 m3/s. These results indicate that the method developed and tested in this study is effective and robust, and has the potential for improving our ability of remote sensing of river discharge and providing data for water resources management, global water cycle study, and flood forecasting and prevention.
NASA Astrophysics Data System (ADS)
Exley, R. J. K.; Westbrook, G. K.; Haacke, R. R.; Peacock, S.
2010-10-01
Azimuthal seismic anisotropy has been identified from the analysis of S-waves generated by P to S mode conversion in the Pleistocene sediments that form the northern headwall of the Storegga Slide, which were investigated with a seismic experiment employing a seabed array of ocean-bottom seismometers and a grid of airgun shots. The principal technique used to detect the anisotropy was azimuthal stacking of the radial and transverse horizontal geophone components, after the application of moveout, to show the variations in amplitude, phase and cumulative traveltime effects of S-waves, ultimately providing information that identified the `fast' and `slow' S-wave polarization orientations. Particle-motion analysis was used to corroborate the results and provide further information on the magnitudes of cumulative S-wave splitting. A 2-D ray-traced inversion of the traveltimes of pre-critical P and PS arrivals provided a velocity model from which the variation with depth of Vp, Vs and anisotropy could be compared with lithological and stratigraphic data from a borehole at the centre of the OBS array. Increased anisotropic response was observed to be coincident with high velocity units, which have high mica but low water content and are interpreted to be of glacial origin. The analysis of azimuthal seismic anisotropy shows clear evidence for horizontal transverse isotropy or an orthorhombic symmetry. The distribution in orientations of the fast plane of symmetry is broadly bimodal (E-W and NE-SW) across the OBS array. The E-W group showed correlation with the headwalls of old, buried slides and other faults visible within coherency attributes calculated from an accompanying 3-D seismic data set and with the strike of some of the headwalls of slides shown in multibeam bathymetry. However, the pattern of headwall fractures shown in the bathymetry is complicated and reticulate, and the NE-SW orientation is also well represented. We infer that the cause of the anisotropy is the presence of vertical to sub-vertical, fluid-filled fractures and micro-cracks, partially held open by high pore-fluid pressure. The fracture orientations are controlled primarily by the present-day gravitationally induced down-slope stress, which is mediated by the heterogeneous nature of sub-surface, causing local changes in the orientation of the principal stresses at the margins of incipient or failed slides. The fractures, if connected, are likely to increase vertical permeability within the sediment column significantly, and influence the distribution of gas hydrate within the strata.
Resolving bathymetry from airborne gravity along Greenland fjords
Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany L.; Bell, Robin E.
2015-01-01
Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.
Marki, Alex; Ermilov, Eugeny; Zakrzewicz, Andreas; Koller, Akos; Secomb, Timothy W; Pries, Axel R
2014-04-01
The aim of the study was to establish a user-friendly approach for single fluorescence particle 3D localization and tracking with nanometre precision in a standard fluorescence microscope using a point spread function (PSF) approach, and to evaluate validity and precision for different analysis methods and optical conditions with particular application to microcirculatory flow dynamics and cell biology. Images of fluorescent particles were obtained with a standard fluorescence microscope equipped with a piezo positioner for the objective. Whole pattern (WP) comparison with a PSF recorded for the specific set-up and measurement of the outermost ring radius (ORR) were used for analysis. Images of fluorescent particles were recorded over a large range (about 7μm) of vertical positions, with and without distortion by overlapping particles as well as in the presence of cultured endothelial cells. For a vertical range of 6.5μm the standard deviation (SD) from the predicted value, indicating validity, was 9.3/8.7 nm (WP/ORR) in the vertical and 8.2/11.7 nm in the horizontal direction. The precision, determined by repeated measurements, was 5.1/3.8 nm in the vertical and 2.9/3.7 nm in the horizontal direction. WP was more robust with respect to underexposure or overlapping images. On the surface of cultured endothelial cells, a layer with 2.5 times increased viscosity and a thickness of about 0.8μm was detected. With a validity in the range of 10 nm and a precision down to about 3-5 nm obtained by standard fluorescent microscopy, the PSF approach offers a valuable tool for a variety of experimental investigations of particle localizations, including the assessment of endothelial cell microenvironment.
NASA Astrophysics Data System (ADS)
Delikaraoglou, D.; Mintourakis, I.; Kallianou, F.
2009-04-01
With the realization of the Shuttle Radar Topographic Mission (SRTM) and the free distribution of its global elevation dataset with 3 arcsec (90 m) resolution and less than 16 m vertical accuracy, together with the availability of the higher resolution (30 m) and accuracy (10 m) Digital Terrain Models (DTM) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), these two valuable sources of uniform DEM data represent a revolution in the world of terrain modelling. DEMs are an important source of data for the generation of high resolution geoids since they provide the high-frequency content of the gravity field spectrum and are suitable for the computation of terrain effects to gravity and indirect effects to the geoid, thus allowing the combination of global geopotential models, local gravity anomalies and information about the earth's topography (represented by a given DEM). However, although such models are available for land, there are no readily accessible Digital Bathymetry Models (DBMs) of equivalent quality for the coastal and oceanic regions. Most of the global DBM's (e.g. ETOPO1, SRTM30, and GEBCO global bathymetric grid) are compilations of heterogeneous data with medium resolution and accuracy. This prevents to exploit the potential of the recent high resolution (1 arcmin) marine free-air gravity anomalies datasets derived from satellite altimetry (such as the DNSC08, and the Sandwell & Smith v18.1 (S&Sv18.1) global solutions) in conjunction with such global DBM's. Fortunately, for some regions, recently have become available DBM's of much better accuracy and resolution, such as the DBM of 1 km resolution for many regions of the Mediterranean Sea which is distributed by IFREMER, the French Research Institute for Exploitation of the Sea. The scope of this study is to use this latest regional DBM in combination with the newly available DNSC08 and SSV18.1 global marine free-air gravity anomalies datasets for marine and near shore geoid modelling of archipelagic (island) areas. We have concentrated in two test regions: (a) the Catalano-Balearic Sea (South of Spain in the NW Meditteranean), where adequate marine and land gravity data allow a detailed evaluation of our processing methodologies and their results and, (b) the Aegean Sea where the presence of many islands in varying distances from the mainland Greece and located on the continental shelf and/or divided by steep sea floor topography present some unique challenges for any high resolution geoid modelling efforts. For both test regions, we generated a combined DEM (C-DEM) using the IFREMER and SRTM 30 arcsec bathymetric data for the sea areas and SRTM 3 arcsec data for the surrounding land areas. In this contribution, we discuss various computational aspects relating to the so-called "Direct Topographical Effect" (DTE) and the "Indirect Topographical Effect" (ITE), the two most significant topographical effects that have to be evaluated when a precise geoid is being compiled. In addition, we outline the evaluation and the impact of the results obtained, especially with regard to the differences in the geoid models when different elevation data are used, and point out the main limitations and possibilities for further improvements in the use of the aforementioned satellite and terrestrial data for regional and local geoid mapping in coastal and island regions. Keywords: IFREMER, SRTM, terrain effects, free-air gravity anomalies, geoid modelling,Digital Bathymetry Models.
NASA Astrophysics Data System (ADS)
Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Rock, S. M.; Risi, M.; Padial, J. A.
2013-12-01
The Monterey Bay Aquarium Research Institute is developing a low altitude, high-resolution seafloor mapping capability that combines multibeam sonar with stereo photographic imagery. The goal is to obtain spatially quantitative, repeatable renderings of the seafloor with fidelity at scales of 5 cm or better from altitudes of 2-3 m. The initial test surveys using this sensor system are being conducted from a remotely operated vehicle (ROV). Ultimately we intend to field this survey system from an autonomous underwater vehicle (AUV). This presentation focuses on the current sensor configuration, methods for data processing, and results from recent test surveys. Bathymetry data are collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 2-m altitude, the nadir beams have a 1.7-cm acrosstrack and 3.5 cm alongtrack footprint. Dual Allied Vision Technology GX1920 2.8 Mpixel color cameras provide color stereo photography of the seafloor. The camera housings have been fitted with corrective optics achieving a 90° field of view through a dome port. Illumination is provided by dual 100J xenon strobes. Position, depth, and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz RDI Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS Kalman filter is aided by the DVL velocity and pressure data, achieving navigational drift rates less than 0.05% of the distance traveled during surveys. The sensors are mounted onto a toolsled fitted below MBARI's ROV Doc Ricketts with the sonars, cameras and strobes all pointed vertically down. During surveys the ROV flies at a 2-m altitude at speeds of 0.1-0.2 m/s. During a four-day R/V Western Flyer cruise in June 2013, we successfully collected multibeam and camera survey data from a 2-m altitude at three sites in the deep Monterey Canyon axis. The surveys lines were spaced 1.5-m and were flown at speeds of 0.1-0.2-m/s while the sonars pinged at 3 Hz and the cameras operated at 0.5 Hz. All three low-altitude surveys are at ~2850 m depth and lie within the 1-m lateral resolution bathymetry of a 2009, 50-m altitude MBARI Mapping AUV survey. Site 1 has the greatest topography, being centered on a 15 m diameter, 7 m high flat boulder surrounded by an 80 m diameter, 6 m deep scour pit. Site 2 is located within a field of ~3-m high apparent sediment waves with ~80-m wavelengths. Site 0 is flat and includes chemosynthetic clam communities. At a 2 m altitude, the multibeam bathymetry swath is more than 7 m wide and the camera images are 4 m wide. Following navigation adjustment to match features in overlapping bathymetry swaths, we achieve 5-cm lateral resolution topography overlain with ~1-mm scale photographic imagery.
Recent vertical movements from precise levelling in the vicinity of the city of Basel, Switzerland
NASA Astrophysics Data System (ADS)
Schlatter, Andreas; Schneider, Dieter; Geiger, Alain; Kahle, Hans-Gert
2005-09-01
The southern end of the Upper Rhine Graben is one of the zones in Switzerland where recent crustal movements can be expected because of ongoing seismotectonic processes as witnessed by seismicity clusters occurring in this region. Therefore, in 1973 a control network with levelling profiles across the eastern Rhine Graben fault was installed and measured in the vicinity of the city of Basel in order to measure relative vertical movements and investigate their relationship with seismic events. As a contribution to EUCOR-URGENT, the profiles were observed a third time in the years 2002 and 2003 and connected to the Swiss national levelling network. The results of these local measurements are discussed in terms of accuracy and significance. Furthermore, they are combined and interpreted together with the extensive data set of recent vertical movements in Switzerland (Jura Mountains, Central Plateau and the Alps). In order to be able to prove height changes with precise levelling, their values should amount to at least 3 4 mm (1σ). The present investigations, however, have not shown any significant vertical movements over the past 30 years.
Anatomic motor point localization for partial quadriceps block in spasticity.
Albert, T; Yelnik, A; Colle, F; Bonan, I; Lassau, J P
2000-03-01
To identify the location of the vastus intermedius nerve and its motor point (point M) and to precisely identify its coordinates in relation to anatomic surface landmarks. Descriptive study. Anatomy institute of a university school of medicine. Twenty-nine adult cadaver limbs immobilized in anatomic position. Anatomic dissection to identify point M. Anatomic surface landmarks were point F, the issuing point of femoral nerve under the inguinal ligament; point R, the middle of superior edge of the patella; segment FR, which corresponds to thigh length; point M', point M orthogonal projection on segment FR. Absolute vertical coordinate, distance FM, relative vertical coordinate compared to the thigh length, FM'/FR ratio; absolute horizontal coordinate, distance MM'. The absolute vertical coordinate was 11.7+/-2 cm. The relative vertical coordinate was at .29+/-.04 of thigh length. The horizontal coordinate was at 2+/-.5 cm lateral to the FR line. Point M can be defined with relative precision by two coordinates. Application and clinical interest of nerve blocking using these coordinates in quadriceps spasticity should be studied.
Precise Method for Investigation of Lissajous Generalized Figures
ERIC Educational Resources Information Center
Bednarek, Stanislaw
2014-01-01
This article describes the Lissajous generalized figure and the original instrument for its investigation. Two specially prepared electrodynamic loudspeakers--a horizontal and a vertical--cause oscillations in two mirrors. It is possible to precisely control the motion of the mirrors, achieve a high frequency of oscillation and investigate…
Nita, D; Mignot, J; Chuard, M; Sofa, M
1998-08-01
Measurement of cutaneous surface topography can be made by three-dimensional (3-D) profilometry. Different equipment is used for this measurement. The magnitude of the vertical scale required, which can vary from several tens of micrometers (microrelief) to several millimeters (skin pathologies), depends also on the precision required and the duration of acquisition time. Over the last few years, different apparatuses have been produced, with a vertical range that is most frequently used for classical industrial applications, i.e., 0-1000 μm. The system developed here has a wide range of about 7 mm and is accurate enough to analyse each of the different skin surfaces that fall in this range without changing magnification. An optical principle, operating without any contact with a skin replica, allows a precise measurement with a high scanning speed. The profilometer has a vertical sensitivity of 4 μm within a vertical range of 7 mm. This sensitivity is lower than that of a mechanical or focusing profilometer, but the vertical range is wider. The system has several advantages: because of its verticale range, it can measure large surfaces with great roughness variations; the initial position of the replica beneath the profilometer must be within the 7 mm vertical range; and skin topography can be quantified, without contact, in a short time.
Topobathymetric model of Mobile Bay, Alabama
Danielson, Jeffrey J.; Brock, John C.; Howard, Daniel M.; Gesch, Dean B.; Bonisteel-Cormier, Jamie M.; Travers, Laurinda J.
2013-01-01
Topobathymetric Digital Elevation Models (DEMs) are a merged rendering of both topography (land elevation) and bathymetry (water depth) that provides a seamless elevation product useful for inundation mapping, as well as for other earth science applications, such as the development of sediment-transport, sea-level rise, and storm-surge models. This 1/9-arc-second (approximately 3 meters) resolution model of Mobile Bay, Alabama was developed using multiple topographic and bathymetric datasets, collected on different dates. The topographic data were obtained primarily from the U.S. Geological Survey (USGS) National Elevation Dataset (NED) (http://ned.usgs.gov/) at 1/9-arc-second resolution; USGS Experimental Advanced Airborne Research Lidar (EAARL) data (2 meters) (http://pubs.usgs.gov/ds/400/); and topographic lidar data (2 meters) and Compact Hydrographic Airborne Rapid Total Survey (CHARTS) lidar data (2 meters) from the U.S. Army Corps of Engineers (USACE) (http://www.csc.noaa.gov/digitalcoast/data/coastallidar/). Bathymetry was derived from digital soundings obtained from the National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data Center (NGDC) (http://www.ngdc.noaa.gov/mgg/geodas/geodas.html) and from water-penetrating lidar sources, such as EAARL and CHARTS. Mobile Bay is ecologically important as it is the fourth largest estuary in the United States. The Mobile and Tensaw Rivers drain into the bay at the northern end with the bay emptying into the Gulf of Mexico at the southern end. Dauphin Island (a barrier island) and the Fort Morgan Peninsula form the mouth of Mobile Bay. Mobile Bay is 31 miles (50 kilometers) long by a maximum width of 24 miles (39 kilometers) with a total area of 413 square miles (1,070 square kilometers). The vertical datum of the Mobile Bay topobathymetric model is the North American Vertical Datum of 1988 (NAVD 88). All the topographic datasets were originally referenced to NAVD 88 and no transformations were made to these input data. The NGDC hydrographic, multibeam, and trackline surveys were transformed from mean low water (MLW) or mean lower low water (MLLW) to NAVD 88 using VDatum (http://vdatum.noaa.gov). VDatum is a tool developed by the National Geodetic Survey (NGS) that performs transformations among tidal, ellipsoid-based, geoid-based, and orthometric datums using calibrated hydrodynamic models. The vertical accuracy of the input topographic data varied depending on the input source. Because the input elevation data were derived primarily from lidar, the vertical accuracy ranges from 6 to 20 centimeters in root mean square error (RMSE). he horizontal datum of the Mobile Bay topobathymetric model is the North American Datum of 1983 (NAD 83), geographic coordinates. All the topographic and bathymetric datasets were originally referenced to NAD 83, and no transformations were made to the input data. The bathymetric surveys were downloaded referenced to NAD 83 geographic, and therefore no horizontal transformations were required. The topbathymetric model of Mobile Bay and detailed metadata can be obtained from the USGS Web sites: http://nationalmap.gov/.
NASA Astrophysics Data System (ADS)
Dilmen, Derya I.; Roe, Gerard H.; Wei, Yong; Titov, Vasily V.
2018-04-01
On September 29, 2009 at 17:48 UTC, an M w = 8.1 earthquake in the Tonga Trench generated a tsunami that caused heavy damage across Samoa, American Samoa, and Tonga. One of the worst hits was the volcanic island of Tutuila in American Samoa. Tutuila has a typical tropical island bathymetry setting influenced by coral reefs, and so the event provided an opportunity to evaluate the relationship between tsunami dynamics and the bathymetry in that typical island environment. Previous work has come to differing conclusions regarding how coral reefs affect tsunami dynamics through their influence on bathymetry and dissipation. This study presents numerical simulations of this event with a focus on two main issues: first, how roughness variations affect tsunami run-up and whether different values of Manning's roughness parameter, n, improve the simulated run-up compared to observations; and second, how depth variations in the shelf bathymetry with coral reefs control run-up and inundation on the island coastlines they shield. We find that no single value of n provides a uniformly good match to all observations; and we find substantial bay-to-bay variations in the impact of varying n. The results suggest that there are aspects of tsunami wave dissipation which are not captured by a simplified drag formulation used in shallow-water waves model. The study also suggests that the primary impact of removing the near-shore bathymetry in coral reef environment is to reduce run-up, from which we conclude that, at least in this setting, the impact of the near-shore bathymetry is to increase run-up and inundation.
ICESat-2 bathymetry: an empirical feasibility assessment using MABEL
NASA Astrophysics Data System (ADS)
Forfinski, Nick; Parrish, Christopher
2016-10-01
The feasibility of deriving bathymetry from data acquired with ATLAS, the photon-counting lidar on NASA's upcoming ICESat-2 satellite, is assessed empirically by examining data from NASA's airborne ICESat-2 simulator, MABEL. The primary objectives of ICESat-2 will be to measure ice-sheet elevations, sea-ice thickness, and global biomass. However, the 6-beam, green-wavelength photon-counting lidar, combined with the 91-day repeat period and near-polar orbit, may provide unique opportunities to measure coastal bathymetry in remote, poorly-mapped areas of the globe. The study focuses on high-probability bottom returns in Keweenaw Bay, Lake Superior, acquired during the "Transit to KPMD" MABEL mission in August, 2012 at an AGL altitude of 20,000 m. Water-surface and bottom returns were identified and manually classified using MABEL Viewer, an in-house prototype data-explorer web application. Water-surface returns were observed in 12 green channels, and bottom returns were observed in 10 channels. Comparing each channel's mean water-surface elevation to a regional NOAA Nowcast water-level estimate revealed channel-specific elevation biases that were corrected for in our bathymetry estimation procedure. Additionally, a first-order refraction correction was applied to each bottom return. Agreement between the refraction-corrected depth profile and NOAA data acquired two years earlier by Fugro LADS with the LADS Mk II airborne system indicates that MABEL reliably detected bathymetry in depths up to 8 m, with an RMS difference of 0.7 m. In addition to feeding coastal bathymetry models, MABEL (and potentially ICESat-2 ATLAS) has the potential to seed algorithms for bathymetry retrieval from passive, multispectral satellite imagery by providing reference depths.
NASA Astrophysics Data System (ADS)
Dilmen, Derya I.; Roe, Gerard H.; Wei, Yong; Titov, Vasily V.
2018-02-01
On September 29, 2009 at 17:48 UTC, an M w = 8.1 earthquake in the Tonga Trench generated a tsunami that caused heavy damage across Samoa, American Samoa, and Tonga. One of the worst hits was the volcanic island of Tutuila in American Samoa. Tutuila has a typical tropical island bathymetry setting influenced by coral reefs, and so the event provided an opportunity to evaluate the relationship between tsunami dynamics and the bathymetry in that typical island environment. Previous work has come to differing conclusions regarding how coral reefs affect tsunami dynamics through their influence on bathymetry and dissipation. This study presents numerical simulations of this event with a focus on two main issues: first, how roughness variations affect tsunami run-up and whether different values of Manning's roughness parameter, n, improve the simulated run-up compared to observations; and second, how depth variations in the shelf bathymetry with coral reefs control run-up and inundation on the island coastlines they shield. We find that no single value of n provides a uniformly good match to all observations; and we find substantial bay-to-bay variations in the impact of varying n. The results suggest that there are aspects of tsunami wave dissipation which are not captured by a simplified drag formulation used in shallow-water waves model. The study also suggests that the primary impact of removing the near-shore bathymetry in coral reef environment is to reduce run-up, from which we conclude that, at least in this setting, the impact of the near-shore bathymetry is to increase run-up and inundation.
Mapping bathymetry in an active surf zone with the WorldView2 multispectral satellite
NASA Astrophysics Data System (ADS)
Trimble, S. M.; Houser, C.; Brander, R.; Chirico, P.
2015-12-01
Rip currents are strong, narrow seaward flows of water that originate in the surf zones of many global beaches. They are related to hundreds of international drownings each year, but exact numbers are difficult to calculate due to logistical difficulties in obtaining accurate incident reports. Annual average rip current fatalities are estimated to be ~100, 53 and 21 in the United States (US), Costa Rica, and Australia respectively. Current warning systems (e.g. National Weather Service) do not account for fine resolution nearshore bathymetry because it is difficult to capture. The method shown here could provide frequent, high resolution maps of nearshore bathymetry at a scale required for improved rip prediction and warning. This study demonstrates a method for mapping bathymetry in the surf zone (20m deep and less), specifically within rip channels, because rips form at topographically low spots in the bathymetry as a result of feedback amongst waves, substrate, and antecedent bathymetry. The methods employ the Digital Globe WorldView2 (WV2) multispectral satellite and field measurements of depth to generate maps of the changing bathymetry at two embayed, rip-prone beaches: Playa Cocles, Puerto Viejo de Talamanca, Costa Rica, and Bondi Beach, Sydney, Australia. WV2 has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including 'yellow' (585-625 nm) and 'coastal blue' (400-450 nm). The data is used to classify bottom type and to map depth to the return in multiple bands. The methodology is tested at each site for algorithm consistency between dates, and again for applicability between sites.
Upper ocean moored current and density profiler applied to winter conditions near Bermuda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.
1982-09-20
A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less
Bathymetry and acoustic backscatter data collected in 2010 from Cat Island, Mississippi
Buster, Noreen A.; Pfeiffer, William R.; Miselis, Jennifer L.; Kindinger, Jack G.; Wiese, Dana S.; Reynolds, B.J.
2012-01-01
Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center (SPCMSC), in collaboration with the U.S. Army Corps of Engineers (USACE), conducted geophysical and sedimentological surveys around Cat Island, the westernmost island in the Mississippi-Alabama barrier island chain (fig. 1). The objectives of the study were to understand the geologic evolution of Cat Island relative to other barrier islands in the northern Gulf of Mexico and to identify relationships between the geologic history, present day morphology, and sediment distribution. This report contains data from the bathymetry and side-scan sonar portion of the study collected during two geophysical cruises. Interferometric swath bathymetry and side-scan sonar data were collected aboard the RV G.K. Gilbert September 7-15, 2010. Single-beam bathymetry was collected in shallow water around the island (< 2 meter (m)) from the RV Streeterville from September 28 to October 2, 2010, to cover the data gap between the landward limit of the previous cruise and the shoreline. This report serves as an archive of processed interferometric swath and single-beam bathymetry and side scan sonar data. GIS data products include a 50-m cell size interpolated gridded bathymetry surface, trackline maps, and an acoustic side-scan sonar image. Additional files include error analysis maps, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FDGC) metadata.
NASA Astrophysics Data System (ADS)
Suhari, K. T.; Karim, H.; Gunawan, P. H.; Purwanto, H.
2017-10-01
Current practices in bathymetry survey (available method) are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products - economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian' bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling) since it is mostly similar to Malaysia's river characteristics and suggests some improvement for Malaysia best practice.
Impact of data assimilation on Eulerian versus Lagrangian estimates of upper ocean transport
NASA Astrophysics Data System (ADS)
Sperrevik, Ann Kristin; Röhrs, Johannes; Christensen, Kai Hâkon
2017-07-01
Using four-dimensional variational analysis, we produce an estimate of the state of a coastal region in Northern Norway during the late winter and spring in 1984. We use satellite sea surface temperature and in situ observations from a series of intensive field campaigns, and obtain a more realistic distribution of water masses both in the horizontal and the vertical than a pure downscaling approach can achieve. Although the distribution of Eulerian surface current speeds are similar, we find that they are more variable and less dependent on model bathymetry in our reanalysis compared to a hindcast produced using the same modeling system. Lagrangian drift currents on the other hand are significantly changed, with overall higher kinetic energy levels in the reanalysis than in the hindcast, particularly in the superinertial frequency band.
Dartnell, Peter; Conrad, James E.; Ryan, Holly F.; Finlayson, David P.
2014-01-01
In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, acquired bathymetry and acoustic-backscatter data from the outer shelf and slope region offshore of southern California. The surveys were conducted as part of the USGS Marine Geohazards Program. Assessment of the hazards posed by offshore faults, submarine landslides, and tsunamis are facilitated by accurate and detailed bathymetric data. The surveys were conducted using the USGS R/V Parke Snavely outfitted with a 100-kHz Reson 7111 multibeam-echosounder system. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.
River bathymetry estimation based on the floodplains topography.
NASA Astrophysics Data System (ADS)
Bureš, Luděk; Máca, Petr; Roub, Radek; Pech, Pavel; Hejduk, Tomáš; Novák, Pavel
2017-04-01
Topographic model including River bathymetry (bed topography) is required for hydrodynamic simulation, water quality modelling, flood inundation mapping, sediment transport, ecological and geomorphologic assessments. The most common way to create the river bathymetry is to use of the spatial interpolation of discrete points or cross sections data. The quality of the generated bathymetry is dependent on the quality of the measurements, on the used technology and on the size of input dataset. Extensive measurements are often time consuming and expensive. Other option for creating of the river bathymetry is to use the methods of mathematical modelling. In the presented contribution we created the river bathymetry model. Model is based on the analytical curves. The curves are bent into shape of the cross sections. For the best description of the river bathymetry we need to know the values of the model parameters. For finding these parameters we use of the global optimization methods. The global optimization schemes is based on heuristics inspired by the natural processes. We use new type of DE (differential evolution) for finding the solutions of inverse problems, related to the parameters of mathematical model of river bed surfaces. The presented analysis discuss the dependence of model parameters on the selected characteristics. Selected characteristics are: (1) Topographic characteristics (slope and curvature in the left and right floodplains) determined on the base of DTM 5G (digital terrain model). (2) Optimization scheme. (3) Type of used analytical curves. The novel approach is applied on the three parts of Vltava river in Czech Republic. Each part of the river is described on the base of the point field. The point fields was measured with ADCP probe River surveyor M9. This work was supported by the Technology Agency of the Czech Republic, programme Alpha (project TA04020042 - New technologies bathymetry of rivers and reservoirs to determine their storage capacity and monitor the amount and dynamics of sediments) and Internal Grant Agency of Faculty of Environmental Sciences (CULS) (IGA/20164233). Keywords: bathymetry, global optimization, bed topography References: Merwade, Venkatesh. "Effect of spatial trends on interpolation of river bathymetry." Journal of Hydrology, 371.1, 169-181, 2009. Legleiter, Carl J., and Phaedon C. Kyriakidis. Spatial prediction of river channel topography by kriging. Earth Surface Processes and Landforms, 33.6 , 841-867, 2008. P. Maca and P. Pech and and J. Pavlasek. Comparing the Selected Transfer Functions and Local Optimization Methods for Neural Network Flood Runoff Forecast. Mathematical Problems in Engineering, vol. 2014, Article ID 782351, 10 pages, 2014. M. Jakubcova and P. Maca and and P. Pech. A Comparison of Selected Modifications of the Particle Swarm Optimization Algorithm. Journal of Applied Mathematics, vol. 2014, Article ID 293087, 10 pages, 2014.
Wong, Florence L.; Grim, Muriel S.
2015-01-01
Contours and derivative raster files of depth-to-basement, sediment-thickness, and bathymetry data for the area offshore of Washington, Oregon, and California are provided here as GIS-ready shapefiles and GeoTIFF files. The data were used to generate paper maps in 1992 and 1993 from 1984 surveys of the U.S. Exclusive Economic Zone by the U.S. Geological Survey for depth to basement and sediment thickness, and from older data for the bathymetry.
Huybers, Peter; Langmuir, Charles; Katz, Richard F; Ferguson, David; Proistosescu, Cristian; Carbotte, Suzanne
2016-06-17
Olive et al (Reports, 16 October 2015, p. 310) argue that ~10% fluctuations in melt supply do not produce appreciable changes in ocean ridge bathymetry on time scales less than 100,000 years and thus cannot reflect sea level forcing. Spectral analysis of bathymetry in a region they highlight as being fault controlled, however, shows strong evidence for a signal from sea level variation. Copyright © 2016, American Association for the Advancement of Science.
Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S
2016-07-15
Tolstoy reports the existence of a characteristic 100 thousand year (ky) period in the bathymetry of fast-spreading seafloor but does not argue that sea level change is a first-order control on seafloor morphology worldwide. Upon evaluating the overlap between tectonic and Milankovitch periodicities across spreading rates, we reemphasize that fast-spreading ridges are the best potential recorders of a sea level signature in seafloor bathymetry. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Taylor, F. W.; Lavier, L. L.; Frohlich, C.; Thirumalai, K.; Papabatu, A. K.
2015-12-01
In the forearcs of subduction zones, the characteristics of both short-term (temporary earthquake cycle) and longer-term permanent vertical deformation offer insights into processes by which plates subduct. But permanent vertical deformation may be a product of several simultaneous processes, including tectonic erosion/underplating, changing dip of the slab, upward displacement due to buoyancy or bathymetric features, and plastic shortening/extension of the forearc wedge. Here we note the rarely recognized, but possibly common, phenomenon of intermediate time scale transient vertical movements (TVM's). Both the central New Hebrides and Western Solomon forearcs have uplifted ≥500 m over time scales of 105 yr. Uplift started abruptly (over ≤10 ky) and proceeded at localized rates up to 7-8 mm/yr. Both initial uplifts terminated preceding rapid subsidence of similar dimensions and rates that, in turn, had followed yet older uplift. However, these uplifts and subsidences are superimposed on a yet longer-term trend of uplift on time scales >105 yr. The most recent uplifts extended 100-200 km along-arc and 60-90 km cross-arc while plate convergence was <10 km. These 105 yr vertical oscillations are most likely due to plastic shortening/extension driven by strong horizontal forces related to rugged seafloor bathymetry impinging on the outer forearc. Subsidence follows uplift when horizontal force abates temporarily and uplift is no longer supported by enhanced interplate coupling. Over the 105 yr time frame when interplate slip is <10 km, it is difficult to account for the timing, geography, and amounts of up and down motion by processes such as buoyancy or volumetric displacement of downgoing bathymetric features or by tectonic underplating/erosion. Instead, ~1% of shortening within the upper plate is sufficient to account for up to several hundred m of uplift across a large area of the forearc.
NASA Astrophysics Data System (ADS)
Schaap, D.; Schmitt, T.
2017-12-01
Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a grid resolution of 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs. Catalogues and the EMODnet DTM are published at the dedicated EMODnet Bathymetry portal including a versatile DTM viewing and downloading service. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM). This continues gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data are included to fill gaps in coverage of the coastal zones. The extra data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 1/16 arc minutes. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be `moving to the cloud' and setting up an EMODnet Collaborative Virtual Environment (CVE) for producing the EMODnet DTMs. The presentation will highlight key details of EMODnet Bathymetry results and the way how challenges of the new HRSM project are approached.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-15
... navigation for en route through non-precision instrument approaches. GPS is an internationally accepted... Localizer Performance with Vertical guidance (LPV). These approaches are equivalent to Category I ILS, but... approach procedures with LPV or localizer performance (LP) non-precision lines of minima to all qualified...
Intra-tidal variability of the vertical current structure in the western Dutch Wadden Sea
NASA Astrophysics Data System (ADS)
de Vries, Jurre; Ridderinkhof, Herman; van Aken, Hendrik
2014-05-01
Long-term velocity measurements are presented which were collected during three different seasons at one single location in an estuarine basin of the western Dutch Wadden Sea. These data are used to investigate the processes that determine the variability of the vertical current structure in the western Dutch Wadden Sea, in combination with simplified model runs using the one-dimensional water column model GETM (http://www.getm.eu/). Jay and Musiak [1996] were the first to suggest that intra-tidal variations in the vertical current might be important in determining the residual circulation patterns. More research [e.g. Stacey et al., 2001; Burchard and Hetland, 2010] has supported this hypothesis. Recently, lateral processes have been shown to influence the vertical current structure of alongstream velocity and hence the residual circulation [e.g. Lerczak and Geyer, 2004; Burchard and Schuttelaars, 2012]. Therefore to better understand the tidal dynamics in the western Dutch Wadden Sea, it is crucial to understand the processes that determine the vertical current structure. The two main findings of this study are that the complex bathymetry at the study site seems to produce an intra-tidal asymmetry in near-bed velocities and secondly that cross-stream processes strongly modify the current structure during late flood. Near-bed velocity and the bed roughness are greater during ebb than during flood. The GETM simulations suggest that vertical mixing during ebb is sufficient to destroy vertical stratification generated by classical tidal straining. The cross-stream current during late flood generate vertical stratification and drive an early reversal of the flood current near the surface. Therefore, it is hypothesized that this processes might increase the residual estuarine circulation at the study site. References - Burchard, H., Hetland, R.D. (2010), Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries, Journal of Physical Oceanography, 40(6), 1243-1262 - Burchard, H., Schuttelaars, H.M. (2012), Analysis of tidal straining as driver for estuarine circulation in well-mixed estuaries, Journal of Physical Oceanography, 42(2), 261-271 - Jay, D.A., Musiak, J.D. (1996), Internal tidal asymmetry in channel flows' origins and consequences, Coastal and Estuarine Studies, 50, 211-249 - Stacey, M.T., Burau J.R., Monismith, S.G. (2001), Creation of residual flows in a partially stratified estuary, Journal of Physical Oceanography, 34, 1410-1428
Bathymetry and acoustic backscatter-outer mainland shelf, eastern Santa Barbara Channel, California
Dartnell, Peter; Finlayson, David P.; Ritchie, Andrew C.; Cochrane, Guy R.; Erdey, Mercedes D.
2012-01-01
In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from the outer shelf region of the eastern Santa Barbara Channel, California. These surveys were conducted in cooperation with the Bureau of Ocean Energy Management (BOEM). BOEM is interested in maps of hard-bottom substrates, particularly natural outcrops that support reef communities in areas near oil and gas extraction activity. The surveys were conducted using the USGS R/V Parke Snavely, outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.
Bathymetry of Clear Creek Reservoir, Chaffee County, Colorado, 2016
Kohn, Michael S.; Kinzel, Paul J.; Mohrmann, Jacob S.
2017-03-06
To better characterize the water supply capacity of Clear Creek Reservoir, Chaffee County, Colorado, the U.S. Geological Survey, in cooperation with the Pueblo Board of Water Works and Colorado Mountain College, carried out a bathymetry survey of Clear Creek Reservoir. A bathymetry map of the reservoir is presented here with the elevation-surface area and the elevation-volume relations. The bathymetry survey was carried out June 6–9, 2016, using a man-operated boat-mounted, multibeam echo sounder integrated with a Global Positioning System and a terrestrial survey using real-time kinematic Global Navigation Satellite Systems. The two collected datasets were merged and imported into geographic information system software. The equipment and methods used in this study allowed water-resource managers to maintain typical reservoir operations, eliminating the need to empty the reservoir to carry out the survey.
Foxgrover, Amy C.; Finlayson, David P.; Jaffe, Bruce E.; Fregoso, Theresa A.
2012-01-05
In 2010 the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center completed three cruises to map the bathymetry of the main channel and shallow intertidal mudflats in the southernmost part of south San Francisco Bay. The three surveys were merged to generate comprehensive maps of Coyote Creek (from Calaveras Point east to the railroad bridge) and Alviso Slough (from the bay to the town of Alviso) to establish baseline bathymetry prior to the breaching of levees adjacent to Alviso and Guadalupe Sloughs as part of the South Bay Salt Pond Restoration Project (http://www.southbayrestoration.org). Since 2010 the USGS has conducted twelve additional surveys to monitor bathymetric change in this region as restoration progresses.The bathymetry surveys were conducted using the state-of-the-art research vessel R/V Parke Snavely outfitted with an interferometric sidescan sonar for swath mapping in extremely shallow water. This publication provides high-resolution bathymetric data collected by the USGS. For the 2010 baseline survey we have merged the bathymetry with aerial lidar data that were collected for the USGS during the same time period to create a seamless, high-resolution digital elevation model (DEM) of the study area. The series of bathymetry datasets are provided at 1 m resolution and the 2010 bathymetric/topographic DEM at 2 m resolution. The data are formatted as both X, Y, Z text files and ESRI Arc ASCII files that are accompanied by Federal Geographic Data Committee (FGDC) compliant metadata.
Efficient Data Assimilation Algorithms for Bathymetry Applications
NASA Astrophysics Data System (ADS)
Ghorbanidehno, H.; Kokkinaki, A.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.
2016-12-01
Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing monitoring. Data assimilation methods combine monitoring data and models of nearshore dynamics to estimate the unknown bathymetry and the corresponding uncertainties. Existing applications have been limited to the basic Kalman Filter (KF) and the Ensemble Kalman Filter (EnKF). The former can only be applied to low-dimensional problems due to its computational cost; the latter often suffers from ensemble collapse and uncertainty underestimation. This work explores the use of different variants of the Kalman Filter for bathymetry applications. In particular, we compare the performance of the EnKF to the Unscented Kalman Filter and the Hierarchical Kalman Filter, both of which are KF variants for non-linear problems. The objective is to identify which method can better handle the nonlinearities of nearshore physics, while also having a reasonable computational cost. We present two applications; first, the bathymetry of a synthetic one-dimensional cross section normal to the shore is estimated from wave speed measurements. Second, real remote measurements with unknown error statistics are used and compared to in situ bathymetric survey data collected at the USACE Field Research Facility in Duck, NC. We evaluate the information content of different data sets and explore the impact of measurement error and nonlinearities.
Riverine Bathymetry Imaging with Indirect Observations
NASA Astrophysics Data System (ADS)
Farthing, M.; Lee, J. H.; Ghorbanidehno, H.; Hesser, T.; Darve, E. F.; Kitanidis, P. K.
2017-12-01
Bathymetry, i.e, depth, imaging in a river is of crucial importance for shipping operations and flood management. With advancements in sensor technology and computational resources, various types of indirect measurements can be used to estimate high-resolution riverbed topography. Especially, the use of surface velocity measurements has been actively investigated recently since they are easy to acquire at a low cost in all river conditions and surface velocities are sensitive to the river depth. In this work, we image riverbed topography using depth-averaged quasi-steady velocity observations related to the topography through the 2D shallow water equations (SWE). The principle component geostatistical approach (PCGA), a fast and scalable variational inverse modeling method powered by low-rank representation of covariance matrix structure, is presented and applied to two "twin" riverine bathymetry identification problems. To compare the efficiency and effectiveness of the proposed method, an ensemble-based approach is also applied to the test problems. Results demonstrate that PCGA is superior to the ensemble-based approach in terms of computational effort and accuracy. Especially, the results obtained from PCGA capture small-scale bathymetry features irrespective of the initial guess through the successive linearization of the forward model. Analysis on the direct survey data of the riverine bathymetry used in one of the test problems shows an efficient, parsimonious choice of the solution basis in PCGA so that the number of the numerical model runs used to achieve the inversion results is close to the minimum number that reconstructs the underlying bathymetry.
NASA Astrophysics Data System (ADS)
Randelhoff, Achim; Sundfjord, Arild
2018-04-01
The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Although the Pacific and Atlantic inflows both import huge quantities of nutrients and plankton, they feed into the Arctic Ocean in quite diverse regions. The strongly stratified Pacific sector has a historically heavy ice cover, a shallow shelf and dominant upwelling-favourable winds, while the Atlantic sector is weakly stratified, with a dynamic ice edge and a complex bathymetry. We argue that shelf break upwelling is likely not a universal but rather a regional, albeit recurring, feature of the new Arctic
. It is the regional oceanography that decides its importance through a range of diverse factors such as stratification, bathymetry and wind forcing. Teasing apart their individual contributions in different regions can only be achieved by spatially resolved time series and dedicated modelling efforts. The Northern Barents Sea shelf is an example of a region where shelf break upwelling likely does not play a dominant role, in contrast to the shallower shelves north of Alaska where ample evidence for its importance has already accumulated. Still, other factors can contribute to marked future increases in biological productivity along the Arctic shelf break. A warming inflow of nutrient-rich Atlantic Water feeds plankton at the same time as it melts the sea ice, permitting increased photosynthesis. Concurrent changes in sea ice cover and zooplankton communities advected with the boundary currents make for a complex mosaic of regulating factors that do not allow for Arctic-wide generalizations.
Constraints on dynamic topography from asymmetric subsidence of the mid-ocean ridges
NASA Astrophysics Data System (ADS)
Watkins, C. Evan; Conrad, Clinton P.
2018-02-01
Stresses from mantle convection deflect Earth's surface vertically, producing dynamic topography that is important for continental dynamics and sea-level change but difficult to observe due to overprinting by isostatic topography. For long wavelengths (∼104 km), the amplitude of dynamic topography is particularly uncertain, with mantle flow models typically suggesting larger amplitudes (>1000 m) than direct observations. Here we develop a new constraint on the amplitude of long-wavelength dynamic topography by examining asymmetries in seafloor bathymetry across mid-ocean ridges. We compare bathymetric profiles across the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR) and we find that the South American flank of both ridges subsides faster than its opposing flank. This pattern is consistent with dynamic subsidence across South America, supported by downwelling in the lower mantle. To constrain the amplitude of dynamic topography, we compare bathymetric profiles across both ridges after correcting bathymetry for several different models of dynamic topography with varying amplitudes and spatial patterns. We find that long-wavelength dynamic topography with an amplitude of only ∼500 m explains the observed asymmetry of the MAR. A similar model can explain EPR asymmetry but is complicated by additional asymmetrical topography associated with tectonic, crustal thickness, and/or asthenospheric temperature asymmetries across the EPR. After removing 500 m of dynamic topography, both the MAR and EPR exhibit a slower seafloor subsidence rate (∼280-290 m/Myr1/2) than previously reported. Our finding of only ∼500 m of long-wavelength dynamic topography may indicate the importance of thermochemical convection and/or large viscosity variations for lower mantle dynamics.
Lateral baroclinic forcing enhances sediment transport from shallows to channel in an estuary
Lacy, Jessica R.; Gladding, Steve; Brand, Andreas; Collignon, Audric; Stacey, Mark
2014-01-01
We investigate the dynamics governing exchange of sediment between estuarine shallows and the channel based on field measurements at eight stations spanning the interface between the channel and the extensive eastern shoals of South San Francisco Bay. The study site is characterized by longitudinally homogeneous bathymetry and a straight channel, with friction more important than the Coriolis forcing. Data were collected for 3 weeks in the winter and 4 weeks in the late summer of 2009, to capture a range of hydrologic and meteorologic conditions. The greatest sediment transport from shallows to channel occurred during a pair of strong, late-summer wind events, with westerly winds exceeding 10 m/s for more than 24 h. A combination of wind-driven barotropic return flow and lateral baroclinic circulation caused the transport. The lateral density gradient was produced by differences in temperature and suspended sediment concentration (SSC). During the wind events, SSC-induced vertical density stratification limited turbulent mixing at slack tides in the shallows, increasing the potential for two-layer exchange. The temperature- and SSC-induced lateral density gradient was comparable in strength to salinity-induced gradients in South Bay produced by seasonal freshwater inflows, but shorter in duration. In the absence of a lateral density gradient, suspended sediment flux at the channel slope was directed towards the shallows, both in winter and during summer sea breeze conditions, indicating the importance of baroclinically driven exchange to supply of sediment from the shallows to the channel in South San Francisco Bay and systems with similar bathymetry.
Submarine slope failures near Seward, Alaska, during the M9.2 1964 earthquake
Haeussler, Peter J.; Lee, H.J.; Ryan, H.F.; Labay, K.; Kayen, R.E.; Hampton, M.A.; Suleimani, E.
2007-01-01
Following the 1964 M9.2 megathrust earthquake in southern Alaska, Seward was the only town hit by tsunamis generated from both submarine landslides and tectonic sources. Within 45 seconds of the start of the earthquake, a 1.2-km-long section of waterfront began sliding seaward, and soon after, ~6-8-m high waves inundated the town. Studies soon after the earthquake concluded that submarine landslides along the Seward waterfront generated the tsunamis that occurred immediately after the earthquake. We analyze pre- and post-earthquake bathymetry data to assess the location and extent of submarine mass failures and sediment transport. New NOAA multibeam bathymetry shows the morphology of the entire fjord at 15 m resolution. We also assembled all older soundings from smooth sheets for comparison to the multibeam dataset. We gridded the sounding data, applied corrections for coseismic subsidence, post-seismic rebound, unrecovered co-seismic subsidence, sea-level rise (vertical datum shift), and measurement errors. The difference grids show changes resulting from the 1964 earthquake. We estimate the total volume of slide material to be about 211 million m3. Most of this material was transported to a deep, flat area, which we refer to as “the bathtub”, about 6 to 13 km south of Seward. Sub-bottom profiling of the bathtub shows an acoustically transparent unit, which we interpret as a sediment flow deposit resulting from the submarine landslides. The scale of the submarine landslides and the distance over which sediment was transported is much larger than previously appreciated.
NASA Astrophysics Data System (ADS)
Chaytor, J. D.; Demopoulos, A. W.; Ten Brink, U. S.; Quattrini, A.
2016-02-01
Over the last several years, canyons around Puerto Rico and along the U.S. Atlantic continental margin between Georges Bank and Cape Hatteras have been investigated using high-resolution multibeam bathymetry and Remotely Operated Vehicle (ROV) dives utilizing the exploration vessels E/V Nautilus and NOAA Ship Okeanos Explorer. The imaging capabilities of these ROVs have provided the opportunity to begin to investigate the size of canyon wall failures, the processes responsible for their occurrence and to develop a conceptual framework for determining their relative age. Bed and formation scale lithologies exposed in the canyons and localized structural features (bedding planes, fracture planes, etc.) appear to be the primary control on the style of failures observed. Near vertical walls, sedimented benches, talus slopes, and canyon floor debris aprons were present in most canyons visited. Evidence of brittle failure over different spatial and temporal scales, physical abrasion by downslope moving flows, and bio-erosion in the form of burrows and surficial scrape marks provide insight into the modification processes active in these canyons. The level of colonization by sessile species (e.g., corals, sponges) on the canyon walls and displaced material, especially on substrates affected by failure and sediment bioturbation, provide a critical, but as yet, poorly understood chronological record of geologic processes within these systems. Therefore, comparison of the processes among these geologically, oceanographically, and ecologically different regions provides the opportunity to critically assess the wide range of drivers that control recolonization of sessile fauna influenced by continuous or episodic disturbances.
NASA Astrophysics Data System (ADS)
Hostache, R.; Matgen, P.; Giustarini, L.
2012-04-01
Hydrodynamic models form an important component in flood forecasting systems. Model predictions with reduced uncertainty critically depend on the availability of detailed information about floodplain topography and riverbed bathymetry. While digital elevation models with varying spatial resolutions and accuracy levels are readily available at a global scale and can be used to infer floodplain geometry, bathymetric data is often not available and ground surveys are time and resource intensive. In this general context, our study aims at evaluating the hydrometric value of the Global Navigation Satellite System (GNSS) for bathymetry retrieval. Integrated with satellite telecommunication systems, drifting or anchored floaters equipped with navigation systems such as GPS and Galileo, enable the quasi-continuous measurement and near real-time transmission of water levels and flow velocities, virtually from any point in the world. The presented study investigates the potential of assimilating GNSS-derived water level measurements into a hydraulic model in order to estimate river bathymetry. First, an ensemble of possible bathymetries and roughness parameters was randomly generated using a Monte-Carlo sampling approach. Next, water level measurements provided by a drifting GNSS-equipped buoy were assimilated into a hydrodynamic model using as input a recorded discharge hydrograph and as geometry the generated bathymetry ensemble. Synthetic experiments were carried out with a one-dimensional hydraulic model implemented over a 19 km reach of the Alzette River. A Particle Filter was used as an assimilation algorithm for integrating observation data into the hydraulic model. The synthetic observation, simulating the data obtained from GNSS measurements, was generated using a perturbed forward run of the hydrodynamic model using the true bathymetry (ground survey). The scenario adopted in the data assimilation experiment assumed that during a flood event, a buoy was launched into the water every ten hours. This frequency was considered plausible as the time needed for the buoy to drift from the upstream to the downstream end of the study area is estimated to be less than 6 h. Consequently, a time window of 10 h would allow an operator to launch the buoy at the upstream end, recover it at the downstream end and finally drive back to the upstream end and launch it again into the river channel.This synthetic observation was then assimilated into the hydraulic model. The first results were promising as sequentially assimilating the water level values provided by the synthetic GNSS-equipped buoy allowed gradually rejecting wrong bathymetries and converging toward bathymetries that are consistent with the ground surveyed one.
A drifting GPS buoy for retrieving effective riverbed bathymetry
NASA Astrophysics Data System (ADS)
Hostache, R.; Matgen, P.; Giustarini, L.; Teferle, F. N.; Tailliez, C.; Iffly, J.-F.; Corato, G.
2015-01-01
Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic modeling. This study aims at evaluating the potential of the Global Navigation Satellite System (GNSS), like for instance Global Positioning System (GPS), for retrieving such data. Drifting buoys equipped with navigation systems such as GPS enable the quasi-continuous measurement of water surface elevation, from virtually any point in the world. The present study investigates the potential of assimilating GNSS-derived water surface elevation measurements into hydraulic models in order to retrieve effective riverbed bathymetry. First tests with a GPS dual-frequency receiver show that the root mean squared error (RMSE) on the elevation measurement equals 30 cm provided that a differential post processing is performed. Next, synthetic observations of a drifting buoy were generated assuming a 30 cm average error of Water Surface Elevation (WSE) measurements. By assimilating the synthetic observation into a 1D-Hydrodynamic model, we show that the riverbed bathymetry can be retrieved with an accuracy of 36 cm. Moreover, the WSEs simulated by the hydrodynamic model using the retrieved bathymetry are in good agreement with the synthetic "truth", exhibiting an RMSE of 27 cm.
Enhancing Deep-Water Low-Resolution Gridded Bathymetry Using Single Image Super-Resolution
NASA Astrophysics Data System (ADS)
Elmore, P. A.; Nock, K.; Bonanno, D.; Smith, L.; Ferrini, V. L.; Petry, F. E.
2017-12-01
We present research to employ single-image super-resolution (SISR) algorithms to enhance knowledge of the seafloor using the 1-minute GEBCO 2014 grid when 100m grids from high-resolution sonar systems are available for training. Our numerical upscaling experiments of x15 upscaling of the GEBCO grid along three areas of the Eastern Pacific Ocean along mid-ocean ridge systems where we have these 100m gridded bathymetry data sets, which we accept as ground-truth. We show that four SISR algorithms can enhance this low-resolution knowledge of bathymetry versus bicubic or Spline-In-Tension algorithms through upscaling under these conditions: 1) rough topography is present in both training and testing areas and 2) the range of depths and features in the training area contains the range of depths in the enhancement area. We quantitatively judged successful SISR enhancement versus bicubic interpolation when Student's hypothesis testing show significant improvement of the root-mean squared error (RMSE) between upscaled bathymetry and 100m gridded ground-truth bathymetry at p < 0.05. In addition, we found evidence that random forest based SISR methods may provide more robust enhancements versus non-forest based SISR algorithms.
NASA Astrophysics Data System (ADS)
Kim, Hyung Tae; Jeong, An Mok; Kim, Hyo Young; An, Jong Wook; Kim, Cheol Ho; Jin, Kyung Chan; Choi, Seung-Bok
2018-03-01
In a previous work, magneto-rheological (MR) dampers were originally designed and implemented for reducing the vertical low-frequency vibration occurring in precise semi-conductor manufacturing equipment. To reduce the vibrations, an isolator levitated the manufacturing machine from the floor using pneumatic pressure which cut off the external vibration, while the MR damper was used to decrease the transient response of the isolator. However, it has been found that the MR damper also provides a damping effect on the lateral vibration induced by the high-speed plane motions. Therefore, in this work both vertical and lateral vibrations are controlled using the yield and shear stresses of the lateral directions generated from the MR fluids by applying a magnetic field. After deriving a vibration control model, an overall control logic is formulated considering both vertical and lateral vibrations. In this control strategy, a feedback loop associated with the laser sensor is used for vertical vibration control, while a feed-forward loop with the motion information is used for lateral vibration control. The experimental results show that the proposed concept is highly effective for lateral vibration control using the damping effect on multiple directions.
Gillian, Jeffrey K.; Karl, Jason W.; Elaksher, Ahmed; Duniway, Michael C.
2017-01-01
Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods are particularly appealing due to the ability to cover large landscapes compared to field methods and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been explored in many studies, typically by comparing image coordinates to surveyed check points or LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil surface change called erosion bridges. We assessed accuracy by comparing the elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons occurred at two points in time (June 2014, February 2015) which enabled us to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge measurements, technical challenges related to the need for ground control networks and image processing requirements must be addressed before this technique could be applied effectively to large landscapes.
Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014
Miller-Corbett, Cynthia
2016-09-01
Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with the 3D Elevation Program so that data can be integrated with a minimal level of effort. Geomorphic site conditions are known to affect the success and accuracy of light detection and ranging and other bathymetric surveys, and a baseline that includes geomorphic data is recommended to help in evaluation of limitations imposed by geomorphology for surveys completed in the variable physiographic provinces across the United States. The geographic distribution for existing surveys identifies regions where inland bathymetry data have been collected and, conversely, where little or no survey data seem to be available to provide hydrologic and hydraulic information. This distribution, in conjunction with local to regional data needs to characterize and monitor river and lake resources, provides another important set of criteria to propose and guide acquisition of new bathymetry data for the 3D Elevation Program. An initial evaluation of needs can be based on the importance of water resources that provide primary water supplies for communities, agriculture, energy, and ecological systems; the importance of flood plain analyses; and projected population growth across the United States.
Estimation of River Bathymetry from ATI-SAR Data
NASA Astrophysics Data System (ADS)
Almeida, T. G.; Walker, D. T.; Farquharson, G.
2013-12-01
A framework for estimation of river bathymetry from surface velocity observation data is presented using variational inverse modeling applied to the 2D depth-averaged, shallow-water equations (SWEs) including bottom friction. We start with with a cost function defined by the error between observed and estimated surface velocities, and introduce the SWEs as a constraint on the velocity field. The constrained minimization problem is converted to an unconstrained minimization through the use of Lagrange multipliers, and an adjoint SWE model is developed. The adjoint model solution is used to calculate the gradient of the cost function with respect to river bathymetry. The gradient is used in a descent algorithm to determine the bathymetry that yields a surface velocity field that is a best-fit to the observational data. In applying the algorithm, the 2D depth-averaged flow is computed assuming a known, constant discharge rate and a known, uniform bottom-friction coefficient; a correlation relating surface velocity and depth-averaged velocity is also used. Observation data was collected using a dual beam squinted along-track-interferometric, synthetic-aperture radar (ATI-SAR) system, which provides two independent components of the surface velocity, oriented roughly 30 degrees fore and aft of broadside, offering high-resolution bank-to-bank velocity vector coverage of the river. Data and bathymetry estimation results are presented for two rivers, the Snohomish River near Everett, WA and the upper Sacramento River, north of Colusa, CA. The algorithm results are compared to available measured bathymetry data, with favorable results. General trends show that the water-depth estimates are most accurate in shallow regions, and performance is sensitive to the accuracy of the specified discharge rate and bottom friction coefficient. The results also indicate that, for a given reach, the estimated water depth reaches a maximum that is smaller than the true depth; this apparent maximum depth scales with the true river depth and discharge rate, so that the deepest parts of the river show the largest bathymetry errors.
NASA Astrophysics Data System (ADS)
Yuan, T.; Lee, H.; Jung, H. C.; Beighley, E.; Alsdorf, D. E.
2016-12-01
Extensive wetlands and swamps expand along the Congo River and its tributaries. These wetlands store water and attenuate flood wave during high water season. Substantial dissolved and solid substances are also transported with the water flux, influencing geochemical environment and biogeochemistry processes both in the wetlands and the river. To understand the role of the wetlands in partitioning the surface water and the accompanied material movement, water storage change is one of the most fundamental observations. The water flow through the wetlands is complex, affected by topography, vegetation resistance, and hydraulic variations. Interferometric Synthetic Aperture Radar (InSAR) has been successfully used to map relative water level changes in the vegetated wetlands with high spatial resolution. By examining interferograms generated from ALOS PALSAR along the middle reach of the Congo River floodplain, we found greater water level changes near the Congo mainstem. Integrated analysis of InSAR and Envisat altimetry data has shown that proximal floodplain with higher water level change has lower elevation during dry season. This indicates that the spatial variation of water level change in the Congo floodplain is mostly controlled by floodplain bathymetry. A method based on water level and bathymetry model is proposed to estimate water storage change. The bathymetry model is composed of (1) elevation at the intersection of the floodplain and the river and (2) floodplain bathymetry slope. We first constructed the floodplain bathymetry by selecting an Envisat altimetry profile during low water season to estimate elevation at the intersection of the floodplain and the river. Floodplain bathymetry slope was estimated using InSAR measurements. It is expected that our new method can estimate water storage change with higher temporal resolution corresponding to altimeter's repeat cycle. In addition, given the multi-decadal archive of satellite altimetry measurements, our method suggests a way to estimate interannual water storage change over a long time span in Congo.
High-Resolution Geologic Mapping in the Eastern Manus Basin
NASA Astrophysics Data System (ADS)
Thal, J.; Bach, W.; Tivey, M.; Yoerger, D. R.
2011-12-01
AUV-based microbathymetry combined with ROV video data was used to create the first high-resolution geologic maps of two hydrothermal active areas in the eastern Manus Basin: North Su volcano and PACManus hydrothermal field on Pual Ridge. The data were recorded in 2006 and 2011 during the research cruises Magellan-06 operated by the Woods Hole Oceanographic Institution and BAMBUS (SO-216) operated by MARUM / University Bremen. High accuracy underwater navigation transponder-based and Posidonia systems allowed us to combine video data with bathymetry. The navigation on both cruises was very precise (m-scale) and navigation offsets were less than 10 m. We conducted detailed geologic mapping and sampling to identify the seafloor volcanic and hydrothermal features and created highly detailed maps that provide a comprehensive picture of the seafloor and vent distribution in the eastern Manus Basin. Several different types of dacite lava morphology were mapped, including pillow lava, lobate flows and massive block lava. We have compiled all available information on rock chemistry, fluid and temperature measurements, video data, bathymetry and navigation data into a GIS database. We find that, in contrast to the tectonic control on vent distribution at slow spreading mid-ocean ridges, the pathways of upwelling hydrothermal vent fluids at PACManus are dominated by volcanic features, such as lava domes and thick, massive block lava flows. Vent fields are developed preferentially along the margins of major flow units, probably because the cores of these units are impermeable to fluid flow, while the autobrecciated outer parts of the flows are not. In the North Su area, a comparison of seafloor maps from 2006 and 2011 reveals recent volcanic activity, which has strongly modified the bathymetry and hydrothermal vent distribution on the southern flank of the volcano. An ash cone with multiple small craters on the SW flank of the North-Su volcano that didn't exist in 2006 was mapped in 2011. Also, magmatic degassing was much more vigorous in 2011, with large accumulations of liquid sulfur (from disproportionation of magmatic SO2) as well as extensive bubbling of supercritical and liquid CO2.
The precision measurement and assembly for miniature parts based on double machine vision systems
NASA Astrophysics Data System (ADS)
Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.
2015-02-01
In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.
Excitation of T waves in the Indian Ocean between Srilanka and southern India
NASA Astrophysics Data System (ADS)
Chadha, R. K.
1994-06-01
T phases of three earthquakes from the Indian Ocean region, recorded by a short-period vertical-component seismic station network located in the vicinity of Kanyakumari on the southernmost tip of India, are studied. Two of these earthquakes are located west of 90°E ridge and one in the Nicobar Island region. However, seven other earthquakes which occurred 150 200 km south of Kanyakumari in the ocean did not produce T phases. An analysis of T-waves (tertiary waves) travel time reveals the zone of P-wave to T-wave conversion (i.e., PT phase) region to coincide with the western continental slope of Srilanka. Further, it is observed that the disposition of the bathymetry between Srilanka and southern India strongly favours the downslope propagation mechanism of T-wave travel to the southern coast of India through SOFAR channel. These observations are reported for the first time from India.
NASA Astrophysics Data System (ADS)
Bonaventura, Luca; Fernández-Nieto, Enrique D.; Garres-Díaz, José; Narbona-Reina, Gladys
2018-07-01
We propose an extension of the discretization approaches for multilayer shallow water models, aimed at making them more flexible and efficient for realistic applications to coastal flows. A novel discretization approach is proposed, in which the number of vertical layers and their distribution are allowed to change in different regions of the computational domain. Furthermore, semi-implicit schemes are employed for the time discretization, leading to a significant efficiency improvement for subcritical regimes. We show that, in the typical regimes in which the application of multilayer shallow water models is justified, the resulting discretization does not introduce any major spurious feature and allows again to reduce substantially the computational cost in areas with complex bathymetry. As an example of the potential of the proposed technique, an application to a sediment transport problem is presented, showing a remarkable improvement with respect to standard discretization approaches.
A numerical world ocean general circulation model Part I. Basic design and barotropic experiment
NASA Astrophysics Data System (ADS)
Han, Young-June
1984-08-01
A new six-layer world ocean general circulation model based on the primitive system of equations is described in detail and its performance in the case of a homogeneous ocean is described. These test integrations show that the model is capable of reproducing the observed mean barotropic or vertically-integrated transport, as well as the seasonal variability of the major ocean gyres. The surface currents, however, are dominated by the Ekman transport, and such non-linear features as the western boundary currents and the equatorial countercurrents are poorly represented. The abyssal boundary countercurrents are also absent due to the lack of thermohaline forcing. The most conspicuous effect of the bottom topography on a homogeneous ocean is seen in the Southern ocean where the calculated Antarctic circumpolar transport through the Drake passage ( ≈ 10 Sv, with bathymetry included) greatly underestimates the observed transport (≈ 100 Sv).
A Decade of Ocean Acoustic Measurements from R/P FLIP
NASA Astrophysics Data System (ADS)
D'Spain, G. L.
2002-12-01
Studies of the properties of low frequency acoustic fields in the ocean continue to benefit from the use of manned, stable offshore platforms such as R/P FLIP. A major benefit is providing the at-sea stability required for deployment of extremely large aperture line arrays, line arrays composed of both acoustic motion and acoustic pressure sensors, and arrays that provide measurements in all 3 spatial dimensions. In addition, FLIP provides a high-profile (25 m) observation post with 360 deg coverage for simultaneous visual observations of marine mammals. A few examples of the scientific results that have been achieved over this past decade with ocean acoustic data collected on FLIP are presented. These results include the normal mode decomposition of earthquake T phases to study their generation and water/land coupling characteristics using a 3000 m vertical aperture hydrophone array, simultaneous vertical and horizontal directional information on the underwater sound field from line arrays of hydrophones and geophones, the strange nightime chorusing behavior of fish measured by 3D array aperture, the mirage effect caused by bathymetry changes in inversions for source location in shallow water, and the diving behavior of blue whales determined from 1D recordings of their vocalizations. Presently, FLIP serves as the central data recording platform in ocean acoustic studies using AUV's.
NASA Astrophysics Data System (ADS)
Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter
2018-04-01
Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.
McPherson, Malcolm J.; Bellman, Robert A.
1984-01-01
A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.
McPherson, M.J.; Bellman, R.A.
1982-09-27
A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.
Lakemorpho provides a number of functions to calculate a standard suite of lake morphometry metrics. Most of the metrics are measurements of the shape of the lake. Metrics that rely on depth have traditionally been calculated with bathymetry data. In the absence of bathymetry dat...
Does gravity influence the visual line bisection task?
Drakul, A; Bockisch, C J; Tarnutzer, A A
2016-08-01
The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual vertical, otolith input is integrated. We hypothesized that graviceptive input is incorporated when performing the LBT and predicted reduced accuracy and precision when roll-tilted. Twenty healthy right-handed subjects repetitively bisected Earth-horizontal and body-horizontal lines in darkness. Recordings were obtained before, during, and after roll-tilt (±45°, ±90°) for 5 min each. Additionally, bisections of Earth-vertical and oblique lines were obtained in 17 subjects. When roll-tilted ±90° ear-down, bisections of Earth-horizontal (i.e., body-vertical) lines were shifted toward the direction of the head (P < 0.001). However, after correction for vertical line-bisection errors when upright, shifts disappeared. Bisecting body-horizontal lines while roll-tilted did not cause any shifts. The precision of Earth-horizontal line bisections decreased (P ≤ 0.006) when roll-tilted, while no such changes were observed for body-horizontal lines. Regardless of the trial condition and paradigm, the scanning direction of the bisecting cursor (leftward vs. rightward) significantly (P ≤ 0.021) affected line bisections. Our findings reject our hypothesis and suggest that gravity does not modulate the LBT. Roll-tilt-dependent shifts are instead explained by the headward bias when bisecting lines oriented along a body-vertical axis. Increased variability when roll-tilted likely reflects larger variability when bisecting body-vertical than body-horizontal lines. Copyright © 2016 the American Physiological Society.
Energetics of eddy-mean flow interactions in the Brazil current between 20°S and 36°S
NASA Astrophysics Data System (ADS)
Magalhães, F. C.; Azevedo, J. L. L.; Oliveira, L. R.
2017-08-01
The energetics of eddy-mean flow interactions in the Brazil Current (BC) between 20°S and 36°S are investigated in 19 transects perpendicular to the 200 m isobath. Ten years (2000-2009) of output data from the Hybrid Coordinate Ocean Model (HYCOM) NCODA reanalysis, with a spatial resolution of 1/12.5° and 5 day averages, are used. The mean kinetic energy (MKE) and eddy kinetic energy (EKE) fields presented the same subsurface spatial pattern but with reduced values. The EKE increases southward, with high values along the BC path and the offshore portion of the jet. The values of the barotropic conversion term (BTC) are highest in the surface layers and decreased with depth, whereas the values of the baroclinic conversion term (BCC) and the vertical eddy heat flux (VEHF) are highest in the subsurface. Despite the vertical thickening of the BC, the highest energy conversion rates are confined to the upper 700 m of the water column. The energetic analysis showed that the current features mixed instability processes. The vertical weighted mean of the BTC and BCC presented an oscillatory pattern related to the bathymetry. The eddy field accelerates the time-mean flow upstream and downstream of bathymetric features and drains energy from the time-mean flow over the features. The BC is baroclinically unstable south of 28°S, and the highest energy conversion rates occur in Cabo de São Tomé, Cabo Frio, and the Cone do Rio Grande.
Brennan, Matthew L.; Schoellhamer, David H.; Burau, Jon R.; Monismith, Stephen G.; Winterwerp, J.C.; Kranenburg, C.
2002-01-01
The relationship between sediment bed flux and bed shear stress during a pair of field experiments in a partially stratified estuary is examined in this paper. Time series of flow velocity, vertical density profiles, and suspended sediment concentration were measured continuously throughout the water column and intensely within 1 meter of the bed. These time series were analyzed to determine bed shear stress, vertical turbulent sediment flux, and mass of sediment suspended in the water column. Resuspension, as inferred from near-bed measurements of vertical turbulent sediment flux, was flood dominant, in accordance with the flood-dominant bed shear stress. Bathymetry-induced residual flow, gravitational circulation, and ebb tide salinity stratification contributed to the flood dominance. In addition to this flow-induced asymmetry, the erodibility of the sediment appears to increase during the first 2 hours of flood tide. Tidal asymmetry in bed shear stress and erodibility help explain an estuarine turbidity maximum that is present during flood tide but absent during ebb tide. Because horizontal advection was insignificant during most of the observation periods, the change in bed mass can be estimated from changes in the total suspended sediment mass. The square wave shape of the bed mass time series indicates that suspended sediment rapidly deposited in an unconsolidated or concentrated benthic suspension layer at slack tides and instantly resuspended when the shear stress became sufficiently large during a subsequent tide. The variability of bed mass associated with the spring/neap cycle (about 60 mg/cm2) is similar to that associated with the semidiurnal tidal cycle.
MAPPING BATHYMETRY AND BOTTOM TYPE IN A SHALLOW ESTUARY
Bathymetry and bottom type are important in characterizing estuaries and their ecology but hard to map, especially in shallow estuaries. Acoustic backscattering was used to remotely sense these properties in the shallow Slocums River Estuary of Massachusetts. Acoustic pulses were...
Bathymetry and acoustic backscatter: Estero Bay, California
Hartwell, Stephen R.; Finlayson, David P.; Dartnell, Peter; Johnson, Samuel Y.
2013-01-01
Between July 30 and August 9, 2012, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from Estero Bay, San Luis Obispo, California, under PCMSC Field Activity ID S-05-12-SC. The survey was done using the R/V Parke Snavely outfitted with a multibeam sonar for swath mapping and highly accurate position and orientation equipment for georeferencing. This report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.
Dartnell, Peter; Cochrane, Guy R.; Finlayson, David P.
2014-01-01
In 2011, scientists from the U.S. Geological Survey’s Coastal and Marine Geology Program acquired bathymetry and acoustic-backscatter data along the upper slope of the Farallon Escarpment and Rittenburg Bank within the Gulf of the Farallones National Marine Sanctuary offshore of the San Francisco Bay area. The surveys were funded by the National Oceanic and Atmospheric Administration’s Deep Sea Coral Research and Technology Program to identify potential deep sea coral habitat prior to planned sampling efforts. Bathymetry and acoustic-backscatter data can be used to map seafloor geology (rock, sand, mud), and slope of the sea floor, both of which are useful for the prediction of deep sea coral habitat. The data also can be used for the prediction of sediment and contaminant budgets and transport, and for the assessment of earthquake and tsunami hazards. The surveys were conducted aboard National Oceanic and Atmospheric Administration’s National Marine Sanctuary Program’s 67-foot-long research vessel Fulmar outfitted with a U.S. Geological Survey 100-kHz Reson 7111 multibeam-echosounder system. This report provides the bathymetry and backscatter data acquired during these surveys, interpretive seafloor character maps in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee metadata.
Precision engineering: an evolutionary perspective.
Evans, Chris J
2012-08-28
Precision engineering is a relatively new name for a technology with roots going back over a thousand years; those roots span astronomy, metrology, fundamental standards, manufacturing and money-making (literally). Throughout that history, precision engineers have created links across disparate disciplines to generate innovative responses to society's needs and wants. This review combines historical and technological perspectives to illuminate precision engineering's current character and directions. It first provides us a working definition of precision engineering and then reviews the subject's roots. Examples will be given showing the contributions of the technology to society, while simultaneously showing the creative tension between the technological convergence that spurs new directions and the vertical disintegration that optimizes manufacturing economics.
Venus spherical harmonic gravity model to degree and order 60
NASA Technical Reports Server (NTRS)
Konopliv, Alex S.; Sjogren, William L.
1994-01-01
The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.
Moving base simulation evaluation of translational rate command systems for STOVL aircraft in hover
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.
1996-01-01
Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command.
EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas
NASA Astrophysics Data System (ADS)
Schaap, Dick M. A.
2016-04-01
Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODNet) initiative. EMODNet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODNet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODNet is entering its 3rd phase with operational portals providing access to marine data for bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities, complemented by checkpoint projects, analyzing the fitness for purpose of data provision. The EMODNet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets that are indexed with metadata by adopting from SeaDataNet the Common Data Index (CDI) data discovery and access service and the Sextant data products catalogue service. SeaDataNet is a network of major oceanographic data centers around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards such as ISO and OGC. The SeaDataNet portal provides users a number of interrelated meta directories, an extensive range of controlled vocabularies, and the various SeaDataNet standards and tools. SeaDataNet at present gives overview and access to more than 1.8 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centers from 34 countries riparian to European seas. The latest EMODNet Bathymetry DTM has a resolution of 1/8 arc minute * 1/8 arc minute and covers all European sea regions. Use is made of available and gathered surveys and already more than 13.000 surveys have been indexed by 27 European data providers from 15 countries and originating from more than 120 organizations. Also use is made of composite DTMs as generated and maintained by several data providers for their areas of interest. Already 44 composite DTMs are included in the Sextant data products catalogue. For areas without coverage use is made of the latest global DTM of GEBCO who is partner in the EMODNet Bathymetry project. In return GEBCO integrates the EMODNet DTM to achieve an enriched and better result. The catalogue services and the generated EMODNet can be queried and browsed at the dedicated EMODNet Bathymetry portal which also provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. Activities are underway for further refinement following user feedback. The EMODnet DTM is publicly available for downloading in various formats. The presentation will highlight key details of EMODNet Bathymetry project, the recently released EMODNet Digital Bathymetry for all European seas, its portal and its versatile viewer.
Estimating Tsunami Runup with Fault Plane Parameters
NASA Astrophysics Data System (ADS)
Sepulveda, I.; Liu, P. L. F.
2016-12-01
The forecasting of tsunami runup has often been done by solving numerical models. The execution times, however, make them unsuitable for the purpose of warning. We offer an alternative method that provides analytical relationship between the runup height, the fault plane parameters and the characteristic of coastal bathymetry. The method uses the model of Okada (1985) to estimate the coseismic deformation and the corresponding sea surface displacement (η(x,0)). Once the tsunami waves are generated, Carrier & Greenspan (1958) solution (C&G) is adopted to yield analytical expressions for the shoreline elevation and velocity. Two types of problems are investigated. In the first, the bathymetry is modeled as a constant slope that is connected to a constant depth region, where a seismic event occurs. This is a boundary value problem (BVP). In the second, the bathymetry is further simplified as a constant slope, on which a seismic event occurs. This is an initial value problem (IVP). Both problems are depicted in Figure 1. We derive runup solutions in terms of the fault parameters. The earthquake is associated with vertical coseismic seafloor displacements by using Okada's elastic model. In addition to the simplifications considered in Okada's model, we further assume (1) a strike parallel to the shoreline, (2) a very long rupture area and (3) a fast earthquake so surface elevation mimics the seafloor displacements. Then the tsunami origin is modeled in terms of the fault depth (d), fault width (W), fault slip (s) and dip angle (δ). We describe the solution for the BVP. Madsen & Schaeffer (2010) utilized C&G to derive solutions for the shoreline elevation of sinusoidal waves imposed in the offshore boundary. A linear superposition of this solution represents any arbitrary incident wave. Furthermore, we can prescribe the boundary condition at the toe of sloping beach by adopting the linear shallow wave equations in the constant depth area. By means of a dimensional analysis, the runup R is determined by Eq.1. Kanoglu (2004) derived a non-dimensional expression for long wave runup originated over a sloping beach. In our work we determine an analytical expression for a sinusoidal initial condition. Following the same procedure as the BVP, the expression for the runup R in the IVP is given by Eq.2. The curves F1 and F2 are plotted in Figure 2.
Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion
NASA Astrophysics Data System (ADS)
Hesser, T.; Farthing, M. W.; Brodie, K.
2016-02-01
The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.
Lee, Jae-Won; Lim, Se-Ho; Kim, Moon-Key; Kang, Sang-Hoon
2015-12-01
We examined the precision of a computer-aided design/computer-aided manufacturing-engineered, manufactured, facebow-based surgical guide template (facebow wafer) by comparing it with a bite splint-type orthognathic computer-aided design/computer-aided manufacturing-engineered surgical guide template (bite wafer). We used 24 rapid prototyping (RP) models of the craniofacial skeleton with maxillary deformities. Twelve RP models each were used for the facebow wafer group and the bite wafer group (experimental group). Experimental maxillary orthognathic surgery was performed on the RP models of both groups. Errors were evaluated through comparisons with surgical simulations. We measured the minimum distances from 3 planes of reference to determine the vertical, lateral, and anteroposterior errors at specific measurement points. The measured errors were compared between experimental groups using a t test. There were significant intergroup differences in the lateral error when we compared the absolute values of the 3-D linear distance, as well as vertical, lateral, and anteroposterior errors between experimental groups. The bite wafer method exhibited little lateral error overall and little error in the anterior tooth region. The facebow wafer method exhibited very little vertical error in the posterior molar region. The clinical precision of the facebow wafer method did not significantly exceed that of the bite wafer method. Copyright © 2015 Elsevier Inc. All rights reserved.
Surfzone Currents Over Irregular Bathymetry: Drifter Observations and Numerical Model Results
NASA Astrophysics Data System (ADS)
Schmidt, W. E.; Slinn, D. N.; Guza, R. T.
2002-12-01
Surfzone currents on alongshore variable bathymetry were observed with recently developed GPS-tracked drifters and numerically modeled with the time-dependent, nonlinear shallow water equations. These currents, forced by alongshore inhomogeneous pressure and radiation stress gradients, contain flow features difficult to resolve with fixed instrument arrays, such as rips, eddies, and meanders. Drifters were repeatedly released and recovered near Scripps Beach, La Jolla, California, in July 2000, 2001, and 2002. The most recent deployment of 10 drifters yielded about 32 hours of drifter data for each 5 hour deployment day. Offshore wave heights were moderate, between 0.3-1.0 m. The bathymetry, measured over a 600-700 m alongshore span with a GPS- and sonar-equipped jetski (2001 and 2002 deployments), was alongshore inhomogeneous primarily where an irregularly shaped bar-trough feature spanned the surf zone. The model simulations suggest that the alongshore inhomogeneous bathymetry strongly influences the location and strength of the observed flow features. Research supported by the California Sea Grant College Program and the Office of Naval Research.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Yang, Fanlin; Zhang, Hande; Su, Dianpeng; Li, QianQian
2017-06-01
The correlation between seafloor morphological features and biological complexity has been identified in numerous recent studies. This research focused on the potential for accurate characterization of coral reefs based on high-resolution bathymetry from multiple sources. A standard deviation (STD) based method for quantitatively characterizing terrain complexity was developed that includes robust estimation to correct for irregular bathymetry and a calibration for the depth-dependent variablity of measurement noise. Airborne lidar and shipborne sonar bathymetry measurements from Yuanzhi Island, South China Sea, were merged to generate seamless high-resolution coverage of coral bathymetry from the shoreline to deep water. The new algorithm was applied to the Yuanzhi Island surveys to generate maps of quantitive terrain complexity, which were then compared to in situ video observations of coral abundance. The terrain complexity parameter is significantly correlated with seafloor coral abundance, demonstrating the potential for accurately and efficiently mapping coral abundance through seafloor surveys, including combinations of surveys using different sensors.
1984-12-21
During the years of gas- turbine engines, aviators encountered quite a few problems. Bearings in these engines were wearing out in 200 to 400 hours...and the time between overhaul of the GTD [gas- turbine engines] of that time de- pended precisely on their operation. Today bearings in aviation last...with vertical corrugating. The transverse bulkheads between holds Nos 2-4 also have vertical corrugating. The hull has been framed according to a
Repeatability and oblique flow response characteristics of current meters
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,
1993-01-01
Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.
Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data
NASA Technical Reports Server (NTRS)
Hamilton, Michael K.; Davis, Curtiss O.; Rhea, W. J.; Pilorz, Stuart H.; Carder, Kendall L.
1993-01-01
Data on chlorophyll content and bathymetry of Lake Tahoe obtained on August 9, 1990 by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are compared to concurrent in situ surface and in-water measurements. Measured parameters included profiles of percent transmission of monochromatic light, stimulated chlorophyll fluorescence, photosynthetically available radiation, spectral upwelling and downwelling irradiance, and upwelling radiance. Several analyses were performed illustrating the utility of the AVIRIS over a dark water scene. Image-derived chlorophyll concentration compared extremely well with that measured with bottle samples. A bathymetry map of the shallow parts of the lake was constructed which compares favorably with published lake soundings.
Langland, Michael J.
2009-01-01
The Susquehanna River transports a substantial amount of the sediment and nutrient load to the Chesapeake Bay. Upstream of the bay, three large dams and their associated reservoirs trap a large amount of the transported sediment and associated nutrients. During the fall of 2008, the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Protection completed bathymetric surveys of three reservoirs on the lower Susquehanna River to provide an estimate of the remaining sediment-storage capacity. Previous studies indicated the upper two reservoirs were in equilibrium with long-term sediment storage; only the most downstream reservoir retained capacity to trap sediments. A differential global positioning system (DGPS) instrument was used to provide the corresponding coordinate position. Bathymetry data were collected using a single beam 210 kHz (kilohertz) echo sounder at pre-defined transects that matched previous surveys. Final horizontal (X and Y) and vertical (Z) coordinates of the geographic positions and depth to bottom were used to create bathymetric maps of the reservoirs. Results indicated that from 1996 to 2008 about 14,700,000 tons of sediment were deposited in the three reservoirs with the majority (12,000,000 tons) being deposited in Conowingo Reservoir. Approximately 20,000 acre-feet or 30,000,000 tons of remaining storage capacity is available in Conowingo Reservoir. At current transport (3,000,000 tons per year) and deposition (2,000,000 tons per year) rates and with no occurrence of major scour events due to floods, the remaining capacity may be filled in 15 to 20 years. Once the remaining sediment-storage capacity in the reservoirs is filled, sediment and associated phosphorus loads entering the Chesapeake Bay are expected to increase.
Precise leveling, space geodesy and geodynamics
NASA Technical Reports Server (NTRS)
Reilinger, R.
1981-01-01
The implications of currently available leveling data on understanding the crustal dynamics of the continental United States are investigated. Neotectonic deformation, near surface movements, systematic errors in releveling measurements, and the implications of this information for earthquake prediction are described. Vertical crustal movements in the vicinity of the 1931 Valentine, Texas, earthquake which may represent coseismic deformation are investigated. The detection of vertical fault displacements by precise leveling in western Kentucky is reported. An empirical basis for defining releveling anomalies and its implications for crustal deformation in southern California is presented. Releveling measurements in the eastern United States and their meaning in the context of possible crustal deformation, including uplift of the Appalachian Mountains, eastward tilting of the Atlantic Coastal Plain, and apparent movements associated with a number of structural features along the east coast, are reported.
NASA Astrophysics Data System (ADS)
Brodie, Katherine L.
Elevated water levels and large waves during storms cause beach erosion, overwash, and coastal flooding, particularly along barrier island coastlines. While predictions of storm tracks have greatly improved over the last decade, predictions of maximum water levels and variations in the extent of damage along a coastline need improvement. In particular, physics based models still cannot explain why some regions along a relatively straight coastline may experience significant erosion and overwash during a storm, while nearby locations remain seemingly unchanged. Correct predictions of both the timing of erosion and variations in the magnitude of erosion along the coast will be useful to both emergency managers and homeowners preparing for an approaching storm. Unfortunately, research on the impact of a storm to the beach has mainly been derived from "pre" and "post" storm surveys of beach topography and nearshore bathymetry during calm conditions. This has created a lack of data during storms from which to ground-truth model predictions and test hypotheses that explain variations in erosion along a coastline. We have developed Coastal Lidar and Radar Imaging System (CLARIS), a mobile system that combines a terrestrial scanning laser and an X-band marine radar system using precise motion and location information. CLARIS can operate during storms, measuring beach topography, nearshore bathymetry (from radar-derived wave speed measurements), surf-zone wave parameters, and maximum water levels remotely. In this dissertation, we present details on the development, design, and testing of CLARIS and then use CLARIS to observe a 10 km section of coastline in Kitty Hawk and Kill Devil Hills on the Outer Banks of North Carolina every 12 hours during a Nor'Easter (peak wave height in 8 m of water depth = 3.4 m). High decadal rates of shoreline change as well as heightened erosion during storms have previously been documented to occur within the field site. In addition, complex bathymetric features that traverse the surf-zone into the nearshore are present along the southern six kilometers of the field site. In addition to the CLARIS observations, we model wave propagation over the complex nearshore bathymetry for the same storm event. Data reveal that the complex nearshore bathymetry is mirrored by kilometer scale undulations in the shoreline, and that both morphologies persist during storms, contrary to common observations of shoreline and surf-zone linearization by large storm waves. We hypothesize that wave refraction over the complex nearshore bathymetry forces flow patterns which may enhance or stabilize the shoreline and surf-zone morphology during storms. In addition, our semi-daily surveys of the beach indicate that spatial and temporal patterns of erosion are strongly correlated to the steepness of the waves. Along more than half the study site, fifty percent or more of the erosion that occurred during the first 12 hours of the storm was recovered within 24 hours of the peak of the storm as waves remained large (>2.5 m), but transitioned to long period swell. In addition, spatial variations in the amount of beach volume change during the building portion of the storm were strongly correlated with observed wave dissipation within the inner surf zone, as opposed to predicted inundation elevations or alongshore variations in wave height.
An Emprical Point Error Model for Tls Derived Point Clouds
NASA Astrophysics Data System (ADS)
Ozendi, Mustafa; Akca, Devrim; Topan, Hüseyin
2016-06-01
The random error pattern of point clouds has significant effect on the quality of final 3D model. The magnitude and distribution of random errors should be modelled numerically. This work aims at developing such an anisotropic point error model, specifically for the terrestrial laser scanner (TLS) acquired 3D point clouds. A priori precisions of basic TLS observations, which are the range, horizontal angle and vertical angle, are determined by predefined and practical measurement configurations, performed at real-world test environments. A priori precision of horizontal (𝜎𝜃) and vertical (𝜎𝛼) angles are constant for each point of a data set, and can directly be determined through the repetitive scanning of the same environment. In our practical tests, precisions of the horizontal and vertical angles were found as 𝜎𝜃=±36.6𝑐𝑐 and 𝜎𝛼=±17.8𝑐𝑐, respectively. On the other hand, a priori precision of the range observation (𝜎𝜌) is assumed to be a function of range, incidence angle of the incoming laser ray, and reflectivity of object surface. Hence, it is a variable, and computed for each point individually by employing an empirically developed formula varying as 𝜎𝜌=±2-12 𝑚𝑚 for a FARO Focus X330 laser scanner. This procedure was followed by the computation of error ellipsoids of each point using the law of variance-covariance propagation. The direction and size of the error ellipsoids were computed by the principal components transformation. The usability and feasibility of the model was investigated in real world scenarios. These investigations validated the suitability and practicality of the proposed method.
Morel, Yann; Waddington, Andrew; Lopez-Calderon, Jorge; Cadena-Roa, Marco; Blanco-Jarvio, Anidia
2017-01-01
Satellite-derived bathymetry methods over coastal areas were developed to deliver basic and useful bathymetry information. However, the process is not straightforward, the main limitation being the need for field data. The Self-calibrated Spectral Supervised Shallow-water Modeler (4SM) method was tested to obtain coastal bathymetry without the use of any field data. Using Landsat-8 multispectral images from 2013 to 2016, a bathymetric time series was produced. Groundtruthed depths and an alternative method, Stumpf’s Band Ratio Algorithm, were used to verify the results. Retrieved (4SM) vs groundtruthed depths scored an average r2 (0.90), and a low error (RMSE = 1.47 m). 4SM also showed, over the whole time series, the same average accuracy of the control method (40%). Advantages, limitations and operability under complex atmosphere and water column conditions, and high and low-albedo bottom processing capabilities of 4SM are discussed. In conclusion, the findings suggest that 4SM is as accurate as the commonly used Stumpf’s method, the only difference being the independence of 4SM from previous field data, and the potential to deliver bottom spectral characteristics for further modeling. 4SM thus represents a significant advance in coastal remote sensing potential to obtain bathymetry and optical properties of the marine bottom. PMID:28973993
The impact of bathymetry input on flood simulations
NASA Astrophysics Data System (ADS)
Khanam, M.; Cohen, S.
2017-12-01
Flood prediction and mitigation systems are inevitable for improving public safety and community resilience all over the worldwide. Hydraulic simulations of flood events are becoming an increasingly efficient tool for studying and predicting flood events and susceptibility. A consistent limitation of hydraulic simulations of riverine dynamics is the lack of information about river bathymetry as most terrain data record water surface elevation. The impact of this limitation on the accuracy on hydraulic simulations of flood has not been well studies over a large range of flood magnitude and modeling frameworks. Advancing our understanding of this topic is timely given emerging national and global efforts for developing automated flood predictions systems (e.g. NOAA National Water Center). Here we study the response of flood simulation to the incorporation of different bathymetry and floodplain surveillance source. Different hydraulic models are compared, Mike-Flood, a 2D hydrodynamic model, and GSSHA, a hydrology/hydraulics model. We test a hypothesis that the impact of inclusion/exclusion of bathymetry data on hydraulic model results will vary in its magnitude as a function of river size. This will allow researcher and stake holders more accurate predictions of flood events providing useful information that will help local communities in a vulnerable flood zone to mitigate flood hazards. Also, it will help to evaluate the accuracy and efficiency of different modeling frameworks and gage their dependency on detailed bathymetry input data.
How does ice sheet loading affect ocean flow around Antarctica?
NASA Astrophysics Data System (ADS)
Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.
2012-12-01
Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.
AVALON: definition and modeling of a vertical takeoff and landing UAV
NASA Astrophysics Data System (ADS)
Silva, N. B. F.; Marconato, E. A.; Branco, K. R. L. J. C.
2015-09-01
Unmanned Aerial Vehicles (UAVs) have been used in numerous applications, like remote sensing, precision agriculture and atmospheric data monitoring. Vertical takeoff and landing (VTOL) is a modality of these aircrafts, which are capable of taking off and landing vertically, like a helicopter. This paper presents the definition and modeling of a fixed- wing VTOL, named AVALON (Autonomous VerticAL takeOff and laNding), which has the advantages of traditional aircrafts with improved performance and can take off and land in small areas. The principles of small UAVs development were followed to achieve a better design and to increase the range of applications for this VTOL. Therefore, we present the design model of AVALON validated in a flight simulator and the results show its validity as a physical option for an UAV platform.
NASA Astrophysics Data System (ADS)
Schaap, Dick M. A.; Schmitt, Thierry
2017-04-01
Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is entering its 3rd phase with operational portals providing access to marine data for bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities, complemented by checkpoint projects, analysing the fitness for purpose of data provision. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a resolution of 1/8 arcminute * 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs from 27 European data providers from 15 countries. For areas without coverage use has been made of the latest GEBCO DTM. The catalogue services and the generated EMODnet DTM have been published at the dedicated EMODnet Bathymetry portal which includes a versatile DTM viewing service that also supports downloading in various formats. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM) as part of the third phase of EMODnet. This new project will continue gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data will be included and in particular to fill gaps in coverage of the coastal zones. The data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 3 arc seconds versus 1/8 arc minutes at present. Moreover local DTMs with even higher resolutions will be produced, where data and data providers permit. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be 'moving to the cloud' and setting up an EMODnet Collaborative Virtual Environment (CVE) for producing the EMODnet DTMs. The presentation will highlight key details of EMODnet Bathymetry results and the way how challenges of the new HRSM project are approached.
Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.
2011-01-01
Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty.
Nicoll, Roxanna J; Sun, Albert; Haney, Stephan; Turkyilmaz, Ilser
2013-01-01
The fabrication of an accurately fitting implant-supported fixed prosthesis requires multiple steps, the first of which is assembling the impression coping on the implant. An imprecise fit of the impression coping on the implant will cause errors that will be magnified in subsequent steps of prosthesis fabrication. The purpose of this study was to characterize the 3-dimensional (3D) precision of fit between impression coping and implant replica pairs for 3 implant systems. The selected implant systems represent the 3 main joint types used in implant dentistry: external hexagonal, internal trilobe, and internal conical. Ten impression copings and 10 implant replicas from each of the 3 systems, B (Brånemark System), R (NobelReplace Select), and A (NobelActive) were paired. A standardized aluminum test body was luted to each impression coping, and the corresponding implant replica was embedded in a stone base. A coordinate measuring machine was used to quantify the maximum range of displacement in a vertical direction as a function of the tightening force applied to the guide pin. Maximum angular displacement in a horizontal plane was measured as a function of manual clockwise or counterclockwise rotation. Vertical and rotational positioning was analyzed by using 1-way analysis of variance (ANOVA). The Fisher protected least significant difference (PLSD) multiple comparisons test of the means was applied when the F-test in the ANOVA was significant (α=.05). The mean and standard deviation for change in the vertical positioning of impression copings was 4.3 ±2.1 μm for implant system B, 2.8 ±4.2 μm for implant system R, and 20.6 ±8.8 μm for implant system A. The mean and standard deviation for rotational positioning was 3.21 ±0.98 degrees for system B, 2.58 ±1.03 degrees for system R, and 5.30 ±0.79 degrees for system A. The P-value for vertical positioning between groups A and B and between groups A and R was <.001. No significant differences were found for vertical positioning between groups B and R. The P-value for rotational positioning between groups A and B and between groups A and R was <.001. No significant differences were found for rotational positioning between groups B and R. The results of the study confirmed that implant systems differ in precision of fit. Vertical precision between paired implant components is a function of joint type and the tightening force applied to the guide pin. The magnitude of vertical displacement with applied torque is greater for conical connections than for butt joint connections. The rotational freedom between paired components is unique to the implant system and is presumably related to the machining tolerances specified by the manufacturer. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
St. Johns County, St. Augustine Inlet, FL, Report 1: Historical Analysis and Sediment Budget
2012-08-01
Anastasia Island ........................................................ 26 4.5 Alongshore region of influence of the inlet...profile T-129 from 1984 to 2010. ....................................................... 15 Figure 16. Ebb shoal bathymetry, Vilano and Anastasia Islands...2007. ............................................. 17 Figure 17. Ebb shoal bathymetry, Vilano and Anastasia Islands, 2008
AVIRIS Spectrometer Maps Total Water Vapor Column
NASA Technical Reports Server (NTRS)
Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.
1992-01-01
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.
NASA Astrophysics Data System (ADS)
Anderson, K.; Lundsten, E. M.; Caress, D. W.; Thomas, H. J.; Paull, C. K.; Maier, K. L.; Gales, J. A.; Gwiazda, R.; Talling, P.; Xu, J.; Parsons, D. R.
2017-12-01
The Coordinated Canyon Experiment (CCE), a multi-institutional collaboration effort, was designed to monitor the passage of sediment density flows along the axis of Monterey Canyon, offshore California, between 200 and 1850 m water depth. An array of moorings and sensors were deployed for three 6-month periods from October 2015 to April 2017. Aligned with the CCE deployments, repeat high-resolution multibeam bathymetric surveys of the Monterey Canyon floor were conducted with a mapping AUV (Autonomous Underwater Vehicle). The AUV carried a Reson 7125 multibeam echosounder (vertical precision of 0.15 m and horizontal resolution of 1.0 m). An inertial navigation system combined with a Doppler velocity logger allowed the AUV to fly pre-programmed grids at 3 knots, while maintaining an altitude of 50 m above the seafloor, to obtain a nominal line spacing of 130 m. The floor and lower flanks of the canyon between 200 to 540 m and 1350 to 1880 m water depths were mapped six times during the CCE. These repeat maps are subtracted to create bathymetry difference grids to show morphological change. Coupling the sensor observations with the bathymetric surveys, the CCE successfully documented sediment density flow events as well as the associated changes in seafloor morphology. Between repeat surveys, three sediment density flow events reached the lower canyon, extending to at least 1850 m water depth. On January 15, 2016, a particularly large density flow traveled more than 50 km down Monterey Canyon. Unlike in the upper canyon where this event caused wholesale reorganization of geomorphological features, changes to the lower canyon morphology involved a more moderate re-sculpting of the features. The effect of a sediment density flow of known magnitude and duration on the seafloor morphology has never been documented in a deep-sea setting before.
Vittuari, Luca; Tini, Maria Alessandra; Sarti, Pierguido; Serantoni, Eugenio; Borghi, Alessandra; Negusini, Monia; Guillaume, Sébastien
2016-01-01
This paper compares three different methods capable of estimating the deflection of the vertical (DoV): one is based on the joint use of high precision spirit leveling and Global Navigation Satellite Systems (GNSS), a second uses astro-geodetic measurements and the third gravimetric geoid models. The working data sets refer to the geodetic International Terrestrial Reference Frame (ITRF) co-location sites of Medicina (Northern, Italy) and Noto (Sicily), these latter being excellent test beds for our investigations. The measurements were planned and realized to estimate the DoV with a level of precision comparable to the angular accuracy achievable in high precision network measured by modern high-end total stations. The three methods are in excellent agreement, with an operational supremacy of the astro-geodetic method, being faster and more precise than the others. The method that combines leveling and GNSS has slightly larger standard deviations; although well within the 1 arcsec level, which was assumed as threshold. Finally, the geoid model based method, whose 2.5 arcsec standard deviations exceed this threshold, is also statistically consistent with the others and should be used to determine the DoV components where local ad hoc measurements are lacking. PMID:27104544
NASA Technical Reports Server (NTRS)
Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James
2002-01-01
Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.
The vertical structure of the circulation and dynamics in Hudson Shelf Valley
Lentz, Steven J.; Butman, Bradford; Harris, Courtney K.
2014-01-01
Hudson Shelf Valley is a 20–30 m deep, 5–10 km wide v-shaped submarine valley that extends across the Middle Atlantic Bight continental shelf. The valley provides a conduit for cross-shelf exchange via along-valley currents of 0.5 m s−1 or more. Current profile, pressure, and density observations collected during the winter of 1999–2000 are used to examine the vertical structure and dynamics of the flow. Near-bottom along-valley currents having times scales of a few days are driven by cross-shelf pressure gradients setup by wind stresses, with eastward (westward) winds driving onshore (offshore) flow within the valley. The along-valley momentum balance in the bottom boundary layer is predominantly between the pressure gradient and bottom stress because the valley bathymetry limits current veering. Above the bottom boundary layer, the flow veers toward an along-shelf (cross-valley) orientation and a geostrophic balance with some contribution from the wind stress (surface Ekman layer). The vertical structure and strength of the along-valley current depends on the magnitude and direction of the wind stress. During offshore flows driven by westward winds, the near-bottom stratification within the valley increases resulting in a thinner bottom boundary layer and weaker offshore currents. Conversely, during onshore flows driven by eastward winds the near-bottom stratification decreases resulting in a thicker bottom boundary layer and stronger onshore currents. Consequently, for wind stress magnitudes exceeding 0.1 N m−2, onshore along-valley transport associated with eastward wind stress exceeds the offshore transport associated with westward wind stress of the same magnitude.
NASA Astrophysics Data System (ADS)
Olive, J. A. L.; Escartin, J.; Leclerc, F.; Garcia, R.; Gracias, N.; Odemar Science Party, T.
2016-12-01
While >70% of Earth's seismicity is submarine, almost all observations of earthquake-related ruptures and surface deformation are restricted to subaerial environments. Such observations are critical for understanding fault behavior and associated hazards (including tsunamis), but are not routinely conducted at the seafloor due to obvious constraints. During the 2013 ODEMAR cruise we used autonomous and remotely operated vehicles to map the Roseau normal Fault (Lesser Antilles), source of the 2004 Mw6.3 earthquake and associated tsunami (<3.5m run-up). These vehicles acquired acoustic (multibeam bathymetry) and optical data (video and electronic images) spanning from regional (>1 km) to outcrop (<1 m) scales. These high-resolution submarine observations, analogous to those routinely conducted subaerially, rely on advanced image and video processing techniques, such as mosaicking and structure-from-motion (SFM). We identify sub-vertical fault slip planes along the Roseau scarp, displaying coseismic deformation structures undoubtedly due to the 2004 event. First, video mosaicking allows us to identify the freshly exposed fault plane at the base of one of these scarps. A maximum vertical coseismic displacement of 0.9 m can be measured from the video-derived terrain models and the texture-mapped imagery, which have better resolution than any available acoustic systems (<10 cm). Second, seafloor photomosaics allow us to identify and map both additional sub-vertical fault scarps, and cracks and fissures at their base, recording hangingwall damage from the same event. These observations provide critical parameters to understand the seismic cycle and long-term seismic behavior of this submarine fault. Our work demonstrates the feasibility of extensive, high-resolution underwater surveys using underwater vehicles and novel imaging techniques, thereby opening new possibilities to study recent seafloor changes associated with tectonic, volcanic, or hydrothermal activity.
Predicting and testing continental vertical motion histories since the Paleozoic
NASA Astrophysics Data System (ADS)
Zhang, Nan; Zhong, Shijie; Flowers, Rebecca M.
2012-02-01
Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on cratonic regions. We propose that burial-unroofing histories of cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests of and constraints on our mantle dynamic models.
Predicting and testing continental vertical motion histories since the Paleozoic
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.; Flowers, R. M.
2011-12-01
Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on continental cratonic regions. We propose that burial-unroofing histories of continental cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests and constraints on our mantle dynamic models.
Finlayson, David P.; Triezenberg, Peter J.; Hart, Patrick E.
2010-01-01
This report describes geophysical data acquired by the U.S. Geological Survey (USGS) in San Andreas Reservoir and Upper and Lower Crystal Springs Reservoirs, San Mateo County, California, as part of an effort to refine knowledge of the location of traces of the San Andreas Fault within the reservoir system and to provide improved reservoir bathymetry for estimates of reservoir water volume. The surveys were conducted by the Western Coastal and Marine Geology (WCMG) Team of the USGS for the San Francisco Public Utilities Commission (SFPUC). The data were acquired in three separate surveys: (1) in June 2007, personnel from WCMG completed a three-day survey of San Andreas Reservoir, collecting approximately 50 km of high-resolution Chirp subbottom seismic-reflection data; (2) in November 2007, WCMG conducted a swath-bathymetry survey of San Andreas reservoir; and finally (3) in April 2008, WCMG conducted a swath-bathymetry survey of both the upper and lower Crystal Springs Reservoir system. Top of PageFor more information, contact David Finlayson.
Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling
NASA Astrophysics Data System (ADS)
Saksena, S.; Dey, S.; Merwade, V.
2016-12-01
Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.
NASA Astrophysics Data System (ADS)
Manessa, Masita Dwi Mandini; Kanno, Ariyo; Sagawa, Tatsuyuki; Sekine, Masahiko; Nurdin, Nurjannah
2018-01-01
Lyzenga's multispectral bathymetry formula has attracted considerable interest due to its simplicity. However, there has been little discussion of the effect that variation in optical conditions and bottom types-which commonly appears in coral reef environments-has on this formula's results. The present paper evaluates Lyzenga's multispectral bathymetry formula for a variety of optical conditions and bottom types. A noiseless dataset of above-water remote sensing reflectance from WorldView-2 images over Case-1 shallow coral reef water is simulated using a radiative transfer model. The simulation-based assessment shows that Lyzenga's formula performs robustly, with adequate generality and good accuracy, under a range of conditions. As expected, the influence of bottom type on depth estimation accuracy is far greater than the influence of other optical parameters, i.e., chlorophyll-a concentration and solar zenith angle. Further, based on the simulation dataset, Lyzenga's formula estimates depth when the bottom type is unknown almost as accurately as when the bottom type is known. This study provides a better understanding of Lyzenga's multispectral bathymetry formula under various optical conditions and bottom types.
Interaction of lateral baroclinic forcing and turbulence in an estuary
Lacy, J.R.; Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.
2003-01-01
Observations of density and velocity in a channel in northern San Francisco Bay show that the onset of vertical density stratification during flood tides is controlled by the balance between the cross-channel baroclinic pressure gradient and vertical mixing due to turbulence. Profiles of velocity, salinity, temperature, and suspended sediment concentration were measured in transects across Suisun Cutoff, in northern San Francisco Bay, on two days over the 12.5-hour tidal cycle. During flood tides an axial density front developed between fresher water flowing from the shallows of Grizzly Bay into the northern side of Suisun Cutoff and saltier water flowing up the channel. North of the front, transverse currents were driven by the lateral salinity gradient, with a top-to-bottom velocity difference greater than 30 cm/s. South of the front, the secondary circulation was weak, and along-channel velocities were greater than to the north. The gradient Richardson number shows that stratification was stable north of the front, while the water column was turbulently mixed south of the front. Time-series measurements of velocity and salinity demonstrate that the front develops during each tidal cycle. In estuaries, longitudinal dynamics predict less stratification during flood than ebb tides. These data show that stratification can develop during flood tides due to a lateral baroclinic pressure gradient in estuaries with complex bathymetry.
Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Nayegandhi, Amar; Brock, John; Woodman, Robert
2012-01-01
Traditional vegetation maps capture the horizontal distribution of various vegetation properties, for example, type, species and age/senescence, across a landscape. Ecologists have long known, however, that many important forest properties, for example, interior microclimate, carbon capacity, biomass and habitat suitability, are also dependent on the vertical arrangement of branches and leaves within tree canopies. The objective of this study was to use a digital elevation model (DEM) along with tree canopy-structure metrics derived from a lidar survey conducted using the Experimental Advanced Airborne Research Lidar (EAARL) to capture a three-dimensional view of vegetation communities in the Barataria Preserve unit of Jean Lafitte National Historical Park and Preserve, Louisiana. The EAARL instrument is a raster-scanning, full waveform-resolving, small-footprint, green-wavelength (532-nanometer) lidar system designed to map coastal bathymetry, topography and vegetation structure simultaneously. An unsupervised clustering procedure was then applied to the 3-dimensional-based metrics and DEM to produce a vegetation map based on the vertical structure of the park's vegetation, which includes a flotant marsh, scrub-shrub wetland, bottomland hardwood forest, and baldcypress-tupelo swamp forest. This study was completed in collaboration with the National Park Service Inventory and Monitoring Program's Gulf Coast Network. The methods presented herein are intended to be used as part of a cost-effective monitoring tool to capture change in park resources.
Modelling the upwelling offthe east Hainan Island coast in summer 2010
NASA Astrophysics Data System (ADS)
Bai, Peng; Gu, Yanzhen; Li, Peiliang; Wu, Kejian
2016-11-01
A synoptic-scale upwelling event that developed offthe east coast of the Hainan Island (EHIU) in the summer of 2010 is defined well via processing the Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) data. The Regional Ocean Modeling System (ROMS) with high spatial resolution has been used to investigate this upwelling event. By comparing the ROMS results against tide station data, Argo float profiles and MODIS SST, it is confirmed that the ROMS reproduces the EHIU well. The cooler-water core (CWC) distinguished by waters < 27.5°C in the EHIU, which occurred in the east Qiongzhou Strait mouth area and was bounded by a high temperature gradient, was the focus of this paper. Vertical structure of the CWC suggests that interaction between the westward flow and the bathymetry slope played a significant role in the formation of CWC. Numerical experiments indicated that the westward flow in the Qiongzhou Strait was the result of tidal rectification over variable topography (Shi et al., 2002), thus tides played a critical role on the development of the CWC. The negative wind stress curl that dominated the east Qiongzhou Strait mouth area suppressed the intensity of the CWC by 0.2-0.4°C. Further, nonlinear interaction between tidal currents and wind stress enhanced vertical mixing greatly, which would benefit the development of the CWC.
Micromachined electrostatic vertical actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.
A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less
Micromachined electrostatic vertical actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.
A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less
SOLARIS 3-axis high load, low profile, high precision motorized positioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acome, Eric; Van Every, Eric; Deyhim, Alex, E-mail: adc@adc9001.com
A 3-axis optical table, shown in Figure 1, was designed, fabricated, and assembled for the SOLARIS synchrotron facility at the Jagiellonian University in Krakow, Poland. To accommodate the facility, the table was designed to be very low profile, as seen in Figure 2, and bear a high load. The platform has degrees of freedom in the vertical (Z) direction as well as horizontal transversal (X and Y) directions. The table is intended to sustain loads as large as 1500 kg which will be sufficient to support a variety of equipment to measure and facilitate synchrotron radiation. After assembly, the tablemore » was tested and calibrated to find its position error in the vertical direction. ADC has extensive experience designing and building custom complex high precision motion systems [1,2].« less
Biosonar navigation above water I: estimating flight height.
Hoffmann, Susanne; Genzel, Daria; Prosch, Selina; Baier, Leonie; Weser, Sabrina; Wiegrebe, Lutz; Firzlaff, Uwe
2015-02-15
Locomotion and foraging on the wing require precise navigation in more than just the horizontal plane. Navigation in three dimensions and, specifically, precise adjustment of flight height are essential for flying animals. Echolocating bats drink from water surfaces in flight, which requires an exceptionally precise vertical navigation. Here, we exploit this behavior in the bat, Phyllostomus discolor, to understand the biophysical and neural mechanisms that allow for sonar-guided navigation in the vertical plane. In a set of behavioral experiments, we show that for echolocating bats, adjustment of flight height depends on the tragus in their outer ears. Specifically, the tragus imposes elevation-specific spectral interference patterns on the echoes of the bats' sonar emissions. Head-related transfer functions of our bats show that these interference patterns are most conspicuous in the frequency range ∼55 kHz. This conspicuousness is faithfully preserved in the frequency tuning and spatial receptive fields of cortical single and multiunits recorded from anesthetized animals. In addition, we recorded vertical spatiotemporal response maps that describe neural tuning in elevation over time. One class of units that were very sharply tuned to frequencies ∼55 kHz showed unusual spatiotemporal response characteristics with a preference for paired echoes where especially the first echo originates from very low elevations. These behavioral and neural data provide the first insight into biosonar-based processing and perception of acoustic elevation cues that are essential for bats to navigate in three-dimensional space. Copyright © 2015 the American Physiological Society.
Modelling the bathymetry of the Antarctic continental shelf
ten Brink, Uri S.; Rogers, William P.; Kirkham, R.M.
1992-01-01
Continental shelves are typically covered by relatively shallow waters (<200 m) which deepen gradually from the coast to the shelf edge. The continental shelf around Antarctica is deeper than normal (400-700m) and is characterized in many areas by a nearshore trough (up to 1 km deep) that gradually shallows toward the shelf edge. We examine the cause for the unusual shelf bathymetry of Antarctica by 2-D numerical models that simulate the bathymetry along seismic line ODP-119 in Prydz Bay. Line ODP-119 was chosen because it is tied to to 5 ODP boreholes, and because the margin underwent little recent tectonic activity or changes in the glacial drainage pattern. The numerical models incorporate several factors that are likely to influence the bathymetry, such as the load of the ice cap, the isostatic response of the lithosphere, thermal and tectnoic subsidence of the margin, sea level changes, and the patterns of erosion and sedimentation across the margin. The models show that the observed bathymetry can be produced almost entirely by the sum of the outer-shelf sediment loading and inner-shelf unloading and by the load of the slope sediments. A simple statistical mdoel demonstrates that this distribution pattern of erosion and deposition can be generated by multiple cycles of ice sheet advances across the shelf, whereby in each cycle a thin (a few tens of meters) uniform layer of sediments is eroded from under the ice sheet and is redeposited seaward of the grounding line.
NASA Astrophysics Data System (ADS)
Timmermann, Ralph; Schaffer, Janin
2016-04-01
The RTopo-1 data set of Antarctic ice sheet/shelf geometry and global ocean bathymetry has proven useful not only for modelling studies of ice-ocean interaction in the southern hemisphere. Following the spirit of this data set, we introduce a new product (RTopo-2) that contains consistent maps of global ocean bathymetry, upper and lower ice surface topographies for Greenland and Antarctica, and global surface height on a spherical grid with now 30 arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. To achieve a good representation of the fjord and shelf bathymetry around the Greenland continent, we corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Helheim Glacier assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79°N, we incorporated a high-resolution digital bathymetry model including all available multibeam survey data for the region. Radar data for ice surface and ice base topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database.
Seabed topography beneath Larsen C Ice Shelf from seismic soundings
NASA Astrophysics Data System (ADS)
Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.
2014-01-01
Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-ice shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines was collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-ice shelf oceanic circulation may be affected by ice draft and seabed depth. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general < 10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-ice shelf ocean circulation models.
Seabed topography beneath Larsen C Ice Shelf from seismic soundings
NASA Astrophysics Data System (ADS)
Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.
2013-08-01
Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines were collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-shelf oceanic circulation may be affected by ice draft and sub-shelf cavity thickness. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general <10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-shelf ocean circulation models.
Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre
2014-01-01
Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management. PMID:24824155
Radio-controlled boat for measuring water velocities and bathymetry
NASA Astrophysics Data System (ADS)
Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej
2016-04-01
Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek RiverSurveyor M9 instrument.
The Geoscience Laser Altimetry/Ranging System (GLARS)
NASA Technical Reports Server (NTRS)
Cohen, S. C.; Degnan, J. J.; Bufton, J. L.; Garvin, J. B.; Abshire, J. B.
1986-01-01
The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system.
EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas
NASA Astrophysics Data System (ADS)
Schaap, D.
2016-12-01
Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. The EMODnet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets that are indexed with metadata by adopting from SeaDataNet the Common Data Index (CDI) data discovery and access service and the Sextant data products catalogue service. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards such as ISO and OGC. The SeaDataNet portal provides users a number of interrelated meta directories, an extensive range of controlled vocabularies, and the various SeaDataNet standards and tools. SeaDataNet at present gives overview and access to more than 1.8 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. The latest EMODnet Bathymetry DTM has a resolution of 1/8 arcminute * 1/8 arcminute and covers all European sea regions. Use is made of available and gathered surveys and already more than 13.000 surveys have been indexed by 27 European data providers from 15 countries. Also use is made of composite DTMs as generated and maintained by several data providers for their areas of interest. Already 44 composite DTMs are included in the Sextant data products catalogue. For areas without coverage use is made of the latest global DTM of GEBCO who is partner in the EMODnet Bathymetry project. In return GEBCO integrates the EMODnet DTM to achieve an enriched and better result. The catalogue services and the generated EMODnet can be queried and browsed at the dedicated EMODnet Bathymetry portal which also provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. The EMODnet DTM is publicly available for downloading in various formats.
Teleseismic P wave coda from oceanic trench and other bathymetric features
NASA Astrophysics Data System (ADS)
Wu, W.; Ni, S.
2012-12-01
Teleseismic P waves are essential for studying rupture processes of great earthquakes, either in the back projection method or in finite fault inversion method involving of quantitative waveform modeling. In these studies, P waves are assumed to be direct P waves generated by localized patches of the ruptured fault. However, for some oceanic earthquakes happening near the subductiontrenches or mid-ocean ridges, we observed strong signals between P and PP are often observed on theat telseseismic networkdistances. These P wave coda signals show strong coherence and their amplitudes are sometimes comparable with those of the direct P wave or even higher for some special frequenciesfrequency band. With array analysis, we find that the coda's slowness is very close to that of the direct P wave, suggesting that they are generated near the source region. As the earthquakes occur near the trenches or mid-ocean ridges which are both featured by rapid variation of bathymetry, the coda waves are very probably generated by the scattered surface wave or S wave at the irregular bathymetry. Then, we apply the realistic bathymetry data to calculate the 3D synthetics and the coda can be well predicted by the synthetics. So the topography/bathymetry is confirmed to be the main source of the coda. The coda waves are so strong that it may affect the imaging rupture processes of ocean earthquakes, so the topography/bathymetry effect should be taken into account. However, these strong coda waves can also be used utilized to locate the oceanic earthquakes. The 3D synthetics demonstrate that the coda waves are dependent on both the specific bathymetry and the location of the earthquake. Given the determined bathymetry, the earthquake location can be constrained by the coda, e.g. the distance between trench and the earthquake can be determine from the relative arrival between the P wave and its coda which is generated by the trench. In order to locate the earthquakes using the bathymetry, it is indispensible to get all the 3D synthetics with possible different horizontal locations and depths of the earthquakes. However, the computation will be very expensive if using the numerical simulation in the whole medium. Considering that the complicated structure is only near the source region, we apply ray theory to interface full wave field from spectral-element simulation to get the teleseismic P waves. With this approach, computation efficiency is greatly improved and the relocation of the earthquake can be completed more efficiently. As for the relocation accuracy, it can be as high as 10km for the earthquakes near the trench. So it provides us another, sometimes most favorable, method to locate the ocean earthquakes with ground-truth accuracy.
Observations of tropospheric phase scintillations at 5 GHz on vertical paths
NASA Technical Reports Server (NTRS)
Armstrong, J. W.; Sramek, R. A.
1982-01-01
The article presents observations of turbulence-induced tropospheric phase fluctuations measured at 5 GHz on the near-vertical paths relevant to many astronomical and geophysical measurements. The data are summarized as phase power spectra, structure functions, and Allan variances. Comparisons to other microwave observations indicate relatively good agreement in both the level and shape of the power spectrum of these tropospheric phase fluctuations. Implications for precision Doppler tracking of spacecraft and geodesy/radio interferometry are discussed.
NASA Astrophysics Data System (ADS)
Kadioglu, Selma; Kagan Kadioglu, Yusuf
2016-04-01
Ordu-Giresun (OGU) is a newly-constructed airport, the first sea-filled airport in Turkey and in Europe, and the second airport in the world after Osaca-Japan. The airport is between Gulyalı district in Ordu city and Piraziz district in Giresun city in Black Sea -Turkey. A protection breakwater has been constructed by filling a rock approximately 7.435-m long and with an average height of 5.5 m. Then, the Black Sea has been filled until 1 m over the sea level, approximately the area is 1.770.000 m2 wide and includes a runway, aprons and taxiway covered by breakwater. The runway has a 1-m thickness, 3-km length and 45-m width, PCN84 strength, and stone mastic asphalt surface. The aprons has a 240 x 110 m length and PCN110 strength, the taxiway is 250 x 24 m wide. The airport was started to be constructed in July 2011 and it began to serve on 22th May 2015. The aim of this study was to determine the depth of the rock-filled layer and the amount of sinking of the bathymetry which has been determined before filling processing. In addition, before bathymetry determination, unconsolidated sediments had been removed from the bottom of the sea. There were four drilling points to control the sinking of the bathymetry. Therefore, six suitable Ground Penetrating Radar (GPR) profiles were measured, crossing these points with runway and aprons, using 250-MHz and 100-MHz shielded antennas. Starting points of the profiles were in the middle of the runway to merge between depth and thickness changing of the filled layer and bathymetry along the profiles. Surface topography changing was measured spaced 1 m apart with 1 cm sensitivity on each profile. At the same time, similarly the topography changing, bathymetry coordinates was re-arranged along the each profile. Topography corrections were applied to the processed radargrams and then the bottom boundary lines of the rock-filled layer were determined. The maximum height was 3.5 m according to the sea level, which was on the middle point of the runway, representing zero depth of the radargrams of the profiles. To determine the amount of the sinking of the rock filled layer, the first sea level were lined at 3.5 m in depth on the right side depth axes of the radargrams. The second, bathymetry changing lines were placed on the interested radargrams. Finally, differences between the bottom boundary lines of the filled layer and bathymetry lines were compared. The results showed that GPR method could be applied successfully to determine the depth of the rock filled layer in Black Sea and the small amount of the sinking of the bathymetry. Acknowledgement This project has been supported by Cengiz - Içtaş Joint Venture-Turkey. This study is a contribution to the EU funded COST action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu).
Bed topography of Jakobshavn Isbræ, Greenland from high-resolution gravity data
NASA Astrophysics Data System (ADS)
An, L.; Rignot, E. J.; Morlighem, M.; Paden, J. D.; Holland, D. M.
2015-12-01
Jakobshavn Isbræ (JKS) is one of the largest marine terminating outlet glaciers in Greenland, feeding a fjord about 800 m deep in the west coast. JKS sped up more than twofold since 2002 and contributed nearly 1 mm of global sea level rise during the period from 2000 to 2011. Holland et al. (2008) posit that these changes coincided with a change in ocean conditions beneath the former ice tongue, yet little is known about the depth of the glacier at its grounding line and upstream of the grounding line and the sea floor depth of the fjord is not well known either. Here, we present a new approach to infer the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line of JKS using high-resolution airborne gravity data from AirGRAV. AirGRAV data were collected in August 2012 from a helicopter platform. The data combined with radio echo sounding data, discrete point soundings in the fjord and the mass conservation approach on land ice. AirGRAV acquired a 500m spacing grid of free-air gravity data at 50 knots with sub-milligal accuracy, i.e. much higher than NASA Operation IceBridge (OIB)'s 5.2km resolution at 290 knots. We use a 3D inversion of the gravity data combining our observations and a forward modeling of the surrounding gravity field, and constrained at the boundary by radar echo soundings and point bathymetry. We reconstruct seamless bed topography at the grounding line that matches interior data and the sea floor bathymetry. The results reveal the true depth at the elbow of the terminal valley and the bed reversal in the proximity of the current grounding line. The analysis provides guidelines for future gravity survey of narrow fjords in terms of spatial resolution and gravity precision. The results also demonstrate the practicality of using high resolution gravity survey to resolve bed topography near glacier snouts, in places where radar sounding has been significantly challenged in the past. The inversion results are critical to re-interpret the recent evolution of JKS and reduce uncertainties in projecting its future contribution to sea level. This work was conducted at UCI and at Caltech's Jet Propulsion Laboratory under a contract with the Gordon and Betty More Foundation and with NASA's Cryospheric Science Program.
Exploring SWOT discharge algorithm accuracy on the Sacramento River
NASA Astrophysics Data System (ADS)
Durand, M. T.; Yoon, Y.; Rodriguez, E.; Minear, J. T.; Andreadis, K.; Pavelsky, T. M.; Alsdorf, D. E.; Smith, L. C.; Bales, J. D.
2012-12-01
Scheduled for launch in 2019, the Surface Water and Ocean Topography (SWOT) satellite mission will utilize a Ka-band radar interferometer to measure river heights, widths, and slopes, globally, as well as characterize storage change in lakes and ocean surface dynamics with a spatial resolution ranging from 10 - 70 m, with temporal revisits on the order of a week. A discharge algorithm has been formulated to solve the inverse problem of characterizing river bathymetry and the roughness coefficient from SWOT observations. The algorithm uses a Bayesian Markov Chain estimation approach, treats rivers as sets of interconnected reaches (typically 5 km - 10 km in length), and produces best estimates of river bathymetry, roughness coefficient, and discharge, given SWOT observables. AirSWOT (the airborne version of SWOT) consists of a radar interferometer similar to SWOT, but mounted aboard an aircraft. AirSWOT spatial resolution will range from 1 - 35 m. In early 2013, AirSWOT will perform several flights over the Sacramento River, capturing river height, width, and slope at several different flow conditions. The Sacramento River presents an excellent target given that the river includes some stretches heavily affected by management (diversions, bypasses, etc.). AirSWOT measurements will be used to validate SWOT observation performance, but are also a unique opportunity for testing and demonstrating the capabilities and limitations of the discharge algorithm. This study uses HEC-RAS simulations of the Sacramento River to first, characterize expected discharge algorithm accuracy on the Sacramento River, and second to explore the required AirSWOT measurements needed to perform a successful inverse with the discharge algorithm. We focus on several specific research questions affecting algorithm performance: 1) To what extent do lateral inflows confound algorithm performance? We examine the ~100 km stretch of river from Colusa, CA to the Yolo Bypass, and investigate how the varying degrees of lateral flows affect algorithm performance. 2) To what extent does a simple slope-area method (i.e. Manning's equation) applied to river reaches accurately describe river discharge? 3) How accurately does the algorithm perform an inversion to accurately describe the river bathymetry and roughness coefficient? Finally, we explore the sensitivity of the algorithm to the number of AirSWOT flights and AirSWOT measurement precision for various river flow scenarios.
Depth indicator and stop aid machining to precise tolerances
NASA Technical Reports Server (NTRS)
Laverty, J. L.
1966-01-01
Attachment for machine tools provides a visual indication of the depth of cut and a positive stop to prevent overcutting. This attachment is used with drill presses, vertical milling machines, and jig borers.
Gardner, J.V.; Mayer, L.A.; Hughes, Clarke J.E.; Kleiner, A.
1998-01-01
The 1990s have seen rapid advances in seafloor mapping technology. Multibeam sonars are now capable of mapping a wide range of water depths with beams as narrow as 1??, and provide up to a 150?? swath. When these multibeam sonars are coupled with an extremely accurate vehicle motion sensor and very precise navigation, they are capable of producing unprecedented images of the seafloor. This technology was used in December 1997 to map the East and West Flower Gardens and Stetson Banks, Gulf of Mexico. The results from this survey provide the most accurate maps of these areas yet produced and reveal features at submeter resolution never mapped in these areas before. The digital data provide a database that should become the fundamental base maps for all subsequent work in this recently established National Marine Sanctuary.
Precision and repeatability of the Optotrak 3020 motion measurement system.
States, R A; Pappas, E
2006-01-01
Several motion analysis systems are used by researchers to quantify human motion and to perform accurate surgical procedures. The Optotrak 3020 is one of these systems and despite its widespread use there is not any published information on its precision and repeatability. We used a repeated measures design study to evaluate the precision and repeatability of the Optotrak 3020 by measuring distance and angle in three sessions, four distances and three conditions (motion, static vertical, and static tilted). Precision and repeatability were found to be excellent for both angle and distance although they decreased with increasing distance from the sensors and with tilt from the plane of the sensors. Motion did not have a significant effect on the precision of the measurements. In conclusion, the measurement error of the Optotrak is minimal. Further studies are needed to evaluate its precision and repeatability under human motion conditions.
Surfzone vorticity in the presence of extreme bathymetric variability
NASA Astrophysics Data System (ADS)
Clark, D.; Elgar, S.; Raubenheimer, B.
2014-12-01
Surfzone vorticity was measured at Duck, NC using a novel 5-m diameter vorticity sensor deployed in 1.75 m water depth. During the 4-week deployment the initially alongshore uniform bathymetry developed 200-m long mega-cusps with alongshore vertical changes of 1.5 m or more. When waves were small and the vorticity sensor was seaward of the surfzone, vorticity variance and mean vorticity varied with the tidally modulated water depth, consistent with a net seaward flux of surfzone-generated vorticity. Vorticity variance increased with incident wave heights up to 2-m. However, vorticity variance remained relatively constant for incident wave heights above 2-m, and suggests that eddy energy may become saturated in the inner surfzone during large wave events. In the presence of mega-cusps the mean vorticity (shear) is often large and generated by bathymetrically controlled rip currents, while vorticity variance remains strongly correlated with the incident wave height. Funded by NSF, ASD(R&E), and WHOI Coastal Ocean Institute.
High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream
NASA Astrophysics Data System (ADS)
Todd, Robert E.
2017-06-01
Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.
Precise mapping of annual river bed changes based on airborne laser bathymetry
NASA Astrophysics Data System (ADS)
Mandlburger, Gottfried; Wieser, Martin; Pfeifer, Norbert; Pfennigbauer, Martin; Steinbacher, Frank; Aufleger, Markus
2014-05-01
Airborne Laser Bathymtery (ALB) is a method for capturing relatively shallow water bodies from the air using a pulsed green laser (wavelength=532nm). While this technique was first used for mapping coastal waters only, recent progress in sensor technology has opened the field to apply ALB to running inland waters. Especially for alpine rivers the precise mapping of the channel topography is a challenging task as the flow velocities are often high and the area is difficult and/or dangerous to access by boat or by feet. Traditional mapping techniques like tachymetry or echo sounding fail in such situations while ALB provides, both, high spot position accuracy in the cm range and high spatial resolution in the dm range. Furthermore, state-of-the-art ALB systems allow simultaneous mapping of the river bed and the riparian area and, therefore, represent a comprehensive and efficient technology for mapping the entire floodplain area. The maximum penetration depth depends on, both, water turbidity and bottom reflectivity. Consequently, ALB provides the highest accuracy and resolution over bright gravel rivers with relatively clear water. We demonstrate the capability of ALB for precise mapping of river bed changes based on three flight campaigns in April, May and October 2013 at the River Pielach (Lower Austria) carried out with Riegl's VQ-820-G topo-bathymetric laser scanner. Operated at a flight height of 600m above ground with a pulse repetition rate of 510kHz (effective measurement rate 200kHz) this yielded a mean point spacing within the river bed of 20cm (i.e. point density: 25 points/m2). The positioning accuracy of the river bed points is approx. 2-5cm and depends on the overall ranging precision (20mm), the quality of the water surface model (derived from the ALB point cloud), and the signal intensity (decreasing with water depth). All in all, the obtained point cloud allowed the derivation of a dense grid model of the channel topography (0.25m cell size) for all three epochs constituting an excellent basis for, both, the visual and quantitative estimation of the changes over the year. It turned out that even between the April and May flight remarkable differences could be detected although there was no major precipitation event in-between and the flow conditions were entirely below mean flow. In contrast to the moderate changes between April and May, the flood event in June 2013 (HQ1) resulted in a radical change of the river bed topography documented by the October flight. Since the study site (Neubacher Au) is a Natura2000 conservation area, space for a meandering flow is allowed. Entire gravel bars have been removed and new bars were deposited down-stream. Furthermore, the river axis was locally shifted by more than 1m during the flood event. The results demonstrate the high potential of laser bathymetry for precise mapping of river bed changes. This opens new perspectives for the validation of sediment transport models models and a much better understanding of the river morphology (e.g. formation and changes of sand and gravel banks). The traditional approach in sediment transport modelling based on a limited number of cross sections can be completed respectively replaced by a more comprehensive and more reliable concept on the basis of spatial distributed river bed data. Valuable calibration data in a new quality will be available.
A Forest of Sub-1.5-nm-wide Single-Walled Carbon Nanotubes over an Engineered Alumina Support
NASA Astrophysics Data System (ADS)
Yang, Ning; Li, Meng; Patscheider, Jörg; Youn, Seul Ki; Park, Hyung Gyu
2017-04-01
A precise control of the dimension of carbon nanotubes (CNTs) in their vertical array could enable many promising applications in various fields. Here, we demonstrate the growth of vertically aligned, single-walled CNTs (VA-SWCNTs) with diameters in the sub-1.5-nm range (0.98 ± 0.24 nm), by engineering a catalyst support layer of alumina via thermal annealing followed by ion beam treatment. We find out that the ion beam bombardment on the alumina allows the growth of ultra-narrow nanotubes, whereas the thermal annealing promotes the vertical alignment at the expense of enlarged diameters; in an optimal combination, these two effects can cooperate to produce the ultra-narrow VA-SWCNTs. According to micro- and spectroscopic characterizations, ion beam bombardment amorphizes the alumina surface to increase the porosity, defects, and oxygen-laden functional groups on it to inhibit Ostwald ripening of catalytic Fe nanoparticles effectively, while thermal annealing can densify bulk alumina to prevent subsurface diffusion of the catalyst particles. Our findings contribute to the current efforts of precise diameter control of VA-SWCNTs, essential for applications such as membranes and energy storage devices.
2007-06-15
of 2006, the GBU - 39 /B Small Diameter Bomb (SDB) was first employed by Air Force aircraft (Weisgerber 2006). This newly developed munition was...Vertical, Limited horizontal 500# Impact, Delay ≤ 3m GBU-38 JDAM GPS/INS Vertical, Horizontal 500# Proximity, Impact, Delay ~10m GBU - 39 /B...between 5 to 15 nautical miles, though LGB maximum employment range may be further limited by the need to acquire and lase the target. The GBU - 39 offers
Coastal single-beam bathymetry data collected in 2015 from the Chandeleur Islands, Louisiana
Stalk, Chelsea A.; DeWitt, Nancy T.; Bernier, Julie C.; Kindinger, Jack G.; Flocks, James G.; Miselis, Jennifer L.; Locker, Stanley D.; Kelso, Kyle W.; Tuten, Thomas M.
2017-02-23
As part of the Louisiana Coastal Protection and Restoration Authority (CPRA) Barrier Island Comprehensive Monitoring Program, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey around the Chandeleur Islands, Louisiana, in June 2015. The goal of the program is to provide long-term data on Louisiana’s barrier islands and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described in this report, along with (1) USGS bathymetry data collected in 2013 as a part of the Barrier Island Evolution Research project covering the northern Chandeleur Islands, and (2) data collected in 2014 in collaboration with the Louisiana CPRA Barrier Island Comprehensive Monitoring Program around Breton Island, will be used to assess bathymetric change since 2006‒2007 as well as serve as a bathymetric control in supporting modeling of future changes in response to restoration and storm impacts. The survey area encompasses approximately 435 square kilometers of nearshore and back-barrier environments around Hewes Point, the Chandeleur Islands, and Curlew and Grand Gosier Shoals. This Data Series serves as an archive of processed single-beam bathymetry data, collected in the nearshore of the Chandeleur Islands, Louisiana, from June 17‒24, 2015, during USGS Field Activity Number 2015-317-FA. Geographic information system data products include a 200-meter-cell-size interpolated bathymetry grid, trackline maps, and xyz point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.
Multibeam bathymetry and selected perspective views offshore San Diego, California
Dartnell, Peter; Normark, William R.; Driscoll, Neal W.; Babcock, Jeffrey M.; Gardner, James V.; Kvitek, Rikk G.; Iampietro, Pat J.
2007-01-01
This set of two posters consists of a map on one sheet and a set of seven perspective views on the other. The ocean floor image was generated from multibeam-bathymetry data acquired by Federal and local agencies as well as academic institutions including: - U.S. Geological Survey mapped from the La Jolla Canyon south to the US-Mexico border using a Kongsberg Simrad multibeam echosounder system (MBES) (March - April 1998). Data and metadata available at http://pubs.usgs.gov/of/2004/1221/. - Woods Hole Oceanographic Institution and SCRIPPS Institution of Oceanography mapped the majority of the La Jolla Fan Valley including the sea floor to the north and south of the valley using a Seabeam 2100 MBES. Data available at http://www.ngdc.noaa.gov/mgg/bathymetry/multibeam.html. Survey ID, AT07L09, Chief Scientists, Barrie Walden and Joseph Coburn (April 2002). - California State University, Monterey Bay, mapped Scripps Canyon and the head of La Jolla Canyon using a Reson 8101 MBES (October 2001). Data and metadata available at http://seafloor.csumb.edu/SFMLwebDATA.htm. This work was funded by the California Department of Fish and Game California Coastal Conservancy, San Diego Association of Governments (SANDAG), California Department of Fish and Game, and Fugro Pelagos mapped the nearshore region out to about 35-40 m. - The sea floor within this image that has not been mapped with MBES is filled in with interpreted bathymetry gridded from single-beam data available at http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html. Depths are in meters below sea level, which is referenced to Mean Lower Low Water.
High Spatio-Temporal Resolution Bathymetry Estimation and Morphology
NASA Astrophysics Data System (ADS)
Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.
2015-12-01
In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.
Design considerations for a space-borne ocean surface laser altimeter
NASA Technical Reports Server (NTRS)
Plotkin, H. H.
1972-01-01
Design procedures for using laser ranging systems in spacecraft to reflect ocean surface pulses vertically and measure spacecraft altitude with high precision are examined. Operating principles and performance experience of a prototype system are given.
Kim, Miso; Park, Kwan-Dong
2017-01-01
We have developed a suite of real-time precise point positioning programs to process GPS pseudorange observables, and validated their performance through static and kinematic positioning tests. To correct inaccurate broadcast orbits and clocks, and account for signal delays occurring from the ionosphere and troposphere, we applied State Space Representation (SSR) error corrections provided by the Seoul Broadcasting System (SBS) in South Korea. Site displacements due to solid earth tide loading are also considered for the purpose of improving the positioning accuracy, particularly in the height direction. When the developed algorithm was tested under static positioning, Kalman-filtered solutions produced a root-mean-square error (RMSE) of 0.32 and 0.40 m in the horizontal and vertical directions, respectively. For the moving platform, the RMSE was found to be 0.53 and 0.69 m in the horizontal and vertical directions. PMID:28598403
Cobalt: Development and Maturation of GN&C Technologies for Precision Landing
NASA Technical Reports Server (NTRS)
Carson, John M.; Restrepo, Carolina; Seubert, Carl; Amzajerdian, Farzin
2016-01-01
The CoOperative Blending of Autonomous Landing Technologies (COBALT) instrument is a terrestrial test platform for development and maturation of guidance, navigation and control (GN&C) technologies for precision landing. The project is developing a third-generation Langley Research Center (LaRC) navigation doppler lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the Jet Propulsion Laboratory (JPL) lander vision system (LVS) for terrain relative navigation (TRN) position estimates. These technologies together provide precise navigation knowledge that is critical for a controlled and precise touchdown. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive vertical test bed (VTB) developed by Masten Space Systems, and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active).
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III
1996-01-01
Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for demanding vertical landing tasks aboard ship and in confined land-based sites.
Bathymetry and acoustic backscatter: Elwha River Delta, Washington
Finlayson, David P.; Miller, Ian M.; Warrick, Jonathan A.
2011-01-01
The surveys were conducted using the R/V Parke Snavely outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment for accurate shallow water operations. This report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.
Holes in the ocean: Filling voids in bathymetric lidar data
NASA Astrophysics Data System (ADS)
Coleman, John B.; Yao, Xiaobai; Jordan, Thomas R.; Madden, Marguertie
2011-04-01
The mapping of coral reefs may be efficiently accomplished by the use of airborne laser bathymetry. However, there are often data holes within the bathymetry data which must be filled in order to produce a complete representation of the coral habitat. This study presents a method to fill these data holes through data merging and interpolation. The method first merges ancillary digital sounding data with airborne laser bathymetry data in order to populate data points in all areas but particularly those of data holes. What follows is to generate an elevation surface by spatial interpolation based on the merged data points obtained in the first step. We conduct a case study of the Dry Tortugas National Park in Florida and produced an enhanced digital elevation model in the ocean with this method. Four interpolation techniques, including Kriging, natural neighbor, spline, and inverse distance weighted, are implemented and evaluated on their ability to accurately and realistically represent the shallow-water bathymetry of the study area. The natural neighbor technique is found to be the most effective. Finally, this enhanced digital elevation model is used in conjunction with Ikonos imagery to produce a complete, three-dimensional visualization of the study area.
NASA Astrophysics Data System (ADS)
Dillon, Chris
Built upon remote sensing and GIS littoral zone characterization methodologies of the past decade, a series of loosely coupled models aimed to test, compare and synthesize multi-beam SONAR (MBES), Airborne LiDAR Bathymetry (ALB), and satellite based optical data sets in the Gulf of St. Lawrence, Canada, eco-region. Bathymetry and relative intensity metrics for the MBES and ALB data sets were run through a quantitative and qualitative comparison, which included outputs from the Benthic Terrain Modeller (BTM) tool. Substrate classification based on relative intensities of respective data sets and textural indices generated using grey level co-occurrence matrices (GLCM) were investigated. A spatial modelling framework built in ArcGIS(TM) for the derivation of bathymetric data sets from optical satellite imagery was also tested for proof of concept and validation. Where possible, efficiencies and semi-automation for repeatable testing was achieved using ArcGIS(TM) ModelBuilder. The findings from this study could assist future decision makers in the field of coastal management and hydrographic studies. Keywords: Seafloor terrain characterization, Benthic Terrain Modeller (BTM), Multi-beam SONAR, Airborne LiDAR Bathymetry, Satellite Derived Bathymetry, ArcGISTM ModelBuilder, Textural analysis, Substrate classification.
Recent bathymetric variability of sandbars at Duck, NC
NASA Astrophysics Data System (ADS)
Ladner, H.; Palmsten, M. L.
2016-02-01
Sediment transport and sandbar migration are unresolved research topics due to the complex interaction between waves, currents, and sediments in the nearshore region. Previous studies have led to better fundamental understanding of sediment transport, but the capability to make precise short term estimates is still limited. One challenge in predicting sediment transport is the sparse bathymetric data available to ground-truth predictions. A recently developed algorithm, cBathy, uses video images to estimate the nearshore bathymetry from wave celerity. This new method can provide an extensive time series of bathymetric change in order to further study the physics of short term sediment transport. The cBathy code is still under development and needs further testing for accuracy. The objective of this work is to validate cBathy estimates of bathymetry and quantify sandbar behavior over a two month period by analyzing the position of the sandbar crest. The bias between the cBathy estimate and survey on 04/02/15 was 0.24 m and root mean square error (RMSE) was 0.50 m. The bias for the cBathy estimate and survey on 05/19/15 was -0.02 m and RMSE was 0.39 m. The bias and RMSE we observed were comparable previous estimates. As expected, errors were largest in shallower water depths where assumptions made by the cBathy algorithm were not valid. Over the two month period, the mean cross-shore location of the primary sandbar at the alongshore location of 200 m was approximately 216 m, with a standard deviation of 16 m. The mean cross-shore location of the primary sandbar at the alongshore location of 850 m was approximately 205 m, with a standard deviation of 17 m.
Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.
2011-01-01
Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty. ?? 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Thorsnes, T.; Bjarnadóttir, L. R.
2017-12-01
Emerging platforms and tools like autonomous underwater vehicles and synthetic aperture sonars provide interesting opportunities for making seabed mapping more efficient and precise. Sediment grain-size maps are an important product in their own right and a key input for habitat and biotope maps. National and regional mapping programmes are tasked with mapping large areas, and survey efficiency, data quality, and resulting map confidence are important considerations when selecting the mapping strategy. Since 2005, c. 175,000 square kilometres of the Norwegian continental shelf and continental slope has been mapped with respect to sediments, habitats and biodiversity, and pollution under the MAREANO programme (www.mareano.no). At present the sediment mapping is based on a combination of ship-borne multibeam bathymetry and backscatter, visual documentation using a towed video platform, and grab sampling. We have now tested a new approach, using an Autonomous Underwater Vehicle (AUV) as the survey platform for the collection of acoustic data (Synthetic Aperture Sonar (SAS), EM2040 bathymetry and backscatter) and visual data (still images using a TFish colour photo system). This pilot project was conducted together the Norwegian Hydrographic Service, the Institute of Marine Research (biology observations) and the Norwegian Defence Research Establishment (operation of ship and AUV). The test site reported here is the Vesterdjupet area, offshore Lofoten, northern Norway. The water depth is between 170 and 300 metres, with sediments ranging from gravel, cobbles and boulders to sandy mud. A cold-water coral reef, associated with bioclastic sediments was also present in the study area. The presentation will give an overview of the main findings and experiences gained from this pilot project with a focus on geological mapping and will also discuss the relevance of AUV-based mapping to large-area mapping programmes like MAREANO.
An Integrated Bathymetric and Topographic Digital Terrain Model of the Canadian Arctic Archipelago
NASA Astrophysics Data System (ADS)
Alm, G.; Macnab, R.; Jakobsson, M.; Kleman, J.; McCracken, M.
2002-12-01
Currently, the International Bathymetric Chart of the Arctic Ocean (IBCAO) [Jakobsson et al. 2000], contains the most up-to-date digital bathymetric model of the entire Canadian Arctic Archipelago. IBCAO is a seamless bathymetric/topographic Digital Terrain Model (DTM) that incorporates three primary data sets: all available bathymetric data at the time of compilation; the US Geological Survey GTOPO30 topographic data; and the World Vector Shoreline for coastline representation. The horizontal grid cell size is 2.5 x 2.5 km on a Polar Stereographic projection, which is adequate for regional visualization and analysis, but which may not be sufficient for certain geoscientific and oceanographic applications. However, the database that was constructed during the IBCAO project holds bathymetric data of a high quality throughout most of the Canadian Arctic Archipelago, justifying a compilation resolution that is better than 2.5 x 2.5 km. This data is primarily from historical hydrographic surveys that were carried out by the Canadian Hydrographic Survey (CHS). The construction of a higher resolution bathymetry/topography DTM of the Canadian Arctic Archipelago (complete with an error estimation of interpolated grid cells) requires a consideration of historical metadata which contains detailed descriptions of horizontal and vertical datums, positioning systems, and the depth sounding systems that were deployed during individual surveys. A significant portion of this metadata does not exist in digital form; it was not available during the IBCAO compilation, although due to the relatively low resolution of the original DTM (2.5 x 2.5 km), its absence was considered a lesser problem. We have performed "data detective" work and have extracted some of the more crucial metadata from CHS archives and are thus able to present a preliminary version of a seamless Digital Terrain Model of the Canadian Arctic Archipelago. This represents a significant improvement over the original IBCAO DTM in this area. The use of a merged seamless bathymetry/topography model substantially facilitates the overlay and incorporation of other spatially referenced geological and geophysical datasets. For example, one intended use of the model is to merge the results from the mapping of regional glacial morphology features, in order to further address the glacial history of the region. Jakobsson, M., Cherkis, N., Woodward, J., Coakley, B., and Macnab, R., 2000, A new grid of Arctic bathymetry: A significant resource for scientists and mapmakers, EOS Transactions, American Geophysical Union, v. 81, no. 9, p. 89, 93, 96.
Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Brenner, Owen T.; Henderson, Rachel E.; Reynolds, Billy J.; Wilson, Kathleen E.
2017-05-12
Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island from May 6-20, 2015. The USGS is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach as a part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected with single-beam echo sounders and Global Positioning Systems, which were mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach. Additional bathymetry and elevation data were collected using backpack Global Positioning Systems on flood shoals and in shallow channels within the wilderness breach.
Global Paleobathymetry Reconstruction with Realistic Shelf-Slope and Sediment Wedge
NASA Astrophysics Data System (ADS)
Goswami, A.; Hinnov, L. A.; Gnanadesikan, A.; Olson, P.
2013-12-01
We present paleo-ocean bathymetry reconstructions in a 0.1°x0.1° resolution, using simple geophysical models (Plate Model Equation for oceanic lithosphere), published ages of the ocean floor (Müller et al. 2008), and modern world sediment thickness data (Divins 2003). The motivation is to create realistic paleobathymetry to understand the effect of ocean floor roughness on tides and heat transport in paleoclimate simulations. The values for the parameters in the Plate Model Equation are deduced from Crosby et al. (2006) and are used together with ocean floor age to model Depth to Basement. On top of the Depth to Basement, we added an isostatically adjusted multilayer sediment layer, as indicated from sediment thickness data of the modern oceans and marginal seas (Divins 2003). We also created another version of the sediment layer from the Müller et al. dataset. The Depth to Basement with the appropriate sediment layer together represent a realistic paleobathymetry. A Sediment Wedge was modeled to complement the reconstructed paleobathymetry by extending it to the coastlines. In this process we added a modeled Continental Shelf and Continental Slope to match the extent of the reconstructed paleobathymetry. The Sediment Wedge was prepared by studying the modern ocean where a complete history of seafloor spreading is preserved (north, south and central Atlantic Ocean, Southern Ocean between Australia-Antarctica, and the Pacific Ocean off the west coast of South America). The model takes into account the modern continental shelf-slope structure (as evident from ETOPO1/ETOPO5), tectonic margin type (active vs. passive margin) and age of the latest tectonic activity (USGS & CGMW). Once the complete ocean bathymetry is modeled, we combine it with PALEOMAP (Scotese, 2011) continental reconstructions to produce global paleoworld elevation-bathymetry maps. Modern time (00 Ma) was assumed as a test case. Using the above-described methodology we reconstructed modern ocean bathymetry, starting with age of the oceanic crust. We then reconstructed paleobathymetry for PETM (55 Ma) and Cenomanian-Turonian (90 Ma) times. For each case, the final products are: a) a global depth to basement measurement map based on plate model and EarthByte published age of the ocean crust for modern world; b) global oceanic crust bathymetry maps with a multilayer sediment layer (two versions with two types of sediment layers based on: i) observed total sediment thickness of the modern oceans and marginal seas, and ii) EarthByte-estimated global sediment data for 00 Ma); c) global oceanic bathymetry maps (two versions with two types of sediment layers) with reconstructed shelf and slope; and d) global elevation-bathymetry maps (two versions with two types of sediment layers) with continental elevations (PALEOMAP) and ocean bathymetry. Similar maps for other geological times can be produced using this method provided that ocean crustal age is known.
Raabe, E.A.; Stumpf, R.P.; Marth, N.J.; Shrestha, R.L.
1996-01-01
Elevation differences on the order of 10 cm within Florida's marsh system influence major variations in tidal flooding and in the associated plant communities. This low elevation gradient combined with sea level fluctuation of 5-to-10 cm over decadel and longer periods can generate significant alteration and erosion of marsh habitats along the Gulf Coast. Knowledge of precise and accurate elevations in the marsh is critical to the efficient monitoring and management of these habitats. Global positioning system (GPS) technology was employed to establish six new orthometric heights along the Gulf Coast from which kinematic surveys into the marsh interior are conducted. The vertical accuracy achieved using GPS technology was evaluated using two networks with 16 vertical and nine horizontal NGS published high accuracy positions. New positions were occupied near St. Marks National Wildlife Refuge and along the coastline of Levy County and Citrus County. Static surveys were conducted using four Ashtech dual frequency P-code receivers for 45-minute sessions and a data logging rate of 10 seconds. Network vector lengths ranged from 4 to 64 km and, including redundant baselines, totaled over 100 vectors. Analysis includes use of the GEOID93 model with a least squares network adjustment and reference to the National Geodetic Reference System (NGRS). The static surveys show high internal consistency and the desired centimeter-level accuracy is achieved for the local network. Uncertainties for the newly established vertical positions range from 0.8 cm to 1.8 cm at the 95% confidence level. These new positions provide sufficient vertical accuracy to achieve the project objectives of tying marsh surface elevations to long-term water level gauges recording sea level fluctuations along the coast.
Choi, S. G.; Manandhar, P.; Picraux, S. T.
2015-07-07
The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si 1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane,more » silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si 1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.« less
3D optimization of a polymer MOEMS for active focusing of VCSEL beam
NASA Astrophysics Data System (ADS)
Abada, S.; Camps, T.; Reig, B.; Doucet, JB; Daran, E.; Bardinal, V.
2014-05-01
We report on the optimized design of a polymer-based actuator that can be directly integrated on a VCSEL for vertical beam scanning. Its operation principle is based on the vertical displacement of a SU-8 membrane including a polymer microlens. Under an applied thermal gradient, the membrane is shifted vertically due to thermal expansion in the actuation arms induced by Joule effect. This leads to a modification of microlens position and thus to a vertical scan of the laser beam. Membrane vertical displacements as high as 8μm for only 3V applied were recently experimentally obtained. To explain these performances, we developed a comprehensive tri-dimensional thermo-mechanical model that takes into account SU-8 material properties and precise MOEMS geometry. Out-of-plane mechanical coefficients and thermal conductivity were thus integrated in our 3D model (COMSOL Multiphysics). Vertical displacements extracted from these data for different actuation powers were successfully compared to experimental values, validating this modelling tool. Thereby, it was exploited to increase MOEMS electrothermal performance by a factor higher than 5.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
Equivalence of Szegedy's and coined quantum walks
NASA Astrophysics Data System (ADS)
Wong, Thomas G.
2017-09-01
Szegedy's quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover's algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover's oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover's oracle. These equivalences lie outside the previously known equivalence of Szegedy's quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.
NASA Astrophysics Data System (ADS)
Donchyts, G.; Jagers, B.; Van De Giesen, N.; Baart, F.; van Dam, A.
2015-12-01
Free global data sets on river bathymetry at global scale are not yet available. While one of the mostly used free elevation datasets, SRTM, provides data on location and elevation of rivers, its quality usually is very limited. This happens mainly because water mask was derived from older satellite imagery, such as Landsat 5, and also because the radar instruments perform bad near water, especially with the presence of vegetation in riparian zone. Additional corrections are required before it can be used for applications such as higher resolution surface water flow simulations. On the other hand, medium resolution satellite imagery from Landsat mission can be used to estimate water mask changes during the last 40 years. Water mask from Landsat imagery can be derived on per-image basis, in some cases, resulting in up to one thousand water masks. For rivers where significant water mask changes can be observed, this information can be used to improve quality of existing digital elevation models in the range between minimum and maximum observed water levels. Furthermore, we can use this information to further estimate river bathymetry using morphological models. We will evaluate how Landsat imagery can be used to estimate river bathymetry and will point to cases of significant inconsistencies between SRTM and Landsat-based water masks. We will also explore other challenges on a way to automated estimation of river bathymetry using fusion of numerical morphological models and remote sensing data. Some of them include automatic generation of model mesh, estimation of river morphodynamic properties and issues related to spectral method used to analyse optical satellite imagery.
The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xia-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.; Smith, David E. (Technical Monitor)
2000-01-01
The Laser In space Technology Experiment, Shuttle Laser Altimeter and the Mars Observer Laser Altimeter have demonstrated accurate measurements of atmospheric backscatter and Surface heights from space. The recent MOLA measurements of the Mars surface have 40 cm vertical resolution and have reduced the global uncertainty in Mars topography from a few km to about 5 m. The Geoscience Laser Altimeter System (GLAS) is a next generation lidar for Earth orbit being developed as part of NASA's Icesat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS is being developed to fly on a small dedicated spacecraft in a polar orbit with a 590 630 km altitude at inclination of 94 degrees. GLAS is scheduled to launch in the summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will continuously measure the vertical distance from orbit to the Earth's surface with 1064 nm pulses from a ND:YAG laser at a 40 Hz rate. Each 5 nsec wide laser pulse is used to produce a single range measurement, and the laser spots have 66 m diameter and about 170 m center-center spacings. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a 1 m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when over sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid to about 8 urad is needed to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the orientation of the star camera and gyroscope permits the precise pointing angle of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring the vertical profile of laser energy backscattered by the atmosphere at both 1064 and 532 nm. The 1064 nm measurements use the Si APD detector and profile the height and vertical structure of thicker clouds. The measurements at 532 nm use new highly sensitive photon counting, detectors, and measure the height distributions of very thin Clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.
Dimensions of landscape preferences from pairwise comparisons
F. González Bernaldez; F. Parra
1979-01-01
Analysis of landscape preferences allows the detection of major dimensions as:(1) the opposition between "natural and humanized", (comprising features like vegetation cover, cultivation, pattern of landscape elements, artifacts, excavations, etc.); (2) polarity "precision/ambiguity" (involving opposition between: predominance of straight, vertical...
Topobathymetric data for Tampa Bay, Florida
Tyler, Dean J.; Zawada, David G.; Nayegandi, A.; Brock, John C.; Crane, M.P.; Yates, Kimberly K.; Smith, Kathryn E. L.
2007-01-01
Topobathymetric data (“topobathy”) are a merged rendering of both topography (land elevation) and bathymetry (water depth) to provide a single product useful for inundation mapping and a variety of other applications. These data were developed using one topographic and two bathymetric datasets collected at different dates. Topography was obtained from the U.S. Geological Survey's (USGS) National Elevation Dataset (NED). Bathymetry was provided by NOAA's GEOphysical DAta System (GEODAS). For several nearshore areas within the bay GEODAS data were replaced with high resolution bathymetry acquired by NASA's Experimental Advanced Airborne Research Lidar (EAARL). These data and detailed metadata can be obtained from the USGS Web site: http://gisdata.usgs.gov/website/topobathy/. Data from EAARL and NED were collected under the auspices of the USGS Gulf of Mexico Integrated Science Tampa Bay Study (http://gulfsci.usgs.gov/).
Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Wilson, Kathleen E.; Henderson, Rachel E.; Brenner, Owen T.; Reynolds, Billy J.; Hansen, Mark E.
2016-08-02
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, collected bathymetric data along the upper shoreface and within the wilderness breach at Fire Island, New York, in June 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the shoreface along Fire Island and model the evolution of the wilderness breach as a part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry was collected with single-beam echo sounders and global positioning systems, mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach. Additional bathymetry was collected using backpack global positioning systems along the flood shoals and shallow channels within the wilderness breach.
A multi-resolution approach to electromagnetic modelling
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu
2018-07-01
We present a multi-resolution approach for 3-D magnetotelluric forward modelling. Our approach is motivated by the fact that fine-grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. With a conventional structured finite difference grid, the fine discretization required to adequately represent rapid variations near the surface is continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modelling is especially important for solving regularized inversion problems. We implement a multi-resolution finite difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of subgrids, with each subgrid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modelling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modelling operators on interfaces between adjacent subgrids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models shows that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.
Harris, C.K.; Wiberg, P.L.
2001-01-01
A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.
Label-based routing for a family of small-world Farey graphs.
Zhai, Yinhu; Wang, Yinhe
2016-05-11
We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.
Label-based routing for a family of small-world Farey graphs
NASA Astrophysics Data System (ADS)
Zhai, Yinhu; Wang, Yinhe
2016-05-01
We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.
The Navy’s Application of Ocean Forecasting to Decision Support
2014-09-01
Prediction Center (OPC) website for graphics or the National Operational Model Archive and Distribution System ( NOMADS ) for data files. Regional...inputs: » GLOBE = Global Land One-km Base Elevation » WVS = World Vector Shoreline » DBDB2 = Digital Bathymetry Data Base 2 minute resolution » DBDBV... Digital Bathymetry Data Base variable resolution Oceanography | Vol. 27, No.3130 Very High-Resolution Coastal Circulation Models Nearshore
Automating Nearshore Bathymetry Extraction from Wave Motion in Satellite Optical Imagery
2012-03-01
positions and overlap in the electromagnetic spectrum (From DigitalGlobe, 2011b). ..............................18 Figure 9. STK snap shot of...to-Noise Ratio STK Satellite Tool Kit UTM Universal Transverse Mercator WKB Wave Kinematics Bathymetry xviii THIS PAGE INTENTIONALLY LEFT...planned over the coming months. 21 Figure 9. STK snap shot of WorldView-2 collection pass. C. METHOD The imagery was collected at about 2200Z
2017-01-26
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate
Stalk, Chelsea A.; DeWitt, Nancy T.; Kindinger, Jack L.; Flocks, James G.; Reynolds, Billy J.; Kelso, Kyle W.; Fredericks, Joseph J.; Tuten, Thomas M.
2017-03-10
As part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the south-central coast of Louisiana, from Raccoon Point to Point Au Fer Island, in July 2015. The goal of the BICM program is to provide long-term data on Louisiana’s coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described in this report will provide baseline bathymetric information for future research investigating island evolution, sediment transport, and recent and long-term geomorphic change, and will support modeling of future changes in response to restoration and storm impacts. The survey area encompasses more than 300 square kilometers of nearshore environment from Raccoon Point to Point Au Fer Island. This data series serves as an archive of processed single-beam bathymetry data, collected from July 22–29, 2015, under USGS Field Activity Number 2015-320-FA. Geographic information system data products include a 200-meter-cell-size interpolated bathymetry grid, trackline maps, and point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.
Recent applications of acoustic Doppler current profilers
Oberg, K.A.; Mueller, David S.
1994-01-01
A Broadband acoustic Doppler current profiler (BB-ADCP) is a new instrument being used by the U.S. Geological Survey (USGS) to measure stream discharge and velocities, and bathymetry. During the 1993 Mississippi River flood, more than 160 high-flow BB-ADCP measurements were made by the USGS at eight locations between Quincy and Cairo, Ill., from July 19 to August 20, 1993. A maximum discharge of 31,400 m3/s was measured at St. Louis, Mo., on August 2, 1993. A BB-ADCP also has been used to measure leakage through three control structures near Chicago, Ill. These measurements are unusual in that the average velocity for the measured section was as low as 0.03 m/s. BB-ADCP's are also used in support of studies of scour at bridges. During the recent Mississippi River flood, BB-ADCP's were used to measure water velocities and bathymetry upstream from, next to, and downstream from bridge piers at several bridges over the Mississippi River. Bathymetry data were collected by merging location data from Global Positioning System (GPS) receivers, laser tracking systems, and depths measured by the BB-ADCP. These techniques for collecting bathymetry data were used for documenting the channel formation downstream from the Miller City levee break and scour near two bridges on the Mississippi River.
Physical-biological coupling in spore dispersal of kelp forest macroalgae
NASA Astrophysics Data System (ADS)
Gaylord, Brian; Reed, Daniel C.; Washburn, Libe; Raimondi, Peter T.
2004-08-01
The physical-biological linkages controlling the dispersal of spores produced by macroalgae that reside in kelp forests are complicated and laced with feedbacks. Here we discuss the fundamental elements of these interactions. Biological considerations include spore swimming and sinking speeds, their periods of viability in the plankton, and the height of spore release above the seafloor, which together determine the durations over which spores can be swept by horizontal currents before they contact the seafloor. Morphologies and material properties of canopy forming kelps may also influence the drag exerted on passing waters by the kelps, the plants' ability to persist in the face of rapid flows, and thereby the degree to which impinging currents are redirected around, or slowed within, kelp forests. Macroalgal life histories, and the size of spore sources as controlled by the dimensions of kelp forests and the density and fecundity of individuals within them, influence effective dispersal distances as well. Physical considerations encompass the mean speed, direction, and timescales of variability of currents relative to spore suspension times, the interaction of surface gravity waves with currents in producing turbulence in the benthic boundary layer, wind-driven surface mixing, water stratification, and shoreline bathymetry and substratum roughness, all of which can affect the interplay of vertical and horizontal transport of macroalgal spores. Intricate within-forest processes may induce attenuation of current speeds and consequent reductions in seabed shear, along with simultaneous production of small-scale turbulence in kelp wakes. Slower mean currents and smaller eddy scales in turn may attenuate vertical mixing within forests, thus extending spore suspension times. Further complexities likely arise due to changes in the relative rates of horizontal and vertical dispersion, modifications to the overall profiles of vertical mixing, and the creation of fine-scale secondary flows around kelp individuals and substratum features. Under conditions of more rapid currents, submergence of the surface canopy and the establishment of skimming flows at the canopy-fluid interface may introduce additional coherent flow structures that alter rates of fluid exchange to and from the forest. Many of these coupled physical-biological processes are just beginning to be examined in a rigorous fashion in kelp forests, but their potential importance is clear.
Grinding technoloy of aspheric molds for glass-molding; Technical Digest
NASA Astrophysics Data System (ADS)
Kojima, Yoichi
2005-05-01
We introduce the method of precisely grinding of axis-symmetric aspherical glass-molding dies by using a diamond wheel. Those show how to select vertical-grinding or slant-grinding, how to grind molds with high accuracy and actual grinding results.
Inferring river properties with SWOT like data
NASA Astrophysics Data System (ADS)
Garambois, Pierre-André; Monnier, Jérôme; Roux, Hélène
2014-05-01
Inverse problems in hydraulics are still open questions such as the estimation of river discharges. Remotely sensed measurements of hydrosystems can provide valuable information but adequate methods are still required to exploit it. The future Surface Water and Ocean Topography (SWOT) mission would provide new cartographic measurements of inland water surfaces. The highlight of SWOT will be its almost global coverage and temporal revisits on the order of 1 to 4 times per 22 days repeat cycle [1]. Lots of studies have shown the possibility of retrieving discharge given the river bathymetry or roughness and/or in situ time series. The new challenge is to use SWOT type data to inverse the triplet formed by the roughness, the bathymetry and the discharge. The method presented here is composed of two steps: following an inverse formulation from [2], the first step consists in retrieving an equivalent bathymetry profile of a river given one in situ depth measurement and SWOT like data of the water surface, that is to say water elevation, free surface slope and width. From this equivalent bathymetry, the second step consists in solving mass and Manning equation in the least square sense [3]. Nevertheless, for cases where no in situ measurement of water depth is available, it is still possible to solve a system formed by mass and Manning equations in the least square sense (or with other methods such as Bayesian ones, see e.g. [4]). We show that a good a priori knowledge of bathymetry and roughness is compulsory for such methods. Depending on this a priori knowledge, the inversion of the triplet (roughness, bathymetry, discharge) in SWOT context was evaluated on the Garonne River [5, 6]. The results are presented on 80 km of the Garonne River downstream of Toulouse in France [7]. An equivalent bathymetry is retrieved with less than 10% relative error with SWOT like observations. After that, encouraging results are obtained with less than 10% relative error on the identified discharge. References [1] E. Rodriguez, SWOT science requirements document, JPL document, JPL, 2012. [2] A. Gessese, K. Wa, and M. Sellier, Bathymetry reconstruction based on the zero-inertia shallow water approximation, Theoretical and Computational Fluid Dynamics, vol. 27, no. 5, pp. 721-732, 2013. [3] P. A. Garambois and J. Monnier, Inference of river properties from remotly sensed observations of water surface, under final redaction for HESS, 2014. [4] M. Durand, Sacramento river airswot discharge estimation scenario. http://swotdawg.wordpress.com/2013/04/18/sacramento-river-airswot-discharge-estimation-scenario/, 2013. [5] P. A. Garambois and H. Roux, Garonne River discharge estimation. http://swotdawg.wordpress.com/2013/07/01/garonne-river-discharge-estimation/, 2013. [6] P. A. Garambois and H. Roux, Sensitivity of discharge uncertainty to measurement errors, case of the Garonne River. http://swotdawg.wordpress.com/2013/07/01/sensitivity-of-discharge-uncertainty-to-measurement-errors-case-of-the-garonne-river/, 2013. [7] H. Roux and P. A. Garambois, Tests of reach averaging and manning equation on the Garonne River. http://swotdawg.wordpress.com/2013/07/01/tests-of-reach-averaging-and-manning-equation-on-the-garonne-river/, 2013.
EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas
NASA Astrophysics Data System (ADS)
Schaap, Dick M. A.
2015-04-01
Access to marine data is a key issue for the implementation of the EU Marine Strategy Framework Directive (MSFD). The EU communication 'Marine Knowledge 2020' underpins the importance of data availability and harmonising access to marine data from different sources. The European Marine Observation and Data Network (EMODnet) is a long term marine data initiative from the European Commission Directorate-General for Maritime Affairs and Fisheries (DG MARE) underpinning the Marine Knowledge 2020 strategy. EMODnet is a consortium of organisations assembling European marine data, data products and metadata from diverse sources in a uniform way. The main purpose of EMODnet is to unlock fragmented and hidden marine data resources and to make these available to individuals and organisations (public and private), and to facilitate investment in sustainable coastal and offshore activities through improved access to quality-assured, standardised and harmonised marine data which are interoperable and free of restrictions on use. The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is in the 2nd phase of development with seven sub-portals in operation that provide access to marine data from the following themes: bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities. EMODnet development is a dynamic process so new data, products and functionality are added regularly while portals are continuesly improved to make the service more fit for purpose and user friendly with the help of users and stakeholders. The EMODnet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets, that are indexed with metadata by adopting the SeaDataNet Common Data Index (CDI) data discovery and access service and the SeaDataNet Sextant data products catalogue service. The new EMODnet DTM will have a resolution of 1/8 arcminute * 1/8 arcminute and will cover all European sea regions. Use is made of available and gathered surveys and already more than 10.000 surveys have been indexed by 24 European data providers and originating from more than 120 organisations. Also use is made of composite DTMs as generated and maintained by several data providers for their areas of interest. Already 44 composite DTMs are included in the Sextant data products catalogue. For areas without coverage use is made of the latest global DTM of GEBCO who is partner in the EMODnet Bathymetry project. In return GEBCO integrates the EMODnet DTM to achieve an enriched and better result. The catalogue services and the generated EMODnet can be queried and browsed at the dedicated EMODnet Bathymetry portal which also provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. Activities are underway for further refinement following user feedback. The EMODnet DTM is publicly available for downloading in various formats. The presentation will highlight key details of EMODnet Bathymetry project, its portal and views on the new EMODNet Digital Bathymetry for European seas as to be released early 2015.
NASA Astrophysics Data System (ADS)
Baylon, Jorge L.; Stremme, Wolfgang; Grutter, Michel; Hase, Frank; Blumenstock, Thomas
2017-07-01
In this investigation we analyze two common optical configurations to retrieve CO2 total column amounts from solar absorption infrared spectra. The noise errors using either a KBr or a CaF2 beam splitter, a main component of a Fourier transform infrared spectrometer (FTIR), are quantified in order to assess the relative precisions of the measurements. The configuration using a CaF2 beam splitter, as deployed by the instruments which contribute to the Total Carbon Column Observing Network (TCCON), shows a slightly better precision. However, we show that the precisions in XCO2 ( = 0.2095 ṡ Total Column CO2Total Column O2) retrieved from > 96 % of the spectra measured with a KBr beam splitter fall well below 0.2 %. A bias in XCO2 (KBr - CaF2) of +0.56 ± 0.25 ppm was found when using an independent data set as reference. This value, which corresponds to +0.14 ± 0.064 %, is slightly larger than the mean precisions obtained. A 3-year XCO2 time series from FTIR measurements at the high-altitude site of Altzomoni in central Mexico presents clear annual and diurnal cycles, and a trend of +2.2 ppm yr-1 could be determined.
NASA Astrophysics Data System (ADS)
Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.
2015-12-01
We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.
DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Wiese, Dana S.
2010-01-01
In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys east of Cat Island, Mississippi (fig. 1). The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and provide protection for the historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, surface images, and x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten FACS logs and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report or hold the cursor over an acronym for a pop-up explanation. The USGS St. Petersburg Coastal and Marine Science Center assigns a unique identifier to each cruise or field activity. For example, 10CCT01 tells us the data were collected in 2010 for the Coastal Change and Transport (CCT) study and the data were collected during the first field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. Data were collected using a 26-foot (ft) Glacier Bay Catamaran. Side scan sonar and interferometric swath bathymetry data were collected simultaneously along the tracklines. The side scan sonar towfish was towed off the port side just slightly behind the vessel, close to the seafloor. The interferometric swath transducer was sled-mounted on a rail attached between the catamaran hulls. During the survey the sled is secured into position. Navigation was acquired with a CodaOctopus Octopus F190 Precision Attitude and Positioning System and differentially corrected with OmniSTAR. See the digital FACS equipment log for details about the acquisition equipment used. Both raw datasets were stored digitally and processed using CARIS HIPS and SIPS software at the USGS St. Petersburg Coastal and Marine Science Center. For more information on processing refer to the Equipment and Processing page. Post-processing of the swath dataset revealed a motion artifact that is attributed to movement of the pole that the swath transducers are attached to in relation to the boat. The survey took place in the winter months, in which strong winds and rough waves contributed to a reduction in data quality. The rough seas contributed to both the movement of the pole and the very high noise base seen in the raw amplitude data of the side scan sonar. Chirp data were also collected during this survey and are archived separately.
NASA Astrophysics Data System (ADS)
Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Floor, Jochem
2010-05-01
Internal tides are suggested to play a major role in the sustaining of the global oceanic circulation [1][5]. Although the exact origin of the energy conversions occurring in stratified fluids is questioned [2], it is clear that the diapycnal energy transfers provided by the energy cascade of internal gravity waves generated at tidal frequencies in regions of steep bathymetry is strongly linked to the general circulation energy balance. Therefore a precise quantification of the energy supply by internal waves is a crucial step in forecasting climate, since it improves our understanding of the underlying physical processes. We focus on an academic case of internal waves generated over an oceanic ridge in a linearly stratified fluid. In order to accurately quantify the diapycnal energy transfers caused by internal waves dynamics, we adopt a complementary approach involving both laboratory and numerical experiments. The laboratory experiments are conducted in a 4m long tank of the CNRM-GAME fluid mechanics laboratory, well known for its large stratified water flume (e.g. Knigge et al [3]). The horizontal oscillation at precisely controlled frequency of a Gaussian ridge immersed in a linearly stratified fluid generates internal gravity waves. The ridge of e-folding width 3.6 cm is 10 cm high and spans 50 cm. We use PIV and Synthetic Schlieren measurement techniques, to retrieve the high resolution velocity and stratification anomaly fields in the 2D vertical plane across the ridge. These experiments allow us to get access to real and exhaustive measurements of a wide range of internal waves regimes by varying the precisely controlled experimental parameters. To complete this work, we carry out some direct numerical simulations with the same parameters (forcing amplitude and frequency, initial stratification, boundary conditions) as the laboratory experiments. The model used is a non-hydrostatic version of the numerical model Symphonie [4]. Our purpose is not only to test the dynamics and energetics of the numerical model, but also to advance the analysis based on combined wavelet and empirical orthogonal function. In particular, we focus on the study of the transient regime of internal wave generation near the ridge. Our analyses of the experimental fields show that, for fixed background stratification and topography, the evolution of the stratification anomaly strongly depends on the forcing frequency. The duration of the transient regime, as well as the amplitude reached in the stationary state vary significantly with the parameter ω/N (where ω is the forcing frequency, and N is the background Brunt-Väisälä frequency). We also observe that, for particular forcing frequencies, for which the ridge slope matches the critical slope of the first harmonic mode, internal waves are excited both at the fundamental and the first harmonic frequency. Associated energy transfers are finally evaluated both experimentally and numerically, enabling us to highlight the similarities and discrepancies between the laboratory experiments and the numerical simulations. References [1] Munk W. and C. Wunsch (1998): Abyssal recipes II: energetics of tidal and wind mixing Deep-Sea Res. 45, 1977-2010 [2] Tailleux R. (2009): On the energetics of stratified turbulent mixing, irreversible thermodynamics, Boussinesq models and the ocean heat engine controversy, J. Fluid Mech. 638, 339-382 [3] Knigge C., D. Etling, A. Paci and O. Eiff (2010): Laboratory experiments on mountain-induced rotors, Quarterly Journal of the Royal Meteorological Society, in press. [4] Auclair F., C. Estournel, J. Floor, C. N'Guyen and P. Marsaleix, (2009): A non-hydrostatic, energy conserving algorithm for regional ocean modelling. Under revision. [5] Wunsch, C. & R. Ferrari (2004): Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36:281-314.
Nearshore Measurements From a Small UAV.
NASA Astrophysics Data System (ADS)
Holman, R. A.; Brodie, K. L.; Spore, N.
2016-02-01
Traditional measurements of nearshore hydrodynamics and evolving bathymetry are expensive and dangerous and must be frequently repeated to track the rapid changes of typical ocean beaches. However, extensive research into remote sensing methods using cameras or radars mounted on fixed towers has resulted in increasingly mature algorithms for estimating bathymetry, currents and wave characteristics. This naturally raises questions about how easily and effectively these algorithms can be applied to optical data from low-cost, easily-available UAV platforms. This paper will address the characteristics and quality of data taken from a small, low-cost UAV, the DJI Phantom. In particular, we will study the stability of imagery from a vehicle `parked' at 300 feet altitude, methods to stabilize remaining wander, and the quality of nearshore bathymetry estimates from the resulting image time series, computed using the cBathy algorithm. Estimates will be compared to ground truth surveys collected at the Field Research Facility at Duck, NC.
Seals map bathymetry of the Antarctic continental shelf
NASA Astrophysics Data System (ADS)
Padman, Laurie; Costa, Daniel P.; Bolmer, S. Thompson; Goebel, Michael E.; Huckstadt, Luis A.; Jenkins, Adrian; McDonald, Birgitte I.; Shoosmith, Deborah R.
2010-11-01
We demonstrate the first use of marine mammal dive-depth data to improve maps of bathymetry in poorly sampled regions of the continental shelf. A group of 57 instrumented elephant seals made on the order of 2 × 105 dives over and near the continental shelf on the western side of the Antarctic Peninsula during five seasons, 2005-2009. Maximum dive depth exceeded 2000 m. For dives made near existing ship tracks with measured water depths H<700 m, ˜30% of dive depths were to the seabed, consistent with expected benthic foraging behavior. By identifying the deepest of multiple dives within small areas as a dive to the seabed, we have developed a map of seal-derived bathymetry. Our map fills in several regions for which trackline data are sparse, significantly improving delineation of troughs crossing the continental shelf of the southern Bellingshausen Sea.
Model-based adaptive 3D sonar reconstruction in reverberating environments.
Saucan, Augustin-Alexandru; Sintes, Christophe; Chonavel, Thierry; Caillec, Jean-Marc Le
2015-10-01
In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1974-01-01
A study was conducted of an alternate method for storage and use of bathymetry data in the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave-refraction computer program. The regional bathymetry array was divided into 105 indexed modules which can be read individually into memory in a nonsequential manner from a peripheral file using special random-access subroutines. In running a sample refraction case, a 75-percent decrease in program field length was achieved by using the random-access storage method in comparison with the conventional method of total regional array storage. This field-length decrease was accompanied by a comparative 5-percent increase in central processing time and a 477-percent increase in the number of operating-system calls. A comparative Langley Research Center computer system cost savings of 68 percent was achieved by using the random-access storage method.
NASA Astrophysics Data System (ADS)
Ochałek, Agnieszka; Lipecki, Tomasz; Jaśkowski, Wojciech; Jabłoński, Mateusz
2018-03-01
The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements - an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.
Bathymetry and Acoustic Backscatter: Northern Santa Barbara Channel, Southern California
Dartnell, Pete; Finlayson, David; Conrad, Jamie; Cochrane, Guy; Johnson, Samuel
2010-01-01
In the summer of 2008, as part of the California Seafloor Mapping Program (CSMP) the U.S. Geological Survey, Coastal and Marine Geology mapped a nearshore region of the northern Santa Barbara Channel in Southern California (fig 1). The CSMP is a cooperative partnership between Federal and State agencies, Universities, and Industry to create a comprehensive coastal/marine geologic and habitat basemap series to support the Marine Life Protection Act (MLPA) inititive. The program is supported by the California Ocean Protection Council and the California Coastal Conservancy. The 2008 mapping collected high resolution bathymetry and acoustic backscatter data using a bathymetric side scan system within State waters from about the 10-m isobath out over 3-nautical miles. This Open-File Report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and FGDC metadata.
NASA/Cousteau ocean bathymetry experiment. Remote bathymetry using high gain LANDSAT data
NASA Technical Reports Server (NTRS)
Polcyn, F. C.
1976-01-01
Satellite remote bathymetry was varified to 22 m depths where water clarity was defined by alpha = .058 1/m and bottom reflection, r(b), was 26%. High gain band 4 and band 5 CCT data from LANDSAT 1 was used for a test site in the Bahama Islands and near Florida. Near Florida where alpha = .11 1/m and r(b) = 20%, depths to 10 m were verified. Depth accuracies within 10% rms were achieved. Position accuracies within one LANDSAT pixel were obtained by reference to the Transit navigation satellites. The Calypso and the Beayondan, two ships, were at anchor on each of the seven days during LANDSAT 1 and 2 overpasses: LORAN C position information was used when the ships were underway making depth transects. Results are expected to be useful for updating charts showing shoals hazardous to navigation or in monitoring changes in nearshore topography.
COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets
NASA Technical Reports Server (NTRS)
Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego;
2017-01-01
The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.
NASA Astrophysics Data System (ADS)
Nottrott, A.; Hoffnagle, J.; Farinas, A.; Rella, C.
2014-12-01
Carbon monoxide (CO) is an urban pollutant generated by internal combustion engines which contributes to the formation of ground level ozone (smog). CO is also an excellent tracer for emissions from mobile combustion sources. In this work we present an optimized spectroscopic sampling scheme that enables enhanced precision CO measurements. The scheme was implemented on the Picarro G2401 Cavity Ring-Down Spectroscopy (CRDS) analyzer which measures CO2, CO, CH4 and H2O at 0.2 Hz. The optimized scheme improved the raw precision of CO measurements by 40% from 5 ppb to 3 ppb. Correlations of measured CO2, CO, CH4 and H2O from an urban tower were partitioned by wind direction and combined with a concentration footprint model for source attribution. The application of a concentration footprint for source attribution has several advantages. The upwind extent of the concentration footprint for a given sensor is much larger than the flux footprint. Measurements of mean concentration at the sensor location can be used to estimate source strength from a concentration footprint, while measurements of the vertical concentration flux are necessary to determine source strength from the flux footprint. Direct measurement of vertical concentration flux requires high frequency temporal sampling and increases the cost and complexity of the measurement system.
Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control.
Chen, Qiushu; Liu, Huajie; Lee, Wonsuk; Sun, Yuze; Zhu, Dan; Pei, Hao; Fan, Chunhai; Fan, Xudong
2013-09-07
We have applied self-assembled DNA tetrahedral nanostructures for the precise and tunable control of the gain in an optofluidic fluorescence resonance energy transfer (FRET) laser. By adjusting the ratio of the donor and the acceptor attached to the tetrahedral vertices, 3.8 times reduction in the lasing threshold and 28-fold enhancement in the lasing efficiency were demonstrated. This work takes advantage of the self-recognition and self-assembly capabilities of biomolecules with well-defined structures and addressability, enabling nano-engineering of the laser down to the molecular level.
Precise Relative Earthquake Magnitudes from Cross Correlation
Cleveland, K. Michael; Ammon, Charles J.
2015-04-21
We present a method to estimate precise relative magnitudes using cross correlation of seismic waveforms. Our method incorporates the intercorrelation of all events in a group of earthquakes, as opposed to individual event pairings relative to a reference event. This method works well when a reliable reference event does not exist. We illustrate the method using vertical strike-slip earthquakes located in the northeast Pacific and Panama fracture zone regions. Our results are generally consistent with the Global Centroid Moment Tensor catalog, which we use to establish a baseline for the relative event sizes.
NASA Technical Reports Server (NTRS)
Elansky, Nikolay F.; Kadyshevich, Elena A.; Savastyuk, Vladimir V.
1994-01-01
The degree of polarization of skylight at the zenith during twilight depends on the aerosol content in the atmosphere. The long-term observations at the high-mountain research station 'Kislovodsk' (North Caucasus) have shown that the variation of the degree of polarization after the eruption of the El Chichon volcano can serve as the effective parameter characterizing the vertical aerosol stratification in the atmosphere. The results of the measurements are confirmed by the numerical calculations. The algorithm of the retrieval of the vertical aerosol distribution on the base of the measurements of the degree of polarization is proposed. This method can be applied for the increasing of the precision of O3, NO2, and other gas content measurements.
Sidewall patterning—a new wafer-scale method for accurate patterning of vertical silicon structures
NASA Astrophysics Data System (ADS)
Westerik, P. J.; Vijselaar, W. J. C.; Berenschot, J. W.; Tas, N. R.; Huskens, J.; Gardeniers, J. G. E.
2018-01-01
For the definition of wafer scale micro- and nanostructures, in-plane geometry is usually controlled by optical lithography. However, options for precisely patterning structures in the out-of-plane direction are much more limited. In this paper we present a versatile self-aligned technique that allows for reproducible sub-micrometer resolution local modification along vertical silicon sidewalls. Instead of optical lithography, this method makes smart use of inclined ion beam etching to selectively etch the top parts of structures, and controlled retraction of a conformal layer to define a hard mask in the vertical direction. The top, bottom or middle part of a structure could be selectively exposed, and it was shown that these exposed regions can, for example, be selectively covered with a catalyst, doped, or structured further.
Application of Satellite Based Augmentation Systems to Altitude Separation
NASA Astrophysics Data System (ADS)
Magny, Jean Pierre
This paper presents the application of GNSS1, or more precisely of Satellite Based Augmentation Systems (SBAS), to vertical separation for en-route, approach and landing operations. Potential improvements in terms of operational benefit and of safety are described for two main applications. First, vertical separation between en-route aircraft, which requires a system available across wide areas. SBAS (EGNOS, WAAS, and MSAS) are very well suited for this purpose before GNSS2 becomes available. And secondly, vertical separation from the ground during approach and landing, for which preliminary design principles of instrument approach procedures and safety issues are presented. Approach and landing phases are the subject of discussions within ICAO GNSS-P. En-route phases have been listed as GNSS-P future work and by RTCA for development of new equipments.
Tolstoy, Maya
2016-07-15
Olive et al (Reports, 16 October 2015, p. 310) and Goff (Technical Comment, 4 September 2015, p. 1065) raise important concerns with respect to recent findings of Milankovitch cycles in seafloor bathymetry. However, their results inherently support that the Southern East Pacific Rise is the optimum place to look for such signals and, in fact, models match those observations quite closely. Copyright © 2016, American Association for the Advancement of Science.
A new method for weakening the combined effect of residual errors on multibeam bathymetric data
NASA Astrophysics Data System (ADS)
Zhao, Jianhu; Yan, Jun; Zhang, Hongmei; Zhang, Yuqing; Wang, Aixue
2014-12-01
Multibeam bathymetric system (MBS) has been widely applied in the marine surveying for providing high-resolution seabed topography. However, some factors degrade the precision of bathymetry, including the sound velocity, the vessel attitude, the misalignment angle of the transducer and so on. Although these factors have been corrected strictly in bathymetric data processing, the final bathymetric result is still affected by their residual errors. In deep water, the result usually cannot meet the requirements of high-precision seabed topography. The combined effect of these residual errors is systematic, and it's difficult to separate and weaken the effect using traditional single-error correction methods. Therefore, the paper puts forward a new method for weakening the effect of residual errors based on the frequency-spectrum characteristics of seabed topography and multibeam bathymetric data. Four steps, namely the separation of the low-frequency and the high-frequency part of bathymetric data, the reconstruction of the trend of actual seabed topography, the merging of the actual trend and the extracted microtopography, and the accuracy evaluation, are involved in the method. Experiment results prove that the proposed method could weaken the combined effect of residual errors on multibeam bathymetric data and efficiently improve the accuracy of the final post-processing results. We suggest that the method should be widely applied to MBS data processing in deep water.
NASA Astrophysics Data System (ADS)
Brandsdottir, B.; Magnusdottir, S.; Karson, J. A.; Detrick, R. S.; Driscoll, N. W.
2015-12-01
The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ), located on the coast and offshore Northern Iceland, is a complex transform linking the northern rift zone (NVZ) on land with the Kolbeinsey Ridge offshore. Extension across TFZ is partitioned across three N-S trending rift basins; Eyjafjarðaráll, Skjálfandadjúp (SB) and Öxarfjörður and three WNW-NW oriented seismic lineaments; the Grímsey Oblique Rift, Húsavík-Flatey Faults (HFFs) and Dalvík Lineament. We compile the tectonic framework of the TFZ ridge-transform from aerial photos, satellite images, multibeam bathymetry and high-resolution seismic reflection data (Chirp). The rift basins are made up of normal faults with vertical displacements of up to 50-60 m, and post-glacial sediments of variable thickness. The SB comprises N5°W obliquely trending, eastward dipping normal faults as well as N10°E striking, westward dipping faults oriented roughly perpendicular to the N104°E spreading direction, indicative of early stages of rifting. Correlation of Chirp reflection data and tephrachronology from a sediment core within SB reveal major rifting episodes between 10-12.1 kyrs BP activating the whole basin, followed by smaller-scale fault movements throughout Holocene. Onshore faults have the same orientations as those mapped offshore and provide a basis for the interpretation of the kinematics of the faults throughout the region. These include transform parallel right-lateral, strike-slip faults separating domains dominated by spreading parallel left-lateral bookshelf faults. Shearing is most prominent along the HFFs, a system of right-lateral strike-slip faults with vertical displacement up to 15 m. Vertical fault movements reflect increased tectonic activity during early postglacial time coinciding with isostatic rebound enhancing volcanism within Iceland.
Model simulations of dense bottom currents in the Western Baltic Sea
NASA Astrophysics Data System (ADS)
Burchard, Hans; Janssen, Frank; Bolding, Karsten; Umlauf, Lars; Rennau, Hannes
2009-01-01
Only recently, medium intensity inflow events into the Baltic Sea have gained more awareness because of their potential to ventilate intermediate layers in the Southern Baltic Sea basins. With the present high-resolution model study of the Western Baltic Sea a first attempt is made to obtain model based realistic estimates of turbulent mixing in this area where dense bottom currents resulting from medium intensity inflow events are weakened by turbulent entrainment. The numerical model simulation which is carried out using the General Estuarine Transport Model (GETM) during nine months in 2003 and 2004 is first validated by means of three automatic stations at the Drogden and Darss Sills and in the Arkona Sea. In order to obtain good agreement between observations and model results, the 0.5×0.5 nautical mile bathymetry had to be adjusted in order to account for the fact that even at that scale many relevant topographic features are not resolved. Current velocity, salinity and turbulence observations during a medium intensity inflow event through the Øresund are then compared to the model results. Given the general problems of point to point comparisons between observations and model simulations, the agreement is fairly good with the characteristic features of the inflow event well represented by the model simulations. Two different bulk measures for mixing activity are then introduced, the vertically integrated decay of salinity variance, which is equal to the production of micro-scale salinity variance, and the vertically integrated turbulent salt flux, which is related to an increase of potential energy due to vertical mixing of stably stratified flow. Both measures give qualitatively similar results and identify the Drogden and Darss Sills as well as the Bornholm Channel as mixing hot spots. Further regions of strong mixing are the dense bottom current pathways from these sills into the Arkona Sea, areas around Kriegers Flak (a shoal in the western Arkona Sea) and north-west of the island of Rügen.
Precision Antenna Measurement System (PAMS) Engineering Services
1978-04-01
8217) = receiving antenna gain for vertical polarization. The total direct signal power is Following Beck /narn and Spizzachino , the specular component...method may be valid for the problem. Very often, however, the physical optics 92 approach baaed on a solution of the wave equation will have to
Time synchronization and geoacoustic inversion using baleen whale sounds
NASA Astrophysics Data System (ADS)
Thode, Aaron; Gerstoft, Peter; Stokes, Dale; Noad, Mike; Burgess, William; Cato, Doug
2005-09-01
In 1996 matched-field processing (MFP) and geoacoustic inversion methods were used to invert for range, depth, and source levels of blue whale vocalizations. [A. M. Thode, G. L. D'Spain, and W. A. Kuperman, J. Acoust. Soc. Am. 107, 1286-1300 (2000)]. Humpback whales also produce broadband sequences of sounds that contain significant energy between 50 Hz to over 1 kHz. In Oct. 2003 and 2004 samples of humpback whale song were collected on vertical and titled arrays in 24-m-deep water in conjunction with the Humpback Acoustic Research Collaboration (HARC). The arrays consisted of autonomous recorders attached to a rope, and were time synchronized by extending standard geoacoustic inversion methods to invert for clock offset as well as whale location. The diffuse ambient noise background field was then used to correct for subsequent clock drift. Independent measurements of the local bathymetry and transmission loss were also obtained in the area. Preliminary results are presented for geoacoustic inversions of the ocean floor composition and humpback whale locations and source levels. [Work supported by ONR Ocean Acoustic Entry Level Faculty Award and Marine Mammals Program.
Nelson, Jonathan M.; Kinzel, Paul J.; Schmeeckle, Mark Walter; McDonald, Richard R.; Minear, Justin T.
2016-01-01
Noncontact methods for measuring water-surface elevation and velocity in laboratory flumes and rivers are presented with examples. Water-surface elevations are measured using an array of acoustic transducers in the laboratory and using laser scanning in field situations. Water-surface velocities are based on using particle image velocimetry or other machine vision techniques on infrared video of the water surface. Using spatial and temporal averaging, results from these methods provide information that can be used to develop estimates of discharge for flows over known bathymetry. Making such estimates requires relating water-surface velocities to vertically averaged velocities; the methods here use standard relations. To examine where these relations break down, laboratory data for flows over simple bumps of three amplitudes are evaluated. As anticipated, discharges determined from surface information can have large errors where nonhydrostatic effects are large. In addition to investigating and characterizing this potential error in estimating discharge, a simple method for correction of the issue is presented. With a simple correction based on bed gradient along the flow direction, remotely sensed estimates of discharge appear to be viable.
Method and apparatus for setting precise nozzle/belt and nozzle/edge dam block gaps
Carmichael, Robert J.; Dykes, Charles D.; Woodrow, Ronald
1989-05-16
A pair of guide pins are mounted on sideplate extensions of the caster and mating roller pairs are mounted on the nozzle assembly. The nozzle is advanced toward the caster so that the roller pairs engage the guide pins. Both guide pins are remotely adjustable in the vertical direction by hydraulic cylinders acting through eccentrics. This moves the nozzle vertically. The guide pin on the inboard side of the caster is similarly horizontally adjustable. The nozzle roller pair which engage the inboard guide pin are flanged so that the nozzle moves horizontally with the inboard guide pin.
NASA Astrophysics Data System (ADS)
Shintaku, N.; Weeraratne, D. S.; Kohler, M. D.
2010-12-01
Although the North America side of the plate boundary surrounding the southern California San Andreas fault region is well studied and instrumented, the Pacific side of this active tectonic boundary is poorly understood. In order to better understand this complex plate boundary offshore, its microplate structures, deformation, and the California Borderland formation, we have recently conducted the first stage of a marine seismic experiment (ALBACORE - Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deploying 34 ocean bottom seismometers offshore southern California in August 2010. We present preliminary data consisting of seafloor bathymetry and free air gravity collected from this experiment. We present high-resolution maps of bathymetry and gravity from the ALBACORE experiment compiled with previous ship track data obtained from the NGDC (National Geophysical Data Center) and the USGS. We use gravity data from Smith and Sandwell and study correlations with ship track bathymetry data for the features described below. We observe new seafloor geomorphological features far offshore and within the Borderland. Steep canyon walls which line the edges of the Murray fracture zone with possible volcanic flows along the canyon floor were mapped by multibeam bathymetry for the first time. Deep crevices juxtaposed with high edifices of intensely deformed plateaus indicate high strain deformation along the arcuate boundary of the Arguello microplate. Small volcanic seamounts are mapped which straddle the Ferrelo fault (Outer Borderland) and San Pedro fault (Inner Borderland), and appear to exhibit fracture and fault displacement of a portion of the volcanic centers in a left-lateral sense. A large landslide is also imaged extending approximately 6 miles in length and 3 miles in width in the Santa Cruz basin directly south of Santa Rosa Island. Deformation associated with capture of Arguello and Patton microplates by the Pacific plate is studied as well as deformation surrounding the Murray fracture zone near the California shore. Faults in the Borderland identified by improved sea floor mapping may indicate offshore earthquake sources.
Surf zone characterization from Unmanned Aerial Vehicle imagery
NASA Astrophysics Data System (ADS)
Holman, Rob A.; Holland, K. Todd; Lalejini, Dave M.; Spansel, Steven D.
2011-11-01
We investigate the issues and methods for estimating nearshore bathymetry based on wave celerity measurements obtained using time series imagery from small unmanned aircraft systems (SUAS). In contrast to time series imagery from fixed cameras or from larger aircraft, SUAS data are usually short, gappy in time, and unsteady in aim in high frequency ways that are not reflected by the filtered navigation metadata. These issues were first investigated using fixed camera proxy data that have been intentionally degraded to mimic these problems. It has been found that records as short as 50 s or less can yield good bathymetry results. Gaps in records associated with inadvertent look-away during unsteady flight would normally prevent use of the required standard Fast Fourier Transform methods. However, we found that a full Fourier Transform could be implemented on the remaining valid record segments and was effective if at least 50% of total record length remained intact. Errors in image geo-navigation were stabilized based on fixed ground fiducials within a required land portion of the image. The elements of a future method that could remove this requirement were then outlined. Two test SUAS data runs were analyzed and compared to survey ground truth data. A 54-s data run at Eglin Air Force Base on the Gulf of Mexico yielded a good bathymetry product that compared well with survey data (standard deviation of 0.51 m in depths ranging from 0 to 4 m). A shorter (30.5 s) record from Silver Strand Beach (near Coronado) on the US west coast provided a good approximation of the surveyed bathymetry but was excessively deep offshore and had larger errors (1.19 m for true depths ranging from 0 to 6 m), consistent with the short record length. Seventy-three percent of the bathymetry estimates lay within 1 m of the truth for most of the nearshore.
On the sensitivity of the global ocean circulation to reconstructions of paleo-bathymetry
NASA Astrophysics Data System (ADS)
Weber, Tobias; Thomas, Maik
2013-04-01
The ability to model the long-term evolution of the climate does considerably depend on the accuracy of ocean models and their interaction with the atmosphere. Thereby, the ocean model's behavior with respect to uncertain and changing boundary conditions is of crucial importance. One of the remaining questions is, how different reconstructions of the ocean floor influence the model. Although of general interest, this effect has mostly been neglected, so far. We modeled Pliocene and pre-industrial ocean currents with the Max-Planck-Institute Ocean Model (MPIOM), forced by climatologies derived from an atmospheric and vegetational Global Circulation Model (GCM). We equipped it with different reconstructions of the bathymetry, what allowed us to study the model's sensitivity regarding changes in bathymetry. On the one hand we examined the influence of reconstructions with different locations of major ridges, but the same treatment of the shelf. On the other hand, reconstruction techniques that treated the shelf areas differently were taken into consideration. This leads to different oceanic circulation realizations, which induce changes in deep ocean temperature and salinity. Some of the simulations result in unrealistic behavior, such as an increase in surface temperature by several degrees. Most important, small bathymetric changes in the areas of deep water formation near Greenland and the Antarctic alter the thermohaline circulation strongly. This leads to its complete cessation in some of the simulations and therefore to stationary deep laying ocean masses. This shows that not all bathymetric reconstruction sequences are applicable for the generation of boundary conditions for GCMs. In order to obtain reliable and physically realistic data from the models, the reconstruction method to be used for the paleo-bathymetry also needs to be applied to the present day bathymetry. This reconstruction can then be used in a control simulation which can be validated against measurements. Hereby systematic errors introduced by the reconstruction technique are identified.
GIS Tool for Real-time Decision Making and Analysis of Multidisciplinary Cryosphere Datasets.
NASA Astrophysics Data System (ADS)
Roberts, S. D.; Moore, J. A.
2004-12-01
In support of the Western Arctic Shelf-Basin Interaction Project(SBI) a web-based interactive mapping server was installed on the USCGC Healy's on-board science computer network during its 2004 spring(HLY-04-02) and summer cruises (HLY-04-03) in the Chukchi and Beaufort Seas. SBI is a National Science Foundation sponsored multi-year and multidisciplinary project studying the biological productivity in the region. The mapping server was developed by the UCAR Joint Office of Science Support(JOSS) using OpenSource GIS tools(University of Minnesota Mapserver and USGS MapSurfer). Additional OpenSource tools such as GMT and MB-Systems were also utilized. The key layers in this system are the current ship track, station locations, multibeam bottom bathymetry, IBCAO bathymetry, DMSP satellite imagery , NOAA AVHRR Sea Surface temperature and all past SBI Project ship tracks and station locations. The ship track and multibeam layers are updated in real-time and the satellite layers are updated daily only during clear weather. In addition to using current high resolution multibeam bathymetry data, a composite high resolution bathymetry layer was created using multibeam data from past cruises in the SBI region. The server provides click-and-drag zooms, pan, feature query, distance measure and lat/lon/depth querys on a polar projection map of the arctic ocean. The main use of the system on the ship was for cruise track and station position planning by the scientists utilizing all available historical data and high resolution bathymetry. It was also the main source of information to all the scientist on board as to the cruise progress and plans. The system permitted on-board scientists to integrate historical cruise information for comparative purposes. A mirror web site was set up on land and the current ship track/station information was copied once a day to this site via a satellite link so people interested SBI research could follow the cruise progress.
COBALT CoOperative Blending of Autonomous Landing Technology
NASA Technical Reports Server (NTRS)
Carson, John M. III; Restrepo, Carolina I.; Robertson, Edward A.; Seubert, Carl R.; Amzajerdian, Farzin
2016-01-01
COBALT is a terrestrial test platform for development and maturation of GN&C (Guidance, Navigation and Control) technologies for PL&HA (Precision Landing and Hazard Avoidance). The project is developing a third generation, Langley Navigation Doppler Lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the JPL Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. These technologies together provide navigation that enables controlled precision landing. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive Vertical Test Bed (VTB) developed by Masten Space Systems (MSS), and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active).
Geomorphic Thresholds of Submarine Canyons Along the U.S. Atlantic Continental Margin
NASA Astrophysics Data System (ADS)
Brothers, D. S.; ten Brink, U. S.; Andrews, B. D.; Chaytor, J. D.
2011-12-01
Vast networks of submarine canyons and associated channels are incised into the U.S. Atlantic continental slope and rise. Submarine canyons form by differential erosion and deposition, primarily from sedimentary turbidity flows. Theoretical and laboratory studies have investigated the initiation of turbidity flows and their capacity to erode and entrain sedimentary material at distances far from the shelf edge. The results have helped understand the nature of turbidite deposits on the continental slope and rise. Nevertheless, few studies have examined the linkages between down-canyon sediment transport and the morphology of canyon/channel networks using mesoscale analyses of swath bathymetry data. We present quantitative analysis of 100-m resolution multibeam bathymetry data spanning ~616,000 km2 of the slope and rise between Georges Banks and the Blake Plateau (New England to North Carolina). Canyons are categorized as shelf-indenting or slope-confined based on spatial scale, vertical relief and connection with terrestrial river systems during sea level low stands. Shelf-indenting canyons usually represent the trunk-canyon of submerged channel networks. On the rise, shelf-indenting canyons have relatively well-developed channel-levees and sharp inner-thalwag incision suggesting much higher frequency and volume of turbidity flows. Because of the similarities between submarine canyon networks and terrestrial river systems, we apply methods originally developed to study fluvial morphology. Along-canyon profiles are extracted from the bathymetry data and the power-law relationship between thalwag gradient and drainage area is examined for more than 180 canyons along an ~1200 km stretch of the US Atlantic margin. We observe distinct thresholds in the power-law relationship between drainage area and gradient. Almost all canyons with heads on the upper slope contain at least two linear segments when plotted in log-log form. The first segment along the upper slope is flat (constant gradient, low area). The second segment dips (exponentially decreasing gradient with increasing area). We interpret the transition between the two segments to be either diffusive creep/landslide processes that evolve into turbidity flows or the boundary that separates up-canyon infilling from relic, lower-canyon incision. Furthermore, the threshold occurs at a nearly constant drainage area regardless of location and morphology of the drainage network. This suggests that time-averaged erosion rate in submarine canyons depends on frequency of turbidity flows, which in turn depends on the volume of unstable sediments deposited near canyon heads and along canyon walls. We find that the gradient-area relationship does not follow a power-law in shelf-indenting canyons, most likely due to allogenic processes of the continental shelf and linkage to terrestrial river discharge.
Mechanical stability of a microscope setup working at a few kelvins for single-molecule localization
NASA Astrophysics Data System (ADS)
Hinohara, Takuya; Hamada, Yuki I.; Nakamura, Ippei; Matsushita, Michio; Fujiyoshi, Satoru
2013-06-01
A great advantage of single-molecule fluorescence imaging is the localization precision of molecule beyond the diffraction limit. Although longer signal-acquisition yields higher precision, acquisition time at room temperature is normally limited by photobleaching, thermal diffusion, and so on. At low temperature of a few kelvins, much longer acquisition is possible and will improve precision if the sample and the objective are held stably enough. The present work examined holding stability of the sample and objective at 1.5 K in superfluid helium in the helium bath. The stability was evaluated by localization precision of a point scattering source of a polymer bead. Scattered light was collected by the objective, and imaged by a home-built rigid imaging unit. The standard deviation of the centroid position determined for 800 images taken continuously in 17 min was 0.5 nm in the horizontal and 0.9 nm in the vertical directions.
TES/Aura L2 Atmospheric Temperatures Nadir V6 (TL2ATMTN)
Atmospheric Science Data Center
2018-01-18
TES/Aura L2 Atmospheric Temperatures Nadir (TL2ATMTN) News: TES News ... Level: L2 Platform: TES/Aura L2 Atmospheric Temperatures Spatial Coverage: 5.3 x 8.5 km nadir ... Contact User Services Parameters: Atmospheric Temperature Temperature Precision Vertical Resolution ...
TES/Aura L2 Atmospheric Temperatures Limb V6 (TL2TLS)
Atmospheric Science Data Center
2018-03-01
TES/Aura L2 Atmospheric Temperatures Limb (TL2TLS) News: TES News ... Level: L2 Platform: TES/Aura L2 Atmospheric Temperatures Spatial Coverage: 27 x 23 km Limb ... OPeNDAP Access: OPeNDAP Parameters: Atmospheric Temperature Temperature Precision Vertical Resolution ...
TES/Aura L2 Atmospheric Temperatures Limb V6 (TL2ATMTL)
Atmospheric Science Data Center
2018-03-01
TES/Aura L2 Atmospheric Temperatures Limb (TL2ATMTL) News: TES News ... Level: L2 Platform: TES/Aura L2 Atmospheric Temperatures Spatial Coverage: 27 x 23 km Limb ... OPeNDAP Access: OPeNDAP Parameters: Atmospheric Temperature Temperature Precision Vertical Resolution ...
NASA Technical Reports Server (NTRS)
Horne, A. P.
1966-01-01
Parallel horizontal line raster is used for precision timing of events occurring less than 500 microseconds apart for observation of hypervelocity phenomena. The raster uses a staircase vertical deflection and eliminates ambiguities in reading timing of pulses close to the end of each line.
46 CFR 28.535 - Inclining test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... section, each vessel for which the lightweight displacement and centers of gravity must be determined in... of the vessel which was inclined and the location of the longitudinal center of gravity differs less... characteristics can be made and the precise location of the position of the vessel's vertical center of gravity is...
46 CFR 28.535 - Inclining test.
Code of Federal Regulations, 2013 CFR
2013-10-01
... section, each vessel for which the lightweight displacement and centers of gravity must be determined in... of the vessel which was inclined and the location of the longitudinal center of gravity differs less... characteristics can be made and the precise location of the position of the vessel's vertical center of gravity is...
46 CFR 28.535 - Inclining test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... section, each vessel for which the lightweight displacement and centers of gravity must be determined in... of the vessel which was inclined and the location of the longitudinal center of gravity differs less... characteristics can be made and the precise location of the position of the vessel's vertical center of gravity is...
Nonequilibrium Synthesis of Highly Porous Single-Crystalline Oxide Nanostructures
Lee, Dongkyu; Gao, Xiang; Fan, Lisha; ...
2017-01-20
A novel synthesis route to the formation of vertically aligned single–crystalline oxide nanostructures is found by precisely controlling the nonequilibrium pulsed laser deposition process. Here, the columnar nanostructures with deep crevices offering a large surface area are generated owing to the diffusion limited geometric shadowing effect.
A demonstration of high precision GPS orbit determination for geodetic applications
NASA Technical Reports Server (NTRS)
Lichten, S. M.; Border, J. S.
1987-01-01
High precision orbit determination of Global Positioning System (GPS) satellites is a key requirement for GPS-based precise geodetic measurements and precise low-earth orbiter tracking, currently under study at JPL. Different strategies for orbit determination have been explored at JPL with data from a 1985 GPS field experiment. The most successful strategy uses multi-day arcs for orbit determination and includes fine tuning of spacecraft solar pressure coefficients and station zenith tropospheric delays using the GPS data. Average rms orbit repeatability values for 5 of the GPS satellites are 1.0, 1.2, and 1.7 m in altitude, cross-track, and down-track componenets when two independent 5-day fits are compared. Orbit predictions up to 24 hours outside the multi-day arcs agree within 4 m of independent solutions obtained with well tracked satellites in the prediction interval. Baseline repeatability improves with multi-day as compared to single-day arc orbit solutions. When tropospheric delay fluctuations are modeled with process noise, significant additional improvement in baseline repeatability is achieved. For a 246-km baseline, with 6-day arc solutions for GPS orbits, baseline repeatability is 2 parts in 100 million (0.4-0.6 cm) for east, north, and length components and 8 parts in 100 million for the vertical component. For 1314 and 1509 km baselines with the same orbits, baseline repeatability is 2 parts in 100 million for the north components (2-3 cm) and 4 parts in 100 million or better for east, length, and vertical components.
The system design and performance test of hybrid vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Dwiyantoro, Bambang Arip; Suphandani, Vivien
2017-04-01
Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.
Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak
NASA Astrophysics Data System (ADS)
Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team
2017-10-01
A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.
NASA Astrophysics Data System (ADS)
O'Boyle, Louise; Whittaker, Trevor; Cox, Ronadh; Elsäßer, Björn
2017-04-01
During the winter of 2013-2014 the west coast of Ireland was exposed to 6 storms over a period of 8 weeks with wind speeds equating to hurricane categories 3 and 4. During this period, the largest significant wave height recorded at the Marine Institute M6 wave buoy, approximately 300km from the site, was 13.6m (on 26th January 2014). However, this may not be the largest sea state of that winter, because the buoy stopped logging on 30th January and therefore failed to capture the full winter period. During the February 12th 2014 "Darwin" storm, the Kinsale Energy Gas Platform off Ireland's south coast measured a wave height of 25 m, which remains the highest wave measured off Ireland's coasts[1]. Following these storms, significant dislocation and transportation of boulders and megagravel was observed on the Aran Islands, Co. Galway at elevations of up to 25m above the high water mark and distances up to 220 m inland including numerous clasts with masses >50t, and at least one megagravel block weighing >500t [2]. Clast movements of this magnitude would not have been predicted from the measured wave heights. This highlights a significant gap in our understanding of the relationships between storms and the coastal environment: how are storm waves amplified and modified by interactions with bathymetry? To gain further understanding of wave amplification, especially over steep and irregular bathymetry, we have designed Froude-scaled wave tank experiments using the 3D coastal wave basin facility at Queen's University Belfast. The basin is 18m long by 16m wide with wave generation by means of a 12m wide bank of 24 top hinged, force feedback, sector carrier wave paddles at one end. The basin is equipped with gravel beaches to dissipate wave energy on the remaining three sides, capable of absorbing up to 99% of the incident wave energy, to prevent unwanted reflections. Representative bathymetry for the Aran Islands is modelled in the basin based on a high resolution nearshore multibeam sonar survey. Water surface elevation is recorded using twin-wire resistance type wave probes along a shore-normal bathymetry transect as the waves shoal. Variations in significant wave height and maximum elevation are presented for both regular and irregular bathymetry and for a number of typical North Atlantic sea states. These results are significant for calibration of numerical wave propagation models over irregular bathymetry and for those seeking to understand the magnitude of nearshore extreme wave events. References [1] Met Éireann, 2014, Winter 2013/2014: Monthly Weather Bulletin, December issue, p. 1-5. http://www.met.ie/climate-ireland/weather-events/winterstorms13_14.pdf. [2] Cox, R. et. al., 2016, Movement of boulders and megagravel by storm waves Vol. 18, EGU2016-10535, 2016 EGU General Assembly 2016
NASA Astrophysics Data System (ADS)
Burt, William; Thomas, Helmuth
2013-04-01
Radium (Ra) isotopes have become a common tool for investigating mixing rates on continental shelves, and more recently have been used to quantify the release of dissolved compounds enriched in pore-waters into the water column. We present results from Ra sampling of the Scotian Shelf region of the Canadian northwestern Atlantic Ocean, which reveal cross-shelf Ra distributions that are unique compared to other coastal regions. We explain the observations of lower 224Ra activities near the coast, relatively high activities at large distances offshore (>100km), and gradients in both offshore and onshore directions by inferring the regional geomorphology, as well as shelf bathymetry and circulation patterns. Ra gradients are used to calculate individual estimates of eddy diffusion in both the cross-shelf (KX) and vertical (KZ) directions using 1-D eddy diffusion models. Enhanced vertical mixing above offshore banks allows for Ra enrichments in offshore surface waters, while horizontal dispersion of this bank-related signal can transport Ra off the shelf break in surface waters, and towards the shore beneath the surface mixed layer. Similar onshore gradients in CO2 and nutrient species combined with Ra-derived KX values can yield onshore carbon and nutrient fluxes in subsurface waters, which in turn supply the CO2 outgassing from the Scotian Shelf. Our results thus provide constraints for cross-shelf transports of carbon and nutrients on the Scotian Shelf in order to guide mass balance or model based budget approaches in future studies.
NASA Astrophysics Data System (ADS)
Duperret, Anne; Raimbault, Céline; Duguet, Timothée; Le Gall, Bernard; Costa, Stéphane; Vandycke, Sara
2017-04-01
During the EC2CO/DRIL/CROCODYL project, high-resolution land-sea DEM have been produced in NW Normandy and SW Brittany rocky coastal zone, using high-resolution bathymetry from shallow-water cruises CROCOLIT-1,-2,-3 (Duperret, 2013), SPLASHALIOT-3 (Maillet, 2014), THAPENFROM-1 (Duperret, 2015) and aerial topographic LiDAR data from the Litto3D project. Two study sites were selected to map detailed geomorphology of shore platforms in order to better understand rock coast evolution processes through time and long-term rates of rocky coastal erosion versus geological context. The eastern English Channel is made of coastal chalk cliffs that currently eroding with fast mean rates of the order of a few dm/year. In Normandy coast (NW France), this results to the generation of roughly linear coastal segments of about 20-30km long each. On coastal segments only made of Upper Cretaceous Chalk, erosion occurs by present-day sudden and repeated vertical failures and cliff collapses. Cliff collapse process is shaping vertical chalk cliffs in association with resulting roughly flat shore platforms. Even if shore platforms width are short and homogeneous (a few hundred meters in width), the detailed morphology observed on high-resolution bathymetry evidenced two main submarine geomorphological types. One is linear and regular and associated with linear coastal sections. This corresponds to homogeneous Chalk Formation and the lack of large-scale tectonic features. Coastal sections with chalk lithology variations, local folding, large-scale fractures transverse-oriented to the coastline and onshore valleys incision evidence chaotic shore platforms morphologies. They conduct to variations in coastline orientation and to meter-scale shoreline indentations The southwestern part of Brittany is made of low-lying granitic headland and indented bay cut into meta/granitic rocks. Erosion rates are poorly known, due to slow coastal evolutions through contemporary times. Land-Sea DEM evidence similar onshore and offshore morphologies, with flat and wide superposed plains, limited each one by 10m high scarps. In this case, shore platform extension reaches a few km in width and appears as superposed paleo-shore platforms generated since Pleistocene (Raimbault et al, in press). The erosive process is thus link to a long-term alteration of granitic rocks since Cenozoic, mainly clear and etched during recent past high sea levels. Coastal areas with large bays appear locally to be guided by large-scale Cenozoic fractures. In some places, km-scale fractures favor a spatial concentration of erosion. They are shaping coastline orientation and shore platform ending at km-scale.
Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.
Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J
2014-06-15
A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modeling Megacusps and Dune Erosion
NASA Astrophysics Data System (ADS)
Orzech, M.; Reniers, A. J.; Thornton, E. B.
2009-12-01
Megacusps are large, concave, erosional features of beaches, of O(200m) alongshore wavelength, which sometimes occur when rip channel bathymetry is present. It is commonly hypothesized that erosion of the dune and back beach will be greater at the alongshore locations of the megacusp embayments, principally because the beach width is narrower there and larger waves can more easily reach the dune toe (e.g., Short, J. Geol., 1979, Thornton, et al., Mar. Geol., 2007). At present, available field data in southern Monterey Bay provide some support for this hypothesis, but not enough to fully confirm or refute it. This analysis utilizes XBeach, a 2DH nearshore sediment transport model, to test the above hypothesis under a range of wave conditions over several idealized rip-megacusp bathymetries backed by dunes. Model results suggest that while specific wave conditions may result in erosional hot spots at megacusp embayments, other factors such as tides, wave direction, and surf zone bathymetry can often play an equal or stronger role.
Nelson, Timothy R.; Miselis, Jennifer L.; Hapke, Cheryl J.; Brenner, Owen T.; Henderson, Rachel E.; Reynolds, Billy J.; Wilson, Kathleen E.
2017-03-24
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, using single-beam echo sounders and global positioning systems mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach, Fire Island Inlet, Narrow Bay, and Great South Bay east of Nicoll Bay. Additional bathymetry and elevation data were collected using backpack and wheel-mounted global positioning systems along the subaerial beach (foreshore and backshore), flood shoals, and shallow channels within the wilderness breach and adjacent shoreface.
Venturi, M
2006-07-01
To evaluate the quality of root canal filling when comparing two warm gutta-percha filling techniques in vivo. Human teeth were randomly divided into two equal groups, with 30 canals each. The root canals were shaped by hand and ProFile 0.04 rotary instruments to size 20-40 at the end-point and then filled with gutta-percha cones and AH-Plus. In group A, a traditional warm vertical compaction technique was performed using the Touch'n Heat, and back-filling with the Obtura II. In group B, a modified warm vertical compaction technique was used: small amounts of gutta-percha were removed, and the remaining most apical 3 mm were compacted with a 1 mm movement; then thermomechanical back-filling was performed. The teeth were extracted, stored in dye, cleared, and the distance between the apex and apical limit of the filling, linear dye penetration, and voids were measured from the buccal, lingual, mesial and distal perspective. The homogeneity of variance and means was verified using Levene's test and t-test. ANOVA and Dunnett post hoc test were used to establish the significance and to analyse the effects through multiple comparisons. Compared with the specimens of group A, the specimens of group B exhibited less mean linear dye penetration (P < 0.05), smaller void length (P < or = 0.05) and maximal width (P < or = 0.05) when examined in all four views, and a more precise filling when viewed from the buccal aspect (P < 0.05). The modified warm vertical compaction technique with apical back-filling produced a more effective and precise three-dimensional filling.
Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.
Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng
2016-07-01
Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.
Vertical dynamic deflection measurement in concrete beams with the Microsoft Kinect.
Qi, Xiaojuan; Lichti, Derek; El-Badry, Mamdouh; Chow, Jacky; Ang, Kathleen
2014-02-19
The Microsoft Kinect is arguably the most popular RGB-D camera currently on the market, partially due to its low cost. It offers many advantages for the measurement of dynamic phenomena since it can directly measure three-dimensional coordinates of objects at video frame rate using a single sensor. This paper presents the results of an investigation into the development of a Microsoft Kinect-based system for measuring the deflection of reinforced concrete beams subjected to cyclic loads. New segmentation methods for object extraction from the Kinect's depth imagery and vertical displacement reconstruction algorithms have been developed and implemented to reconstruct the time-dependent displacement of concrete beams tested in laboratory conditions. The results demonstrate that the amplitude and frequency of the vertical displacements can be reconstructed with submillimetre and milliHz-level precision and accuracy, respectively.
Vertical Dynamic Deflection Measurement in Concrete Beams with the Microsoft Kinect
Qi, Xiaojuan; Lichti, Derek; El-Badry, Mamdouh; Chow, Jacky; Ang, Kathleen
2014-01-01
The Microsoft Kinect is arguably the most popular RGB-D camera currently on the market, partially due to its low cost. It offers many advantages for the measurement of dynamic phenomena since it can directly measure three-dimensional coordinates of objects at video frame rate using a single sensor. This paper presents the results of an investigation into the development of a Microsoft Kinect-based system for measuring the deflection of reinforced concrete beams subjected to cyclic loads. New segmentation methods for object extraction from the Kinect's depth imagery and vertical displacement reconstruction algorithms have been developed and implemented to reconstruct the time-dependent displacement of concrete beams tested in laboratory conditions. The results demonstrate that the amplitude and frequency of the vertical displacements can be reconstructed with submillimetre and milliHz-level precision and accuracy, respectively. PMID:24556668
Beam based measurement of beam position monitor electrode gains
NASA Astrophysics Data System (ADS)
Rubin, D. L.; Billing, M.; Meller, R.; Palmer, M.; Rendina, M.; Rider, N.; Sagan, D.; Shanks, J.; Strohman, C.
2010-09-01
Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ˜0.1%.
Los Angeles and San Diego Margin High-Resolution Multibeam Bathymetry and Backscatter Data
Dartnell, Peter; Gardner, James V.; Mayer, Larry A.; Hughes-Clarke, John E.
2004-01-01
Summary -- The U.S. Geological Survey in cooperation with the University of New Hampshire and the University of New Brunswick mapped the nearshore regions off Los Angeles and San Diego, California using multibeam echosounders. Multibeam bathymetry and co-registered, corrected acoustic backscatter were collected in water depths ranging from about 3 to 900 m offshore Los Angeles and in water depths ranging from about 17 to 1230 m offshore San Diego. Continuous, 16-m spatial resolution, GIS ready format data of the entire Los Angeles Margin and San Diego Margin are available online as separate USGS Open-File Reports. For ongoing research, the USGS has processed sub-regions within these datasets at finer resolutions. The resolution of each sub-region was determined by the density of soundings within the region. This Open-File Report contains the finer resolution multibeam bathymetry and acoustic backscatter data that the USGS, Western Region, Coastal and Marine Geology Team has processed into GIS ready formats as of April 2004. The data are available in ArcInfo GRID and XYZ formats. See the Los Angeles or San Diego maps for the sub-region locations. These datasets in their present form were not originally intended for publication. The bathymetry and backscatter have data-collection and processing artifacts. These data are being made public to fulfill a Freedom of Information Act request. Care must be taken not to confuse artifacts with real seafloor morphology and acoustic backscatter.
NASA Astrophysics Data System (ADS)
Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.
2011-03-01
In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.
Acosta, Luis Enrique; de Lacy, M Clara; Ramos, M Isabel; Cano, Juan Pedro; Herrera, Antonio Manuel; Avilés, Manuel; Gil, Antonio José
2018-04-27
The aim of this paper is to study the behavior of an earth fill dam, analyzing the deformations determined by high precision geodetic techniques and those obtained by the Finite Element Method (FEM). A large number of control points were established around the area of the dam, and the measurements of their displacements took place during several periods. In this study, high-precision leveling and GNSS (Global Navigation Satellite System) techniques were used to monitor vertical and horizontal displacements respectively. Seven surveys were carried out: February and July 2008, March and July 2013, August 2014, September 2015 and September 2016. Deformations were predicted, taking into account the general characteristics of an earth fill dam. A comparative evaluation of the results derived from predicted (FEM) and observed deformations shows the differences on average being 20 cm for vertical displacements, and 6 cm for horizontal displacements at the crest. These differences are probably due to the simplifications assumed during the FEM modeling process: critical sections are considered homogeneous along their longitude, and the properties of the materials were established according to the general characteristics of an earth fill dam. These characteristics were taken from the normative and similar studies in the country. This could also be due to the geodetic control points being anchored in the superficial layer of the slope when the construction of the dam was finished.
Nanolaminate deformable mirrors
Papavasiliou, Alexandros P.; Olivier, Scot S.
2009-04-14
A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.
A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry
NASA Astrophysics Data System (ADS)
Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik; Savstrup Kristensen, Steen; Mayer, Christoph; Morlighem, Mathieu; Steinhage, Daniel
2016-10-01
The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies, and global surface height on a spherical grid with now 30 arcsec grid spacing. For this new data set, called RTopo-2, we used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We modified data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ, and Sermilik Fjord, assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centres of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF), and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot, and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database at doi:10.1594/PANGAEA.856844.
NASA Astrophysics Data System (ADS)
Morlighem, M.; Bondzio, J. H.; Seroussi, H. L.; Wood, M.; Rignot, E. J.
2016-12-01
Glacier-front dynamics is an important control on Greenland's ice mass balance. Warmer ocean waters trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. Here, we quantify the sensitivity and vulnerability of marine-terminating glaciers along the Northwest coast of Greenland (from 73°N to 7°N) to ocean-induced melt using the Ice Sheet System Model (ISSM) and bathymetry data collected by NASA's Occreans Melting Greenland (OMG). We first combine OMG bathymetry data with ice velocity from satellites and ice thickness from airborne radars using a mass conservation approach on land to produce ice thickness and bed elevation mapping across the ice-ocean boundary that are more precise and reliable than ever before. Using this new map, we then develop a plan-view model of this region that includes a level set based moving boundary capability, a parameterized ocean-induced melt and a calving law based on a Von Mises criterion. We find that some glaciers, such as Dietrichson Gletscher or Alison Gletscher, are sensitive to small increases in ocean-induced melt, while others, such as Steenstrup Gletscher or Qeqertarsuup Sermia, are very difficult to destabilize, even with a quadrupling of the melt. Under the most intense melt experiment of 12 m/day in the summer, we find that Hayes Gletscher retreats by more than 50 km inland into a deep trough and its velocity increases by a factor of 10 over only 15 years. The model suggests that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude. This work was performed at the University of California Irvine under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program, grant NNX15AD55G.
Comparison with Offshore and Onshore Mud Volcanoes in the Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Y. H.; Su, C. C.; Chen, T. T.; Liu, C. S.; Paull, C. K.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Hsu, H. H.
2017-12-01
The offshore area southwest (SW) of Taiwan is on the convergent boundary between the Eurasian and Philippine Sea plates. The plate convergence manifests in this unique geological setting as a fold-and-thrust-belt. Multi-channel seismic profiles, and bathymetry and gravity anomaly data collected from Taiwan offshore to the SW show the presence of a large amount of mud volcanoes and diapirs with NE-SW orientations. In the absence of comprehensive sampling and detailed geochemistry data from submarine mud volcanoes, the relation between onshore and offshore mud volcanoes remains ambiguous. During two MBARI and IONTU joint cruises conducted in 2017 we collected high-resolution multibeam bathymetry data (1-m-resolution) and chirp sub-bottom profiles with an autonomous underwater vehicle (AUV) from submarine Mud Volcano III (MV3), and obtained precisely located samples and video observations with a remotely operated vehicle (ROV). MV3 is an active submarine mud volcano at 465 m water depth offshore SW Taiwan. This cone-shape mud volcano is almost 780 m wide, 150 m high, with 8° slopes, and a 30 m wide mound on the top. Several linear features are observed in the southwest of the mound, and these features are interpreted as a series of marks caused by rolling rocks that erupted from the top of MV3. We collected three rocks and push cores from MV3 and its top with the ROV, in order to compare their chemical and mineralogical composition to that of samples collected from mud volcanoes along the Chishan fault. The surface and X-radiography imaging, 210Pb chronology, grain size and X-ray diffractometer analyses were conducted to compare geochemical and sedimentary properties of offshore and onshore mud volcanoes. The results indicate that the offshore and onshore mud volcanoes have similar characteristics. We suggest that offshore and onshore mud volcanoes of SW Taiwan are no different in the source of their materials and their mechanism of creation and evolution.
Effect of the Earth's inner structure on the gravity in definitions of height systems
NASA Astrophysics Data System (ADS)
Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal
2017-04-01
In context of the vertical datum unification, the geoid-to-quasi-geoid separation has been of significant interest in recent years, because most of existing local vertical datums are realized in the system of either normal or orthometric heights. Nevertheless, the normal-orthometric heights are still used in many other countries where the normal gravity values along leveling lines were adopted instead of the observed gravity. Whereas the conversion between the orthometric and normal heights is defined by means of the mean gravity disturbances (i.e. differences between the mean values of the actual and normal gravity) along the plumbline within the topography, differences between the normal and normal-orthometric heights can be described by means of the surface gravity disturbances. Since the normal gravity field does not reflect the topographic masses and actual mass density distribution inside the Earth, the definition of gravity represents a principal aspect for a realization of particular vertical datum. To address this issue in this study, we investigate effects of the Earth's inner density structure on the surface and mean gravity disturbances, and discuss their impact on the vertical datum realization. These two gravity field quantities are computed globally with a spectral resolution complete to a spherical harmonic degree 2160 using the global gravity, terrain, ice-thickness, inland bathymetry and crustal structure models. Our results reveal that both, the surface and mean gravity disturbances mostly comprise the gravitational signal of topography and masses distributed below the geoid surface. Moreover, in polar areas, a significant contribution comes from large glaciers. In contrast, the contributions of anomalous density distribution within the topography attributed to major lakes, sediments and bedrock density variations are much less pronounced. We also demonstrate that the mean gravity disturbances within the topography are significantly modified compared to the corresponding surface values mainly due to topographic elevation and terrain geometry as well as the presence of large glaciers in polar regions. Changes of the vertical gravity gradient within the topography attributed to the masses distributed below the geoid (dominated mainly by the isostatic signature and the long-wavelength gravitational signature of deep mantle density heterogeneities) are, on the other hand, relatively small. Despite differences between the normal and normal-orthometric heights could directly be assessed from the surface gravity disturbances only when taken along leveling lines with information about the spirit leveling height differences, our results indicate that differences between these two height systems can be significant.
NASA Astrophysics Data System (ADS)
Chang, Yu Min; Lu, Nien Hua; Wu, Tsung Chiang
2005-06-01
This study applies 3D Laser scanning technology to develop a high-precision measuring system for digital survey of historical building. It outperformed other methods in obtaining abundant high-precision measuring points and computing data instantly. In this study, the Pei-tien Temple, a Chinese Taoism temple in southern Taiwan famous for its highly intricate architecture and more than 300-year history, was adopted as the target to proof the high accuracy and efficiency of this system. By using French made MENSI GS-100 Laser Scanner, numerous measuring points were precisely plotted to present the plane map, vertical map and 3D map of the property. Accuracies of 0.1-1 mm in the digital data have consistently been achieved for the historical heritage measurement.
Ground control requirements for precision processing of ERTS images
Burger, Thomas C.
1973-01-01
With the successful flight of the ERTS-1 satellite, orbital height images are available for precision processing into products such as 1:1,000,000-scale photomaps and enlargements up to 1:250,000 scale. In order to maintain positional error below 100 meters, control points for the precision processing must be carefully selected, clearly definitive on photos in both X and Y. Coordinates of selected control points measured on existing ½ and 15-minute standard maps provide sufficient accuracy for any space imaging system thus far defined. This procedure references the points to accepted horizontal and vertical datums. Maps as small as 1:250,000 scale can be used as source material for coordinates, but to maintain the desired accuracy, maps of 1:100,000 and larger scale should be used when available.
A measurement system for vertical seawater profiles close to the air-sea interface
NASA Astrophysics Data System (ADS)
Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.
2017-09-01
This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.
Measuring and forecasting great tsunamis by GNSS-based vertical positioning of multiple ships
NASA Astrophysics Data System (ADS)
Inazu, D.; Waseda, T.; Hibiya, T.; Ohta, Y.
2016-12-01
Vertical ship positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined existing GNSS vertical position data of a navigating vessel. The result indicated that by using the kinematic Precise Point Positioning (PPP) method, tsunamis greater than 10^-1 m can be detected from the vertical position of the ship. Based on Automatic Identification System (AIS) data, tens of cargo ships and tankers are regularly identified navigating over the Nankai Trough, southwest of Japan. We then assumed that a future Nankai Trough great earthquake tsunami will be observed by ships at locations based on AIS data. The tsunami forecast capability by these virtual offshore tsunami measurements was examined. A conventional Green's function based inversion was used to determine the initial tsunami height distribution. Tsunami forecast tests over the Nankai Trough were carried out using simulated tsunami data of the vertical positions of multiple cargo ships/tankers on a certain day, and of the currently operating observations by deep-sea pressure gauges and Global Positioning System (GPS) buoys. The forecast capability of ship-based tsunami height measurements alone was shown to be comparable to or better than that using the existing offshore observations.
TES/Aura L2 Atmospheric Temperatures Nadir V6 (TL2TNS)
Atmospheric Science Data Center
2018-01-22
TES/Aura L2 Atmospheric Temperatures Nadir (TL2TNS) News: TES News ... Level: L2 Platform: TES/Aura L2 Atmospheric Temperatures Spatial Coverage: 5.3 x 8.5 km nadir ... Contact ASDC User Services Parameters: Atmospheric Temperature Temperature Precision Vertical Resolution ...
ERIC Educational Resources Information Center
Hakkarainen, Pentti
2008-01-01
Finnish curriculum guidelines for early education emphasise play and creative activities as significant factors in healthy child development. Constructivist theory loosely frames the guidelines, but the recommended approach lacks precise developmental goals. Since 1996, we have carried out a narrative learning project with vertically integrated…
NASA Technical Reports Server (NTRS)
Haines, B. J.; Christensen, E. J.; Norman, R. A.; Parke, M. E.; Born, G. H.; Gill, S. K.
1996-01-01
Prior to the launch of TOPEX/ Poseidon in August 1992, NASA established its primary in situ verification site on the Harvest oil platform located in the Pacific Ocean off the coast of central California. Data from a suite of geodetic and oceanographic instruments attached to the platform have been combined to yield a precise record of absolute sea level simce the beginning of the mission. Critical to the computation of this geocentric sea level record is the precise determination of the platform geodetic height and the vertical velocity in the global terrestrial reference frame.We compare estimates of the platform height and vertical velocity from global positioning system (GPS) data alone and from a combination of GPS and satellite laser ranging (SLR) information. Current estimates suggest the platform is subsiding at a rate of about 8 mm per year. This height information is combined with in situ tide gauge measurements of sea level relative to a platform reference mark in order to produce a continuous record of the local geocentric sea height.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Meng; Li, Guowang; Protasenko, Vladimir
2015-01-26
This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we demonstrate the effectiveness in studying strain in the vertical direction. This technique will enable the precise probing of properties of buried active layers in heterostructures, and can be extended in the future to vertical devices such as those used for optical emitters and for power electronics.
Spectral band passes for a high precision satellite sounder
NASA Technical Reports Server (NTRS)
Kaplan, L. D.; Chahine, M. T.; Susskind, J.; Searl, J. E.
1977-01-01
Atmospheric temperature soundings with significantly improved vertical resolution can be obtained from carefully chosen narrow band-pass measurements in the 4.3-micron band of CO2 by taking advantage of the variation of the absorption coefficients, and thereby the weighting functions, with pressure and temperature. A set of channels has been found in the 4.2-micron region that is capable of yielding about 2-km vertical resolution in the troposphere. The concept of a complete system is presented for obtaining high resolution retrievals of temperature and water vapor distribution, as well as surface and cloud top temperatures, even in the presence of broken clouds.
Development of Biological Acoustic Impedance Microscope and its Error Estimation
NASA Astrophysics Data System (ADS)
Hozumi, Naohiro; Nakano, Aiko; Terauchi, Satoshi; Nagao, Masayuki; Yoshida, Sachiko; Kobayashi, Kazuto; Yamamoto, Seiji; Saijo, Yoshifumi
This report deals with the scanning acoustic microscope for imaging cross sectional acoustic impedance of biological soft tissues. A focused acoustic beam was transmitted to the tissue object mounted on the "rear surface" of plastic substrate. A cerebellum tissue of rat and a reference material were observed at the same time under the same condition. As the incidence is not vertical, not only longitudinal wave but also transversal wave is generated in the substrate. The error in acoustic impedance assuming vertical incidence was estimated. It was proved that the error can precisely be compensated, if the beam pattern and acoustic parameters of coupling medium and substrate had been known.
A new world survey expression for cosmic ray vertical intensity vs. depth in standard rock
NASA Technical Reports Server (NTRS)
Crouch, M.
1985-01-01
The cosmic ray data on vertical intensity versus depth below 10 to the 5th power g sq cm is fitted to a 5 parameter empirical formula to give an analytical expression for interpretation of muon fluxes in underground measurements. This expression updates earlier published results and complements the more precise curves obtained by numerical integration or Monte Carlo techniques in which the fit is made to an energy spectrum at the top of the atmosphere. The expression is valid in the transitional region where neutrino induced muons begin to be important, as well as at great depths where this component becomes dominant.
Pink-Beam, Highly-Accurate Compact Water Cooled Slits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard
2007-01-19
Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less
A High-Resolution, Three-Dimensional Model of Jupiter's Great Red Spot
NASA Technical Reports Server (NTRS)
Cho, James Y.-K.; delaTorreJuarez, Manuel; Ingersoll, Andrew P.; Dritschel, David G.
2001-01-01
The turbulent flow at the periphery of the Great Red Spot (GRS) contains many fine-scale filamentary structures, while the more quiescent core, bounded by a narrow high- velocity ring, exhibits organized, possibly counterrotating, motion. Past studies have neither been able to capture this complexity nor adequately study the effect of vertical stratification L(sub R)(zeta) on the GRS. We present results from a series of high-resolution, three-dimensional simulations that advect the dynamical tracer, potential vorticity. The detailed flow is successfully captured with a characteristic value of L(sub R) approx. equals 2000 km, independent of the precise vertical stratification profile.
2013-09-30
dsandwell@ucsd.edu Award Number: N00014-12-1-0111 http://topex.ucsd.edu LONG-TERM GOALS • Improve our understanding of the ocean basins for...scientific research and Naval operations. OBJECTIVES • Improve global marine gravity maps by a factor of 2 in deep ocean areas and a factor of 4 in...arcsecond bathymetry model (SRTM30_PLUS). • Prepare the next generation of scientists for ocean research. APPROACH 1. Modify waveform
2012-09-30
ucsd.edu Award Number: N00014-12-1-0111 http://topex.ucsd.edu LONG-TERM GOALS • Improve our understanding of the ocean basins for...scientific research and Naval operations. OBJECTIVES • Improve global marine gravity maps by a factor of 2 in deep ocean areas and a factor of 4 in the...arcsecond bathymetry model (SRTM30_PLUS). • Prepare the next generation of scientists for ocean research. APPROACH 1. Modify waveform retracking
NASA Technical Reports Server (NTRS)
Poole, L. R.; Lecroy, S. R.; Morris, W. D.
1977-01-01
A computer program for studying linear ocean wave refraction is described. The program features random-access modular bathymetry data storage. Three bottom topography approximation techniques are available in the program which provide varying degrees of bathymetry data smoothing. Refraction diagrams are generated automatically and can be displayed graphically in three forms: Ray patterns with specified uniform deepwater ray density, ray patterns with controlled nearshore ray density, or crest patterns constructed by using a cubic polynomial to approximate crest segments between adjacent rays.
2000 Multibeam Sonar Survey of Crater Lake, Oregon - Data, GIS, Images, and Movies
Gardner, James V.; Dartnell, Peter
2001-01-01
In the summer of 2000, the U.S. Geological Survey, Pacific Seafloor Mapping Project in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire used a state-of-the-art multibeam sonar system to collect high-resolution bathymetry and calibrated, co-registered acoustic backscatter to support both biological and geological research in the Crater Lake area. This interactive CD-ROM contains the multibeam bathymetry and acoustic backscatter data, along with an ESRI ArcExplorer project (and software), images, and movies.
2014-06-01
shelf 10 region to the north of the canyon. The impact of this 3-dimensional (3D) variable bathymetry, which may be combined with the effects of...weaker arrivals at large negative angles, consistent with the earliest bottom reflections on the left. The impact of the bottom-path reflections from...nzout*(nrout+1)*ny))),’bof’); for ifr =1:64, for ir=1:nrout+1, for iy=1:ny, data=fread(fid3,2*nzout,’float32’); fwrite(fid,data
Nagle, D.D.; Campbell, B.G.; Lowery, M.A.
2009-01-01
The increasing use and importance of lakes for water supply to communities enhance the need for an accurate methodology to determine lake bathymetry and storage capacity. A global positioning receiver and a fathometer were used to collect position data and water depth in February 2008 at Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina. All collected data were imported into a geographic information system database. A bathymetric surface model, contour map, and stage-area and -volume relations were created from the geographic information database.
Continuous monitoring of surface deformation at Long Valley Caldera, California, with GPS
Dixon, T.H.; Mao, A.; Bursik, M.; Heflin, M.; Langbein, J.; Stein, R.; Webb, F.
1997-01-01
Continuous Global Positioning System (GPS) measurements at Long Valley Caldera, an active volcanic region in east central California, have been made on the south side of the resurgent dome since early 1993. A site on the north side of the dome was added in late 1994. Special adaptations for autonomous operation in remote regions and enhanced vertical precision were made. The data record ongoing volcanic deformation consistent with uplift and expansion of the surface above a shallow magma chamber. Measurement precisions (1 standard error) for "absolute" position coordinates, i.e., relative to a global reference frame, are 3-4 mm (north), 5-6 mm (east), and 10-12 mm (vertical) using 24 hour solutions. Corresponding velocity uncertainties for a 12 month period are about 2 mm/yr in the horizontal components and 3-4 mm/yr in the vertical component. High precision can also be achieved for relative position coordinates on short (<10 km) baselines using broadcast ephemerides and observing times as short as 3 hours, even when data are processed rapidly on site. Comparison of baseline length changes across the resurgent dome between the two GPS sites and corresponding two-color electronic distance measurements indicates similar extension rates within error (???2 mm/yr) once we account for a random walk noise component in both systems that may reflect spurious monument motion. Both data sets suggest a pause in deformation for a 3.5 month period in mid-1995, when the extension rate across the dome decreased essentially to zero. Three dimensional positioning data from the two GPS stations suggest a depth (5.8??1.6 km) and location (west side of the resurgent dome) of a major inflation center, in agreement with other geodetic techniques, near the top of a magma chamber inferred from seismic data. GPS systems similar to those installed at Long Valley can provide a practical method for near real-time monitoring and hazard assessment on many active volcanoes.
NASA Astrophysics Data System (ADS)
Brandsdottir, B.; Karson, J. A.; Magnúsdóttir, S.; Detrick, B.; Driscoll, N. W.
2017-12-01
The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ) is a complex transform linking the northern rift zone (NVZ) on land with the offshore Kolbeinsey Ridge. The TFZ lacks a clear topographic expression typical of oceanic fracture zones. The transform zone is roughly 150 km long (E-W) by 50-75 km wide (N-S) with three N-S trending pull-apart basins bounded by a complex array of normal and oblique-slip faults. The offshore extension of the NVZ, the Grímsey Oblique Rift, is composed of several active volcanic systems with N-S trending fissure swarms, including the Skjálfandadjúp Basin (SB). The magma-starved southern extension of the KR, the 80 km NS and 15-20 EW Eyjafjarðaráll Rift (ER), is made up of dominantly normal faults merging southwards with a system of right-lateral strike-slip faults with vertical displacement up to 15 m in the Húsavík Flatey Fault Zone (HFFZ). The northern ER is a 500-700 m deep asymmetric rift, framed by normal faults with 20-25 m vertical displacement, To the south, transform movement associated with the HFFZ has created a NW- striking pull-apart basin with frequent earthquake swarms. Details of the tectonic framework of the ER are documented in a compilation of data from aerial photos, satellite images, field mapping, multibeam bathymetry, high-resolution seismic reflection surveys (Chirp) and seismicity. The TFZ rift basins contain post-glacial sediments of variable thickness. Strata in the western ER and SB basins dip steeply E along the normal faults, towards the deepest part of the rift. The eastern side of the ER and SB basins differ considerably from the western side, with near-vertical faults. Correlation of Chirp reflection data and tephrachronology from a sediment core reveal major rifting episodes between 10-12.1 kyrs BP activating both the Eyjafjarðaráll and Skjálfandadjúp rift basins, followed by smaller-scale fault movements throughout Holocene. These vertical fault movements reflect elevated tectonic activity during early postglacial time coinciding with isostatic rebound and enhanced volcanism within Iceland.
Development of the One Centimeter Accuracy Geoid Model of Latvia for GNSS Measurements
NASA Astrophysics Data System (ADS)
Balodis, J.; Silabriedis, G.; Haritonova, D.; Kaļinka, M.; Janpaule, I.; Morozova, K.; Jumāre, I.; Mitrofanovs, I.; Zvirgzds, J.; Kaminskis, J.; Liepiņš, I.
2015-11-01
There is an urgent necessity for a highly accurate and reliable geoid model to enable prompt determination of normal height with the use of GNSS coordinate determination due to the high precision requirements in geodesy, building and high precision road construction development. Additionally, the Latvian height system is in the process of transition from BAS- 77 (Baltic Height System) to EVRS2007 system. The accuracy of the geoid model must approach the precision of about ∼1 cm looking forward to the Baltic Rail and other big projects. The use of all the available and verified data sources is planned, including the use of enlarged set of GNSS/levelling data, gravimetric measurement data and, additionally, the vertical deflection measurements over the territory of Latvia. The work is going ahead stepwise. Just the issue of GNSS reference network stability is discussed. In order to achieve the ∼1 cm precision geoid, it is required to have a homogeneous high precision GNSS network as a basis for ellipsoidal height determination for GNSS/levelling points. Both the LatPos and EUPOS® - Riga network have been examined in this article.
NASA Technical Reports Server (NTRS)
Clark, B.; Stewart, J. D.
1974-01-01
This experiment was concerned with the effects of rotary acceleration on choice reaction time (RTc) to the motion of a luminous line on a cathode-ray tube. Specifically, it compared the (RTc) to rotary acceleration alone, visual acceleration alone, and simultaneous, double stimulation by both rotary and visual acceleration. Thirteen airline pilots were rotated about an earth-vertical axis in a precision rotation device while they observed a vertical line. The stimuli were 7 rotary and visual accelerations which were matched for rise time. The pilot responded as quickly as possible by displacing a vertical controller to the right or left. The results showed a decreasing (RTc) with increasing acceleration for all conditions, while the (RTc) to rotary motion alone was substantially longer than for all other conditions. The (RTc) to the double stimulation was significantly longer than that for visual acceleration alone.
Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.
Han, Zhao Jun; Ostrikov, Kostya
2012-04-04
Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.
Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films
Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng
2016-01-01
Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d33) up to 33 pm·V−1 was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234
NASA Astrophysics Data System (ADS)
Brodie, K. L.; McNinch, J. E.
2008-12-01
Accurate predictions of shoreline response to storms are contingent upon coastal-morphodynamic models effectively synthesizing the complex evolving relationships between beach topography, sandbar morphology, nearshore bathymetry, underlying geology, and the nearshore wave-field during storm events. Analysis of "pre" and "post" storm data sets have led to a common theory for event response of the nearshore system: pre-storm three-dimensional bar and shoreline configurations shift to two-dimensional, linear forms post- storm. A lack of data during storms has unfortunately left a gap in our knowledge of how the system explicitly changes during the storm event. This work presents daily observations of the beach and nearshore during high-energy storm events over a spatially extensive field site (order of magnitude: 10 km) using Bar and Swash Imaging Radar (BASIR), a mobile x-band radar system. The field site contains a complexity of features including shore-oblique bars and troughs, heterogeneous sediment, and an erosional hotspot. BASIR data provide observations of the evolution of shoreline and bar morphology, as well as nearshore bathymetry, throughout the storm events. Nearshore bathymetry is calculated using a bathymetry inversion from radar- derived wave celerity measurements. Preliminary results show a relatively stable but non-linear shore-parallel bar and a non-linear shoreline with megacusp and embayment features (order of magnitude: 1 km) that are enhanced during the wave events. Both the shoreline and shore-parallel bar undulate at a similar spatial frequency to the nearshore shore- oblique bar-field. Large-scale shore-oblique bars and troughs remain relatively static in position and morphology throughout the storm events. The persistence of a three-dimensional shoreline, shore-parallel bar, and large-scale shore-oblique bars and troughs, contradicts the idea of event-driven shifts to two- dimensional morphology and suggests that beach and nearshore response to storms may be location specific. We hypothesize that the influence of underlying geology, defined by (1) the introduction of heterogeneous sediment and (2) the possible creation of shore-oblique bars and troughs in the nearshore, may be responsible for the persistence of three-dimensional forms and the associated shoreline hotspots during storm events.
Digital Elevation Model Correction for the thalweg values of Obion River system, TN
NASA Astrophysics Data System (ADS)
Dullo, T. T.; Bhuyian, M. N. M.; Hawkins, S. A.; Kalyanapu, A. J.
2016-12-01
Obion River system is located in North-West Tennessee and discharges into the Mississippi River. To facilitate US Department of Agriculture (USDA) to estimate water availability for agricultural consumption a one-dimensional HEC-RAS model has been proposed. The model incorporates the major tributaries (north and south), main stem of Obion River along with a segment of the Mississippi River. A one-meter spatial resolution Light Detection and Ranging (LiDAR) derived Digital Elevation Model (DEM) was used as the primary source of topographic data. LiDAR provides fine-resolution terrain data over given extent. However, it lacks in accurate representation of river bathymetry due to limited penetration beyond a certain water depth. This reduces the conveyance along river channel as represented by the DEM and affects the hydrodynamic modeling performance. This research focused on proposing a method to overcome this issue and test the qualitative improvement by the proposed method over an existing technique. Therefore, objective of this research is to compare effectiveness of a HEC-RAS based bathymetry optimization method with an existing hydraulic based DEM correction technique (Bhuyian et al., 2014) for Obion River system in Tennessee. Accuracy of hydrodynamic simulations (upon employing bathymetry from respective sources) would be regarded as the indicator of performance. The aforementioned river system includes nine major reaches with a total river length of 310 km. The bathymetry of the river was represented via 315 cross sections equally spaced at about one km. This study targeted to selecting best practice for treating LiDAR based terrain data over complex river system at a sub-watershed scale.
NASA Astrophysics Data System (ADS)
Harders, Rieka; Ranero, Cesar R.; Weinrebe, Wilhelm; von Huene, Roland
2014-05-01
Subduction of kms-tall and tens-of-km wide seamounts cause important landsliding events at subduction zones around the word. Along the Middle America Trench, previous work based on regional swath bathymetry maps (with 100 m grids) and multichannel seismic images have shown that seamount subduction produces large-scale slumping and sliding. Some of the mass wasting event may have been catastrophic and numerical modeling has indicated that they may have produced important local tsunamis. We have re-evaluated the structure of several active submarine landlide complexes caused by large seamount subduction using side scan sonar data. The comparison of the side scan sonar data to local high-resolution bathymetry grids indicates that the backscatter data has a resolution that is somewhat similar to that produced by a 10 m bathymetry grid. Although this is an arbitrary comparison, the side scan sonar data provides comparatively much higher resolution information than the previously used regional multibeam bathymetry. We have mapped the geometry and relief of the head and side walls of the complexes, the distribution of scars and the different sediment deposits to produce a new interpretation of the modes of landsliding during subduction of large seamounts. The new higher resolution information shows that landsliding processes are considerably more complex than formerly assumed. Landslides are of notably smaller dimensions that the lower resolution data had previously appear to indicate. However, significantly large events may have occur far more often than earlier interpretations had inferred representing a more common threat that previously assumed.
A Hurricane Hits Home: An Interactive Science Museum Exhibit on Ocean Mapping and Marine Debris
NASA Astrophysics Data System (ADS)
Butkiewicz, T.; Vasta, D. J.; Gager, N. C.; Fruth, B. W.; LeClair, J.
2016-12-01
As part of the outreach component for a project involving the detection and analysis of marine debris generated by Super Storm Sandy, The Center for Coastal and Ocean Mapping / Joint Hydrographic Center partnered with The Seacoast Science Center to develop an interactive museum exhibit that engages the public with a touchscreen based game revolving around the detection and identification of marine debris. "A Hurricane Hits Home" is a multi-station touchscreen exhibit geared towards children, and integrates a portion of a historical wooden shipwreck into its physical design. The game invites museum guests to examine a number of coastal regions and harbors in Sandy affected areas. It teaches visitors about modern mapping technology by having them control boats with multibeam sonars and airplanes with lidar sensors. They drag these vehicles around maps to reveal the underlying bathymetry below the satellite photos. They learn the applications and limitations of sonar and lidar by where the vehicles can and cannot collect survey data (e.g. lidar doesn't work in deep water, and the boat can't go in shallow areas). As users collect bathymetry data, they occasionally reveal marine debris objects on the seafloor. Once all the debris objects in a level have been located, the game challenges them to identify them based on their appearance in the bathymetry data. They must compare the simulated bathymetry images of the debris targets to photos of possible objects, and choose the correct matches to achieve a high score. The exhibit opened January 2016 at the Seacoast Science Center in Rye, NH.
NASA Astrophysics Data System (ADS)
Maples, B. L.; Alvarez, L. V.; Moreno, H. A.; Chilson, P. B.; Segales, A.
2017-12-01
Given that classical in-situ direct surveying for geomorphological subsurface information in rivers is time-consuming, labor-intensive, costly, and often involves high-risk activities, it is obvious that non-intrusive technologies, like UAS-based, LIDAR-based remote sensing, have a promising potential and benefits in terms of efficient and accurate measurement of channel topography over large areas within a short time; therefore, a tremendous amount of attention has been paid to the development of these techniques. Over the past two decades, efforts have been undertaken to develop a specialized technique that can penetrate the water body and detect the channel bed to derive river and coastal bathymetry. In this research, we develop a low-cost effective technique for water body bathymetry. With the use of a sUAS and a light-weight sonar, the bathymetry and volume of a small reservoir have been surveyed. The sUAS surveying approach is conducted under low altitudes (2 meters from the water) using the sUAS to tow a small boat with the sonar attached. A cluster analysis is conducted to optimize the sUAS data collection and minimize the standard deviation created by under-sampling in areas of highly variable bathymetry, so measurements are densified in regions featured by steep slopes and drastic changes in the reservoir bed. This technique provides flexibility, efficiency, and free-risk to humans while obtaining high-quality information. The irregularly-spaced bathymetric survey is then interpolated using unstructured Triangular Irregular Network (TIN)-based maps to avoid re-gridding or re-sampling issues.
Large-baseline InSAR for precise topographic mapping: a framework for TanDEM-X large-baseline data
NASA Astrophysics Data System (ADS)
Pinheiro, Muriel; Reigber, Andreas; Moreira, Alberto
2017-09-01
The global Digital Elevation Model (DEM) resulting from the TanDEM-X mission provides information about the world topography with outstanding precision. In fact, performance analysis carried out with the already available data have shown that the global product is well within the requirements of 10 m absolute vertical accuracy and 2 m relative vertical accuracy for flat to moderate terrain. The mission's science phase took place from October 2014 to December 2015. During this phase, bistatic acquisitions with across-track separation between the two satellites up to 3.6 km at the equator were commanded. Since the relative vertical accuracy of InSAR derived elevation models is, in principle, inversely proportional to the system baseline, the TanDEM-X science phase opened the doors for the generation of elevation models with improved quality with respect to the standard product. However, the interferometric processing of the large-baseline data is troublesome due to the increased volume decorrelation and very high frequency of the phase variations. Hence, in order to fully profit from the increased baseline, sophisticated algorithms for the interferometric processing, and, in particular, for the phase unwrapping have to be considered. This paper proposes a novel dual-baseline region-growing framework for the phase unwrapping of the large-baseline interferograms. Results from two experiments with data from the TanDEM-X science phase are discussed, corroborating the expected increased level of detail of the large-baseline DEMs.
NASA Astrophysics Data System (ADS)
Tonkin, T. N.; Midgley, N. G.; Graham, D. J.; Labadz, J. C.
2014-12-01
Novel topographic survey methods that integrate both structure-from-motion (SfM) photogrammetry and small unmanned aircraft systems (sUAS) are a rapidly evolving investigative technique. Due to the diverse range of survey configurations available and the infancy of these new methods, further research is required. Here, the accuracy, precision and potential applications of this approach are investigated. A total of 543 images of the Cwm Idwal moraine-mound complex were captured from a light (< 5 kg) semi-autonomous multi-rotor unmanned aircraft system using a consumer-grade 18 MP compact digital camera. The images were used to produce a DSM (digital surface model) of the moraines. The DSM is in good agreement with 7761 total station survey points providing a total vertical RMSE value of 0.517 m and vertical RMSE values as low as 0.200 m for less densely vegetated areas of the DSM. High-precision topographic data can be acquired rapidly using this technique with the resulting DSMs and orthorectified aerial imagery at sub-decimetre resolutions. Positional errors on the total station dataset, vegetation and steep terrain are identified as the causes of vertical disagreement. Whilst this aerial survey approach is advocated for use in a range of geomorphological settings, care must be taken to ensure that adequate ground control is applied to give a high degree of accuracy.
Exploring Vertical Transmission of Bifidobacteria from Mother to Child
Milani, Christian; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Duranti, Sabrina; Turroni, Francesca; Ferrario, Chiara; Mangifesta, Marta; Viappiani, Alice; Ferretti, Pamela; Gorfer, Valentina; Tett, Adrian; Segata, Nicola; van Sinderen, Douwe
2015-01-01
Passage through the birth canal and consequent exposure to the mother's microbiota is considered to represent the initiating event for microbial colonization of the gastrointestinal tract of the newborn. However, a precise evaluation of such suspected vertical microbiota transmission has yet to be performed. Here, we evaluated the microbiomes of four sample sets, each consisting of a mother's fecal and milk samples and the corresponding infant's fecal sample, by means of amplicon-based profiling supported by shotgun metagenomics data for two key samples. Notably, targeted genome reconstruction from microbiome data revealed vertical transmission of a Bifidobacterium breve strain and a Bifidobacterium longum subsp. longum strain from mother to infant, a notion confirmed by strain isolation and genome sequencing. Furthermore, PCR analyses targeting unique genes from these two strains highlighted their persistence in the infant gut at 6 months. Thus, this study demonstrates the existence of specific bifidobacterial strains that are common to mother and child and thus indicative of vertical transmission and that are maintained in the infant for at least relatively short time spans. PMID:26231653
Method of calculating tsunami travel times in the Andaman Sea region
Visuthismajarn, Parichart; Tanavud, Charlchai; Robson, Mark G.
2014-01-01
A new model to calculate tsunami travel times in the Andaman Sea region has been developed. The model specifically provides more accurate travel time estimates for tsunamis propagating to Patong Beach on the west coast of Phuket, Thailand. More generally, the model provides better understanding of the influence of the accuracy and resolution of bathymetry data on the accuracy of travel time calculations. The dynamic model is based on solitary wave theory, and a lookup function is used to perform bilinear interpolation of bathymetry along the ray trajectory. The model was calibrated and verified using data from an echosounder record, tsunami photographs, satellite altimetry records, and eyewitness accounts of the tsunami on 26 December 2004. Time differences for 12 representative targets in the Andaman Sea and the Indian Ocean regions were calculated. The model demonstrated satisfactory time differences (<2 min/h), despite the use of low resolution bathymetry (ETOPO2v2). To improve accuracy, the dynamics of wave elevation and a velocity correction term must be considered, particularly for calculations in the nearshore region. PMID:25741129
NASA Astrophysics Data System (ADS)
Wintermeyer, Niklas; Winters, Andrew R.; Gassner, Gregor J.; Kopriva, David A.
2017-07-01
We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.
NASA Astrophysics Data System (ADS)
Morlighem, M.; Williams, C. N.; Rignot, E.; An, L.; Arndt, J. E.; Bamber, J. L.; Catania, G.; Chauché, N.; Dowdeswell, J. A.; Dorschel, B.; Fenty, I.; Hogan, K.; Howat, I.; Hubbard, A.; Jakobsson, M.; Jordan, T. M.; Kjeldsen, K. K.; Millan, R.; Mayer, L.; Mouginot, J.; Noël, B. P. Y.; O'Cofaigh, C.; Palmer, S.; Rysgaard, S.; Seroussi, H.; Siegert, M. J.; Slabon, P.; Straneo, F.; van den Broeke, M. R.; Weinrebe, W.; Wood, M.; Zinglersen, K. B.
2017-11-01
Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.
USACE National Coastal Mapping Program Update
NASA Astrophysics Data System (ADS)
Sylvester, C.
2017-12-01
The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) formed in 1998 to support the coastal mapping and charting requirements of the USACE, NAVO, NOAA and USGS. This partnership fielded three generations of airborne lidar bathymeters, executed operational data collection programs within the U.S. and overseas, and advanced research and development in airborne lidar bathymetry and complementary technologies. JALBTCX executes a USACE Headquarters-funded National Coastal Mapping Program (NCMP). Initiated in 2004, the NCMP provides high-resolution, high-accuracy elevation and imagery data along the sandy shorelines of the U.S. on a recurring basis. NCMP mapping activities are coordinated with Federal mapping partners through the Interagency Working Group on Ocean and Coastal Mapping and the 3D Elevation Program. The NCMP, currently in it's third cycle, is performing operations along the East Coast in 2017, after having completed surveys along the Gulf Coast in 2016 and conducting emergency response operations in support of Hurricane Matthew. This presentation will provide an overview of JALBTCX, its history in furthering airborne lidar bathymetry technology to meet emerging mapping requirements, current NCMP operations and data products, and Federal mapping coordination activities.
Method of calculating tsunami travel times in the Andaman Sea region.
Kietpawpan, Monte; Visuthismajarn, Parichart; Tanavud, Charlchai; Robson, Mark G
2008-07-01
A new model to calculate tsunami travel times in the Andaman Sea region has been developed. The model specifically provides more accurate travel time estimates for tsunamis propagating to Patong Beach on the west coast of Phuket, Thailand. More generally, the model provides better understanding of the influence of the accuracy and resolution of bathymetry data on the accuracy of travel time calculations. The dynamic model is based on solitary wave theory, and a lookup function is used to perform bilinear interpolation of bathymetry along the ray trajectory. The model was calibrated and verified using data from an echosounder record, tsunami photographs, satellite altimetry records, and eyewitness accounts of the tsunami on 26 December 2004. Time differences for 12 representative targets in the Andaman Sea and the Indian Ocean regions were calculated. The model demonstrated satisfactory time differences (<2 min/h), despite the use of low resolution bathymetry (ETOPO2v2). To improve accuracy, the dynamics of wave elevation and a velocity correction term must be considered, particularly for calculations in the nearshore region.
Precise Measurement of Velocity Dependent Friction in Rotational Motion
ERIC Educational Resources Information Center
Alam, Junaid; Hassan, Hafsa; Shamim, Sohaib; Mahmood, Waqas; Anwar, Muhammad Sabieh
2011-01-01
Frictional losses are experimentally determined for a uniform circular disc exhibiting rotational motion. The clockwise and anticlockwise rotations of the disc, that result when a hanger tied to a thread is released from a certain height, give rise to vertical oscillations of the hanger as the thread winds and unwinds over a pulley attached to the…
Ocean Data Assimilation: A Coastal Application
2009-01-01
tcchnique with a semi-implicit formulation for the vertical acoustic modes (Ho- dur 1997; Hodur et al. 2002; Doyle et al. 2(08). A Robert time filter...r;,d i<l tion pyrometer was used to me<lsure SST with O. loe precision and O.SoC absolute ;Iccuracy. Sample ::l ircrllft p;Jths for J 3 August 2003
NASA Technical Reports Server (NTRS)
Feather, J. B.
1987-01-01
Results of simulated precision departures and missed approaches using MLS guidance concepts are presented. The study was conducted under the Terminal Configured Vehicle (TCV) Program, and is an extension of previous work by DAC under the Advanced Transport Operating System (ATOPS) Technology Studies Program. The study model included simulation of an MD-80 aircraft, an autopilot, and a MLS guidance computer that provided lateral and vertical steering commands. Precision departures were evaluated using a noise abatement procedure. Several curved path departures were simulated with MLS noise and under various environmental conditions. Missed approaches were considered for the same runway, where lateral MLS guidance maintained the aircraft along the extended runway centerline. In both the departures and the missed approach cases, pitch autopilot takeoff and go-around modes of operation were used in conjunction with MLS lateral guidance.
Terpitz, Ulrich; Zimmermann, Dirk
2010-01-01
The Eppendorf Piezo-Power Microdissection (PPMD) system uses a tungsten needle (MicroChisel) oscillating in a forward-backward (vertical) mode to cut cells from surrounding tissue. This technology competes with laser-based dissection systems, which offer high accuracy and precision, but are more expensive and require fixed tissue. In contrast, PPMD systems can dissect freshly prepared tissue, but their accuracy and precision is lower due to unwanted lateral vibrations of the MicroChisel. Especially in tissues where elasticity is high, these vibrations can limit the cutting resolution or hamper the dissection. Here we describe a cost-efficient and simple glass capillary-encapsulation modification of MicroChisels for effective attenuation of lateral vibrations. The use of modified MicroChisels enables accurate and precise tissue dissection from highly elastic material.
Flight Test Performance of a High Precision Navigation Doppler Lidar
NASA Technical Reports Server (NTRS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George
2009-01-01
A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.
NASA Astrophysics Data System (ADS)
Zhou, Shudao; Ma, Zhongliang; Wang, Min; Peng, Shuling
2018-05-01
This paper proposes a novel alignment system based on the measurement of optical path using a light beam scanning mode in a transmissometer. The system controls both the probe beam and the receiving field of view while scanning in two vertical directions. The system then calculates the azimuth angle of the transmitter and the receiver to determine the precise alignment of the optical path. Experiments show that this method can determine the alignment angles in less than 10 min with errors smaller than 66 μrad in the azimuth. This system also features high collimation precision, process automation and simple installation.
Commissioning of the ATLAS pixel detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
ATLAS Collaboration; Golling, Tobias
2008-09-01
The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of themore » ATLAS pixel system are presented.« less
NASA Astrophysics Data System (ADS)
Lovely, Peter; Chauvin, Benjamin; Brennan, Patrick; Laroche, Matt
2015-04-01
Understanding paleobathymetry is important to hydrocarbon explorationists, as it impacts depositional environments, reservoir quality, source rock preservation, hydrocarbon migration pathways, and paleo-stress. At long wavelengths (basin scale), bathymetry is controlled predominantly by isostatic compensation of vertical loads, which include sediment, water and spatial and temporal variations in the thickness and temperature of the crust and lithospheric mantle. Roberts, et al. (2003) present a workflow to account for these loads and derive paleobathymetry by 3-D flexural backstripping. However, to our knowledge, commercially packaged software for flexural backstripping is limited to two dimensions, and 3-D software is limited to Airy isostasy, which does not account for the elastic stiffness of the earth's crust and may, as a result, produce local error of 1km or more. We have developed a 3-D backstripping application that incorporates flexural isostasy, and is implemented in a workflow modeled after Roberts, et al. (2003). The application restores the isostatic components of basin geometry and bathymetry, and may account for the effects of sediment loading (isostasy & compaction), and rift-related subsidence (post- and syn-rift effects of homogeneous or depth-dependent pure-shear stretching models. Effects of dynamic topography, if quantifiable, may be prescribed as a bulk shift after backstripping. Implemented as a plug-in to Gocad, the application is accessible to a broad audience of geoscientists. The flexural isostasy implementation accounts for basin geometry and spatially heterogeneous layer thickness by discretizing each layer as a series of cylindrical loads of varying density and thickness at the nodes of a square grid. The isostatic effect of a single cylindrical load is provided by Brotchie & Silvester (1969) and the effect of multiple loads may be summed linearly. An iterative approach for calculating local water depth accounts for variations in eustatic sea level, allows for emergent topography, and overcomes potential pitfalls associated with the analytical solution for a "filled" basin. We review the numerical implementation of flexural backstripping, and discuss implications, as well as limitations, of paleobathymetric maps for source rock preservation and reservoir presence in two diverse passive margin settings: offshore Liberia and the Northwest Shelf of Australia.
Giorgino, M.J.; Strain, R.E.
1999-01-01
Bathymetric surveys were conducted at four water-supply impoundments of Little Cross Creek in Cumberland County, North Carolina. The surveys were conducted in April 1996 at Mintz Pond and Glenville Lake, and in January 1998 at Bonnie Doone Lake and Kornbow Lake. The resulting bathymetric maps are the first to cover the entire range in depth for these reservoirs and provide a framework for future evaluations of bathymetry and storage capacity. Bathymetric maps were constructed from depth and position data collected at each reservoir. A boat-mounted, research-grade fathometer was used to record water depths with a vertical accuracy of 0.1 foot. At Mintz Pond and Glenville Lake, position was measured by using a wide-band laser tracking system interfaced with a total station survey instrument. This positioning method required multiple land-based control points to be established and was hampered by line-of-sight restrictions between the control points and the boat. At Bonnie Doone Lake and Kornbow Lake, a global positioning system was used to collect differentially corrected location data. This positioning method enabled more rapid data collection, eliminated the need for land-based control points, and provided improved data coverage. Spillway elevations range from 172.8 feet above mean sea level at Bonnie Doone Lake to 113.1 feet at Glenville Lake. Surface area and storage volume were computed for each reservoir and were related to water-surface elevations at 1-foot intervals. The combined surface acreage of the four Little Cross Creek reservoirs at their full-pool elevations is 120.97 acres, consisting of 21.20 acres at Bonnie Doone Lake, 47.09 acres at Kornbow Lake, 15.56 acres at Mintz Pond, and 37.12 acres at Glenville Lake. The four reservoirs have a combined usable storage capacity of 674.91 acre-feet, which is the sum of 127.93 acre-feet in Bonnie Doone Lake, 320.62 acre-feet in Kornbow Lake, 53.25 acre-feet in Mintz Pond, and 173.11 acre-feet in Glenville Lake.
NASA Astrophysics Data System (ADS)
Liu, X.
2017-12-01
The presence of fluid escape features like seafloor pockmarks are observed in continental margin basins and ocean floors worldwide. While most of the reported depressions developed at deep water, this study provides a description of shallow pockmark field in shallow water that no deep than 55m in continent of the Yellow Sea. Combined with the multi-beam bathymetry data, terrain slope and the back- scattering intensity data, this study calculated the morphological parameters of the seabed pockmarks and carried out quantitative analysis. The outline of the seabed pockmarks were accurately defined, and 282 pockmarks with circle, elliptic, or elongated shape in the plan view were analyzed in ArcGIS. The average diameter of the pockmarks was 0.94 km, average area and circumference were 0.88 km2 and 3.82 km, the pockmarks also have the aspect ratio of 1.83, and relief from 0.5m to 2.5 m. The profile of the pockmarks shaped like W1, W2 and V, respectively distributed in the north, south, and west of the pockmark group. The large plane size but small vertical scale may be associated with the low concentration of the fluid. The orientation of the major axis of the pockmarks has 3 major directions, pockmarks aligned around ENE - WSW, NNE SSW consistent with the main direction of the bottom current in the study area, while pockmarks aligned around NNW-SSE direction mainly controlled by submarine topography. Some pockmark clustered as pockmark chain, which shows that the pockmark shape controlled by the ancient river or lagoon of the sedimentary strata. The acoustic backscatter strength of the pockmark area is of -71dB to -60dB, the average strength data inside the pockmark is significantly higher than the outside, with a difference of 5dB. The high backscatter strength may attribute to the coarse sediments that left inside the pockmark due to winnowing of fine-grained sediments, or result of the precipitation of diagenitic or authigenic minerals associated with fluid venting.
The regional structure of the Red Sea Rift revised
NASA Astrophysics Data System (ADS)
Augustin, Nico; van der Zwan, Froukje M.; Devey, Colin W.; Brandsdóttir, Bryndís
2017-04-01
The Red Sea Rift has, for decades, been considered a text book example of how young ocean basins form and mature. Nevertheless, most studies of submarine processes in the Red Sea were previously based on sparse data (mostly obtained between the late 1960's and 1980's) collected at very low resolution. This low resolution, combined with large gaps between individual datasets, required large interpolations when developing geological models. Thus, these models generally considered the Red Sea Rift a special case of young ocean basement formation, dividing it from North to South into three zones: a continental thinning zone, a "transition zone" and a fully developed spreading zone. All these zones are imagined, in most of the models, to be separated by large transform faults, potentially starting and ending on the African and Arabian continental shields. However, no consensus between models e.g. about the locations (or even the existence) of major faults, the nature of the transition zone or the extent of oceanic crust in the Red Sea Rift has been reached. Recently, high resolution bathymetry revealed detailed seafloor morphology as never seen before from the Red Sea, very comparable to other (ultra)slow spreading mid-ocean ridges such as the Gakkel Ridge, the Mid-Atlantic Ridge and SW-Indian Ridge, changing the overall picture of the Red Sea significantly. New discoveries about the extent, movement and physical properties of submarine salt deposits led to the Red Sea Rift being linked to the young Aptian-age South Atlantic. Extensive crosscutting transform faults are not evident in the modern bathymetry data, neither in teleseismic nor vertical gravity gradient data and comparisons to Gakkel Ridge and the SW-Indian Ridge suggest that the Red Sea is much simpler in terms of structural geology than was previously thought. Complicated tectonic models do not appear necessary and there appears to be large areas of oceanic crust under the Red Sea salt blankets. Based on this new information, we present a new and straightforward model of the large scale geological and tectonic situation in the Red Sea Rift.
Exploration of the Climate Change Frontier in Polar Regions at the Land Ice-Ocean Boundary.
NASA Astrophysics Data System (ADS)
Rignot, E. J.
2014-12-01
Ice sheets are the largest contributors to sea level rise at present, and responsible for the largest uncertainty in sea level projections. Ice sheets raised sea level 5 m per century 13.5 kyr ago during one period of rapid change. Leading regions for future rapid changes include the marine-based, retrograde bed parts of Greenland (north center and east), West Antarctica (Amundsen Sea), and East Antarctica (Filchner basin and Wilkes Land). Fast changes require an increase in ice melt from a warmer ocean and an increase in iceberg calving. Our understanding of both processes remains limited due to a lack of basic observations. Understanding ocean forcing requires observations on the continental shelf, along bays and glacial fjords and at ice-ocean boundaries, beneath kilometers of ice (Antarctica) or at near-vertical calving cliffs (Greenland), of ocean temperature and sea floor bathymetry. Where such observations exist, the sea floor is much deeper than anticipated because of the carving of deep channels by multiple glacier advances. Warm subsurface waters penetrate throughout the Amundsen Sea Embayment of West Antarctica, the southeast and probably the entire west coasts of Greenland. In Greenland, discharge of subglacial water from surface runoff at the glacier grounding line increases ice melting by the ocean even if the ocean temperature remains the same. Near ice-ocean boundaries, satellite observations are challenged, airborne observations and field surveys are limited, so advanced robotic techniques for cold, deep, remote environments are ultimately required in combination with advanced numerical modeling techniques. Until such technological advances take place and advanced networks are put in place, it is critical to conduct boat surveys, install moorings, and conduct extensive airborne campaigns (for instance, gravity-derived bathymetry and air-dropped CTDs), some of which is already taking place. In the meantime, projections of ice sheet evolution in a warmer climate will remain highly conservative and perhaps misleading. Furthermore, as glaciers destabilize, iceberg calving will take over. Calving depends on the height of the calving cliff, the fracturing of ice near the ice front by strain rates or water; but the jury is also out about defining a universal calving law.
NASA Astrophysics Data System (ADS)
Pellegrini, Claudio; Marchese, Fabio; Savini, Alessandra; Bistacchi, Andrea
2016-04-01
The Apulian ridge (North-eastern Ionian margin - Mediterranean Sea) is formed by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a NNW-SSE penetrative normal fault system and is part of the present foreland system of both the Apennine to the west and the Hellenic arc to the east. The geometry, age, architecture and kinematics of the fault network were investigated integrating data of heterogeneous sources, provided by previous studies: regional scale 2D seismics and three wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, very high resolution seismic (VHRS - Sparker and Chirp-sonar data), multi-beam echosounder bathymetry and results from sedimentological and geo-chronological analysis of sediment samples collected on the seabed. Multibeam bathymetric data allowed in particular assessing the 3D continuity of structures imaged in 2D seismics, thanks to the occurrence of continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides), revealing the vertical extent and finite displacement associated to fault scarps. A penetrative network of relatively small faults, always showing a high dip angle, composes the NNW-SSE normal fault system, resulting in frequent relay zones, which are particularly well imaged by seafloor geomorphology. In addition, numerous fault scarps appear to be roughly coeval with quaternary submarine mass-wasting deposits colonised by Cold-Water Corals (CWC). Coral colonies, yielding ages between 11 and 14 kA, develop immediately on top of late Pleistocene mass-wasting deposits. Mutual cross-cutting relationships have been recognized between fault scarps and landslides, indicating that, at least in places, these features may be coeval. We suppose that fault activity lasted at least as far as the Holocene-Pleistocene boundary and that the NNW-SSW normal fault network in the Apulian Plateau can be considered active (or at least active till the Holocene-Pleistocene boundary), and that the cumulative horizontal displacement is consistent with a relevant WSW-ENE stretching, that can be associated to the bending moment applied to the Apulian Plate by the combined effect of the Appennines and Hellenides subduction.
Time-Dependent Flexural Deformation Beneath the Emperor Seamounts
NASA Astrophysics Data System (ADS)
Wessel, P.; Watts, A. B.; Kim, S. S.
2014-12-01
The Hawaii-Emperor seamount chain stretches over 6000 km from the Big Island of Hawaii to the subduction cusp off Kamchatka and represents a near-continuous record of hotspot volcanism since the Late Cretaceous. The load of these seamounts and islands has caused the underlying lithosphere to deform, developing a flexural flanking moat that is now largely filled with volcanoclastic sediments. Because the age differences between the seafloor and the seamounts vary by an order of magnitude or more along the chain, the Hawaii-Emperor chain and surrounding area is considered a natural laboratory for lithospheric flexure and has been studied extensively in order to infer the rheology of the oceanic lithosphere. While most investigations have focused on the Hawaiian Islands and proximal seamounts (where data sets are more complete, including seismic reflection and refraction, swath bathymetry and even mapping and dating of drowned reef terraces), far fewer studies have examined the flexural deformation beneath the remote Emperor chain. Preliminary analysis of satellite altimetry data shows the flexural moats to be associated with very large negative gravity anomalies relative to the magnitudes of the positive anomalies over the loads, suggesting considerable viscous or viscoelastic relaxation since the loads were emplaced 50-80 Myr ago. In our study, we will attempt to model the Emperor seamount chain load as a superposition of individual elliptical Gaussian seamounts with separate loading histories. We use Optimal Robust Separation (ORS) techniques to extract the seamount load from the regional background bathymetry and partition the residual load into a set of individual volcanoes. The crustal age grid and available seamount dates are used to construct a temporal loading model and evaluate the flexural response of the lithosphere beneath the Emperor seamounts. We explore a variety of rheological models and loading scenarios that are compatible with the inferred load sizes and observed gravity anomalies, with emphasis on the temporal-spatial variation in vertical deformation along the hotspot chain, and examine their implications for the tilting history of the loads and the stratigraphic "architecture" of their flanking flexural moats.
Global Bathymetry: Machine Learning for Data Editing
NASA Astrophysics Data System (ADS)
Sandwell, D. T.; Tea, B.; Freund, Y.
2017-12-01
The accuracy of global bathymetry depends primarily on the coverage and accuracy of the sounding data and secondarily on the depth predicted from gravity. A main focus of our research is to add newly-available data to the global compilation. Most data sources have 1-12% of erroneous soundings caused by a wide array of blunders and measurement errors. Over the years we have hand-edited this data using undergraduate employees at UCSD (440 million soundings at 500 m resolution). We are developing a machine learning approach to refine the flagging of the older soundings and provide automated editing of newly-acquired soundings. The approach has three main steps: 1) Combine the sounding data with additional information that may inform the machine learning algorithm. The additional parameters include: depth predicted from gravity; distance to the nearest sounding from other cruises; seafloor age; spreading rate; sediment thickness; and vertical gravity gradient. 2) Use available edit decisions as training data sets for a boosted tree algorithm with a binary logistic objective function and L2 regularization. Initial results with poor quality single beam soundings show that the automated algorithm matches the hand-edited data 89% of the time. The results show that most of the information for detecting outliers comes from predicted depth with secondary contributions from distance to the nearest sounding and longitude. A similar analysis using very high quality multibeam data shows that the automated algorithm matches the hand-edited data 93% of the time. Again, most of the information for detecting outliers comes from predicted depth secondary contributions from distance to the nearest sounding and longitude. 3) The third step in the process is to use the machine learning parameters, derived from the training data, to edit 12 million newly acquired single beam sounding data provided by the National Geospatial-Intelligence Agency. The output of the learning algorithm will be confidence ratedindicating which edits the algorithm is confident on and which it is not confident. We expect the majority ( 90%) of edits to be confident and not require human intervention. Human intervention will be required only on the 10% unconfident decisions, thus reducing the amount of human work by a factor of 10 or more.
3D Photo Mosaicing of Tagiri Shallow Vent Field by an Autonomous Underwater Vehicle
NASA Astrophysics Data System (ADS)
Maki, Toshihiro; Kondo, Hayato; Ura, Tamaki; Sakamaki, Takashi; Mizushima, Hayato; Yanagisawa, Masao
Although underwater visual observation is an ideal method for detailed survey of seafloors, it is currently a costly process that requires the use of Remotely Operated Vehicles (ROVs) or Human Occupied Vehicles (HOVs), and can cover only a limited area. This paper proposes an innovative method to navigate an autonomous underwater vehicle (AUV) to create both 2D and 3D photo mosaics of seafloors with high positioning accuracy without using any vision-based matching. The vehicle finds vertical pole-like acoustic reflectors to use as positioning landmarks using a profiling sonar based on a SLAM (Simultaneous Localization And Mapping) technique. These reflectors can be either artificial or natural objects, and so the method can be applied to shallow vent fields where conventional acoustic positioning is difficult, since bubble plumes can also be used as landmarks as well as artificial reflectors. Path-planning is performed in real-time based on the positions and types of landmarks so as to navigate safely and stably using landmarks of different types (artificial reflector or bubble plume) found at arbitrary times and locations. Terrain tracker switches control reference between depth and altitude from the seafloor based on a local map of hazardous area created in real-time using onboard perceptual sensors, in order to follow rugged terrains at an altitude of 1 to 2 meters, as this range is ideal for visual observation. The method was implemented in the AUV Tri-Dog 1 and experiments were carried out at Tagiri vent field, Kagoshima Bay in Japan. The AUV succeeded in fully autonomous observation for more than 160 minutes to create a photo mosaic with an area larger than 600 square meters, which revealed the spatial distribution of detailed features such as tube-worm colonies, bubble plumes and bacteria mats. A fine bathymetry of the same area was also created using a light-section ranging system mounted on the vehicle. Finally a 3 D representation of the environment was created by merging the visual and bathymetry data.
Earthquakes and faults in southern California (1970-2010)
Sleeter, Benjamin M.; Calzia, James P.; Walter, Stephen R.
2012-01-01
The map depicts both active and inactive faults and earthquakes magnitude 1.5 to 7.3 in southern California (1970–2010). The bathymetry was generated from digital files from the California Department of Fish And Game, Marine Region, Coastal Bathymetry Project. Elevation data are from the U.S. Geological Survey National Elevation Database. Landsat satellite image is from fourteen Landsat 5 Thematic Mapper scenes collected between 2009 and 2010. Fault data are reproduced with permission from 2006 California Geological Survey and U.S. Geological Survey data. The earthquake data are from the U.S. Geological Survey National Earthquake Information Center.
Schwab, William C.; Denny, Jane F.; Baldwin, Wayne E.
2014-01-01
The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 2011 by using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface, and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island.
Maier, Katherine L.; Paull, Charles K.; Brothers, Daniel; Caress, David W.; McGann, Mary; Lundsten, Eve M.; Anderson, Krystle; Gwiazda, Roberto
2017-01-01
We provide an extensive high‐resolution geophysical, sediment core, and radiocarbon dataset to address late Pleistocene and Holocene fault activity of the San Gregorio fault zone (SGFZ), offshore central California. The SGFZ occurs primarily offshore in the San Andreas fault system and has been accommodating dextral strike‐slip motion between the Pacific and North American plates since the mid‐Miocene. Our study focuses on the SGFZ where it has been mapped through the continental slope north of Monterey Canyon. From 2009 to 2015, the Monterey Bay Aquarium Research Institute collected high‐resolution multibeam bathymetry and chirp sub‐bottom profiles using an autonomous underwater vehicle (AUV). Targeted samples were collected using a remotely operated vehicle (ROV) to provide radiocarbon age constraints. We integrate the high‐resolution geophysical data with radiocarbon dates to reveal Pleistocene seismic horizons vertically offset less than 5 m on nearly vertical faults. These faults are buried by continuous reflections deposited after ∼17.5 ka and likely following erosion during the last sea‐level lowstand ∼21 ka, bracketing the age of faulting to ∼32–21 ka. Clearly faulted horizons are only detected in a small area where mass wasting exhumed older strata to within ∼25 m of the seafloor. The lack of clearly faulted Holocene deposits and possible highly distributed faulting in the study area are consistent with previous interpretations that late Pleistocene and Holocene activity along the SGFZ may decrease to the south. This study illustrates the complexity of the SGFZ, offshore central California, and demonstrates the utility of very high‐resolution data from combined AUV (geophysical)–ROV (seabed sampling) surveys in offshore studies of fault activity.
Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean
NASA Astrophysics Data System (ADS)
Olivar, M. P.; Bernal, A.; Molí, B.; Peña, M.; Balbín, R.; Castellón, A.; Miquel, J.; Massutí, E.
2012-04-01
The mesopelagic fish community of the western Mediterranean was studied during two cruises carried out in December 2009 and July 2010 in the shelf and slope zones around the Balearic Islands. Much of what was previously known about this deep water group of fishes in the Mediterranean Sea came from studies performed using planktonic and small midwater nets. This study was the first attempt to use large pelagic trawls and small nets combined with information about the main sound scattering layers to analyse mesopelagic fish composition, diversity and species assemblages. This community is characterised by a relatively low diversity compared to other oceanic regions of the world, with Myctophiformes and Stomiiformes being the main contributors. Bathymetry and the level of the water column were the most important factors structuring the investigated fish assemblages, and similar vertical patterns were observed for the different species collected during the two study periods. A shelf assemblage composed of a few species of myctophids, with Notoscopelus elongatus being the main contributor, was distinguished. The slope assemblage included both Myctophiformes and Stomiiformes that showed differences in their day-night main location along the water column. In terms of species behaviour, two important groups were detected. The first was non-migrant or weakly migrant species, with the paradigmatic example being the gonostomatid Cyclothone braueri, which occurred at a depth of 400-600 m; this species is partly responsible for the permanent acoustic (38 kHz) response at this depth. The second group, near-surface migrants at night, was represented by most of the juvenile and adult myctophids, exemplified by Ceratoscopelus maderensis, with the exception of just a few of the largest size classes of some species, such as Lampanyctus crocodilus and N. elongatus that remain near the bottom.
NASA Astrophysics Data System (ADS)
Baba, Kiyoshi; Chen, Jin; Sommer, Malte; Utada, Hisashi; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion
2017-10-01
The Tristan da Cunha (TDC) is a volcanic island located above a prominent hotspot in the Atlantic Ocean. Many geological and geochemical evidences support a deep origin of the mantle material feeding the hotspot. However, the existence of a plume has not been confirmed as an anomalous structure in the mantle resolved by geophysical data because of lack of the observations in the area. Marine magnetotelluric and seismological observations were conducted in 2012-2013 to examine the upper mantle structure adjacent to TDC. The electrical conductivity structure of the upper mantle beneath the area was investigated in this study. Three-dimensional inversion analysis depicted a high conductive layer at 120 km depth but no distinct plume-like vertical structure. The conductive layer is mostly flat independently on seafloor age and bulges upward beneath the lithospheric segment where the TDC islands are located compared to younger segment south of the TDC Fracture Zone, while the bathymetry is rather deeper than prediction for the northern segment. The apparent inconsistency between the absence of vertical structure in this study and geochemical evidences on deep origin materials suggests that either the upwelling is too small and/or weak to be resolved by the current data set or that the upwelling takes place elsewhere outside of the study area. Other observations suggest that 1) the conductivity of the upper mantle can be explained by the fact that the mantle above the high conductivity layer is depleted in volatiles as the result of partial melting beneath the spreading ridge, 2) the potential temperature of the segments north of the TDC Fracture Zone is lower than that of the southern segment at least during the past 30 Myr.
A multi-resolution approach to electromagnetic modeling.
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu
2018-04-01
We present a multi-resolution approach for three-dimensional magnetotelluric forward modeling. Our approach is motivated by the fact that fine grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography, and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. This is especially true for forward modeling required in regularized inversion, where conductivity variations at depth are generally very smooth. With a conventional structured finite-difference grid the fine discretization required to adequately represent rapid variations near the surface are continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modeling is especially important for solving regularized inversion problems. We implement a multi-resolution finite-difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of sub-grids, with each sub-grid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modeling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modeling operators on interfaces between adjacent sub-grids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models show that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.
Lydersen, Christian; Biuw, Martin; Haug, Tore; Fedak, Mike A.; Kovacs, Kit M.
2017-01-01
Identifying environmental characteristics that define the ecological niche of a species is essential to understanding how changes in physical conditions might affect its distribution and other aspects of its ecology. The present study used satellite relay data loggers (SRDLs) to study habitat use by Northeast Atlantic hooded seals (N = 20; 9 adult females, 3 adult males, and 8 juveniles). Three different methods were used in combination to achieve maximum insight regarding key foraging areas for hooded seals in this region, which have decline by 85% in recent decades: 1) first passage time (FPT); 2) vertical transit rate and; 3) change in dive drift rate. Generalized additive mixed models (GAMM) were applied to each method to determine whether specific habitat characteristics were associated with foraging. Separate models were run for the post-molting and the post-breeding seasons; sex and age classes were included in the GAMMs. All three methods highlighted a few common geographic areas as being important foraging zones; however, there were also some different areas identified by the different methods, which highlights the importance of using multiple indexes when analyzing tracking and diving data to study foraging behavior. Foraging occurred most commonly in relatively shallow areas with high Sea Surface Temperatures (SST), corresponding to continental shelf areas with Atlantic Water masses. All age and sex classes overlapped spatially to some extent, but the different age and sex groups showed differences in the bathymetry of their foraging areas as well as in their vertical use of the water column. When foraging, pups dove in the upper part of the water column in relatively deep areas. Adult females foraged relatively shallowly in deep water areas too, though in shallower areas than pups. Adult males foraged close to the bottom in shallower areas. PMID:29211797
Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).
Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar
2016-01-01
Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.
Chilean Tsunami Rocks the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.
2016-12-01
The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.
Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003
Sullivan, Annette B.; Rounds, Stewart A.
2004-01-01
The two-dimensional model CE-QUAL-W2 was used to simulate hydrodynamics, temperature, and water quality in Henry Hagg Lake, Oregon, for the years 2000 through 2003. Input data included lake bathymetry, meteorologic conditions, tributary inflows, tributary temperature and water quality, and lake outflows. Calibrated constituents included lake hydrodynamics, water temperature, orthophosphate, total phosphorus, ammonia, algae, chlorophyll a, zooplankton, and dissolved oxygen. Other simulated constituents included nitrate, dissolved and particulate organic matter, dissolved solids, and suspended sediment. Two algal groups (blue-green algae, and all other algae) were included in the model to simulate the lakes algal communities. Measured lake stage data were used to calibrate the lakes water balance; calibration of water temperature and water quality relied upon vertical profile data taken in the deepest part of the lake near the dam. The model initially was calibrated with data from 200001 and tested with data from 200203. Sensitivity tests were performed to examine the response of the model to specific parameters and coefficients, including the light-extinction coefficient, wind speed, tributary inflows of phosphorus, nitrogen and organic matter, sediment oxygen demand, algal growth rates, and zooplankton feeding preference factors.
Evaluating a small footprint, waveform-resolving lidar over coastal vegetation communities
Nayegandhl, A.; Brock, J.C.; Wright, C.W.; O'Connell, M. J.
2006-01-01
NASA's Experimental Advanced Airborne Research Lidar (EAARL) is a raster-scanning, waveform-resolving, green-wavelength (532 nm) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor records the time history of the return waveform within a small footprint (20 cm diameter) for each laser pulse, enabling characterization of vegetation canopy structure and "bare earth" topography under a variety of vegetation types. A collection of individual waveforms combined within a synthesized large footprint was used to define three metrics: canopy height (CH), canopy reflection ratio (CRR), and height of median energy (HOME). Bare Earth Elevation (BEE) metric was derived using the individual small-footprint waveforms. All four metrics were tested for reproducibility, which resulted in an average of 95 percent correspondence within two standard deviations of the mean. CH and BEE values were also tested for accuracy using ground-truth data. The results presented in this paper show that combining several individual small-footprint laser pulses to define a composite "large-footprint" waveform is a possible method to depict the vertical structure of a vegetation canopy. ?? 2006 American Society for Photogrammetry and Remote Sensing.
NASA Astrophysics Data System (ADS)
Hewaidy, Abdel Galil; Elshahat, O. R.; Kamal, Samy
2018-03-01
Abu Roach "E" member is of an important hydrocarbon reservoir-producing horizon in the Abu Gharadig Field (north Western Desert, Egypt). This study is used to build facies analysis and depositional environments model for the Upper Unit of the Abu Roash "E" member in Abu Gharadig Field. This target has been achieved throughout the sedimentological, wire line logs, lithostratigraphic and biostratigraphic analyses of more than 528 feet cores. The high-resolution biostratigraphic analysis provides a calibration for the paleo-bathymetry and depositional environmental interpretations. Biozonation and lithostratigraphic markers are used to constrain stratigraphic correlation. Integration between the core description and petorographic microfacies analysis by microscope examination provide an excellent indication for the rock types and depositional environments. Five depositional facies types are detected including carbonate inner ramp, tidal flats, tidal channels, supra-tidal and tide dominated delta facies. This model helps in the understanding of the Upper Unit of Abu Roash "E" member reservoir distribution as well as lateral and vertical facies changes that contribute to the development strategy for the remaining hydrocarbon reserves for this important oil reservoir.
Morphology of Florida Escarpment chemosynthetic brine seep community sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paull, C.K.; Spiess, F.N.; Curray, J.R.
1988-01-01
The Florida Escarpment near 26/sup 0/N was surveyed with Deep-Two, Seabeam, and GLORIA in the area where chemosynthetic communities were discovered via ALVIN in the abyssal Gulf of Mexico. Seabeam bathymetry and GLORIA images indicate that the escarpment is a generally straight cliff with average slopes of about 45/sup 0/ from 2,200 to more than 3,250 m. The escarpment's face is cut by 2-km wide box canyons whose head walls are as steep as the intervening escarpment's face. The shapes of these canyons are difficult to explain with the traditional models of canyon formation. Sidescan sonar images and bottom photographsmore » reveal that the escarpment's face is composed of a series of long, straight bedding-plane terraces which are truncated along nearly vertical orthogonal joints. Exposure of these truncated strata indicate the face of the escarpment is eroded. The contact between the basal escarpment and the flat-lying abyssal hemipelagic sediments is abrupt. Apparently, chemosynthetic communities line extensive sections of the escarpment base where reduced brines seep out into the sea floor. The morphology suggests joints and deep seeps are controlling factors in scarp retreat.« less
Data Processing and Quality Evaluation of a Boat-Based Mobile Laser Scanning System
Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri
2013-01-01
Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0–1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data. PMID:24048340
Data processing and quality evaluation of a boat-based mobile laser scanning system.
Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri
2013-09-17
Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0-1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data.
NASA Astrophysics Data System (ADS)
de Ruggiero, Paola; Celeste, Antonio; Pierini, Stefano; Sgubin, Giovanni
2017-04-01
A modelling study of the intrinsic and forced variability of the Antarctic Circumpolar Current in a wide sector of the Southern Ocean (SO) in summer conditions is presented. A sigma-coordinate ocean general circulation model with a spatial resolution of 0.18° and 12 vertical sigma levels is implemented in a domain extending from 30°S to 80°S and from 90°E to 110°W (thus including the SO sector south of Australia and New Zealand as well as the Ross Sea). Periodic conditions are imposed along the two meridional boundaries. Realistic bathymetry and coastlines and relatively idealized latitude-dependent stratification and surface momentum and heat fluxes are used. The Southern Ocean Database (SODB) for the initialization and the ERA-Interim ECMWF modelling data for the atmospheric forcing are used. Steady climatological surface fluxes are imposed to identify intrinsic low- and high-frequency fluctuations, whose analysis suggests possible mechanisms of mutual interactions. This work was carried out in the framework of the ACCUA and MOMA projects of the Italian "Programma Nazionale di Ricerche in Antartide" (PNRA).
The accuracy of the ATLAS muon X-ray tomograph
NASA Astrophysics Data System (ADS)
Avramidou, R.; Berbiers, J.; Boudineau, C.; Dechelette, C.; Drakoulakos, D.; Fabjan, C.; Grau, S.; Gschwendtner, E.; Maugain, J.-M.; Rieder, H.; Rangod, S.; Rohrbach, F.; Sbrissa, E.; Sedykh, E.; Sedykh, I.; Smirnov, Y.; Vertogradov, L.; Vichou, I.
2003-01-01
A gigantic detector, the ATLAS project, is under construction at CERN for particle physics research at the Large Hadron Collider which is to be ready by 2006. An X-ray tomograph has been developed, designed and constructed at CERN in order to control the mechanical quality of the ATLAS muon chambers. We reached a measurement accuracy of 2 μm systematic and 2 μm statistical uncertainties in the horizontal and vertical directions in the working area 220 cm (horizontal)×60 cm (vertical). Here we describe in detail the fundamental approach of the basic principle chosen to achieve such good accuracy. In order to crosscheck our precision, key results of measurements are presented.
Astro-geodetic platform for high accuracy geoid determinat ion
NASA Astrophysics Data System (ADS)
Bǎdescu, Octavian; Nedelcu, Dan Alin; Cǎlin, Alexandru; Dumitru, Paul Daniel; Cǎlin, Lavinia A.; Popescu, Marcel
The paper presents first technical realizations of a mobile platform for vertical deviation determination at a satisfactory precision and low cost. The conception of the platform was made in the framework of a project regarding CCD astro-geodetic vertical deviation for geoid determination or geoid modeling. The project with the acronym A-GEO represents a collaboration between Technical University of Civil Engineering Bucharest - Faculty of Geodesy, (TUCEB-FG), Astronomical Institute of the Romanian academy (AIRA), and a private partner GeoGIS Proiect S.R.L. The paper presents some hardware and software aspects regarding design, development, and automation of the platform, based on an electro-optical geodetic instrument, CCD observations and satellite time synchronization for astro-geodetic measurements.
Bathymetry in Petermann fjord from Operation IceBridge aerogravity
NASA Astrophysics Data System (ADS)
Tinto, Kirsty J.; Bell, Robin E.; Cochran, James R.; Münchow, Andreas
2015-07-01
Petermann Glacier is a major glacier in northern Greenland, maintaining one of the few remaining floating ice tongues in Greenland. Monitoring programs, such as NASA's Operation IceBridge have surveyed Petermann Glacier over several decades and have found it to be stable in terms of mass balance, velocity and grounding-line position. The future vulnerability of this large glacier to changing ocean temperatures and climate depends on the ocean-ice interactions beneath its floating tongue. These cannot currently be predicted due to a lack of knowledge of the bathymetry underneath the ice tongue. Here we use aerogravity data from Operation IceBridge, together with airborne radar and laser data and shipborne bathymetry-soundings to model the bathymetry beneath the Petermann ice tongue. We find a basement-cored inner sill at 540-610 m depth that results in a water cavity with minimum thickness of 400 m about 25 km from the grounding line. The sill is coincident with the location of the melt rate minimum. Seaward of the sill the fjord is strongly asymmetric. The deepest point occurs on the eastern side of the fjord at 1150 m, 600 m deeper than on the western side. This asymmetry is due to a sedimentary deposit on the western side of the fjord. A 350-410 m-deep outer sill, also mapped by marine surveys, marks the seaward end of the fjord. This outer sill is aligned with the proposed Last Glacial Maximum (LGM) grounding-line position for Petermann Glacier. The inner sill likely provided a stable pinning point for the grounding line in the past, punctuating the retreat of Petermann Glacier since the LGM.
Gravity and Magnetic Signatures of Different Types of Spreading at the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Alodia, G.; Green, C. M.; McCaig, A. M.; Paton, D.; Campbell, S.
2017-12-01
In recent years it has been recognised that parts of slow spreading ridges such as the mid-Atlantic Ridge (MAR) are characterised by typical magmatic spreading, while other parts are characterised by the formation of detachment faults and oceanic core complexes (OCC). These different spreading modes can be clearly identified in the near-ridge environment in the bathymetry, with magmatic mode crust characterised by linear fault-bounded ridges, and detachment mode crust by more chaotic bathymetric signatures. The aim of this project is to characterise the magnetic and gravity signatures of lithosphere created by different modes of spreading, with the aim of using these signatures to identify different modes of spreading in ocean-continent transitions where the bathymetry is often hidden beneath sediment. In this presentation, we first characterise different modes of spreading using available high-resolution bathymetry data in the 28-32 N section of the MAR up to 20 My of age. The identified characteristics are then related to the corresponding ship-borne gravity and magnetic data in the same area. As most magnetic anomalies found in the near-axis environment are caused by the remanent magnetisation, it is found that in places where OCCs are present, magnetic anomalies are not as symmetrical as those found in magmatic mode regions. In both gravity and magnetic data, gradients are strongly clustered in the spreading direction in magmatic mode crust, but much more variable in detachment mode. We present a range of parameters extracted from the data that characterise different spreading modes, and use these to test whether transitions between detachment and magmatic mode crust identified in the bathymetry can be readily identified in gravity and magnetic data with different degrees of resolution.
Preliminary studies leading toward the development of a LIDAR bathymetry mapping instrument
NASA Astrophysics Data System (ADS)
Hill, John M.; Krenek, Brendan D.; Kunz, Terry D.; Krabill, William; Stetina, Fran
1993-02-01
The National Aeronautics and Space Administration (NASA) at Goddard Space Flight Center (GSFC) has developed a laser ranging device (LIDAR) which provides accurate and timely data of earth features. NASA/GSFC recently modified the sensor to include a scanning capability to produce LIDAR swaths. They have also integrated a Global Positioning System (GPS) and an Inertial Navigation System (INS) to accurately determine the absolute aircraft location and aircraft attitude (pitch, yaw, and roll), respectively. The sensor has been flown in research mode by NASA for many years. The LIDAR has been used in different configurations or modes to acquire such data as altimetry (topography), bathymetry (water depth), laser-induced fluorosensing (tracer dye movements, oil spills and oil thickness, chlorophyll and plant stress identification), forestry, and wetland discrimination studies. NASA and HARC are developing a commercial version of the instrument for topographic mapping applications. The next phase of the commercialization project will be to investigate other applications such as wetlands mapping and coastal bathymetry. In this paper we report on preliminary laboratory measurements to determine the feasibility of making accurate depth measurements in relatively shallow water (approximately 2 to 6 feet deep) using a LIDAR system. The LIDAR bathymetry measurements are relatively simple in theory. The water depth is determined by measuring the time interval between the water surface reflection and the bottom surface reflection signals. Depth is then calculated by dividing by the index of refraction of water. However, the measurements are somewhat complicated due to the convolution of the water surface return signal with the bottom surface return signal. Therefore in addition to the laboratory experiments, computer simulations of the data were made to show these convolution effects in the return pulse waveform due to: (1) water depth, and (2) changes in bottom surface reflectivity.
Preliminary Studies Leading Toward the Development of a LIDAR Bathymetry Mapping Instrument
NASA Technical Reports Server (NTRS)
Hill, John M.; Krenek, Brendan D.; Kunz, Terry D.; Krabill, William; Stetina, Fran
1993-01-01
The National Aeronautics and Space Administration (NASA) at Goddard Space Flight Center (GSFC) has developed a laser ranging device (LIDAR) which provides accurate and timely data of earth features. NASA/GSFC recently modified the sensor to include a scanning capability to produce LIDAR swaths. They have also integrated a Global Positioning System (GPS) and an Inertial Navigation System (INS) to accurately determine the absolute aircraft location and aircraft attitude (pitch, yaw, and roll), respectively. The sensor has been flown in research mode by NASA for many years. The LIDAR has been used in different configurations or modes to acquire such data as altimetry (topography), bathymetry (water depth), laser-induced fluorosensing (tracer dye movements, oil spills and oil thickness, chlorophyll and plant stress identification), forestry, and wetland discrimination studies. NASA and HARC are developing a commercial version of the instrument for topographic mapping applications. The next phase of the commercialization project will be to investigate other applications such as wetlands mapping and coastal bathymetry. In this paper we report on preliminary laboratory measurements to determine the feasibility of making accurate depth measurements in relatively shallow water (approximately 2 to 6 feet deep) using a LIDAR system. The LIDAR bathymetry measurements are relatively simple in theory. The water depth is determined by measuring the time interval between the water surface reflection and the bottom surface reflection signals. Depth is then calculated by dividing by the index of refraction of water. However, the measurements are somewhat complicated due to the convolution of the water surface return signal with the bottom surface return signal. Therefore in addition to the laboratory experiments, computer simulations of the data were made to show these convolution effects in the return pulse waveform due to: (1) water depth, and (2) changes in bottom surface reflectivity.
Pfeiffer, William R.; Flocks, James G.; DeWitt, Nancy T.; Forde, Arnell S.; Kelso, Kyle; Thompson, Phillip R.; Wiese, Dana S.
2011-01-01
In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi, and Dauphin Island, Alabama (fig. 1). These efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geologic stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorphological changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and protection for the historical Fort Massachusetts on Ship Island, Mississippi. For more information please refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, seabed backscatter images, and ASCII x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.
Parameterized Spectral Bathymetric Roughness Using the Nonequispaced Fast Fourier Transform
NASA Astrophysics Data System (ADS)
Fabre, David Hanks
The ocean and acoustic modeling community has specifically asked for roughness from bathymetry. An effort has been undertaken to provide what can be thought of as the high frequency content of bathymetry. By contrast, the low frequency content of bathymetry is the set of contours. The two-dimensional amplitude spectrum calculated with the nonequispaced fast Fourier transform (Kunis, 2006) is exploited as the statistic to provide several parameters of roughness following the method of Fox (1996). When an area is uniformly rough, it is termed isotropically rough. When an area exhibits lineation effects (like in a trough or a ridge line in the bathymetry), the term anisotropically rough is used. A predominant spatial azimuth of lineation summarizes anisotropic roughness. The power law model fit produces a roll-off parameter that also provides insight into the roughness of the area. These four parameters give rise to several derived parameters. Algorithmic accomplishments include reviving Fox's method (1985, 1996) and improving the method with the possibly geophysically more appropriate nonequispaced fast Fourier transform. A new composite parameter, simply the overall integral length of the nonlinear parameterizing function, is used to make within-dataset comparisons. A synthetic dataset and six multibeam datasets covering practically all depth regimes have been analyzed with the tools that have been developed. Data specific contributions include possibly discovering an aspect ratio isotropic cutoff level (less than 1.2), showing a range of spectral fall-off values between about -0.5 for a sandybottomed Gulf of Mexico area, to about -1.8 for a coral reef area just outside of the Saipan harbor. We also rank the targeted type of dataset, the best resolution gridded datasets, from smoothest to roughest using a factor based on the kernel dimensions, a percentage from the windowing operation, all multiplied by the overall integration length.
Estimation of wave phase speed and nearshore bathymetry from video imagery
Stockdon, H.F.; Holman, R.A.
2000-01-01
A new remote sensing technique based on video image processing has been developed for the estimation of nearshore bathymetry. The shoreward propagation of waves is measured using pixel intensity time series collected at a cross-shore array of locations using remotely operated video cameras. The incident band is identified, and the cross-spectral matrix is calculated for this band. The cross-shore component of wavenumber is found as the gradient in phase of the first complex empirical orthogonal function of this matrix. Water depth is then inferred from linear wave theory's dispersion relationship. Full bathymetry maps may be measured by collecting data in a large array composed of both cross-shore and longshore lines. Data are collected hourly throughout the day, and a stable, daily estimate of bathymetry is calculated from the median of the hourly estimates. The technique was tested using 30 days of hourly data collected at the SandyDuck experiment in Duck, North Carolina, in October 1997. Errors calculated as the difference between estimated depth and ground truth data show a mean bias of -35 cm (rms error = 91 cm). Expressed as a fraction of the true water depth, the mean percent error was 13% (rms error = 34%). Excluding the region of known wave nonlinearities over the bar crest, the accuracy of the technique improved, and the mean (rms) error was -20 cm (75 cm). Additionally, under low-amplitude swells (wave height H ???1 m), the performance of the technique across the entire profile improved to 6% (29%) of the true water depth with a mean (rms) error of -12 cm (71 cm). Copyright 2000 by the American Geophysical Union.
View north of inside machine shop 36; shop floor accommodates ...
View north of inside machine shop 36; shop floor accommodates lathes capable of machining a cylinder 60 inches in diameter and 75 feet long; other equipment includes horizontal and vertical jig borders, hydraulic tube straighteners and other equipment for precision machining of large ship components. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA
Re-Evaluating Split-Fovea Processing in Word Recognition: A Critical Assessment of Recent Research
ERIC Educational Resources Information Center
Jordan, Timothy R.; Paterson, Kevin B.
2009-01-01
In recent years, some researchers have proposed that a fundamental component of the word recognition process is that each fovea is divided precisely at its vertical midline and that information either side of this midline projects to different, contralateral hemispheres. Thus, when a word is fixated, all letters to the left of the point of…
Fixing the Shadows While Moving the Gnomon
ERIC Educational Resources Information Center
Gangui, Alejandro
2015-01-01
It is a common practice to fix a vertical gnomon and study the moving shadow cast by it. This shows our local solar time and gives us a hint regarding the season in which we perform the observation. The moving shadow can also tell us our latitude with high precision. In this paper we propose to exchange the roles and while keeping the shadows…
Robust optode-based method for measuring in situ oxygen profiles in gravelly streambeds.
Vieweg, Michael; Trauth, Nico; Fleckenstein, Jan H; Schmidt, Christian
2013-09-03
One of the key environmental conditions controlling biogeochemical reactions in aquatic sediments like streambeds is the distribution of dissolved oxygen. We present a novel approach for the in situ measurement of vertical oxygen profiles using a planar luminescence-based optical sensor. The instrument consists of a transparent acrylic tube with the oxygen-sensitive layer mounted on the outside. The luminescence is excited and detected by a moveable piston inside the acrylic tube. Since no moving parts are in contact with the streambed, the disturbance of the subsurface flow field is minimized. The precision of the distributed oxygen sensor (DOS) was assessed by a comparison with spot optodes. Although the precision of the DOS, expressed as standard deviation of calculated oxygen air saturation, is lower (0.2-6.2%) compared to spot optodes (<0.1-0.6%), variations of the oxygen content along the profile can be resolved. The uncertainty of the calculated oxygen is assessed with a Monte Carlo uncertainty assessment. The obtained vertical oxygen profiles of 40 cm in length reveal variations of the oxygen content reaching from 90% to 0% air saturation and are characterized by patches of low oxygen rather than a continuous decrease with depth.
COBALT Flight Demonstrations Fuse Technologies
2017-06-07
This 5-minute, 50-second video shows how the CoOperative Blending of Autonomous Landing Technologies (COBALT) system pairs new landing sensor technologies that promise to yield the highest precision navigation solution ever tested for NASA space landing applications. The technologies included a navigation doppler lidar (NDL), which provides ultra-precise velocity and line-of-sight range measurements, and the Lander Vision System (LVS), which provides terrain-relative navigation. Through flight campaigns conducted in March and April 2017 aboard Masten Space Systems' Xodiac, a rocket-powered vertical takeoff, vertical landing (VTVL) platform, the COBALT system was flight tested to collect sensor performance data for NDL and LVS and to check the integration and communication between COBALT and the rocket. The flight tests provided excellent performance data for both sensors, as well as valuable information on the integrated performance with the rocket that will be used for subsequent COBALT modifications prior to follow-on flight tests. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.
A Study of Vertical Transport through Graphene toward Control of Quantum Tunneling.
Zhu, Xiaodan; Lei, Sidong; Tsai, Shin-Hung; Zhang, Xiang; Liu, Jun; Yin, Gen; Tang, Min; Torres, Carlos M; Navabi, Aryan; Jin, Zehua; Tsai, Shiao-Po; Qasem, Hussam; Wang, Yong; Vajtai, Robert; Lake, Roger K; Ajayan, Pulickel M; Wang, Kang L
2018-02-14
Vertical integration of van der Waals (vdW) materials with atomic precision is an intriguing possibility brought forward by these two-dimensional (2D) materials. Essential to the design and analysis of these structures is a fundamental understanding of the vertical transport of charge carriers into and across vdW materials, yet little has been done in this area. In this report, we explore the important roles of single layer graphene in the vertical tunneling process as a tunneling barrier. Although a semimetal in the lateral lattice plane, graphene together with the vdW gap act as a tunneling barrier that is nearly transparent to the vertically tunneling electrons due to its atomic thickness and the transverse momenta mismatch between the injected electrons and the graphene band structure. This is accentuated using electron tunneling spectroscopy (ETS) showing a lack of features corresponding to the Dirac cone band structure. Meanwhile, the graphene acts as a lateral conductor through which the potential and charge distribution across the tunneling barrier can be tuned. These unique properties make graphene an excellent 2D atomic grid, transparent to charge carriers, and yet can control the carrier flux via the electrical potential. A new model on the quantum capacitance's effect on vertical tunneling is developed to further elucidate the role of graphene in modulating the tunneling process. This work may serve as a general guideline for the design and analysis of vdW vertical tunneling devices and heterostructures, as well as the study of electron/spin injection through and into vdW materials.
Glacier topography and elevation changes derived from Pléiades sub-meter stereo images
NASA Astrophysics Data System (ADS)
Berthier, E.; Vincent, C.; Magnússon, E.; Gunnlaugsson, Á. Þ.; Pitte, P.; Le Meur, E.; Masiokas, M.; Ruiz, L.; Pálsson, F.; Belart, J. M. C.; Wagnon, P.
2014-12-01
In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of sub-meter stereo imagery from the recently launched Pléiades satellites to derive digital elevation models (DEMs) of glaciers and their elevation changes. Our five evaluation sites, where nearly simultaneous field measurements were collected, are located in Iceland, the European Alps, the central Andes, Nepal and Antarctica. For Iceland, the Pléiades DEM is also compared to a lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs) are used, but reach up to 7 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1σ confidence level). Similar precision levels are obtained in the accumulation areas of glaciers and in Antarctica. We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better if cloud-free images are available. The negative region-wide mass balances of glaciers in the Mont-Blanc area (-1.04 ± 0.23 m a-1 water equivalent, w.e.) are revealed by differencing Satellite pour l'Observation de la Terre 5 (SPOT 5) and Pléiades DEMs acquired in August 2003 and 2012, confirming the accelerated glacial wastage in the European Alps.
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Michel, W. R.
1985-01-01
Analysis of inflatable sphere measurements obtained during the Energy Budget and MAP/WINE campaigns led to questions concerning the precision of the MPS-36 radar used for tracking the spheres; the compatibility of the sphere program with the MPS-36 radar tracking data; and the oversmoothing of derived parameters at high altitudes. Simulations, with winds having sinusoidal vertical wavelengths, were done with the sphere program (HIROBIN) to determine the resolving capability of various filters. It is concluded that given a precision radar and a perfectly performing sphere, the HIROBIN filters can be adjusted to provide small-scale perturbation information to 70 km (i.e., sinusoidal wavelengths of 2 km). It is recommended that the HIROBIN program be modified to enable it to use a variable length filter, that adjusts to fall velocity and accelerations to provide wind data with small perturbations.
First aircraft experiment results with the wide-angle airborne laser ranging system
NASA Astrophysics Data System (ADS)
Bock, Olivier; Thom, Christian; Kasser, Michel
1999-12-01
The first aircraft experiment with the Wide-Angle Airborne Laser Ranging System has been conducted in May 1998 over an air base in France equipped with a network of 64 cub-corner retroreflectors. The ranging system was operated from the Avion de Recherche Atmospherique et de Teledetection of CNES/IGN/INSU. Data have been collected during two 4-hour flights. The paper describes the data processing methods and presents the first experimental results. The precision is of 2 cm on the difference of vertical coordinates from two sets of 3 X 103 distance measurements, which is consistent with simulations and a posteriori covariance. The precision is mainly limited by the smallness of the number of efficient measurements remaining after a drastic data sorting for outliers. Higher precision is expected for future experiments after some instrumental improvements (achieving higher link budget) and measurement of aircraft attitude during the flight.
Canceling the Gravity Gradient Phase Shift in Atom Interferometry.
D'Amico, G; Rosi, G; Zhan, S; Cacciapuoti, L; Fattori, M; Tino, G M
2017-12-22
Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.
Canceling the Gravity Gradient Phase Shift in Atom Interferometry
NASA Astrophysics Data System (ADS)
D'Amico, G.; Rosi, G.; Zhan, S.; Cacciapuoti, L.; Fattori, M.; Tino, G. M.
2017-12-01
Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.
NASA Astrophysics Data System (ADS)
Marcon, Y.; Sahling, H.; Bohrmann, G.
2012-04-01
The Menez Gwen hydrothermal vent is located on the Mid-Atlantic Ridge at a depth of about 800m. Although it has been the focus of several expeditions and studies, the sites of active venting at Menez Gwen are still under described, and it is not possible to get a global picture of the sites from the published data. Exploration of deep-sea environments is commonly performed using remotely operated vehicles (ROV) equipped with sensors, cameras and powerful lights. But strong attenuation of light in the deep-sea constrains visual surveys to be carried out from a few meters only above the seafloor, thus limiting the extent of the field of view. Moreover, ROV-mounted positioning systems usually lack accuracy and cannot be relied on for accurate relative positioning of sensor measurements, samplings, and features of interest. Such limitations are hindrances for many applications. In particular, site description or mapping of deep-sea benthic fauna over an area of study usually requires lengthy surveys, and reliability of navigation data becomes a major issue. Also, studying small-scale spatial variations of a physicochemical parameter needs positions of sensor measurements or samplings to be known precisely. To overcome this problem, maps of the seafloor can be generated in the form of geo-referenced video- or photo-mosaics. Mosaics are constructed by assembling overlapping images together into a larger image of the scene. To reduce the effects of drift in the navigation data, the construction of the mosaics uses robust feature detection and mapping capabilities to precisely relate consecutive images together. After geo-referencing in a Geographic Information System (GIS), points of measurements and sampling can be accurately pinpointed onto the mosaics to allow for spatial analyses. During cruise M82/3 to the Menez Gwen hydrothermal vent system, high-resolution photo-mosaics of several sites of hydrothermal activity were constructed and geo-referenced into GIS systems. The mosaics, together with high-resolution ship-borne bathymetry, allowed unravelling the layout and morphology of the system at different scales. Through GIS analyses, the distribution of the faunal communities in relation to the fluid emission points was mapped and sensor data were integrated to allow describing the spatial variation of water temperature based on CTD measurements. Results include calculation of mussel beds surfaces and inferred estimates of biomass of Bathymodiolus azoricus. Acknowledgements: This work is supported by the European Commission under the EU Framework 7 funded Marie Curie Initial Training Network (ITN) SENSEnet (contract n°237868), and funded through DFG Research Center / Excellence Cluster "The Ocean in the Earth System".
Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin
2015-01-01
A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.
A simple method for quantifying jump loads in volleyball athletes.
Charlton, Paula C; Kenneally-Dabrowski, Claire; Sheppard, Jeremy; Spratford, Wayne
2017-03-01
Evaluate the validity of a commercially available wearable device, the Vert, for measuring vertical displacement and jump count in volleyball athletes. Propose a potential method of quantifying external load during training and match play within this population. Validation study. The ability of the Vert device to measure vertical displacement in male, junior elite volleyball athletes was assessed against reference standard laboratory motion analysis. The ability of the Vert device to count jumps during training and match-play was assessed via comparison with retrospective video analysis to determine precision and recall. A method of quantifying external load, known as the load index (LdIx) algorithm was proposed using the product of the jump count and average kinetic energy. Correlation between two separate Vert devices and three-dimensional trajectory data were good to excellent for all jump types performed (r=0.83-0.97), with a mean bias of between 3.57-4.28cm. When matched against jumps identified through video analysis, the Vert demonstrated excellent precision (0.995-1.000) evidenced by a low number of false positives. The number of false negatives identified with the Vert was higher resulting in lower recall values (0.814-0.930). The Vert is a commercially available tool that has potential for measuring vertical displacement and jump count in elite junior volleyball athletes without the need for time-consuming analysis and bespoke software. Subsequently, allowing the collected data to better quantify load using the proposed algorithm (LdIx). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Ambiguity resolution in precise point positioning with hourly data for global single receiver
NASA Astrophysics Data System (ADS)
Zhang, Xiaohong; Li, Pan; Guo, Fei
2013-01-01
Integer ambiguity resolution (IAR) can improve precise point positioning (PPP) performance significantly. IAR for PPP became a highlight topic in global positioning system (GPS) community in recent years. More and more researchers focus on this issue. Progress has been made in the latest years. In this paper, we aim at investigating and demonstrating the performance of a global zero-differenced (ZD) PPP IAR service for GPS users by providing routine ZD uncalibrated fractional offsets (UFOs) for wide-lane and narrow-lane. Data sets from all IGS stations collected on DOY 1, 100, 200 and 300 of 2010 are used to validate and demonstrate this global service. Static experiment results show that an accuracy better than 1 cm in horizontal and 1-2 cm in vertical could be achieved in ambiguity-fixed PPP solution with only hourly data. Compared with PPP float solution, an average improvement reaches 58.2% in east, 28.3% in north and 23.8% in vertical for all tested stations. Results of kinematic experiments show that the RMS of kinematic PPP solutions can be improved from 21.6, 16.6 and 37.7 mm to 12.2, 13.3 and 34.3 mm for the fixed solutions in the east, north and vertical components, respectively. Both static and kinematic experiments show that wide-lane and narrow-lane UFO products of all satellites can be generated and provided in a routine way accompanying satellite orbit and clock products for the PPP user anywhere around the world, to obtain accurate and reliable ambiguity-fixed PPP solutions.
Relocation of Groningen seismicity using refracted waves
NASA Astrophysics Data System (ADS)
Ruigrok, E.; Trampert, J.; Paulssen, H.; Dost, B.
2015-12-01
The Groningen gas field is a giant natural gas accumulation in the Northeast of the Netherlands. The gas is in a reservoir at a depth of about 3 km. The naturally-fractured gas-filled sandstone extends roughly 45 by 25 km laterally and 140 m vertically. Decades of production have led to significant compaction of the sandstone. The (differential) compaction is thought to have reactivated existing faults and being the main driver of induced seismicity. Precise earthquake location is difficult due to a complicated subsurface, and that is the likely reason, the current hypocentre estimates do not clearly correlate with the well-known fault network. The seismic velocity model down to reservoir depth is quite well known from extensive seismic surveys and borehole data. Most to date earthquake detections, however, were made with a sparse pre-2015 seismic network. For shallow seismicity (<5 km depth) horizontal source-receiver distances tend to be much larger than vertical distances. Consequently, preferred source-receiver travel paths are refractions over high-velocity layers below the reservoir. However, the seismic velocities of layers below the reservoir are poorly known. We estimated an effective velocity model of the main refracting layer below the reservoir and use this for relocating past seismicity. We took advantage of vertical-borehole recordings for estimating precise P-wave (refraction) onset times and used a tomographic approach to find the laterally varying velocity field of the refracting layer. This refracting layer is then added to the known velocity model, and the combined model is used to relocate the past seismicity. From the resulting relocations we assess which of the faults are being reactivated.
Quantifying the Impacts of Outlet Control Structures on Lake Hydrology and Ecology
NASA Astrophysics Data System (ADS)
Budd, B. M.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.
2012-12-01
There have been limited studies of the impacts of lake level control structures on stream ecology and lake property erosion. We examine the influence of historical lake level management strategies on Higgins Lake in Michigan, which is regionally known for recreation, fisheries, and scenery. Lake control structures have potentially increased shoreline erosion and seasonally-reduced flow through the outlets, likely impacting fish habitat. Concerns over these issues spurred local land owners to seek a study on the possible hydrologic and ecological impacts of the removal or modification of the control structure. Bathymetry maps are fundamental to understanding and managing lake ecosystems. From the 1930's through the 1950's, these maps were developed for thousands of Michigan inland lakes using soundings lowered through holes cut in winter lake ice. Increased land use change and alterations of lake outlets have likely modified erosion and sedimentation rates of these lake systems. Our research includes bathymetry surveys of Higgins Lake using an Acoustic Doppler Current Profiler (ADCP) and side-scan sonar. The new higher-resolution bathymetry serves as the basis for simulating impacts of potential changes in lake management, on a verity of inpoint including shoreline position and fish habitat.
NASA Technical Reports Server (NTRS)
Sheehan, Anne Francis
1991-01-01
Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.
Bathymetry at the head of the Cape Fear Slide, offshore North Carolina
Schmuck, Eric A.; Popenoe, Peter; Paull, Charles K.; Brown, Carol
1992-01-01
The Cape Fear Slide is the largest mass-movement that has been observed on the U.S. Atlantic Margin. It is located off the Carolinas on the continental rise in approximately 1,200-5,500 m water depth and extends downslope for over 300 km (Popenoe, 1982). These maps show the bathymetry at the head of the Cape Fear Slide as interpreted from single-channel 3.5 kHz seismic-reflection profiles and mid-range Sea Marc I sidescan sonar imagery (Popenoe, 1985; Popenoe and others, 1991; Schmuck, 1991). The 3.5 kHz data consist of over 1000 km of profiles that were collected in 1988 for the University of North Carolina, Department of Geology. The UNC 3.5 kHz data were used as the main data set in interpreting the bathymetry. The sidescan sonar data were collected in 1980 by the U.S. Geological Survey in cooperation with the Lamont-Doherty Geological Observatory for the U.S. Bureau of Land Management Environmental Studies Program. Only 28 km (5 km swath width) of the sidescan data were used in the interpretation to identify the morphology of the main slump scarp and visible secondary scarps.
Mosaicing of airborne LiDAR bathymetry strips based on Monte Carlo matching
NASA Astrophysics Data System (ADS)
Yang, Fanlin; Su, Dianpeng; Zhang, Kai; Ma, Yue; Wang, Mingwei; Yang, Anxiu
2017-09-01
This study proposes a new methodology for mosaicing airborne light detection and ranging (LiDAR) bathymetry (ALB) data based on Monte Carlo matching. Various errors occur in ALB data due to imperfect system integration and other interference factors. To account for these errors, a Monte Carlo matching algorithm based on a nonlinear least-squares adjustment model is proposed. First, the raw data of strip overlap areas were filtered according to their relative drift of depths. Second, a Monte Carlo model and nonlinear least-squares adjustment model were combined to obtain seven transformation parameters. Then, the multibeam bathymetric data were used to correct the initial strip during strip mosaicing. Finally, to evaluate the proposed method, the experimental results were compared with the results of the Iterative Closest Points (ICP) and three-dimensional Normal Distributions Transform (3D-NDT) algorithms. The results demonstrate that the algorithm proposed in this study is more robust and effective. When the quality of the raw data is poor, the Monte Carlo matching algorithm can still achieve centimeter-level accuracy for overlapping areas, which meets the accuracy of bathymetry required by IHO Standards for Hydrographic Surveys Special Publication No.44.
ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.
2013-01-01
This software addresses the issue of underwater localization of unmanned vehicles and the inherent drift in their onboard sensors. The software gives a 2 to 3 factor of improvement over the state-of-the-art underwater localization algorithms. The software determines the localization (position, heading) of an AUV (autonomous underwater vehicle) in environments where there is no GPS signal. It accomplishes this using only the commanded position, onboard gyros/accelerometers, and the bathymetry of the bottom provided by an onboard sonar system. The software does not rely on an onboard bathymetry dataset, but instead incrementally determines the position of the AUV while mapping the bottom. In order to enable long-distance underwater navigation by AUVs, a localization method called ULTRA uses registration of the bathymetry data products produced by the onboard forward-looking sonar system for hazard avoidance during a transit to derive the motion and pose of the AUV in order to correct the DR (dead reckoning) estimates. The registration algorithm uses iterative point matching (IPM) combined with surface interpolation of the Iterative Closest Point (ICP) algorithm. This method was used previously at JPL for onboard unmanned ground vehicle localization, and has been optimized for efficient computational and memory use.
The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xiao-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.
1999-01-01
Accurate measurements of surface heights and atmospheric backscatter have been demonstrated with the SLA, MOLA and LITE space lidar. Recent MOLA measurements of the Mars surface have 40 cm resolution and have reduced the global uncertainty in Mars topography from a few km to approx. 10 m. GLAS is a next generation lidar being developed as part of NASA's Icesat Mission for Earth orbit . The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, determine the height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS will fly on a small dedicated spacecraft in a polar orbit at 598 km altitude with an inclination of 94 degrees. GLAS is scheduled to launch in summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will measure the vertical distance to the ice sheet from orbit with 1064 nm pulses from a Nd:Yag laser at 40 Hz. Each 5 nsec wide laser pulse is used for a single range measurement. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a I m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser, Errors in knowledge of the laser beam pointing angle can bias height measurements of sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam centroid to about 8 urad is required to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith whose measurements are combined with a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser pulse is measured with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the star camera and gyroscope permits the angular offsets of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring atmospheric backscatter profiles at both 1064 and 532 nm. The 1064 nm measurements use an analog detector and profile the height and vertical structure of thicker clouds. Measurements at 532 nm use new highly sensitive photon counting detectors, and measure the height distributions of very thin clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.
NASA Astrophysics Data System (ADS)
Gutsche, J. R.; Trembanis, A. C.
2010-12-01
With advances in lake bottom mapping it has been observed that modern microbialites, much like the ancient stromatolites, thrive in freshwater lake environments. Previously collected data shows that a diverse community of living stromatolites are present within Pavilion Lake (Laval et al., 2000, Lim et al., 2009). An additional comprehensive data set was collected in June-July 2010. By building on the previous dataset it is possible to compare two high-resolution geoacoustic datasets. Using Autonomous Underwater Vehicles (AUVs) as exploration platforms to conduct surveys of the lake bottom, very high-resolution sonar data has been collected. The data collected in June-July 2010 is composed of 125 km of AUV trackline. This length of trackline allowed for survey coverage of nearly the entire lake bottom. The Gavia AUV used for this survey collected bathymetry data collocated with backscatter information. The data has been processed and gridded to 1m, with specific high value areas gridded to a finer 0.5m. The bathymetric data was compiled to create a base map of the floor of Pavilion Lake. Backscatter data was also collected and processed using the same 1m grid resolution. After the backscatter data was processed, it was draped over the bathymetry map of Pavilion Lake. The tools offered within the Fledermaus software package allow for the bathymetry data to be analyzed with respect to slope and rugosity. By analyzing this dense phase measuring bathymetric sonar of the lake bottom, with respect to slope and rugosity, it is possible to map the morphological trends of the stromatolites. Additionally, the ability to compare two datasets allows for erosional changes in the lake bottom to be identified. The bathymetry data allows for the quantitative analysis of bed forms within Pavilion Lake, allowing for a better understanding of microbialite morphologies. The backscatter data is increasingly important to the Pavilion Lake project because of the location and general surroundings of the lake. The lake itself is located in a limestone canyon, which frequently sustains erosional episodes. The backscatter data allows for the differentiation between erosional deposits and microbial mounds. The combination of backscatter and bathymetry allows for a further understanding of bedforms and microbialite growth patterns.
Carvajal, Cristian; Paull, Charles K.; Caress, David W.; Fildani, Andrea; Lundsten, Eve M.; Anderson, Krystle; Maier, Katherine L.; McGann, Mary; Gwiazda, Roberto; Herguera, Juan Carlos
2017-01-01
Ultra-high-resolution (1 m * 1 m * 0.25 m) bathymetry was acquired with an autonomous underwater vehicle (AUV) over a sector of the Navy Fan offshore Baja California. The survey specifically targeted an area where the former interpretation of the fan showed a channel–lobe transition; however, the lobe and the transition were not recognized. Instead, the newly acquired bathymetry shows that the previously identified channel continues basinward changing its overall morphology and stratigraphic architecture, becoming gradually but significantly wider (650–1000 m) and of lower relief (3–4 m). Cores from the channel thalweg recovered mud-poor (< 5%) well-sorted sands, interpreted as deposited by fully turbulent flows. The cores also show several mud-rich (9–18%) poorly sorted sands, probably indicating deposition from more cohesive flows.The high-resolution bathymetry shows large sectors of the seafloor sculpted by elaborate bedforms and scours. The overbank area north of the channel exhibits the most numerous and prominent scours, interpreted to have been largely generated by flow stripping at a bend in the channel. Along high-gradient sectors (more than approximately 1¯) of this area, the scours are largest and deepest. Some of these scours show an erosional headwall and a distal upflow-dipping depositional bulge, forming repetitive bedforms interpreted as erosional cyclic steps associated with locked-in-place trains of hydraulic jumps. The scours seem to coalesce to form an incipient channel, which would likely drive the avulsion of the main channel. Further basinward, average gradients decrease (< 0.6¯ ) and scours become smaller and less deep suggesting a gradient control on erosion. The southern channel margin and adjacent overbank area exhibit a trend of scours that are elongated transverse to flow, that successively repeat themselves basinwards, and that at times merge with sediment waves. Probably these scours are genetically linked to sediment waves, and they may have been formed by cyclic-step-like processes as well. The acquired bathymetry represents a breakthrough in the imaging of the proximal sectors of deep-sea fans, which provides the basis for an accurate morphometric characterization and the understanding of sedimentary processes and morphodynamics associated with the delivery of sediment into the deep sea.
Inference of effective river properties from remotely sensed observations of water surface
NASA Astrophysics Data System (ADS)
Garambois, Pierre-André; Monnier, Jérôme
2015-05-01
The future SWOT mission (Surface Water and Ocean Topography) will provide cartographic measurements of inland water surfaces (elevation, widths and slope) at an unprecedented spatial and temporal resolution. Given synthetic SWOT like data, forward flow models of hierarchical-complexity are revisited and few inverse formulations are derived and assessed for retrieving the river low flow bathymetry, roughness and discharge (A0, K, Q) . The concept of an effective low flow bathymetry A0 (the real one being never observed) and roughness K , hence an effective river dynamics description, is introduced. The few inverse models elaborated for inferring (A0, K, Q) are analyzed in two contexts: (1) only remotely sensed observations of the water surface (surface elevation, width and slope) are available; (2) one additional water depth measurement (or estimate) is available. The inverse models elaborated are independent of data acquisition dynamics; they are assessed on 91 synthetic test cases sampling a wide range of steady-state river flows (the Froude number varying between 0.05 and 0.5 for 1 km reaches) and in the case of a flood on the Garonne River (France) characterized by large spatio-temporal variabilities. It is demonstrated that the most complete shallow-water like model allowing to separate the roughness and bathymetry terms is the so-called low Froude model. In Case (1), the resulting RMSE on infered discharges are on the order of 15% for first guess errors larger than 50%. An important feature of the present inverse methods is the fairly good accuracy of the discharge Q obtained, while the identified roughness coefficient K includes the measurement errors and the misfit of physics between the real flow and the hypothesis on which the inverse models rely; the later neglecting the unobserved temporal variations of the flow and the inertia effects. A compensation phenomena between the indentifiedvalues of K and the unobserved bathymetry A0 is highlighted, while the present inverse models lead to an effective river dynamics model that is accurate in the range of the discharge variability observed. In Case (2), the effective bathymetry profile for 80 km of the Garonne River is retrieved with 1% relative error only. Next, accurate effective topography-friction pairs and also discharge can be inferred. Finally, defining river reaches from the observation grid tends to average the river properties in each reach, hence tends to smooth the hydraulic variability.
Global Paleobathymetry for the Cenomanian-Turonian (90 Ma)
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.
2014-12-01
We present a paleo-ocean bathymetry reconstruction for Cenomanian-Turonian (90 Ma) time in a 0.1°x0.1° resolution for use in paleo-climate studies. Age of the ocean floor for the Cenomanian-Turonian (90 Ma) is from Müller et al. (2008 a,b); coastlines are from the PALEOMAP Project (Scotese, 2011). To reconstruct paleo-ocean bathymetry, we use a plate model equation to model depth to basement (Turcotte and Schubert, 2002). We estimate plate model equation parameter values from measurements of modern oceans (Crosby et al., 2006). On top of the depth to basement, we isostatically add a multilayer sediment model derived from area-corrected sediment thickness data (Divins, 2003; Whittaker et al., 2013). Lastly, we parameterize the modern continental shelf, slope, and rise in a "sediment wedge model" to connect the coastline with the closest ocean crust as defined by Müller et al. (2008 a, b). These parameters are defined using empirical relationships obtained from study of modern ocean transects where a complete rifting history is preserved (Atlantic and Southern oceans), and the closest approach of the respective oceanic crust (Müller et al., 2008a,b) to the coastline. We use the modern ocean as a test, comparing maps and cross sections of modern ocean bathymetry modeled using our reconstruction method with that of ETOPO1 (Amante and Eakins, 2009). Adding sea plateaus and seamounts minimize the difference between our modeled bathymetry and ETOPO1. Finally, we also present a comparison of our reconstructed paleo-bathymetry to that of Müller et al. (2008 a,b) for the Cenomanian-Turonian (90 Ma). References: Amante, C., Eakins, B.W., 2009, NOAA Tech. Memo. NESDIS NGDC-24, 19 p. Crosby, A., McKenzie, D., Sclater, J.G., 2006, Geophysical Journal Int. 166.2, 553-573. Divins, D., 2003, NOAA NGDC, Boulder, CO. Müller, R., Sdrolias, M., Gaina, C., Roest, W., 2008b, Geochemistry, Geophysics, Geosystems, 9, Q04006, doi:10.1029/2007GC001743 Müller, R., Sdrolias, M., Gaina, C., Steinberger, B., Heine, C., 2008a, Science, 319, 1357-1362. Scotese, C., 2011, PALEOMAP Project, Arlington, Texas. Turcotte, D., Schubert, G., 2002, Cambridge University Press, Cambridge, 456 p. Whittaker, J., Goncharov, A., Williams, S., Müller, R., Leitchenkov, G., 2013, Geochemistry, Geophysics, Geosystems. DOI:10.1002/ggge.20181
A Newly Reanalyzed Dataset of GPS-determined Antarctic Vertical Rates
NASA Astrophysics Data System (ADS)
Thomas, I.; King, M.; Clarke, P. J.; Penna, N. T.; Lavallee, D. A.; Whitehouse, P.
2010-12-01
Accurate and precise measurements of vertical crustal motion offer useful constraints on glacial isostatic adjustment (GIA) models. Here we present a newly reprocessed data set of GPS-determined vertical rates for Antarctica. We give details of the global reanalysis of 15-years of GPS data, the overarching aim of which is to achieve homogeneous station coordinate time series, and hence surface velocities, for GPS receivers that are in regions of GIA interest in Antarctica. The means by which the reference frame is realized is crucial to obtaining accurate rates. Considerable effort has been spent on achieving a good global distribution of GPS stations, using data from IGS and other permanently recording stations, as well as a number of episodic campaigns in Antarctica. Additionally, we have focused on minimizing the inevitable imbalance in the number of sites in the northern and southern hemispheres. We align our daily non-fiducial solutions to ITRF2005, i.e. a CM frame. We present the results of investigations into the reference frame realization, and also consider a GPS-derived realization of the frame, and its effect on the vertical velocities. Vertical velocities are obtained for approximately 40 Antarctic locations. We compare our GPS derived Antarctic vertical rates with those predicted by the Ivins and James and ICE-5G models, after converting to a CE frame. We also compare to previously published GPS rates. Our GPS velocities are being used to help tune, and bound errors of, a new GIA model also presented in this session.
2014-01-01
In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method. PMID:24899871
Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun
2014-01-01
In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.
VLBI geodesy - 2 parts-per-billion precision in length determinations for transcontinental baselines
NASA Technical Reports Server (NTRS)
Davis, J. L.; Herring, T. A.; Shapiro, I. I.
1988-01-01
VLBI was to make twenty-two independent measurements, between September 1984 and December 1986, of the length of the 3900-km baseline between the Mojave site in California and the Haystack/Westford site in Massachusetts. These experiments differ from the typical geodetic VLBI experiments in that a large fraction of observations is obtained at elevation angles between 4 and 10 deg. Data from these low elevation angles allow the vertical coordinate of site position, and hence the baseline length, to be estimated with greater precision. For the sixteen experiments processed thus far, the weighted root-mean-square scatter of the estimates of the baseline length is 8 mm.
Choi, Mun-Ki; Kim, Gil-Sung; Jeong, Jin-Tak; Lim, Jung-Taek; Lee, Won-Yong; Umar, Ahmad; Lee, Sang-Kwon
2017-11-02
The detection of cancer biomarkers has recently attracted significant attention as a means of determining the correct course of treatment with targeted therapeutics. However, because the concentration of these biomarkers in blood is usually relatively low, highly sensitive biosensors for fluorescence imaging and precise detection are needed. In this study, we have successfully developed vertical GaN micropillar (MP) based biosensors for fluorescence sensing and quantitative measurement of CA15-3 antigens. The highly ordered vertical GaN MP arrays result in the successful immobilization of CA15-3 antigens on each feature of the arrays, thereby allowing the detection of an individual fluorescence signal from the top surface of the arrays owing to the high regularity of fluorophore-tagged MP spots and relatively low background signal. Therefore, our fluorescence-labeled and CA15-3 functionalized vertical GaN-MP-based biosensor is suitable for the selective quantitative analysis of secreted CA15-3 antigens from MCF-7 cell lines, and helps in the early diagnosis and prognosis of serious diseases as well as the monitoring of the therapeutic response of breast cancer patients.
NASA Astrophysics Data System (ADS)
Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.
2011-01-01
In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.
Strain-induced vertical self-organization of semiconductor quantum dots: A computational study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtinkov, N., E-mail: nshtinkov@uottawa.ca
Atomistic strain simulations based on the valence force field method are employed to study the vertical arrangements of semiconductor quantum dot (QD) multilayers. The effects of the QD shape, dimensions, and materials parameters are systematically investigated, varying independently the following parameters: spacer width H, QD lateral spacing D, base b, and height h, slope of the side facets, elastic properties of the dot and the substrate materials, and lattice mismatch between the dot and the substrate. The transition between vertically aligned and anti-aligned structures is found to be determined mainly by the ratios H/D and b/D, as well as bymore » the strain anisotropy of the substrate and to a lesser extent of the QD. The dependence on the QD height h is significant only for steep side facets and large aspect ratios h/b, and the effects of the lattice mismatch strain and the bulk elastic moduli are found to be negligible. The comparison with experimental data shows an excellent agreement with the results from the simulations, demonstrating that the presented analysis results in precise theoretical predictions for the vertical self-organization regime in a wide range of QD materials systems.« less
A quality control system for digital elevation data
NASA Astrophysics Data System (ADS)
Knudsen, Thomas; Kokkendorf, Simon; Flatman, Andrew; Nielsen, Thorbjørn; Rosenkranz, Brigitte; Keller, Kristian
2015-04-01
In connection with the introduction of a new version of the Danish national coverage Digital Elevation Model (DK-DEM), the Danish Geodata Agency has developed a comprehensive quality control (QC) and metadata production (MP) system for LiDAR point cloud data. The architecture of the system reflects its origin in a national mapping organization where raw data deliveries are typically outsourced to external suppliers. It also reflects a design decision of aiming at, whenever conceivable, doing full spatial coverage tests, rather than scattered sample checks. Hence, the QC procedure is split in two phases: A reception phase and an acceptance phase. The primary aim of the reception phase is to do a quick assessment of things that can typically go wrong, and which are relatively simple to check: Data coverage, data density, strip adjustment. If a data delivery passes the reception phase, the QC continues with the acceptance phase, which checks five different aspects of the point cloud data: Vertical accuracy Vertical precision Horizontal accuracy Horizontal precision Point classification correctness The vertical descriptors are comparatively simple to measure: The vertical accuracy is checked by direct comparison with previously surveyed patches. The vertical precision is derived from the observed variance on well defined flat surface patches. These patches are automatically derived from the road centerlines registered in FOT, the official Danish map data base. The horizontal descriptors are less straightforward to measure, since potential reference material for direct comparison is typically expected to be less accurate than the LiDAR data. The solution selected is to compare photogrammetrically derived roof centerlines from FOT with LiDAR derived roof centerlines. These are constructed by taking the 3D Hough transform of a point cloud patch defined by the photogrammetrical roof polygon. The LiDAR derived roof centerline is then the intersection line of the two primary planes of the transformed data. Since the photogrammetrical and the LiDAR derived roof centerline sets are independently derived, a low RMS difference indicates that both data sets are of very high accuracy. The horizontal precision is derived by doing a similar comparison between LiDAR derived roof centerlines in the overlap zone of neighbouring flight strips. Contrary to the vertical and horizontal descriptors, the point classification correctness is neither geometric, nor well defined. In this case we must resolve by introducing a human in the loop and presenting data in a form that is as useful as possible to this human. Hence, the QC system produces maps of suspicious patterns such as Vegetation below buildings Points classified as buildings where no building is registered in the map data base Building polygons from the map data base without any building points Buildings on roads All elements of the QC process is carried out in smaller tiles (typically 1 km × 1 km) and hence trivially parallelizable. Results from the parallel executing processes are collected in a geospatial data base system (PostGIS) and the progress can be analyzed and visualized in a desktop GIS while the processes run. Implementation wise, the system is based on open source components, primarily from the OSGeo stack (GDAL, PostGIS, QGIS, NumPy, SciPy, etc.). The system specific code is also being open sourced. This open source distribution philosophy supports the parallel execution paradigm, since all available hardware can be utilized without any licensing problems. As yet, the system has only been used for QC of the first part of a new Danish elevation model. The experience has, however, been very positive. Especially notable is the utility of doing full spatial coverage tests (rather than scattered sample checks). This means that error detection and error reports are exactly as spatial as the point cloud data they concern. This makes it very easy for both data receiver and data provider, to discuss and reason about the nature and causes of irregularities.
Geoscience Laser Altimeter System (GLAS) for the ICESat Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xiaoli; Ketchum, Eleanor A.; Millar, Pamela S.; Riris, Haris
2002-01-01
The Geoscience Laser Altimeter System (GLAS) is a new generation lidar and is the primary science payload for NASA's ICESat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical distribution of clouds and aerosols on a global scale. GLAS will be integrated onto a small spacecraft built by Ball Aerospace, and will be launched into a polar orbit with a 590-630 km altitude at an inclination of 94 degrees. ICESat is is currently planned to launch in winter 2002/03 and GLAS is designed to operate continuously in space for a minimum of 3 years. GLAS will measure the vertical distance from orbit to the Earth's surface with pulses from a ND:YAG laser at a 40 Hz rate. Each 6 nsec wide 1064 nm laser pulse is used to produce a single range measurement. On the surface, the laser footprints have 66 m diameter and approx. 170 m center-center spacings. The GLAS receiver uses a I m diameter telescope to detect laser backscatter and a Si APD to detect the 1064 nm signals. The detector's output is sampled by a digital ranging receiver, which records each transmitted pulse and surface echo waveform with 1 nsec (15 cm) resolution. Each echo pulse is digitized and is reported to ground with a record length of from 200 to 544 samples, depending on the spacecraft's location . The GLAS location and epoch times are measured by a precision GPS receiver carried on the ICESat spacecraft. Initial processing of the echo waveforms within GLAS permits discrimination between cloud and surface echoes for selecting appropriate waveform samples. This selection is guided by an on-board DEM which is used to set the boundaries for the echo pulse search algorithm. Subsequent ground-based echo pulse analysis, along with GPS-based clock frequency estimates, permit final determination of the range to the surface, degree of pulse spreading, and vertical distribution of any vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when measuring over tilted surfaces, such as near the boundaries of ice sheets. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid angle to better than 10 urad is needed. GLAS uses a stellar reference system (SRS) to measure the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). GLAS will also measure the vertical distributions of clouds and aerosols by recording the vertical profiles of laser pulse backscatter at both 1064 and 532 nm. The 1064 rim measurements use the Si APD detector and will be used to measure the height and echo pulse shape from thicker clouds. The lidar receiver at 532 nm uses a narrow bandwidth etalon filter and highly sensitive photon counting detectors. The 532 nm backscatter profiles will be used to measure the vertical extent of thinner clouds and the atmospheric boundary layer. The GLAS instrument component development is complete and the instrument is undergoing final testing and qualification at NASA-Goddard. The GLAS "as-built" characteristics and its expected measurement performance will be discussed.
NASA Astrophysics Data System (ADS)
Afach, S.; Ayres, N. J.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Griffith, W. C.; Grujić, Z. D.; Harris, P. G.; Heil, W.; Hélaine, V.; Kasprzak, M.; Kermaidic, Y.; Kirch, K.; Knowles, P.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Musgrave, M.; Naviliat-Cuncic, O.; Pendlebury, J. M.; Piegsa, F. M.; Pignol, G.; Plonka-Spehr, C.; Prashanth, P. N.; Quéméner, G.; Rawlik, M.; Rebreyend, D.; Ries, D.; Roccia, S.; Rozpedzik, D.; Schmidt-Wellenburg, P.; Severijns, N.; Thorne, J. A.; Weis, A.; Wursten, E.; Wyszynski, G.; Zejma, J.; Zenner, J.; Zsigmond, G.
2015-10-01
We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 μ T magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1 pT /cm . This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.
Prediction of pilot reserve attention capacity during air-to-air target tracking
NASA Technical Reports Server (NTRS)
Onstott, E. D.; Faulkner, W. H.
1977-01-01
Reserve attention capacity of a pilot was calculated using a pilot model that allocates exclusive model attention according to the ranking of task urgency functions whose variables are tracking error and error rate. The modeled task consisted of tracking a maneuvering target aircraft both vertically and horizontally, and when possible, performing a diverting side task which was simulated by the precise positioning of an electrical stylus and modeled as a task of constant urgency in the attention allocation algorithm. The urgency of the single loop vertical task is simply the magnitude of the vertical tracking error, while the multiloop horizontal task requires a nonlinear urgency measure of error and error rate terms. Comparison of model results with flight simulation data verified the computed model statistics of tracking error of both axes, lateral and longitudinal stick amplitude and rate, and side task episodes. Full data for the simulation tracking statistics as well as the explicit equations and structure of the urgency function multiaxis pilot model are presented.
Ambipolar Graphene-Quantum Dot Hybrid Vertical Photodetector with a Graphene Electrode.
Che, Yongli; Zhang, Yating; Cao, Xiaolong; Zhang, Haiting; Song, Xiaoxian; Cao, Mingxuan; Yu, Yu; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan
2017-09-20
A strategy to fabricate an ambipolar near-infrared vertical photodetector (VPD) by sandwiching a photoactive material as a channel film between the bottom graphene and top metal electrodes was developed. The channel length in the vertical architecture was determined by the channel layer thickness, which can provide an ultrashort channel length without the need for a high-precision manufacturing process. The performance of VPDs with two types of semiconductor layers, a graphene-PbS quantum dot hybrid (GQDH) and PbS quantum dots (QDs), was measured. The GQDH VPD showed better photoelectric properties than the QD VPD because of the high mobility of graphene doped in the channel. The GQDH VPD exhibited excellent photoresponse properties with a responsivity of 1.6 × 10 4 A/W in the p-type regime and a fast response speed with a rise time of 8 ms. The simple manufacture and the promising photoresponse of the GQDH VPDs reveal that an easy and effective way to fabricate high-performance ambipolar photodetectors was developed.
Emittance matching of a slow extracted beam for a rotating gantry
NASA Astrophysics Data System (ADS)
Fujimoto, T.; Iwata, Y.; Matsuba, S.; Fujita, T.; Sato, S.; Shirai, T.; Noda, K.
2017-09-01
The introduction of a heavy-ion rotating gantry is in progress at the Heavy Ion Medical Accelerator in Chiba (HIMAC) for realizing high-precision cancer therapy using heavy ions. A scanning irradiation method will be applied to this gantry course with 48-430 MeV/u beam energy. In the rotating gantry, the horizontal and vertical beam parameters are coupled by its rotation. To maintain a circular spot shape at the isocenter irrespective of the gantry angle, achieving symmetric phase space distribution of the horizontal and vertical beam at the entrance of the rotating gantry is necessary. Therefore, compensating the horizontal and vertical emittance is necessary. We consider using a thin scatterer method to compensate the emittance. After considering the optical design for emittance matching, the scatterer device is located in the high-energy beam transport line. In the beam commissioning, we confirm that the symmetrical spot shape is obtained at the isocenter without depending on the gantry angle.
Extending interferometric synthetic aperture radar measurements from one to two dimensions
NASA Astrophysics Data System (ADS)
Bechor, Noah
Interferometric synthetic aperture radar (InSAR), a very effective technique for measuring crustal deformation, provides measurements in only one dimension, along the radar line of sight. Imaging radar measurements from satellite-based systems are sensitive to both vertical and across-track displacements, but insensitive to along-track displacement. Multiple observations can resolve the first two components, but the along-track component remains elusive. The best existing method to obtain the along-track displacement involves pixel-level azimuth cross-correlation. The measurements are quite coarse (typically 15 cm precision), and they require large computation times. In contrast, across-track and vertical InSAR measurements can reach centimeter-level precision and are readily derived. We present a new method to extract along-track displacements from InSAR data. The new method, multiple aperture InSAR (MAI), is based on split-beam processing of InSAR data to create forward- and backward-looking interferograms. The phase difference between the two modified interferograms provides the along-track displacement component. Thus, from each conventional InSAR pair we extract two components of the displacement vector: one along the line of sight, the other in the along-track direction. Multiple MAI observations, either at two look angles or from the ascending and descending radar passes, then yield the three-dimensional displacement field. We analyze precision of our method by comparing our solution to GPS and offset-derived along-track displacements from interferograms of the M7.1 1999, Hector Mine earthquake. The RMS error between GPS displacements and our results ranges from 5 to 8.8cm. Our method is consistent with along-track displacements derived by pixel-offsets, themselves limited to 12-15cm precision. The theoretical MAI precision depends on SNR and coherence. For SNR=100 the expected precision is 3, 11cm for coherence of 0.8, 0.4, respectively. Finally, we evaluate how the new measurements improve the determination of the earthquake coseismic slip distribution by comparison of models derived from multiple data types. We find that MAI data help constrain the southern portion of the lip distribution, by adding information where GPS data are sparse and the deformation is below the azimuth pixel-offsets detection threshold.
NASA Astrophysics Data System (ADS)
Schaap, Dick M. A.; Fichaut, Michele
2015-04-01
The second phase of the project SeaDataNet is well underway since October 2011. The main objective is to improve operations and to progress towards an efficient data management infrastructure able to handle the diversity and large volume of data collected via research cruises and monitoring activities in European marine waters and global oceans. The SeaDataNet infrastructure comprises a network of interconnected data centres and a central SeaDataNet portal. The portal provides users a unified and transparent overview of the metadata and controlled access to the large collections of data sets, managed by the interconnected data centres, and the various SeaDataNet standards and tools,. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards of ISO (19115, 19139), OGC (WMS, WFS, CS-W and SWE), and OpenSearch. The population of directories has increased considerably in cooperation and involvement in associated EU projects and initiatives. SeaDataNet now gives overview and access to more than 1.6 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. Access to marine data is also a key issue for the implementation of the EU Marine Strategy Framework Directive (MSFD). The EU communication 'Marine Knowledge 2020' underpins the importance of data availability and harmonising access to marine data from different sources. SeaDataNet qualified itself for an active role in the data management component of the EMODnet (European Marine Observation and Data network) that is promoted in the EU Communication. Starting 2009 EMODnet pilot portals have been initiated for marine data themes: digital bathymetry, chemistry, physical oceanography, geology, biology, and seabed habitat mapping. These portals are being expanded to all European sea regions as part of EMODnet Phase 2, which started mid 2013. EMODnet encourages more data providers to come forward for data sharing and participating in the process of making complete overviews and homogeneous data products. The EMODnet Bathymetry project is very illustrative for the synergy between SeaDataNet and EMODnet and added value of generating public data products. The project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets. The portal provides a versatile DTM viewing service with many relevant map layers and functions for retrieving. A further refinement is taking place as part of phase 2. The presentation will highlight key achievements in SeaDataNet II and give further details and views on the new EMODNet Digital Bathymetry for European seas as to be released early 2015.
NASA Astrophysics Data System (ADS)
Grafarend, E. W.; Ardalan, A.; Finn, G.
In terms of elliptic coordinates of Jacobi type (longitude, latitude, semi-minor axis) the horizontal derivative is computed as a linear operator acting on an ellipsoidal har- monic disturbing/incremental gravitational potential. Such disturbing potential is de- fined with respect to the Somigliana-Pizzetti Reference Potential, the potential field of a level ellipsoid, and the International Reference Ellipsoid/WGS84 or World Geode- tic Datum 2000/WGD2000. Case studies of those vertical deflections on a global as well as regional scale are presented which take advantage of SEGEN (Special Ellipsoidal Gravity Earth Normal: ellipsoidal harmonics expansion 130321 coeffi- cients: http://www.uni-stuttgart.de/gi/research/paper/coefficients/coefficients.zip) and of CENT (precise centrifugal potential)
NASA Technical Reports Server (NTRS)
Ma, Chopo; Gordon, David; MacMillan, Daniel
1999-01-01
Precise geodetic Very Long Baseline Interferometry (VLBI) measurements have been made since 1979 at about 130 points on all major tectonic plates, including stable interiors and deformation zones. From the data set of about 2900 observing sessions and about 2.3 million observations, useful three-dimensional velocities can be derived for about 80 sites using an incremental least-squares adjustment of terrestrial, celestial, Earth rotation and site/session-specific parameters. The long history and high precision of the data yield formal errors for horizontal velocity as low as 0.1 mm/yr, but the limitation on the interpretation of individual site velocities is the tie to the terrestrial reference frame. Our studies indicate that the effect of converting precise relative VLBI velocities to individual site velocities is an error floor of about 0.4 mm/yr. Most VLBI horizontal velocities in stable plate interiors agree with the NUVEL-1A model, but there are significant departures in Africa and the Pacific. Vertical precision is worse by a factor of 2-3, and there are significant non-zero values that can be interpreted as post-glacial rebound, regional effects, and local disturbances.
NASA Technical Reports Server (NTRS)
Zelenka, Richard E.
1992-01-01
Avionic systems that depend on digitized terrain elevation data for guidance generation or navigational reference require accurate absolute and relative distance measurements to the terrain, especially as they approach lower altitudes. This is particularly exacting in low-altitude helicopter missions, where aggressive terrain hugging maneuvers create minimal horizontal and vertical clearances and demand precise terrain positioning. Sole reliance on airborne precision navigation and stored terrain elevation data for above-ground-level (AGL) positioning severely limits the operational altitude of such systems. A Kalman filter is presented which blends radar altimeter returns, precision navigation, and stored terrain elevation data for AGL positioning. The filter is evaluated using low-altitude helicopter flight test data acquired over moderately rugged terrain. The proposed Kalman filter is found to remove large disparities in predicted AGL altitude (i.e., from airborne navigation and terrain elevation data) in the presence of measurement anomalies and dropouts. Previous work suggested a minimum clearance altitude of 220 ft AGL for a near-terrain guidance system; integration of a radar altimeter allows for operation of that system below 50 ft, subject to obstacle-avoidance limitations.
NASA Astrophysics Data System (ADS)
Penna, N. T.; Morales Maqueda, M.; Williams, S. D.; Foden, P.; Martin, I.; Pugh, J.
2013-12-01
We report on a first deployment of a GNSS Wave Glider designed for precise, unmanned, autonomous, mobile self-propelled sea level and sea state measurement in the open ocean. The Wave Glider, equipped with a dual frequency GPS+GLONASS receiver, was deployed in Loch Ness, Scotland, autonomously travelling 32 km in a north-easterly direction along the length of the loch in 26 hours, propelled by energy generated from waves of typical amplitude only 100-150 mm and frequency on the order 0.5-1 Hz. The Wave Glider GNSS data were analysed using a post-processed kinematic GPS+GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations at either end of the loch. The PPP heights of the loch's surface revealed a clear geoid gradient of about 30 mm/km (i.e. just under 1 m over the whole length of the loch), very similar to both the EGM2008 and OSGM02 geoid models, demonstrating the potential use of a GNSS Wave Glider for marine geoid determination. After applying a low pass filter, the GNSS heights showed local deviations from both EGM2008 and OSGM02, potentially caused by omission errors or a lack of gravity data over Loch Ness. In addition to dual frequency GNSS data, the Wave Glider also recorded inclinometer data, bathymetry, and surface currents, which, in combination with tide gauge and wind data, were used to further control and interpret the GNSS time series.
Ionospheric error contribution to GNSS single-frequency navigation at the 2014 solar maximum
NASA Astrophysics Data System (ADS)
Orus Perez, Raul
2017-04-01
For single-frequency users of the global satellite navigation system (GNSS), one of the main error contributors is the ionospheric delay, which impacts the received signals. As is well-known, GPS and Galileo transmit global models to correct the ionospheric delay, while the international GNSS service (IGS) computes precise post-process global ionospheric maps (GIM) that are considered reference ionospheres. Moreover, accurate ionospheric maps have been recently introduced, which allow for the fast convergence of the real-time precise point position (PPP) globally. Therefore, testing of the ionospheric models is a key issue for code-based single-frequency users, which constitute the main user segment. Therefore, the testing proposed in this paper is straightforward and uses the PPP modeling applied to single- and dual-frequency code observations worldwide for 2014. The usage of PPP modeling allows us to quantify—for dual-frequency users—the degradation of the navigation solutions caused by noise and multipath with respect to the different ionospheric modeling solutions, and allows us, in turn, to obtain an independent assessment of the ionospheric models. Compared to the dual-frequency solutions, the GPS and Galileo ionospheric models present worse global performance, with horizontal root mean square (RMS) differences of 1.04 and 0.49 m and vertical RMS differences of 0.83 and 0.40 m, respectively. While very precise global ionospheric models can improve the dual-frequency solution globally, resulting in a horizontal RMS difference of 0.60 m and a vertical RMS difference of 0.74 m, they exhibit a strong dependence on the geographical location and ionospheric activity.
Vertical Temperature Simulation of Pegasus Runway, McMurdo Station, Antarctica
2015-01-01
Report Approved for public release; distribution is unlimited. Prepared for National Science Foundation , Division of Polar Programs, Antarctic...45 ERDC/CRREL TR-15-2 vii Preface This study was conducted for the National Science Foundation (NSF), Di- vision of Polar...Development Center GPR Ground-Penetrating Radar MIS McMurdo Ice Self NSF National Science Foundation PIR Precision Infrared Radiometer PLR Division of
TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OLS)
Atmospheric Science Data Center
2018-03-01
TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News: TES News ... Level: L2 Platform: TES/Aura L2 Water Vapor Spatial Coverage: 27 x 23 km Limb ... Access: OPeNDAP Parameters: H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...
TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OL)
Atmospheric Science Data Center
2018-03-01
TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News: TES News ... Level: L2 Platform: TES/Aura L2 Water Vapor Spatial Coverage: 27 x 23 km Limb ... Access: OPeNDAP Parameters: H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...
Value for controlling flow of cryogenic fluid
Knapp, Philip A.
1996-01-01
A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.
Performance Analysis of Web-Based Ppp Services with DİFFERENT Visibility Conditions
NASA Astrophysics Data System (ADS)
Albayrak, M.; Erkaya, H.; Ozludemir, M. T.; Ocalan, T.
2016-12-01
GNSS is being used effectively to precise position for many measuring and geodetic purposes at the present time. There is an increasing variety of these systems including the post-processing calculations in terms of number, quality and features and many different techniques are developed to determine position. Precise positioning intend to derive requires user experience and scientific or commercial software with costly license fees. However, in recent years important alternatives to this software that are user friendly and offer free web-based online precise point positioning service have become widely used in geodetic applications. The aim of this study is to test the performance of PPP techniques on ground control points with different visibility conditions. Within this framework, static observations were carried out for three hours a day repeatedly for six days, in YTU Davutpasa Campus on three different ground control points. The locations of these stations were selected by taking into account the impact of natural (trees, etc.) and artificial (buildings, etc.) obstacles. In order to compare the obtained GPS observations with PPP performances, first of all the accurate coordinates of the control points were computed with relative positioning technique in connection with the IGS stations using Bernese v5.0 software. Afterwards, three different web-based positioning services (CSRS-PPP, magicGNSS, GAPS) were used to analyze the GPS observations via PPP technique. To compare all of the obtained results, ITRF2008 datum measurement epoch coordinates were preferred by taking the service result criteria into consideration. In coordinate comparison, for the first station located nearby a building and possibly subjected to multipath effect horizontal discrepancies vary between 2-14.5 cm while vertical differences are between 3.5-16 cm. For the second point located partly in a forestry area, the discrepancies have been obtained as 1.5-8 cm and 2-10 cm for horizontal and vertical components, respectively. For the third point located in an area with no obstacles, 1.5-7 cm horizontal and 1-7 cm vertical differences have been obtained. The results show that the PPP technique could be used effectively in several positioning applications.
NASA Astrophysics Data System (ADS)
Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.
2015-08-01
The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a subtle morphologic scar covered by recent lava flows erupted from alignments of basaltic strombolian cones. The predominance of the N150° and N75° trends in the island suggest that the tectonics of the Terceira Rift controlled the location and the distribution of the volcanism, and to some extent the various destruction events.
Comparison of optical coherence tomography and fundus photography for measuring the optic disc size.
Neubauer, Aljoscha S; Krieglstein, Tina R; Chryssafis, Christos; Thiel, Martin; Kampik, Anselm
2006-01-01
To assess the agreement and repeatability of optic nerve head (ONH) size measurements by optical coherence tomography (OCT) as compared to conventional planimetry of fundus photographs in normal eyes. For comparison with planimetry the absolute size of the ONH of 25 eyes from 25 normal subjects were measured by both OCT and digital fundus photography (Zeiss FF camera 450). Repeatability of automated Stratus OCT measurements were investigated by repeatedly measuring the optic disc in five normal subjects. Mean disc size was 1763 +/- 186 vertically and 1632 +/- 160 microm horizontally on planimetry. On OCT, values of 1772 +/- 317 microm vertically (p = 0.82) and a significantly smaller horizontal diameter of 1492 +/- 302 microm (p = 0.04) were obtained. The 95% limits of agreement were (-546 microm; +527 microm) for vertical and (-502 microm; +782 microm) for horizontal planimetric compared to OCT measurements. In some cases large discrepancies existed. Repeatability of automatic measurements of the optic disc by OCT was moderately good with intra-class correlation coefficients (ICC) of 0.78 horizontally and 0.83 vertically. The coefficient of repeatability indicating instrument precision was 80 microm for horizontal and 168 microm for vertical measurements. OCT can be used to determine optic disc margins in moderate agreement with planimetry in normal subjects. However, in some cases significant disagreement with photographic assessment may occur making manual inspection advisable. Automatic disc detection by OCT is moderately repeatable.
Measurement of Seafloor Deformation in the Marine Sector of the Campi Flegrei Caldera (Italy)
NASA Astrophysics Data System (ADS)
Iannaccone, Giovanni; Guardato, Sergio; Donnarumma, Gian Paolo; De Martino, Prospero; Dolce, Mario; Macedonio, Giovanni; Chierici, Francesco; Beranzoli, Laura
2018-01-01
We present an assessment of vertical seafloor deformation in the shallow marine sector of the Campi Flegrei caldera (southern Italy) obtained from GPS and bottom pressure recorder (BPR) data, acquired over the period April 2016 to July 2017 in the Gulf of Pozzuoli by a new marine infrastructure, MEDUSA. This infrastructure consists of four fixed buoys with GPS receivers; each buoy is connected by cable to a seafloor multisensor module hosting a BPR. The measured maximum vertical uplift of the seafloor is about 4.2 ± 0.4 cm. The MEDUSA data were then compared to the expected vertical displacement in the marine sector according to a Mogi model point source computed using only GPS land measurements. The results show that a single point source model of deformation is able to explain both the GPS land and seafloor data. Moreover, we demonstrate that a network of permanent GPS buoys represents a powerful tool to measure the seafloor vertical deformation field in shallow water. The performance of this system is comparable to on-land high-precision GPS networks, marking a significant achievement and advance in seafloor geodesy and extending volcano monitoring capabilities to shallow offshore areas (up to 100 m depth). The GPS measurements of MEDUSA have also been used to confirm that the BPR data provide an independent measure of the seafloor vertical uplift in shallow water.
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Evaluating a campaign GNSS velocity field derived from an online precise point positioning service
NASA Astrophysics Data System (ADS)
Holden, L.; Silcock, D.; Choy, S.; Cas, R.; Ailleres, L.; Fournier, N.
2017-01-01
Traditional processing of Global Navigation Satellite System (GNSS) data using dedicated scientific software has provided the highest levels of positional accuracy, and has been used extensively in geophysical deformation studies. To achieve these accuracies a significant level of understanding and training is required, limiting their availability to the general scientific community. Various online GNSS processing services, now freely available, address some of these difficulties and allow users to easily process their own GNSS data and potentially obtain high quality results. Previous research into these services has focused on Continually Operating Reference Station (CORS) GNSS data. Less research exists on the results achievable with these services using large campaign GNSS data sets, which are inherently noisier than CORS data. Even less research exists on the quality of velocity fields derived from campaign GNSS data processed through online precise point positioning services. Particularly, whether they are suitable for geodynamic and deformation studies where precise and reliable velocities are needed. In this research, we process a very large campaign GPS data set (spanning 10 yr) with the online Jet Propulsion Laboratory Automated Precise Positioning Service. This data set is taken from a GNSS network specifically designed and surveyed to measure deformation through the central North Island of New Zealand. This includes regional CORS stations. We then use these coordinates to derive a horizontal and vertical velocity field. This is the first time that a large campaign GPS data set has been processed solely using an online service and the solutions used to determine a horizontal and vertical velocity field. We compared this velocity field to that of another well utilized GNSS scientific software package. The results show a good agreement between the CORS positions and campaign station velocities obtained from the two approaches. We discuss the implications of these results for how future GNSS campaign field surveys might be conducted and how their data might be processed.
NASA Astrophysics Data System (ADS)
Bernhardt, P.; Nicholas, A.; Thomas, L.; Davis, M.; Hoberman, C.; Davis, M.
The Naval Research Laboratory will provide an orbiting calibration sphere to be used with ground-based laser imaging telescopes and HF radio systems. The Precision Expandable Radar Calibration Sphere (PERCS) is a practical, reliable, high-performance HF calibration sphere and laser imaging target to orbit at about 600 km altitude. The sphere will be made of a spherical wire frame with aspect independent radar cross section in the 3 to 35 MHz frequency range. The necessary launch vehicle to place the PERCS in orbit will be provided by the Department of Defense Space Test Program. The expandable calibration target has a stowed diameter of 1 meter and a fully deployed diameter of 10.2 meters. A separate deployment mechanism is provided for the sphere. After deployment, the Precision Expandable Radar Calibration Sphere (PERCS) with 180 vertices will be in a high inclination orbit to scatter radio pulses from a number of ground systems, including (1) over-the-horizon (OTH) radars operated by the United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral region mapping; and (4) HF direction finding for Navy ships. With the PERCS satellite, the accuracy of HF radars can be periodically checked for range, elevation, and azimuth errors. In addition, each of the 360 vertices on the PERCS sphere will support an optical retro-reflector for operations with ground laser facilities used to track satellites. The ground laser systems will be used to measure the precise location of the sphere within one cm accuracy and will provide the spatial orientation of the sphere as well as the rotation rate. The Department of Defense facilities that can use the corner-cube reflectors on the PERCS include (1) the Air Force Maui Optical Site (AMOS), (2) the Starfire Optical Range (SOR), and (3) the NRL Optical Test Facility (OTF).
CGVD2013: The Geoid-based Vertical Datum in Canada
NASA Astrophysics Data System (ADS)
Robin, C. M. I.; Veronneau, M.; Huang, J.
2016-12-01
In November 2013, Canada established the Canadian Geodetic Vertical Datum of 2013 (CGVD2013). This new datum is defined by an equipotential surface (Wo =62,636,856 m2/s2) and realized by a geoid model (CGG2013), making it compatible with Global Navigation Satellite Systems (GNSS) for positioning. The adoption of CGVD2013 represents a major shift from the old vertical datum (CGVD28), which was defined by the mean sea level at selected tide gauges and propagated in land by precise levelling measurements. This new vertical datum represents also a major impact for the users, who have relied on the access to benchmarks for the last 100 years to conduct their surveys. The presentation will not only discuss the advantages for Canada to moving to a geoid-based datum, but also discuss the challenges in maintaining such as vertical datum in a period where technology is moving rapidly and data are coming in large numbers allowing the possibility of a quick turnaround in the release of new realisations of the geoid-based vertical datum. This is quite different as when benchmarks were re-surveyed at a 20- to 30-year cycle or sometime never revisited again, resulting in heights that were very consistent over many years (even though benchmarks are moving up and down). The question is how to fulfil users who want to live in a static world as much as possible, but simultaneously updating the vertical datum to assure utmost accuracy for scientific and technological requirements. Consequently, the presentation will give a look at the future American height system, as the US National Geodetic Survey is in the process of updating by 2022 the geometric and height reference systems, being NAD 83 and NAVD 88, respectively.
NASA Astrophysics Data System (ADS)
Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.
2013-12-01
Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places, hydrothermal crusts cover loose volcaniclastic material on the steep slopes and stabilize them.
Small scale morphodynamics of shoreface-connected ridges and their impact on benthic macrofauna
NASA Astrophysics Data System (ADS)
Markert, Edith; Kröncke, Ingrid; Kubicki, Adam
2015-05-01
The first interdisciplinary analysis (biological and sedimentological) of macrofauna communities influenced by long-term morphodynamics of shoreface-connected ridges in the German Bight on a small scale is presented in this study. The study area covering 4 km2 was located off the island of Spiekeroog, in an area known as a Tellina fabula community. Sediment samples taken at 27 sample sites were coupled with side-scan sonar data to draw a precise sediment map of the area, as well as with high-resolution multi-beam bathymetry data to understand the morphodynamic changes of the seabed between 2003 and 2010. The macrofauna data acquired at the same 27 sites were analysed for community structure using non-metric multidimensional scaling, the ANOSIM and PERMANOVA tests. Correlations between biological and environmental variables were examined with the BIOENV procedure. The study revealed a shore-parallel sediment zonation with clear and sharp borders induced by local morphodynamics, which together with specific local bathymetry affected the formation of three different macrofauna affinity groups. One group was located on the shoreface and in the troughs (dominant species: Scoloplos armiger, Lanice conchilega, Notomastus latericeus), one on the landward flanks of the ridges (dominant species: Aonides paucibranchiata, Goniadella bobretzkii), and one on the ridge crests (dominant species: Ophelia spp. juv., Spio goniocephala). The spatial distribution of the affinity groups, their taxa number and abundance of species was dependent on a surface sediment pattern resulting from local hydrodynamics, which in turn is known to influence the food availability. A seaward steepening of ridges took place and was an effect of erosion up to 0.34 m on landward flanks in and accumulation up to 0.29 m on seaward flanks in seven years. The studied shoreface-connected ridges migrated seawards with a pace of 5 m/year for the large ridge and 20 m/year for the small ridge. Elongated mud-pockets were common in the deepest parts of the troughs, but seemed to be unstable in time. The identified general seaward migration of shoreface-connected ridges seemed to be slow enough for the macrofauna communities to migrate with the morphodynamics of the ridges.
NASA Astrophysics Data System (ADS)
Goff, J.; Zahirovic, S.; Müller, D.
2017-12-01
Recently published spectral analyses of seafloor bathymetry concluded that abyssal hills, highly linear ridges that are formed along seafloor spreading centers, exhibit periodicities that correspond to Milankovitch cycles - variations in Earth's orbit that affect climate on periods of 23, 41 and 100 thousand years. These studies argue that this correspondence could be explained by modulation of volcanic output at the mid-ocean ridge due to lithostatic pressure variations associated with rising and falling sea level. If true, then the implications are substantial: mapping the topography of the seafloor with sonar could be used as a way to investigate past climate change. This "Milankovitch cycle" hypothesis predicts that the rise and fall of abyssal hills will be correlated to crustal age, which can be tested by stacking, or averaging, bathymetry as a function of age; stacking will enhance any age-dependent signal while suppressing random components, such as fault-generated topography. We apply age-stacking to data flanking the Southeast Indian Ridge ( 3.6 cm/yr half rate), northern East Pacific Rise ( 5.4 cm/yr half rate) and southern East Pacific Rise ( 7.8 cm/yr half rate), where multibeam bathymetric coverage is extensive on the ridge flanks. At the greatest precision possible given magnetic anomaly data coverage, we have revised digital crustal age models in these regions with updated axis and magnetic anomaly traces. We also utilize known 2nd-order spatial statistical properties of abyssal hills to predict the variability of the age-stack under the null hypothesis that abyssal hills are entirely random with respect to crustal age; the age-stacked profile is significantly different from zero only if it exceeds this expected variability by a large margin. Our results indicate, however, that the null hypothesis satisfactorily explains the age-stacking results in all three regions of study, thus providing no support for the Milankovitch cycle hypothesis. The random nature of abyssal hills is consistent with a primarily faulted origin. .
Water depth measurement using an airborne pulsed neon laser system
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.; Frederick, E. B.
1980-01-01
The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.
Busse, Harald; Thomas, Michael; Seiwerts, Matthias; Moche, Michael; Busse, Martin W; von Salis-Soglio, Georg; Kahn, Thomas
2008-01-01
To implement a PC-based morphometric analysis platform and to evaluate the feasibility and precision of MRI measurements of glenohumeral translation. Using a vertically open 0.5T MRI scanner, the shoulders of 10 healthy subjects were scanned in apprehension (AP) and in neutral position (NP), respectively. Surface models of the humeral head (HH) and the glenoid cavity (GC) were created from segmented MR images by three readers. Glenohumeral translation was determined by the projection point of the manually fitted HH center on the GC plane defined by the two main principal axes of the GC model. Positional precision, given as mean (extreme value at 95% confidence level), was 0.9 (1.8) mm for the HH center and 0.7 (1.6) mm for the GC centroid; angular GC precision was 1.3 degrees (2.3 degrees ) for the normal and about 4 degrees (7 degrees ) for the anterior and superior coordinate axes. The two-dimensional (2D) precision of the HH projection point was 1.1 (2.2) mm. A significant HH translation between AP and NP was found. Despite a limited quality of the underlying model data, our PC-based analysis platform allows a precise morphometric analysis of the glenohumeral joint. The software is easily extendable and may potentially be used for an objective evaluation of therapeutical measures.
Study of oil palm root architecture with variation of crop stage and soil type vulnerable to drought
NASA Astrophysics Data System (ADS)
Safitri, Lisma; Suryanti, Sri; Kautsar, Valensi; Kurniawan, Agung; Santiabudi, Fajar
2018-03-01
Root arhitecture is affected by watertable level, characteristic of soil, organic matter and also the crop stages. Root architecture spread horizontally and vertically which each consist of primary, secondary, tertiary and quaternary downward root. The oil palm root observation with variation of crop stage and soil type showed that the root of oil palm plant year 2008 on spodosols soil spread along 650 cm horizontally from the trunk and penetrate downward in range of 9-28 cm vertically. Planted in the same type of soil, the root of oil palm plant year 2004 spread along 650 cm horizontally and reached to downward in a larger range from 3 to 57 cm vertically. As a comparison, the root architecture of oil palm on inceptisols soil established the range much greater vertically than the previous. The root of oil palm plant year 2008 spread along 640 cm horizontally and penetrate downward in range of 52-90 cm vertically. With the variation of crop age, the root of oil palm plant year 2003 spread along 650 cm horizontally and reached to downward in a larger range from 150 to 200 cm vertically. Based on this study, root architecture of oil palm was varied and need to be detailed. The precise root architecture of oil palm allows a better understanding on hydrological properties of oil palm root particularly which is cultivated on soil type vulnerable to drought. Referring to this root architecture, it was enable to develop the study on early drought detection of oil palm to optimise production and towards oil palm sustainability.
a Point Cloud Classification Approach Based on Vertical Structures of Ground Objects
NASA Astrophysics Data System (ADS)
Zhao, Y.; Hu, Q.; Hu, W.
2018-04-01
This paper proposes a novel method for point cloud classification using vertical structural characteristics of ground objects. Since urbanization develops rapidly nowadays, urban ground objects also change frequently. Conventional photogrammetric methods cannot satisfy the requirements of updating the ground objects' information efficiently, so LiDAR (Light Detection and Ranging) technology is employed to accomplish this task. LiDAR data, namely point cloud data, can obtain detailed three-dimensional coordinates of ground objects, but this kind of data is discrete and unorganized. To accomplish ground objects classification with point cloud, we first construct horizontal grids and vertical layers to organize point cloud data, and then calculate vertical characteristics, including density and measures of dispersion, and form characteristic curves for each grids. With the help of PCA processing and K-means algorithm, we analyze the similarities and differences of characteristic curves. Curves that have similar features will be classified into the same class and point cloud correspond to these curves will be classified as well. The whole process is simple but effective, and this approach does not need assistance of other data sources. In this study, point cloud data are classified into three classes, which are vegetation, buildings, and roads. When horizontal grid spacing and vertical layer spacing are 3 m and 1 m respectively, vertical characteristic is set as density, and the number of dimensions after PCA processing is 11, the overall precision of classification result is about 86.31 %. The result can help us quickly understand the distribution of various ground objects.
NASA Technical Reports Server (NTRS)
Stephens, Graeme L.; Vane, Deborah G.; Boain, Ronald; Mace, Gerald; Sassen, Kenneth; Wang, Zhien; Illingworth, Anthony; OConnor, Ewan; Rossow, William; Durden, Stephen L.;
2001-01-01
CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004 and, once launched, CloudSat will orbit in formation as part of a constellation of satellites including NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (P-C) and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the P-C lidar footprint and the other measurements of the EOS constellation. The precision of this overlap creates a unique multi-satellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profile of cloud properties provided by CloudSat fills a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring the vertical profile of cloud properties requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with active and passive data from other sensors of the constellation. This paper describes the underpinning science, and gives an overview of the mission, and provides some idea of the expected products and anticipated application of these products. Notably, the CloudSat mission is expected to provide new knowledge about global cloudiness, stimulating new areas of research on clouds including data assimilation and cloud parameterization. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA/JPL, the Canadian Space Agency, Colorado State University, the US Air Force, and the US Department of Energy.
NASA Astrophysics Data System (ADS)
Goodman, Alvin M.; Powers, Edward J.
1993-06-01
In this dissertation, the precision of molecular-beam epitaxy (MBE) is taken advantage of in order to grow semiconductor reflectors, microcavities, and quantum wells for studies of vertical-cavity surface-emitting lasers (VCSEL's) and the coupling between reflectors and the spatially localized dipoles of semiconductor quantum wells. The design of the structures and the choice of epitaxial growth parameters used for the structures are discussed in detail. Experimental techniques and results are discussed which relate to studies that advance the optoelectronics technology and our understanding of fundamental physics. MBE is used to grow epitaxial structures in which a QW is precisely placed either in close proximity to a DBR, or near the surface of the epitaxial layer, so that a highly reflective mirror can be placed in close proximity to the QW.
Stronko, Jakob M.
2013-01-01
Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.
Flow patterns and bathymetric signatures on the delta front of a prograding river delta
NASA Astrophysics Data System (ADS)
Shaw, J.; Mohrig, D. C.; Wagner, R. W.
2016-02-01
The transition of water between laterally confined channels and the unchannelized delta front controls the growth pattern of river deltas, but is difficult to measure on field-scale deltas. We quantify flow patterns, bathymetry and bathymetric evolution for the subaqueous delta front on the Wax Lake Delta (WLD), a rapidly prograding delta in coastal Louisiana. The flow direction field, mapped using streaklines composed of biogenic slicks on the water surface, shows that a significant portion of flow ( 59%) departs subaqueous channels laterally over the subaqueous margins of the channel seaward of the shoreline. Synoptic datasets of bathymetry and flow direction allow spatial changes in flow velocity to be quantified. Most lateral flow divergence and deceleration occurs within 3-8 channel widths outboard of subaqueous channel margins, rather than downstream of channel tips. In interdistributary bays, deposit elevation decreases with a basinward slope of 2.4 x 10-4 with distance from a channel margin along any flow path. Flow patterns and this slope produce constructional features called interdistributary troughs - topographic lows in the center of interdistributary bays. These data show that flow patterns and bathymetry on the delta front are coupled both at the transition from channelized to unchannelized flow and in the depositional regions outside the distributary network.
Morphology of Shatsky Rise oceanic plateau from high resolution bathymetry
NASA Astrophysics Data System (ADS)
Zhang, Jinchang; Sager, William W.; Durkin, William J.
2017-06-01
Newly collected, high resolution multi-beam sonar data are combined with previous bathymetry data to produce an improved bathymetric map of Shatsky Rise oceanic plateau. Bathymetry data show that two massifs within Shatsky Rise are immense central volcanoes with gentle flank slopes declining from a central summit. Tamu Massif is a slightly elongated, dome-like volcanic edifice; Ori Massif is square shaped and smaller in area. Several down-to-basin normal faults are observed on the western flank of the massifs but they do not parallel the magnetic lineations, indicating that these faults are probably not related to spreading ridge faulting. Moreover, the faults are observed only on one side of the massifs, which is contrary to expectations from a mechanism of differential subsidence around the massif center. Multi-beam data show many small secondary cones with different shapes and sizes that are widely-distributed on Shatsky Rise massifs, which imply small late-stage magma sources scattered across the surface of the volcanoes in the form of lava flows or explosive volcanism. Erosional channels occur on the flanks of Shatsky Rise volcanoes due to mass wasting and display evidence of down-slope sediment movement. These channels are likely formed by sediments spalling off the edges of summit sediment cap.
Predicted seafloor facies of Central Santa Monica Bay, California
Dartnell, Peter; Gardner, James V.
2004-01-01
Summary -- Mapping surficial seafloor facies (sand, silt, muddy sand, rock, etc.) should be the first step in marine geological studies and is crucial when modeling sediment processes, pollution transport, deciphering tectonics, and defining benthic habitats. This report outlines an empirical technique that predicts the distribution of seafloor facies for a large area offshore Los Angeles, CA using high-resolution bathymetry and co-registered, calibrated backscatter from multibeam echosounders (MBES) correlated to ground-truth sediment samples. The technique uses a series of procedures that involve supervised classification and a hierarchical decision tree classification that are now available in advanced image-analysis software packages. Derivative variance images of both bathymetry and acoustic backscatter are calculated from the MBES data and then used in a hierarchical decision-tree framework to classify the MBES data into areas of rock, gravelly muddy sand, muddy sand, and mud. A quantitative accuracy assessment on the classification results is performed using ground-truth sediment samples. The predicted facies map is also ground-truthed using seafloor photographs and high-resolution sub-bottom seismic-reflection profiles. This Open-File Report contains the predicted seafloor facies map as a georeferenced TIFF image along with the multibeam bathymetry and acoustic backscatter data used in the study as well as an explanation of the empirical classification process.
NASA Astrophysics Data System (ADS)
Balodis, Janis; Haritonova, Diana; Janpaule, Inese; Normand, Madara; Silabiedis, Gunars; Zarinjsh, Ansis; Rubans, Agusts; Kalinka, Maris; Jumare, Izolde; Lasmane, Ieva
2013-12-01
This paper discusses the research work done in Institute of Geodesy and Geoinformation, University of Latvia, and Department of Geomatics, Riga Technical Univesity, devoted to the geodynamics in Latvia: national geoid model computation, using different methods and data sets, in order to improve its precision; analysis of LatPos and EUPOS®-Riga GNSS permanent station observation data time series for time period of 5 years; development of digital zenith camera for vertical deflection determination.
1993-06-28
entitled "MBE Grown Microcavities for Optoelectronic Devices." In the dissertation work,1 the precision of molecular - beam epitaxy (MBE) is taken...Layers For Surface Normal Optoelectronic Devices," North American Conference on Molecular Beam Epitaxy , Ottawa, Canada, October 12-14, 1992, to be...8. C. Lei, T. J. Rogers, D. G. Deppe, and B. G. Streetman, "InGaAs-GaAs Quantum Well Vertical-Cavity Surface-Emitting Laser Using Molecular Beam
Creative brains: designing in the real world†
Goel, Vinod
2014-01-01
The process of designing artifacts is a creative activity. It is proposed that, at the cognitive level, one key to understanding design creativity is to understand the array of symbol systems designers utilize. These symbol systems range from being vague, imprecise, abstract, ambiguous, and indeterminate (like conceptual sketches), to being very precise, concrete, unambiguous, and determinate (like contract documents). The former types of symbol systems support associative processes that facilitate lateral (or divergent) transformations that broaden the problem space, while the latter types of symbol systems support inference processes facilitating vertical (or convergent) transformations that deepen of the problem space. The process of artifact design requires the judicious application of both lateral and vertical transformations. This leads to a dual mechanism model of design problem-solving comprising of an associative engine and an inference engine. It is further claimed that this dual mechanism model is supported by an interesting hemispheric dissociation in human prefrontal cortex. The associative engine and neural structures that support imprecise, ambiguous, abstract, indeterminate representations are lateralized in the right prefrontal cortex, while the inference engine and neural structures that support precise, unambiguous, determinant representations are lateralized in the left prefrontal cortex. At the brain level, successful design of artifacts requires a delicate balance between the two hemispheres of prefrontal cortex. PMID:24817846
Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage.
Li, G; Hu, H; Wu, K; Wang, G; Wang, L J
2014-10-01
For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.
Micro-miniature gas chromatograph column disposed in silicon wafers
Yu, Conrad M.
2000-01-01
A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.
1997-01-22
KENNEDY SPACE CENTER, FLA. - In KSC's Vertical Processing Facility, Louise Kleba of the Vehicle Integration Test Team (VITT) and engineer Devin Tailor of Goddard Space Flight Center examine the Pistol Grip Tool (PGT), which was designed for use by astronauts during spacewalks. The PGT is a self-contained, micro-processor controlled, battery-powered tool. It also can be used as a nonpowered ratchet wrench. The experiences of the astronauts on the first Hubble Space Telescope (HST) servicing mission led to recommendations for this smaller, more efficient tool for precision work during spacewalks. The PGT will be used on the second HST servicing mission, STS-82. Liftoff aboard Discovery is scheduled Feb. 11.
Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage
NASA Astrophysics Data System (ADS)
Li, G.; Hu, H.; Wu, K.; Wang, G.; Wang, L. J.
2014-10-01
For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.
NASA Astrophysics Data System (ADS)
Lurton, X.; Lamarche, G.
2011-12-01
Central Cook Strait, New Zealand presents a variety of geological landforms subjected to intense hydrodynamic conditions. A comprehensive EM300 multibeam coverage of the strait was used to develop a method to objectively characterise the seafloor substrate. Specific post-processing was applied to the backscatter data to correct the signal from sensor bias, and was completed by correlating a quantitative description of backscatter with the field data. The final calibrated Backscattering Strength (BS) provides information on the physical characteristics of the seafloor. The BS imagery was used for both qualitative and quantitative interpretation, and give access to a level of detail higher than with conventional multibeam bathymetry. We developed a functional descriptive model of the physical BS angular response, describing satisfactorily the various typical BS responses met over Cook Strait and providing a first-order interpretation of the substrate composition. The full model needs 6 input parameters, but a practical classification can be obtained with only two (the BS value at 45° and the specular-to-oblique contrast). We analyse the BS angular response of sandwaves and erosional bedforms typically met in the central Cook Strait. The sandwave fields occur in 200-350 m of water depth and exhibit large-scale topographical features (wavelengths 100 - 250 m; vertical amplitudes 2 - 10 m). They are conspicuous in the backscatter imagery, and analysing their BS variations according to topography is specially informative. The BS level has a sharp minimum at the wave crests and is maximal inside the troughs, with a typical dynamics of 6 dB. Such a variation cannot be explained by the dependence on incident angle retrieved from local high-resolution bathymetry. Hence we infer that the reflectivity variations observed on the sandwaves are due to sediment facies changes, from fine to coarse sand in this case. This is corroborated by the fact that some sandwave fields with subdued topography, not detectable from the bathymetry data alone, are perfectly resolved thanks to the backscatter contrast. Other typical and very specific features found in Cook Strait are best described as blade-shaped dunes perpendicular to the strait's main axis. These dunes are up to 2 km in length with heights ranging 15-60 m. Erosional basins developed on both sides of their tips, resulting in "butterfly" patterns. These dunes appear either isolated or in small groups. Initially thought to be hard material crests as suggested by their geometry, these features proved, from BS analysis, to be actually made of soft sediment with a very low reflectivity at their top (around -40 dB/m2) contrasting by typically 20 dB with a high reflectivity level at their base, and especially inside the basins located at both ends. The dune flanks exhibit intermediate BS values, with systematically lower levels (by 5 dB) on their northern flanks. This difference suggests an asymmetrical effects of the sediment dynamics in this region, despite the alternating action of tidal currents, and may reflect a control of deep oceanographic global currents that usually flow eastward, i.e. from the Tasman Sea to the Pacific Ocean.