Nicholls, Barry; Racey, Paul A.
2007-01-01
Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629
Rapid jamming avoidance in biosonar.
Gillam, Erin H; Ulanovsky, Nachum; McCracken, Gary F
2007-03-07
The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust their signal structure to avoid jamming ('jamming avoidance response'; JAR). However, these studies relied on behavioural correlations and not controlled experiments. Here, we provide the first experimental evidence for JAR in bats. We presented bats (Tadarida brasiliensis) with 'playback stimuli' consisting of recorded echolocation calls at one of six frequencies. The bats exhibited a JAR by shifting their call frequency away from the presented playback frequency. When the approaching bats were challenged by an abrupt change in the playback stimulus, they responded by shifting their call frequencies upwards, away from the playback. Interestingly, even bats initially calling below the playback's frequency shifted their frequencies upwards, 'jumping' over the playback frequency. These spectral shifts in the bats' calls occurred often within less than 200 ms, in the first echolocation call emitted after the stimulus switch-suggesting that rapid jamming avoidance is important for the bat.
[Radar as imaging tool in ecology and conservation biology].
Matyjasiak, Piotr
2017-01-01
Migrations and dispersal are among the most important ecological processes that shape ecosystems and influence our economy, health and safety. Movements of birds, bats and insects occur in a large spatial scale - regional, continental, or intercontinental. However, studies of these phenomena using classic methods are usually local. Breakthrough came with the development of radar technology, which enabled researchers to study animal movements in the atmosphere in a large spatial and temporal scale. The aim of this article was to present the radar imaging methods used in the research of aerial movements of birds, bats and insects. The types of radars used in research are described, and examples of the use of radar in basic research and in conservation biology are discussed. Radar visualizations are used in studies on the effect of meteorological conditions on bird migration, on spatial and temporal dynamics of movements of birds, bats and insects, and on the mechanism of orientation of migrating birds and insects. In conservation biology research radars are used in the monitoring of endangered species of birds and bats, to monitor bird activity at airports, as well as in assessing the impact of high constructions on flying birds and bats.
Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms
NASA Astrophysics Data System (ADS)
Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.
2016-10-01
The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.
Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms
Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.
2016-01-01
The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification. PMID:27762292
Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms.
Mirkovic, Djordje; Stepanian, Phillip M; Kelly, Jeffrey F; Chilson, Phillip B
2016-10-20
The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.
Radar study of seabirds and bats on windward Hawai'i
Reynolds, M.H.; Cooper, B.A.; Day, Robert H.
1997-01-01
Modified marine surveillance radar was used to study the presence/ absence, abundance, and flight activity of four nocturnal species: Hawaiian darkrumped petrel [Pterodroma phaeopygia sandwichensis (Ridgeway)], Newell's shearwater [Puffinus auricularis newelli (Henshaw)], Band-rumped storm-petrel [Oceanodroma castro (Harcourt)], and Hawaiian hoary bat (Lasiurus cinereus semotus Sanborn & Crespo). Hawaiian seabirds were recorded flying to or from inland nesting colonies at seven sampling sites on the windward side of the island of Hawai'i. In total, 527 radar "targets" identified as petrel or shearwater-type on the basis of speed, flight behavior, and radar signal strength were observed during eight nights of sampling. Mean movement rates (targets per minute) for seabird targets were 0.1, 0.1, 0.3, 3.8, 0.9, and 2.2 for surveys at Kahakai, Kapoho, Mauna Loa, Pali Uli, Pu'ulena Crater, and Waipi'o Valley, respectively. Two percent of the petrel and shearwater-type targets detected on radar were confirmed visually or aurally. Flight paths for seabird targets showed strong directionality at six sampling sites. Mean flight speed for seabird targets (n = 524) was 61 km/hr for all survey areas. Peak detection times for seabirds were from 0430 to 0530 hours for birds flying to sea and 2000 to 2150 hours for birds returning to colonies. Most inland, low-elevation sampling sites could not be surveyed reliably for seabirds during the evening activity periods because of radar interference from insects and rapidly flying bats. At those inland sites predawn sampling was the best time for using radar to detect Hawaiian seabirds moving seaward. Hawaiian hoary bats were recorded at eight sampling sites. Eighty-six to 89 radar targets that exhibited erratic flight behavior were identified as "batlike" targets; 17% of these batlike radar targets were confirmed visually. Band-rumped storm-petrels were not identified during our surveys.
Holzapfel, Sebastian; Riecke, Jenny; Rief, Winfried; Schneider, Jessica; Glombiewski, Julia A
2016-11-01
Pain-related fear and avoidance of physical activities are central elements of the fear-avoidance model of musculoskeletal pain. Pain-related fear has typically been measured by self-report instruments. In this study, we developed and validated a Behavioral Avoidance Test (BAT) for chronic low back pain (CLBP) patients with the aim of assessing pain-related avoidance behavior by direct observation. The BAT-Back was administered to a group of CLBP patients (N=97) and pain-free controls (N=31). Furthermore, pain, pain-related fear, disability, catastrophizing, and avoidance behavior were measured using self-report instruments. Reliability was assessed with intraclass correlation coefficient and Cronbach α. Validity was assessed by examining correlation and regression analysis. The intraclass correlation coefficient for the BAT-Back avoidance score was r=0.76. Internal consistency was α=0.95. CLBP patients and controls differed significantly on BAT-Back avoidance scores as well as self-report measures. BAT-Back avoidance scores were significantly correlated with scores on each of the self-report measures (rs=0.27 to 0.54). They were not significantly correlated with general anxiety and depression, age, body mass index, and pain duration. The BAT-Back avoidance score was able to capture unique variance in disability after controlling for other variables (eg, pain intensity and pain-related fear). Results indicate that the BAT-Back is a reliable and valid measure of pain-related avoidance behavior. It may be useful for clinicians in tailoring treatments for chronic pain as well as an outcome measure for exposure treatments.
Sensorimotor Model of Obstacle Avoidance in Echolocating Bats
Vanderelst, Dieter; Holderied, Marc W.; Peremans, Herbert
2015-01-01
Bat echolocation is an ability consisting of many subtasks such as navigation, prey detection and object recognition. Understanding the echolocation capabilities of bats comes down to isolating the minimal set of acoustic cues needed to complete each task. For some tasks, the minimal cues have already been identified. However, while a number of possible cues have been suggested, little is known about the minimal cues supporting obstacle avoidance in echolocating bats. In this paper, we propose that the Interaural Intensity Difference (IID) and travel time of the first millisecond of the echo train are sufficient cues for obstacle avoidance. We describe a simple control algorithm based on the use of these cues in combination with alternating ear positions modeled after the constant frequency bat Rhinolophus rouxii. Using spatial simulations (2D and 3D), we show that simple phonotaxis can steer a bat clear from obstacles without performing a reconstruction of the 3D layout of the scene. As such, this paper presents the first computationally explicit explanation for obstacle avoidance validated in complex simulated environments. Based on additional simulations modelling the FM bat Phyllostomus discolor, we conjecture that the proposed cues can be exploited by constant frequency (CF) bats and frequency modulated (FM) bats alike. We hypothesize that using a low level yet robust cue for obstacle avoidance allows bats to comply with the hard real-time constraints of this basic behaviour. PMID:26502063
WSR-88D doppler radar detection of corn earworm moth migration
USDA-ARS?s Scientific Manuscript database
Flying insects, birds, and bats contribute to radar reflectivity and radial velocity measured by Doppler weather radars. A study was conducted in the Lower Rio Grande Valley of Texas to determine the capability of Weather Service Radar (version 88D) (WSR-88D) to monitor migratory flights of corn ea...
NASA Astrophysics Data System (ADS)
Werth, S. P.; Frasier, S. J.
2015-12-01
Wind energy is one of the fastest-growing segments of the world energy market, offering a clean and abundant source of electricity. However, wind energy facilities can have detrimental effects on wildlife, especially birds and bats. Monitoring systems based on marine navigation radar are often used to quantify migration near potential wind sites, but the ability to reliably distinguish between bats and different varieties of birds has not been practically achieved. This classification capability would enable wind site selection that protects more vulnerable species, such as bats and raptors. Flight behavior, such as wing beat frequency, changes in speed, or changes in orientation, are known to vary by species [1]. The ability to extract these properties from radar data could ultimately enable a species based classification scheme. In this work, we analyze the relationship between radar measurements and bird flight behavior in echoes from avifauna. During the 2014 fall migration season, the UMass dual polarized weather radar was used to collect low elevation observations of migrating birds as they traversed through a fixed antenna beam. The radar was run during the night time, in clear-air conditions. Data was coherently integrated, and detections of biological targets exceeding an SNR threshold were extracted. Detections without some dominant frequency content (i.e. clear periodicity, potentially the wing beat frequency) were removed from the sample in order to isolate observations suspected to contain a single species or bird. For the remaining detections, measurements including the polarimetric products and the Doppler spectrum were extracted at each time step over the duration of the observation. The periodic and time changing nature of some of these different measurements was found to have a strong correlation with flight behavior (i.e. flapping vs. gliding behavior). Assumptions about flight behavior and orientation were corroborated through scattering simulations of birds in flight. The presence of a strong correlation between certain radar measurements and flight behavior would suggest the potential for a broad, species based avian classification algorithm. Such a classification scheme could ultimately help select and monitor wind sites in order to minimize harm to at-risk bird and bat species.
The role of tragus on echolocating bat, Eptesicus fuscus
NASA Astrophysics Data System (ADS)
Chiu, Chen; Moss, Cynthia
2005-04-01
Echolocating bats produce ultrasonic vocal signals and utilize the returning echoes to detect, localize and track prey, and also to avoid obstacles. The pinna and tragus, two major components of the bats external ears, play important roles in filtering returning echoes. The tragus is generally believed to play a role in vertical sound localization. The purpose of this study is to further examine how manipulation of the tragus affects a free-flying bat's prey capture and obstacle avoidance behavior. The first part of this study involved a prey capture experiment, and the bat was trained to catch the tethered mealworms in a large room. The second experiment involved obstacle avoidance, and the bat's task was to fly through the largest opening from a horizontal wire array without touching the wires. In both experiments, the bat performed the tasks under three different conditions: with intact tragus, tragus-deflection and recovery from tragus-deflection. Significantly lower performance was observed in both experiments when tragi were glued down. However, the bat adjusted quickly and returned to baseline performance a few days after the manipulation. The results suggest that tragus-deflection does have effects on both the prey capture and obstacle avoidance behavior. [Work supported by NSF.
Evolution: bats, radar, and science (The Remote Sensing Award Lecture)
NASA Technical Reports Server (NTRS)
Atlas, David
1991-01-01
A parallel is drawn between the evolution of the bat and the evolution of the science and technology of radar and remote sensing to illustrate the importance of the role of Darwinian processes in the culture and practice of science and technology, and thus in the survival of their vitality. The lecture touches on several themes of interest to the science community, such as the relation between basic and applied science and engineering; research in academia, industry, and government laboratories; elite scientists; and the survival of a scientific institution.
Asymmetric radar echo patterns from insects
USDA-ARS?s Scientific Manuscript database
Radar echoes from insects, birds, and bats in the atmosphere exhibit both symmetry and asymmetry in polarimetric patterns. Symmetry refers to similar magnitudes of polarimetric variables at opposite azimuths, and asymmetry relegates to differences in these magnitudes. Asymmetry can be due to diffe...
How Do Speakers Avoid Ambiguous Linguistic Expressions?
ERIC Educational Resources Information Center
Ferreira, V.S.; Slevc, L.R.; Rogers, E.S.
2005-01-01
Three experiments assessed how speakers avoid linguistically and nonlinguistically ambiguous expressions. Speakers described target objects (a flying mammal, bat) in contexts including foil objects that caused linguistic (a baseball bat) and nonlinguistic (a larger flying mammal) ambiguity. Speakers sometimes avoided linguistic-ambiguity, and they…
Optimizing Sampling Design to Deal with Mist-Net Avoidance in Amazonian Birds and Bats
Marques, João Tiago; Ramos Pereira, Maria J.; Marques, Tiago A.; Santos, Carlos David; Santana, Joana; Beja, Pedro; Palmeirim, Jorge M.
2013-01-01
Mist netting is a widely used technique to sample bird and bat assemblages. However, captures often decline with time because animals learn and avoid the locations of nets. This avoidance or net shyness can substantially decrease sampling efficiency. We quantified the day-to-day decline in captures of Amazonian birds and bats with mist nets set at the same location for four consecutive days. We also evaluated how net avoidance influences the efficiency of surveys under different logistic scenarios using re-sampling techniques. Net avoidance caused substantial declines in bird and bat captures, although more accentuated in the latter. Most of the decline occurred between the first and second days of netting: 28% in birds and 47% in bats. Captures of commoner species were more affected. The numbers of species detected also declined. Moving nets daily to minimize the avoidance effect increased captures by 30% in birds and 70% in bats. However, moving the location of nets may cause a reduction in netting time and captures. When moving the nets caused the loss of one netting day it was no longer advantageous to move the nets frequently. In bird surveys that could even decrease the number of individuals captured and species detected. Net avoidance can greatly affect sampling efficiency but adjustments in survey design can minimize this. Whenever nets can be moved without losing netting time and the objective is to capture many individuals, they should be moved daily. If the main objective is to survey species present then nets should still be moved for bats, but not for birds. However, if relocating nets causes a significant loss of netting time, moving them to reduce effects of shyness will not improve sampling efficiency in either group. Overall, our findings can improve the design of mist netting sampling strategies in other tropical areas. PMID:24058579
Sändig, Sonja; Schnitzler, Hans-Ulrich; Denzinger, Annette
2014-08-15
Four big brown bats (Eptesicus fuscus) were challenged in an obstacle avoidance experiment to localize vertically stretched wires requiring progressively greater accuracy by diminishing the wire-to-wire distance from 50 to 10 cm. The performance of the bats decreased with decreasing gap size. The avoidance task became very difficult below a wire separation of 30 cm, which corresponds to the average wingspan of E. fuscus. Two of the bats were able to pass without collisions down to a gap size of 10 cm in some of the flights. The other two bats only managed to master gap sizes down to 20 and 30 cm, respectively. They also performed distinctly worse at all other gap sizes. With increasing difficulty of the task, the bats changed their flight and echolocation behaviour. Especially at gap sizes of 30 cm and below, flight paths increased in height and flight speed was reduced. In addition, the bats emitted approach signals that were arranged in groups. At all gap sizes, the largest numbers of pulses per group were observed in the last group before passing the obstacle. The more difficult the obstacle avoidance task, the more pulses there were in the groups and the shorter the within-group pulse intervals. In comparable situations, the better-performing bats always emitted groups with more pulses than the less well-performing individuals. We hypothesize that the accuracy of target localization increases with the number of pulses per group and that each group is processed as a package. © 2014. Published by The Company of Biologists Ltd.
77 FR 39251 - Endangered and Threatened Wildlife and Plants; Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
.... Submit your written data, comments, or request for a copy of the complete application to the address... enhancement of survival of the species in the wild through project planning to avoid impacts to the species... renewal, with amendments, to take Indiana bats, gray bats, lesser long nose bats, Virginia big-eared bats...
Bats adjust their pulse emission rates with swarm size in the field.
Lin, Yuan; Abaid, Nicole; Müller, Rolf
2016-12-01
Flying in swarms, e.g., when exiting a cave, could pose a problem to bats that use an active biosonar system because the animals could risk jamming each other's biosonar signals. Studies from current literature have found different results with regard to whether bats reduce or increase emission rate in the presence of jamming ultrasound. In the present work, the number of Eastern bent-wing bats (Miniopterus fuliginosus) that were flying inside a cave during emergence was estimated along with the number of signal pulses recorded. Over the range of average bat numbers present in the recording (0 to 14 bats), the average number of detected pulses per bat increased with the average number of bats. The result was interpreted as an indication that the Eastern bent-wing bats increased their emission rate and/or pulse amplitude with swarm size on average. This finding could be explained by the hypothesis that the bats might not suffer from substantial jamming probabilities under the observed density regimes, so jamming might not have been a limiting factor for their emissions. When jamming did occur, the bats could avoid it through changing the pulse amplitude and other pulse properties such as duration or frequency, which has been suggested by other studies. More importantly, the increased biosonar activities may have addressed a collision-avoidance challenge that was posed by the increased swarm size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peste, Filipa, E-mail: filipapeste@gmail.com; Department of Biology, University of Aveiro; Paula, Anabela
Wind energy is growing worldwide as a source of power generation. Bat assemblages may be negatively affected by wind farms due to the fatality of a significant number of individuals after colliding with the moving turbines or experiencing barotrauma. The implementation of wind farms should follow standard procedures to prevent such negative impacts: avoid, reduce and offset, in what is known as the mitigation hierarchy. According to this approach avoiding impacts is the priority, followed by the minimisation of the identified impacts, and finally, when residual negative impacts still remain, those must be offset or at least compensated. This papermore » presents a review on conservation measures for bats and presents some guidelines within the compensation scenario, focusing on negative impacts that remain after avoidance and minimisation measures. The conservation strategies presented aim at the improvement of the ecological conditions for the bat assemblage as a whole. While developed under the European context, the proposed measures are potentially applicable elsewhere, taking into consideration the specificity of each region in terms of bat assemblages present, landscape features and policy context regarding nature and biodiversity conservation and management. An analysis of potential opportunities and constraints arising from the implementation of offset/compensation programmes and gaps in the current knowledge is also considered. - Highlights: • Wind energy impacts bat populations in ways not yet fully understood. • As the use of windfarms is growing worldwide greater impacts on bat populations are also expected. • Mitigation hierarchy provides a way to reduce impacts from new wind farm facilities. • Compensation measures may be used to reduce the residual effects on bat populations. • Identify bats ecological needs and compensate according to the existing surroundings.« less
Too Much Bar and Not Enough Mitzvah? A Proposed Research Agenda on Bar/Bat Mitzvah
ERIC Educational Resources Information Center
Schoenfeld, Stuart
2010-01-01
Jewish educators are understandably interested in research on how bar/bat mitzvah affect Jewish education or research on what Jewish schools have done to avoid the distortions of a focus on bar/bat mitzvah. Research might also focus on the somewhat different and more ambitious topic of the role that bar/bat mitzvah play in contemporary Jewish…
Application of radar for automotive collision avoidance. Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Lichtenberg, C. L. (Editor)
1987-01-01
The purpose of this project was research and development of an automobile collision avoidance radar system. The major finding was that the application of radar to the automobile collision avoidance problem deserves continued research even though the specific approach investigated in this effort did not perform adequately in its angle measurement capability. Additional findings were that: (1) preliminary performance requirements of a candidate radar system are not unreasonable; (2) the number and severity of traffic accidents could be reduced by using a collision avoidance radar system which observes a fairly wide (at least + or - 10 deg) field of view ahead of the vehicle; (3) the health radiation hazards of a probable radar design are not significant even when a large number of radar-equipped vehicles are considered; (4) effects of inclement weather on radar operation can be accommodated in most cases; (5) the phase monopulse radar technique as implemented demonstrated inferior angle measurement performance which warrants the recommendation of investigating alternative radar techniques; and (6) extended target and multipath effects, which presumably distort the amplitude and phase distribution across the antenna aperture, are responsible for the observed inadequate phase monopulse radar performance.
Takahashi, Eri; Hyomoto, Kiri; Riquimaroux, Hiroshi; Watanabe, Yoshiaki; Ohta, Tetsuo; Hiryu, Shizuko
2014-08-15
The echolocation behavior of Pipistrellus abramus during exposure to artificial jamming sounds during flight was investigated. Echolocation pulses emitted by the bats were recorded using a telemetry microphone mounted on the bats' backs, and their adaptation based on acoustic characteristics of emitted pulses was assessed in terms of jamming-avoidance responses (JARs). In experiment 1, frequency-modulated jamming sounds (3 ms duration) mimicking echolocation pulses of P. abramus were prepared. All bats showed significant increases in the terminal frequency of the frequency-modulated pulse by an average of 2.1-4.5 kHz when the terminal frequency of the jamming sounds was lower than the bats' own pulses. This frequency shift was not observed using jamming frequencies that overlapped with or were higher than the bats' own pulses. These findings suggest that JARs in P. abramus are sensitive to the terminal frequency of jamming pulses and that the bats' response pattern was dependent on the slight difference in stimulus frequency. In experiment 2, when bats were repeatedly exposed to a band-limited noise of 70 ms duration, the bats in flight more frequently emitted pulses during silent periods between jamming sounds, suggesting that the bats could actively change the timing of pulse emissions, even during flight, to avoid temporal overlap with jamming sounds. Our findings demonstrate that bats could adjust their vocalized frequency and emission timing during flight in response to acoustic jamming stimuli. © 2014. Published by The Company of Biologists Ltd.
... body fluids of infected animals Contact with infected bats Ebola does NOT spread through: Air Water Food ... who has died from Ebola. Avoid contact with bats and nonhuman primates or blood, fluids, and raw ...
Ruth, Janet M.; Buler, Jeffrey J.; Diehl, Robert H.; Sojda, Richard S.
2008-01-01
There is renewed interest in using long-range surveillance radar as a biological research tool due to substantial improvements in the network of radars within the United States. Technical improvements, the digital nature of the radar data, and the availability of computing power and geographic information systems, enable a broad range of biological applications. This publication provides a summary of long-range surveillance radar technology and applications of these data to questions about movement patterns of birds and other flying wildlife. The intended audience is potential radar-data end users, including natural-resource management and regulatory agencies, conservation organizations, and industry. This summary includes a definition of long-range surveillance radar, descriptions of its strengths and weaknesses, information on applications of the data, cost, methods of calibration, and what end users need to do, and some key references and resources.
Canine tooth wear in captive little brown bats
Clark, Donald R.
1980-01-01
Upper canine teeth of little brown bats Myotis lucifugus lucifugus held in stainless steel wire mesh cages underwent severe wear which exceeded that observed previously in caged big brown bats, Eptesicus fuscus fuscus. This suggests a relationship between amount of wear and size of the caged bats with damage increasing as size decreases. Rapid wear of canine teeth by little brown bats resembled that observed in big brown bats in that it was limited to the first 2 weeks of captivity. This result indicates a universal interval for acclimation to cage conditions among vespertilionid bats. Dietary toxicants DDE and PCB did not affect the extent of wear. If bats are to be released to the wild, confinement in wire mesh cages should be avoided.
Hiller, Thomas; Honner, Benjamin; Page, Rachel A; Tschapka, Marco
2018-03-22
Bat flies (Streblidae) are diverse, obligate blood-feeding insects and probably the most conspicuous ectoparasites of bats. They show preferences for specific body regions on their host bat, which are reflected in behavioural characteristics. In this study, we corroborate the categorization of bat flies into three ecomorphological groups, focusing only on differences in hind leg morphology. As no detailed phylogeny of bat flies is available, it remains uncertain whether these morphological differences reflect the evolutionary history of bat flies or show convergent adaptations for the host habitat type. We show that the division of the host bat into three distinct habitats contributes to the avoidance of interspecific competition of bat fly species. Finally, we found evidence for density-dependent competition between species belonging to the same ecomorphological group.
Activity levels of bats and katydids in relation to the lunar cycle.
Lang, Alexander B; Kalko, Elisabeth K V; Römer, Heinrich; Bockholdt, Cecile; Dechmann, Dina K N
2006-01-01
Animals are exposed to many conflicting ecological pressures, and the effect of one may often obscure that of another. A likely example of this is the so-called "lunar phobia" or reduced activity of bats during full moon. The main reason for lunar phobia was thought to be that bats adjust their activity to avoid predators. However, bats can be prey, but many are carnivorous and therefore predators themselves. Thus, they are likely to be influenced by prey availability as well as predation risk. We investigated the activity patterns of the perch-hunting Lophostoma silvicolum and one of its main types of prey, katydids, to assess the influence of the former during different phases of the lunar cycle on a gleaning insectivorous bat. To avoid sampling bias, we used sound recordings and two different capture methods for the katydids, as well as video monitoring and radio-telemetry for the bats. Both, bats and katydids were significantly more active during the dark periods associated with new moon compared to bright periods around the full moon. We conclude that foraging activity of L. silvicolum is probably influenced by prey availability to a large extent and argue that generally the causes of lunar phobia are species-specific.
Sound localization in common vampire bats: Acuity and use of the binaural time cue by a small mammal
Heffner, Rickye S.; Koay, Gimseong; Heffner, Henry E.
2015-01-01
Passive sound-localization acuity and the ability to use binaural time and intensity cues were determined for the common vampire bat (Desmodus rotundus). The bats were tested using a conditioned suppression/avoidance procedure in which they drank defibrinated blood from a spout in the presence of sounds from their right, but stopped drinking (i.e., broke contact with the spout) whenever a sound came from their left, thereby avoiding a mild shock. The mean minimum audible angle for three bats for a 100-ms noise burst was 13.1°—within the range of thresholds for other bats and near the mean for mammals. Common vampire bats readily localized pure tones of 20 kHz and higher, indicating they could use interaural intensity-differences. They could also localize pure tones of 5 kHz and lower, thereby demonstrating the use of interaural time-differences, despite their very small maximum interaural distance of 60 μs. A comparison of the use of locus cues among mammals suggests several implications for the evolution of sound localization and its underlying anatomical and physiological mechanisms. PMID:25618037
NASA Technical Reports Server (NTRS)
Lichtenberg, Christopher L. (Editor)
1987-01-01
The purpose of this project was research and development of an automobile collision avoidance radar system. Items within the scope of the one-year effort were to: (1) review previous authors' work in this field; (2) select a suitable radar approach; (3) develop a system design; (4) perform basic analyses and observations pertinent to radar design, performance, and effects; (5) fabricate and collect radar data from a data collection radar; (6) analyze and derive conclusions from the radar data; and (7) make recommendations about the likelihood of success of the investigated radar techniques. The final technical report presenting all conclusions is contained in Volume 1.
Active Collision Avoidance for Planetary Landers
NASA Technical Reports Server (NTRS)
Rickman, Doug; Hannan, Mike; Srinivasan, Karthik
2014-01-01
Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be miles from the mission objective, or, mission objectives may be tailored to suit landing sites. Future robotic exploration missions should be capable of autonomously identifying a safe landing target within a specified target area selected by mission requirements. Such autonomous landing sites must (1) 'see' the surface, (2) identify a target, and (3) land the vehicle. Recent advances in radar technology have resulted in small, lightweight, low power radars that are used for collision avoidance and cruise control systems in automobiles. Such radar systems can be adapted for use as active hazard avoidance systems for planetary landers. The focus of this CIF proposal is to leverage earlier work on collision avoidance systems for MSFC's Mighty Eagle lander and evaluate the use of automotive radar systems for collision avoidance in planetary landers.
A nectar-feeding mammal avoids body fluid disturbances by varying renal function.
Hartman Bakken, Bradley; Herrera M, L Gerardo; Carroll, Robert M; Ayala-Berdón, Jorge; Schondube, Jorge E; Martínez Del Rio, Carlos
2008-12-01
To maintain water and electrolyte balance, nectar-feeding vertebrates oscillate between two extremes: avoiding overhydration when feeding and preventing dehydration during fasts. Several studies have examined how birds resolve this osmoregulatory dilemma, but no data are available for nectar-feeding mammals. In this article, we 1) estimated the ability of Pallas's long-tongued bats (Glossophaga soricina; Phyllostomidae) to dilute and concentrate urine and 2) examined how water intake affected the processes that these bats use to maintain water balance. Total urine osmolality in water- and salt-loaded bats ranged between 31 +/- 37 mosmol/kgH(2)O (n = 6) and 578 +/- 56 mosmol/kgH(2)O (n = 2), respectively. Fractional water absorption in the gastrointestinal tract was not affected by water intake rate. As a result, water flux, body water turnover, and renal water load all increased with increasing water intake. Despite these relationships, glomerular filtration rate (GFR) was not responsive to water loading. To eliminate excess water, Pallas's long-tongued bats increased water excretion rate by reducing fractional renal water reabsorption. We also found that rates of total evaporative water loss increased with increasing water intake. During their natural daytime fast, mean GFR in Pallas's long-tongued bats was 0.37 ml/h (n = 10). This is approximately 90% lower than the GFR we measured in fed bats. Our findings 1) suggest that Pallas's long-tongued bats do not have an exceptional urine-diluting or -concentrating ability and 2) demonstrate that the bats eliminate excess ingested water by reducing renal water reabsorption and limit urinary water loss during fasting periods by reducing GFR.
Inconspicuous echolocation in hoary bats (Lasiurus cinereus).
Corcoran, Aaron J; Weller, Theodore J
2018-05-16
Echolocation allows bats to occupy diverse nocturnal niches. Bats almost always use echolocation, even when other sensory stimuli are available to guide navigation. Here, using arrays of calibrated infrared cameras and ultrasonic microphones, we demonstrate that hoary bats ( Lasiurus cinereus ) use previously unknown echolocation behaviours that challenge our current understanding of echolocation. We describe a novel call type ('micro' calls) that has three orders of magnitude less sound energy than other bat calls used in open habitats. We also document bats flying close to microphones (less than 3 m) without producing detectable echolocation calls. Acoustic modelling indicates that bats are not producing calls that exceed 70-75 dB at 0.1 m, a level that would have little or no known use for a bat flying in the open at speeds exceeding 7 m s -1 This indicates that hoary bats sometimes fly without echolocation. We speculate that bats reduce echolocation output to avoid eavesdropping by conspecifics during the mating season. These findings might partly explain why tens of thousands of hoary bats are killed by wind turbines each year. They also challenge the long-standing assumption that bats-model organisms for sensory specialization-are reliant on sonar for nocturnal navigation. © 2018 The Author(s).
Brack, Virgil
2007-11-01
Understanding temperatures used by hibernating bats will aid conservation and management efforts for many species. A limestone mine with 71 km of passages, used as a hibernaculum by approximately 30,000 bats, was visited four times during a 6-year period. The mine had been surveyed and mapped; therefore, bats could be precisely located and temperatures (T (s)) of the entire hibernaculum ceiling accurately mapped. It was predicted that bats should hibernate between 5 and 10 degrees C to (1) use temperatures that allow a near minimal metabolic rate, (2) maximize the duration of hibernation bouts, (3) avoid more frequent and prolonged arousal at higher temperatures, (4) avoid cold and freezing temperatures that require an increase in metabolism and a decrease in duration of hibernation bouts or that could cause death, and (5) balance benefits of a reduced metabolic rate and costs of metabolic depression. The distribution of each species was not random for location (P < 0.000) or T (s) (P < 0.000). Myotis sodalis (Indiana bat) was most restricted in areas occupied, hibernating in thermally stable yet cold areas (X = 8.4 +/- 1.7 degrees C); 99% associated with cement block walls and sheltered alcoves, which perhaps dampened air movement and temperature fluctuations. Myotis lucifugus (little brown myotis) hibernated in colder, more variable areas (X = 7.2 +/- 2.6 degrees C). Myotis septentrionalis (northern myotis), Pipistrellus subflavus (eastern pipistrelle), and Eptesicus fuscus (big brown bat) typically hibernated in warm, thermally stable areas (X = 9.1 +/- 0.2 degrees C, X = 9.6 +/- 1.9 degrees C, and X = 9.5 +/- 1.5 degrees C, respectively). These data do not indicate that hibernacula for M. sodalis, an endangered species, should be manipulated to cool below 5 degrees C.
Ultraviolet vision may be widespread in bats
Gorresen, P. Marcos; Cryan, Paul; Dalton, David C.; Wolf, Sandy; Bonaccorso, Frank
2015-01-01
Insectivorous bats are well known for their abilities to find and pursue flying insect prey at close range using echolocation, but they also rely heavily on vision. For example, at night bats use vision to orient across landscapes, avoid large obstacles, and locate roosts. Although lacking sharp visual acuity, the eyes of bats evolved to function at very low levels of illumination. Recent evidence based on genetics, immunohistochemistry, and laboratory behavioral trials indicated that many bats can see ultraviolet light (UV), at least at illumination levels similar to or brighter than those before twilight. Despite this growing evidence for potentially widespread UV vision in bats, the prevalence of UV vision among bats remains unknown and has not been studied outside of the laboratory. We used a Y-maze to test whether wild-caught bats could see reflected UV light and whether such UV vision functions at the dim lighting conditions typically experienced by night-flying bats. Seven insectivorous species of bats, representing five genera and three families, showed a statistically significant ‘escape-toward-the-light’ behavior when placed in the Y-maze. Our results provide compelling evidence of widespread dim-light UV vision in bats.
Radar sensors for intersection collision avoidance
NASA Astrophysics Data System (ADS)
Jocoy, Edward H.; Phoel, Wayne G.
1997-02-01
On-vehicle sensors for collision avoidance and intelligent cruise control are receiving considerably attention as part of Intelligent Transportation Systems. Most of these sensors are radars and `look' in the direction of the vehicle's headway, that is, in the direction ahead of the vehicle. Calspan SRL Corporation is investigating the use of on- vehicle radar for Intersection Collision Avoidance (ICA). Four crash scenarios are considered and the goal is to design, develop and install a collision warning system in a test vehicle, and conduct both test track and in-traffic experiments. Current efforts include simulations to examine ICA geometry-dependent design parameters and the design of an on-vehicle radar and tracker for threat detection. This paper discusses some of the simulation and radar design efforts. In addition, an available headway radar was modified to scan the wide angles (+/- 90 degree(s)) associated with ICA scenarios. Preliminary proof-of-principal tests are underway as a risk reduction effort. Some initial target detection results are presented.
van Grunsven, Roy H. A.; Ramakers, Jip J. C.; Ferguson, Kim B.; Raap, Thomas; Donners, Maurice; Veenendaal, Elmar M.; Visser, Marcel E.
2017-01-01
Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but were equally abundant in red light and darkness. The agile, opportunistically feeding Pipistrellus species were significantly more abundant around white and green light, most likely because of accumulation of insects, but equally abundant in red illuminated transects compared to dark control. Forest-dwelling Myotis and Plecotus species and more synanthropic Pipistrellus species are thus least disturbed by red light. Hence, in order to limit the negative impact of light at night on bats, white and green light should be avoided in or close to natural habitat, but red lights may be used if illumination is needed. PMID:28566484
Chiu, Chen; Reddy, Puduru Viswanadha; Xian, Wei; Krishnaprasad, Perinkulam S; Moss, Cynthia F
2010-10-01
Foraging and flight behavior of echolocating bats were quantitatively analyzed in this study. Paired big brown bats, Eptesicus fuscus, competed for a single food item in a large laboratory flight room. Their sonar beam patterns and flight paths were recorded by a microphone array and two high-speed cameras, respectively. Bats often remained in nearly classical pursuit (CP) states when one bat is following another bat. A follower can detect and anticipate the movement of the leader, while the leader has the advantage of gaining access to the prey first. Bats in the trailing position throughout the trial were more successful in accessing the prey. In this study, bats also used their sonar beam to monitor the conspecific's movement and to track the prey. Each bat tended to use its sonar beam to track the prey when it was closer to the worm than to another bat. The trailing bat often directed its sonar beam toward the leading bat in following flight. When two bats flew towards each other, they tended to direct their sonar beam axes away from each other, presumably to avoid signal jamming. This study provides a new perspective on how echolocating bats use their biosonar system to coordinate their flight with conspecifics in a group and how they compete for the same food source with conspecifics.
Suppression of emission rates improves sonar performance by flying bats.
Adams, Amanda M; Davis, Kaylee; Smotherman, Michael
2017-01-31
Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat's calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Greg; Kunz, Thomas
This session at the Wind Energy and Birds/Bats workshop consisted of two paper presentations followed by a discussion/question and answer period. It was the first of the sessions to shift the focus to the issue of wind energy development's impacts specifically to bats. The presentations discussed lessons that have been learned regarding direct and indirect impacts on bats and strategies planned to address such issues. Presenters addressed what the existing science demonstrates about land-based wind turbine impacts on bats, including: mortality, avoidance, direct habitat impacts, species and numbers killed, per turbine rates/per MW generated, and impacts on threatened and endangeredmore » species. They discussed whether there is sufficient data for wind turbines and bat impacts for projects in the eastern US, especially on ridge tops. Finally, the subject of offshore impacts on bats was briefly addressed, including what lessons have been learned in Europe and how these can be applied in the U S. Paper one, by Greg Johnson, was titled ''A Review of Bat Impacts at Wind Farms in the US''. Paper two, by Thomas Kunz, was titled ''Wind Power: Bats and Wind Turbines''.« less
Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.
Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi
2015-12-22
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed 'jamming' and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats' response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats' response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. © 2015 The Author(s).
Warnecke, Michaela; Chiu, Chen; Engelberg, Jonathan; Moss, Cynthia F
2015-09-01
In their natural environment, big brown bats forage for small insects in open spaces, as well as in vegetation and in the presence of acoustic clutter. While searching and hunting for prey, bats experience sonar interference, not only from densely cluttered environments, but also from calls of conspecifics foraging in close proximity. Previous work has shown that when two bats compete for a single prey item in a relatively open environment, one of the bats may go silent for extended periods of time, which can serve to minimize sonar interference between conspecifics. Additionally, pairs of big brown bats have been shown to adjust frequency characteristics of their vocalizations to avoid acoustic interference in echo processing. In this study, we extended previous work by examining how the presence of conspecifics and environmental clutter influence the bat's echolocation behavior. By recording multichannel audio and video data of bats engaged in insect capture in open and cluttered spaces, we quantified the bats' vocal and flight behaviors. Big brown bats flew individually and in pairs in an open and cluttered room, and the results of this study shed light on the different strategies that this species employs to negotiate a complex and dynamic environment. © 2015 S. Karger AG, Basel.
Radar-based collision avoidance for unmanned surface vehicles
NASA Astrophysics Data System (ADS)
Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing
2016-12-01
Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.
Spoelstra, Kamiel; van Grunsven, Roy H A; Ramakers, Jip J C; Ferguson, Kim B; Raap, Thomas; Donners, Maurice; Veenendaal, Elmar M; Visser, Marcel E
2017-05-31
Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but were equally abundant in red light and darkness. The agile, opportunistically feeding Pipistrellus species were significantly more abundant around white and green light, most likely because of accumulation of insects, but equally abundant in red illuminated transects compared to dark control. Forest-dwelling Myotis and Plecotus species and more synanthropic Pipistrellus species are thus least disturbed by red light. Hence, in order to limit the negative impact of light at night on bats, white and green light should be avoided in or close to natural habitat, but red lights may be used if illumination is needed. © 2017 The Author(s).
Taste preferences of the common vampire bat (Desmodus rotundus).
Thompson, R D; Elias, D J; Shumake, S A; Gaddis, S E
1982-04-01
Taste preference tests, with simultaneous presentation of treated and untreated food, were administered to 24 common vampire bats (Desmodus rotundus). The bats received brief exposures to four different stimuli representing sweet, salty, sour, and bitter tastes, each at four different concentrations. Despite a strong location bias, the bats significantly (P < 0.01) avoided the highest concentrations of the salty, sour, and bitter tastes. Consumption of the sweet stimulus at all concentrations was similar to that of the untreated standard. Vampires evidently can discriminate based on taste, although their ability is apparently poorly developed when compared with some euryphagous species such as the rat. Hence, taste is probably not a factor in host selection by the vampire.
Suppression of emission rates improves sonar performance by flying bats
Adams, Amanda M.; Davis, Kaylee; Smotherman, Michael
2017-01-01
Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat’s calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference. PMID:28139707
Wild, insectivorous bats might be carriers of Campylobacter spp.
Hazeleger, Wilma C; Jacobs-Reitsma, Wilma F; Lina, Peter H C; de Boer, Albert G; Bosch, Thijs; van Hoek, Angela H A M; Beumer, Rijkelt R
2018-01-01
The transmission cycles of the foodborne pathogens Campylobacter and Salmonella are not fully elucidated. Knowledge of these cycles may help reduce the transmission of these pathogens to humans. The presence of campylobacters and salmonellas was examined in 631 fresh fecal samples of wild insectivorous bats using a specially developed method for the simultaneous isolation of low numbers of these pathogens in small-sized fecal samples (≤ 0.1 g). Salmonella was not detected in the feces samples, but thermotolerant campylobacters were confirmed in 3% (n = 17) of the bats examined and these pathogens were found in six different bat species, at different sites, in different ecosystems during the whole flying season of bats. Molecular typing of the 17 isolated strains indicated C. jejuni (n = 9), C. coli (n = 7) and C. lari (n = 1), including genotypes also found in humans, wildlife, environmental samples and poultry. Six strains showed unique sequence types. This study shows that insectivorous bats are not only carriers of viral pathogens, but they can also be relevant for the transmission of bacterial pathogens. Bats should be considered as carriers and potential transmitters of Campylobacter and, where possible, contact between bats (bat feces) and food or feed should be avoided.
Partly cloudy with a chance of migration: Weather, radars, and aeroecology
Chilson, Phillip B.; Frick, Winifred F.; Kelly, Jeffrey F.; Howard, Kenneth W.; Larkin, Ronald P.; Diehl, Robert H.; Westbrook, John K.; Kelly, T. Adam; Kunz, Thomas H.
2012-01-01
Aeroecology is an emerging scientific discipline that integrates atmospheric science, Earth science, geography, ecology, computer science, computational biology, and engineering to further the understanding of biological patterns and processes. The unifying concept underlying this new transdisciplinary field of study is a focus on the planetary boundary layer and lower free atmosphere (i.e., the aerosphere), and the diversity of airborne organisms that inhabit and depend on the aerosphere for their existence. Here, we focus on the role of radars and radar networks in aeroecological studies. Radar systems scanning the atmosphere are primarily used to monitor weather conditions and track the location and movements of aircraft. However, radar echoes regularly contain signals from other sources, such as airborne birds, bats, and arthropods. We briefly discuss how radar observations can be and have been used to study a variety of airborne organisms and examine some of the many potential benefits likely to arise from radar aeroecology for meteorological and biological research over a wide range of spatial and temporal scales. Radar systems are becoming increasingly sophisticated with the advent of innovative signal processing and dual-polarimetric capabilities. These capabilities should be better harnessed to promote both meteorological and aeroecological research and to explore the interface between these two broad disciplines. We strongly encourage close collaboration among meteorologists, radar scientists, biologists, and others toward developing radar products that will contribute to a better understanding of airborne fauna.
2009-03-01
BOUNDARY AVOIDANCE TRACKING: CONSEQUENCES (AND USES) OF IMPOSED BOUNDARIES ON PILOT-AIRCRAFT...States Government. AFIT/GAE/ENY/09-M03 BOUNDARY AVOIDANCE TRACKING: CONSEQUENCES (AND USES) OF IMPOSED BOUNDARIES ON PILOT-AIRCRAFT PERFORMANCE...Case 2 (Gray, 2005) ....................................... 20 Figure 8. Effect of BAT Parameters on Tracking Success (Gray, 2005
Design of a dynamic sonar emitter inspired by hipposiderid bats.
Yang, Luhui; Yu, Allison; Mueller, Rolf
2018-06-19
The ultrasonic emission in the biosonar systems of bats such as the Old World leaf-nosed bats (family Hipposideridae) and the related horseshoe bats (family Rhinolophidae) is characterized by a unique dynamics where baffle shapes ("noseleaves") deform while diffracting the outgoing wave packets. As of now, nothing comparable to this dynamics has been used in any related engineering application (e.g., sonar or radar). Prior work with simple concave baffle shapes has demonstrated an impact of the dynamics on the emission characteristics, but it has remained unclear if this was simply due to the change in aperture size or also influenced by geometrical shape detail. Hence, it has also remained unclear if the time-variant effects reported so far could be further enhanced through different static and dynamic geometries. To address this issue, we have created a dynamic emission baffle with biomimetic shape detail modeled after Pratt's roundleaf bats (\\textit{Hipposideros pratti}). The impact of this shape's dynamic deformation on the time-variant emission characteristics was evaluated by virtue of the gradient magnitude and the entropy in the gradient orientation. The results have shown that the dynamics resulted in much larger gradients in a signal representation that changed jointly over direction and time. © 2018 IOP Publishing Ltd.
A Biomimetic Ultrasonic Whistle for Use as a Bat Deterrent on Wind Turbines
NASA Astrophysics Data System (ADS)
Sievert, Paul; Seyed-Aghazadeh, Banafsheh; Carlson, Daniel; Dowling, Zara; Modarres-Sadeghi, Yahya
2016-11-01
As wind energy continues to gain worldwide prominence, more and more turbines are detrimentally influencing bat colonies. In 2012 alone, an estimated 600,000 bats were killed by wind turbines in the United States. Bats show a tendency to fly towards turbines. The objective of this work is to deter bats from the proximity of the swept area of operational wind turbine blades. Established field studies have shown that bats avoid broadband ultrasonic noise on the same frequency spectrum as their echolocation chirps. A biomimetic ultrasonic pulse generator for use as a bat deterrent on wind turbines is designed and studied experimentally. This device, which works based on the fundamentals of flow-induced oscillations of a flexible sheet is a whistle-like device inspired by a bat larynx, mechanically powered via air flow on a wind turbine blade. Current device prototypes have proven robust at producing ultrasound across the 20 - 70 kHz range for flow inlet velocities of 4 - 14 m/s. Ultimately, a deterrent as described here could provide a reliable, cost-effective means of alerting bats to the presence of moving turbine blades, reducing bat mortality at wind facilities, and reducing regulatory uncertainty for wind facility developers. The financial support provided by the US Department of Energy, and the Massachusetts Clean Energy center is acknowledged.
Long, Chloe V; Flint, James A; Lepper, Paul A
2010-10-01
Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision.
Bartonička, Tomáš; Růžičková, Lucie
2013-04-01
Roost ectoparasites are believed to have a negative impact on fitness of their hosts as birds or mammals. Previous studies were mostly focussed on the synchronization between reproduction cycles of ectoparasites and hosts living in infested roosts. However, to date, it has not been examined how fast ectoparasites colonize new, non-infested roosts and thus increasing the impact on the local populations of hosts. The parasite-host model was studied, including bat bugs Cimex pipistrelli and soprano pipistrelles Pipistrellus pygmaeus, where bat behaviour was observed which tended to reduce the parasite load in bat roosts. We investigated (1) whether bats change their roosting behaviour when we discontinued synchronization of their reproduction and the life cycle of the bat bugs and (2) how fast and which stages of bat bugs reoccupy cleaned roosts. In a 3-year field experiment, we removed all bat bugs from six bat boxes in each spring. Pipistrelles bred young in all non-infested boxes during these 3 years. In addition, 8 years of regular observations before this experiment indicate that bats avoided breeding in the same bat boxes at all. Bat bugs were found again in clean boxes in mid-May. However, their densities did not maximise before the beginning of June, before parturition. A re-appearance of bugs was observed after 21-56 days after the first bat visit. Adult bugs, mainly females, colonised cleaned boxes first though at the same time there were a lot of younger and smaller instars in non-manipulated roosts in the vicinity.
Ongoing changes in migration phenology and winter residency at Bracken Bat Cave.
Stepanian, Phillip M; Wainwright, Charlotte E
2018-02-14
Bats play an important role in agroecology and are effective bioindicators of environmental conditions, but little is known about their fundamental migration ecology, much less how these systems are responding to global change. Some of the world's largest bat populations occur during the summer in the south-central United States, when millions of pregnant females migrate from lower latitudes to give birth in communal maternity colonies. Despite a relatively large volume of research into these colonies, many fundamental questions regarding their abundance-including their intra- and interseasonal variability-remain unanswered, and even estimating the size of individual populations has been a long-running challenge. Overall, monitoring these bat populations at high temporal resolution (e.g., nightly) and across long time spans (e.g., decades) has been impossible. Here, we show 22 continuous years of nightly population counts at Bracken Cave, a large bat colony in south-central Texas, enabling the first climate-scale phenological analysis. Using quantitative radar monitoring, we found that spring migration and the summer reproductive cycle have advanced by approximately 2 weeks over the study period. Furthermore, we quantify the ongoing growth of a newly-established overwintering population that indicates a system-wide response to changing environmental conditions. Our observations reveal behavioral plasticity in bats' ability to adapt to changing resource availability, and provide the first long-term quantification of their response to a changing climate. As aerial insectivores, these changes in bat phenology and propensity for overwintering indicate probable shifts in prey availability, with clear implications for pest management across wider regional agrisystems. © 2018 John Wiley & Sons Ltd.
Non-Economic Obstacles to Wind Deployment: Issues and Regional Differences (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2014-05-01
This presentation provides an overview of national obstacles to wind deployment, with regional assessments. A special mention of offshore projects and distributed wind projects is provided. Detailed maps examine baseline capacity, military and flight radar, golden and bald eagle habitat, bat habitat, whooping crane habitat, and public lands. Regional deployment challenges are also discussed.
NASA Astrophysics Data System (ADS)
Fullard, James H.; Ratcliffe, John M.; Jacobs, David S.
2008-03-01
Noctuid moths listen for the echolocation calls of hunting bats and respond to these predator cues with evasive flight. The African bollworm moth, Helicoverpa armigera, feeds at flowers near intensely singing cicadas, Platypleura capensis, yet does not avoid them. We determined that the moth can hear the cicada by observing that both of its auditory receptors (A1 and A2 cells) respond to the cicada’s song. The firing response of the A1 cell rapidly adapts to the song and develops spike periods in less than a second that are in excess of those reported to elicit avoidance flight to bats in earlier studies. The possibility also exists that for at least part of the day, sensory input in the form of olfaction or vision overrides the moth’s auditory responses. While auditory tolerance appears to allow H. armigera to exploit a food resource in close proximity to acoustic interference, it may render their hearing defence ineffective and make them vulnerable to predation by bats during the evening when cicadas continue to sing. Our study describes the first field observation of an eared insect ignoring audible but innocuous sounds.
Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems
NASA Technical Reports Server (NTRS)
Mathews, Bruce D.
1991-01-01
Westinghouse conducted a flight test with its Sabreliner AN/APG-68 instrumented radar to assess the urban discrete/ground moving vehicle clutter environment. Glideslope approaches were flown into Washington National, BWI, and Georgetown, Delaware, airports employing radar mode timing, waveform, and processing configurations plausible for microburst windshear avoidance. The perceptions, both general and specific, of the clutter environment furnish an empirical foundation for beginning low false alarm detection algorithm development.
Biosonar navigation above water II: exploiting mirror images.
Genzel, Daria; Hoffmann, Susanne; Prosch, Selina; Firzlaff, Uwe; Wiegrebe, Lutz
2015-02-15
As in vision, acoustic signals can be reflected by a smooth surface creating an acoustic mirror image. Water bodies represent the only naturally occurring horizontal and acoustically smooth surfaces. Echolocating bats flying over smooth water bodies encounter echo-acoustic mirror images of objects above the surface. Here, we combined an electrophysiological approach with a behavioral experimental paradigm to investigate whether bats can exploit echo-acoustic mirror images for navigation and how these mirrorlike echo-acoustic cues are encoded in their auditory cortex. In an obstacle-avoidance task where the obstacles could only be detected via their echo-acoustic mirror images, most bats spontaneously exploited these cues for navigation. Sonar ensonifications along the bats' flight path revealed conspicuous changes of the reflection patterns with slightly increased target strengths at relatively long echo delays corresponding to the longer acoustic paths from the mirrored obstacles. Recordings of cortical spatiotemporal response maps (STRMs) describe the tuning of a unit across the dimensions of elevation and time. The majority of cortical single and multiunits showed a special spatiotemporal pattern of excitatory areas in their STRM indicating a preference for echoes with (relative to the setup dimensions) long delays and, interestingly, from low elevations. This neural preference could effectively encode a reflection pattern as it would be perceived by an echolocating bat detecting an object mirrored from below. The current study provides both behavioral and neurophysiological evidence that echo-acoustic mirror images can be exploited by bats for obstacle avoidance. This capability effectively supports echo-acoustic navigation in highly cluttered natural habitats. Copyright © 2015 the American Physiological Society.
Modeling perspectives on echolocation strategies inspired by bats flying in groups.
Lin, Yuan; Abaid, Nicole
2015-12-21
Bats navigating with echolocation - which is a type of active sensing achieved by interpreting echoes resulting from self-generated ultrasonic pulses - exhibit unique behaviors during group flight. While bats may benefit from eavesdropping on their peers׳ echolocation, they also potentially suffer from confusion between their own and peers׳ pulses, caused by an effect called frequency jamming. This hardship of group flight is supported by experimental observations of bats simplifying their sound-scape by shifting their pulse frequencies or suppressing echolocation altogether. Here, we investigate eavesdropping and varying pulse emission rate from a modeling perspective to understand these behaviors׳ potential benefits and detriments. We define an agent-based model of echolocating bats avoiding collisions in a three-dimensional tunnel. Through simulation, we show that bats with reasonably accurate eavesdropping can reduce collisions compared to those neglecting information from peers. In large populations, bats minimize frequency jamming by decreasing pulse emission rate, while collision risk increases; conversely, increasing pulse emission rate minimizes collisions by allowing more sensing information generated per bat. These strategies offer benefits for both biological and engineered systems, since frequency jamming is a concern in systems using active sensing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats
Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi
2015-01-01
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed ‘jamming’ and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats’ response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats’ response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. PMID:26702045
Taylor, Philip D; Brzustowski, John M; Matkovich, Carolyn; Peckford, Michael L; Wilson, Dave
2010-10-26
Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets.
2010-01-01
Background Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Results Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Conclusions Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets. PMID:20977735
ERIC Educational Resources Information Center
Cochrane, Andy; Barnes-Holmes, Dermot; Barnes-Holmes, Yvonne
2008-01-01
One hundred twenty female participants, with varying levels of spider fear were asked to complete an automated 8-step perceived-threat behavioral approach test (PT-BAT). The steps involved asking the participants if they were willing to put their hand into a number of opaque jars with an incrementally increasing risk of contact with a spider (none…
Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar
NASA Astrophysics Data System (ADS)
Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken
1997-02-01
On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.
McLean, Carmen P; Hope, Debra A
2010-06-01
Commonly reported gender effects for differential vulnerability for anxiety may relate to gender socialization processes. The present study examined the relationship between gender role and fear under experimental conditions designed to elicit accurate fear reporting. Undergraduate students (N=119) completed several self-report measures and a behavioral avoidance task (BAT) with a tarantula while wearing a heart rate monitor. Gender roles were operationalized as instrumentality and expressiveness, as measured by the Personal Attributes Questionnaire (Spence, Helmreich, & Stapp, 1975). As expected, women reported greater subjective anxiety and were more avoidant of the tarantula than men. Regardless of gender, low levels of instrumentality were associated with greater avoidance of the tarantula. The hypothesis that men underreport fear compared to women and that gender role differences underlie this reporting bias was not supported. In spite of a ceiling effect on the BAT, results of this study confirm the relevance of gender role in understanding gender effects in fear and anxiety. Copyright 2010 Elsevier Ltd. All rights reserved.
35-GHz radar sensor for automotive collision avoidance
NASA Astrophysics Data System (ADS)
Zhang, Jun
1999-07-01
This paper describes the development of a radar sensor system used for automotive collision avoidance. Because the heavy truck may have great larger radar cross section than a motorcyclist has, the radar receiver may have a large dynamic range. And multi-targets at different speed may confuse the echo spectrum causing the ambiguity between range and speed of target. To get more information about target and background and to adapt to the large dynamic range and multi-targets, a frequency modulated and pseudo- random binary sequences phase modulated continuous wave radar system is described. The analysis of this double- modulation system is given. A high-speed signal processing and data processing component are used to process and combine the data and information from echo at different direction and at every moment.
Young, M K; Banu, S; McCall, B J; Vlack, S; Carroll, H; Bennett, S; Davison, R; Francis, D
2018-02-01
Despite ongoing public health messages about the risks associated with bat contact, the number of potential exposures to Australian bat lyssavirus (ABLV) due to intentional handling by members of the general public in Queensland has remained high. We sought to better understand the reasons for intentional handling among these members of the public who reported their potential exposure to inform future public health messages. We interviewed adults who resided in a defined geographic area in South East Queensland and notified potential exposure to ABLV due to intentional handling of bats by telephone between 1 January 2012 and 31 December 2013. The participation rate was 54%. Adults who reported they had intentionally handled bats in South East Queensland indicated high levels of knowledge and perception of a moderately high risk associated with bats with overall low intentions to handle bats in the future. However, substantial proportions of people would attempt to handle bats again in some circumstances, particularly to protect their children or pets. Fifty-two percent indicated that they would handle a bat if a child was about to pick up or touch a live bat, and 49% would intervene if a pet was interacting with a bat. Future public health communications should recognize the situations in which even people with highrisk perceptions of bats will attempt to handle them. Public health messages currently focus on avoidance of bats in all circumstances and recommend calling in a trained vaccinated handler, but messaging directed at adults for circumstances where children or pets may be potentially exposed should provide safe immediate management options. © 2017 Blackwell Verlag GmbH.
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima. PMID:28634487
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search.
Huang, Xingwang; Zeng, Xuewen; Han, Rui
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.
NASA Astrophysics Data System (ADS)
Fersch, Alisa; Walker, C.
2012-01-01
Light pollution is a well-known problem for astronomers. It is also gaining attention as an ecological issue. The federally endangered Lesser Long-Nosed Bat (Leptonycteris cursoae) resides for part of the year near Tucson, Arizona. It is possible that this species tends to avoid light. Excess artificial light would therefore interfere with the bats’ flight patterns and foraging habits. In order to test this hypothesis, we quantified night sky brightness with data from the citizen-science campaign GLOBE at Night. Using direct measurements taken with a Sky Quality Meter (SQM), we created a contour map of the artificial night sky brightness around Tucson. When this map is compared to the approximate flight paths of the lesser long-nosed bat, we can see that the bats do appear to be avoiding the brightest area of Tucson. We also used logistic regression to analyze what combination of ecological variables (ecoregion, vegetation cover, landform and light) best describes the observed spatial distribution of lesser long-nosed bats. Of the models that were tested, light alone was not a good predictor of the bat presence or absence. However, light in addition to vegetation and ecoregion was the best model. This information can be useful for making decisions about lighting codes in areas of the city that the bats tend to traverse. The contour map of light pollution in Tucson will be useful for both future astronomy and ecology studies and can also be used for public outreach about light pollution. Fersch was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.
Schulze, W; Schul, J
2001-02-01
The responses of female Tettigonia viridissima to simulated bat echolocation calls were examined during tethered flight. The insects responded with three distinct behaviours, which occurred at graded stimulus intensities. At low intensities (threshold 54 dB SPL), T. viridissima responded by steering away from the sound source (negative phonotaxis). At intensities approximately 10 dB higher, beating of the hindwing was interrupted, although the insect remained in the flight posture. A diving response (cessation of the wingbeat, closure of the forewings and alignment of the legs against the body) occurred with a threshold of 76 dB SPL. Considering these thresholds, we estimate that the diving response occurs at approximately the sound amplitude at which many aerial-hawking bats first receive echoes from the insect. The other behaviours probably occur before the bat detects the insect and should therefore be interpreted as early avoidance behaviours. The repertoire of startle responses in T. viridissima, with directional and non-directional components, is similar to those of crickets and moths, but quite different from those described for another bushcricket (Neoconocephalus ensiger), which shows only a non-directional response. This supports the conclusion that bat-evasive behaviours are not conserved within the Tettigoniidae, but instead are shaped by the ecological constraints of the insects.
Millimeter wave backscatter measurements in support of collision avoidance applications
NASA Astrophysics Data System (ADS)
Narayanan, Ram M.; Snuttjer, Brett R. J.
1997-11-01
Millimeter-wave short range radar systems have unique advantages in surface navigation applications, such as military vehicle mobility, aircraft landing assistance, and automotive collision avoidance. In collision avoidance applications, characterization of clutter due to terrain and roadside objects is necessary in order to maximize the signal-to-clutter ratio (SCR) and to minimize false alarms. The results of two types of radar cross section (RCS) measurements at 95 GHz are reported in this paper. The first set of measurements presents data on the normalized RCS (NRCS) as well as clutter distributions of various terrain types at low grazing angles of 5° and 7.5°. The second set of measurements presents RCS data and statistics on various types of roadside objects, such as metallic and wooden sign posts. These results are expected to be useful for designers of short-range millimeter-wave collision avoidance radar systems.
Denzinger, Annette; Schnitzler, Hans-Ulrich
2013-01-01
Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore, we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats' echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies patterns of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning. PMID:23840190
Bats on a Budget: Torpor-Assisted Migration Saves Time and Energy
McGuire, Liam P.; Jonasson, Kristin A.; Guglielmo, Christopher G.
2014-01-01
Bats and birds must balance time and energy budgets during migration. Migrating bats face similar physiological challenges to birds, but nocturnality creates special challenges for bats, such as a conflict between travelling and refueling, which many birds avoid by feeding in daylight and flying at night. As endothermic animals, bats and birds alike must expend substantial amounts of energy to maintain high body temperatures. For migratory birds refueling at stopovers, remaining euthermic during inactive periods reduces the net refuelling rate, thereby prolonging stopover duration and delaying subsequent movement. We hypothesized that bats could mitigate similar ambient-temperature dependent costs by using a torpor-assisted migration strategy. We studied silver-haired bats Lasionycteris noctivagans during autumn migration using a combination of respirometry and temperature-sensitive radiotelemetry to estimate energy costs incurred under ambient temperature conditions, and the energy that bats saved by using torpor during daytime roosting periods. All bats, regardless of sex, age, or body condition used torpor at stopover and saved up to 91% of the energy they would have expended to remain euthermic. Furthermore, bats modulated use of torpor depending on ambient temperature. By adjusting the time spent torpid, bats achieved a rate of energy expenditure independent of the ambient temperature encountered at stopover. By lowering body temperature during inactive periods, fuel stores are spared, reducing the need for refuelling. Optimal migration models consider trade-offs between time and energy. Heterothermy provides a physiological strategy that allows bats to conserve energy without paying a time penalty as they migrate. Although uncommon, some avian lineages are known to use heterothermy, and current theoretical models of migration may not be appropriate for these groups. We propose that thermoregulatory strategies should be an important consideration of future migration studies of both bats and birds. PMID:25551615
Host and viral ecology determine bat rabies seasonality and maintenance
George, D.B.; Webb, C.T.; Farnsworth, Matthew L.; O'Shea, T.J.; Bowen, R.A.; Smith, D.L.; Stanley, T.R.; Ellison, L.E.; Rupprecht, C.E.
2011-01-01
Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.
Host and viral ecology determine bat rabies seasonality and maintenance.
George, Dylan B; Webb, Colleen T; Farnsworth, Matthew L; O'Shea, Thomas J; Bowen, Richard A; Smith, David L; Stanley, Thomas R; Ellison, Laura E; Rupprecht, Charles E
2011-06-21
Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.
Wiles, G.J.; Jonhson, N.C.
2004-01-01
Based on count results, we estimated the population of Mariana fruit bats (Pteropus mariannus Desmarest) on Sarigan, Mariana Islands, to number 150-200 bats in 1999, 185-235 bats in 2000, and about 300-400 bats in 2001. Our results, plus those of two previous surveys, indicate that bat abundance on the island probably remained relatively stable at about 125-235 animals during much of the period from 1983 to 2000, then increased suddenly in 2001, most likely due to immigration from a neighboring island. Sarigan's population differs from those of larger islands in the archipelago by usually having smaller roost sizes, typically 3-75 bats, and large numbers of solitary bats that at times comprise up to half of the population. Colonies and smaller aggregations were composed primarily of harems with multiple females, whereas a nearly equal sex ratio occurred among solitary animals. Colonies roosted in isolated coconut trees in open grasslands and in native forest stands of various sizes, but avoided dense coconut forest. An estimated 30-50% of harem and solitary females possessed young in July 1999. Bats were recorded feeding on just six species of plants, which partly reflects the island's impoverished flora. We speculate that fruit bat abundance on Sarigan is limited primarily by food availability rather than hunting losses, in contrast to some other islands in the Marianas. Our study supports the contention that populations of P. mariannus in the northern Marianas are usually sedentary, but that interisland movements of larger numbers of bats may occur rarely. ?? 2004 by University of Hawai'i Press All rights reserved.
Frequency modulation for a wind turbine blade-mounted ultrasonic bat deterrent
NASA Astrophysics Data System (ADS)
Carlson, Daniel; Dowling, Zara; Sievert, Paul; Modarres-Sadeghi, Yahya
2017-11-01
Progress on developing a bat deterrent device for placement on the rotating blades of a wind turbine is presented. The mechanisms by which bat larynxes generate ultrasound is studied and reproduced experimentally. In previous iterations, flow-induced oscillations have been used to generate ultrasonic frequencies within the 20-70 kHz range: a range which laboratory studies have shown can deter bats from an area. However, the present work considers mechanisms which result in frequency modulation within the higher harmonics, an acoustic signal closer to what bats naturally avoid. Results discussed include the effects of spanwise tension on the flapwise oscillation of a pseudo larynx in flow, and how shifting the flapwise natural frequency allows frequency modulation. The net effect is a device effective within the range of wind speeds encountered along the length of a rotating wind turbine blade. The authors wish to acknowledge support by the National Science Foundation Offshore Wind Energy IGERT at the University of Massachusetts, Amherst, Grant Number 1068864.
Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.
Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F
2014-12-15
Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. © 2014. Published by The Company of Biologists Ltd.
Bats coordinate sonar and flight behavior as they forage in open and cluttered environments
Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F.
2014-01-01
Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. PMID:25394632
Habitat use of bats in relation to wind turbines revealed by GPS tracking
Roeleke, Manuel; Blohm, Torsten; Kramer-Schadt, Stephanie; Yovel, Yossi; Voigt, Christian C.
2016-01-01
Worldwide, many countries aim at countering global climate change by promoting renewable energy. Yet, recent studies highlight that so-called green energy, such as wind energy, may come at environmental costs, for example when wind turbines kill birds and bats. Using miniaturized GPS loggers, we studied how an open-space foraging bat with high collision risk with wind turbines, the common noctule Nyctalus noctula (Schreber, 1774), interacts with wind turbines. We compared actual flight trajectories to correlated random walks to identify habitat variables explaining the movements of bats. Both sexes preferred wetlands but used conventionally managed cropland less than expected based on availability. During midsummer, females traversed the land on relatively long flight paths and repeatedly came close to wind turbines. Their flight heights above ground suggested a high risk of colliding with wind turbines. In contrast, males recorded in early summer commuted straight between roosts and foraging areas and overall flew lower than the operating range of most turbine blades, suggesting a lower collision risk. Flight heights of bats suggest that during summer the risk of collision with wind turbines was high for most studied bats at the majority of currently installed wind turbines. For siting of wind parks, preferred bat habitats and commuting routes should be identified and avoided. PMID:27373219
Habitat use of bats in relation to wind turbines revealed by GPS tracking
NASA Astrophysics Data System (ADS)
Roeleke, Manuel; Blohm, Torsten; Kramer-Schadt, Stephanie; Yovel, Yossi; Voigt, Christian C.
2016-07-01
Worldwide, many countries aim at countering global climate change by promoting renewable energy. Yet, recent studies highlight that so-called green energy, such as wind energy, may come at environmental costs, for example when wind turbines kill birds and bats. Using miniaturized GPS loggers, we studied how an open-space foraging bat with high collision risk with wind turbines, the common noctule Nyctalus noctula (Schreber, 1774), interacts with wind turbines. We compared actual flight trajectories to correlated random walks to identify habitat variables explaining the movements of bats. Both sexes preferred wetlands but used conventionally managed cropland less than expected based on availability. During midsummer, females traversed the land on relatively long flight paths and repeatedly came close to wind turbines. Their flight heights above ground suggested a high risk of colliding with wind turbines. In contrast, males recorded in early summer commuted straight between roosts and foraging areas and overall flew lower than the operating range of most turbine blades, suggesting a lower collision risk. Flight heights of bats suggest that during summer the risk of collision with wind turbines was high for most studied bats at the majority of currently installed wind turbines. For siting of wind parks, preferred bat habitats and commuting routes should be identified and avoided.
Habitat use of bats in relation to wind turbines revealed by GPS tracking.
Roeleke, Manuel; Blohm, Torsten; Kramer-Schadt, Stephanie; Yovel, Yossi; Voigt, Christian C
2016-07-04
Worldwide, many countries aim at countering global climate change by promoting renewable energy. Yet, recent studies highlight that so-called green energy, such as wind energy, may come at environmental costs, for example when wind turbines kill birds and bats. Using miniaturized GPS loggers, we studied how an open-space foraging bat with high collision risk with wind turbines, the common noctule Nyctalus noctula (Schreber, 1774), interacts with wind turbines. We compared actual flight trajectories to correlated random walks to identify habitat variables explaining the movements of bats. Both sexes preferred wetlands but used conventionally managed cropland less than expected based on availability. During midsummer, females traversed the land on relatively long flight paths and repeatedly came close to wind turbines. Their flight heights above ground suggested a high risk of colliding with wind turbines. In contrast, males recorded in early summer commuted straight between roosts and foraging areas and overall flew lower than the operating range of most turbine blades, suggesting a lower collision risk. Flight heights of bats suggest that during summer the risk of collision with wind turbines was high for most studied bats at the majority of currently installed wind turbines. For siting of wind parks, preferred bat habitats and commuting routes should be identified and avoided.
The invisible hand: how British American Tobacco precluded competition in Uzbekistan
Gilmore, Anna B; McKee, Martin; Collin, Jeff
2007-01-01
Background Tobacco industry documents provide a unique opportunity to explore the role transnational corporations (TNCs) played in shaping the poor outcomes of privatisation in the former Soviet Union (FSU). This paper examines British American Tobacco's (BAT's) business conduct in Uzbekistan where large‐scale smuggling of BAT's cigarettes, BAT's reversal of tobacco control legislation and its human rights abuses of tobacco farmers have been documented previously. This paper focuses, instead, on BAT's attitude to competition, compares BAT's conduct with international standards and assesses its influence on the privatisation process. Methods Analysis of BAT documents released through litigation. Results BAT secured sole negotiator status precluding the Uzbekistan government from initiating discussions with other parties. Recognising that a competitive tender would greatly increase the cost of investment, BAT went to great lengths to avoid one, ultimately securing President Karimov's support and negotiating a monopoly position in a closed deal. It simultaneously secured exclusion from the monopolies committee, ensuring freedom to set prices, on the basis of a spurious argument that competition would exist from imports. Other anticompetitive moves comprised including all three plants in the deal despite intending to close down two, exclusive dealing and implementing measures designed to prevent market entry by competitors. BAT also secured a large number of exemptions and privileges that further reduced the government's revenue both on a one‐off and ongoing basis. Conclusions BAT's corporate misbehaviour included a wide number of anticompetitive practices, contravened Organisation of Economic Cooperation and Development's and BAT's own business standards on competition and restricted revenue arising from privatisation. This suggests that TNCs have contributed to the failure of privatisation in the FSU. Conducting open tenders and using enforceable codes to regulate corporate conduct would help deal with some of the problems identified. PMID:17652239
Peel, Alison J; Sargan, David R; Baker, Kate S; Hayman, David T S; Barr, Jennifer A; Crameri, Gary; Suu-Ire, Richard; Broder, Christopher C; Lembo, Tiziana; Wang, Lin-Fa; Fooks, Anthony R; Rossiter, Stephen J; Wood, James L N; Cunningham, Andrew A
2013-01-01
The straw-coloured fruit bat, Eidolon helvum, is Africa's most widely distributed and commonly hunted fruit bat, often living in close proximity to human populations. This species has been identified as a reservoir of potentially zoonotic viruses, but uncertainties remain regarding viral transmission dynamics and mechanisms of persistence. Here we combine genetic and serological analyses of populations across Africa, to determine the extent of epidemiological connectivity among E. helvum populations. Multiple markers reveal panmixia across the continental range, at a greater geographical scale than previously recorded for any other mammal, whereas populations on remote islands were genetically distinct. Multiple serological assays reveal antibodies to henipaviruses and Lagos bat virus in all locations, including small isolated island populations, indicating that factors other than population size and connectivity may be responsible for viral persistence. Our findings have potentially important public health implications, and highlight a need to avoid disturbances that may precipitate viral spillover.
Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study.
Razak, Khaleel A
2018-06-06
Substrate gleaning is a foraging strategy in which bats use a mixture of echolocation, prey-generated sounds, and vision to localize and hunt surface-dwelling prey. Many substrate-gleaning species depend primarily on prey-generated noise to hunt. Use of echolocation is limited to general orientation and obstacle avoidance. This foraging strategy involves a different set of selective pressures on morphology, behavior, and auditory system organization of bats compared to the use of echolocation for both hunting and navigation. Gleaning likely evolved to hunt in cluttered environments and/or as a counterstrategy to reduce detection by eared prey. Gleaning bats simultaneously receive streams of echoes from obstacles and prey-generated noise, and have to segregate these acoustic streams to attend to one or both. Not only do these bats have to be exquisitely sensitive to the soft, low frequency sounds produced by walking/rustling prey, they also have to precisely localize these sounds. Gleaners typically use low intensity echolocation calls. Such stealth echolocation requires a nervous system that is attuned to low intensity sound processing. In addition, landing on the ground to hunt may bring gleaners in close proximity to venomous prey. In fact, at least 2 gleaning bat species are known to hunt highly venomous scorpions. While a number of studies have addressed adaptations for echolocation in bats that hunt in the air, very little is known about the morphological, behavioral, and neural specializations for gleaning in bats. This review highlights the novel insights gleaning bats provide into bat evolution, particularly auditory pathway organization and ion channel structure/function relationships. Gleaning bats are found in multiple families, suggesting convergent evolution of specializations for gleaning as a foraging strategy. However, most of this review is based on recent work on a single species - the pallid bat (Antrozous palli dus) - symptomatic of the fact that more comparative work is needed to identify the mechanisms that facilitate gleaning behavior. © 2018 S. Karger AG, Basel.
Active Collision Avoidance for Planetary Landers
NASA Technical Reports Server (NTRS)
Rickman, Doug; Hannan, Mike; Srinivasan, Karthik
2015-01-01
The use of automotive radar systems are being evaluated for collision avoidance in planetary landers. Our focus is to develop a low-cost, light-weight collision avoidance system that overcomes the drawbacks identified with optical-based systems. We also seek to complement the Autonomous Landing and Hazard Avoidance Technology system by providing mission planners an alternative system that can be used on low-cost, small robotic missions and in close approach. Our approach takes advantage of how electromagnetic radiation interacts with solids. As the wavelength increases, the sensitivity of the radiation to isolated solids of a specific particle size decreases. Thus, rocket exhaust-blown dust particles, which have major significance in visible wavelengths, have much less significance at radar wavelengths.
33 CFR 150.310 - When is radar surveillance required?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false When is radar surveillance... surveillance required? A manned deepwater port's person in charge of vessel operations must maintain radar surveillance of the safety zone or area to be avoided when: (a) A tanker is proceeding to the safety zone after...
33 CFR 150.310 - When is radar surveillance required?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false When is radar surveillance... surveillance required? A manned deepwater port's person in charge of vessel operations must maintain radar surveillance of the safety zone or area to be avoided when: (a) A tanker is proceeding to the safety zone after...
33 CFR 150.310 - When is radar surveillance required?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false When is radar surveillance... surveillance required? A manned deepwater port's person in charge of vessel operations must maintain radar surveillance of the safety zone or area to be avoided when: (a) A tanker is proceeding to the safety zone after...
33 CFR 150.310 - When is radar surveillance required?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false When is radar surveillance... surveillance required? A manned deepwater port's person in charge of vessel operations must maintain radar surveillance of the safety zone or area to be avoided when: (a) A tanker is proceeding to the safety zone after...
33 CFR 150.310 - When is radar surveillance required?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false When is radar surveillance... surveillance required? A manned deepwater port's person in charge of vessel operations must maintain radar surveillance of the safety zone or area to be avoided when: (a) A tanker is proceeding to the safety zone after...
Horowitz, Seth S; Cheney, Cheryl A; Simmons, James A
2004-01-01
The big brown bat (Eptesicus fuscus) is an aerial-feeding insectivorous species that relies on echolocation to avoid obstacles and to detect flying insects. Spatial perception in the dark using echolocation challenges the vestibular system to function without substantial visual input for orientation. IR thermal video recordings show the complexity of bat flights in the field and suggest a highly dynamic role for the vestibular system in orientation and flight control. To examine this role, we carried out laboratory studies of flight behavior under illuminated and dark conditions in both static and rotating obstacle tests while administering heavy water (D2O) to impair vestibular inputs. Eptesicus carried out complex maneuvers through both fixed arrays of wires and a rotating obstacle array using both vision and echolocation, or when guided by echolocation alone. When treated with D2O in combination with lack of visual cues, bats showed considerable decrements in performance. These data indicate that big brown bats use both vision and echolocation to provide spatial registration for head position information generated by the vestibular system.
Neural Processing of Target Distance by Echolocating Bats: Functional Roles of the Auditory Midbrain
Wenstrup, Jeffrey J.; Portfors, Christine V.
2011-01-01
Using their biological sonar, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. The mustached bat's auditory midbrain (inferior colliculus, IC) is crucial to the analysis of pulse-echo delay. IC neurons are selective for certain delays between frequency modulated (FM) elements of the pulse and echo. One role of the IC is to create these “delay-tuned”, “FM-FM” response properties through a series of spectro-temporal integrative interactions. A second major role of the midbrain is to project target distance information to many parts of the brain. Pathways through auditory thalamus undergo radical reorganization to create highly ordered maps of pulse-echo delay in auditory cortex, likely contributing to perceptual features of target distance analysis. FM-FM neurons in IC also project strongly to pre-motor centers including the pretectum and the pontine nuclei. These pathways may contribute to rapid adjustments in flight, body position, and sonar vocalizations that occur as a bat closes in on a target. PMID:21238485
Are flying wildlife attracted to (or do they avoid) wind turbines?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkin, Ronald
A DOE-sponsored research project found strong evidence that flying wildlife avoid or are attracted to commercial-scale wind turbines from a distance. Some nocturnally migrating birds avoid flying near turbines and few or none change flight paths to approach them. High-flying bats less often avoid flying near turbines and some are attracted to them from a distance, although bats’ flight paths were often complex and convoluted. The findings are being prepared for submission to a peer-reviewed scientific journal (Larkin, in prep 2013).
Factors Influencing Ball-Player Impact Probability in Youth Baseball
Matta, Philip A.; Myers, Joseph B.; Sawicki, Gregory S.
2015-01-01
Background: Altering the weight of baseballs for youth play has been studied out of concern for player safety. Research has shown that decreasing the weight of baseballs may limit the severity of both chronic arm and collision injuries. Unfortunately, reducing the weight of the ball also increases its exit velocity, leaving pitchers and nonpitchers with less time to defend themselves. The purpose of this study was to examine impact probability for pitchers and nonpitchers. Hypothesis: Reducing the available time to respond by 10% (expected from reducing ball weight from 142 g to 113 g) would increase impact probability for pitchers and nonpitchers, and players’ mean simple response time would be a primary predictor of impact probability for all participants. Study Design: Nineteen subjects between the ages of 9 and 13 years performed 3 experiments in a controlled laboratory setting: a simple response time test, an avoidance response time test, and a pitching response time test. Methods: Each subject performed these tests in order. The simple reaction time test tested the subjects’ mean simple response time, the avoidance reaction time test tested the subjects’ ability to avoid a simulated batted ball as a fielder, and the pitching reaction time test tested the subjects’ ability to avoid a simulated batted ball as a pitcher. Results: Reducing the weight of a standard baseball from 142 g to 113 g led to a less than 5% increase in impact probability for nonpitchers. However, the results indicate that the impact probability for pitchers could increase by more than 25%. Conclusion: Pitching may greatly increase the amount of time needed to react and defend oneself from a batted ball. Clinical Relevance: Impact injuries to youth baseball players may increase if a 113-g ball is used. PMID:25984261
Evolution of high duty cycle echolocation in bats.
Fenton, M Brock; Faure, Paul A; Ratcliffe, John M
2012-09-01
Duty cycle describes the relative 'on time' of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of echolocating bats to detect, lock onto and track fluttering insects. Most echolocators (most bats and all birds and odontocete cetaceans) use LDC echolocation, separating pulse and echo in time to avoid forward masking. They emit short duration, broadband, downward frequency modulated (FM) signals separated by relatively long periods of silence. In contrast, bats using HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted echoes arising from their movements relative to background objects and their prey. HDC echolocators are particularly sensitive to amplitude and frequency glints generated by the wings of fluttering insects. We hypothesize that narrowband/CF calls produced at high duty cycle, and combined with neurobiological specializations for processing Doppler-shifted echoes, were essential to the evolution of HDC echolocation because they allowed bats to detect, lock onto and track fluttering targets. This advantage was especially important in habitats with dense vegetation that produce overlapping, time-smeared echoes (i.e. background acoustic clutter). We make four specific, testable predictions arising from this hypothesis.
Millimeter wave radar for automobile crash avoidance systems
NASA Astrophysics Data System (ADS)
Huguenin, G. Richard
1994-08-01
Low cost, millimeter wave, forward looking radar sensors for applications in Autonomous Collision Warning and Autonomous Intelligent Cruise Control systems will be described. These safety related systems promise the largest payoff in preventing highway crashes.
Reuter, Kim E; Wills, Abigail R; Lee, Raymond W; Cordes, Erik E; Sewall, Brent J
2016-01-01
Human-modified habitats are expanding rapidly; many tropical countries have highly fragmented and degraded forests. Preserving biodiversity in these areas involves protecting species-like frugivorous bats-that are important to forest regeneration. Fruit bats provide critical ecosystem services including seed dispersal, but studies of how their diets are affected by habitat change have often been rather localized. This study used stable isotope analyses (δ15N and δ13C measurement) to examine how two fruit bat species in Madagascar, Pteropus rufus (n = 138) and Eidolon dupreanum (n = 52) are impacted by habitat change across a large spatial scale. Limited data for Rousettus madagascariensis are also presented. Our results indicated that the three species had broadly overlapping diets. Differences in diet were nonetheless detectable between P. rufus and E. dupreanum, and these diets shifted when they co-occurred, suggesting resource partitioning across habitats and vertical strata within the canopy to avoid competition. Changes in diet were correlated with a decrease in forest cover, though at a larger spatial scale in P. rufus than in E. dupreanum. These results suggest fruit bat species exhibit differing responses to habitat change, highlight the threats fruit bats face from habitat change, and clarify the spatial scales at which conservation efforts could be implemented.
Scaling of echolocation call parameters in bats.
Jones, G
1999-12-01
I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.
Stoyanova, Milena; Hope, Debra A
2012-01-01
Despite the well-documented gender effect in anxiety, less is known about contributing factors to women's greater risk for anxiety and fears. The present study examined the relationship between gender, gender role orientation (i.e., expressivity/instrumentality) and fear of harmless insects (tarantula), using a multimodal approach of self-report measures, a Behavioral Approach Test (BAT), and physiological reactivity. Participants (144 college students; 67 women, 77 men) completed a questionnaire packet and then were instructed to approach a tarantula. We were unable to replicate Pierce and Kirkpatrick's (1992) findings that men underreport anxiety. Consistent with the literature, women in the study experienced greater anxiety and avoidance compared to men. However, men and women did not differ on physiological reactivity during the first 2 min of the BAT. The concordance across avoidance, anxiety and heart rate reactivity differed by gender, suggesting that men and women have different experiences when faced with a fearful object. Furthermore, instrumentality (masculinity) was negatively related to anticipatory anxiety for women but not for men. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bird radar validation in the field by time-referencing line-transect surveys.
Dokter, Adriaan M; Baptist, Martin J; Ens, Bruno J; Krijgsveld, Karen L; van Loon, E Emiel
2013-01-01
Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar's detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer's accuracy in determining a bird's transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ~1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50 ± 0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms.
Olatunji, Bunmi O; Deacon, Brett
2008-01-01
This study examined the specificity of disgust sensitivity in predicting fear and disgust responses to exposure to a spider. Participants high (n=22) and low (n=28) in spider fear completed self-report measures of disgust sensitivity, contamination fear, anxiety, and negative affect. They then participated in a behavioral avoidance task (BAT) in which they were briefly exposed to a realistic-looking, but fake, tarantula. Results revealed that disgust sensitivity was associated with fear and disgust responding to the BAT. The association between disgust sensitivity and disgust responding to the BAT remained significant after controlling for gender, spider fear group membership, contamination fear, anxiety, and negative affect. However, the association between disgust sensitivity and fear responding to the BAT was only marginally significant after controlling for the same variables. Contamination fear was also strongly related to fear and disgust responding to the BAT. However, this relationship was fully mediated by disgust sensitivity. These findings indicate that disgust sensitivity has a unique association with aversive responding to spiders. The implications of these findings for better understanding the complex role of fear and disgust as they related to disgust sensitivity in spider phobia are discussed.
T/R Multi-Chip MMIC Modules for 150 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene A.; Pukala, David M.; Soria, Mary M.; Sadowy, Gregory A.
2009-01-01
Modules containing multiple monolithic microwave integrated-circuit (MMIC) chips have been built as prototypes of transmitting/receiving (T/R) modules for millimeter-wavelength radar systems, including phased-array radar systems to be used for diverse purposes that could include guidance and avoidance of hazards for landing spacecraft, imaging systems for detecting hidden weapons, and hazard-avoidance systems for automobiles. Whereas prior landing radar systems have operated at frequencies around 35 GHz, the integrated circuits in this module operate in a frequency band centered at about 150 GHz. The higher frequency (and, hence, shorter wavelength), is expected to make it possible to obtain finer spatial resolution while also using smaller antennas and thereby reducing the sizes and masses of the affected systems.
Threlfall, Caragh G; Law, Bradley; Banks, Peter B
2012-01-01
Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats.
Threlfall, Caragh G.; Law, Bradley; Banks, Peter B.
2012-01-01
Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats. PMID:22685608
Bird Radar Validation in the Field by Time-Referencing Line-Transect Surveys
Dokter, Adriaan M.; Baptist, Martin J.; Ens, Bruno J.; Krijgsveld, Karen L.; van Loon, E. Emiel
2013-01-01
Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar’s detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer’s accuracy in determining a bird’s transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ∼1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50±0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms. PMID:24066103
Orthogonal on-off control of radar pulses for the suppression of mutual interference
NASA Astrophysics Data System (ADS)
Kim, Yong Cheol
1998-10-01
Intelligent vehicles of the future will be guided by radars and other sensors to avoid obstacles. When multiple vehicles move simultaneously in autonomous navigational mode, mutual interference among car radars becomes a serious problem. An obstacle is illuminated with electromagnetic pulses from several radars. The signal at a radar receiver is actually a mixture of the self-reflection and the reflection of interfering pulses emitted by others. When standardized pulse- type radars are employed on vehicles for obstacle avoidance and so self-pulse and interfering pulses have identical pulse repetition interval, this SI (synchronous Interference) is very difficult to separate from the true reflection. We present a method of suppressing such a synchronous interference. By controlling the pulse emission of a radar in a binary orthogonal ON, OFF pattern, the true self-reflection can be separated from the false one. Two range maps are generated, TRM (true-reflection map) and SIM (synchronous- interference map). TRM is updated for every ON interval and SIM is updated for every OFF interval of the self-radar. SIM represents the SI of interfering radars while TRM keeps a record of a mixture of the true self-reflection and SI. Hence the true obstacles can be identified by the set subtraction operation. The performance of the proposed method is compared with that of the conventional M of N method. Bayesian analysis shows that the probability of false alarm is improved by order of 103 to approximately 106 while the deterioration in the probability of detection is negligible.
Measor, Kevin R; Leavell, Brian C; Brewton, Dustin H; Rumschlag, Jeffrey; Barber, Jesse R; Razak, Khaleel A
2017-01-01
In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat's auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey.
From Preble's Mouse to Rattlers, NREL Biologist Likes Critters | News |
National Renewable Energy Laboratory (NREL)-yet wherever he goes, Tom Ryon can't avoid interactions with at the NWTC, to track bats and turbine interactions. "I collected data and ran it through the
Mayberry, Heather W; McGuire, Liam P; Willis, Craig K R
2018-03-01
Hibernating animals use torpor [reduced body temperature (T b ) and metabolic rate] to reduce energy expenditure during winter. Periodic arousals to normal T b are energetically expensive, so hibernators trade off arousal benefits against energetic costs. This is especially important for bats with white-nose syndrome (WNS), a fungal disease causing increased arousal frequency. Little brown bats (Myotis lucifugus) with WNS show upregulation of endogenous pyrogens and sickness behaviour. Therefore, we hypothesized that WNS should cause a fever response characterized by elevated T b . Hibernators could also accrue some benefits of arousals with minimal T b increase, thus avoiding full arousal costs. We compared skin temperature (T sk ) of captive Myotis lucifugus inoculated with the WNS-causing fungus to T sk of sham-inoculated controls. Infected bats re-warmed to higher T sk during arousals which is consistent with a fever response. Torpid T sk did not differ. During what we term "cold arousals", bats exhibited movement following T sk increases of only 2.2 ± 0.3 °C, compared to >20 °C increases during normal arousals. Cold arousals occurred in both infected and control bats, suggesting they are not a pathophysiological consequence of WNS. Fever responses are energetically costly and could exacerbate energy limitation and premature fat depletion for bats with WNS. Cold arousals could represent an energy-saving mechanism for both healthy and WNS-affected bats when complete arousals are unnecessary or too costly. A few cold arousals were observed mid-hibernation, typically in response to disturbances. Cold arousals may, therefore, represent a voluntary restriction of arousal temperature instead of loss of thermoregulatory control.
Monitoring internal organ motion with continuous wave radar in CT.
Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc
2013-09-01
To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT. The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements. Concerning the measurements of the test persons, there is a very good correlation (ρ = 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements. A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.
Active acoustic interference elicits echolocation changes in heterospecific bats.
Jones, Te K; Wohlgemuth, Melville J; Conner, William E
2018-06-27
Echolocating bats often forage in the presence of both conspecific and heterospecific individuals who have the potential to produce acoustic interference. Recent studies have shown that at least one bat species, the Brazilian free-tailed bat ( Tadarida brasiliensis ), produces specialized social signals that disrupt the sonar of conspecific competitors. We herein discuss the differences between passive and active jamming signals and test whether heterospecific jamming occurs in species overlapping spatiotemporally as well as whether such interference elicits a jamming avoidance response (JAR). We compare the capture rates of tethered moths and the echolocation parameters of big brown bats ( Eptesicus fuscus ) challenged with the playback of the jamming signal normally produced by Brazilian free-tailed bats and playback of deconstructed versions of this signal. There were no differences in the capture rates of targets with and without the jamming signal although significant changes in both spectral and temporal features of the bats' echolocation were observed. These changes are consistent with improvements of the signal-to-noise ratio in the presence of acoustic interference. Accordingly, we propose to expand the traditional definition of the JAR, stating that echolocation changes in response to interference should decrease similarity between the two signals, to include any change that increases the ability to separate returning echoes from active jamming stimuli originating from conspecific and heterospecific organisms. Flexibility in echolocation is an important characteristic for overcoming various forms of acoustic interference and may serve a purpose in interspecific interactions as well as intraspecific ones. © 2018. Published by The Company of Biologists Ltd.
López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J; Cryan, Paul; Diffendorfer, Jay E; Goldstein, Joshua; Lasharr, Kelsie; Loomis, John; McCracken, Gary; Medellín, Rodrigo A; Russell, Amy; Semmens, Darius
2014-01-01
Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the "economic benefits" arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function--in this case bat population numbers--is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.
López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J.; Cryan, Paul M.; Diffendorfer, James E.; Goldstein, Joshua; LaSharr, Kelsie; Loomis, John; McCracken, Gary; Medellin, Rodrigo A.; Russell, Amy; Semmens, Darius J.
2014-01-01
Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function – in this case bat population numbers – is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.
A bat algorithm with mutation for UCAV path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models.
Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats
Smotherman, Michael S.
2010-01-01
Background noise evokes a similar suite of adaptations in the acoustic structure of communication calls across a diverse range of vertebrates. Echolocating bats may have evolved specialized vocal strategies for echolocating in noise, but also seem to exhibit generic vertebrate responses such as the ubiquitous Lombard response. We wondered how bats balance generic and echolocation-specific vocal responses to noise. To address this question, we first characterized the vocal responses of flying free-tailed bats (Tadarida brasiliensis) to broadband noises varying in amplitude. Secondly, we measured the bats’ responses to band-limited noises that varied in the extent of overlap with their echolocation pulse bandwidth. We hypothesized that the bats’ generic responses to noise would be graded proportionally with noise amplitude, total bandwidth and frequency content, and consequently that more selective responses to band-limited noise such as the jamming avoidance response could be explained by a linear decomposition of the response to broadband noise. Instead, the results showed that both the nature and the magnitude of the vocal responses varied with the acoustic structure of the outgoing pulse as well as non-linearly with noise parameters. We conclude that free-tailed bats utilize separate generic and specialized vocal responses to noise in a context-dependent fashion. PMID:19672604
Collision Avoidance W-Band FMCW Radars in an Altimeter Application
2006-08-01
underground mining applications. Potentially, a small low– powered downward looking aerial radar employing Frequency Modulated Continuous Wave (FMCW) ranging...frequency [1]. 3 Figure 3: Epsilon Lambda ELF 171-1A radar. Model and System block diagram [2]. 4 Figure 4: Beam limited resolution cell (after [3]). 6...Figure 5: (black curves) Projected SNR variation of clutter return with range for ELF 171-1A type system in different weather conditions. Clutter-to
Proteus in flight over Southern California
2003-03-27
Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.
2003-03-27
Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.
Ultrasonic predator-prey interactions in water-convergent evolution with insects and bats in air?
Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg
2013-01-01
Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.
NASA Technical Reports Server (NTRS)
York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas
1992-01-01
Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.
2006-06-23
KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis
2006-06-22
KENNEDY SPACE CENTER, FLA. - Radar technicians set up bird detection radar near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods
2006-06-23
KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis
2006-06-23
KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis
Proteus in flight over Rosamond Dry lakebed
2003-03-27
Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.
A behavioral test of contamination fear in excessive health anxiety.
Brady, Robert E; Lohr, Jeffrey M
2014-03-01
Health anxiety is characterized by a preoccupation with the possibility of having a serious health condition or disease. Contemporary conceptualizations of health anxiety have improved in recent years to incorporate a fear of acquiring an illness; however, there is limited experimental data demonstrating the presence of fear of contamination among health anxious individuals. The present study utilized behavior approach tasks (BATs) to examine the degree to which contamination fear is present in elevated health anxiety. Participants were 60 undergraduate students who reported elevated health anxiety, contamination fear, or no anxiety about either health or contamination. Participants completed four BATS from which avoidance, anxiety, and disgust ratings were derived. Health anxious and contamination fearful individuals exhibited a similar degree of avoidance during the BATs. Contamination fearful participants reported significantly more anxiety and disgust relative to the non-anxious controls, but not the health anxious participants. Health anxious participants did not report more anxiety or disgust than the non-anxious participants. The use of an analogue sample may limit the extension of these findings to clinical populations. Additionally, the role of general negative affect could not be reliably determined in the absence of an anxious control group. These findings suggest that contamination fear may be a source of conceptual overlap between health anxiety and other disorders characterized by contamination fear. This highlights the importance of considering contamination fear in excessive health anxiety. Published by Elsevier Ltd.
Monitoring internal organ motion with continuous wave radar in CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas
Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods:more » The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (ρ= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.« less
Using radar to advance migratory bird management: An interagency collaboration
Sojda, R.; Ruth, J.M.; Barrow, W.C.; Dawson, D.K.; Diehl, R.H.; Manville, A.; Green, M.T.; Krueper, D.J.; Johnston, S.
2005-01-01
Migratory birds face many changes to the landscapes they traverse and the habitats they use. Wind turbines and communications towers, which pose hazards to birds and bats in flight, are being erected across the United States and offshore. Human activities can also destroy or threaten habitats critical to birds during migratory passage, and climate change appears to be altering migratory patterns. The U.S. Fish and Wildlife Service (USFWS) and other agencies are under increasing pressure to identify and evaluate movement patterns and habitats used during migration and other times.
Lucas, Jessica S.; Loeb, Susan C.; Jodice, Patrick G.R.
2015-01-01
Although several studies have described roost use by Rafinesque's big-eared bats (Corynorhinus rafinesquii), few studies have examined roost selection. We examined roost use and selection by Rafinesque's big-eared bat at the tree, stand, and landscape scales during the maternity season in pristine old-growth habitat in the Coastal Plain of South Carolina. We located 43 roosts (14 maternity, 29 solitary) through cavity searches and radio-telemetry. Maternity colonies and solitary individuals selected roosts based on similar characteristics. The best model explaining roost selection by all bats included tree and stand characteristics; landscape factors had little influence on roost use. Bats selected large diameter trees in areas with a high density of trees with cavities in the surrounding area. Most roosts (67.4%) were in water tupelo (Nyssa aquatica) in semi-permanently flooded and saturated areas. Half of maternity roost cavities had upper bole openings whereas only 25.8% of solitary roosts had upper bole openings. Bats that roosted with maternity groups stayed in roosts for significantly shorter periods of time (1.3 ± 0.1 days) and used significantly more roost trees (5.0 ± 0.6 roosts) than adult males (3.8 ± 1.10 days, 2.3 ± 0.4 roosts, respectively). Maternity colony use of cavities with upper bole openings and shorter residency times suggest that predator avoidance may have been an important factor governing roosting behavior of maternity colonies in this area. Our results suggest that retention of large diameter, hollow trees in wetland areas will benefit Rafinesque's big-eared bat individuals and maternity colonies in this area.
López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J.; Cryan, Paul; Diffendorfer, Jay E.; Goldstein, Joshua; LaSharr, Kelsie; Loomis, John; McCracken, Gary; Medellín, Rodrigo A.; Russell, Amy; Semmens, Darius
2014-01-01
Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function – in this case bat population numbers – is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular. PMID:24498400
Minderman, Jeroen; Pendlebury, Chris J.; Pearce-Higgins, James W.; Park, Kirsty J.
2012-01-01
The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6–18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0–5 m), bat activity (measured as the probability of a bat “pass” per hour) decreases from 84% (71–91%) to 28% (11–54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20–25 m) from operating turbines (activity decreases from 80% (65–89%) to 59% (32–81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat. PMID:22859969
Gilmore, A B; McKee, M
2004-06-01
To explore how British American Tobacco (BAT), having established cigarette imports, responded to the opportunities for investment in cigarette manufacturing in the former Soviet Union (FSU). Analysis of documents held at the BAT archive in Guildford, UK. Considerable priority was attached to investing in the FSU. This led BAT to undertake a major organisational change and to intense competition to acquire assets. BAT used flawed economic arguments to persuade cash starved governments that its investment would reap economic rewards. It offered excise advice that disadvantaged governments while benefiting BAT, confused issues over pricing, and avoided competitive tendering. BAT targeted agriculture ministries, using its expertise in leaf production to differentiate itself from other potential investors. It subverted the principles of corporate social responsibility to promote itself as a business partner. BAT's task was made easier by the naivety of post-Soviet governments and by the international financial organisations' support for rapid economic reform. The latter permitted tobacco transnationals to penetrate markets before effective competitive tendering processes had been established, giving them the opportunity to minimise prices and establish monopolies. Many of the arguments employed when penetrating post-Soviet markets were highly misleading but governments lacked expertise to realise this. There is a need to build tobacco control capacity in transition economies, within and outside government, to ensure that governments are better informed of the true economic and health impacts of tobacco. Rapid transition from socialist to market economies without establishing regulatory institutional structures may be dangerous when investing companies use business practices that fall short of international standards.
Gilmore, A; McKee, M
2004-01-01
Objectives: To explore how British American Tobacco (BAT), having established cigarette imports, responded to the opportunities for investment in cigarette manufacturing in the former Soviet Union (FSU). Design: Analysis of documents held at the BAT archive in Guildford, UK. Results: Considerable priority was attached to investing in the FSU. This led BAT to undertake a major organisational change and to intense competition to acquire assets. BAT used flawed economic arguments to persuade cash starved governments that its investment would reap economic rewards. It offered excise advice that disadvantaged governments while benefiting BAT, confused issues over pricing, and avoided competitive tendering. BAT targeted agriculture ministries, using its expertise in leaf production to differentiate itself from other potential investors. It subverted the principles of corporate social responsibility to promote itself as a business partner. BAT's task was made easier by the naivety of post-Soviet governments and by the international financial organisations' support for rapid economic reform. The latter permitted tobacco transnationals to penetrate markets before effective competitive tendering processes had been established, giving them the opportunity to minimise prices and establish monopolies. Conclusions: Many of the arguments employed when penetrating post-Soviet markets were highly misleading but governments lacked expertise to realise this. There is a need to build tobacco control capacity in transition economies, within and outside government, to ensure that governments are better informed of the true economic and health impacts of tobacco. Rapid transition from socialist to market economies without establishing regulatory institutional structures may be dangerous when investing companies use business practices that fall short of international standards. PMID:15175532
Minderman, Jeroen; Pendlebury, Chris J; Pearce-Higgins, James W; Park, Kirsty J
2012-01-01
The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.
Geologic Map of the Helen Planitia Quadrangle (V-52), Venus
Lopez, Ivan; Hansen, Vicki L.
2008-01-01
The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.
1987-05-01
processes or thermoregulation . Most investigations involving chronic exposures of mammals indicated either that no effects occurred or that reversible...radiofrequency radiation danger "* Fish, reptiles , and amphibians - Few species and fisheries - Avoid streams and wetlands, when possible 3-37 BIRDS "* The
UAV-borne X-band radar for MAV collision avoidance
NASA Astrophysics Data System (ADS)
Moses, Allistair A.; Rutherford, Matthew J.; Kontitsis, Michail; Valavanis, Kimon P.
2011-05-01
Increased use of Miniature (Unmanned) Aerial Vehicles (MAVs) is coincidentally accompanied by a notable lack of sensors suitable for enabling further increases in levels of autonomy and consequently, integration into the National Airspace System (NAS). The majority of available sensors suitable for MAV integration are based on infrared detectors, focal plane arrays, optical and ultrasonic rangefinders, etc. These sensors are generally not able to detect or identify other MAV-sized targets and, when detection is possible, considerable computational power is typically required for successful identification. Furthermore, performance of visual-range optical sensor systems can suffer greatly when operating in the conditions that are typically encountered during search and rescue, surveillance, combat, and most common MAV applications. However, the addition of a miniature radar system can, in consort with other sensors, provide comprehensive target detection and identification capabilities for MAVs. This trend is observed in manned aviation where radar systems are the primary detection and identification sensor system. Within this document a miniature, lightweight X-Band radar system for use on a miniature (710mm rotor diameter) rotorcraft is described. We present analyses of the performance of the system in a realistic scenario with two MAVs. Additionally, an analysis of MAV navigation and collision avoidance behaviors is performed to determine the effect of integrating radar systems into MAV-class vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tony, E-mail: tc282@nau.edu; Nielsen, Erik, E-mail: erik.nielsen@nau.edu; Auberle, William, E-mail: william.auberle@nau.edu
2013-01-15
The environmental impact assessment (EIA) has been a tool for decision makers since the enactment of the National Environmental Policy Act (NEPA). Since that time, few analyses have been performed to verify the quality of information and content within EIAs. High quality information within assessments is vital in order for decision makers, stake holders, and the public to understand the potential impact of proposed actions on the ecosystem and wildlife species. Low quality information has been a major cause for litigation and economic loss. Since 1999, wind energy development has seen an exponential growth with unknown levels of impact onmore » wildlife species, in particular bird and bat species. The purpose of this article is to: (1) develop, validate, and apply a quantitative index to review avian/bat assessment quality for wind energy EIAs; and (2) assess the trends and status of avian/bat assessment quality in a sample of wind energy EIAs. This research presents the development and testing of the Avian and Bat Assessment Quality Index (ABAQI), a new approach to quantify information quality of ecological assessments within wind energy development EIAs in relation to avian and bat species based on review areas and factors derived from 23 state wind/wildlife siting guidance documents. The ABAQI was tested through a review of 49 publicly available EIA documents and validated by identifying high variation in avian and bat assessments quality for wind energy developments. Of all the reviewed EIAs, 66% failed to provide high levels of preconstruction avian and bat survey information, compared to recommended factors from state guidelines. This suggests the need for greater consistency from recommended guidelines by state, and mandatory compliance by EIA preparers to avoid possible habitat and species loss, wind energy development shut down, and future lawsuits. - Highlights: Black-Right-Pointing-Pointer We developed, validated, and applied a quantitative index to review avian/bat assessment quality for wind energy EIAs. Black-Right-Pointing-Pointer We assessed the trends and status of avian/bat assessment quality in a sample of wind energy EIAs. Black-Right-Pointing-Pointer Applied index to 49 EIA documents and identified high variation in assessment quality for wind energy developments. Black-Right-Pointing-Pointer For the reviewed EIAs, 66% provided inadequate preconstruction avian and bat survey information.« less
Use and selection of bridges as day roosts by Rafinesque's Big Eared Bats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Frances, M.; Loeb, Susan, C.; Bunch, Mary, S.
ABSTRACT.—Rafinesque’s big-eared bats (Corynorhinus rafinesquii) use bridges as day roosts in parts of their range, but information on bridge use across their range is lacking. From May to Aug. 2002 we surveyed 1129 bridges (12.5%) within all 46 counties of South Carolina to determine use and selection of bridges as day roosts by big-eared bats and to document their distribution across the state. During summer 2003, we visited 235 bridges in previously occupied areas of the state to evaluate short-term fidelity to bridge roosts. We found colonies and solitary big-eared bats beneath 38 bridges in 2002 and 54 bridges inmore » 2003. Construction type and size of bridges strongly influenced use in both years; bats selected large, concrete girder bridges and avoided flat-bottomed slab bridges. The majority of occupied bridges (94.7%) were in the Upper and Lower Coastal Plains, but a few bridges (5.3%) were located in the Piedmont. Rafinesque’s big-eared bats were absent beneath bridges in the Blue Ridge Mountains. We established new records of occurrence for 10 counties. In the Coastal Plains, big-eared bats exhibited a high degree of short-term fidelity to roosts in highway bridges. For bridges that were occupied at least once, mean frequency of use was 65.9%. Probability of finding bats under a bridge ranged from 0.46 to 0.73 depending on whether the bridge was occupied in the previous year. Thus, bridges should be inspected three to five times in a given year to determine whether they are being used. Regional bridge roost surveys may be a good method for determining the distribution of C. rafinesquii, particularly in the Coastal Plains, and protection of suitable bridges may be a viable conservation strategy where natural roost sites are limited.« less
Reuter, Kim E.; Wills, Abigail R.; Lee, Raymond W.; Cordes, Erik E.; Sewall, Brent J.
2016-01-01
Human-modified habitats are expanding rapidly; many tropical countries have highly fragmented and degraded forests. Preserving biodiversity in these areas involves protecting species–like frugivorous bats–that are important to forest regeneration. Fruit bats provide critical ecosystem services including seed dispersal, but studies of how their diets are affected by habitat change have often been rather localized. This study used stable isotope analyses (δ15N and δ13C measurement) to examine how two fruit bat species in Madagascar, Pteropus rufus (n = 138) and Eidolon dupreanum (n = 52) are impacted by habitat change across a large spatial scale. Limited data for Rousettus madagascariensis are also presented. Our results indicated that the three species had broadly overlapping diets. Differences in diet were nonetheless detectable between P. rufus and E. dupreanum, and these diets shifted when they co-occurred, suggesting resource partitioning across habitats and vertical strata within the canopy to avoid competition. Changes in diet were correlated with a decrease in forest cover, though at a larger spatial scale in P. rufus than in E. dupreanum. These results suggest fruit bat species exhibit differing responses to habitat change, highlight the threats fruit bats face from habitat change, and clarify the spatial scales at which conservation efforts could be implemented. PMID:27097316
Bats' avoidance of real and virtual objects: implications for the sonar coding of object size.
Goerlitz, Holger R; Genzel, Daria; Wiegrebe, Lutz
2012-01-01
Fast movement in complex environments requires the controlled evasion of obstacles. Sonar-based obstacle evasion involves analysing the acoustic features of object-echoes (e.g., echo amplitude) that correlate with this object's physical features (e.g., object size). Here, we investigated sonar-based obstacle evasion in bats emerging in groups from their day roost. Using video-recordings, we first show that the bats evaded a small real object (ultrasonic loudspeaker) despite the familiar flight situation. Secondly, we studied the sonar coding of object size by adding a larger virtual object. The virtual object echo was generated by real-time convolution of the bats' calls with the acoustic impulse response of a large spherical disc and played from the loudspeaker. Contrary to the real object, the virtual object did not elicit evasive flight, despite the spectro-temporal similarity of real and virtual object echoes. Yet, their spatial echo features differ: virtual object echoes lack the spread of angles of incidence from which the echoes of large objects arrive at a bat's ears (sonar aperture). We hypothesise that this mismatch of spectro-temporal and spatial echo features caused the lack of virtual object evasion and suggest that the sonar aperture of object echoscapes contributes to the sonar coding of object size. Copyright © 2011 Elsevier B.V. All rights reserved.
Measor, Kevin R.; Leavell, Brian C.; Brewton, Dustin H.; Rumschlag, Jeffrey; Barber, Jesse R.
2017-01-01
Abstract In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat’s auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey. PMID:28275715
Tropical bat as mammalian model for skin carotenoid metabolism
Galván, Ismael; Garrido-Fernández, Juan; Ríos, José; Pérez-Gálvez, Antonio; Rodríguez-Herrera, Bernal
2016-01-01
Animals cannot synthesize carotenoid pigments de novo, and must consume them in their diet. Most mammals, including humans, are indiscriminate accumulators of carotenoids but inefficiently distribute them to some tissues and organs, such as skin. This limits the potential capacity of these organisms to benefit from the antioxidant and immunostimulatory functions that carotenoids fulfill. Indeed, to date, no mammal has been known to have evolved physiological mechanisms to incorporate and deposit carotenoids in the skin or hair, and mammals have therefore been assumed to rely entirely on other pigments such as melanins to color their integument. Here we use high-performance liquid chromatography (HPLC) in combination with time-of-flight mass spectrometry (HPLC-TOF/MS) to show that the frugivorous Honduran white bat Ectophylla alba colors its skin bright yellow with the deposition of the xanthophyll lutein. The Honduran white bat is thus a mammalian model that may help developing strategies to improve the assimilation of lutein in humans to avoid macular degeneration. This represents a change of paradigm in animal physiology showing that some mammals actually have the capacity to accumulate dietary carotenoids in the integument. In addition, we have also discovered that the majority of the lutein in the skin of Honduran white bats is present in esterified form with fatty acids, thereby permitting longer-lasting coloration and suggesting bright color traits may have an overlooked role in the visual communication of bats. PMID:27621447
Derivation of Z-R equation using Mie approach for a 77 GHz radar
NASA Astrophysics Data System (ADS)
Bertoldo, Silvano; Lucianaz, Claudio; Allegretti, Marco; Perona, Giovanni
2017-04-01
The ETSI (European Telecommunications Standards Institute) defines the frequency band around 77 GHz as dedicated to automatic cruise control long-range radars. This work aims to demonstrate that, with specific assumption and the right theoretical background it is also possible to use a 77 GHz as a mini weather radar and/or a microwave rain gauge. To study the behavior of a 77 GHz meteorological radar, since the raindrop size are comparable to the wavelength, it is necessary to use the general Mie scattering theory. According to the Mie formulation, the radar reflectivity factor Z is defined as a function of the wavelength on the opposite of Rayleigh approximation in which is frequency independent. Different operative frequencies commonly used in radar meteorology are considered with both the Rayleigh and Mie scattering theory formulation. Comparing them it is shown that with the increasing of the radar working frequency the use of Rayleigh approximation lead to an always larger underestimation of rain. At 77 GHz such underestimation is up to 20 dB which can be avoided with the full Mie theory. The crucial derivation of the most suited relation between the radar reflectivity factor Z and rainfall rate R (Z-R equation) is necessary to achieve the best Quantitative Precipitation Estimation (QPE) possible. Making the use of Mie scattering formulation from the classical electromagnetic theory and considering different radar working frequencies, the backscattering efficiency and the radar reflectivity factor have been derived from a wide range of rain rate using specific numerical routines. Knowing the rain rate and the corresponding reflectivity factor it was possible to derive the coefficients of the Z-R equation for each frequency with the least square method and to obtain the best coefficients for each frequency. The coefficients are then compared with the ones coming from the scientific literature. The coefficients of a 77 GHz weather radar are then obtained. A sensitivity analysis of a 77 GHz weather radar using such Z-R relation is also studied. The work shows that the right knowledge of Z-R equation is essential to use such a specific radar for the estimation of rainfall. The use Mie scattering theory is necessary for a 77 GHz radar in order to avoid the heavy underestimation of rainfall.
A Bat Algorithm with Mutation for UCAV Path Planning
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models. PMID:23365518
Alberdi, Antton; Garin, Inazio; Aizpurua, Ostaizka; Aihartza, Joxerra
2012-01-01
Molecular analysis of diet overcomes the considerable limitations of traditional techniques for identifying prey remains in bat faeces. We collected faeces from individual Mountain Long-eared Bats Plecotus macrobullaris trapped using mist nets during the summers of 2009 and 2010 in the Pyrenees. We analysed their diet using DNA mini-barcodes to identify prey species. In addition, we inferred some basic features of the bat's foraging ecology that had not yet been addressed. P. macrobullaris fed almost exclusively on moths (97.8%). As prey we detected one dipteran genus (Tipulidae) and 29 moth taxa: 28 were identified at species level (23 Noctuidae, 1 Crambidae, 1 Geometridae, 1 Pyralidae, 1 Sphingidae, 1 Tortricidae), and one at genus level (Rhyacia sp., Noctuidae). Known ecological information about the prey species allowed us to determine that bats had foraged at elevations between 1,500 and 2,500 m amsl (above mean sea level), mostly in subalpine meadows, followed by other open habitats such as orophilous grasslands and alpine meadows. No forest prey species were identified in the diet. As 96.4% of identified prey species were tympanate moths and no evidence of gleaning behaviour was revealed, we suggest P. macrobullaris probably forages by aerial hawking using faint echolocation pulses to avoid detection by hearing moths. As we could identify 87.8% of the analysed sequences (64.1% of the MOTUs, Molecular Operational Taxonomic Units) at species level, we conclude that DNA mini-barcodes are a very useful tool to analyse the diet of moth-specialist bats.
NASA Technical Reports Server (NTRS)
Zelenka, Richard E.
1992-01-01
A Kalman filter for the integration of a radar altimeter into a terrain database-dependent guidance system was developed. Results obtained from a low-altitude helicopter flight test data acquired over moderately rugged terrain showed that the proposed Kalman filter removes large disparities in predicted above-ground-level (AGL) altitude in the presence of measurement anomalies and dropouts. Integration of a radar altimeter makes it possible to operate a near-terrain guidance system at or below 50 ft (subject to obstacle-avoidance limitations), whereas without radar altimeter integration, a minimum clearance altitude of 220 AGL is needed, as is suggested by previous work.
Pursuit, Avoidance, and Cohesion in Flight: Multi-Purpose Control Laws and Neuromorphic VLSI
2010-10-01
34 Binaural Spectral Cues for Ultrasonic Localization," Proc. International Symposium on Circuits and Systems, pp. 2110 - 2113, 2008 (DOI:10.1109/ISCAS...T. K. Horiuchi, C. Bansal, and T. M. Massoud (2009), " Binaural Intensity Comparison in the Echolocating Bat Using Synaptic Conductance," Proc
Multibeam monopulse radar for airborne sense and avoid system
NASA Astrophysics Data System (ADS)
Gorwara, Ashok; Molchanov, Pavlo
2016-10-01
The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.
Delaying in vivo exposure to a tarantula with very brief exposure to phobic stimuli.
Siegel, Paul; Gallagher, Kimberly Alyse
2015-03-01
Research has documented the very brief exposure (VBE) effect: the reduction of phobic fear by continuous presentation of masked phobic pictures. In prior studies, phobic participants approached a live tarantula immediately after the masked stimuli were presented. This study tested the hypothesis that VBE would reduce phobic avoidance of the tarantula 24 h later. 86 spider-phobic participants were identified with a fear questionnaire and Behavioral Avoidance Test (BAT) with a live tarantula indicative of a DSM-IV diagnosis of Specific Phobia. One week later, they were randomly assigned in double-blind fashion to presentation of a continuous series of 25 trials of masked images of either spiders or flowers (33-ms each), i.e., to VBE or control exposure. The participants gave subjective distress ratings just before and after these exposures. Then they engaged in the BAT again either immediately thereafter or 24 h later to measure changes in avoidance of the tarantula. Masked images of spiders reduced avoidance of the tarantula both immediately after exposure and 24 h later without causing subjective distress. The effect sizes at these two time points did not significantly differ from each other. We did not manipulate awareness of the spider images by presenting them unmasked to a third group. Conclusions about the effect of awareness of the stimuli cannot be drawn. VBE induces a process of fear reduction before phobic individuals engage in in vivo exposure, which is more distressing. Thus, VBE may help phobic-resistant individuals start treatment more gradually.
Cypess, Aaron M; Doyle, Ashley N; Sass, Christina A; Huang, Tian Lian; Mowschenson, Peter M; Rosen, Harold N; Tseng, Yu-Hua; Palmer, Edwin L; Kolodny, Gerald M
2013-11-01
For brown adipose tissue (BAT) to be effective at consuming calories, its blood flow must increase enough to provide sufficient fuel to sustain energy expenditure and also transfer the heat created to avoid thermal injury. Here we used a combination of human and rodent models to assess changes in BAT blood flow and glucose utilization. (99m)Tc-methoxyisobutylisonitrile (MIBI) SPECT (n = 7) and SPECT/CT (n = 74) scans done in adult humans for parathyroid imaging were reviewed for uptake in regions consistent with human BAT. Site-directed biopsies of subcutaneous and deep neck fat were obtained for electron microscopy and gene expression profiling. In mice, tissue perfusion was measured with (99m)Tc-MIBI (n = 16) and glucose uptake with (18)F-FDG (n = 16). Animals were kept fasting overnight, anesthetized with pentobarbital, and given intraperitoneally either the β3-adrenergic receptor agonist CL-316,243, 1 mg/kg (n = 8), or saline (n = 8) followed by radiotracer injection 5 min later. After 120 min, the mice were imaged using SPECT/CT or PET/CT. Vital signs were recorded over 30 min during the imaging. BAT, white adipose tissue (WAT), muscle, liver, and heart were resected, and tissue uptake of both (99m)Tc-MIBI and (18)F-FDG was quantified by percentage injected dose per gram of tissue and normalized to total body weight. In 5.4% of patients (4/74), (99m)Tc-MIBI SPECT/CT showed increased retention in cervical and supraclavicular fat that displayed multilocular lipid droplets, dense capillary investment, and a high concentration of ovoid mitochondria. Expression levels of the tissue-specific uncoupling protein-1 were 180 times higher in BAT than in subcutaneous WAT (P < 0.001). In mice, BAT tissue perfusion increased by 61% (P < 0.01), with no significant changes in blood flow to WAT, muscle, heart, or liver. CL-316,243 increased glucose uptake in BAT even more, by 440% (P < 0.01). Pharmacologic activation of BAT requires increased blood flow to deliver glucose and oxygen for thermogenesis. However, the glucose consumption far exceeds the vascular response. These findings demonstrate that activated BAT increases glucose uptake beyond what might occur by increased blood flow alone and suggest that activated BAT likely uses glucose for nonthermogenic purposes.
Microwave emissions from police radar.
Fink, J M; Wagner, J P; Congleton, J J; Rock, J C
1999-01-01
This study evaluated police officers' exposures to microwaves emitted by traffic radar units. Exposure measurements were taken at approximated ocular and testicular levels of officers seated in patrol vehicles. Comparisons were made of the radar manufacturers' published maximum power density specifications and actual measured power densities taken at the antenna faces of those units. Four speed-enforcement agencies and one transportation research institute provided 54 radar units for evaluation; 17 different models, encompassing 4 frequency bands and 3 antenna configurations, were included. Four of the 986 measurements taken exceeded the 5 mW/cm2 limit accepted by the International Radiation Protection Association and the National Council on Radiation Protection and Measurement, though none exceeded the American Conference of Governmental Industrial Hygienists, American National Standards Institute, Institute of Electrical and Electronic Engineers, or Occupational Safety and Health Administration standard of 10 mW/cm2. The four high measurements were maximum power density readings taken directly in front of the radar. Of the 812 measurements taken at the officers' seated ocular and testicular positions, none exceeded 0.04 mW/cm2; the highest of these (0.034 mW/cm2) was less than 1% of the most conservative current safety standards. High exposures in the limited region directly in front of the radar aperture are easily avoided with proper training. Results of this study indicate that police officer exposure to microwave radiation is apparently minimal. However, because of uncertainty in the medical and scientific communities concerning nonionizing radiation, it is recommended that law enforcement agencies implement a policy of prudent avoidance, including purchasing units with the lowest published maximum power densities, purchasing dash/rear deck-mounted units with antennae mounted outside the patrol vehicle, and training police officers to use the "stand-by" mode when not actually using radar.
Enhanced Weather Radar (EWxR) System
NASA Technical Reports Server (NTRS)
Kronfeld, Kevin M. (Technical Monitor)
2003-01-01
An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.
Assessment of Technologies Used to Characterize Wildlife Populations in the Offshore Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duberstein, Corey A.; Tagestad, Jerry D.; Larson, Kyle B.
Wind energy development in the offshore environment can have both direct and indirect effects on wildlife, yet little is known about most species that use near-shore and offshore waters due in part to the difficulty involved in studying animals in remote, challenging environments. Traditional methods to characterize offshore wildlife populations include shipboard observations. Technological advances have provided researches with an array of technologies to gather information about fauna from afar. This report describes the use and application of radar, thermal and optical imagery, and acoustic detection technologies for monitoring birds, bats, and marine mammals in offshore environments.
2006-06-22
KENNEDY SPACE CENTER, FLA. - Bird detection radar is set up near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods
2006-06-22
KENNEDY SPACE CENTER, FLA. - Bird detection radar is delivered near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods
Macro-motion detection using ultra-wideband impulse radar.
Xin Li; Dengyu Qiao; Ye Li
2014-01-01
Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be required to convert Arsenic III to Arsenic V. 5 To obtain high removals, iron to arsenic ratio... Exchange 6=Lime Softening (not BAT for systems Corrosion... corrosion control treatment requirements for lead and copper in §§ 141.81 and 141.82 to avoid an...
Some recollections of D. R. Griffin as a young man
NASA Astrophysics Data System (ADS)
Galambos, Robert
2004-05-01
In 1939 Don Griffin invited me to join him in his earliest bat echolocation experiments. I will tell a few stories about what we two graduate students did together, and show the sound movie in which, for the first time, we recorded their cries as they flew and avoided obstacles.
No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats
Götze, Simone; Koblitz, Jens C.; Denzinger, Annette; Schnitzler, Hans-Ulrich
2016-01-01
Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be explained by other reactions. P. pipistrellus reacted to conspecifics with a reduction of sound duration and often also pulse interval, accompanied by an increase in terminal frequency. This reaction is typical of behavioral situations where targets of interest have captured the bat’s attention and initiated a more detailed exploration. All observed frequency changes were predicted by the attention reaction alone, and do not support the JAR hypothesis of increased frequency separation. Reaction distances of 1–11 m suggest that the attention response may be elicited either by detection of the conspecific by short range active echolocation or by long range passive acoustic detection of echolocation calls. PMID:27502900
Lintott, Paul R.; Bunnefeld, Nils; Minderman, Jeroen; Fuentes-Montemayor, Elisa; Mayhew, Rebekah J.; Olley, Lena; Park, Kirsty J.
2015-01-01
Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes. PMID:25978034
Lintott, Paul R; Bunnefeld, Nils; Minderman, Jeroen; Fuentes-Montemayor, Elisa; Mayhew, Rebekah J; Olley, Lena; Park, Kirsty J
2015-01-01
Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes.
Griffiths, Stephen R; Donato, David B; Lumsden, Linda F; Coulson, Graeme
2014-01-01
Wildlife and livestock that ingest bioavailable cyanide compounds in gold mining tailings dams are known to experience cyanide toxicosis. Elevated levels of salinity in open impoundments have been shown to prevent wildlife cyanide toxicosis by reducing drinking and foraging. This finding appears to be consistent for diurnal wildlife interacting with open impoundments, however the risks to nocturnal wildlife of cyanide exposure are unknown. We investigated the activity of insectivorous bats in the airspace above both fresh (potable to wildlife) and saline water bodies at two gold mines in the goldfields of Western Australian. During this study, cyanide-bearing solutions stored in open impoundments at both mine sites were hypersaline (range=57,000-295,000 mg/L total dissolved solids (TDS)), well above known physiological tolerance of any terrestrial vertebrate. Bats used the airspace above each water body monitored, but were more active at fresh than saline water bodies. In addition, considerably more terminal echolocation buzz calls were recorded in the airspace above fresh than saline water bodies at both mine sites. However, it was not possible to determine whether these buzz calls corresponded to foraging or drinking bouts. No drinking bouts were observed in 33 h of thermal video footage recorded at one hypersaline tailings dam, suggesting that this water is not used for drinking. There is no information on salinity tolerances of bats, but it could be assumed that bats would not tolerate salinity in drinking water at concentrations greater than those documented as toxic for saline-adapted terrestrial wildlife. Therefore, when managing wastewater impoundments at gold mines to avoid wildlife mortalities, adopting a precautionary principle, bats are unlikely to drink solutions at salinity levels ≥50,000 mg/L TDS. © 2013 Published by Elsevier Inc.
What is driving range expansion in a common bat? Hints from thermoregulation and habitat selection.
Ancillotto, Leonardo; Budinski, Ivana; Nardone, Valentina; Di Salvo, Ivy; Corte, Martina Della; Bosso, Luciano; Conti, Paola; Russo, Danilo
2018-06-02
Human-induced alterations often lead to changes in the geographical range of plants and animals. While modelling exercises may contribute to understanding such dynamics at large spatial scales, they rarely offer insights into the mechanisms that prompt the process at a local scale. Savi's pipistrelle (Hypsugo savii) is a vespertilionid bat widespread throughout the Mediterranean region. The species' recent range expansion towards northeastern Europe is thought to be induced by urbanization, yet no study actually tested this hypothesis, and climate change is a potential alternative driver. In this radio-telemetry study, set in the Vesuvius National Park (Campania region, Southern Italy) we provide insights into the species' thermal physiology and foraging ecology and investigate their relationships with potential large-scale responses to climate, and land use changes. Specifically, we test whether H. savii i) exploits urbanisation through a selection of urban areas for roosting and foraging, and ii) tolerates heatwaves (a proxy for thermophily) through a plastic use of thermoregulation. Tolerance to heatwaves would be consistent with the observation that the species' geographic range is not shifting but expanding northwards. Tracked bats roosted mainly in buildings but avoided urban habitats while foraging, actively selecting non-intensive farmland and natural wooded areas. Hypsugo savii showed tolerance to heat, reaching the highest body temperature ever recorded for a free-ranging bat (46.5 °C), and performing long periods of overheating. We conclude that H. savii is not a strictly synurbic species because it exploits urban areas mainly for roosting, and avoids them for foraging: this questions the role of synurbization as a range expansion driver. On the other hand, the species' extreme heat tolerance and plastic thermoregulatory behaviour represent winning traits to cope with heatwaves typical of climate change-related weather fluctuations. Copyright © 2018 Elsevier B.V. All rights reserved.
Ultrasonic predator–prey interactions in water–convergent evolution with insects and bats in air?
Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg
2013-01-01
Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey. PMID:23781206
2006-06-27
KENNEDY SPACE CENTER, FLA. - These laptop computers in Firing Room 4 of the Launch Control Center reveal data being relayed from the avian radars recently set up on Launch Pad 39B. On the left is an associated camera image. On the right is the radar image. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/George Shelton
2006-06-27
KENNEDY SPACE CENTER, FLA. - This radar image shows the presence of large birds around Launch Pad 39B. The data is being relayed from the avian radars recently set up on the pad. The computer is one of two set up in Firing Room 4 of the Launch Control Center. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/George Shelton
Federal Aviation Administration weather program to improve aviation safety
NASA Technical Reports Server (NTRS)
Wedan, R. W.
1983-01-01
The implementation of the National Airspace System (NAS) will improve safety services to aviation. These services include collision avoidance, improved landing systems and better weather data acquisition and dissemination. The program to improve the quality of weather information includes the following: Radar Remote Weather Display System; Flight Service Automation System; Automatic Weather Observation System; Center Weather Processor, and Next Generation Weather Radar Development.
Development of a frequency-modulated ultrasonic sensor inspired by bat echolocation
NASA Astrophysics Data System (ADS)
Kepa, Krzysztof; Abaid, Nicole
2015-03-01
Bats have evolved to sense using ultrasonic signals with a variety of different frequency signatures which interact with their environment. Among these signals, those with time-varying frequencies may enable the animals to gather more complex information for obstacle avoidance and target tracking. Taking inspiration from this system, we present the development of a sonar sensor capable of generating frequency-modulated ultrasonic signals. The device is based on a miniature mobile computer, with on board data capture and processing capabilities, which is designed for eventual autonomous operation in a robotic swarm. The hardware and software components of the sensor are detailed, as well their integration. Preliminary results for target detection using both frequency-modulated and constant frequency signals are discussed.
WS-BP: An efficient wolf search based back-propagation algorithm
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah
2015-05-01
Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.
2006-06-23
KENNEDY SPACE CENTER, FLA. - Two bird detection radars have been set up near Launch Pad 39B to get ready for the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis
General purpose graphic processing unit implementation of adaptive pulse compression algorithms
NASA Astrophysics Data System (ADS)
Cai, Jingxiao; Zhang, Yan
2017-07-01
This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.
Sequential assessment of prey through the use of multiple sensory cues by an eavesdropping bat
NASA Astrophysics Data System (ADS)
Page, Rachel A.; Schnelle, Tanja; Kalko, Elisabeth K. V.; Bunge, Thomas; Bernal, Ximena E.
2012-06-01
Predators are often confronted with a broad diversity of potential prey. They rely on cues associated with prey quality and palatability to optimize their hunting success and to avoid consuming toxic prey. Here, we investigate a predator's ability to assess prey cues during capture, handling, and consumption when confronted with conflicting information about prey quality. We used advertisement calls of a preferred prey item (the túngara frog) to attract fringe-lipped bats, Trachops cirrhosus, then offered palatable, poisonous, and chemically manipulated anurans as prey. Advertisement calls elicited an attack response, but as bats approached, they used additional sensory cues in a sequential manner to update their information about prey size and palatability. While both palatable and poisonous small anurans were readily captured, large poisonous toads were approached but not contacted suggesting the use of echolocation for assessment of prey size at close range. Once prey was captured, bats used chemical cues to make final, post-capture decisions about whether to consume the prey. Bats dropped small, poisonous toads as well as palatable frogs coated in toad toxins either immediately or shortly after capture. Our study suggests that echolocation and chemical cues obtained at close range supplement information obtained from acoustic cues at long range. Updating information about prey quality minimizes the occurrence of costly errors and may be advantageous in tracking temporal and spatial fluctuations of prey and exploiting novel food sources. These findings emphasize the sequential, complex nature of prey assessment that may allow exploratory and flexible hunting behaviors.
Flight test of a low-altitude helicopter guidance system with obstacle avoidance capability
NASA Technical Reports Server (NTRS)
Zelenka, Richard E.; Clark, Raymond F.; Branigan, Robert G.
1995-01-01
Military aircraft regularly conduct missions that include low-atltitude, near-terrain flight in order to increase covertness and payload effectiveness. Civilian applications include airborne fire fighting, police surveillance, search and rescue, and helicopter emergency medical service. Several fixed-wing aircraft now employ terrain elevation maps and forward-pointed radars to achieve automated terrain following or terrain avoidance flight. Similar systems specialized to helicopters and their flight regime have not received as much attention. A helicopter guidance system relying on digitized terrain elevation maps has been developed that employs airborne navigation, mission requirements, aircraft performance limits, and radar altimeter returns to generate a valley-seeking, low-altitude trajectory between waypoints. The guidance trajectory is symbolically presented to the pilot on a helmet mounted display. This system has been flight tested to 150 ft (45.7 m) above ground level altitude at 80 kts, and is primarily limited by the ability of the pilot to perform manual detection and avoidance of unmapped hazards. In this study, a wide field of view laser radar sensor has been incorporated into this guidance system to assist the pilot in obstacle detection and avoidance, while expanding the system's operational flight envelope. The results from early flight tests of this system are presented. Low-altitude missions to 100 ft (30.5 m) altitude at 80n kts in the presence of unmapped natural and man-made obstacles were demonstrated while the pilot maintained situational awareness and tracking of the guidance trajectory. Further reductions in altitude are expected with continued flight testing.
Digital-Difference Processing For Collision Avoidance.
NASA Technical Reports Server (NTRS)
Shores, Paul; Lichtenberg, Chris; Kobayashi, Herbert S.; Cunningham, Allen R.
1988-01-01
Digital system for automotive crash avoidance measures and displays difference in frequency between two sinusoidal input signals of slightly different frequencies. Designed for use with Doppler radars. Characterized as digital mixer coupled to frequency counter measuring difference frequency in mixer output. Technique determines target path mathematically. Used for tracking cars, missiles, bullets, baseballs, and other fast-moving objects.
NASA Astrophysics Data System (ADS)
Nguyen, Lam; Wong, David; Ressler, Marc; Koenig, Francois; Stanton, Brian; Smith, Gregory; Sichina, Jeffrey; Kappra, Karl
2007-04-01
The U.S. Army Research Laboratory (ARL), as part of a mission and customer funded exploratory program, has developed a new low-frequency, ultra-wideband (UWB) synthetic aperture radar (SAR) for forward imaging to support the Army's vision of an autonomous navigation system for robotic ground vehicles. These unmanned vehicles, equipped with an array of imaging sensors, will be tasked to help detect man-made obstacles such as concealed targets, enemy minefields, and booby traps, as well as other natural obstacles such as ditches, and bodies of water. The ability of UWB radar technology to help detect concealed objects has been documented in the past and could provide an important obstacle avoidance capability for autonomous navigation systems, which would improve the speed and maneuverability of these vehicles and consequently increase the survivability of the U. S. forces on the battlefield. One of the primary features of the radar is the ability to collect and process data at combat pace in an affordable, compact, and lightweight package. To achieve this, the radar is based on the synchronous impulse reconstruction (SIRE) technique where several relatively slow and inexpensive analog-to-digital (A/D) converters are used to sample the wide bandwidth of the radar signals. We conducted an experiment this winter at Aberdeen Proving Ground (APG) to support the phenomenological studies of the backscatter from positive and negative obstacles for autonomous robotic vehicle navigation, as well as the detection of concealed targets of interest to the Army. In this paper, we briefly describe the UWB SIRE radar and the test setup in the experiment. We will also describe the signal processing and the forward imaging techniques used in the experiment. Finally, we will present imagery of man-made obstacles such as barriers, concertina wires, and mines.
2006-06-27
KENNEDY SPACE CENTER, FLA. - This associated computer image shows data being relayed from the avian radars recently set up on Launch Pad 39B. The computer is one of two in Firing Room 4 of the Launch Control Center. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/George Shelton
2006-06-27
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, NASA Test Director Steve Payne points to laptop computers that will display data relayed from the avian radars recently set up on Launch Pad 39B. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/George Shelton
Research on the range side lobe suppression method for modulated stepped frequency radar signals
NASA Astrophysics Data System (ADS)
Liu, Yinkai; Shan, Tao; Feng, Yuan
2018-05-01
The magnitude of time-domain range sidelobe of modulated stepped frequency radar affects the imaging quality of inverse synthetic aperture radar (ISAR). In this paper, the cause of high sidelobe in modulated stepped frequency radar imaging is analyzed first in real environment. Then, the chaos particle swarm optimization (CPSO) is used to select the amplitude and phase compensation factors according to the minimum sidelobe criterion. Finally, the compensated one-dimensional range images are obtained. Experimental results show that the amplitude-phase compensation method based on CPSO algorithm can effectively reduce the sidelobe peak value of one-dimensional range images, which outperforms the common sidelobe suppression methods and avoids the coverage of weak scattering points by strong scattering points due to the high sidelobes.
Neural Computations for Biosonar Imaging in the Big Brown Bat
NASA Astrophysics Data System (ADS)
Saillant, Prestor Augusto
1995-11-01
The study of the intimate relationship between space and time has taken many forms, ranging from the Theory of Relativity down to the problem of avoiding traffic jams. However, nowhere has this relationship been more fully developed and exploited than in dolphins and bats, which have the ability to utilize biosonar. This thesis describes research on the behavioral and computational basis of echolocation carried out in order to explore the neural mechanisms which may account for the space-time constructs which are of psychological importance to the big brown bat. The SCAT (Spectrogram Correlation and Transformation) computational model was developed to provide a framework for understanding the computational requirements of FM echolocation as determined from psychophysical experiments (i.e., high resolution imaging) and neurobiological constraints (Saillant et al., 1993). The second part of the thesis consisted in developing a new behavioral paradigm for simultaneously studying acoustic behavior and flight behavior of big brown bats in pursuit of stationary or moving targets. In the third part of the thesis a complete acoustic "artificial bat" was constructed, making use of the SCAT process. The development of the artificial bat allowed us to begin experimentation with real world echoes from various targets, in order to gain a better appreciation for the additional complexities and sources of information encountered by bats in flight. Finally, the continued development of the SCAT model has allowed a deeper understanding of the phenomenon of "time expansion" and of the phenomenon of phase sensitivity in the ultrasonic range. Time expansion, first predicted through the use of the SCAT model, and later found in auditory local evoked potential recordings, opens up a new realm of information processing and representation in the brain which as of yet has not been considered. It seems possible, from the work in the auditory system, that time expansion may provide a novel perceptual substrate, such that information processed at higher speeds than typically accepted in the brain, is not perceived (or perhaps remembered) until it is represented in time expanded form. This phenomenon can be described as a "temporal zoom lens" effect.
Radar Evaluation of Optical Cloud Constraints to Space Launch Operations
NASA Technical Reports Server (NTRS)
Merceret, Francis J.; Short, David A.; Ward, Jennifer G.
2005-01-01
Weather constraints to launching space vehicles are designed to prevent loss of the vehicle or mission due to weather hazards (See, e.g., Ref 1). Constraints include Lightning Launch Commit Criteria (LLCC) designed to avoid natural and triggered lightning. The LLCC currently in use at most American launch sites including the Eastern Range and Kennedy Space Center require the Launch Weather Officer to determine the height of cloud bases and tops, the location of cloud edges, and cloud transparency. The preferred method of making these determinations is visual observation, but when that isn't possible due to darkness or obscured vision, it is permissible to use radar. This note examines the relationship between visual and radar observations in three ways: A theoretical consideration of the relationship between radar reflectivity and optical transparency. An observational study relating radar reflectivity to cloud edge determined from in-situ measurements of cloud particle concentrations that determine the visible cloud edge. An observational study relating standard radar products to anvil cloud transparency. It is shown that these three approaches yield results consistent with each other and with the radar threshold specified in Reference 2 for LLCC evaluation.
High duty cycle to low duty cycle: echolocation behaviour of the hipposiderid bat Coelops frithii.
Ho, Ying-Yi; Fang, Yin-Ping; Chou, Cheng-Han; Cheng, Hsi-Chi; Chang, Hsueh-Wen
2013-01-01
Laryngeally echolocating bats avoid self-deafening (forward masking) by separating pulse and echo either in time using low duty cycle (LDC) echolocation, or in frequency using high duty cycle (HDC) echolocation. HDC echolocators are specialized to detect fluttering targets in cluttered environments. HDC echolocation is found only in the families Rhinolophidae and Hipposideridae in the Old World and in the New World mormoopid, Pteronotus parnellii. Here we report that the hipposiderid Coelops frithii, ostensibly an HDC bat, consistently uses an LDC echolocation strategy whether roosting, flying, or approaching a fluttering target rotating at 50 to 80 Hz. We recorded the echolocation calls of free-flying C. frithii in the field in various situations, including presenting bats with a mechanical fluttering target. The echolocation calls of C. frithii consisted of an initial narrowband component (0.5±0.3 ms, 90.6±2.0 kHz) followed immediately by a frequency modulated (FM) sweep (194 to 113 kHz). This species emitted echolocation calls at duty cycles averaging 7.7±2.8% (n = 87 sequences). Coelops frithii approached fluttering targets more frequently than did LDC bats (C.frithii, approach frequency = 40.4%, n = 80; Myotis spp., approach frequency = 0%, n = 13), and at the same frequency as sympatrically feeding HDC species (Hipposideros armiger, approach rate = 53.3%, n = 15; Rhinolophus monoceros, approach rate = 56.7%, n = 97). We propose that the LDC echolocation strategy used by C. frithii is derived from HDC ancestors, that this species adjusts the harmonic contents of its echolocation calls, and that it may use both the narrowband component and the FM sweep of echolocations calls to detect fluttering targets.
High Duty Cycle to Low Duty Cycle: Echolocation Behaviour of the Hipposiderid Bat Coelops frithii
Ho, Ying-Yi; Fang, Yin-Ping; Chou, Cheng-Han; Cheng, Hsi-Chi; Chang, Hsueh-Wen
2013-01-01
Laryngeally echolocating bats avoid self-deafening (forward masking) by separating pulse and echo either in time using low duty cycle (LDC) echolocation, or in frequency using high duty cycle (HDC) echolocation. HDC echolocators are specialized to detect fluttering targets in cluttered environments. HDC echolocation is found only in the families Rhinolophidae and Hipposideridae in the Old World and in the New World mormoopid, Pteronotus parnellii. Here we report that the hipposiderid Coelops frithii, ostensibly an HDC bat, consistently uses an LDC echolocation strategy whether roosting, flying, or approaching a fluttering target rotating at 50 to 80 Hz. We recorded the echolocation calls of free-flying C. frithii in the field in various situations, including presenting bats with a mechanical fluttering target. The echolocation calls of C. frithii consisted of an initial narrowband component (0.5±0.3 ms, 90.6±2.0 kHz) followed immediately by a frequency modulated (FM) sweep (194 to 113 kHz). This species emitted echolocation calls at duty cycles averaging 7.7±2.8% (n = 87 sequences). Coelops frithii approached fluttering targets more frequently than did LDC bats (C.frithii, approach frequency = 40.4%, n = 80; Myotis spp., approach frequency = 0%, n = 13), and at the same frequency as sympatrically feeding HDC species (Hipposideros armiger, approach rate = 53.3%, n = 15; Rhinolophus monoceros, approach rate = 56.7%, n = 97). We propose that the LDC echolocation strategy used by C. frithii is derived from HDC ancestors, that this species adjusts the harmonic contents of its echolocation calls, and that it may use both the narrowband component and the FM sweep of echolocations calls to detect fluttering targets. PMID:23717396
Optimal Predator Risk Assessment by the Sonar-Jamming Arctiine Moth Bertholdia trigona
Corcoran, Aaron J.; Wagner, Ryan D.; Conner, William E.
2013-01-01
Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival) outweigh the costs (energetic costs, lost foraging time, etc.). We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator – the echolocating bat – whose active biosonar reveals its stage of attack. We used a prey defense – clicking used for sonar jamming by the tiger moth Bertholdia trigona– that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation – the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack. PMID:23671686
Utah Bat Conservation Plan, 2008-2013
2008-06-01
strikes and electrocutions ( APLIC 1994, APLIC 1996), this guidance is intended to assist the wind energy industry in avoiding or minimizing impacts to...Director’s September 14, 2000 memorandum, attachment 3, APLIC 1996, and APLIC 1994). 4) Priority should be given to siting turbines on tame, planted...for wind turbines. References: Avian Power Line Interaction Committee ( APLIC ). 1994. Mitigating bird collisions with power lines: The state of
Measuring flood discharge in unstable stream channels using ground-penetrating radar
Spicer, K.R.; Costa, J.E.; Placzek, G.
1997-01-01
Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The United States Air Force (USAF) is investigating whether to install wind turbines to provide a supplemental source of electricity at Vandenberg Air Force Base (VAFB) near Lompoc, California. As part of that investigation, VAFB sought assistance from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to provide a preliminary characterization of the potential risk to wildlife resources (mainly birds and bats) from wind turbine installations. With wind power development expanding throughout North America and Europe, concerns have surfaced over the number of bird fatalities associated with wind turbines. Guidelines developed for the wind industry by the Nationalmore » Wind Coordinating Committee (NWCC) recommend assessing potential impacts to birds, bats, and other potentially sensitive resources before construction. The primary purpose of an assessment is to identify potential conflicts with sensitive resources, to assist developers with identifying their permitting needs, and to develop strategies to avoid impacts or to mitigate their effects. This report provides a preliminary (Phase I) biological assessment of potential impacts to birds and bats that might result from construction and operation of the proposed wind energy facilities on VAFB.« less
A Standardized Procedure for a Pre-evaluation of the IED Instance
NASA Astrophysics Data System (ADS)
Panepinto, Deborah; Ruffino, Barbara; Zanetti, Mariachiara; Genon, Giuseppe
2016-04-01
This study presents a procedure, called EICS (Enterprise IPPC Compatibility Study) aimed at evaluating, by means of the calculation of three indexes, the compliance of the processes performed in an industrial plant with the guidelines provided by BREFs (BAT References) Documents. In fact, according to European Directive 2010/75/EU (concerning the Integrated Pollution Prevention and Control and repealing European Directive 2008/01/EC), industrial plants must require authorizations to the competent authority stating the conformity of their activity, in order to obtain this conformity they are advised to Best Available Technologies (BAT). The aim of the BATs is to avoid or minimize the impact of an industrial activity on the environment through the prevention of the atmospheric emissions, wastewater discharge and energetic consumption, and the correct waste management thus improving the efficiency of the plant. The procedure shown in the present paper has been tested on several types of industrial plant (cement plants, secondary smelt foundries, paper-mill, and automotive industries as regards their paint lines). In this paper, the application of EICS method to a cement plant is presented: the obtained results highlight a good correlation between the index values and the real situation of the plant.
Development and Testing of the VAHIRR Radar Product
NASA Technical Reports Server (NTRS)
Barrett, Joe III; Miller, Juli; Charnasky, Debbie; Gillen, Robert; Lafosse, Richard; Hoeth, Brian; Hood, Doris; McNamara, Todd
2008-01-01
Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.
3D-Sonification for Obstacle Avoidance in Brownout Conditions
NASA Technical Reports Server (NTRS)
Godfroy-Cooper, M.; Miller, J. D.; Szoboszlay, Z.; Wenzel, E. M.
2017-01-01
Helicopter brownout is a phenomenon that occurs when making landing approaches in dusty environments, whereby sand or dust particles become swept up in the rotor outwash. Brownout is characterized by partial or total obscuration of the terrain, which degrades visual cues necessary for hovering and safe landing. Furthermore, the motion of the dust cloud produced during brownout can lead to the pilot experiencing motion cue anomalies such as vection illusions. In this context, the stability and guidance control functions can be intermittently or continuously degraded, potentially leading to undetected surface hazards and obstacles as well as unnoticed drift. Safe and controlled landing in brownout can be achieved using an integrated presentation of LADAR and RADAR imagery and aircraft state symbology. However, though detected by the LADAR and displayed on the sensor image, small obstacles can be difficult to discern from the background so that changes in obstacle elevation may go unnoticed. Moreover, pilot workload associated with tracking the displayed symbology is often so high that the pilot cannot give sufficient attention to the LADAR/RADAR image. This paper documents a simulation evaluating the use of 3D auditory cueing for obstacle avoidance in brownout as a replacement for or compliment to LADAR/RADAR imagery.
Pedestrian recognition using automotive radar sensors
NASA Astrophysics Data System (ADS)
Bartsch, A.; Fitzek, F.; Rasshofer, R. H.
2012-09-01
The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insights into the object classification process. The impact of raw radar data properties can be directly observed in every layer of the classification system by avoiding machine learning and tracking. This gives information on the limiting factors of raw radar data in terms of classification decision making. To accomplish the very challenging distinction between pedestrians and static objects, five significant and stable object features from the spatial distribution and Doppler information are found. Experimental results with data from a 77 GHz automotive radar sensor show that over 95% of pedestrians can be classified correctly under optimal conditions, which is compareable to modern machine learning systems. The impact of the pedestrian's direction of movement, occlusion, antenna beam elevation angle, linear vehicle movement, and other factors are investigated and discussed. The results show that under real life conditions, radar only based pedestrian recognition is limited due to insufficient Doppler frequency and spatial resolution as well as antenna side lobe effects.
Fly eye radar or micro-radar sensor technology
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo; Asmolova, Olga
2014-05-01
To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.
On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers
González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo
2014-01-01
The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521
On the use of low-cost radar networks for collision warning systems aboard dumpers.
González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo
2014-02-26
The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system.
Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference
Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng
2017-01-01
Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation. PMID:28468257
Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.
Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng
2017-04-29
Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.
Interference-Detection Module in a Digital Radar Receiver
NASA Technical Reports Server (NTRS)
Fischman, Mark; Berkun, Andrew; Chu, Anhua; Freedman, Adam; Jourdan, Michael; McWatters, Dalia; Paller, Mimi
2009-01-01
A digital receiver in a 1.26-GHz spaceborne radar scatterometer now undergoing development includes a module for detecting radio-frequency interference (RFI) that could contaminate scientific data intended to be acquired by the scatterometer. The role of the RFI-detection module is to identify time intervals during which the received signal is likely to be contaminated by RFI and thereby to enable exclusion, from further scientific data processing, of signal data acquired during those intervals. The underlying concepts of detection of RFI and rejection of RFI-contaminated signal data are also potentially applicable in advanced terrestrial radio receivers, including software-defined radio receivers in general, receivers in cellular telephones and other wireless consumer electronic devices, and receivers in automotive collision-avoidance radar systems.
Modeling and Simulation of an UAS Collision Avoidance Systems
NASA Technical Reports Server (NTRS)
Oliveros, Edgardo V.; Murray, A. Jennifer
2010-01-01
This paper describes a Modeling and Simulation of an Unmanned Aircraft Systems (UAS) Collision Avoidance System, capable of representing different types of scenarios for UAS collision avoidance. Commercial and military piloted aircraft currently utilize various systems for collision avoidance such as Traffic Alert and Collision A voidance System (TCAS), Automatic Dependent Surveillance-Broadcast (ADS-B), Radar and ElectroOptical and Infrared Sensors (EO-IR). The integration of information from these systems is done by the pilot in the aircraft to determine the best course of action. In order to operate optimally in the National Airspace System (NAS) UAS have to work in a similar or equivalent manner to a piloted aircraft by applying the principle of "detect-see and avoid" (DSA) to other air traffic. Hence, we have taken these existing sensor technologies into consideration in order to meet the challenge of researching the modeling and simulation of an approximated DSA system. A Schematic Model for a UAS Collision Avoidance System (CAS) has been developed ina closed loop block diagram for that purpose. We have found that the most suitable software to carry out this task is the Satellite Tool Kit (STK) from Analytical Graphics Inc. (AGI). We have used the Aircraft Mission Modeler (AMM) for modeling and simulation of a scenario where a UAS is placed on a possible collision path with an initial intruder and then with a second intruder, but is able to avoid them by executing a right tum maneuver and then climbing. Radars have also been modeled with specific characteristics for the UAS and both intruders. The software provides analytical, graphical user interfaces and data controlling tools which allow the operator to simulate different conditions. Extensive simulations have been carried out which returned excellent results.
Communications and radar-supported transportation operations and planning : final report.
DOT National Transportation Integrated Search
2017-03-01
This project designs a conceptual framework to harness and mature wireless technology to improve : transportation safety, with a focus on frontal collision warning/collision avoidance (CW/CA) systems. The : framework identifies components of the tech...
Svenssona, Glenn P.; Löfstedt, Christer; Skals, Niels
2007-01-01
Nocturnal moths often use sex pheromones to find mates and ultrasonic hearing to evade echolocating bat predators. Male moths, when confronted with both pheromones and sound, thus have to trade off reproduction and predator avoidance depending on the relative strengths of the perceived conflicting stimuli. The ultrasonic hearing of Plodia interpunctella was investigated. A threshold curve for evasive reaction to ultrasound of tethered moths was established, and the frequency of best hearing was found to be between 40 and 70 kHz. Flight tunnel experiments were performed where males orienting in a sex pheromone plume were stimulated with 50 kHz pulses of different intensities. Pheromone-stimulated males showed increased defensive response with increased intensity of the sound stimulus, and the acoustic cue had long-lasting effects on their pheromone-mediated flight, revealing a cost associated with vital evasive behaviours. PMID:20331396
Proto-Typing Research Aimed for Secondary School Students and Teachers
NASA Astrophysics Data System (ADS)
Walker, C. E.; Fersch, A.; Barringer, D.; Pompea, S. M.
2011-12-01
In workshops on GLOBE at Night, teacher professional development has begun on using night sky brightness data and bat telemetry data to do scientific research in the classroom. The study looks at the effects of light pollution on the flight paths of threatened and endangered (T&E) bats between their day roosts and night foraging areas. A jump-start in getting secondary school students involved was the BioBlitz event in Tucson, Arizona in October 2011. During the 24-hour event, night Sky Quality Meter (SQM) data was taken across the Saguaro National Park West, through Tucson and across the Saguaro National Park East. The program had its beginning with a pair of Research Experiences for Undergraduates (REU) students and their advisor. Through the collaboration of the National Science Foundation's REU program, the National Optical Astronomy Observatory's GLOBE at Night program and the U.S. Arizona Game and Fish Department (AzGFD), two REU students along with their advisor used data from the GLOBE at Night project and telemetry tracking data of lesser long-nosed bats to study the effects of light pollution on the flight paths of the bats between their day roosts and night foraging areas around the city of Tucson, AZ. During the summer of 2010, the first REU student used the visual limiting magnitude data from GLOBE at Night and, with the assistance of the AzGFD, ran compositional analyses with respect to the bats' flight paths to determine whether the bats were selecting for or against flight through regions of particular night sky brightness levels. The bats selected for the regions in which the limiting sky magnitudes fell between the ranges of 2.8-3.0 to 3.6-3.8 and 4.4-4.6 to 5.0-5.2, suggesting that the lesser long-nosed bat can tolerate a fair degree of urbanization. Three areas of systematic uncertainty were identified of which 2 could be addressed the following summer. Due to a relatively large uncertainty in each individually measured visual limiting magnitude, Sky Quality Meter (SQM) measurements were subsequently used as a more objective source of data. In addition, the area over which the data was taken was expanded to redress spurious edge effects in making contour maps. During the summer of 2011, the second REU student took more SQM data and, with the SQM database from GLOBE at Night and the assistance of the AzGFD, performed a logistic regression analysis with respect to the bats' flight paths to determine whether the bats preferred or avoided flight through regions of particular night sky brightness levels. During the presentation, we will provide more on the analysis and conclusions of the research, as well as the extension of the program to secondary students and teachers. Should the conclusion be that the bats are preferentially staying in darker areas, a next step for students and teachers would include helping to maintain a dark corridor where the T&E lesser long nosed bats travel between roosts and foraging areas. Should this prototype project succeed, it will be used as a template for other REU and secondary school research projects on endangered animals across the U.S. affected by light pollution. Teacher professional development will play a big role in the program's future success.
Viking site selection and certification
NASA Technical Reports Server (NTRS)
Masursky, H.; Crabill, N. L.
1981-01-01
The landing site selection and certification effort for the Viking mission to Mars is reviewed from the premission phase through the acquisition of data and decisions during mission operations and the immediate postlanding evaluation. The utility and limitations of the orbital television and infrared data and ground based radar observation of candidate and actual landing sites are evaluated. Additional instruments and types of observations which would have been useful include higher resolution cameras, radar altimeters, and terrain hazard avoidance capability in the landing system. Suggestions based on this experience that might be applied to future missions are included.
A New Undergraduate Course on the Physics of Space Situational Awareness
2009-09-01
optically resolved imaging, radiometry and photometry , radar detection and tracking, orbital prediction, debris and collision avoidance, detection of...angles only). In the radio receiver lo satellites an site to send get time de satellites cr obtained fr Images take frequency lab cated at USAF d...How it moves and where it is: Astrodynamics 22 Radar Imaging 2 Orbital Dynamics and Types of Orbits 3 Satellite Types 23 Resolved Visible
Thermocron iButton and iBBat temperature dataloggers emit ultrasound.
Willis, Craig K R; Jameson, Joel W; Faure, Paul A; Boyles, Justin G; Brack, Virgil; Cervone, Tom H
2009-10-01
Thermocron iButton dataloggers are widely used to measure thermal microclimates experienced by wild animals. The iBBat is a smaller version of the datalogger, also commercially available, that is used to measure animal skin or core body temperatures when attached externally or surgically implanted. Field observations of bats roosting under a bridge suggested that bats avoided locations with iButtons. A heterodyne bat detector revealed that the dataloggers emitted ultrasound which was detectable from a distance of up to 30 cm. We therefore recorded and quantified the acoustic properties [carrier frequency (Hz) and root mean square sound pressure level (dB SPL)] of iButton and iBBat dataloggers. All units emitted a 32.9 kHz pure tone that was readily picked up with a time expansion bat detector at a distance of 1 cm, and most were detected at a distance of 15 cm. The maximum amplitude of iButton dataloggers was 46.5 dB SPL at 1.0 cm-a level within the range of auditory sensitivity for most small mammals. Wrapping iButtons in plastic insulation severely attenuated the amplitude of ultrasound. Although there was a statistically significant reduction in rates of warming and cooling with insulation, this effect was small and we suggest that insulation may be a viable solution to eliminate unwanted ultrasonic noise in instances when small delays in thermal response dynamics are not a concern. We recommend behavioural studies to assess if the electronic signals emitted by iButtons are disturbing to small mammals.
NASA Technical Reports Server (NTRS)
Mashiku, Alinda K.; Carpenter, J. Russell
2016-01-01
The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.
NASA Technical Reports Server (NTRS)
Mashiku, Alinda; Carpenter, Russell
2016-01-01
The cadence of proximity operations for the OSIRIS-REx mission may have an extra induced challenge given the potential of the detection of a natural satellite orbiting the asteroid Bennu. Current ground radar observations for object detection orbiting Bennu show no found objects within bounds of specific size and rotation rates. If a natural satellite is detected during approach, a different proximity operation cadence will need to be implemented as well as a collision avoidance strategy for mission success. A collision avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.
All-digital radar architecture
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo A.
2014-10-01
All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.
Coded continuous wave meteor radar
NASA Astrophysics Data System (ADS)
Chau, J. L.; Vierinen, J.; Pfeffer, N.; Clahsen, M.; Stober, G.
2016-12-01
The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products, such as wind fields. This type of a radar would also be useful for over-the-horizon radar, ionosondes, and observations of field-aligned-irregularities.
Effective biosonar echo-to-clutter rejection ratio in a complex dynamic scene.
Knowles, Jeffrey M; Barchi, Jonathan R; Gaudette, Jason E; Simmons, James A
2015-08-01
Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80-100 cm wide and 2-4 m long. Using the two-choice Y-shaped paradigm to compensate for left-right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18-35 dB weaker than overlapping echoes from surrounding chains.
Carrete, Martina; Ibáñez, Carlos; Juste, Javier; Tella, José L.
2018-01-01
The identification of effects of invasive species is challenging owing to their multifaceted impacts on native biota. Negative impacts are most often reflected in individual fitness rather than in population dynamics of native species and are less expected in low-biodiversity habitats, such as urban environments. We report the long-term effects of invasive rose-ringed parakeets on the largest known population of a threatened bat species, the greater noctule, located in an urban park. Both species share preferences for the same tree cavities for breeding. While the number of parakeet nests increased by a factor of 20 in 14 years, the number of trees occupied by noctules declined by 81%. Parakeets occupied most cavities previously used by noctules, and spatial analyses showed that noctules tried to avoid cavities close to parakeets. Parakeets were highly aggressive towards noctules, trying to occupy their cavities, often resulting in noctule death. This led to a dramatic population decline, but also an unusual aggregation of the occupied trees, probably disrupting the complex social behaviour of this bat species. These results indicate a strong impact through site displacement and killing of competitors, and highlight the need for long-term research to identify unexpected impacts that would otherwise be overlooked. PMID:29892437
A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar.
Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun; Huang, Yuan-Hao
2018-04-05
Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.
Predicting minimum habitat characteristics for the Indiana bat in the Champlain Valley
Watrous, K.S.; Donovan, T.M.; Mickey, R.M.; Darling, S.R.; Hicks, A.C.; Von Oettingen, S. L.
2006-01-01
Predicting potential habitat across a landscape for rare species is extremely challenging. However, partitioned Mahalanobis D2 methods avoid pitfalls commonly encountered when surveying rare species by using data collected only at known species locations. Minimum habitat requirements are then determined by examining a principal components analysis to find consistent habitat characteristics across known locations. We used partitioned D 2 methods to examine minimum habitat requirements of Indiana bats (Myotis sodalis) in the Champlain Valley of Vermont and New York, USA, across 7 spatial scales and map potential habitat for the species throughout the same area. We radiotracked 24 female Indiana bats to their roost trees and across their nighttime foraging areas to collect habitat characteristics at 7 spatial scales: 1) roost trees, 2) 0.1-ha circular plots surrounding the roost trees, 3) home ranges, and 4-7) 0.5-km, 1-km, 2-km, and 3-km buffers surrounding the roost tree. Roost trees (n = 50) typically were tall, dead, large-diameter trees with exfoliating bark, located at low elevations and close to water. Trees surrounding roosts typically were smaller in diameter and shorter in height, but they had greater soundness than the roost trees. We documented 14 home ranges in areas of diverse, patchy land cover types that were close to water with east-facing aspects. Across all landscape extents, area of forest within roost-tree buffers and the aspect across those buffers were the most consistent features. Predictive maps indicated that suitable habitat ranged from 4.7-8.1% of the area examined within the Champlain Valley. These habitat models further understanding of Indiana bat summer habitat by indicating minimum habitat characteristics at multiple scales and can be used to aid management decisions by highlighting potential habitat. Nonetheless, information on juvenile production and recruitment is lacking; therefore, assessments of Indiana bat habitat quality in the region are still incomplete.
Habitat use of migratory bats killed during autumn at wind turbines.
Voigt, Christian C; Lindecke, Oliver; Schönborn, Sophia; Kramer-Schadt, Stephanie; Lehmann, David
2016-04-01
The killing of large numbers of migratory bats at wind turbines is a pressing conservation problem. Even though avoidance and mitigation measures could benefit from a better knowledge of the species' migratory habits, we lack basic information about what habitats and corridors bats use during migration. We studied the isotopic niche dimensions of three bat species that are frequently killed at wind turbines in Germany: non-migratory Pipistrellus pipistrellus, mid-distance migratory Nyctalus noctula, and long- distance migratory Pipistrellus nathusii. We measured stable carbon and nitrogen isotope ratios (δ¹³C, δ¹⁵N) in five tissues that differed in isotopic retention time (fur, wing membrane tissue, muscle, liver, blood) to shed light on the species-specific habitat use during the autumn migration period using standard ellipse areas (SEAc). Further, we used stable isotope ratios of non-exchangeable hydrogen (δ²H(K)) in fur keratin to assess the breeding origin of bats. We inferred from isotopic composition (δ¹³C, δ¹⁵N) of fur keratin that isotopic niche dimensions of P. nathusii was distinct from that of N. noctula and P. pipistrellus, probably because P. nathusii was using more aquatic habitats than the other two species. Isoscape origin models supported that traveled distances before dying at wind turbines was largest for P. nathusii, intermediate for N. noctula, and shortest for P. pipistrellus. Isotopic niche dimensions calculated for each sample type separately reflected the species' migratory behavior. Pipistrellus pipistrellus and N. noctula showed similar isotopic niche breadth across all tissue types, whereas SEAc values of P. nathusii increased in tissues with slow turnaround time. Isotopic data suggested that P. nathusii consistently used aquatic habitats throughout the autumn period, whereas N. noctula showed a stronger association with terrestrial habitats during autumn compared to the pre-migration period.
Frankfurt, Germany: 1030/1090 MegaHertz Signal Analysis
DOT National Transportation Integrated Search
1996-07-01
The Data Link Test Analysis System (DATAS) was used in the Frankfort, Germany : to collect data in the frequency band used by Air Traffic Control Radar : Beacon (ATCRBS), Mode Select (Mode S), and Traffic Alert and Collision : Avoidance (TCAS). Data ...
A W-Band MMIC Radar System for Remote Detection of Vital Signs
NASA Astrophysics Data System (ADS)
Diebold, Sebastian; Ayhan, Serdal; Scherr, Steffen; Massler, Hermann; Tessmann, Axel; Leuther, Arnulf; Ambacher, Oliver; Zwick, Thomas; Kallfass, Ingmar
2012-12-01
In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75-110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.
High-resolution imaging using a wideband MIMO radar system with two distributed arrays.
Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi
2010-05-01
Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.
NASA Astrophysics Data System (ADS)
Borup, Morten; Grum, Morten; Linde, Jens Jørgen; Mikkelsen, Peter Steen
2016-08-01
Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5-30 min of rain data recorded by multiple rain gauges and propagating the rainfall estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10-20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2-3 km away.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCEmore » allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.« less
Integrated development of light armored vehicles based on wargaming simulators
NASA Astrophysics Data System (ADS)
Palmarini, Marc; Rapanotti, John
2004-08-01
Vehicles are evolving into vehicle networks through improved sensors, computers and communications. Unless carefully planned, these complex systems can result in excessive crew workload and difficulty in optimizing the use of the vehicle. To overcome these problems, a war-gaming simulator is being developed as a common platform to integrate contributions from three different groups. The simulator, OneSAF, is used to integrate simplified models of technology and natural phenomena from scientists and engineers with tactics and doctrine from the military and analyzed in detail by operations analysts. This approach ensures the modelling of processes known to be important regardless of the level of information available about the system. Vehicle survivability can be improved as well with better sensors, computers and countermeasures to detect and avoid or destroy threats. To improve threat detection and reliability, Defensive Aids Suite (DAS) designs are based on three complementary sensor technologies including: acoustics, visible and infrared optics and radar. Both active armour and softkill countermeasures are considered. In a typical scenario, a search radar, providing continuous hemispherical coverage, detects and classifies the threat and cues a tracking radar. Data from the tracking radar is processed and an explosive grenade is launched to destroy or deflect the threat. The angle of attack and velocity from the search radar can be used by the soft-kill system to carry out an infrared search and track or an illuminated range-gated scan for the threat platform. Upon detection, obscuration, countermanoeuvres and counterfire can be used against the threat. The sensor suite is completed by acoustic detection of muzzle blast and shock waves. Automation and networking at the platoon level contribute to improved vehicle survivability. Sensor data fusion is essential in avoiding catastrophic failure of the DAS. The modular DAS components can be used with Light Armoured Vehicle (LAV) variants including: armoured personnel carriers and direct-fire support vehicles. OneSAF will be used to assess the performance of these DAS-equipped vehicles on a virtual battlefield.
High temperature, high intensity solar array. [for Venus Radar Mapper mission
NASA Technical Reports Server (NTRS)
Smith, B. S.; Brooks, G. R.; Pinkerton, R.
1985-01-01
The solar array for the Venus Radar Mapper mission will operate in the high temperature, high intensity conditions of a low Venus orbit environment. To fulfill the performance requirements in this environment at minimum cost and mass while maximizing power density and packing factor on the panel surface, several features were introduced into the design. These features included the use of optical surface reflectors (OSR's) to reduce the operating temperature; new adhesives for conductive bonding of OSR's to avoid electrostatic discharges; custom-designed large area cells and novel shunt diode circuit and panel power harness configurations.
Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.
Yao, Tingfeng; Zhu, Dan; Ben, De; Pan, Shilong
2015-04-15
A distributed multiple-input multiple-output chaotic radar based on wavelength-division multiplexing technology (WDM) is proposed and demonstrated. The wideband quasi-orthogonal chaotic signals generated by different optoelectronic oscillators (OEOs) are emitted by separated antennas to gain spatial diversity against the fluctuation of a target's radar cross section and enhance the detection capability. The received signals collected by the receive antennas and the reference signals from the OEOs are delivered to the central station for joint processing by exploiting WDM technology. The centralized signal processing avoids precise time synchronization of the distributed system and greatly simplifies the remote units, which improves the localization accuracy of the entire system. A proof-of-concept experiment for two-dimensional localization of a metal target is demonstrated. The maximum position error is less than 6.5 cm.
An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST
NASA Astrophysics Data System (ADS)
Hang, Xu; Jun, Zhao
2018-05-01
Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.
Saproo, Sameer; Shih, Victor; Jangraw, David C; Sajda, Paul
2016-12-01
We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human-machine coupling in high performance aircraft that can potentially lead to a crash-these failures are termed pilot induced oscillations (PIOs). We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a fronto-central topography has the most robust contribution in terms of real-world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC)-anterior cingulate cortex (ACC) circuit. Our findings may generalize to similar control failures in other cases of tight man-machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC-ACC circuit may positively impact operator performance in such situations.
NASA Astrophysics Data System (ADS)
Saproo, Sameer; Shih, Victor; Jangraw, David C.; Sajda, Paul
2016-12-01
Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human-machine coupling in high performance aircraft that can potentially lead to a crash—these failures are termed pilot induced oscillations (PIOs). Approach. We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a fronto-central topography has the most robust contribution in terms of real-world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC)—anterior cingulate cortex (ACC) circuit. Significance. Our findings may generalize to similar control failures in other cases of tight man-machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC-ACC circuit may positively impact operator performance in such situations.
A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar
Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun
2018-01-01
Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256×13 real-time radar image display with a throughput of 28.2 frames per second. PMID:29621170
Intercomparison of attenuation correction algorithms for single-polarized X-band radars
NASA Astrophysics Data System (ADS)
Lengfeld, K.; Berenguer, M.; Sempere Torres, D.
2018-03-01
Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing micro rain radars (MRR) reveals good performance of two of the methods based in the statistical k-Z-relation: FV and α. The C algorithm seems to be more sensitive to differences in calibration of the two systems and requires additional information from C- or S-band radars. Furthermore, a study of five months of radar observations examines the long-term performance of each algorithm. From this study conclusions can be drawn that using additional information from less attenuated radar systems lead to best results. The two algorithms that use this additional information eliminate the bias caused by attenuation and preserve the agreement with MRR observations.
47 CFR 87.483 - Audio visual warning systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Audio visual warning systems. 87.483 Section 87... AVIATION SERVICES Stations in the Radiodetermination Service § 87.483 Audio visual warning systems. An audio visual warning system (AVWS) is a radar-based obstacle avoidance system. AVWS activates...
Effective biosonar echo-to-clutter rejection ratio in a complex dynamic scene
Knowles, Jeffrey M.; Barchi, Jonathan R.; Gaudette, Jason E.; Simmons, James A.
2015-01-01
Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80–100 cm wide and 2–4 m long. Using the two-choice Y-shaped paradigm to compensate for left–right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18–35 dB weaker than overlapping echoes from surrounding chains. PMID:26328724
Genetic structure, spatial organization, and dispersal in two populations of bat-eared foxes
Kamler, Jan F; Gray, Melissa M; Oh, Annie; Macdonald, David W
2013-01-01
We incorporated radio-telemetry data with genetic analysis of bat-eared foxes (Otocyon megalotis) from individuals in 32 different groups to examine relatedness and spatial organization in two populations in South Africa that differed in density, home-range sizes, and group sizes. Kin clustering occurred only for female dyads in the high-density population. Relatedness was negatively correlated with distance only for female dyads in the high-density population, and for male and mixed-sex dyads in the low-density population. Home-range overlap of neighboring female dyads was significantly greater in the high compared to low-density population, whereas overlap within other dyads was similar between populations. Amount of home-range overlap between neighbors was positively correlated with genetic relatedness for all dyad-site combinations, except for female and male dyads in the low-density population. Foxes from all age and sex classes dispersed, although females (mostly adults) dispersed farther than males. Yearlings dispersed later in the high-density population, and overall exhibited a male-biased dispersal pattern. Our results indicated that genetic structure within populations of bat-eared foxes was sex-biased, and was interrelated to density and group sizes, as well as sex-biases in philopatry and dispersal distances. We conclude that a combination of male-biased dispersal rates, adult dispersals, and sex-biased dispersal distances likely helped to facilitate inbreeding avoidance in this evolutionarily unique species of Canidae. PMID:24101981
Development Radar Absorber Material using Rice Husk Carbon for Anechoic Chamber Application
NASA Astrophysics Data System (ADS)
Zulpadrianto, Z.; Yohandri, Y.; Putra, A.
2018-04-01
The developments of radar technology in Indonesia are very strategic due to the vast territory and had a high-level cloud cover more than 55% of the time. The objective of this research is to develop radar technology facility in Indonesia using local natural resources. The target of this research is to present a low cost and satisfy quality of anechoic chambers. Anechoic chamber is a space designed to avoid reflection of EM waves from outside or from within the room. The reflection coefficient of the EM wave is influenced by the medium imposed by the EM wave. In laboratory experimental research has been done the development of material radar absorber using rice husk. The rice husk is activated using HCl and KOH by stirring using a magnetic stirrer for 1 Hours. The results of rice husk activation were measured using a Vector Network Analyzer by varying the thickness of the ingredients and the concentration of the activation agent. The VNA measurement is obtained reflection coefficient of -12dB and. -6.22dB for 1M HCL and KOH at thickness 10mm, respectively.
Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar
NASA Astrophysics Data System (ADS)
Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan
2016-09-01
A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.
ERIC Educational Resources Information Center
Williams, Kim
2004-01-01
There are many reasons people are afraid of bats but most are myths. Many people are also afraid of bats because they believe all bats are vampire bats, or bats that feed on blood. There are a few species of bats called "vampire" bats;however, these bats are found in Central and South America--there are no vampire bats in the United…
Advanced Borehole Radar for Hydrogeology
NASA Astrophysics Data System (ADS)
Sato, M.
2014-12-01
Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental conditions for a long period. We demonstrated this idea using cross- hole borehole radar measurement. We think this method is useful for detecting any changes in hydrogeological situations, which will be useful for subsurface storage such as LNG and nuclear waste.
Clutter modeling of the Denver Airport and surrounding areas
NASA Technical Reports Server (NTRS)
Harrah, Steven D.; Delmore, Victor E.; Onstott, Robert G.
1991-01-01
To accurately simulate and evaluate an airborne Doppler radar as a wind shear detection and avoidance sensor, the ground clutter surrounding a typical airport must be quantified. To do this, an imaging airborne Synthetic Aperture Radar (SAR) was employed to investigate and map the normalized radar cross sections (NRCS) of the ground terrain surrounding the Denver Stapleton Airport during November of 1988. Images of the Stapleton ground clutter scene were obtained at a variety of aspect and elevation angles (extending to near-grazing) at both HH and VV polarizations. Presented here, in viewgraph form with commentary, are the method of data collection, the specific observations obtained of the Denver area, a summary of the quantitative analysis performed on the SAR images to date, and the statistical modeling of several of the more interesting stationary targets in the SAR database. Additionally, the accompanying moving target database, containing NRCS and velocity information, is described.
NASA Astrophysics Data System (ADS)
Valencia, J. M.; Sepúlveda, J.; Hoyos, C.; Herrera, L.
2017-12-01
Characterization and identification of fire and hailstorm events using weather radar data in a tropical complex topography region is an important task in risk management and agriculture. Polarimetric variables from a C-Band Dual polarization weather radar have potential uses in particle classification, due to the relationship their sensitivity to shape, spatial orientation, size and fall behavior of particles. In this sense, three forest fires and two chemical fires were identified for the Áburra Valley regions. Measurements were compared between each fire event type and with typical data radar retrievals for liquid precipitation events. Results of this analysis show different probability density functions for each type of event according to the particles present in them. This is very important and useful result for early warning systems to avoid precipitation false alarms during fire events within the study region, as well as for the early detection of fires using radar retrievals in remote cases. The comparative methodology is extended to hailstorm cases. Complementary sensors like laser precipitation sensors (LPM) disdrometers and meteorological stations were used to select dates of solid precipitation occurrence. Then, in this dates weather radar data variables were taken in pixels surrounding the stations and solid precipitation polar values were statistically compared with liquid precipitation values. Spectrum precipitation measured by LPM disdrometer helps to define typical features like particles number, fall velocities and diameters for both precipitation types. In addition, to achieve a complete hailstorm characterization, other meteorological variables were analyzed: wind field from meteorological stations and radar wind profiler, profiling data from Micro Rain Radar (MRR), and thermodynamic data from a microwave radiometer.
Batting cage performance of wood and nonwood youth baseball bats.
Crisco, Joseph J; Rainbow, Michael J; Schwartz, Joel B; Wilcox, Bethany J
2014-04-01
The purpose of this study was to examine the batting cage performance of wood and nonwood baseball bats used at the youth level. Three wood and ten nonwood bats were swung by 22 male players (13 to 18 years old) in a batting cage equipped with a 3-dimensional motion capture (300 Hz) system. Batted ball speeds were compared using a one-way ANOVA and bat swing speeds were analyzed as a function of bat moment of inertia by linear regression. Batted ball speeds were significantly faster for three nonwood bat models (P<.001), significantly slower for one nonwood model, and not different for six nonwood bats when compared with wood bats. Bat impact speed significantly (P<.05) decreased with increasing bat moment of inertia for the 13-, 14-, and 15-year-old groups, but not for the other age groups. Ball-bat coefficients of restitution (BBCOR) for all nonwood were greater than for wood, but this factor alone did not correlate with bat performance. Our findings indicate that increases in BBCOR and swing speed were not associated with faster batted ball speeds for the bats studied whose moment of inertia was substantially less than that of a wood bat of similar length.
Linking animals aloft with the terrestrial landscape
Buler, Jeffrey J.; Barrow, Wylie; Boone, Matthew; Dawson, Deanna K.; Diehl, Robert H.; Moore, Frank R.; Randall, Lori A.; Schreckengost, Timothy; Smolinsky, Jaclyn A.
2018-01-01
Despite using the aerosphere for many facets of their life, most flying animals (i.e., birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding, and reproduction. Comprehensive broad-scale observations by weather surveillance radars of animals as they leave terrestrial habitats for migration or feeding flights can be used to map their terrestrial distributions either as point locations (e.g., communal roosts) or as continuous surface layers (e.g., animal densities in habitats across a landscape). We discuss some of the technical challenges to reducing measurement biases related to how radars sample the aerosphere and the flight behavior of animals. We highlight a recently developed methodological approach that precisely and quantitatively links the horizontal spatial structure of birds aloft to their terrestrial distributions and provides novel insights into avian ecology and conservation across broad landscapes. Specifically, we present case studies that (1) elucidate how migrating birds contend with crossing ecological barriers and extreme weather events, (2) identify important stopover areas and habitat use patterns of birds along their migration routes, and (3) assess waterfowl response to wetland habitat management and restoration. These studies aid our understanding of how anthropogenic modification of the terrestrial landscape (e.g., urbanization, habitat management), natural geographic features, and weather (e.g., hurricanes) can affect the terrestrial distributions of flying animals.
D-cycloserine enhances generalization of fear extinction in children.
Byrne, Simon P; Rapee, Ronald M; Richardson, Rick; Malhi, Gin S; Jones, Michael; Hudson, Jennifer L
2015-06-01
For exposure therapy to be successful, it is essential that fear extinction learning extends beyond the treatment setting. D-cycloserine (DCS) may facilitate treatment gains by increasing generalization of extinction learning, however, its effects have not been tested in children. We examined whether DCS enhanced generalization of fear extinction learning across different stimuli and contexts among children with specific phobias. The study was a double-blind placebo-controlled randomized controlled trial among dog or spider phobic children aged 6-14. Participants ingested either 50 mg of DCS (n = 18) or placebo (n = 17) before receiving a single prolonged exposure session to their feared stimulus. Return of fear was examined 1 week later to a different stimulus (a different dog or spider), presented in both the original treatment context and an alternate context. Avoidance and fear were measured with Behavior Approach Tests (BATs), where the child was asked to increase proximity to the stimulus while reporting their fear level. There were no differences in BAT performance between groups during the exposure session or when a new stimulus was later presented in the treatment context. However, when the new stimulus was presented in a different context, relative to placebo, the DCS group showed less avoidance (P = .03) and less increase in fear (P = .04) with moderate effect sizes. DCS enabled children to better retain their fear extinction learning. This new learning generalized to different stimuli and contexts. © 2015 Wiley Periodicals, Inc.
The monocular visual imaging technology model applied in the airport surface surveillance
NASA Astrophysics Data System (ADS)
Qin, Zhe; Wang, Jian; Huang, Chao
2013-08-01
At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.
Multifunctional millimeter-wave radar system for helicopter safety
NASA Astrophysics Data System (ADS)
Goshi, Darren S.; Case, Timothy J.; McKitterick, John B.; Bui, Long Q.
2012-06-01
A multi-featured sensor solution has been developed that enhances the operational safety and functionality of small airborne platforms, representing an invaluable stride toward enabling higher-risk, tactical missions. This paper demonstrates results from a recently developed multi-functional sensor system that integrates a high performance millimeter-wave radar front end, an evidence grid-based integration processing scheme, and the incorporation into a 3D Synthetic Vision System (SVS) display. The front end architecture consists of a w-band real-beam scanning radar that generates a high resolution real-time radar map and operates with an adaptable antenna architecture currently configured with an interferometric capability for target height estimation. The raw sensor data is further processed within an evidence grid-based integration functionality that results in high-resolution maps in the region surrounding the platform. Lastly, the accumulated radar results are displayed in a fully rendered 3D SVS environment integrated with local database information to provide the best representation of the surrounding environment. The integrated system concept will be discussed and initial results from an experimental flight test of this developmental system will be presented. Specifically, the forward-looking operation of the system demonstrates the system's ability to produce high precision terrain mapping with obstacle detection and avoidance capability, showcasing the system's versatility in a true operational environment.
Suwannarong, Kanokwan; Schuler, Sidney
2016-01-01
Human consumption of bats poses an increasing public health threat globally. Communities in which bat guano is mined from caves have extensive exposure to bat excreta, often harvest bats for consumption, and are at risk for bat-borne diseases. This rapid ethnographic study was conducted in four provinces of Thailand (Ratchaburi, Sakaeo, Nakorn Sawan, and Phitsanulok), where bat guano was mined and sold during the period April-August 2014. The aim of this study was to understand behaviors and risk perceptions associated with bat conservation, exposure to bats and their excreta, and bat consumption. Sixty-seven respondents playing various roles in bat guano mining, packaging, sale, and use as fertilizer participated in the study. Data were collected through interviews and/or focus group discussions. In spite of a bat conservation program dating back to the 1980s, the benefits of conserving bats and the risks associated with bat consumption were not clear and infrequently articulated by study respondents. Since bat consumption continues, albeit covertly, the risk of bat-borne diseases remains high. There is an opportunity to reduce the risk of bat-borne diseases in guano-mining communities by strengthening bat conservation efforts and raising awareness of the health risks of bat consumption. Further research is suggested to test behavior change strategies for reducing bat consumption.
Suwannarong, Kanokwan; Schuler, Sidney
2016-01-01
Background Human consumption of bats poses an increasing public health threat globally. Communities in which bat guano is mined from caves have extensive exposure to bat excreta, often harvest bats for consumption, and are at risk for bat-borne diseases. Methods This rapid ethnographic study was conducted in four provinces of Thailand (Ratchaburi, Sakaeo, Nakorn Sawan, and Phitsanulok), where bat guano was mined and sold during the period April–August 2014. The aim of this study was to understand behaviors and risk perceptions associated with bat conservation, exposure to bats and their excreta, and bat consumption. Sixty-seven respondents playing various roles in bat guano mining, packaging, sale, and use as fertilizer participated in the study. Data were collected through interviews and/or focus group discussions. Results In spite of a bat conservation program dating back to the 1980s, the benefits of conserving bats and the risks associated with bat consumption were not clear and infrequently articulated by study respondents. Discussion Since bat consumption continues, albeit covertly, the risk of bat-borne diseases remains high. There is an opportunity to reduce the risk of bat-borne diseases in guano-mining communities by strengthening bat conservation efforts and raising awareness of the health risks of bat consumption. Further research is suggested to test behavior change strategies for reducing bat consumption. PMID:26806167
2003-04-03
Scaled Composites' Proteus aircraft with an F/A-18 Hornet and a Beechcraft KingAir from NASA's Dryden Flight Research Center during a low-level flyby at Mojave Airport in Southern California. The unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.
2003-04-03
Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center at Mojave Airport in Southern California. The unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests. NASA Dryden's F/A-18 Hornet was one of many different aircraft used in the tests.
Stasiak, Iga M; Smith, Dale A; Ganz, Tomas; Crawshaw, Graham J; Hammermueller, Jutta D; Bienzle, Dorothee; Lillie, Brandon N
2018-07-01
Hepcidin is the key regulator of iron homeostasis in the body. Iron storage disease (hemochromatosis) is a frequent cause of liver disease and mortality in captive Egyptian fruit bats (Rousettus aegyptiacus), but reasons underlying this condition are unknown. Hereditary hemochromatosis in humans is due to deficiency of hepcidin or resistance to the action of hepcidin. Here, we investigated the role of hepcidin in iron metabolism in one species of pteropodid bat that is prone to iron storage disease [Egyptian fruit bat (with and without hemochromatosis)], one species of pteropodid bat where iron storage disease is rare [straw-colored fruit bat (Eidolon helvum)], and one species of bat with a natural diet very high in iron, in which iron storage disease is not reported [common vampire bat (Desmodus rotundus)]. Iron challenge via intramuscular injection of iron dextran resulted in significantly increased liver iron content and histologic iron scores in all three species, and increased plasma iron in Egyptian fruit bats and straw-colored fruit bats. Hepcidin mRNA expression increased in response to iron administration in healthy Egyptian fruit bats and common vampire bats, but not in straw-colored fruit bats or Egyptian fruit bats with hemochromatosis. Hepcidin gene expression significantly correlated with liver iron content in Egyptian fruit bats and common vampire bats, and with transferrin saturation and plasma ferritin concentration in Egyptian fruit bats. Induction of hepcidin gene expression in response to iron challenge is absent in straw-colored fruit bats and in Egyptian fruit bats with hemochromatosis and, relative to common vampire bats and healthy humans, is low in Egyptain fruit bats without hemochromatosis. Limited hepcidin response to iron challenge may contribute to the increased susceptibility of Egyptian fruit bats to iron storage disease.
Lau, Susanna K. P.; Li, Kenneth S. M.; Tsang, Alan K. L.; Shek, Chung-Tong; Wang, Ming; Choi, Garnet K. Y.; Guo, Rongtong; Wong, Beatrice H. L.; Poon, Rosana W. S.; Lam, Carol S. F.; Wang, Sylvia Y. H.; Fan, Rachel Y. Y.; Chan, Kwok-Hung; Zheng, Bo-Jian
2012-01-01
Although coronaviruses are known to infect various animals by adapting to new hosts, interspecies transmission events are still poorly understood. During a surveillance study from 2005 to 2010, a novel alphacoronavirus, BatCoV HKU10, was detected in two very different bat species, Ro-BatCoV HKU10 in Leschenault's rousettes (Rousettus leschenaulti) (fruit bats in the suborder Megachiroptera) in Guangdong and Hi-BatCoV HKU10 in Pomona leaf-nosed bats (Hipposideros pomona) (insectivorous bats in the suborder Microchiroptera) in Hong Kong. Although infected bats appeared to be healthy, Pomona leaf-nosed bats carrying Hi-BatCoV HKU10 had lower body weights than uninfected bats. To investigate possible interspecies transmission between the two bat species, the complete genomes of two Ro-BatCoV HKU10 and six Hi-BatCoV HKU10 strains were sequenced. Genome and phylogenetic analyses showed that Ro-BatCoV HKU10 and Hi-BatCoV HKU10 represented a novel alphacoronavirus species, sharing highly similar genomes except in the genes encoding spike proteins, which had only 60.5% amino acid identities. Evolution of the spike protein was also rapid in Hi-BatCoV HKU10 strains from 2005 to 2006 but stabilized thereafter. Molecular-clock analysis dated the most recent common ancestor of all BatCoV HKU10 strains to 1959 (highest posterior density regions at 95% [HPDs], 1886 to 2002) and that of Hi-BatCoV HKU10 to 1986 (HPDs, 1956 to 2004). The data suggested recent interspecies transmission from Leschenault's rousettes to Pomona leaf-nosed bats in southern China. Notably, the rapid adaptive genetic change in BatCoV HKU10 spike protein by ∼40% amino acid divergence after recent interspecies transmission was even greater than the ∼20% amino acid divergence between spike proteins of severe acute respiratory syndrome-related Rhinolophus bat coronavirus (SARSr-CoV) in bats and civets. This study provided the first evidence for interspecies transmission of coronavirus between bats of different suborders. PMID:22933277
ERIC Educational Resources Information Center
Naturescope, 1986
1986-01-01
Presents information about bats, including definitions and descriptions of the characteristics of bats. Provides teaching activities such as "Bat and Math,""A Bat Like That,""Bat Party,""Ears in the Dark," and "The Big Bat Mystery." Contains reproducible handouts and quizzes. (TW)
Bartonellae are Prevalent and Diverse in Costa Rican Bats and Bat Flies.
Judson, S D; Frank, H K; Hadly, E A
2015-12-01
Species in the bacterial genus, Bartonella, can cause disease in both humans and animals. Previous reports of Bartonella in bats and ectoparasitic bat flies suggest that bats could serve as mammalian hosts and bat flies as arthropod vectors. We compared the prevalence and genetic similarity of bartonellae in individual Costa Rican bats and their bat flies using molecular and sequencing methods targeting the citrate synthase gene (gltA). Bartonellae were more prevalent in bat flies than in bats, and genetic variants were sometimes, but not always, shared between bats and their bat flies. The detected bartonellae genetic variants were diverse, and some were similar to species known to cause disease in humans and other mammals. The high prevalence and sharing of bartonellae in bat flies and bats support a role for bat flies as a potential vector for Bartonella, while the genetic diversity and similarity to known species suggest that bartonellae could spill over into humans and animals sharing the landscape. © 2015 Blackwell Verlag GmbH.
Analysis of polarization radar returns from ice clouds
NASA Astrophysics Data System (ADS)
Battaglia, A.; Sturniolo, O.; Prodi, F.
Using a modified T-matrix code, some polarimetric single-scattering radar parameters ( Zh,v, LDR h,v, ρhv, ZDR and δhv) from populations of ice crystals in ice phase at 94 GHz, modeled with axisymmetric prolate and oblate spheroidal shapes for a Γ-size distribution with different α parameter ( α=0, 1, 2) and characteristic dimension Lm varying from 0.1 to 1.8 mm, have been computed. Some of the results for different radar elevation angles and different orientation distribution for fixed water content are shown. Deeper analysis has been carried out for pure extensive radar polarimetric variables; all of them are strongly dependent on the shapes (characterised by the aspect ratio), the canting angle and the radar elevation angle. Quantities like ZDR or δhv at side incidence or LDR h and ρhv at vertical incidence can be used to investigate the preferred orientation of the particles and, in some cases, their habits. We analyze scatterplots using couples of pure extensive variables. The scatterplots with the most evident clustering properties for the different habits seem to be those in the ( ZDR [ χ=0°], δhv [ χ=0°]), in the ( ZDR [ χ=0°], LDR h [ χ=90°]) and in the ( ZDR [ χ=0°], ρhv [ χ=90°]) plane. Among these, the most appealing one seems to be that involving ZDR and ρhv variables. To avoid the problem of having simultaneous measurements with a side and a vertical-looking radar, we believe that measurements of these two extensive variables using a radar with an elevation angle around 45° can be an effective instrument to identify different habits. In particular, this general idea can be useful for future space-borne polarimetric radars involved in the studies of high ice clouds. It is also believed that these results can be used in next challenge of developing probabilistic and expert methods for identifying hydrometeor types by W-band radars.
Laughlin, Walter A; Fleisig, Glenn S; Aune, Kyle T; Diffendaffer, Alek Z
2016-01-01
Swing trajectory and ground reaction forces (GRF) of 30 collegiate baseball batters hitting a pitched ball were compared between a standard bat, a bat with extra weight about its barrel, and a bat with extra weight in its handle. It was hypothesised that when compared to a standard bat, only a handle-weighted bat would produce equivalent bat kinematics. It was also hypothesised that hitters would not produce equivalent GRFs for each weighted bat, but would maintain equivalent timing when compared to a standard bat. Data were collected utilising a 500 Hz motion capture system and 1,000 Hz force plate system. Data between bats were considered equivalent when the 95% confidence interval of the difference was contained entirely within ±5% of the standard bat mean value. The handle-weighted bat had equivalent kinematics, whereas the barrel-weighted bat did not. Both weighted bats had equivalent peak GRF variables. Neither weighted bat maintained equivalence in the timing of bat kinematics and some peak GRFs. The ability to maintain swing kinematics with a handle-weighted bat may have implications for swing training and warm-up. However, altered timings of kinematics and kinetics require further research to understand the implications on returning to a conventionally weighted bat.
Detection of bat hepatitis E virus RNA in microbats in Japan.
Kobayashi, Tomoya; Murakami, Shin; Yamamoto, Terumasa; Mineshita, Ko; Sakuyama, Muneki; Sasaki, Reiko; Maeda, Ken; Horimoto, Taisuke
2018-05-29
Several recent studies have reported that various bat species harbor bat hepatitis E viruses (BatHEV) belonging to the family Hepeviridae, which also contains human hepatitis E virus (HEV). The distribution and ecology of BatHEV are not well known. Here, we collected and screened 81 bat fecal samples from nine bat species in Japan to detect BatHEV RNA by RT-PCR using HEV-specific primers, and detected three positive samples. Sequence and phylogenetic analyses indicated that these three viruses were BatHEVs belonging to genus Orthohepevirus D like other BatHEV strains reported earlier in various countries. These data support the first detection of BatHEVs in Japanese microbats, indicating their wide geographical distribution among multiple bat species.
CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance
NASA Technical Reports Server (NTRS)
Targ, Russell
1991-01-01
The coherent lidar airborne shear sensor (CLASS) is an airborne CO2 lidar system being designed and developed by Lockheed Missiles and Space Company, Inc. (LMSC) under contract to NASA Langley Research Center. The goal of this program is to develop a system with a 2- to 4-kilometer range that will provide a warning time of 20 to 40 seconds, so that the pilot can avoid the hazards of low-altitude wind shear under all weather conditions. It is a predictive system which will warn the pilot about a hazard that the aircraft will experience at some later time. The ability of the system to provide predictive warnings of clear air turbulence will also be evaluated. A one-year flight evaluation program will measure the line-of-sight wind velocity from a wide variety of wind fields obtained by an airborne radar, an accelerometer-based reactive wind-sensing system, and a ground-based Doppler radar. The success of the airborne lidar system will be determined by its correlation with the windfield as indicated by the onboard reactive system, which indicates the winds actually experienced by the NASA Boeing 737 aircraft.
Meteyer, Carol U.; Moede Rogall, Gail
2018-03-05
The U.S. Geological Survey in collaboration with the U.S. Fish and Wildlife Service and others have published reports with information about geographic distribution, specific pathogens, disease ecology, and strategies to avoid exposure and infection for a selection of zoonotic diseases. Zoonotic diseases are diseases that can be passed from animals to humans, such as rabies and plague. This summary factsheet highlights the reports on plague, bat rabies, and raccoon roundworm with links to all seven zoonotic diseases covered in this series.
Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus).
Bai, Ying; Urushadze, Lela; Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael
2017-01-01
Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6-50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential.
Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA.
Johnson, Joshua B; Gates, J Edward; Zegre, Nicolas P
2011-02-01
Research on effects of wind turbines on bats has increased dramatically in recent years because of significant numbers of bats killed by rotating wind turbine blades. Whereas most research has focused on the Midwest and inland portions of eastern North America, bat activity and migration on the Atlantic Coast has largely been unexamined. We used three long-term acoustic monitoring stations to determine seasonal bat activity patterns on the Assateague Island National Seashore, a barrier island off the coast of Maryland, from 2005 to 2006. We recorded five species, including eastern red bats (Lasiurus borealis), big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), tri-colored bats (Perimyotis subflavus), and silver-haired bats (Lasionycteris noctivagans). Seasonal bat activity (number of bat passes recorded) followed a cosine function and gradually increased beginning in April, peaked in August, and declined gradually until cessation in December. Based on autoregressive models, inter-night bat activity was autocorrelated for lags of seven nights or fewer but varied among acoustic monitoring stations. Higher nightly temperatures and lower wind speeds positively affected bat activity. When autoregressive model predictions were fitted to the observed nightly bat pass totals, model residuals>2 standard deviations from the mean existed only during migration periods, indicating that periodic increases in bat activity could not be accounted for by seasonal trends and weather variables alone. Rather, the additional bat passes were attributable to migrating bats. We conclude that bats, specifically eastern red, hoary, and silver-haired bats, use this barrier island during migration and that this phenomenon may have implications for the development of near and offshore wind energy.
Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus)
Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael
2017-01-01
Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6–50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential. PMID:28129398
Bernard, Riley F; Foster, Jeffrey T; Willcox, Emma V; Parise, Katy L; McCracken, Gary F
2015-04-01
Pseudogymnoascus destructans, the causal agent of white-nose syndrome (WNS), is responsible for widespread mortality of hibernating bats across eastern North America. To document P. destructans exposure and infections on bats active during winter in the southeastern US, we collected epidermal swabs from bats captured during winters 2012-13 and 2013-14 in mist nets set outside of hibernacula in Tennessee. Epidermal swab samples were collected from eight Rafinesque's big-eared bats (Corynorhinus rafinesquii), six eastern red bats (Lasiurus borealis), and three silver-hair bats (Lasionycteris noctivagans). Using real-time PCR methods, we identified DNA sequences of P. destructans from skin swabs of two Rafinesque's big-eared bats, two eastern red bats, and one silver-haired bat. This is the first detection of the WNS fungus on Rafinesque's big-eared bats and eastern red bats and the second record of the presence of the fungus on silver-haired bats.
Monitoring cardiac motion in CT using a continuous wave radar embedded in the patient table.
Pfanner, Florian; Allmendinger, Thomas; Bohn, Birgit; Flohr, Thomas; Kachelrieß, Marc
2014-08-01
To avoid motion artifacts, medical imaging devices are often synchronized with the patient's cardiac motion. Today, the ECG is used to determine the heartbeat and therewith trigger the imaging device. However, the ECG requires additional effort to prepare the patient, e.g., mount and wire electrodes and it is not able to determine the motion of the heart. An interesting alternative to assess the cardiac motion is continuous wave radar. The aim of this work is to evaluate such a radar system focusing on measuring the cardiac motion. A radar system operating in the 860 MHz band is used. In the intended application of the radar system, the antennas are located close to the patient's body, for example, inside the table of a CT system. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example, at the borderline between muscle and adipose tissue, or at the boundaries of organs. Here, the authors focus on the detection of cardiac motion. The radar system consists of hardware as well as of dedicated signal processing software to extract the desired information from the radar signals. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the ECG was recorded simultaneously with the radar measurements. Additionally, ultrasound measurements are performed and compared with the motion information from the radar data. According to the authors' measurements on volunteers (test persons), the heartbeat and heart rate can be detected well using the proposed radar system. The authors were further able to extract the amplitude and phase of the heart motion itself from the radar data. This was confirmed by the ultrasound measurements. However, this motion assessment is dependent on the antenna position and it remains unclear which antenna sees the motion that is the most relevant to CT imaging. A continuous wave radar operating in the near field of the antennas can be used to determine the heartbeat and the cardiac motion of humans without special patient preparation. The authors' radar system is very close to the patient because it is embedded in the patient table, but it has no direct contact to the patient or to the patient skin (as it would be necessary to acquire the ECG of the patient). Therefore, radar motion monitoring does not require special patient preparation. In contrast to other methods used today, this is a significant improvement. The authors' radar system may allow to trigger a CT scan in dependency of the cardiac phase, without requiring an ECG, and it allows to determine quiet, and thus favorable, heart phases prior to the scan start.
Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections
Reeder, Sophia M.; Palmer, Jonathan M.; Prokkola, Jenni M.; Lilley, Thomas M.; Reeder, DeeAnn M.
2017-01-01
ABSTRACT White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases. PMID:28614673
Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections.
Reeder, Sophia M; Palmer, Jonathan M; Prokkola, Jenni M; Lilley, Thomas M; Reeder, DeeAnn M; Field, Kenneth A
2017-11-17
White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases.
Cockpit display of hazardous wind shear information
NASA Technical Reports Server (NTRS)
Wanke, Craig; Hansman, R. John, Jr.
1990-01-01
Information on cockpit display of wind shear information is given in viewgraph form. Based on the current status of windshear sensors and candidate data dissemination systems, the near-term capabilities for windshear avoidance will most likely include: (1) Ground-based detection: TDWR (Terminal Doppler Weather Radar), LLWAS (Low-Level Windshear Alert System), Automated PIREPS; (2) Ground-Air datalinks: Air traffic control voice channels, Mode-S digital datalink, ACARS alphanumeric datalink. The possible datapaths for integration of these systems are illustrated in a diagram. In the future, airborne windshear detection systems such as lidars, passive IR detectors, or airborne Doppler radars may also become available. Possible future datalinks include satellite downlink and specialized en route weather channels.
NASA Astrophysics Data System (ADS)
Velasco-Forero, Carlos A.; Sempere-Torres, Daniel; Cassiraga, Eduardo F.; Jaime Gómez-Hernández, J.
2009-07-01
Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.
Auer, Ernst; Goharriz, Hooman; Harbusch, Christine; Johnson, Nicholas; Kaipf, Ingrid; Mettenleiter, Thomas Christoph; Mühldorfer, Kristin; Mühle, Ralf-Udo; Ohlendorf, Bernd; Pott-Dörfer, Bärbel; Prüger, Julia; Ali, Hanan Sheikh; Stiefel, Dagmar; Teubner, Jens; Ulrich, Rainer Günter; Wibbelt, Gudrun; Müller, Thomas
2014-01-01
In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton's bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques. PMID:24784117
Openshaw, J J; Hegde, S; Sazzad, H M S; Khan, S U; Hossain, M J; Epstein, J H; Daszak, P; Gurley, E S; Luby, S P
2017-08-01
Bats are an important reservoir for emerging zoonotic pathogens. Close human-bat interactions, including the sharing of living spaces and hunting and butchering of bats for food and medicines, may lead to spillover of zoonotic disease into human populations. We used bat exposure and environmental data gathered from 207 Bangladeshi villages to characterize bat exposures and hunting in Bangladesh. Eleven percent of households reported having a bat roost near their homes, 65% reported seeing bats flying over their households at dusk, and 31% reported seeing bats inside their compounds or courtyard areas. Twenty percent of households reported that members had at least daily exposure to bats. Bat hunting occurred in 49% of the villages surveyed and was more likely to occur in households that reported nearby bat roosts (adjusted prevalence ratio [aPR] 2.3, 95% CI 1.1-4.9) and villages located in north-west (aPR 7.5, 95% CI 2.5-23.0) and south-west (aPR 6.8, 95% CI 2.1-21.6) regions. Our results suggest high exposure to bats and widespread hunting throughout Bangladesh. This has implications for both zoonotic disease spillover and bat conservation. © 2016 Blackwell Verlag GmbH.
Bats of the Savannah River Site and vicinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.A. Menzel; J.M. Menzel; J.C. Kilgo
The U.S. Department of Energy's Savannah River Site supports a diverse bat community. Nine species occur there regularly, including the eastern pipistrelle (Pipistrellus subflavus), southeastern myotis (Myotis austroriparius), evening bat (Nycticeius humeralis), Rafinesque's big-eared bat (Corynorhinus rafinesquii), silver-haired bat (Lasionycteris noctivagans), eastern red bat (Lasiurus borealis), Seminole bat (L. seminolus), hoary bat (L. cinereus), and big brown bat (Eptesicus fuscus). There are extralimital capture records for two additional species: little brown bat (M. lucifigus) and northern yellow bat (Lasiurus intermedius). Acoustical sampling has documented the presence of Brazilian free-tailed bats (Tadarida brasiliensis), but none has been captured. Among those speciesmore » common to the Site, the southeastern myotis and Rafinesque's big-eared bat are listed in South Carolina as threatened and endangered, respectively. The presence of those two species, and a growing concern for the conservation of forest-dwelling bats, led to extensive and focused research on the Savannah River Site between 1996 and 2002. Summarizing this and other bat research, we provide species accounts that discuss morphology and distribution, roosting and foraging behaviors, home range characteristics, habitat relations, and reproductive biology. We also present information on conservation needs and rabies issues; and, finally, identification keys that may be useful wherever the bat species we describe are found.« less
RABIES SURVEILLANCE AMONG BATS IN TENNESSEE, USA, 1996-2010.
Gilbert, Amy T; McCracken, Gary F; Sheeler, Lorinda L; Muller, Lisa I; O'Rourke, Dorcas; Kelch, William J; New, John C
2015-10-01
Rabies virus (RABV) infects multiple bat species in the Americas, and enzootic foci perpetuate in bats principally via intraspecific transmission. In recent years, bats have been implicated in over 90% of human rabies cases in the US. In Tennessee, two human cases of rabies have occurred since 1960: one case in 1994 associated with a tricolored bat (Perimyotis subflavus) RABV variant and another in 2002 associated with the tricolored/silver-haired bat (P. subflavus/Lasionycteris noctivagans) RABV variant. From 1996 to 2010, 2,039 bats were submitted for rabies testing in Tennessee. Among 1,943 bats in satisfactory condition for testing and with a reported diagnostic result, 96% (1,870 of 1,943) were identified to species and 10% (196 of 1,943) were rabid. Big brown (Eptesicus fuscus), tricolored, and eastern red (Lasiurus borealis) bats comprised 77% of testable bat submissions and 84% of rabid bats. For species with five or more submissions during 1996-2010, the highest proportion of rabid bats occurred in hoary (Lasiurus cinereus; 46%), unspecified Myotis spp. (22%), and eastern red (17%) bats. The best model to predict rabid bats included month of submission, exposure history of submission, species, and sex of bat.
NASA Technical Reports Server (NTRS)
McLinden, Matthew; Piepmeier, Jeffrey
2013-01-01
The conventional method for integrating a radiometer into radar hardware is to share the RF front end between the instruments, and to have separate IF receivers that take data at separate times. Alternatively, the radar and radiometer could share the antenna through the use of a diplexer, but have completely independent receivers. This novel method shares the radar's RF electronics and digital receiver with the radiometer, while allowing for simultaneous operation of the radar and radiometer. Radars and radiometers, while often having near-identical RF receivers, generally have substantially different IF and baseband receivers. Operation of the two instruments simultaneously is difficult, since airborne radars will pulse at a rate of hundreds of microseconds. Radiometer integration time is typically 10s or 100s of milliseconds. The bandwidth of radar may be 1 to 25 MHz, while a radiometer will have an RF bandwidth of up to a GHz. As such, the conventional method of integrating radar and radiometer hardware is to share the highfrequency RF receiver, but to have separate IF subsystems and digitizers. To avoid corruption of the radiometer data, the radar is turned off during the radiometer dwell time. This method utilizes a modern radar digital receiver to allow simultaneous operation of a radiometer and radar with a shared RF front end and digital receiver. The radiometer signal is coupled out after the first down-conversion stage. From there, the radar transmit frequencies are heavily filtered, and the bands outside the transmit filter are amplified and passed to a detector diode. This diode produces a DC output proportional to the input power. For a conventional radiometer, this level would be digitized. By taking this DC output and mixing it with a system oscillator at 10 MHz, the signal can instead be digitized by a second channel on the radar digital receiver (which typically do not accept DC inputs), and can be down-converted to a DC level again digitally. This unintuitive step allows the digital receiver to sample both the radiometer and radar data at a rapid, synchronized data rate (greater than 1 MHz bandwidth). Once both signals are sampled by the same digital receiver, high-speed quality control can be performed on the radiometer data to allow it to take data simultaneously with the radar. The radiometer data can be blanked during radar transmit, or when the radar return is of a power level high enough to corrupt the radiometer data. Additionally, the receiver protection switches in the RF front end can double as radiometer calibration sources, the short (four-microsecond level) switching periods integrated over many seconds to estimate the radiometer offset. The major benefit of this innovation is that there is minimal impact on the radar performance due to the integration of the radiometer, and the radiometer performance is similarly minimally affected by the radar. As the radar and radiometer are able to operate simultaneously, there is no extended period of integration time loss for the radiometer (maximizing sensitivity), and the radar is able to maintain its full number of pulses (increasing sensitivity and decreasing measurement uncertainty).
75 FR 9248 - Endangered and Threatened Wildlife and Plants; Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-01
... endangered species in the Code of Federal Regulations (CFR) at 50 CFR 17. Submit your written data, comments... renewal to take (capture and release) Indiana bats, gray bats, and Virginia big-eared bats (Corynorhinus... and release) Indiana bats, gray bats, Virginia big-eared bats, Ozark big-eared bats (Corynorhinus...
BGD: a database of bat genomes.
Fang, Jianfei; Wang, Xuan; Mu, Shuo; Zhang, Shuyi; Dong, Dong
2015-01-01
Bats account for ~20% of mammalian species, and are the only mammals with true powered flight. For the sake of their specialized phenotypic traits, many researches have been devoted to examine the evolution of bats. Until now, some whole genome sequences of bats have been assembled and annotated, however, a uniform resource for the annotated bat genomes is still unavailable. To make the extensive data associated with the bat genomes accessible to the general biological communities, we established a Bat Genome Database (BGD). BGD is an open-access, web-available portal that integrates available data of bat genomes and genes. It hosts data from six bat species, including two megabats and four microbats. Users can query the gene annotations using efficient searching engine, and it offers browsable tracks of bat genomes. Furthermore, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of genes. To the best of our knowledge, BGD is the first database of bat genomes. It will extend our understanding of the bat evolution and be advantageous to the bat sequences analysis. BGD is freely available at: http://donglab.ecnu.edu.cn/databases/BatGenome/.
The Kinetics of Swinging a Baseball Bat.
Crisco, Joseph J; Osvalds, Nikolas J; Rainbow, Michael J
2018-04-13
The purpose of this study was to compute the three-dimensional kinetics required to swing three youth baseball bats of varying moments of inertia (MOI). 306 swings by 22 male players (13-18 yrs.) were analyzed. Inverse dynamics with respect to the batter's hands were computed given the known kinematics and physical properties of the bats. We found that peak force increased with larger bat MOI and was strongly correlated with bat tip speed. In contrast, peak moments were weakly correlated with bat MOI and bat tip speed. Throughout the swing, the force applied to the bat was dominated by a component aligned with the long axis of the bat and directed away from the bat knob, while the moment applied to the bat was minimal until just prior to ball impact. These results indicate that players act to mostly "pull" the bat during their swing until just prior to ball impact, at which point they rapidly increase the moment on the bat. This kinetic analysis provides novel insight into the forces and moments used to swing baseball bats.
Yong, Kylie Su Mei; Ng, Justin Han Jia; Her, Zhisheng; Hey, Ying Ying; Tan, Sue Yee; Tan, Wilson Wei Sheng; Irac, Sergio Erdal; Liu, Min; Chan, Xue Ying; Gunawan, Merry; Foo, Randy Jee Hiang; Low, Dolyce Hong Wen; Mendenhall, Ian Hewitt; Chionh, Yok Teng; Dutertre, Charles-Antoine; Chen, Qingfeng; Wang, Lin-Fa
2018-03-16
Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R -/- (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat's remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.
Win(d)-Win(d) Solutions for wind developers and bats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hein, Cris; Schirmacher, Michael; Arnett, Ed
Bat Conservation International initiated a multi-year, pre-construction study in mid-summer 2009 to investigate patterns of bat activity and evaluate the use of acoustic monitoring to predict mortality of bats at the proposed Resolute Wind Energy Project (RWEP) in east-central Wyoming. The primary objectives of this study were to: (1) determine levels and patterns of activity for three phonic groups of bats (high-frequency emitting bats, low-frequency emitting bats, and hoary bats) using the proposed wind facility prior to construction of turbines; (2) determine if bat activity can be predicted based on weather patterns; correlate bat activity with weather variables; and (3)more » combine results from this study with those from similar efforts to determine if indices of pre-construction bat activity can be used to predict post-construction bat fatalities at proposed wind facilities. We report results from two years of pre-construction data collection.« less
Proteus DSA control room in Mojave, CA
2003-04-03
Proteus DSA control room in Mojave, CA (L to R) Jean-Pierre Soucy; Amphitech International Software engineer Craig Bomben; NASA Dryden Test Pilot Pete Siebold; (with headset, at computer controls) Scaled Composites pilot Bob Roehm; New Mexico State University (NMSU) UAV Technical Analysis Application Center (TAAC) Chuck Coleman; Scaled Composites Pilot Kari Sortland; NMSU TAAC Russell Wolfe; Modern Technology Solutions, Inc. Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.
Prevalence and Diversity of Bartonella spp. in Bats in Peru
Bai, Ying; Recuenco, Sergio; Gilbert, Amy Turmelle; Osikowicz, Lynn M.; Gómez, Jorge; Rupprecht, Charles; Kosoy, Michael Y.
2012-01-01
Bartonella infections were investigated in bats in the Amazon part of Peru. A total of 112 bats belonging to 19 species were surveyed. Bartonella bacteria were cultured from 24.1% of the bats (27/112). Infection rates ranged from 0% to 100% per bat species. Phylogenetic analyses of gltA of the Bartonella isolates revealed 21 genetic variants clustering into 13 divergent phylogroups. Some Bartonella strains were shared by bats of multiple species, and bats of some species were infected with multiple Bartonella strains, showing no evident specific Bartonella sp.–bat relationships. Rarely found in other bat species, the Bartonella strains of phylogroups I and III discovered from the common vampire bats (Desmodus rotundus) were more specific to the host bat species, suggesting some level of host specificity. PMID:22826480
Respiratory allergy to inhaled bat guano.
el-Ansary, E H; Tee, R D; Gordon, D J; Taylor, A J
1987-02-07
In the Sudan many asthmatic patients attribute their symptoms to inhalation of bat droppings. Design of the roofs of many Sudanese buildings allows black bats to roost; guano drops through cracks in the ceiling into the rooms below where it can be inhaled and cause allergic respiratory disorders. Seven atopic patients seen at Sennar Hospital with bat-related case-histories were investigated. Six had bronchial asthma and allergic rhinitis and one had asthma alone. Extracts of yellow hairy bat, black bat, and bat droppings were made. All seven patients had a positive skin prick test and specific IgE antibodies (RAST) to bat droppings. Three patients also had a positive RAST to both yellow and black bats and one patient to yellow bat. Droppings are probably the major allergen source in bat-related respiratory allergy.
Bellamy, Chloe; Altringham, John
2015-01-01
Conservation increasingly operates at the landscape scale. For this to be effective, we need landscape scale information on species distributions and the environmental factors that underpin them. Species records are becoming increasingly available via data centres and online portals, but they are often patchy and biased. We demonstrate how such data can yield useful habitat suitability models, using bat roost records as an example. We analysed the effects of environmental variables at eight spatial scales (500 m - 6 km) on roost selection by eight bat species (Pipistrellus pipistrellus, P. pygmaeus, Nyctalus noctula, Myotis mystacinus, M. brandtii, M. nattereri, M. daubentonii, and Plecotus auritus) using the presence-only modelling software MaxEnt. Modelling was carried out on a selection of 418 data centre roost records from the Lake District National Park, UK. Target group pseudoabsences were selected to reduce the impact of sampling bias. Multi-scale models, combining variables measured at their best performing spatial scales, were used to predict roosting habitat suitability, yielding models with useful predictive abilities. Small areas of deciduous woodland consistently increased roosting habitat suitability, but other habitat associations varied between species and scales. Pipistrellus were positively related to built environments at small scales, and depended on large-scale woodland availability. The other, more specialist, species were highly sensitive to human-altered landscapes, avoiding even small rural towns. The strength of many relationships at large scales suggests that bats are sensitive to habitat modifications far from the roost itself. The fine resolution, large extent maps will aid targeted decision-making by conservationists and planners. We have made available an ArcGIS toolbox that automates the production of multi-scale variables, to facilitate the application of our methods to other taxa and locations. Habitat suitability modelling has the potential to become a standard tool for supporting landscape-scale decision-making as relevant data and open source, user-friendly, and peer-reviewed software become widely available.
Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Zimmer, Gert; Marz, Manja; Müller, Marcel A.
2017-01-01
ABSTRACT Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity against Ebola virus and bat influenza A-like virus, and we describe here their phylogenetic relationship, revealing patterns of positive selection that suggest a coevolution with viral pathogens. By understanding the molecular mechanisms of the innate resistance of bats against viral diseases, we might gain important insights into how to prevent and fight human zoonotic infections caused by bat-borne viruses. PMID:28490593
Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Hoenen, Thomas; Zimmer, Gert; Marz, Manja; Weber, Friedemann; Müller, Marcel A; Kochs, Georg
2017-08-01
Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity against Ebola virus and bat influenza A-like virus, and we describe here their phylogenetic relationship, revealing patterns of positive selection that suggest a coevolution with viral pathogens. By understanding the molecular mechanisms of the innate resistance of bats against viral diseases, we might gain important insights into how to prevent and fight human zoonotic infections caused by bat-borne viruses. Copyright © 2017 American Society for Microbiology.
Increasing evidence that bats actively forage at wind turbines
Foo, Cecily F.; Bennett, Victoria J.; Korstian, Jennifer M.; Schildt, Alison J.; Williams, Dean A.
2017-01-01
Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011–2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat (Lasiurus borealis) and 24 hoary bat (Lasiurus cinereus) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several important crop pests, were also commonly eaten by eastern red and hoary bats. Collectively, these findings suggest that bats are actively foraging around wind turbines and that measures to minimize bat fatalities should be broadly implemented at wind facilities. PMID:29114441
Increasing evidence that bats actively forage at wind turbines.
Foo, Cecily F; Bennett, Victoria J; Hale, Amanda M; Korstian, Jennifer M; Schildt, Alison J; Williams, Dean A
2017-01-01
Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011-2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat ( Lasiurus borealis ) and 24 hoary bat ( Lasiurus cinereus ) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several important crop pests, were also commonly eaten by eastern red and hoary bats. Collectively, these findings suggest that bats are actively foraging around wind turbines and that measures to minimize bat fatalities should be broadly implemented at wind facilities.
Woo, Patrick C Y; Lau, Susanna K P; Chen, Yixin; Wong, Emily Y M; Chan, Kwok-Hung; Chen, Honglin; Zhang, Libiao; Xia, Ningshao; Yuen, Kwok-Yung
2018-03-07
Recently, we developed a monoclonal antibody-based rapid nucleocapsid protein detection assay for diagnosis of MERS coronavirus (MERS-CoV) in humans and dromedary camels. In this study, we examined the usefulness of this assay to detect other lineage C betacoronaviruses closely related to MERS-CoV in bats. The rapid MERS-CoV nucleocapsid protein detection assay was tested positive in 24 (88.9%) of 27 Tylonycteris bat CoV HKU4 (Ty-BatCoV-HKU4) RNA-positive alimentary samples of Tylonycteris pachypus and 4 (19.0%) of 21 Pipistrellus bat CoV HKU5 (Pi-BatCoV-HKU5) RNA-positive alimentary samples of Pipistrellus abramus. There was significantly more Ty-BatCoV-HKU4 RNA-positive alimentary samples than Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive by the rapid MERS-CoV nucleocapsid protein detection assay (P < 0.001 by Chi-square test). The rapid assay was tested negative in all 51 alimentary samples RNA-positive for alphacoronaviruses (Rhinolophus bat CoV HKU2, Myotis bat CoV HKU6, Miniopterus bat CoV HKU8 and Hipposideros batCoV HKU10) and 32 alimentary samples positive for lineage B (SARS-related Rhinolophus bat CoV HKU3) and lineage D (Rousettus bat CoV HKU9) betacoronaviruses. No significant difference was observed between the viral loads of Ty-BatCoV-HKU4/Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive and negative by the rapid test (Mann-Witney U test). The rapid MERS-CoV nucleocapsid protein detection assay is able to rapidly detect lineage C betacoronaviruses in bats. It detected significantly more Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5 because MERS-CoV is more closely related to Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5. This assay will facilitate rapid on-site mass screening of animal samples for ancestors of MERS-CoV and tracking transmission in the related bat species.
Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.
Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan
2016-04-28
This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.
Serological evidence of arenavirus circulation among fruit bats in Trinidad.
Malmlov, Ashley; Seetahal, Janine; Carrington, Christine; Ramkisson, Vernie; Foster, Jerome; Miazgowicz, Kerri L; Quackenbush, Sandra; Rovnak, Joel; Negrete, Oscar; Munster, Vincent; Schountz, Tony
2017-01-01
Tacaribe virus (TCRV) was isolated in the 1950s from artibeus bats captured on the island of Trinidad. The initial characterization of TCRV suggested that artibeus bats were natural reservoir hosts. However, nearly 60 years later experimental infections of Jamaican fruit bats (Artibeus jamaicensis) resulted in fatal disease or clearance, suggesting artibeus bats may not be a reservoir host. To further evaluate the TCRV reservoir host status of artibeus bats, we captured bats of six species in Trinidad for evidence of infection. Bats of all four fruigivorous species captured had antibodies to TCRV nucleocapsid, whereas none of the insectivore or nectarivore species did. Many flat-faced fruit-eating bats (A. planirostris) and great fruit-eating bats (A. literatus) were seropositive by ELISA and western blot to TCRV nucleocapsid antigen, as were two of four Seba's fruit bats (Carollia perspicillata) and two of three yellow-shouldered fruit bats (Sturnira lilium). Serum neutralization tests failed to detect neutralizing antibodies to TCRV from these bats. TCRV RNA was not detected in lung tissues or lung homogenates inoculated onto Vero cells. These data indicate that TCRV or a similar arenavirus continues to circulate among fruit bats of Trinidad but there was no evidence of persistent infection, suggesting artibeus bats are not reservoir hosts.
PADF RF Localization Criteria for Multi-Model Scattering Environments
2011-04-01
Raul Ordonez b, Atindra Mitra c aDepartment of Electrical Engineering, Louisiana Tech University, Ruston, LA 71272 bDepartment of Electrical and...21] April Johnson, Cara Rupp, Brad Wolf, Lang Hong, Atindra Mitra, “Collision-Avoidance Radar for Bicyclist and Runners,” 2010 IEEE National Aerospace and Electronics Conference, 14-16 July 2010, Dayton, Ohio
Rabies-related knowledge and practices among persons at risk of bat exposures in Thailand.
Robertson, Kis; Lumlertdacha, Boonlert; Franka, Richard; Petersen, Brett; Bhengsri, Saithip; Henchaichon, Sununta; Peruski, Leonard F; Baggett, Henry C; Maloney, Susan A; Rupprecht, Charles E
2011-06-01
Rabies is a fatal encephalitis caused by lyssaviruses. Evidence of lyssavirus circulation has recently emerged in Southeast Asian bats. A cross-sectional study was conducted in Thailand to assess rabies-related knowledge and practices among persons regularly exposed to bats and bat habitats. The objectives were to identify deficiencies in rabies awareness, describe the occurrence of bat exposures, and explore factors associated with transdermal bat exposures. A survey was administered to a convenience sample of adult guano miners, bat hunters, game wardens, and residents/personnel at Buddhist temples where mass bat roosting occurs. The questionnaire elicited information on demographics, experience with bat exposures, and rabies knowledge. Participants were also asked to describe actions they would take in response to a bat bite as well as actions for a bite from a potentially rabid animal. Bivariate analysis was used to compare responses between groups and multivariable logistic regression was used to explore factors independently associated with being bitten or scratched by a bat. Of 106 people interviewed, 11 (10%) identified bats as a potential source of rabies. A history of a bat bite or scratch was reported by 29 (27%), and 38 (36%) stated either that they would do nothing or that they did not know what they would do in response to a bat bite. Guano miners were less likely than other groups to indicate animal bites as a mechanism of rabies transmission (68% vs. 90%, p=0.03) and were less likely to say they would respond appropriately to a bat bite or scratch (61% vs. 27%, p=0.003). Guano mining, bat hunting, and being in a bat cave or roost area more than 5 times a year were associated with history of a bat bite or scratch. These findings indicate the need for educational outreach to raise awareness of bat rabies, promote exposure prevention, and ensure appropriate health-seeking behaviors for bat-inflicted wounds, particularly among at-risk groups in Thailand.
NASA Astrophysics Data System (ADS)
Steiner, Matthias; Houze, Robert A., Jr.; Yuter, Sandra E.
1995-09-01
Three algorithms extract information on precipitation type, structure, and amount from operational radar and rain gauge data. Tests on one month of data from one site show that the algorithms perform accurately and provide products that characterize the essential features of the precipitation climatology. Input to the algorithms are the operationally executed volume scans of a radar and the data from a surrounding rain gauge network. The algorithms separate the radar echoes into convective and stratiform regions, statistically summarize the vertical structure of the radar echoes, and determine precipitation rates and amounts on high spatial resolution.The convective and stratiform regions are separated on the basis of the intensity and sharpness of the peaks of echo intensity. The peaks indicate the centers of the convective region. Precipitation not identified as convective is stratiform. This method avoids the problem of underestimating the stratiform precipitation. The separation criteria are applied in exactly the same way throughout the observational domain and the product generated by the algorithm can be compared directly to model output. An independent test of the algorithm on data for which high-resolution dual-Doppler observations are available shows that the convective stratiform separation algorithm is consistent with the physical definitions of convective and stratiform precipitation.The vertical structure algorithm presents the frequency distribution of radar reflectivity as a function of height and thus summarizes in a single plot the vertical structure of all the radar echoes observed during a month (or any other time period). Separate plots reveal the essential differences in structure between the convective and stratiform echoes.Tests yield similar results (within less than 10%) for monthly rain statistics regardless of the technique used for estimating the precipitation, as long as the radar reflectivity values are adjusted to agree with monthly rain gauge data. It makes little difference whether the adjustment is by monthly mean rates or percentiles. Further tests show that 1-h sampling is sufficient to obtain an accurate estimate of monthly rain statistics.
The effects of seasonality on host-bat fly ecological networks in a temperate mountain cave.
Rivera-García, Karina D; Sandoval-Ruiz, César A; Saldaña-Vázquez, Romeo A; Schondube, Jorge E
2017-04-01
Changes in the specialization of parasite-host interactions will be influenced by variations in host species composition. We evaluated this hypothesis by comparing the composition of bats and bat flies within a roost cave over one annual. Five bat and five bat fly species occupied the cave over the course of the study. Bat species composition was 40% different in the rainy season compared with the dry-cold and dry-warm seasons. Despite the incorporation of three new bat species into the cave during the rainy season, bat fly species composition was not affected by seasonality, since the bats that arrived in the rainy season only contributed one new bat fly species at a low prevalence. Bat-bat fly ecological networks were less specialized in the rainy season compared with the dry-cold and dry-warm seasons because of the increase of host overlap among bat fly species during this season. This study suggests that seasonality promote: (1) differences in host species composition, and (2) a reduction in the specialization of host-parasite ecological networks.
Bahler, Lonneke; Deelen, Jan W; Hoekstra, Joost B; Holleman, Frits; Verberne, Hein J
2016-06-15
Retrospective studies have shown that outdoor temperature influences the prevalence of detectable brown adipose tissue (BAT). Prospective studies use acute cold exposure to activate BAT. In prospective studies, BAT might be preconditioned in winter months leading to an increased BAT response to various stimuli. Therefore the aim of this study was to assess whether outdoor temperatures and other weather characteristics modulate the response of BAT to acute cold. To assess metabolic BAT activity and sympathetic outflow to BAT, 64 (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography (PET-CT) and 56 additional (123)I-meta-iodobenzylguanidine ((123)I-mIBG) single-photon emission computed tomography-CT (SPECT-CT) scans, respectively, of subjects participating in previously executed trials were retrospectively included. BAT activity was measured in subjects after an overnight fast, following 2 h of cold exposure (∼17°C). The average daytime outdoor temperatures and other weather characteristics were obtained from the Dutch Royal Weather Institute. Forty-nine subjects were BAT positive. One week prior to the scan, outdoor temperature was significantly lower in the BAT-positive group compared with the BAT-negative group. Higher outdoor temperatures on preceding days resulted in lower stimulated metabolic BAT activity and volume (all P < 0.01). Outdoor temperatures did not correlate with sympathetic outflow to BAT. In conclusion, outdoor temperatures influence metabolic BAT activity and volume, but not sympathetic outflow to BAT, in subjects exposed to acute cold. To improve the consistency of the findings of future BAT studies in humans and to exclude bias introduced by outdoor temperatures, these studies should be planned in periods of similar outdoor temperatures. Copyright © 2016 the American Physiological Society.
Bartonella Species in Bats (Chiroptera) and Bat Flies (Nycteribiidae) from Nigeria, West Africa
Baneth, Gad; Mitchell, Mark; Mumcuoglu, Kosta Y.; Gutiérrez, Ricardo; Harrus, Shimon
2014-01-01
Abstract Previous and ongoing studies have incriminated bats as reservoirs of several emerging and re-emerging zoonoses. Most of these studies, however, have focused on viral agents and neglected important bacterial pathogens. To date, there has been no report investigating the prevalence of Bartonella spp. in bats and bat flies from Nigeria, despite the fact that bats are used as food and for cultural ritual purposes by some ethnic groups in Nigeria. To elucidate the role of bats as reservoirs of bartonellae, we screened by molecular methods 148 bats and 34 bat flies, Diptera:Hippoboscoidea:Nycteribiidae (Cyclopodia greeffi) from Nigeria for Bartonella spp. Overall, Bartonella spp. DNA was detected in 76 out of 148 (51.4%) bat blood samples tested and 10 out of 24 (41.7%) bat flies tested by qPCR targeting the 16S–23S internal transcribed spacer (ITS) locus. Bartonella was isolated from 23 of 148 (15.5%) bat blood samples, and the isolates were genetically characterized. Prevalence of Bartonella spp. culture-positive samples ranged from 0% to 45.5% among five bat species. Micropterus spp. bats had a significantly higher relative risk of 3.45 for being culture positive compared to Eidolon helvum, Epomophorus spp., Rhinolophus spp., and Chaerephon nigeriae. Bartonella spp. detected in this study fall into three distinct clusters along with other Bartonella spp. isolated from bats and bat flies from Kenya and Ghana, respectively. The isolation of Bartonella spp. in 10.0–45.5% of four out of five bat species screened in this study indicates a widespread infection in bat population in Nigeria. Further investigation is warranted to determine the role of these bacteria as a cause of human and animal diseases in Nigeria. PMID:25229701
Bartonella species in bats (Chiroptera) and bat flies (Nycteribiidae) from Nigeria, West Africa.
Kamani, Joshua; Baneth, Gad; Mitchell, Mark; Mumcuoglu, Kosta Y; Gutiérrez, Ricardo; Harrus, Shimon
2014-09-01
Previous and ongoing studies have incriminated bats as reservoirs of several emerging and re-emerging zoonoses. Most of these studies, however, have focused on viral agents and neglected important bacterial pathogens. To date, there has been no report investigating the prevalence of Bartonella spp. in bats and bat flies from Nigeria, despite the fact that bats are used as food and for cultural ritual purposes by some ethnic groups in Nigeria. To elucidate the role of bats as reservoirs of bartonellae, we screened by molecular methods 148 bats and 34 bat flies, Diptera:Hippoboscoidea:Nycteribiidae (Cyclopodia greeffi) from Nigeria for Bartonella spp. Overall, Bartonella spp. DNA was detected in 76 out of 148 (51.4%) bat blood samples tested and 10 out of 24 (41.7%) bat flies tested by qPCR targeting the 16S-23S internal transcribed spacer (ITS) locus. Bartonella was isolated from 23 of 148 (15.5%) bat blood samples, and the isolates were genetically characterized. Prevalence of Bartonella spp. culture-positive samples ranged from 0% to 45.5% among five bat species. Micropterus spp. bats had a significantly higher relative risk of 3.45 for being culture positive compared to Eidolon helvum, Epomophorus spp., Rhinolophus spp., and Chaerephon nigeriae. Bartonella spp. detected in this study fall into three distinct clusters along with other Bartonella spp. isolated from bats and bat flies from Kenya and Ghana, respectively. The isolation of Bartonella spp. in 10.0-45.5% of four out of five bat species screened in this study indicates a widespread infection in bat population in Nigeria. Further investigation is warranted to determine the role of these bacteria as a cause of human and animal diseases in Nigeria.
Obame-Nkoghe, Judicaël; Rahola, Nil; Bourgarel, Mathieu; Yangari, Patrick; Prugnolle, Franck; Maganga, Gael Darren; Leroy, Eric-Maurice; Fontenille, Didier; Ayala, Diego; Paupy, Christophe
2016-06-10
Evidence of haemosporidian infections in bats and bat flies has motivated a growing interest in characterizing their transmission cycles. In Gabon (Central Africa), many caves house massive colonies of bats that are known hosts of Polychromophilus Dionisi parasites, presumably transmitted by blood-sucking bat flies. However, the role of bat flies in bat malaria transmission remains under-documented. An entomological survey was carried out in four caves in Gabon to investigate bat fly diversity, infestation rates and host preferences and to determine their role in Polychromophilus parasite transmission. Bat flies were sampled for 2-4 consecutive nights each month from February to April 2011 (Faucon and Zadie caves) and from May 2012 to April 2013 (Kessipoughou and Djibilong caves). Bat flies isolated from the fur of each captured bat were morphologically identified and screened for infection by haemosporidian parasites using primers targeting the mitochondrial cytochrome b gene. Among the 1,154 bats captured and identified as Miniopterus inflatus Thomas (n = 354), Hipposideros caffer Sundevall complex (n = 285), Hipposideros gigas Wagner (n = 317), Rousettus aegyptiacus Geoffroy (n = 157, and Coleura afra Peters (n = 41), 439 (38.0 %) were infested by bat flies. The 1,063 bat flies recovered from bats belonged to five taxa: Nycteribia schmidlii scotti Falcoz, Eucampsipoda africana Theodor, Penicillidia fulvida Bigot, Brachytarsina allaudi Falcoz and Raymondia huberi Frauenfeld group. The mean infestation rate varied significantly according to the bat species (ANOVA, F (4,75) = 13.15, P < 0.001) and a strong association effect between bat fly species and host bat species was observed. Polychromophilus melanipherus Dionisi was mainly detected in N. s. scotti and P. fulvida and less frequently in E. africana, R. huberi group and B. allaudi bat flies. These results suggest that N. s. scotti and P. fulvida could potentially be involved in P. melanipherus transmission among cave-dwelling bats. Sequence analysis revealed eight haplotypes of P. melanipherus. This work represents the first documented record of the cave-dwelling bat fly fauna in Gabon and significantly contributes to our understanding of bat fly host-feeding behavior and their respective roles in Polychromophilus transmission.
Bahler, L; Molenaars, R J; Verberne, H J; Holleman, F
2015-12-01
Brown adipose tissue (BAT) is able to convert calories into heat rather than storing them. Therefore, activated BAT could be a potential target in the battle against obesity and type 2 diabetes. This review focuses on the role of the autonomic nervous system in the activation of human BAT. Although the number of studies focusing on BAT in humans is limited, involvement of the sympathetic nervous system (SNS) in BAT activation is evident. Metabolic BAT activity can be visualized with (18)F-fluorodeoxyglucose, whereas sympathetic activation of BAT can be visualized with nuclear-medicine techniques using different radiopharmaceuticals. Also, interruption of the sympathetic nerves leading to BAT activation diminishes sympathetic stimulation, resulting in reduced metabolic BAT activity. Furthermore, both β- and α-adrenoceptors might be important in the stimulation process of BAT, as pretreatment with propranolol or α-adrenoceptor blockade also diminishes BAT activity. In contrast, high catecholamine levels are known to activate and recruit BAT. There are several interventional studies in which BAT was successfully inhibited, whereas only one interventional study aiming to activate BAT resulted in the intended outcome. Most studies have focused on the SNS for activating BAT, although the parasympathetic nervous system might also be a target of interest. To better define the possible role of BAT in strategies to combat the obesity epidemic, it seems likely that future studies focusing on both histology and imaging are essential for identifying the factors and receptors critical for activation of human BAT. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Bat Coronaviruses and Experimental Infection of Bats, the Philippines
Watanabe, Shumpei; Masangkay, Joseph S.; Nagata, Noriyo; Morikawa, Shigeru; Mizutani, Tetsuya; Fukushi, Shuetsu; Alviola, Phillip; Omatsu, Tsutomu; Ueda, Naoya; Iha, Koichiro; Taniguchi, Satoshi; Fujii, Hikaru; Tsuda, Shumpei; Endoh, Maiko; Kato, Kentaro; Tohya, Yukinobu; Kyuwa, Shigeru; Yoshikawa, Yasuhiro
2010-01-01
Fifty-two bats captured during July 2008 in the Philippines were tested by reverse transcription–PCR to detect bat coronavirus (CoV) RNA. The overall prevalence of virus RNA was 55.8%. We found 2 groups of sequences that belonged to group 1 (genus Alphacoronavirus) and group 2 (genus Betacoronavirus) CoVs. Phylogenetic analysis of the RNA-dependent RNA polymerase gene showed that groups 1 and 2 CoVs were similar to Bat-CoV/China/A515/2005 (95% nt sequence identity) and Bat-CoV/HKU9–1/China/2007 (83% identity), respectively. To propagate group 2 CoVs obtained from a lesser dog-faced fruit bat (Cynopterus brachyotis), we administered intestine samples orally to Leschenault rousette bats (Rousettus leschenaulti) maintained in our laboratory. After virus replication in the bats was confirmed, an additional passage of the virus was made in Leschenault rousette bats, and bat pathogenesis was investigated. Fruit bats infected with virus did not show clinical signs of infection. PMID:20678314
Bat coronaviruses and experimental infection of bats, the Philippines.
Watanabe, Shumpei; Masangkay, Joseph S; Nagata, Noriyo; Morikawa, Shigeru; Mizutani, Tetsuya; Fukushi, Shuetsu; Alviola, Phillip; Omatsu, Tsutomu; Ueda, Naoya; Iha, Koichiro; Taniguchi, Satoshi; Fujii, Hikaru; Tsuda, Shumpei; Endoh, Maiko; Kato, Kentaro; Tohya, Yukinobu; Kyuwa, Shigeru; Yoshikawa, Yasuhiro; Akashi, Hiroomi
2010-08-01
Fifty-two bats captured during July 2008 in the Philippines were tested by reverse transcription-PCR to detect bat coronavirus (CoV) RNA. The overall prevalence of virus RNA was 55.8%. We found 2 groups of sequences that belonged to group 1 (genus Alphacoronavirus) and group 2 (genus Betacoronavirus) CoVs. Phylogenetic analysis of the RNA-dependent RNA polymerase gene showed that groups 1 and 2 CoVs were similar to Bat-CoV/China/A515/2005 (95% nt sequence identity) and Bat-CoV/HKU9-1/China/2007 (83% identity), respectively. To propagate group 2 CoVs obtained from a lesser dog-faced fruit bat (Cynopterus brachyotis), we administered intestine samples orally to Leschenault rousette bats (Rousettus leschenaulti) maintained in our laboratory. After virus replication in the bats was confirmed, an additional passage of the virus was made in Leschenault rousette bats, and bat pathogenesis was investigated. Fruit bats infected with virus did not show clinical signs of infection.
First encounter of European bat lyssavirus type 2 (EBLV-2) in a bat in Finland.
Jakava-Viljanen, M; Lilley, T; Kyheröinen, E-M; Huovilainen, A
2010-11-01
In Finland, rabies in bats was suspected for the first time in 1985 when a bat researcher, who had multiple bat bites, died in Helsinki. The virus isolated from the researcher proved to be antigenically related to rabies viruses previously detected in German bats. Later, the virus was typed as EBLV-2b. Despite an epidemiological study in bats 1986 and subsequent rabies surveillance, rabies in bats was not detected in Finland until the first case in a Daubenton's bat (Myotis daubentonii) was confirmed in August 2009. The bat was paralysed, occasionally crying, and biting when approached; it subsequently tested positive for rabies. The virus was genetically typed as EBLV-2. This is the northernmost case of bat rabies ever detected in Europe. Phylogenetic analyses showed that the EBLV-2b isolate from the human case in 1985 and the isolate from the bat in 2009 were genetically closely related, demonstrating that EBLV-2 may have been circulating in Finland for many years.
Bat-borne rabies in Latin America.
Escobar, Luis E; Peterson, A Townsend; Favi, Myriam; Yung, Verónica; Medina-Vogel, Gonzalo
2015-01-01
The situation of rabies in America is complex: rabies in dogs has decreased dramatically, but bats are increasingly recognized as natural reservoirs of other rabies variants. Here, bat species known to be rabies-positive with different antigenic variants, are summarized in relation to bat conservation status across Latin America. Rabies virus is widespread in Latin American bat species, 22.5%75 of bat species have been confirmed as rabies-positive. Most bat species found rabies positive are classified by the International Union for Conservation of Nature as "Least Concern". According to diet type, insectivorous bats had the most species known as rabies reservoirs, while in proportion hematophagous bats were the most important. Research at coarse spatial scales must strive to understand rabies ecology; basic information on distribution and population dynamics of many Latin American and Caribbean bat species is needed; and detailed information on effects of landscape change in driving bat-borne rabies outbreaks remains unassessed. Finally, integrated approaches including public health, ecology, and conservation biology are needed to understand and prevent emergent diseases in bats.
Education to Action: Improving Public Perception of Bats
Hoffmaster, Eric; Vonk, Jennifer; Mies, Rob
2016-01-01
Public perception of bats has historically been largely negative with bats often portrayed as carriers of disease. Bats are commonly associated with vampire lore and thus elicit largely fearful reactions despite the fact that they are a vital and valuable part of the ecosystem. Bats provide a variety of essential services from pest control to plant pollination. Despite the benefits of bats to the environment and the economy, bats are suffering at the hands of humans. They are victims of turbines, human encroachment, pesticides, and, most recently, white nose syndrome. Because of their critical importance to the environment, humans should do what they can to help protect bats. We propose that humans will be more likely to do so if their perceptions and attitudes toward bats can be significantly improved. In a preliminary study we found some support for the idea that people can be educated about bats through bat oriented events and exhibits, and that this greater knowledge can inspire humans to act to save bats. PMID:26784239
Lau, Susanna K P; Li, Kenneth S M; Tsang, Alan K L; Lam, Carol S F; Ahmed, Shakeel; Chen, Honglin; Chan, Kwok-Hung; Woo, Patrick C Y; Yuen, Kwok-Yung
2013-08-01
While the novel Middle East respiratory syndrome coronavirus (MERS-CoV) is closely related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) in bats from Hong Kong, and other potential lineage C betacoronaviruses in bats from Africa, Europe, and America, its animal origin remains obscure. To better understand the role of bats in its origin, we examined the molecular epidemiology and evolution of lineage C betacoronaviruses among bats. Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were detected in 29% and 25% of alimentary samples from lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus abramus), respectively. Sequencing of their RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes revealed that MERS-CoV is more closely related to Pi-BatCoV HKU5 in RdRp (92.1% to 92.3% amino acid [aa] identity) but is more closely related to Ty-BatCoV HKU4 in S (66.8% to 67.4% aa identity) and N (71.9% to 72.3% aa identity). Although both viruses were under purifying selection, the S of Pi-BatCoV HKU5 displayed marked sequence polymorphisms and more positively selected sites than that of Ty-BatCoV HKU4, suggesting that Pi-BatCoV HKU5 may generate variants to occupy new ecological niches along with its host in diverse habitats. Molecular clock analysis showed that they diverged from a common ancestor with MERS-CoV at least several centuries ago. Although MERS-CoV may have diverged from potential lineage C betacoronaviruses in European bats more recently, these bat viruses were unlikely to be the direct ancestor of MERS-CoV. Intensive surveillance for lineage C betaCoVs in Pipistrellus and related bats with diverse habitats and other animals in the Middle East may fill the evolutionary gap.
Lau, Susanna K. P.; Li, Kenneth S. M.; Tsang, Alan K. L.; Lam, Carol S. F.; Ahmed, Shakeel; Chen, Honglin; Chan, Kwok-Hung
2013-01-01
While the novel Middle East respiratory syndrome coronavirus (MERS-CoV) is closely related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) in bats from Hong Kong, and other potential lineage C betacoronaviruses in bats from Africa, Europe, and America, its animal origin remains obscure. To better understand the role of bats in its origin, we examined the molecular epidemiology and evolution of lineage C betacoronaviruses among bats. Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were detected in 29% and 25% of alimentary samples from lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus abramus), respectively. Sequencing of their RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes revealed that MERS-CoV is more closely related to Pi-BatCoV HKU5 in RdRp (92.1% to 92.3% amino acid [aa] identity) but is more closely related to Ty-BatCoV HKU4 in S (66.8% to 67.4% aa identity) and N (71.9% to 72.3% aa identity). Although both viruses were under purifying selection, the S of Pi-BatCoV HKU5 displayed marked sequence polymorphisms and more positively selected sites than that of Ty-BatCoV HKU4, suggesting that Pi-BatCoV HKU5 may generate variants to occupy new ecological niches along with its host in diverse habitats. Molecular clock analysis showed that they diverged from a common ancestor with MERS-CoV at least several centuries ago. Although MERS-CoV may have diverged from potential lineage C betacoronaviruses in European bats more recently, these bat viruses were unlikely to be the direct ancestor of MERS-CoV. Intensive surveillance for lineage C betaCoVs in Pipistrellus and related bats with diverse habitats and other animals in the Middle East may fill the evolutionary gap. PMID:23720729
Use of radars to monitor stream discharge by noncontact methods
Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.
2006-01-01
Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods. Time series of surface velocity obtained by different radars in the Cowlitz River experiment also show small‐amplitude pulsations not found in stage records that reflect tidal energy at the gauging station. Noncontact discharge measurements made during a flood on 30 January 2004 agreed with the rated discharge to within 5%. Measurement at both field sites confirm that lognormal velocity profiles exist for a wide range of flows in these rivers, and mean velocity is approximately 0.85 times measured surface velocity. Noncontact methods of flow measurement appear to (1) be as accurate as conventional methods, (2) obtain data when standard contact methods are dangerous or cannot be obtained, and (3) provide insight into flow dynamics not available from detailed stage records alone.
Molecular Detection of Bartonella Species in Blood-Feeding Bat Flies from Mexico.
Moskaluk, Alexandra E; Stuckey, Matthew J; Jaffe, David A; Kasten, Rickie W; Aguilar-Setién, Alvaro; Olave-Leyva, José Ignacio; Galvez-Romero, Guillermo; Obregón-Morales, Cirani; Salas-Rojas, Mónica; García-Flores, María Martha; Aréchiga-Ceballos, Nidia; García-Baltazar, Anahí; Chomel, Bruno B
2018-05-01
Bartonellae are emerging blood-borne bacteria that have been recovered from a wide range of mammalian species and arthropod vectors around the world. Bats are now recognized as a potential wildlife reservoir for a diverse number of Bartonella species, including the zoonotic Candidatus B. mayotimonensis. These bat-borne Bartonella species have also been detected in the obligate ectoparasites of bats, such as blood-feeding flies, which could transmit these bacteria within bat populations. To better understand this potential for transmission, we investigated the relatedness between Bartonella detected or isolated from bat hosts sampled in Mexico and their ectoparasites. Bartonella spp. were identified in bat flies collected on two bat species, with the highest prevalence in Trichobius parasiticus and Strebla wiedemanni collected from common vampire bats (Desmodus rotundus). When comparing Bartonella sequences from a fragment of the citrate synthase gene (gltA), vector-associated strains were diverse and generally close to, but distinct from, those recovered from their bacteremic bat hosts in Mexico. Complete Bartonella sequence concordance was observed in only one bat-vector pair. The diversity of Bartonella strains in bat flies reflects the frequent host switch by bat flies, as they usually do not live permanently on their bat host. It may also suggest a possible endosymbiotic relationship with these vectors for some of the Bartonella species carried by bat flies, whereas others could have a mammalian host.
Acute effects of various weighted bat warm-up protocols on bat velocity.
Reyes, G Francis; Dolny, Dennis
2009-10-01
Although research has provided evidence of increased muscular performance following a facilitation set of resistance exercise, this has not been established for use prior to measuring baseball bat velocity. The purpose of this study was to determine the effectiveness of selected weighted bat warm-up protocols to enhance bat velocity in collegiate baseball players. Nineteen collegiate baseball players (age = 20.15 +/- 1.46 years) were tested for upper-body strength by a 3-repetition maximum (RM) bench press (mean = 97.98 +/- 14.54 kg) and mean bat velocity. Nine weighted bat warm-up protocols, utilizing 3 weighted bats (light = 794 g; standard = 850 g; heavy = 1,531 g) were swung in 3 sets of 6 repetitions in different orders. A control trial involved the warm-up protocol utilizing only the standard bat. Pearson product correlation revealed a significant relationship between 3RM strength and pretest bat velocity (r = 0.51, p = 0.01). Repeated measures analysis of variance (ANOVA) revealed no significant treatment effects of warm-up protocol on bat velocity. However, the order of standard, light, heavy bat sequence resulted in the greatest increase in bat velocity (+6.03%). These results suggest that upper-body muscle strength influences bat velocity. It appears that the standard, light, heavy warm-up order may provide the greatest benefit to increase subsequent bat velocity and may warrant use in game situations.
Eco-epidemiology of Novel Bartonella Genotypes from Parasitic Flies of Insectivorous Bats.
Sándor, Attila D; Földvári, Mihály; Krawczyk, Aleksandra I; Sprong, Hein; Corduneanu, Alexandra; Barti, Levente; Görföl, Tamás; Estók, Péter; Kováts, Dávid; Szekeres, Sándor; László, Zoltán; Hornok, Sándor; Földvári, Gábor
2018-04-29
Bats are important zoonotic reservoirs for many pathogens worldwide. Although their highly specialized ectoparasites, bat flies (Diptera: Hippoboscoidea), can transmit Bartonella bacteria including human pathogens, their eco-epidemiology is unexplored. Here, we analyzed the prevalence and diversity of Bartonella strains sampled from 10 bat fly species from 14 European bat species. We found high prevalence of Bartonella spp. in most bat fly species with wide geographical distribution. Bat species explained most of the variance in Bartonella distribution with the highest prevalence of infected flies recorded in species living in dense groups exclusively in caves. Bat gender but not bat fly gender was also an important factor with the more mobile male bats giving more opportunity for the ectoparasites to access several host individuals. We detected high diversity of Bartonella strains (18 sequences, 7 genotypes, in 9 bat fly species) comparable with tropical assemblages of bat-bat fly association. Most genotypes are novel (15 out of 18 recorded strains have a similarity of 92-99%, with three sequences having 100% similarity to Bartonella spp. sequences deposited in GenBank) with currently unknown pathogenicity; however, 4 of these sequences are similar (up to 92% sequence similarity) to Bartonella spp. with known zoonotic potential. The high prevalence and diversity of Bartonella spp. suggests a long shared evolution of these bacteria with bat flies and bats providing excellent study targets for the eco-epidemiology of host-vector-pathogen cycles.
Geographic origins and population genetics of bats killed at wind-energy facilities.
Pylant, Cortney L; Nelson, David M; Fitzpatrick, Matthew C; Gates, J Edward; Keller, Stephen R
2016-07-01
An unanticipated impact of wind-energy development has been large-scale mortality of insectivorous bats. In eastern North America, where mortality rates are among the highest in the world, the hoary bat (Lasiurus cinereus) and the eastern red bat (L. borealis) comprise the majority of turbine-associated bat mortality. Both species are migratory tree bats with widespread distributions; however, little is known regarding the geographic origins of bats killed at wind-energy facilities or the diversity and population structure of affected species. We addressed these unknowns by measuring stable hydrogen isotope ratios (δ 2 H) and conducting population genetic analyses of bats killed at wind-energy facilities in the central Appalachian Mountains (USA) to determine the summering origins, effective size, structure, and temporal stability of populations. Our results indicate that ~1% of hoary bat mortalities and ~57% of red bat mortalities derive from non-local sources, with no relationship between the proportion of non-local bats and sex, location of mortality, or month of mortality. Additionally, our data indicate that hoary bats in our sample consist of an unstructured population with a small effective size (N e ) and either a stable or declining history. Red bats also showed no evidence of population genetic structure, but in contrast to hoary bats, the diversity contained in our red bat samples is consistent with a much larger N e that reflects a demographic expansion after a bottleneck. These results suggest that the impacts of mortality associated with intensive wind-energy development may affect bat species dissimilarly, with red bats potentially better able to absorb sustained mortality than hoary bats because of their larger N e . Our results provide important baseline data and also illustrate the utility of stable isotopes and population genetics for monitoring bat populations affected by wind-energy development. © 2016 by the Ecological Society of America.
Osborne, C.; Cryan, P.M.; O'Shea, T.J.; Oko, L.M.; Ndaluka, C.; Calisher, C.H.; Berglund, A.D.; Klavetter, M.L.; Bowen, R.A.; Holmes, K.V.; Dominguez, S.R.
2011-01-01
Bats are reservoirs for many different coronaviruses (CoVs) as well as many other important zoonotic viruses. We sampled feces and/or anal swabs of 1,044 insectivorous bats of 2 families and 17 species from 21 different locations within Colorado from 2007 to 2009. We detected alphacoronavirus RNA in bats of 4 species: big brown bats (Eptesicus fuscus), 10% prevalence; long-legged bats (Myotis volans), 8% prevalence; little brown bats (Myotis lucifugus), 3% prevalence; and western long-eared bats (Myotis evotis), 2% prevalence. Overall, juvenile bats were twice as likely to be positive for CoV RNA as adult bats. At two of the rural sampling sites, CoV RNAs were detected in big brown and long-legged bats during the three sequential summers of this study. CoV RNA was detected in big brown bats in all five of the urban maternity roosts sampled throughout each of the periods tested. Individually tagged big brown bats that were positive for CoV RNA and later sampled again all became CoV RNA negative. Nucleotide sequences in the RdRp gene fell into 3 main clusters, all distinct from those of Old World bats. Similar nucleotide sequences were found in amplicons from gene 1b and the spike gene in both a big-brown and a long-legged bat, indicating that a CoV may be capable of infecting bats of different genera. These data suggest that ongoing evolution of CoVs in bats creates the possibility of a continued threat for emergence into hosts of other species. Alphacoronavirus RNA was detected at a high prevalence in big brown bats in roosts in close proximity to human habitations (10%) and known to have direct contact with people (19%), suggesting that significant potential opportunities exist for cross-species transmission of these viruses. Further CoV surveillance studies in bats throughout the Americas are warranted.
Osborne, Christina; Cryan, Paul M.; O'Shea, Thomas J.; Oko, Lauren M.; Ndaluka, Christina; Calisher, Charles H.; Berglund, Andrew D.; Klavetter, Mead L.; Holmes, Kathryn V.; Dominguez, Samuel R.; Montgomery, Joel Mark
2011-01-01
Bats are reservoirs for many different coronaviruses (CoVs) as well as many other important zoonotic viruses. We sampled feces and/or anal swabs of 1,044 insectivorous bats of 2 families and 17 species from 21 different locations within Colorado from 2007 to 2009. We detected alphacoronavirus RNA in bats of 4 species: big brown bats (Eptesicus fuscus), 10% prevalence; long-legged bats (Myotis volans), 8% prevalence; little brown bats (Myotis lucifugus), 3% prevalence; and western long-eared bats (Myotis evotis), 2% prevalence. Overall, juvenile bats were twice as likely to be positive for CoV RNA as adult bats. At two of the rural sampling sites, CoV RNAs were detected in big brown and long-legged bats during the three sequential summers of this study. CoV RNA was detected in big brown bats in all five of the urban maternity roosts sampled throughout each of the periods tested. Individually tagged big brown bats that were positive for CoV RNA and later sampled again all became CoV RNA negative. Nucleotide sequences in the RdRp gene fell into 3 main clusters, all distinct from those of Old World bats. Similar nucleotide sequences were found in amplicons from gene 1b and the spike gene in both a big-brown and a long-legged bat, indicating that a CoV may be capable of infecting bats of different genera. These data suggest that ongoing evolution of CoVs in bats creates the possibility of a continued threat for emergence into hosts of other species. Alphacoronavirus RNA was detected at a high prevalence in big brown bats in roosts in close proximity to human habitations (10%) and known to have direct contact with people (19%), suggesting that significant potential opportunities exist for cross-species transmission of these viruses. Further CoV surveillance studies in bats throughout the Americas are warranted.
77 FR 40375 - Receipt of Applications for Endangered Species Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... must receive written data or comments on the applications at the address given below, by August 8, 2012...: Indiana bat Myotis sodalis, Gray bat Myotis grisescens, Virginia big-eared bat Corynorhinus townsendii... following species: Indiana bat Myotis sodalis, Gray bat Myotis grisescens, Virginia big-eared bat...
Goldberg, Tony L; Bennett, Andrew J; Kityo, Robert; Kuhn, Jens H; Chapman, Colin A
2017-07-13
Bats are natural reservoir hosts of highly virulent pathogens such as Marburg virus, Nipah virus, and SARS coronavirus. However, little is known about the role of bat ectoparasites in transmitting and maintaining such viruses. The intricate relationship between bats and their ectoparasites suggests that ectoparasites might serve as viral vectors, but evidence to date is scant. Bat flies, in particular, are highly specialized obligate hematophagous ectoparasites that incidentally bite humans. Using next-generation sequencing, we discovered a novel ledantevirus (mononegaviral family Rhabdoviridae, genus Ledantevirus) in nycteribiid bat flies infesting pteropodid bats in western Uganda. Mitochondrial DNA analyses revealed that both the bat flies and their bat hosts belong to putative new species. The coding-complete genome of the new virus, named Kanyawara virus (KYAV), is only distantly related to that of its closest known relative, Mount Elgon bat virus, and was found at high titers in bat flies but not in blood or on mucosal surfaces of host bats. Viral genome analysis indicates unusually low CpG dinucleotide depletion in KYAV compared to other ledanteviruses and rhabdovirus groups, with KYAV displaying values similar to rhabdoviruses of arthropods. Our findings highlight the possibility of a yet-to-be-discovered diversity of potentially pathogenic viruses in bat ectoparasites.
Quebatte, Maxime; Dehio, Michaela; Tropel, David; Basler, Andrea; Toller, Isabella; Raddatz, Guenter; Engel, Philipp; Huser, Sonja; Schein, Hermine; Lindroos, Hillevi L.; Andersson, Siv G. E.; Dehio, Christoph
2010-01-01
Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system. Moreover, in contrast to the acid-inducible (pH 5.5) homologs ChvG/ChvI of Agrobacterium tumefaciens, BatR/BatS are optimally activated at the physiological pH of blood (pH 7.4). By conservation analysis of the BatR regulon, we show that BatR/BatS are uniquely adapted to upregulate a genus-specific virulence regulon during hemotropic infection in mammals. Thus, we propose that BatR/BatS two-component system homologs represent vertically inherited pH sensors that control the expression of horizontally transmitted gene sets critical for the diverse host-associated life styles of the alphaproteobacteria. PMID:20418395
Clark, Donlad R.; Lollar, Amanda; Cowman, Deborah
1996-01-01
Twenty-three dead and dying Brazilian free-tailed bats from roosts in downtown Mineral Wells, Palo Pinto County, Texas, were tested for rabies and for anticholinesterase (antiChE) effects of or- ganophosphorus (OP) and carbamate pesticides. Seventeen of the 23 bats tested positive for rabies. The cause of death or dying in five of the nonrabid bats is unknown; however, one of the six nonrabid bats had a ChE activity level equivalent to only 27% of the control mean and may have been exposed to a pes- ticide. Three bats (including the bat with depressed ChE) contained sufficient ingesta to analyze for an- tiChE compounds, but no antiChE compounds could be identified in the samples. Exposure may be dermal and pulmonary as well as dietary. It is feasible that other bat deaths not explained by rabies were attributable to a pesticide but missed due to postmortem reactivation of the ChE enzyme. The largest group of rabid bats was young males (13 of 17, 76.5%), and the largest group of nonrabid bats was older females (3 of 6, 50%). All older females were nonrabid, perhaps survivors of the disease in previous years. Rabid bats had a lower mean fat index and weighed less than nonrabid bats. Four bats (not includ- ing the low ChE bat) showed external bleeding, and none was rabid; thus the incidence of bleeding was greater among nonrabid bats than among rabid bats. The four affected bats came from roosts in three different buildings, making a roost-treatment with an anticoagulant chemical seem unlikely.
The Genomes of Two Bat Species with Long Constant Frequency Echolocation Calls.
Dong, Dong; Lei, Ming; Hua, Panyu; Pan, Yi-Hsuan; Mu, Shuo; Zheng, Guantao; Pang, Erli; Lin, Kui; Zhang, Shuyi
2017-01-01
Bats can perceive the world by using a wide range of sensory systems, and some of the systems have become highly specialized, such as auditory sensory perception. Among bat species, the Old World leaf-nosed bats and horseshoe bats (rhinolophoid bats) possess the most sophisticated echolocation systems. Here, we reported the whole-genome sequencing and de novo assembles of two rhinolophoid bats-the great leaf-nosed bat (Hipposideros armiger) and the Chinese rufous horseshoe bat (Rhinolophus sinicus). Comparative genomic analyses revealed the adaptation of auditory sensory perception in the rhinolophoid bat lineages, probably resulting from the extreme selectivity used in the auditory processing by these bats. Pseudogenization of some vision-related genes in rhinolophoid bats was observed, suggesting that these genes have undergone relaxed natural selection. An extensive contraction of olfactory receptor gene repertoires was observed in the lineage leading to the common ancestor of bats. Further extensive gene contractions can be observed in the branch leading to the rhinolophoid bats. Such concordance suggested that molecular changes at one sensory gene might have direct consequences for genes controlling for other sensory modalities. To characterize the population genetic structure and patterns of evolution, we re-sequenced the genome of 20 great leaf-nosed bats from four different geographical locations of China. The result showed similar sequence diversity values and little differentiation among populations. Moreover, evidence of genetic adaptations to high altitudes in the great leaf-nosed bats was observed. Taken together, our work provided a useful resource for future research on the evolution of bats. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yinda, Claude Kwe; Zell, Roland; Deboutte, Ward; Zeller, Mark; Conceição-Neto, Nádia; Heylen, Elisabeth; Maes, Piet; Knowles, Nick J; Ghogomu, Stephen Mbigha; Van Ranst, Marc; Matthijnssens, Jelle
2017-03-23
The order Picornavirales represents a diverse group of positive-stranded RNA viruses with small non-enveloped icosahedral virions. Recently, bats have been identified as an important reservoir of several highly pathogenic human viruses. Since many members of the Picornaviridae family cause a wide range of diseases in humans and animals, this study aimed to characterize members of the order Picornavirales in fruit bat populations located in the Southwest region of Cameroon. These bat populations are frequently in close contact with humans due to hunting, selling and eating practices, which provides ample opportunity for interspecies transmissions. Fecal samples from 87 fruit bats (Eidolon helvum and Epomophorus gambianus), were combined into 25 pools and analyzed using viral metagenomics. In total, Picornavirales reads were found in 19 pools, and (near) complete genomes of 11 picorna-like viruses were obtained from 7 of these pools. The picorna-like viruses possessed varied genomic organizations (monocistronic or dicistronic), and arrangements of gene cassettes. Some of the viruses belonged to established families, including the Picornaviridae, whereas others clustered distantly from known viruses and most likely represent novel genera and families. Phylogenetic and nucleotide composition analyses suggested that mammals were the likely host species of bat sapelovirus, bat kunsagivirus and bat crohivirus, whereas the remaining viruses (named bat iflavirus, bat posalivirus, bat fisalivirus, bat cripavirus, bat felisavirus, bat dicibavirus and bat badiciviruses 1 and 2) were most likely diet-derived. The existence of a vast genetic variability of picorna-like viruses in fruit bats may increase the probability of spillover infections to humans especially when humans and bats have direct contact as the case in this study site. However, further screening for these viruses in humans will fully indicate their zoonotic potential.
Tools to study pathogen-host interactions in bats.
Banerjee, Arinjay; Misra, Vikram; Schountz, Tony; Baker, Michelle L
2018-03-15
Bats are natural reservoirs for a variety of emerging viruses that cause significant disease in humans and domestic animals yet rarely cause clinical disease in bats. The co-evolutionary history of bats with viruses has been hypothesized to have shaped the bat-virus relationship, allowing both to exist in equilibrium. Progress in understanding bat-virus interactions and the isolation of bat-borne viruses has been accelerated in recent years by the development of susceptible bat cell lines. Viral sequences similar to severe acute respiratory syndrome corona virus (SARS-CoV) have been detected in bats, and filoviruses such as Marburg virus have been isolated from bats, providing definitive evidence for the role of bats as the natural host reservoir. Although viruses can be readily detected in bats using molecular approaches, virus isolation is far more challenging. One of the limitations in using traditional culture systems from non-reservoir species is that cell types and culture conditions may not be compatible for isolation of bat-borne viruses. There is, therefore, a need to develop additional bat cell lines that correspond to different cell types, including less represented cell types such as immune cells, and culture them under more physiologically relevant conditions to study virus host interactions and for virus isolation. In this review, we highlight the current progress in understanding bat-virus interactions in bat cell line systems and some of the challenges and limitations associated with cell lines. Future directions to address some of these challenges to better understand host-pathogen interactions in these intriguing mammals are also discussed, not only in relation to viruses but also other pathogens carried by bats including bacteria and fungi. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, He-Qun; Wei, Jing-Kuan; Li, Bo; Wang, Ming-Shan; Wu, Rui-Qi; Rizak, Joshua D; Zhong, Li; Wang, Lu; Xu, Fu-Qiang; Shen, Yong-Yi; Hu, Xin-Tian; Zhang, Ya-Ping
2015-06-23
Dim-light vision is present in all bats, but is divergent among species. Old-World fruit bats (Pteropodidae) have fully developed eyes; the eyes of insectivorous bats are generally degraded, and these bats rely on well-developed echolocation. An exception is the Emballonuridae, which are capable of laryngeal echolocation but prefer to use vision for navigation and have normal eyes. In this study, integrated methods, comprising manganese-enhanced magnetic resonance imaging (MEMRI), f-VEP and RNA-seq, were utilized to verify the divergence. The results of MEMRI showed that Pteropodidae bats have a much larger superior colliculus (SC)/ inferior colliculus (IC) volume ratio (3:1) than insectivorous bats (1:7). Furthermore, the absolute visual thresholds (log cd/m(2)•s) of Pteropodidae (-6.30 and -6.37) and Emballonuridae (-3.71) bats were lower than those of other insectivorous bats (-1.90). Finally, genes related to the visual pathway showed signs of positive selection, convergent evolution, upregulation and similar gene expression patterns in Pteropodidae and Emballonuridae bats. Different results imply that Pteropodidae and Emballonuridae bats have more developed vision than the insectivorous bats and suggest that further research on bat behavior is warranted.
Rabies-Related Knowledge and Practices Among Persons At Risk of Bat Exposures in Thailand
Robertson, Kis; Lumlertdacha, Boonlert; Franka, Richard; Petersen, Brett; Bhengsri, Saithip; Henchaichon, Sununta; Peruski, Leonard F.; Baggett, Henry C.; Maloney, Susan A.; Rupprecht, Charles E.
2011-01-01
Background Rabies is a fatal encephalitis caused by lyssaviruses. Evidence of lyssavirus circulation has recently emerged in Southeast Asian bats. A cross-sectional study was conducted in Thailand to assess rabies-related knowledge and practices among persons regularly exposed to bats and bat habitats. The objectives were to identify deficiencies in rabies awareness, describe the occurrence of bat exposures, and explore factors associated with transdermal bat exposures. Methods A survey was administered to a convenience sample of adult guano miners, bat hunters, game wardens, and residents/personnel at Buddhist temples where mass bat roosting occurs. The questionnaire elicited information on demographics, experience with bat exposures, and rabies knowledge. Participants were also asked to describe actions they would take in response to a bat bite as well as actions for a bite from a potentially rabid animal. Bivariate analysis was used to compare responses between groups and multivariable logistic regression was used to explore factors independently associated with being bitten or scratched by a bat. Findings Of 106 people interviewed, 11 (10%) identified bats as a potential source of rabies. A history of a bat bite or scratch was reported by 29 (27%), and 38 (36%) stated either that they would do nothing or that they did not know what they would do in response to a bat bite. Guano miners were less likely than other groups to indicate animal bites as a mechanism of rabies transmission (68% vs. 90%, p = 0.03) and were less likely to say they would respond appropriately to a bat bite or scratch (61% vs. 27%, p = 0.003). Guano mining, bat hunting, and being in a bat cave or roost area more than 5 times a year were associated with history of a bat bite or scratch. Conclusions These findings indicate the need for educational outreach to raise awareness of bat rabies, promote exposure prevention, and ensure appropriate health-seeking behaviors for bat-inflicted wounds, particularly among at-risk groups in Thailand. PMID:21738801
Evidence of Lagos bat virus circulation among Nigerian fruit bats.
Dzikwi, Asabe A; Kuzmin, Ivan I; Umoh, Jarlath U; Kwaga, Jacob K P; Ahmad, Aliyu A; Rupprecht, Charles E
2010-01-01
During lyssavirus surveillance, 350 brains from four species of fruit bats and one species of insectivorous bat were collected from seven locations in Northern Nigeria during May to October, 2006. Lyssavirus antigen was not detected in the brains, and isolation attempts in mice were unsuccessful. However, serologic tests demonstrated the presence of lyssavirus-neutralizing antibodies in bat sera. Of 140 sera tested, 27 (19%) neutralized Lagos bat virus, and two of these additionally neutralized Mokola virus. The positive samples originated from the straw-colored fruit bat (Eidolon helvum) and the Gambian epaulet bat (Epomophorus gambianus). No neutralizing activity was detected against other lyssaviruses including rabies, Duvenhage, and West Caucasian bat viruses.
Bowen, Richard A.; O'Shea, Thomas J.; Shankar, Vidya; Neubaum, Melissa A.; Neubaum, Daniel J.; Rupprecht, Charles E.
2013-01-01
We determined the presence of rabies-virus-neutralizing antibodies (RVNA) in serum of 721 insectivorous bats of seven species captured, sampled, and released in Colorado and New Mexico, United States in 2003-2005. A subsample of 160 bats was tested for rabies-virus RNA in saliva. We sampled little brown bats (Myotis lucifugus) at two maternity roosts in Larimer County, Colorado; big brown bats (Eptesicus fuscus) at three maternity roosts in Morgan County, Colorado; and big brown bats at five maternity roosts in Larimer County. We also sampled hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans) captured while drinking or foraging over water in Bernalillo County, New Mexico and at various locations in Larimer County. Big brown bats, little brown bats, long-legged myotis (Myotis volans), long-eared myotis (Myotis evotis), and fringed myotis (Myotis thysanodes) were also sampled over water in Larimer County. All species except long-eared myotis included individuals with RVNA, with prevalences ranging from 7% in adult female silver-haired bats to 32% in adult female hoary bats. None of the bats had detectable rabies-virus RNA in oropharyngeal swabs, including 51 bats of 5 species that had RVNA in serum. Antibody-positive bats were present in nine of the 10 maternity colonies sampled. These data suggest that wild bats are commonly exposed to rabies virus and develop a humoral immune response suggesting some degree of viral replication, but many infections fail to progress to clinical disease.
... Influenza Types Seasonal Avian Swine Variant Pandemic Other Bat Influenza (Flu) Questions & Answers Language: English (US) Español ... How was bat flu discovered? References What is bat influenza (flu)? Bat flu refers to influenza A ...
Alacid, Beatriz
2018-01-01
This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR) images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images. PMID:29316716
Obameso, Joseph O; Li, Hong; Jia, Hao; Han, Min; Zhu, Shiyan; Huang, Canping; Zhao, Yuhui; Zhao, Min; Bai, Yu; Yuan, Fei; Zhao, Honglan; Peng, Xia; Xu, Wen; Tan, Wenjie; Zhao, Yingze; Yuen, Kwok-Yung; Liu, William J; Lu, Lin; Gao, George F
2017-12-01
Bats are connected with the increasing numbers of emerging and re-emerging viruses that may break the species barrier and spread into the human population. Coronaviruses are one of the most common viruses discovered in bats, which were considered as the natural source of recent human-susceptible coronaviruses, i.e. SARS-COV and MERS-CoV. Our previous study reported the discovery of a bat-derived putative cross-family recombinant coronavirus with a reovirus gene p10, named as Ro-BatCoV GCCDC1. In this report, through a two-year follow-up of a special bat population in one specific cave of south China, we illustrate that Ro-BatCoV GCCDC1 persistently circulates among bats. Notably, through the longitudinal observation, we identified the dynamic evolution of Ro-BatCoV GCCDC1 in bats represented by continuously recombination events. Our study provides the first glimpse of the virus evolution in one longitudinally observed bat population cohort and underlines the surveillance and pre-warning of potential interspecies transmittable viruses in bats.
Dong, Dong; Lei, Ming; Liu, Yang; Zhang, Shuyi
2013-12-23
Bats have aroused great interests of researchers for the sake of their advanced echolocation system. However, this highly specialized trait is not characteristic of Old World fruit bats. To comprehensively explore the underlying molecular basis between echolocating and non-echolocating bats, we employed a sequence-based approach to compare the inner ear expression difference between the Rickett's big-footed bat (Myotis ricketti, echolocating bat) and the Greater short-nosed fruit bat (Cynopterus sphinx, non-echolocating bat). De novo sequence assemblies were developed for both species. The results showed that the biological implications of up-regulated genes in M. ricketti were significantly over-represented in biological process categories such as 'cochlea morphogenesis', 'inner ear morphogenesis' and 'sensory perception of sound', which are consistent with the inner ear morphological and physiological differentiation between the two bat species. Moreover, the expression of TMC1 gene confirmed its important function in echolocating bats. Our work presents the first transcriptome comparison between echolocating and non-echolocating bats, and provides information about the genetic basis of their distinct hearing traits.
BAT-BORNE RABIES IN LATIN AMERICA
Escobar, Luis E.; Peterson, A. Townsend; Favi, Myriam; Yung, Verónica; Medina-Vogel, Gonzalo
2015-01-01
The situation of rabies in America is complex: rabies in dogs has decreased dramatically, but bats are increasingly recognized as natural reservoirs of other rabies variants. Here, bat species known to be rabies-positive with different antigenic variants, are summarized in relation to bat conservation status across Latin America. Rabies virus is widespread in Latin American bat species, 22.5%75 of bat species have been confirmed as rabies-positive. Most bat species found rabies positive are classified by the International Union for Conservation of Nature as “Least Concern”. According to diet type, insectivorous bats had the most species known as rabies reservoirs, while in proportion hematophagous bats were the most important. Research at coarse spatial scales must strive to understand rabies ecology; basic information on distribution and population dynamics of many Latin American and Caribbean bat species is needed; and detailed information on effects of landscape change in driving bat-borne rabies outbreaks remains unassessed. Finally, integrated approaches including public health, ecology, and conservation biology are needed to understand and prevent emergent diseases in bats. PMID:25651328
Young, Megan K; El Saadi, Debra; McCall, Bradley J
2014-04-01
Ongoing potential exposure of members of the public to Australian bat lyssavirus (ABLV) in South East Queensland, Australia, prompted investigation of community knowledge, risk perception, and intention to handle bats to inform future prevention efforts. After pilot testing, a computer-assisted telephone survey of a representative sample of 700 adults without previous potential exposure to ABLV was undertaken in the defined geographic region. Twenty-four percent of eligible contacted individuals participated. Basic knowledge of bats and ABLV was generally high, with 65% of participants answering nine or more of 12 knowledge questions correctly. The perceived risk that bats pose to human health was also high, with 93% indicating some degree of risk. Although 88% of participants indicated they would handle bats in one or more of the scripted situations, overall intention to handle bats was low, with 59% indicating they would handle a bat in four or less of the 12 scenarios. Younger males with lower risk perception of bats most frequently indicated intention to handle bats in varying situations. Knowledge score was not associated with intention to handle bats on multivariate modeling. Future public health prevention efforts, both in Australia and overseas, should focus further on conveying the risk to humans and to bats when nontrained, nonvaccinated people attempt to handle bats rather than attempting to purely convey knowledge about bats and ABLV or rabies. Suitable alternative measures to handling should be included. Younger adult males are a particular target group for prevention efforts.
Cross Validation of Rain Drop Size Distribution between GPM and Ground Based Polarmetric radar
NASA Astrophysics Data System (ADS)
Chandra, C. V.; Biswas, S.; Le, M.; Chen, H.
2017-12-01
Dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core satellite has reflectivity measurements at two independent frequencies, Ku- and Ka- band. Dual-frequency retrieval algorithms have been developed traditionally through forward, backward, and recursive approaches. However, these algorithms suffer from "dual-value" problem when they retrieve medium volume diameter from dual-frequency ratio (DFR) in rain region. To this end, a hybrid method has been proposed to perform raindrop size distribution (DSD) retrieval for GPM using a linear constraint of DSD along rain profile to avoid "dual-value" problem (Le and Chandrasekar, 2015). In the current GPM level 2 algorithm (Iguchi et al. 2017- Algorithm Theoretical Basis Document) the Solver module retrieves a vertical profile of drop size distributionn from dual-frequency observations and path integrated attenuations. The algorithm details can be found in Seto et al. (2013) . On the other hand, ground based polarimetric radars have been used for a long time to estimate drop size distributions (e.g., Gorgucci et al. 2002 ). In addition, coincident GPM and ground based observations have been cross validated using careful overpass analysis. In this paper, we perform cross validation on raindrop size distribution retrieval from three sources, namely the hybrid method, the standard products from the solver module and DSD retrievals from ground polarimetric radars. The results are presented from two NEXRAD radars located in Dallas -Fort Worth, Texas (i.e., KFWS radar) and Melbourne, Florida (i.e., KMLB radar). The results demonstrate the ability of DPR observations to produce DSD estimates, which can be used subsequently to generate global DSD maps. References: Seto, S., T. Iguchi, T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual-frequency radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 51(12), 5239-5251. Gorgucci, E., Chandrasekar, V., Bringi, V. N., and Scarchilli, G.: Estimation of Raindrop Size Distribution Parameters from Polarimetric Radar Measurements, J. Atmos. Sci., 59, 2373-2384, doi:10.1175/1520-0469(2002)0592.0.CO;2, 2002.
An Analysis of Drop Outs and Unusual Behavior from Primary and Secondary Radar
NASA Astrophysics Data System (ADS)
Allen, Nicholas J.
An evaluation of the radar systems in the Red River Valley of North Dakota (ND) and its surrounding areas for its ability to provide Detect and Avoid (DAA) capabilities for manned and unmanned aircraft systems (UAS) was performed. Additionally, the data was analyzed for its feasibility to be used in autonomous Air Traffic Control (ATC) systems in the future. With the almost certain increase in airspace congestion over the coming years, the need for a robust and accurate radar system is crucial. This study focused on the Airport Surveillance Radar (ASR) at Fargo, ND and the Air Route Surveillance Radar at Finley, ND. Each of these radar sites contain primary and secondary radars. It was found that both locations exhibit data anomalies, such as: drop outs, altitude outliers, prolonged altitude failures, repeated data, and multiple aircraft with the same identification number (ID) number. Four weeks of data provided by Harris Corporation throughout the year were analyzed using a MATLAB algorithm developed to identify the data anomalies. The results showed Fargo intercepts on average 450 aircraft, while Finley intercepts 1274 aircraft. Of these aircraft an average of 34% experienced drop outs at Fargo and 69% at Finley. With the average drop out at Fargo of 23.58 seconds and 42.45 seconds at Finley, and several lasting more than several minutes, it shows these data anomalies can occur for an extended period of time. Between 1% to 26% aircraft experienced the other data anomalies, depending on the type of data anomaly and location. When aircraft were near airports or the edge of the effective radar radius, the largest proportion of data anomalies were experienced. It was also discovered that drop outs, altitude outliers, andrepeated data are radar induced errors, while prolonged altitude failures and multiple aircraft with the same ID are transponder induced errors. The risk associated with each data anomaly, by looking at the severity of the event and the occurrence was also produced. The findings from this report will provide meaningful data and likely influence the development of UAS DAA logic and the logic behind autonomous ATC systems.
Post-White-nose syndrome trends in Virginia’s cave bats, 2008-2013
Powers, Karen E.; Reynolds, Richard J.; Orndorff, Wil; Ford, W. Mark; Hobson, Christopher S.
2015-01-01
Since its 2009 detection in Virginia hibernacula, the fungal pathogen Pseudogymnoascus destructans causing White-nose Syndrome (WNS) has had a marked impact on cave bats locally. From 2008-2013, we documented numeric and physiologic changes in cave bats through fall swarm (FS), early hibernation (EH), and late hibernation (LH) capture and banding surveys at 18 hibernacula in western Virginia. We coupled active surveys with passive biennial winter counts in 2009, 2011, and 2013. We compared individual body mass index (BMI) across years for FS, EH, and LH hibernation to determine if WNS impacts on extant bats would be manifested by changes in body condition (as anecdotally observed elsewhere for WNS-impacted bats) as well as a population reduction. To estimate percent declines in bat presence or relative activity, we used FS capture per-unit-effort data, and the winter hibernacula absolute counts. We captured 4,524 bats of eight species, with species-specific capture success declining by 75-100% post-WNS. Little brown bats (Myotis lucifugus) exhibited the greatest declines in winter hibernacula counts (AVG. = 99.0% decline), followed by tri-colored bats (Perimyotis subflavus; 89.5% decline) and Indiana bats (M. sodalis; 33.5% decline). Graphical analyses of captures-per-trap-hour in FS showed declines for little brown bats, tri-colored bats, and northern long-eared bats (M. septentrionalis), but suggest a modest rebound of Indiana bat numbers. Fall swarm trends in BMI suggested some drops post-WNS exposure, but these trends were not consistent across sexes or seasonal time blocks. Our inconclusive BMI metrics and little brown bat band recapture data suggest little competitive advantage or selection for surviving bats. Lesser (but apparent) declines in Indiana bat numbers mirrors trends seen elsewhere regionally, and band recoveries do show that some individuals are persisting. Additional surveys will determine if bats in Virginia will persist or face extirpation due to presumed low recruitment and survivorship.
A guide to processing bat acoustic data for the North American Bat Monitoring Program (NABat)
Reichert, Brian; Lausen, Cori; Loeb, Susan; Weller, Ted; Allen, Ryan; Britzke, Eric; Hohoff, Tara; Siemers, Jeremy; Burkholder, Braden; Herzog, Carl; Verant, Michelle
2018-06-14
The North American Bat Monitoring Program (NABat) aims to improve the state of conservation science for all species of bats shared by the United States, Canada, and Mexico. To accomplish this goal, NABat offers guidance and standardized protocols for acoustic monitoring of bats. In this document, “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program (NABat),” we provide general recommendations and specific workflows for the process of identifying bat species from acoustic files recorded using the NABat stationary point and mobile transect acoustic monitoring protocols.
1993-05-20
up/cool-down cycles have been made. A cool-down procedure which avoids the "Q- virus " problem has been identified. I. INTRODUCTION The first Cornell B...at Cornell the cavity attempt to identify our susceptibility to the "Q- virus ". All was rinsed with methanol sprayed at -40 psi, dried in a class tests...34Q- virus " (see [4] for the most recent summary of outbreaks and causes). The indication that Figure 3. Qo vs Eacc for the cavity test after etching. RF
Ohta, Yoichi; Ishii, Yasumitsu; Ikudome, Sachi; Nakamoto, Hiroki
2014-02-01
The effects of weighted bat warm-up on adjustment of upper limb muscle activity were investigated during baseball bat swinging under dynamic conditions that require a spatial and temporal adjustment of the swinging to hit a moving target. Seven male college baseball players participated in this study. Using a batting simulator, the task was to swing the standard bat coincident with the arrival timing and position of a moving target after three warm-up swings using a standard or weighted bat. There was no significant effect of weighted bat warm-up on muscle activity before impact associated with temporal or spatial movement corrections. However, lower inhibition of the extensor carpi ulnaris muscle activity was observed in a velocity-changed condition in the weighted bat warm-up, as compared to a standard bat warm-up. It is suggested that weighted bat warm-up decreases the adjustment ability associated with inhibition of muscle activation under movement correction conditions.
Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).
Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei
2013-02-01
Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.
Bat rabies surveillance in France: first report of unusual mortality among serotine bats.
Picard-Meyer, Evelyne; Servat, Alexandre; Wasniewski, Marine; Gaillard, Matthieu; Borel, Christophe; Cliquet, Florence
2017-12-13
Rabies is a fatal viral encephalitic disease that is caused by lyssaviruses which can affect all mammals, including human and bats. In Europe, bat rabies cases are attributed to five different lyssavirus species, the majority of rabid bats being attributed to European bat 1 lyssavirus (EBLV-1), circulating mainly in serotine bats (Eptesicus serotinus). In France, rabies in bats is under surveillance since 1989, with 77 positive cases reported between 1989 and 2016. In the frame of the bat rabies surveillance, an unusual mortality of serotine bats was reported in 2009 in a village in North-East France. Six juvenile bats from an E. serotinus maternity colony counting ~200 individuals were found to be infected with EBLV-1. The active surveillance of the colony by capture sessions of bats from July to September 2009 showed a high detection rate of neutralising EBLV-1 antibodies (≈ 50%) in the colony. Moreover, one out of 111 animals tested was found to shed viable virus in saliva, while lyssavirus RNA was detected by RT-PCR for five individuals. This study demonstrated that the lyssavirus infection in the serotine maternity colony was followed by a high rate of bat rabies immunity after circulation of the virus in the colony. The ratio of seropositive bats is probably indicative of an efficient virus transmission coupled to a rapid circulation of EBLV-1 in the colony.
Insect prey eaten by Hoary Bats (Lasiurus cinereus) prior to fatal collisions with wind turbines
Valdez, Ernest W.; Cryan, Paul M.
2013-01-01
Wind turbines are being deployed all across the world to meet the growing demand for energy, and in many areas, these turbines are causing the deaths of insectivorous migratory bats. One of the hypothesized causes of bat susceptibility is that bats are attracted to insects on or near the turbines. We examined insect remains in the stomachs and intestines of hoary bats (Lasiurus cinereus) found dead beneath wind turbines in New York and Texas to evaluate the hypothesis that bats die while feeding at turbines. Most of the bats we examined had full stomachs, indicating that they fed in the minutes to hours leading up to their deaths. However, we did not find prey in the mouths or throats of any bats that would indicate the bats died while capturing prey. Hoary bats fed mostly on moths, but we also detected the regular presence of beetles, true bugs, and crickets. Presence of terrestrial insects in stomachs indicates that bats may have gleaned them from the ground or the turbine surfaces, yet aerial capture of winged insect stages cannot be ruled out. Our findings confirm earlier studies that indicate hoary bats feed during migration and eat mostly moths. Future studies on bat behaviors and insect presence at wind turbines could help determine whether feeding at turbines is a major fatality risk for bats.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-12
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-69038; File No. SR-BATS-2013-016] Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing of a Proposed Rule Change To Modify the BATS..., 2013, BATS Exchange, Inc. (the ``Exchange'' or ``BATS'') filed with the Securities and Exchange...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
...-Regulatory Organizations; BATS Y-Exchange, Inc.; Order Approving a Proposed Rule Change To Amend BATS Y-Exchange, Inc. Rule 2.12 to Make Permanent the Pilot Program That Permits BATS Y-Exchange, Inc. To Receive Inbound Routes of Equities Orders Through BATS Trading, Inc., BATS Y-Exchange's Routing Broker-Dealer...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-61960; File No. SR-BATS-2010-008] Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing of Proposed Rule Change To Amend BATS Rules 2... given that on April 9, 2010, BATS Exchange, Inc. (the ``Exchange'' or ``BATS'') filed with the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65113; File No. SR-BATS-2011-028] Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing of Proposed Rule Change To Amend BATS Rule 11... on August 8, 2011, BATS Exchange, Inc. (the ``Exchange'' or ``BATS'') filed with the Securities and...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-62340; File No. SR-BATS-2010-016] Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing of Proposed Rule Change To Amend BATS Rule 11... on June 17, 2010, BATS Exchange, Inc. (the ``Exchange'' or ``BATS'') filed with the Securities and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-64475; File No. SR-BATS-2011-015] Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing of Proposed Rule Change by BATS Exchange, Inc. To Amend BATS Rule 11.9, Entitled ``Orders and Modifiers'' and BATS Rule 11.13, Entitled ``Order...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-66571; File No. SR-BATS-2012-013] Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing of Proposed Rule Change by BATS Exchange, Inc. to Amend BATS Rule 2.12, Entitled ``BATS Trading, Inc. as Inbound Router'' March 12, 2012. Pursuant...
Isolation of Salmonella Virchow from a fruit bat (Pteropus giganteus).
Islam, Ausraful; Mikolon, Andrea; Mikoleit, Matthew; Ahmed, Dilruba; Khan, Salah Udddin; Sharker, M A Yushuf; Hossain, M Jahangir; Islam, Ariful; Epstein, Jonathan H; Zeidner, Nord; Luby, Stephen P
2013-12-01
Detection of zoonotic pathogens carried by bats is important both for understanding disease ecology and for developing preventive measures. Pteropus fruit bats have been identified as potential carriers of Salmonella enterica serotype Typhi. A cross-sectional study was conducted to determine the prevalence of Salmonella Typhi and other Salmonella serotypes in Pteropus giganteus fruit bats in Bangladesh. Rectal swabs were collected from 302 bats and cultured for Salmonella species. The bats were trapped in three districts (Faridpur, Rajbari, and Cox's Bazar). Salmonella Typhi was not found but one juvenile female bat from Faridpur district was positive for Salmonella Virchow. Close associations between frugivorous bats, humans, and livestock in rural Bangladesh make it likely that the bat was infected by consuming contaminated water.
DOT National Transportation Integrated Search
1997-11-01
This report presents the findings of the study team on a Federal Highway Administration (FHWA) International Scanning Tour to the countries of Finland, Sweden, the Netherlands, and England. The tour was unique in that it represented the first time th...
NASA Astrophysics Data System (ADS)
Berthier, Etienne; Larsen, Christopher; Durkin, William J.; Willis, Michael J.; Pritchard, Matthew E.
2018-04-01
The large Juneau and Stikine icefields (Alaska) lost mass rapidly in the second part of the 20th century. Laser altimetry, gravimetry and field measurements suggest continuing mass loss in the early 21st century. However, two recent studies based on time series of Shuttle Radar Topographic Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation models (DEMs) indicate a slowdown in mass loss after 2000. Here, the ASTER-based geodetic mass balances are recalculated carefully avoiding the use of the SRTM DEM because of the unknown penetration depth of the C-band radar signal. We find strongly negative mass balances from 2000 to 2016 (-0.68 ± 0.15 m w.e. a-1 for the Juneau Icefield and -0.83 ± 0.12 m w.e. a-1 for the Stikine Icefield), in agreement with laser altimetry, confirming that mass losses are continuing at unabated rates for both icefields. The SRTM DEM should be avoided or used very cautiously to estimate glacier volume change, especially in the North Hemisphere and over timescales of less than ˜ 20 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ducummon, S.L.
Inactive underground mines now provide essential habitat for more than half of North America`s 44 bat species, including some of the largest remaining populations. Thousands of abandoned mines have already been closed or are slated for safety closures, and many are destroyed during renewed mining in historic districts. The available evidence suggests that millions of bats have already been lost due to these closures. Bats are primary predators of night-flying insects that cost American farmers and foresters billions of dollars annually, therefore, threats to bat survival are cause for serious concern. Fortunately, mine closure methods exist that protect both batsmore » and humans. Bat Conservation International (BCI) and the USDI-Bureau of Land Management founded the North American Bats and Mines Project to provide national leadership and coordination to minimize the loss of mine-roosting bats. This partnership has involved federal and state mine-land and wildlife managers and the mining industry. BCI has trained hundreds of mine-land and wildlife managers nationwide in mine assessment techniques for bats and bat-compatible closure methods, published technical information on bats and mine-land management, presented papers on bats and mines at national mining and wildlife conferences, and collaborated with numerous federal, state, and private partners to protect some of the most important mine-roosting bat populations. Our new mining industry initiative, Mining for Habitat, is designed to develop bat habitat conservation and enhancement plans for active mining operations. It includes the creation of cost-effective artificial underground bat roosts using surplus mining materials such as old mine-truck tires and culverts buried beneath waste rock.« less
First isolation and genotyping of Toxoplasma gondii from bats (Mammalia: Chiroptera).
Cabral, A D; Gama, A R; Sodré, M M; Savani, E S M M; Galvão-Dias, M A; Jordão, L R; Maeda, M M; Yai, L E O; Gennari, S M; Pena, H F J
2013-03-31
There are currently no reports on the isolation and molecular examination of Toxoplasma gondii from bats. Here, we report the isolation and genotypic characterisation of two T. gondii isolates from bats. A total of 369 bats from different municipalities in São Paulo state, southeastern Brazil, were captured and euthanised, and collected tissues (heart and pectoral muscle) were processed for each bat or in pools of two or three bats and bioassayed in mice (a total of 283 bioassays). Eleven PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) markers were used to genotype positive samples: SAG1, SAG2 (5'-3'SAG2 and alt. SAG2), SAG3, BTUB, GRA6, L358, c22-8, c29-2, PK1, CS3 and Apico. The parasite was isolated from two bats from São Paulo city: an insectivorous bat, the velvety free-tailed bat Molossus molossus, and a hematophagous bat, the common vampire bat Desmodus rotundus. Isolates were designated TgBatBr1 and TgBatBr2, respectively. The genotype of the isolate from M. molossus (TgBatBr1) has been previously described in an isolate from a capybara from São Paulo state, and the genotype from the D. rotundus isolate (TgBatBr2) has already been identified in isolates from cats, chickens, capybaras, sheep, a rodent and a common rabbit from different Brazilian states, suggesting that this may be a common T. gondii lineage circulating in some Brazilian regions. Isolation of T. gondii from a hematophagous species is striking. This study reveals that bats can share the same isolates that are found in domesticated and wild terrestrial animals. This is the first report of the isolation and genotyping of T. gondii in chiropterans. Copyright © 2012 Elsevier B.V. All rights reserved.
Bat Rabies and Other Lyssavirus Infections
Constantine, Denny G.; Blehert, David S.
2009-01-01
Bat Rabies and Other Lyssavirus Infections offers readers an overview of the virus variants that cause bat rabies, and geographical patterns in occurrence of this disease. The section Species Susceptibility describes infection rates and trends among bats, humans, and other animals. Disease Ecology considers the biological and environmental dynamics of the disease in various species of bats. Points to Ponder: Interspecies Interactions in Potential Bat Rabies Transmission Settings discusses the narrowing interface of bat colonies and human society and how humans and domestic animals play a role in transmission of bat rabies. Disease Prevention and Control outlines how to limit exposure to rabid bats and other animals. Appendixes include extensive tables of reported infections in bat species and in humans, and a glossary of technical terms is included. The author, Denny G. Constantine, helped define rabies infection in insect-eating bats and has investigated bat rabies ecology for more than half a century. He has authored more than 90 papers during the course of his career and is widely considered to be the world's foremost authority on the disease. Currently, Dr. Constantine is a public health officer emeritus and veterinary epidemiologist for the California Department of Health Services Viral and Rickettsial Disease Laboratory. Milt Friend, first director of the USGS National Wildlife Health Center, wrote the foreword. David Blehert, a USGS microbiologist who is investigating the emergence and causes of bat white-nose syndrome, edited the volume. Bat Rabies is intended for scholars and the general public. Dr. Constantine presents the material in a simple, straightforward manner that serves both audiences. The goal of the author is to increase people's understanding of both bat and disease ecology and also provide a balanced perspective on human risks pertaining to bat rabies.
Liu, He-Qun; Wei, Jing-Kuan; Li, Bo; Wang, Ming-Shan; Wu, Rui-Qi; Rizak, Joshua D.; Zhong, Li; Wang, Lu; Xu, Fu-Qiang; Shen, Yong-Yi; Hu, Xin-Tian; Zhang, Ya-Ping
2015-01-01
Dim-light vision is present in all bats, but is divergent among species. Old-World fruit bats (Pteropodidae) have fully developed eyes; the eyes of insectivorous bats are generally degraded, and these bats rely on well-developed echolocation. An exception is the Emballonuridae, which are capable of laryngeal echolocation but prefer to use vision for navigation and have normal eyes. In this study, integrated methods, comprising manganese-enhanced magnetic resonance imaging (MEMRI), f-VEP and RNA-seq, were utilized to verify the divergence. The results of MEMRI showed that Pteropodidae bats have a much larger superior colliculus (SC)/ inferior colliculus (IC) volume ratio (3:1) than insectivorous bats (1:7). Furthermore, the absolute visual thresholds (log cd/m2•s) of Pteropodidae (−6.30 and −6.37) and Emballonuridae (−3.71) bats were lower than those of other insectivorous bats (−1.90). Finally, genes related to the visual pathway showed signs of positive selection, convergent evolution, upregulation and similar gene expression patterns in Pteropodidae and Emballonuridae bats. Different results imply that Pteropodidae and Emballonuridae bats have more developed vision than the insectivorous bats and suggest that further research on bat behavior is warranted. PMID:26100095
Serological Evidence of Lyssavirus Infection among Bats in Nagaland, a North-Eastern State in India.
Mani, R S; Dovih, D P; Ashwini, M A; Chattopadhyay, B; Harsha, P K; Garg, K M; Sudarshan, S; Puttaswamaiah, R; Ramakrishnan, U; Madhusudana, S N
2017-06-01
Bats are known to be reservoirs of several medically important viruses including lyssaviruses. However, no systematic surveillance for bat rabies has been carried out in India, a canine rabies endemic country with a high burden of human rabies. Surveillance for rabies virus (RABV) infection in bats was therefore carried out in Nagaland, a north-eastern state in India at sites with intense human-bat interfaces during traditional bat harvests. Brain tissues and sera from bats were tested for evidence of infection due to RABV. Brain tissues were subjected to the fluorescent antibody test for detection of viral antigen and real-time reverse transcriptase PCR for presence of viral RNA. Bat sera were tested for the presence of rabies neutralizing antibodies by the rapid fluorescent focus inhibition test. None of the bat brains tested (n = 164) were positive for viral antigen or viral RNA. However, rabies neutralizing antibodies were detected in 4/78 (5·1%) bat sera tested, suggesting prior exposure to RABV or related lyssaviruses. The serological evidence of lyssaviral infection in Indian bats may have important implications in disease transmission and rabies control measures, and warrant extensive bat surveillance to better define the prevalence of lyssaviral infection in bats.
Large roads reduce bat activity across multiple species.
Kitzes, Justin; Merenlender, Adina
2014-01-01
Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations.
Seasonal reliance on nectar by an insectivorous bat revealed by stable isotopes.
Frick, Winifred F; Shipley, J Ryan; Kelly, Jeffrey F; Heady, Paul A; Kay, Kathleen M
2014-01-01
Many animals have seasonally plastic diets to take advantage of seasonally abundant plant resources, such as fruit or nectar. Switches from insectivorous diets that are protein rich to fruits or nectar that are carbohydrate rich present physiological challenges, but are routinely done by insectivorous songbirds during migration. In contrast, insectivorous bat species are not known to switch diets to consume fruit or nectar. Here, we use carbon stable isotope ratios to establish the first known case of a temperate bat species consuming substantial quantities of nectar during spring. We show that pallid bats (Antrozous pallidus) switch from a diet indistinguishable from that of sympatric insectivorous bat species in winter (when no cactus nectar is present) to a diet intermediate between those of insectivorous bats and nectarivorous bats during the spring bloom of a bat-adapted cactus species. Combined with previous results that established that pallid bats are effective pollinators of the cardon cactus (Pachycereus pringlei), our results suggest that the interaction between pallid bats and cardon cacti represents the first-known plant-pollinator mutualism between a plant and a temperate bat. Diet plasticity in pallid bats raises questions about the degree of physiological adaptations of insectivorous bats for incorporation of carbohydrate-rich foods, such as nectar or fruit, into the diet.
Luo, Yun; Li, Bei; Jiang, Ren-Di; Hu, Bing-Jie; Luo, Dong-Sheng; Zhu, Guang-Jian; Hu, Ben; Liu, Hai-Zhou; Zhang, Yun-Zhi; Yang, Xing-Lou; Shi, Zheng-Li
2018-02-01
Previous studies indicated that fruit bats carry two betacoronaviruses, BatCoV HKU9 and BatCoV GCCDC1. To investigate the epidemiology and genetic diversity of these coronaviruses, we conducted a longitudinal surveillance in fruit bats in Yunnan province, China during 2009-2016. A total of 59 (10.63%) bat samples were positive for the two betacorona-viruses, 46 (8.29%) for HKU9 and 13 (2.34%) for GCCDC1, or closely related viruses. We identified a novel HKU9 strain, tentatively designated as BatCoV HKU9-2202, by sequencing the full-length genome. The BatCoV HKU9-2202 shared 83% nucleotide identity with other BatCoV HKU9 stains based on whole genome sequences. The most divergent region is in the spike protein, which only shares 68% amino acid identity with BatCoV HKU9. Quantitative PCR revealed that the intestine was the primary infection organ of BatCoV HKU9 and GCCDC1, but some HKU9 was also detected in the heart, kidney, and lung tissues of bats. This study highlights the importance of virus surveillance in natural reservoirs and emphasizes the need for preparedness against the potential spill-over of these viruses to local residents living near bat caves.
Berge, Karin G; Agdal, Maren Lillehaug; Vika, Margrethe; Skeie, Marit Slåttelid
2017-05-01
To evaluate the effect of five sessions of cognitive behavioural therapy (CBT) for 10- to 16-year-olds with intra-oral injection phobia. This was a randomized delayed intervention controlled trial in 67 patients, fulfilling the DSM-5 criteria for specific phobia. All patients received the same CBT performed by dentists specially trained in CBT. The patients were randomly assigned to either an immediate treatment group (ITG) (34 patients) or a waitlist-control group (WCG) (33 patients). The WCG was put on a waitlist for 5 weeks. After treatment, all patients were combined for post-treatment analyses. Assessments including the psychometric self-report scales Intra-oral injection fear scale (IOIF-s), Children's Fear Survey Schedule-Dental Subscale (CFSS-DS), Injection Phobia Scale for children (IS-c) and Mutilation Questionnaire for children (MQ-c) and a behavioural avoidance test (BAT) followed by a questionnaire on cognitions during the BAT, occurred pre-, post-treatment/waitlist and at a 1-year follow-up. CBT had a significant effect compared to no treatment (WCG). After treatment, the scores on the psychometric self-report scales were significantly reduced and higher levels in the BAT were achieved. The results were maintained at 1-year follow-up. Of the 67 patients, 70.1% received intra-oral injections during CBT treatment, whereas 69.4% of those completing the CBT, in need for further dental treatment, managed to receive the necessary intra-oral injections at their regular dentist. The 10- to 16-year-olds diagnosed with intra-oral injection phobia benefitted positively on CBT performed by specially trained dentists.
Huang, Xiaobin; Kanwal, Jagmeet S; Jiang, Tinglei; Long, Zhenyu; Luo, Bo; Yue, Xinke; Gu, Yongbo; Feng, Jiang
2015-01-01
Echolocation and audiovocal communication have been studied extensively in bats. The manner in which these abilities are incorporated within escape behaviors during life-threatening distress is largely unknown. Here we tested the hypothesis that behavioral response profiles expressed during distress are relatively stereotypic given their evolutionary adaptations to avoid predators. We subjected juvenile and adult big-footed myotis (Myotis macrodactylus) to a sequence of three types of life threatening distress: 1) trapping them in a mist-net (environmental threat), 2) approaching them when trapped (predator threat), and 3) partially restraining their freedom to move (arrest), and recorded their escape behavior in each of the three conditions. Response profiles differed across individuals and with the context in which they were expressed. During environmental and predator threat, bats displayed significantly more biting and wing-flapping behaviors and emitted more echolocation pulses than during arrest. Response profiles also varied with age. During arrest, juveniles were more likely than adults to emit distress calls and vice-versa for biting and wing flapping during environmental and predator threat. Overall, individualized response profiles were classified into ten clusters that were aligned along two divergent response trajectories when viewed within two-dimensional, multifactorial decision space. Juvenile behaviors tended to follow a predominantly "social-dependence" trajectory, whereas adult behaviors were mostly aligned along a "self-reliance" trajectory. We conclude that bats modify their vocal behavior and make age-appropriate and contextually adaptive decisions when distressed. This decision-making ability is consistent with observations in other social species, including humans.
Huang, Xiaobin; Kanwal, Jagmeet S.; Jiang, Tinglei; Long, Zhenyu; Luo, Bo; Yue, Xinke; Gu, Yongbo; Feng, Jiang
2015-01-01
Echolocation and audiovocal communication have been studied extensively in bats. The manner in which these abilities are incorporated within escape behaviors during life-threatening distress is largely unknown. Here we tested the hypothesis that behavioral response profiles expressed during distress are relatively stereotypic given their evolutionary adaptations to avoid predators. We subjected juvenile and adult big-footed myotis (Myotis macrodactylus) to a sequence of three types of life threatening distress: 1) trapping them in a mist-net (environmental threat), 2) approaching them when trapped (predator threat), and 3) partially restraining their freedom to move (arrest), and recorded their escape behavior in each of the three conditions. Response profiles differed across individuals and with the context in which they were expressed. During environmental and predator threat, bats displayed significantly more biting and wing-flapping behaviors and emitted more echolocation pulses than during arrest. Response profiles also varied with age. During arrest, juveniles were more likely than adults to emit distress calls and vice-versa for biting and wing flapping during environmental and predator threat. Overall, individualized response profiles were classified into ten clusters that were aligned along two divergent response trajectories when viewed within two-dimensional, multifactorial decision space. Juvenile behaviors tended to follow a predominantly “social-dependence” trajectory, whereas adult behaviors were mostly aligned along a “self-reliance” trajectory. We conclude that bats modify their vocal behavior and make age-appropriate and contextually adaptive decisions when distressed. This decision-making ability is consistent with observations in other social species, including humans. PMID:26181328
Bobrowiec, Paulo Estefano D; Tavares, Valéria da Cunha
2017-01-01
The modification of Amazonian rivers by the construction of megaprojects of hydroelectric dams has widely increased over the last decade. Robust monitoring programs have been rarely conducted prior to the establishment of dams to measure to what extent the fauna, and its associated habitats may be affected by upcoming impacts. Using bats as models, we performed analyses throughout the area under the influence of the Santo Antônio hydroelectric dam, Southwestern Brazilian Amazonia before its construction to estimate how the fauna and its associated habitats would be affected by the upcoming impacts. We surveyed bats in 49 plots distributed along the areas going to be inundated by the dam and those remaining dry. As predictors for the species distribution, we tested the variables of vegetation structure and topography. Species composition largely differed between the dry plots and the plots located in areas that will be flooded, and this was strongly associated with the variables of forest basal area and elevation. Vegetation-related variables also had strong influence on the guilds distribution. The flooding of lower elevations areas is expected to negatively affect the species number and abundance of frugivorous species. In contrast, it is likely that animalivores will be less vulnerable to dam-induced flooding, since they were abundant in the areas not expect to be inundated. We urge for the implementation of studies to predict impacts caused by large hydroelectric dams, including tests of the influence of the local conditions that shape diversity to avoid massive losses of the biota, and to build preventive monitoring and management actions.
Bats as reservoirs of severe emerging infectious diseases.
Han, Hui-Ju; Wen, Hong-ling; Zhou, Chuan-Min; Chen, Fang-Fang; Luo, Li-Mei; Liu, Jian-wei; Yu, Xue-Jie
2015-07-02
In recent years severe infectious diseases have been constantly emerging, causing panic in the world. Now we know that many of these terrible diseases are caused by viruses originated from bats (Table 1), such as Ebola virus, Marburg, SARS coronavirus (SARS-CoV), MERS coronavirus (MERS-CoV), Nipah virus (NiV) and Hendra virus (HeV). These viruses have co-evolved with bats due to bats' special social, biological and immunological features. Although bats are not in close contact with humans, spillover of viruses from bats to intermediate animal hosts, such as horses, pigs, civets, or non-human primates, is thought to be the most likely mode to cause human infection. Humans may also become infected with viruses through aerosol by intruding into bat roosting caves or via direct contact with bats, such as catching bats or been bitten by bats. Copyright © 2015 Elsevier B.V. All rights reserved.
Greenhall, Arthur M.
1982-01-01
The soundest long-term solution for the management of bats that enter buildings and cause a nuisance problem or present a public health hazard is by batproofing the structure. Chemical toxicants do not solve house bat problems and may create worse ones. This manual describes batproofing techniques that will provide effective and acceptable alternatives for dealing with house bat problems and hazards. Recent declines in bat populations and greater appreciation of the ecological importance of bats have identified the need for sound management strategies that will encourage bat conservation while protecting human health and solving nuisance problems. One of the best deterrents against house bats is to improve the energy efficiency of the structure since bats may enter holes through which heat is lost. Heat conservation methods used for batproofing will also be eligible for Federal residential energy tax credits. The manual should be useful to homeowners, public health officials, physicians, veterinarians, conservationists, and others interested or concerned about bat interactions with humans.
Habitat Fragmentation Handbook for Installation Planners: Status and Options
2006-12-01
gray bat, Indiana bat) • shrub cover and nectar corridors (lesser long-nosed bat) • “fragmented places” (brown-headed cowbird). NLCD data was created...golden-cheeked warbler: 86.9%, 65.7%, & 65.9%. For gray bat and Indiana bat: 90.2%, 85.2%, & 75.5%. Woody wetland (91) For gray bat and Indiana bat...should be all grasses and shrubs (50s and 70s) cells adjacent to forest (40s) or woody wetlands (91). With- out a spatial data uncertainty model
NASA Astrophysics Data System (ADS)
Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Andreeva, Z. V.
2017-12-01
The launch of the Dual-frequency Precipitation Radar (DPR) opens up new opportunities for studying and monitoring the land and inland waters. It is the first time radar with a swath (±65°) covering regions with cold climate where waters are covered with ice and land with snow for prolonged periods of time has been used. It is also the first time that the remote sensing is carried out at small incidence angles (less than 19°) at two frequencies (13.6 and 35.5 GHz). The high spatial resolution (4-5 km) significantly increases the number of objects that can be studied using the new radar. Ilmen Lake is chosen as the first test object for the development of complex programs for processing and analyzing data obtained by the DPR. The problem of diagnostics of ice-cover formation and destruction according to DPR data has been considered. It is shown that the dependence of the radar backscatter cross section on the incidence angle for autumn ice is different from that of spring ice, and can be used for classification. A comparison with scattering on the water surface has shown that, at incidence angles exceeding 10°, it is possible to discern all three types of reflecting surfaces: open water, autumn ice, and spring ice, under the condition of making repeated measurements to avoid possible ambiguity caused by wind.
Bat use of a high-plains urban wildlife refuge
Everette, A.L.; O'Shea, T.J.; Ellison, L.E.; Stone, L.A.; McCance, J.L.
2001-01-01
Bats are significant components of mammalian diversity and in many areas are of management concern. However, little attention has been given to bats in urban or prairie landscapes. In 1997 and 1998, we determined species richness, relative abundance, roosting habits, and echolocation activity of bats at Rocky Mountain Arsenal National Wildlife Refuge (RMA), the largest urban unit in the United States refuge system, located on the high plains near Denver, Colorado. An inventory using mist nets revealed 3 species foraging at this site: big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), and silver-haired bats (Lasionycteris noctivagans). Big brown bats comprised 86% of captures (n=176). This pattern was consistent with continental-scale predictions of bat species richness and evenness based on availability of potential roosts. Relative abundance based on captures was similar to that revealed by echolocation detector surveys, except that the latter revealed the likely presence of at least 2 additional species (Myotis spp. and red bats [Lasiurus borealis]). Echolocation activity was significantly greater (P=0.009) in areas with tree or water habitat edges than in open prairie, suggesting that maintaining such features is important for bats. Big brown bats commuted greater distances (9.2-18.8 km) from roosts in urban core areas to foraging sites on the refuge than typically reported for this species elsewhere, emphasizing the value of the site to these bats. Urban refuges can provide habitat of importance to bat populations, but may be characterized by abundant bats that roost in buildings if a variety of other kinds of roosting habitats are unavailable.
Seasonal bat activity related to insect emergence at three temperate lakes.
Salvarina, Ioanna; Gravier, Dorian; Rothhaupt, Karl-Otto
2018-04-01
Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole-night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats' energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic-terrestrial interactions or designing conservation and monitoring plans.
Gorresen, P. Marcos; Cryan, Paul M.; Dalton, David C.; Wolf, Sandy; Johnson, Jessica A.; Todd, Christopher M.; Bonaccorso, Frank J.
2015-01-01
Widespread bat fatalities at industrial wind turbines are a conservation issue with the potential to inhibit efficient use of an abundant source of energy. Bat fatalities can be reduced by altering turbine operations, but such curtailment decreases turbine efficiency. If additional ways of reducing bat fatalities at wind turbines were available such tradeoffs might not be needed. Based on the facts that bats perceive distant objects primarily through vision and can see in very dim lighting conditions, and the possibility that bats might interact with turbines after approaching them as they would trees, we propose a novel method of reducing bat activity at wind turbines: illumination of the structure with dim light. As a first step toward assessing this approach, we illuminated trees with dim flickering ultraviolet (UV) light in areas frequented by Hawaiian hoary bats Lasiurus cinereus semotus, an endangered subspecies affected by wind turbines. We used a repeated-measures design to quantify bat activity near trees with acoustic detectors and thermal video cameras in the presence and absence of UV illumination, while concurrently monitoring insect numbers. Results indicate that dim UV reduces bat activity despite an increase in insect numbers. Experimental treatment did not completely inhibit bat activity near trees, nor did all measures of bat activity show statistically significant differences due to high variance in bat activity among sites. However, the observed decreases in bat activity with dim UV illumination justify further testing of this method as a means to reduce bat fatalities at wind turbines.
Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo
2013-01-01
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats. PMID:24147029
Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo
2013-01-01
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H') was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests' structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.
Williams-Guillén, Kimberly; Perfecto, Ivette
2011-01-26
Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats--nearly half the Neotropical bat species--change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.
Orlova, Maria V; Zapart, Aneta
2012-01-01
The article presents data on ectoparasites of pond bat (rare in Europe bat species) in northern Poland region. We discuss the species composition and relationship between ectoparasites of several bat species in mixed colonies. Temporary ectoparasites of pipistrelle bats suppress permanent ectoparasites of pond bats it the cohabitating colonies.
Freuling, Conrad M; Kliemt, Jeannette; Schares, Susann; Heidecke, Dietrich; Driechciarz, René; Schatz, Juliane; Müller, Thomas
2012-01-01
In Europe bat rabies in Daubenton's bats (Myotisdaubentonii) and in Pond bats (Myotis dasycneme) caused by the European bat lyssavirus 2 (EBLV-2) has been confirmed in less than 20 cases to date. Here we report the second encounter of this virus species in Germany. A Daubenton's bat found grounded in the zoological garden in Magdeburg died shortly after. In the frame of a retrospective study the bat carcass was eventually transferred to the national reference laboratory for rabies at the Friedrich-Loeffler-Institute for rabies diagnosis. Lyssavirus was isolated and characterized as EBLV-2.
Clark, D.R.; Kroll, J.C.
1977-01-01
Adult female free-tailed bats (Tadarida brasiliensis) were collected at Bracken Cave, Texas, and shipped to the Patuxent Wildlife Research Center. Treated mealworms (Tenebrio molitor) containing 107 ppm DDE were fed to 17 bats; five other bats were fed untreated mealworms. After 40 days on dosage, during which one dosed bat was killed accidentally, four dosed bats were frozen and the remaining 17 were starved to death. The objective was to elevate brain levels of DDE to lethality and measure these concentrations. After the feeding period, dosed bats weighed less than controls. After starvation, the body condition of dosed bats was poorer than that of controls even though there was no difference in the amounts of carcass fat. During starvation, dosed bats lost weight faster than controls. Also, four dosed bats exhibited the prolonged tremoring that characterizes DDE poisoning. DDE increased in brains of starving bats as fat was metabolized. The estimated mean brain concentration of DDE diagnostic of death was 519 ppm with a range of 458-564 ppm. These values resemble diagnostic levels known for two species of passerine birds, but they exceed published levels for two free-tailed bats from Carlsbad Caverns, New Mexico.
Nonecholocating fruit bats produce biosonar clicks with their wings.
Boonman, Arjan; Bumrungsri, Sara; Yovel, Yossi
2014-12-15
Because evolution mostly acts over millions of years, the intermediate steps leading to a functional sensory system remain enigmatic. Accordingly, there is an ongoing debate regarding the evolution of bat echolocation. In search of the origin of bat echolocation, we studied how Old World fruit bats, which have always been classified as nonecholocating, orient in complete darkness. We found that two of these nonecholocating species used click-like sounds to detect and discriminate objects in complete darkness. However, we discovered that this click-based echo sensing is rudimentary and does not allow these bats to estimate distance accurately as all other echolocating bats can. Moreover, unlike all other echolocating bats, which generate pulses using the larynx or the tongue, these bats generated clicks with their wings. We provide evidence suggesting that all Old World fruit bats can click with their wings. Although this click-based echo sensing used by Old World fruit bats may not represent the ancestral form of current (laryngeal) bat echolocation, we argue that clicking fruit bats could be considered behavioral fossils, opening a window to study the evolution of echolocation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ellison, James A.; Gilbert, Amy T.; Recuenco, Sergio; Moran, David; Alvarez, Danilo A.; Kuzmina, Natalia; Garcia, Daniel L.; Peruski, Leonard F.; Mendonça, Mary T.; Lindblade, Kim A.; Rupprecht, Charles E.
2014-01-01
Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation. PMID:25080103
Living with Bats: The Case of Ve Golokuati Township in the Volta Region of Ghana
Ohemeng, Fidelia; Tweneboah Lawson, Elaine; Waldman, Linda
2017-01-01
Transmission of zoonotic pathogens from bats to humans through direct and indirect contact with bats raises public apprehension about living close to bats. In the township of Ve Golokuati in Ghana, several “camps” of Epomophorus gambianus roost in fruit trees that provide ecosystems services for residents. This study explored human-bat interaction in the township and the potential risks of disease transmission from bats to humans. Data were derived through questionnaire administration and participatory appraisal approach involving focus group discussions, participatory landscape mapping, and transect walk. The study found that most human activities within the township, such as petty-trading, domestic chores, and children's outdoor recreation, exposed people to bats. Though there have been no reported cases of disease spillover from bats to humans from the perspective of residents and from medical records, respondents whose activities brought them closer to bats within the township were found to be more likely to experience fevers than those who do not interact with bats frequently. The study recommends education of community members about the potential risks involved in human-bat interactions and makes suggestions for reducing the frequent interactions with and exposure to bats by humans. PMID:29081813
Detecting Negative Obstacles by Use of Radar
NASA Technical Reports Server (NTRS)
Mittskus, Anthony; Lux, James
2006-01-01
Robotic land vehicles would be equipped with small radar systems to detect negative obstacles, according to a proposal. The term "negative obstacles" denotes holes, ditches, and any other terrain features characterized by abrupt steep downslopes that could be hazardous for vehicles. Video cameras and other optically based obstacle-avoidance sensors now installed on some robotic vehicles cannot detect obstacles under adverse lighting conditions. Even under favorable lighting conditions, they cannot detect negative obstacles. A radar system according to the proposal would be of the frequency-modulation/ continuous-wave (FM/CW) type. It would be installed on a vehicle, facing forward, possibly with a downward slant of the main lobe(s) of the radar beam(s) (see figure). It would utilize one or more wavelength(s) of the order of centimeters. Because such wavelengths are comparable to the characteristic dimensions of terrain features associated with negative hazards, a significant amount of diffraction would occur at such features. In effect, the diffraction would afford a limited ability to see corners and to see around corners. Hence, the system might utilize diffraction to detect corners associated with negative obstacles. At the time of reporting the information for this article, preliminary analyses of diffraction at simple negative obstacles had been performed, but an explicit description of how the system would utilize diffraction was not available.
NASA Astrophysics Data System (ADS)
Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.
2014-05-01
In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.
15O PET Measurement of Blood Flow and Oxygen Consumption in Cold-Activated Human Brown Fat
Muzik, Otto; Mangner, Thomas J.; Leonard, William R.; Kumar, Ajay; Janisse, James; Granneman, James G.
2013-01-01
Although it has been believed that brown adipose tissue (BAT) depots disappear shortly after the perinatal period in humans, PET imaging using the glucose analog 18F-FDG has shown unequivocally the existence of functional BAT in adult humans, suggesting that many humans retain some functional BAT past infancy. The objective of this study was to determine to what extent BAT thermogenesis is activated in adults during cold stress and to establish the relationship between BAT oxidative metabolism and 18F-FDG tracer uptake. Methods Twenty-five healthy adults (15 women and 10 men; mean age ± SD, 30 ± 7 y) underwent triple-oxygen scans (H215O, C15O, and 15O2) as well as measurements of daily energy expenditure (DEE; kcal/d) both at rest and after exposure to mild cold (15.5°C [60°F]) using indirect calorimetry. The subjects were divided into 2 groups (high BAT and low BAT) based on the presence or absence of 18F-FDG tracer uptake (standardized uptake value [SUV] > 2) in cervical–supraclavicular BAT. Blood flow and oxygen extraction fraction (OEF) were calculated from dynamic PET scans at the location of BAT, muscle, and white adipose tissue. Regional blood oxygen saturation was determined by near-infrared spectroscopy. The total energy expenditure during rest and mild cold stress was measured by indirect calorimetry. Tissue-level metabolic rate of oxygen (MRO2) in BAT was determined and used to calculate the contribution of activated BAT to DEE. Results The mass of activated BAT was 59.1 ± 17.5 g (range, 32–85 g) in the high-BAT group (8 women and 1 man; mean age, 29.6 ± 5.5 y) and 2.2 ± 3.6 g (range, 0–9.3 g) in the low-BAT group (9 men and 7 women; mean age, 31.4 ± 10 y). Corresponding maximal SUVs were significantly higher in the high-BAT group than in the low-BAT group (10.7 ± 3.9 vs. 2.1 ± 0.7, P = 0.01). Blood flow values were significantly higher in the high-BAT group than in the low-BAT group for BAT (12.9 ± 4.1 vs. 5.9 ± 2.2 mL/100 g/min, P = 0.03) and white adipose tissue (7.2 ± 3.4 vs. 5.7 ± 2.3 mL/100 g/min, P = 0.03) but were similar for muscle (4.4 ± 1.9 vs. 3.9 ± 1.7 mL/100 g/min). Moreover, OEF in BAT was similar in the 2 groups (0.51 ± 0.17 in high-BAT group vs. 0.47 ± 0.18 in low-BAT group, P = 0.39). During mild cold stress, calculated MRO2 values in BAT increased from 0.97 ± 0.53 to 1.42 ± 0.68 mL/100 g/min (P = 0.04) in the high-BAT group and were significantly higher than those determined in the low-BAT group (0.40 ± 0.28 vs. 0.51 ± 0.23, P = 0.67). The increase in DEE associated with BAT oxidative metabolism was highly variable in the high-BAT group, with an average of 3.2 ± 2.4 kcal/d (range, 1.9–4.6 kcal/d) at rest, and increased to 6.3 ± 3.5 kcal/d (range, 4.0–9.9 kcal/d) during exposure to mild cold. Although BAT accounted for only a small fraction of the cold-induced increase in DEE, such increases were not observed in subjects lacking BAT. Conclusion Mild cold-induced thermogenesis in BAT accounts for 15–25 kcal/d in subjects with relatively large BAT depots. Thus, although the presence of active BAT is correlated with cold-induced energy expenditure, direct measurement of MRO2 indicates that BAT is a minor source of thermogenesis in humans. PMID:23362317
Colón, Maritrini; Hernández, Fabiola; López, Karla; Quezada, Héctor; González, James; López, Geovani; Aranda, Cristina; González, Alicia
2011-01-01
Background Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. Principal Findings Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs). This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1), while catabolic substrates are accumulated in the cytosol (Bat2). Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. Conclusions Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the biosynthetic and catabolic roles of the ancestral BCAT in two isozymes improving BCAAs metabolism and constituting an adaptation to facultative metabolism. PMID:21267457
Krüger, Nadine; Sauder, Christian; Hoffmann, Markus; Örvell, Claes; Drexler, Jan Felix; Rubin, Steven; Herrler, Georg
2016-11-01
A recent study reported the detection of a bat-derived virus (BatPV/Epo_spe/AR1/DCR/2009, batMuV) with phylogenetic relatedness to human mumps virus (hMuV). Since all efforts to isolate infectious batMuV have reportedly failed, we generated recombinant mumps viruses (rMuVs) in which the open reading frames (ORFs) of the fusion (F) and haemagglutinin-neuraminidase (HN) glycoproteins of an hMuV strain were replaced by the corresponding ORFs of batMuV. The batMuV F and HN proteins were successfully incorporated into viral particles and the resultant chimeric virus was able to mediate infection of Vero cells. Distinct differences were observed between the fusogenicity of rMuVs expressing one or both batMuV glycoproteins: viruses expressing batMuV F were highly fusogenic, regardless of the origin of HN. In contrast, rMuVs expressing human F and bat-derived HN proteins were less fusogenic compared to hMuV. The growth kinetics of chimeric MuVs expressing batMuV HN in combination with either hMuV or batMuV F were similar to that of the backbone virus, whereas a delay in virus replication was obtained for rMuVs harbouring batMuV F and hMuV HN. Replacement of the hMuV F and HN genes or the HN gene alone by the corresponding batMuV genes led to a slight reduction in neurovirulence of the highly neurovirulent backbone strain. Neutralizing antibodies inhibited infection mediated by all recombinant viruses generated. Furthermore, group IV anti-MuV antibodies inhibited the neuraminidase activity of bat-derived HN. Our study reports the successful generation of chimeric MuVs expressing the F and HN proteins of batMuV, providing a means for further examination of this novel batMuV.
Rodhouse, T.J.; McCaffrey, M.F.; Wright, R.G.
2005-01-01
The spotted bat (Euderma maculatum) has been virtually unknown in Oregon despite the existence of potential habitat in many areas of the state. In 2002 and 2003 we searched for spotted bats along the John Day, Deschutes, and Crooked Rivers and at a remote dry canyon southeast of the city of Bend in central Oregon. The species was documented through the use of mist-nets, a bat detector, and recognition of audible spotted bat calls. Spotted bats were found at 11 locations in 6 Oregon counties. Nightly activity patterns of spotted bats were unpredictable. Spotted bats were found in 78% of search areas but on only 48% of survey nights. We observed spotted bats foraging above fields and low upland slopes adjacent to rivers and creeks and along the rims of cliffs. Estimated flying heights of spotted bats ranged from 3 m to 50 m aboveground. The species was difficult to capture and was captured only after considerable experimentation with methods and materials. Three spotted bats were captured toward the end of the project in 2003 and accounted for only 0.5% of all bats captured during the study. Although we attached radio transmitters to 2 spotted bats, we found no roost locations. We believe additional spotted bat surveys in Oregon are warranted, especially in higher-elevation habitats, but recommend that to increase their effectiveness, surveys accommodate the unique foraging behavior of the species.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.
2009-01-01
Increases in computational resources have allowed operational forecast centers to pursue experimental, high resolution simulations that resolve the microphysical characteristics of clouds and precipitation. These experiments are motivated by a desire to improve the representation of weather and climate, but will also benefit current and future satellite campaigns, which often use forecast model output to guide the retrieval process. Aircraft, surface and radar data from the Canadian CloudSat/CALIPSO Validation Project are used to check the validity of size distribution and density characteristics for snowfall simulated by the NASA Goddard six-class, single-moment bulk water microphysics scheme, currently available within the Weather Research and Forecast (WRF) Model. Widespread snowfall developed across the region on January 22, 2007, forced by the passing of a midlatitude cyclone, and was observed by the dual-polarimetric, C-band radar King City, Ontario, as well as the NASA 94 GHz CloudSat Cloud Profiling Radar. Combined, these data sets provide key metrics for validating model output: estimates of size distribution parameters fit to the inverse-exponential equations prescribed within the model, bulk density and crystal habit characteristics sampled by the aircraft, and representation of size characteristics as inferred by the radar reflectivity at C- and W-band. Specified constants for distribution intercept and density differ significantly from observations throughout much of the cloud depth. Alternate parameterizations are explored, using column-integrated values of vapor excess to avoid problems encountered with temperature-based parameterizations in an environment where inversions and isothermal layers are present. Simulation of CloudSat reflectivity is performed by adopting the discrete-dipole parameterizations and databases provided in literature, and demonstrate an improved capability in simulating radar reflectivity at W-band versus Mie scattering assumptions.
Integration of Weather Avoidance and Traffic Separation
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.
2011-01-01
This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction
Chen, Y-N; Phuong, V N; Chen, H C; Chou, C-H; Cheng, H-C; Wu, C-H
2016-12-01
Bats have been demonstrated to be natural reservoirs of severe acute respiratory syndrome coronavirus (SARS CoV) and Middle East respiratory syndrome (MERS) CoV. Faecal samples from 248 individuals of 20 bat species were tested for partial RNA-dependent RNA polymerase gene of CoV and 57 faecal samples from eight bat species were tested positive. The highest detection rate of 44% for Scotophilus kuhlii, followed by 30% for Rhinolophus monoceros. Significantly higher detection rates of coronaviral RNA were found in female bats and Scotophilus kuhlii roosting in palm trees. Phylogenetic analysis classified the positive samples into SARS-related (SARSr) CoV, Scotophilus bat CoV 512 close to those from China and Philippines, and Miniopterus bat CoV 1A-related lineages. Coronaviral RNA was also detected in bat guano from Scotophilus kuhlii and Myotis formosus flavus on the ground and had potential risk for human exposure. Diverse bat CoV with zoonotic potential could be introduced by migratory bats and maintained in the endemic bat population in Taiwan. © 2016 Blackwell Verlag GmbH.
Vascular rarefaction mediates whitening of brown fat in obesity
Shimizu, Ippei; Aprahamian, Tamar; Kikuchi, Ryosuke; Shimizu, Ayako; Papanicolaou, Kyriakos N.; MacLauchlan, Susan; Maruyama, Sonomi; Walsh, Kenneth
2014-01-01
Brown adipose tissue (BAT) is a highly vascularized organ with abundant mitochondria that produce heat through uncoupled respiration. Obesity is associated with a reduction of BAT function; however, it is unknown how obesity promotes dysfunctional BAT. Here, using a murine model of diet-induced obesity, we determined that obesity causes capillary rarefaction and functional hypoxia in BAT, leading to a BAT “whitening” phenotype that is characterized by mitochondrial dysfunction, lipid droplet accumulation, and decreased expression of Vegfa. Targeted deletion of Vegfa in adipose tissue of nonobese mice resulted in BAT whitening, supporting a role for decreased vascularity in obesity-associated BAT. Conversely, introduction of VEGF-A specifically into BAT of obese mice restored vascularity, ameliorated brown adipocyte dysfunction, and improved insulin sensitivity. The capillary rarefaction in BAT that was brought about by obesity or Vegfa ablation diminished β-adrenergic signaling, increased mitochondrial ROS production, and promoted mitophagy. These data indicate that overnutrition leads to the development of a hypoxic state in BAT, causing it to whiten through mitochondrial dysfunction and loss. Furthermore, these results link obesity-associated BAT whitening to impaired systemic glucose metabolism. PMID:24713652
Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment.
Avena, Christine V; Parfrey, Laura Wegener; Leff, Jonathan W; Archer, Holly M; Frick, Winifred F; Langwig, Kate E; Kilpatrick, A Marm; Powers, Karen E; Foster, Jeffrey T; McKenzie, Valerie J
2016-01-01
Bats are geographically widespread and play an important role in many ecosystems, but relatively little is known about the ecology of their associated microbial communities and the role microbial taxa play in bat health, development, and evolution. Moreover, few vertebrate animal skin microbiomes have been comprehensively assessed, and thus characterizing the bat skin microbiome will yield valuable insight into the variability of vertebrate skin microbiomes as a whole. The recent emergence of the skin fungal disease white-nose syndrome highlights the potentially important role bat skin microbial communities could play in bat health. Understanding the determinant of bat skin microbial communities could provide insight into important factors allowing individuals to persist with disease. We collected skin swabs from a total of 11 bat species from the eastern United States ( n = 45) and Colorado ( n = 119), as well as environmental samples ( n = 38) from a subset of sites, and used 16S rRNA marker gene sequencing to observe bacterial communities. In addition, we conducted a literature survey to compare the skin microbiome across vertebrate groups, including the bats presented in this study. Host species, region, and site were all significant predictors of the variability across bat skin bacterial communities. Many bacterial taxa were found both on bats and in the environment. However, some bacterial taxa had consistently greater relative abundances on bat skin relative to their environments. Bats shared many of their abundant taxa with other vertebrates, but also hosted unique bacterial lineages such as the class Thermoleophilia (Actinobacteria). A strong effect of site on the bat skin microbiome indicates that the environment very strongly influences what bacteria are present on bat skin. Bat skin microbiomes are largely composed of site-specific microbiota, but there do appear to be important host-specific taxa. How this translates to differences in host-microbial interactions and bat health remains an important knowledge gap, but this work suggests that habitat variability is very important. We identify some bacterial groups that are more consistent on bats despite site differences, and these may be important ones to study in terms of their function as potential core microbiome members.
Haelewaters, Danny; Pfliegler, Walter P; Szentiványi, Tamara; Földvári, Mihály; Sándor, Attila D; Barti, Levente; Camacho, Jasmin J; Gort, Gerrit; Estók, Péter; Hiller, Thomas; Dick, Carl W; Pfister, Donald H
2017-02-21
Bat flies (Streblidae and Nycteribiidae) are among the most specialized families of the order Diptera. Members of these two related families have an obligate ectoparasitic lifestyle on bats, and they are known disease vectors for their hosts. However, bat flies have their own ectoparasites: fungi of the order Laboulbeniales. In Europe, members of the Nycteribiidae are parasitized by four species belonging to the genus Arthrorhynchus. We carried out a systematic survey of the distribution and fungus-bat fly associations of the genus in central Europe (Hungary, Romania). We encountered the bat fly Nycteribia pedicularia and the fungus Arthrorhynchus eucampsipodae as new country records for Hungary. The following bat-bat fly associations are for the first time reported: Nycteribia kolenatii on Miniopterus schreibersii, Myotis blythii, Myotis capaccinii and Rhinolophus ferrumequinum; Penicillidia conspicua on Myotis daubentonii; and Phthiridium biarticulatum on Myotis capaccinii. Laboulbeniales infections were found on 45 of 1,494 screened bat flies (3.0%). We report two fungal species: Arthrorhynchus eucampsipodae on Nycteribia schmidlii, and A. nycteribiae on N. schmidlii, Penicillidia conspicua, and P. dufourii. Penicillidia conspicua was infected with Laboulbeniales most frequently (25%, n = 152), followed by N. schmidlii (3.1%, n = 159) and P. dufourii (2.0%, n = 102). Laboulbeniales seem to prefer female bat fly hosts to males. We think this might be due to a combination of factors: female bat flies have a longer life span, while during pregnancy female bat flies are significantly larger than males and accumulate an excess of fat reserves. Finally, ribosomal DNA sequences for A. nycteribiae are presented. We screened ectoparasitic bat flies from Hungary and Romania for the presence of ectoparasitic Laboulbeniales fungi. Arthrorhynchus eucampsipodae and A. nycteribiae were found on three species of bat flies. This study extends geographical and host ranges of both bat flies and Laboulbeniales fungi. The sequence data generated in this work contribute to molecular phylogenetic studies of the order Laboulbeniales. Our survey shows a complex network of bats, bat flies and Laboulbeniales fungi, of which the hyperparasitic fungi are rare and species-poor. Their host insects, on the other hand, are relatively abundant and diverse.
Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment
Avena, Christine V.; Parfrey, Laura Wegener; Leff, Jonathan W.; Archer, Holly M.; Frick, Winifred F.; Langwig, Kate E.; Kilpatrick, A. Marm; Powers, Karen E.; Foster, Jeffrey T.; McKenzie, Valerie J.
2016-01-01
Bats are geographically widespread and play an important role in many ecosystems, but relatively little is known about the ecology of their associated microbial communities and the role microbial taxa play in bat health, development, and evolution. Moreover, few vertebrate animal skin microbiomes have been comprehensively assessed, and thus characterizing the bat skin microbiome will yield valuable insight into the variability of vertebrate skin microbiomes as a whole. The recent emergence of the skin fungal disease white-nose syndrome highlights the potentially important role bat skin microbial communities could play in bat health. Understanding the determinant of bat skin microbial communities could provide insight into important factors allowing individuals to persist with disease. We collected skin swabs from a total of 11 bat species from the eastern United States (n = 45) and Colorado (n = 119), as well as environmental samples (n = 38) from a subset of sites, and used 16S rRNA marker gene sequencing to observe bacterial communities. In addition, we conducted a literature survey to compare the skin microbiome across vertebrate groups, including the bats presented in this study. Host species, region, and site were all significant predictors of the variability across bat skin bacterial communities. Many bacterial taxa were found both on bats and in the environment. However, some bacterial taxa had consistently greater relative abundances on bat skin relative to their environments. Bats shared many of their abundant taxa with other vertebrates, but also hosted unique bacterial lineages such as the class Thermoleophilia (Actinobacteria). A strong effect of site on the bat skin microbiome indicates that the environment very strongly influences what bacteria are present on bat skin. Bat skin microbiomes are largely composed of site-specific microbiota, but there do appear to be important host-specific taxa. How this translates to differences in host-microbial interactions and bat health remains an important knowledge gap, but this work suggests that habitat variability is very important. We identify some bacterial groups that are more consistent on bats despite site differences, and these may be important ones to study in terms of their function as potential core microbiome members. PMID:27909426
Monitoring Sensitive Bat Species at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenberg, Kari M.
Bats play a critical role in ecosystems and are vulnerable to disturbance and disruption by human activities. In recent decades, bat populations in the United States and elsewhere have decreased tremendously. There are 47 different species of bat in the United States and 28 of these occur in New Mexico with 15 different species documented at the Los Alamos National Laboratory (LANL) and surrounding areas. Euderma maculatum(the spotted bat) is listed as “threatened” by the state of New Mexico and is known to occur at LANL. Four other species of bats are listed as “sensitive” and also occur here. Inmore » 1995, a four year study was initiated at LANL to assess the status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites. There have been no definitive studies since then. Biologists in the Environmental Protection Division at LANL initiated a multi-year monitoring program for bats in May 2013 to implement the Biological Resources Management Plan. The objective of this ongoing study is to monitor bat species diversity and seasonal activity over time at LANL. Bat species diversity and seasonal activity were measured using an acoustic bat detector, the Pettersson D500X. This ultrasound recording unit is intended for long-term, unattended recording of bat and other high frequency animal calls. During 2013, the detector was deployed at two locations around LANL. Study sites were selected based on proximity to water where bats may be foraging. Recorded bat calls were analyzed using Sonobat, software that can help determine specific species of bat through their calls. A list of bat species at the two sites was developed and compared to lists from previous studies. Species diversity and seasonal activity, measured as the number of call sequences recorded each month, were compared between sites and among months. A total of 17,923 bat calls were recorded representing 15 species. Results indicate that there is a statistically significant relationship between bat diversity and month of the year. Future studies will be implemented based on these findings.« less
Wu, Zhiqiang; Yang, Li; Ren, Xianwen; He, Guimei; Zhang, Junpeng; Yang, Jian; Qian, Zhaohui; Dong, Jie; Sun, Lilian; Zhu, Yafang; Du, Jiang; Yang, Fan; Zhang, Shuyi; Jin, Qi
2016-03-01
Studies have demonstrated that ~60%-80% of emerging infectious diseases (EIDs) in humans originated from wild life. Bats are natural reservoirs of a large variety of viruses, including many important zoonotic viruses that cause severe diseases in humans and domestic animals. However, the understanding of the viral population and the ecological diversity residing in bat populations is unclear, which complicates the determination of the origins of certain EIDs. Here, using bats as a typical wildlife reservoir model, virome analysis was conducted based on pharyngeal and anal swab samples of 4440 bat individuals of 40 major bat species throughout China. The purpose of this study was to survey the ecological and biological diversities of viruses residing in these bat species, to investigate the presence of potential bat-borne zoonotic viruses and to evaluate the impacts of these viruses on public health. The data obtained in this study revealed an overview of the viral community present in these bat samples. Many novel bat viruses were reported for the first time and some bat viruses closely related to known human or animal pathogens were identified. This genetic evidence provides new clues in the search for the origin or evolution pattern of certain viruses, such as coronaviruses and noroviruses. These data offer meaningful ecological information for predicting and tracing wildlife-originated EIDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D.R. Jr.; Prouty, R.M.
Twenty-two female big brown bats (Eptesicus fuscus) were collected in a house attic in Montgomery County, Maryland. Seventeen were fed mealworms (Tenebrio molitor larvae) that contained 166 ppM DDE; the other five were fed uncontaminated mealworms. After 54 days of feeding, six dosed bats were frozen and the remaining 16 were starved to death. In a second experiment, 21 female big brown bats were collected in a house attic in Prince Georges County, Maryland. Sixteen were fed mealworms that contained 9.4 ppM Aroclor 1254 (PCB). After 37 days, two bats had died, four dosed bats were frozen, and the remainingmore » 15 were starved to death. Starvation caused mobilization of stored residues. After the feeding periods, average weights of all four groups (DDE-dosed, DDE control, PCB-dosed, PCB control) had increased. However, weights of DDE-dosed bats had increased significantly more than those of their controls, whereas weights of PCB-dosed bats had increased significantly less than those of their controls. During starvation, PCB-dosed bats lost weight significantly more slowly than controls. Because PCB levels in dosed bats resembled levels found in some free-living big brown bats, PCBs may be slowing metabolic rates of some free-living bats. It is not known how various common organochlorine residues may affect metabolism in hibernating bats.« less
González, James; López, Geovani; Argueta, Stefany; Escalera-Fanjul, Ximena; El Hafidi, Mohammed; Campero-Basaldua, Carlos; Strauss, Joseph; Riego-Ruiz, Lina; González, Alicia
2017-11-01
Saccharomyces cerevisiae harbors BAT1 and BAT2 paralogous genes that encode branched chain aminotransferases and have opposed expression profiles and physiological roles . Accordingly, in primary nitrogen sources such as glutamine, BAT1 expression is induced, supporting Bat1-dependent valine-isoleucine-leucine (VIL) biosynthesis, while BAT2 expression is repressed. Conversely, in the presence of VIL as the sole nitrogen source, BAT1 expression is hindered while that of BAT2 is activated, resulting in Bat2-dependent VIL catabolism. The presented results confirm that BAT1 expression is determined by transcriptional activation through the action of the Leu3-α-isopropylmalate (α-IPM) active isoform, and uncovers the existence of a novel α-IPM biosynthetic pathway operating in a put3 Δ mutant grown on VIL, through Bat2-Leu2-Leu1 consecutive action. The classic α-IPM biosynthetic route operates in glutamine through the action of the leucine-sensitive α-IPM synthases. The presented results also show that BAT2 repression in glutamine can be alleviated in a ure2 Δ mutant or through Gcn4-dependent transcriptional activation. Thus, when S. cerevisiae is grown on glutamine, VIL biosynthesis is predominant and is preferentially achieved through BAT1 ; while on VIL as the sole nitrogen source, catabolism prevails and is mainly afforded by BAT2 . Copyright © 2017 by the Genetics Society of America.
Prompt Emission Observations of Swift BAT Bursts
NASA Technical Reports Server (NTRS)
Barthelmy, Scott
2009-01-01
We review the prompt emission properties of Swift BAT gamma-ray bursts (GRBs). We present the global properties of BAT GRBs based on their spectral and temporal characteristics. The BAT T90 and T50 durations peak at 80 and 20 s, respectively. The peak energy (Epeak) of about 60% of BAT GRBs is very likely to be less than 1.00 keV. We also present the BAT characteristics of GRBs with soft spectra, so called Xray flashes (XRFs). We will compare the BAT GRBs and XRFs parameter distribution to the other missions.
Do Bat Gantries and Underpasses Help Bats Cross Roads Safely?
Berthinussen, Anna; Altringham, John
2012-01-01
Major roads can reduce bat abundance and diversity over considerable distances. To mitigate against these effects and comply with environmental law, many European countries install bridges, gantries or underpasses to make roads permeable and safer to cross. However, through lack of appropriate monitoring, there is little evidence to support their effectiveness. Three underpasses and four bat gantries were investigated in northern England. Echolocation call recordings and observations were used to determine the number of bats using underpasses in preference to crossing the road above, and the height at which bats crossed. At gantries, proximity to the gantry and height of crossing bats were measured. Data were compared to those from adjacent, severed commuting routes that had no crossing structure. At one underpass 96% of bats flew through it in preference to crossing the road. This underpass was located on a pre-construction commuting route that allowed bats to pass without changing flight height or direction. At two underpasses attempts to divert bats from their original commuting routes were unsuccessful and bats crossed the road at the height of passing vehicles. Underpasses have the potential to allow bats to cross roads safely if built on pre-construction commuting routes. Bat gantries were ineffective and used by a very small proportion of bats, even up to nine years after construction. Most bats near gantries crossed roads along severed, pre-construction commuting routes at heights that put them in the path of vehicles. Crossing height was strongly correlated with verge height, suggesting that elevated verges may have some value in mitigation, but increased flight height may be at the cost of reduced permeability. Green bridges should be explored as an alternative form of mitigation. Robust monitoring is essential to assess objectively the case for mitigation and to ensure effective mitigation. PMID:22719941
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyrell, K.; Brack, V. Jr.
To increase knowledge about the presence of endangered species and their habitat at the LANL, 3D/Environmental Services, Inc. conducted a mist net survey for bats on Laboratory lands. In addition to documenting the presence of threatened and endangered species, this survey was conducted to gain more knowledge about the diversity and distribution of the bat fauna existing on the Laboratory. There are 25 species of bats found in New Mexico, about 16 of which are likely to occur in the region of the Laboratory. Of particular interest was documentation of the presence of the spotted bat, Euderma maculatum. The spottedmore » bat is listed as Endangered, Group 2 by the State of New Mexico, and is a Federal Candidate for listing as endangered. As such, conservation of this species and its habitat should be a management priority on the Laboratory. A total of 94 bats were captured in 16 net nights, between 30 June and 05 July 1992. Thirteen species of bats were caught during the study: Antrozous pallidus (pallid bat), 10.6 percent; Eptesicus fuscus (big brown bat), 10.6 percent; Lasionycteris noctivigans (silver-haired bat), 16 percent; Lasiurus cinereus (hoary bat), 11.7 percent; Myotis californicus (California myotis), 4.3 percent; M. evotis (long-eared myotis), 7.4 percent; M. leibii (small-footed myotis), 5.3 percent; M. thysanodes (fringed myotis), 13.8 percent; M. volans (long-legged myotis), 7.4 percent of the catch; M. yumanensis,(Yuma myotis), 5.3 percent; Pipistrellus hesperus (western pipistrelle), 1.1 percent; Plecotus townsendii (Townsend`s big-eared bat), 1.1 percent, and Tadarida brasiliensis (Brazilian free-tailed bat), 5.3 percent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyrell, K.; Brack, V. Jr.
To increase knowledge about the presence of endangered species and their habitat at the LANL, 3D/Environmental Services, Inc. conducted a mist net survey for bats on Laboratory lands. In addition to documenting the presence of threatened and endangered species, this survey was conducted to gain more knowledge about the diversity and distribution of the bat fauna existing on the Laboratory. There are 25 species of bats found in New Mexico, about 16 of which are likely to occur in the region of the Laboratory. Of particular interest was documentation of the presence of the spotted bat, Euderma maculatum. The spottedmore » bat is listed as Endangered, Group 2 by the State of New Mexico, and is a Federal Candidate for listing as endangered. As such, conservation of this species and its habitat should be a management priority on the Laboratory. A total of 94 bats were captured in 16 net nights, between 30 June and 05 July 1992. Thirteen species of bats were caught during the study: Antrozous pallidus (pallid bat), 10.6 percent; Eptesicus fuscus (big brown bat), 10.6 percent; Lasionycteris noctivigans (silver-haired bat), 16 percent; Lasiurus cinereus (hoary bat), 11.7 percent; Myotis californicus (California myotis), 4.3 percent; M. evotis (long-eared myotis), 7.4 percent; M. leibii (small-footed myotis), 5.3 percent; M. thysanodes (fringed myotis), 13.8 percent; M. volans (long-legged myotis), 7.4 percent of the catch; M. yumanensis,(Yuma myotis), 5.3 percent; Pipistrellus hesperus (western pipistrelle), 1.1 percent; Plecotus townsendii (Townsend's big-eared bat), 1.1 percent, and Tadarida brasiliensis (Brazilian free-tailed bat), 5.3 percent.« less
Trypanosome species, including Trypanosoma cruzi, in sylvatic and peridomestic bats of Texas, USA.
Hodo, Carolyn L; Goodwin, Chloe C; Mayes, Bonny C; Mariscal, Jacqueline A; Waldrup, Kenneth A; Hamer, Sarah A
2016-12-01
In contrast to other mammalian reservoirs, many bat species migrate long-distances and have the potential to introduce exotic pathogens to new areas. Bats have long been associated with blood-borne protozoal trypanosomes of the Schizotrypanum subgenus, which includes the zoonotic parasite Trypanosoma cruzi, agent of Chagas disease. Another member of the subgenus, Trypanosoma dionisii, infects bats of Europe and South America, and genetic similarities between strains from the two continents suggest transcontinental movement of this parasite via bats. Despite the known presence of diverse trypanosomes in bats of Central and South America, and the presence of T. cruzi-infected vectors and wildlife in the US, the role of bats in maintaining and dispersing trypanosomes in the US has not yet been reported. We collected hearts and blood from 8 species of insectivorous bats from 30 counties across Texas. Using PCR and DNA sequencing, we tested 593 bats for trypanosomes and found 1 bat positive for T. cruzi (0.17%), 9 for T. dionisii (1.5%), and 5 for Blastocrithidia spp. (0.8%), a group of insect trypanosomes. The T. cruzi-infected bat was carrying TcI, the strain type associated with human disease in the US. In the T. dionisii-infected bats, we detected three unique variants associated with the three infected bat species. These findings represent the first report of T. cruzi in a bat in the US, of T. dionisii in North America, and of Blastocrithidia spp. in mammals, and underscore the importance of bats in the maintenance of trypanosomes, including agents of human and animal disease, across broad geographic locales. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Bat mortality and activity at a Northern Iowa wind resource area
Jain, A.A.; Koford, Rolf R.; Hancock, A.W.; Zenner, G.G.
2011-01-01
We examined bat collision mortality, activity and species composition at an 89-turbine wind resource area in farmland of north-central Iowa from mid-Apr. to mid-Dec., 2003 and mid-Mar. to mid-Dec., 2004. We found 30 bats beneath turbines on cleared ground and gravel access areas in 2003 and 45 bats in 2004. After adjusting for search probability, search efficiency and scavenging rate, we estimated total bat mortality at 396 ?? 72 (95 ci) in 2003 and 636 ?? 112 (95 ci) in 2004. Although carcasses were mostly migratory tree bats, we found a considerable proportion of little brown bats (Myotis lucifugus). We recorded 1465 bat echolocation call files at turbine sites ( 34.88 call files/detector-night) and 1536 bat call files at adjacent non-turbine sites ( 36.57 call files/detector-night). Bat activity did not differ significantly between turbine and non-turbine sites. A large proportion of recorded call files were made by Myotis sp. but this may be because we detected activity at ground level only. There was no relationship between types of turbine lights and either collision mortality or echolocation activity. The highest levels of bat echolocation activity and collision mortality were recorded during Jul. and Aug. during the autumn dispersal and migration period. The fatality rates for bats in general and little brown bats in particular were higher at the Top of Iowa Wind Resource Area than at other, comparable studies in the region. Future efforts to study behavior of bats in flight around turbines as well as cumulative impact studies should not ignore non-tree dwelling bats, generally regarded as minimally affected. ?? 2011, American Midland Naturalist.
A decade of U.S. Air Force bat strikes
Peurach, Suzanne C.; Dove, Carla J.; Stepko, Laura
2009-01-01
From 1997 through 2007, 821 bat strikes were reported to the U.S. Air Force (USAF) Safety Center by aircraft personnel or ground crew and sent to the National Museum of Natural History, Smithsonian Institution, for identification. Many samples were identified by macroscopic and or microscopic comparisons with bat specimens housed in the museum and augmented during the last 2 years by DNA analysis. Bat remains from USAF strikes during this period were received at the museum from 40 states in the United States and from 20 countries. We confirmed that 46% of the strikes were caused by bats, but we did not identify them further; we identified 5% only to the family or genus level, and 49% to the species level. Fifty-five of the 101 bat-strike samples submitted for DNA analysis have been identified to the species level. Twenty-five bat species have been recorded striking USAF planes worldwide. The Brazilian free-tailed bat (Tadarida brasiliensis; n = 173) is the species most commonly identified in USAF strike impacts, followed by the red bat (Lasiurus borealis; n = 83). Bat strikes peak during the spring and fall, with >57% occurring from August through October; 82% of the reports that included time of strike were recorded between 2100 and 0900 hours. More than 12% of the bat strikes were reported at >300 m above ground level (AGL). Although <1% of the bat-strike reports indicated damage to USAF aircraft, cumulative damage for 1997 through 2007 totaled >$825,000 and >50% of this sum was attributable to 5 bat-strike incidents. Only 5 bats from the 10 most damaging bat strikes were identified to the species level, either because we did not receive remains with the reports or the sample was insufficient for identification.
Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi
2014-01-01
Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: “bats approach their prey.” Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425
Isolation of Genetically Diverse Marburg Viruses from Egyptian Fruit Bats
Towner, Jonathan S.; Amman, Brian R.; Sealy, Tara K.; Carroll, Serena A. Reeder; Comer, James A.; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D.; Balinandi, Stephen; Khristova, Marina L.; Formenty, Pierre B. H.; Albarino, Cesar G.; Miller, David M.; Reed, Zachary D.; Kayiwa, John T.; Mills, James N.; Cannon, Deborah L.; Greer, Patricia W.; Byaruhanga, Emmanuel; Farnon, Eileen C.; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W.; Zaki, Sherif R.; Ksiazek, Thomas G.; Nichol, Stuart T.; Rollin, Pierre E.
2009-01-01
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans. PMID:19649327
Joshi, Prathamesh Vijay; Lele, Vikram Ramchandra
2012-05-01
Fused positron emission tomography-computed tomography (PET/CT) technology has enabled the determination that nonmalignant fluorodeoxyglucose (FDG) uptake is observed in brown adipose tissue (BAT). FDG uptake in BAT is a known potential source of false-positive interpretations for PET. The typical locations of BAT include neck, supraclavicular area, mediastinum, and paravertebral intercostal spaces. Examples of atypical locations for BAT include posterior neck, left paratracheal area, axillae, perirenal area, and retrocrural area. We report PET/CT findings in a young male patient with malignant retroperitoneal extra-adrenal pheochromocytoma, who demonstrated FDG uptake in BAT at multiple locations including mesenteric BAT. We also propose catecholamine-secreting pheochromocytoma as a possible cause of BAT activation in our case.
Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.
Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Carroll, Serena A Reeder; Comer, James A; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D; Balinandi, Stephen; Khristova, Marina L; Formenty, Pierre B H; Albarino, Cesar G; Miller, David M; Reed, Zachary D; Kayiwa, John T; Mills, James N; Cannon, Deborah L; Greer, Patricia W; Byaruhanga, Emmanuel; Farnon, Eileen C; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W; Zaki, Sherif R; Ksiazek, Thomas G; Nichol, Stuart T; Rollin, Pierre E
2009-07-01
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.
He, Biao; Huang, Xiaohong; Zhang, Fuqiang; Tan, Weilong; Matthijnssens, Jelle; Qin, Shaomin; Xu, Lin; Zhao, Zihan; Yang, Ling'en; Wang, Quanxi; Hu, Tingsong; Bao, Xiaolei; Wu, Jianmin; Tu, Changchun
2017-06-15
Bats are natural reservoirs for many pathogenic viruses, and increasing evidence supports the notion that bats can also harbor group A rotaviruses (RVAs), important causative agents of diarrhea in children and young animals. Currently, 8 RVA strains possessing completely novel genotype constellations or genotypes possibly originating from other mammals have been identified from African and Chinese bats. However, all the data were mainly based on detection of RVA RNA, present only during acute infections, which does not permit assessment of the true exposure of a bat population to RVA. To systematically investigate the genetic diversity of RVAs, 547 bat anal swabs or gut samples along with 448 bat sera were collected from five South Chinese provinces. Specific reverse transcription-PCR (RT-PCR) screening found four RVA strains. Strain GLRL1 possessed a completely novel genotype constellation, whereas the other three possessed a constellation consistent with the MSLH14-like genotype, a newly characterized group of viruses widely prevalent in Chinese insectivorous bats. Among the latter, strain LZHP2 provided strong evidence of cross-species transmission of RVAs from bats to humans, whereas strains YSSK5 and BSTM70 were likely reassortants between typical MSLH14-like RVAs and human RVAs. RVA-specific antibodies were detected in 10.7% (48/448) of bat sera by an indirect immunofluorescence assay (IIFA). Bats in Guangxi and Yunnan had a higher RVA-specific antibody prevalence than those from Fujian and Zhejiang provinces. These observations provide evidence for cross-species transmission of MSLH14-like bat RVAs to humans, highlighting the impact of bats as reservoirs of RVAs on public health. IMPORTANCE Bat viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Ebola, Hendra, and Nipah viruses, are important pathogens causing outbreaks of severe emerging infectious diseases. However, little is known about bat viruses capable of causing gastroenteritis in humans, even though 8 group A viruses (RVAs) have been identified from bats so far. In this study, another 4 RVA strains were identified, with one providing strong evidence for zoonotic transmission from bats to humans. Serological investigation has also indicated that RVA infection in bats is far more prevalent than expected based on the detection of viral RNA. Copyright © 2017 American Society for Microbiology.
Balboni, Andrea; Gallina, Laura; Palladini, Alessandra; Prosperi, Santino; Battilani, Mara
2012-01-01
Bats are source of coronaviruses closely related to the severe acute respiratory syndrome (SARS) virus. Numerous studies have been carried out to identify new bat viruses related to SARS-coronavirus (bat-SARS-like CoVs) using a reverse-transcribed-polymerase chain reaction assay. However, a qualitative PCR could underestimate the prevalence of infection, affecting the epidemiological evaluation of bats in viral ecology. In this work an SYBR Green-real time PCR assay was developed for diagnosing infection with SARS-related coronaviruses from bat guano and was applied as screening tool in a survey carried out on 45 greater horseshoe bats (Rhinolophus ferrumequinum) sampled in Italy in 2009. The assay showed high sensitivity and reproducibility. Its application on bats screening resulted in a prevalence of 42%. This method could be suitable as screening tool in epidemiological surveys about the presence of bat-SARS-like CoVs, consequently to obtain a more realistic scenario of the viral prevalence in the population. PMID:22654650
Miller, Megan R; McMinn, Rebekah J; Misra, Vikram; Schountz, Tony; Müller, Marcel A; Kurth, Andreas; Munster, Vincent J
2016-10-15
Filoviruses are strongly associated with several species of bats as their natural reservoirs. In this study, we determined the replication potential of all filovirus species: Marburg marburgvirus, Taï Forest ebolavirus, Reston ebolavirus, Sudan ebolavirus, Zaire ebolavirus, and Bundibugyo ebolavirus. Filovirus replication was supported by all cell lines derived from 6 Old and New World bat species: the hammer-headed fruit bat, Buettikofer's epauletted fruit bat, the Egyptian fruit bat, the Jamaican fruit bat, the Mexican free-tailed bat and the big brown bat. In addition, we showed that Marburg virus Angola and Ebola virus Makona-WPGC07 efficiently replicated at 37°C, 37°-41°C, or 41°C, contrary to the hypothesis that temporal elevation in temperature due to flight affects filovirus replication in bats. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Bacterial diversity indicates dietary overlap among bats of different feeding habits.
Banskar, Sunil; Mourya, Devendra T; Shouche, Yogesh S
2016-01-01
Bats are among the most conspicuous mammals with extraordinary adaptations. They play a key role in the ecosystem. Frugivorous bats are important seed dispersing agents that help in maintaining forest tree diversity, while insectivorous bats are natural insect pest control agents. Several previous reports suggest that bats are reservoir of viruses; nonetheless their bacterial counterparts are relatively less explored. The present study describes the microbial diversity associated with the intestine of bats from different regions of India. Our observations stipulate that there is substantial sharing of bacterial communities between the insectivorous and frugivorous bats, which signifies fairly large dietary overlap. We also observed the presence of higher abundance of Mycoplasma in Cynopterus species of bats, indicating possible Mycoplasma infection. Considering the scarcity of literature related to microbial communities of bat intestinal tract, this study can direct future microbial diversity studies in bats with reference to their dietary habits, host-bacteria interaction and zoonosis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans
Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E.; Saraf, Manish K.; Labbe, Sebastien M.; Hurren, Nicholas M.; Yfanti, Christina; Chao, Tony; Andersen, Clark R.; Cesani, Fernando; Hawkins, Hal
2014-01-01
Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT+) men and five BAT-negative (BAT−) men under thermoneutral conditions and after prolonged (5–8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT+ group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans. PMID:25056438
Bird migration patterns in the arid southwest-Final report
Ruth, Janet M.; Felix, Rodney K.; Dieh, Robert H.
2010-01-01
To ensure full life-cycle conservation, we need to understand migrant behavior en route and how migrating species use stopover and migration aerohabitats. In the Southwest, birds traverse arid and mountainous landscapes in migration. Migrants are known to use riparian stopover habitats; we know less about how migrant density varies across the Southwest seasonally and annually, and how migrants use other habitat types during migratory stopover. Furthermore, we lack information about migrant flight altitudes, speeds, and directions of travel, and how these patterns vary seasonally and annually across the Southwest. Using weather surveillance radar data, we identified targets likely dominated by nocturnally migrating birds and determined their flight altitudes, speeds, directions over ground, and variations in abundance. Migrating or foraging bats likely are present across the region in some of these data, particularly in central Texas. We found that migrants flew at significantly lower altitudes and significantly higher speeds in spring than in fall. In all seasons migrants maintained seasonally appropriate directions of movement. We detected significant differences in vertical structure of migrant densities that varied both geographically within seasons and seasonally within sites. We also found that in fall there was a greater and more variable passage of migrants through the central part of the borderlands (New Mexico and west Texas); in spring there was some suggestion of greater and more variable passage of migrants in the eastern borderlands (central and south Texas). Such patterns are consistent with the existence of at least two migration systems through western North America and the use of different migration routes in spring and fall for at least some species. Using radar data and satellite land cover data, we determined the habitats with which migrants are associated during migration stopover. There were significant differences in bird densities among habitat types at all sites in at least one season. Upland forest habitat in parts of Arizona and New Mexico supported high migrant densities, especially in fall. Developed habitats in areas with little upland forest habitat also supported high migrant densities. Scrub/shrub and grassland habitats supported low to intermediate migrant densities, but because these habitat types dominate the region, they may support large numbers of migratory birds. This may be especially true for species that do not use forested habitats during migration. Target identity remains a challenge for radar-based studies. Presence of bats in the data complicates interpretation of some observations, particularly from central Texas. Based on our results it is simplistic to: (1) consider the arid west as a largely inhospitable landscape in which there are only relatively small oases of habitat that provide the resources needed by all migrants; (2) think of western riparian and upland forest habitat as supporting the majority of migrants in all cases; or (3) consider a particular habitat type unimportant migrant stopover habitat based solely on migrant densities.
Hernández-Martínez, Jacqueline; Morales-Malacara, Juan B; Alvarez-Añorve, Mariana Yolotl; Amador-Hernández, Sergio; Oyama, Ken; Avila-Cabadilla, Luis Daniel
2018-05-21
The anthropogenic modification of natural landscapes, and the consequent changes in the environmental conditions and resources availability at multiple spatial scales can affect complex species interactions involving key-stone species such as bat-parasite interactions. In this study, we aimed to identify the drivers potentially influencing host-bat fly interactions at different spatial scales (at the host, vegetation stand and landscape level), in a tropical anthropogenic landscape. For this purpose, we mist-netted phyllostomid and moormopid bats and collected the bat flies (streblids) parasitizing them in 10 sites representing secondary and old growth forest. In general, the variation in fly communities largely mirrored the variation in bat communities as a result of the high level of specialization characterizing host-bat fly interaction networks. Nevertheless, we observed that: (1) bats roosting dynamics can shape bat-streblid interactions, modulating parasite prevalence and the intensity of infestation; (2) a degraded matrix could favor crowding and consequently the exchange of ectoparasites among bat species, lessening the level of specialization of the interaction networks and promoting novel interactions; and (3) bat-fly interaction can also be shaped by the dilution effect, as a decrease in bat diversity could be associated with a potential increase in the dissemination and prevalence of streblids.
Dato, Virginia M; Campagnolo, Enzo R; Long, Jonah; Rupprecht, Charles E
2016-01-01
In the United States and Canada, the most recent documented cases of rabies have been attributed to bat rabies viruses (RABV). We undertook this systematic review in an effort to summarize and enhance understanding of the risk of infection for individuals who have been potentially exposed to a suspect or confirmed rabid bat. United States rabies surveillance summaries documented a total of 41 human bat-rabies virus variant verified non-transplant cases between 1990 and 2015. All cases were fatal. Seven (17.1%) of 41 cases reported a bite from a bat. Ten (24.3%) cases had unprotected physical contact (UPC); these included seven cases that had a bat land or crawl on them (contact with claws) and one case that touched a bat's teeth. Seven (17.1%) cases had probable UPC. Insectivorous bat teeth are extremely sharp and highly efficient for predation upon arthropod prey. Bats also have sharp claws on the end of their thumbs and feet. One of the most common bat RABV variants has an ability to replicate in non-neural cells. Questioning individuals about unprotected contact with bat teeth and claws (including a bat landing or crawling on a person) may help identify additional exposures.
Assessment of softball bat safety performance using mid-compression polyurethane softballs.
McDowell, Mark
2004-07-01
There is currently much debate about the safety of the sport of softball. Batted-ball speed and average pitcher reaction time are factors often used to determine safe performance. Batted-ball speed is shown to be the most important factor to consider when determining safe play. Average pitcher reaction time is explained and directly correlated to batted-ball speed. Eleven aluminum multi-wall, three aluminum single-wall and two composite softball bats were tested with mid-compression polyurethane softballs averaging 1721+/-62 N/6.4 mm to represent the relative bat-ball performance for the sport of slowpitch softball. Nine men and six women were chosen for this study out of a test group of over three hundred slowpitch softball players. On average, aluminum bat performance results were within the recommended safety limits established by the national softball associations. However, when composite bats were used, their performance results exceeded the recommended safety limits which can pose a significant safety risk. Using aluminum softball bats, batted-ball speeds ranged from 80 to 145km x h(-1) Using composite softball bats, batted-ball speeds ranged from 146 to 161 km x h(-1). The scientific relevance of this study is to provide performance information that can lead to injury prevention in the sport of softball.
Vora, Neil M; Osinubi, Modupe; Wallace, Ryan M; Aman-Oloniyo, Abimbola; Gbadegesin, Yemi H; Sebastian, Yennan Kerecvel; Saliman, Olugbon Abdullateef; Niezgoda, Mike; Davis, Lora; Recuenco, Sergio
2014-04-18
Bats provide vital ecologic services that humans benefit from, such as seed dispersal and pest control, and are a food source for some human populations. However, bats also are reservoirs for a number of high-consequence zoonoses, including paramyxoviruses, filoviruses, and lyssaviruses. The variety of viruses that bats harbor might be related to their evolutionary diversity, ability to fly large distances, long lifespans, and gregarious roosting behaviors. Every year a festival takes place in Idanre, Nigeria, in which males of all ages enter designated caves to capture bats; persons are forbidden from entering the caves outside of these festivities. Festival participants use a variety of techniques to capture bats, but protective equipment rarely is used, placing hunters at risk for bat scratches and bites. Many captured bats are prepared as food, but some are transported to markets in other parts of the country for sale as bushmeat. Bats also are presented to dignitaries in elaborate rituals. The health consequences of contact with these bats are unknown, but a number of viruses have been previously identified among Nigerian bats, including lyssaviruses, pegiviruses, and coronaviruses. Furthermore, the caves are home to Rousettus aegyptiacus bats, which are reservoirs for Marburg virus in other parts of Africa.
Rabies Virus Infection in Eptesicus fuscus Bats Born in Captivity (Naïve Bats)
Davis, April D.; Jarvis, Jodie A.; Pouliott, Craig; Rudd, Robert J.
2013-01-01
The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV) studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA) may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats), naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1). Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2. PMID:23741396
Rollins, K E; Meyerholz, D K; Johnson, G D; Capparella, A P; Loew, S S
2012-03-01
Migrating bats have increased mortality near moving turbine blades at wind farms. The authors evaluated competing hypotheses of barotrauma and traumatic injury to determine the cause. They first examined the utility of lungs from salvaged bat carcasses for histopathologic diagnosis of barotrauma and studied laboratory mice as a model system. Postmortem time, environmental temperature, and freezing of carcasses all affected the development of vascular congestion, hemorrhage, and edema. These common tissue artifacts mimicked the diagnostic criteria of pulmonary barotrauma; therefore, lung tissues from salvaged bats should not be used for barotrauma diagnosis. The authors next compared wind farm (WF) bats to building collision (BC) bats collected near downtown Chicago buildings. WF bats had an increased incidence in fracture cases and specific bone fractures and had more external lacerations than BC bats. WF bats had additional features of traumatic injury, including diaphragmatic hernia, subcutaneous hemorrhage, and bone marrow emboli. In summary, 73% (190 of 262) of WF bats had lesions consistent with traumatic injury. The authors then examined for ruptured tympana, a sensitive marker of barotrauma in humans. BC bats had only 1 case (2%, 1 of 42), but this was attributed to concurrent cranial fractures, whereas WF bats had a 20% (16 of 81) incidence. When cases with concurrent traumatic injury were excluded, this yielded a small fraction (6%, 5 of 81) of WF bats with lesions possibly consistent with barotrauma etiology. Forensic pathology examination of the data strongly suggests that traumatic injury is the major cause of bat mortality at wind farms and, at best, barotrauma is a minor etiology.
Bats in Agroecosytems around California's Central Coast
NASA Astrophysics Data System (ADS)
Wayne, A.
2014-12-01
Bats in agroecosystems around California's Central Coast: A full quarter of California's land area is farmland. Crops account for 32.5 billion of California's GDP. Insect control is a big problem for farmers, and California bats eat only insects, saving farmers an estimated 3 to $53 billion a year. As farmers maximize crop yield, they use more pesticides, herbicides, and fertilizers, which contaminate runoff streams that bats drink from. Also, pesticide use kills bats' sole food source: insects. My research objective was to find out how farm management practices and landscape complexity affect bat diversity and activity, and to see which one affects bat activity more. We monitored 18 sites, including conventional, organic, and low and high-complexity landscapes. We noted more bat activity at sites with high complexity landscapes and organic practices than at sites with either low-complexity landscapes or conventional farming practices. I captured and processed bats and recorded data. I also classified insects collected from light traps. I learned how to handle bats and measure forearm length and weight, as well as how to indentify their gender. I took hair clippings and fecal samples, which yield data about the bats' diet. Their diet, in turn, gives us data about which pests they eat and therefore help control. I also learned about bats' echolocation: they have a special muscle over their ears that closes when they echolocate so that they don't burst their own eardrum. Also, some insects have evolved a special call that will disrupt bats echolocation so bats can't track it.
Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M; Zhang, Shuyi
2014-01-01
Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.
Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging.
Chen, Y Iris; Cypess, Aaron M; Sass, Christina A; Brownell, Anna-Liisa; Jokivarsi, Kimmo T; Kahn, C Ronald; Kwong, Kenneth K
2012-07-01
Brown adipose tissue (BAT) is the primary tissue responsible for nonshivering thermogenesis in mammals. The amount of BAT and its level of activation help regulate the utilization of excessive calories for thermogenesis as opposed to storage in white adipose tissue (WAT) which would lead to weight gain. Over the past several years, BAT activity in vivo has been primarily assessed by positron emission tomography-computed tomography (PET-CT) scan using 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) to measure glucose utilization associated with BAT mitochondrial respiration. In this study, we demonstrate the feasibility of mapping and estimating BAT volume and metabolic function in vivo in rats at a 9.4T magnetic resonance imaging (MRI) scanner using sequences available from clinical MR scanners. Based on the morphological characteristics of BAT, we measured the volume distribution of BAT with MRI sequences that have strong fat-water contrast. We also investigated BAT volume by utilizing spin-echo MRI sequences. The in vivo MRI-estimated BAT volumes were correlated with direct measurement of BAT mass from dissected samples. Using MRI, we also were able to map hemodynamic responses to changes in BAT metabolism induced pharmacologically by β3-adrenergic receptor agonist, CL-316,243 and compare this to BAT activity in response to CL-316,243 assessed by PET 18F-FDG. In conclusion, we demonstrate the feasibility of measuring BAT volume and function in vivo using routine MRI sequences. The MRI measurement of BAT volume is consistent with quantitative measurement of the tissue ex vivo.
Hibi, M; Oishi, S; Matsushita, M; Yoneshiro, T; Yamaguchi, T; Usui, C; Yasunaga, K; Katsuragi, Y; Kubota, K; Tanaka, S; Saito, M
2016-01-01
Background/Objectives: Brown adipose tissue (BAT) is a potential therapeutic target against obesity and diabetes through thermogenesis and substrate disposal with cold exposure. The role of BAT in energy metabolism under thermoneutral conditions, however, remains controversial. We assessed the contribution of BAT to energy expenditure (EE), particularly diet-induced thermogenesis (DIT), and substrate utilization in human adults. Methods: In this cross-sectional study, BAT activity was evaluated in 21 men using 18F-fluoro-2-deoxy-D-glucose positron emission tomography combined with computed tomography (18F-FDG-PET/CT) after cold exposure (19 °C). The subjects were divided into BAT-positive (n=13) and BAT-negative (n=8) groups according to the 18F-FDG-PET/CT findings. Twenty-four hour EE, DIT and respiratory quotient were measured using a whole-room indirect calorimeter at 27 °C. Results: Body composition, blood metabolites and 24-h EE did not differ between groups. DIT (%), calculated as DIT divided by total energy intake, however, was significantly higher in the BAT-positive group (BAT-positive: 9.7±2.5%, BAT-negative: 6.5±4.0%, P=0.03). The 24-h respiratory quotient was significantly lower (P=0.03) in the BAT-positive group (0.861±0.027) than in the BAT-negative group (0.889±0.024). Conclusion: DIT and fat utilization were higher in BAT-positive subjects compared to BAT-negative subjects, suggesting that BAT has a physiologic role in energy metabolism. PMID:27430878
Rabies virus infection in Eptesicus fuscus bats born in captivity (naïve bats).
Davis, April D; Jarvis, Jodie A; Pouliott, Craig; Rudd, Robert J
2013-01-01
The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV) studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA) may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats), naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1). Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.
2009-01-01
Increases in computational resources have allowed operational forecast centers to pursue experimental, high resolution simulations that resolve the microphysical characteristics of clouds and precipitation. These experiments are motivated by a desire to improve the representation of weather and climate, but will also benefit current and future satellite campaigns, which often use forecast model output to guide the retrieval process. The combination of reliable cloud microphysics and radar reflectivity may constrain radiative transfer models used in satellite simulators during future missions, including EarthCARE and the NASA Global Precipitation Measurement. Aircraft, surface and radar data from the Canadian CloudSat/CALIPSO Validation Project are used to check the validity of size distribution and density characteristics for snowfall simulated by the NASA Goddard six-class, single moment bulk water microphysics scheme, currently available within the Weather Research and Forecast (WRF) Model. Widespread snowfall developed across the region on January 22, 2007, forced by the passing of a mid latitude cyclone, and was observed by the dual-polarimetric, C-band radar King City, Ontario, as well as the NASA 94 GHz CloudSat Cloud Profiling Radar. Combined, these data sets provide key metrics for validating model output: estimates of size distribution parameters fit to the inverse-exponential equations prescribed within the model, bulk density and crystal habit characteristics sampled by the aircraft, and representation of size characteristics as inferred by the radar reflectivity at C- and W-band. Specified constants for distribution intercept and density differ significantly from observations throughout much of the cloud depth. Alternate parameterizations are explored, using column-integrated values of vapor excess to avoid problems encountered with temperature-based parameterizations in an environment where inversions and isothermal layers are present. Simulation of CloudSat reflectivity is performed by adopting the discrete-dipole parameterizations and databases provided in literature, and demonstrate an improved capability in simulating radar reflectivity at W-band versus Mie scattering assumptions.
Patterns of acoustical activity of bats prior to and following White-nose Syndrome occurrence
Ford, W. Mark; Britzke, Eric R.; Dobony, Christopher A.; Rodrigue, Jane L.; Johnson, Joshua B.
2011-01-01
White-nose Syndrome (WNS), a wildlife health concern that has decimated cave-hibernating bat populations in eastern North America since 2006, began affecting source-caves for summer bat populations at Fort Drum, a U.S. Army installation in New York in the winter of 2007–2008. As regional die-offs of bats became evident, and Fort Drum's known populations began showing declines, we examined whether WNS-induced change in abundance patterns and seasonal timing of bat activity could be quantified using acoustical surveys, 2003–2010, at structurally uncluttered riparian–water habitats (i.e., streams, ponds, and wet meadows). As predicted, we observed significant declines in overall summer activity between pre-WNS and post-WNS years for little brown bats Myotis lucifugus, northern bats M. septentrionalis, and Indiana bats M. sodalis. We did not observe any significant change in activity patterns between pre-WNS and post-WNS years for big brown bats Eptesicus fuscus, eastern red bats Lasiurus borealis, or the small number of tri-colored bats Perimyotis subflavus. Activity of silver-haired bats Lasionycteris noctivagans increased from pre-WNS to post-WNS years. Activity levels of hoary bats Lasiurus cinereus significantly declined between pre- and post-WNS years. As a nonhibernating, migratory species, hoary bat declines might be correlated with wind-energy development impacts occurring in the same time frame rather than WNS. Intraseason activity patterns also were affected by WNS, though the results were highly variable among species. Little brown bats showed an overall increase in activity from early to late summer pre-WNS, presumably due to detections of newly volant young added to the local population. However, the opposite occurred post-WNS, indicating that reproduction among surviving little brown bats may be declining. Our data suggest that acoustical monitoring during the summer season can provide insights into species' relative abundance on the landscape as affected by the occurrence of WNS.
Wilcox, Alana; Willis, Craig K R
2016-01-01
Habitat modification can improve outcomes for imperilled wildlife. Insectivorous bats in North America face a range of conservation threats, including habitat loss and white-nose syndrome (WNS). Even healthy bats face energetic constraints during spring, but enhancement of roosting habitat could reduce energetic costs, increase survival and enhance recovery from WNS. We tested the potential of artificial heating of bat roosts as a management tool for threatened bat populations. We predicted that: (i) after hibernation, captive bats would be more likely to select a roost maintained at a temperature near their thermoneutral zone; (ii) bats recovering from WNS at the end of hibernation would show a stronger preference for heated roosts compared with healthy bats; and (iii) heated roosts would result in biologically significant energy savings. We housed two groups of bats (WNS-positive and control) in separate flight cages following hibernation. Over 7.5 weeks, we quantified the presence of individuals in heated vs. unheated bat houses within each cage. We then used a series of bioenergetic models to quantify thermoregulatory costs in each type of roost under a number of scenarios. Bats preferentially selected heated bat houses, but WNS-affected bats were much more likely to use the heated bat house compared with control animals. Our model predicted energy savings of up to 81.2% for bats in artificially heated roosts if roost temperature was allowed to cool at night to facilitate short bouts of torpor. Our results are consistent with research highlighting the importance of roost microclimate and suggest that protection and enhancement of high-quality, natural roosting environments should be a priority response to a range of threats, including WNS. Our findings also suggest the potential of artificially heated bat houses to help populations recover from WNS, but more work is needed before these might be implemented on a large scale.
Genetic divergence of rabies viruses from bat species of Colorado, USA
Shanker, V.; Orciari, L.A.; De Mattos, C.; Kuzmin, I.V.; Pape, W.J.; O'Shea, T.J.; Rupprecht, C.E.
2005-01-01
Molecular epidemiological studies have linked many cryptic human rabies cases in the United States with exposure to rabies virus (RV) variants associated with insectivorous bats. In Colorado, bats accounted for 98% of all reported animal rabies cases between 1977 and 1996. The genetic divergence of RV was investigated in bat and terrestrial animal specimens that were submitted for rabies diagnosis to the Colorado Department of Public Health and Environment (CDPHE), Colorado, USA. RV isolates from animal specimens across the United States were also included in the analysis. Phylogenetic analyses were performed on partial nucleoprotein (N) gene sequences, which revealed seven principal clades. RV associated with the colonial big brown bat, Eptesicus fuscus, an bats of the genus Myotis were found to segregate into two distinct clades (I and IV). Clade I was harbored by E. fuscus and Myotis species, but was also identified in terrestrial animals such as domestic cats and striped skunks (Mephitis mephitis). Clade IV was divided into subclades IVA, IVB, and IVC; IVA was identified in E. fuscus, and Myotis species bats, and also in a fox; subclades IVB and IVC circulated predominantly in E. fuscus. Clade II was formed by big free-tailed bat (Nyctinomops macrotis) and striped skunk (Mephitis mephitis) samples. Clade III included RVs that are maintained by generally solitary, migratory bats such as the silver-haired bat (Lasionycteris noctivagans) and bats of the genus Lasiurus. Big brown bats were found to harbor this RV variant. None of the Colorado specimens segregated with clades V and VII that harbor RVs associated with terrestrial animals. Different species of bats had the same RV variant, indicating active inter-species rabies transmission. In Colorado, animal rabies occurs principally in bats, and the identification of bat RVs in cat, gray fox Urocyon cinereoargenteus), and striped skunks demonstrated the importance of rabies spillover from bats to domestic and terrestrial wildlife species.
Experimental feeding of DDE and PCB to female big brown bats (Eptesicus fuscus)
Clark, D.R.; Prouty, R.M.
1977-01-01
Twenty-two female big brown bats (Eptesicus fuscus) were collected in a house attic in Montgomery County, Maryland. Seventeen were fed mealworms (Tenebrio molitor larvae) that contained 166 ppm DDE; the other five were fed uncontaminated mealworms. After 54 days of feeding, six dosed bats were frozen and the remaining 16 were starved to death. In a second experiment, 21 female big brown bats were collected in a house attic in Prince Georges County, Maryland. Sixteen were fed mealworms that contained 9.4 ppm Aroclor 1254 (PCB). After 37 days, two bats had died, four dosed bats were frozen, and the remaining 15 were starved to death. Starvation caused mobilization of stored residues. After the feeding periods, average weights of all four groups (DDE-dosed, DDE control, PCB-dosed, PCB control) had increased. However, weights of DDE-dosed bats had increased significantly more than those of their contols, whereas weights of PCB-dosed bats had increased significantly less than those of their controls. During starvation, PCB-dosed bats lost weight significantly more slowly than controls. Because PCB levels in dosed bats resembled levels found in some free-living big brown bats, PCBs may be slowing metabolic rates of some free-living bats. It is not known how various common organochlorine residues may affect metabolism in hibernating bats. DDE and PCB increased in brains of starving bats as carcass fat was metabolized. Because the tremors and/or convulsions characteristic of neurotoxicity were not observed, we think even the maximum brain levels attained (132 ppm DDE, 20 ppm PCB) were sublethal. However, extrapolation of our DDE data predicted lethal brain levels when fat reserves declined sufficiently. PCB-dosed bats were probably in no danger of neurotoxic poisoning. However, PCB can kill by a nonneurotoxic mode, and this could explain the deaths of two bats on PCB dosage.
ERIC Educational Resources Information Center
McKee, Judith A.
1992-01-01
Describes a unit of study for elementary school science on bats. Students investigate the different types of bats; examine their behavior; find facts that other students are unlikely to know; write stories about bats; and examine the concept of echolocation, the means by which bats navigate. Suggests integrated activities for mathematics…
NASA Astrophysics Data System (ADS)
Facheris, L.; Tanelli, S.; Giuli, D.
A method is presented for analyzing the storm motion through the application of a nowcasting technique based on radar echoes tracking through multiscale correlation. The application of the correlation principle to weather radar image processing - the so called TREC (Tracking Radar Echoes by Correlation) and derived algorithms - is de- scribed in [1] and in references cited therein. The block matching approach exploited there is typical of video compression applications, whose purpose is to remove the temporal correlation between two subsequent frames of a sequence of images. In par- ticular, the wavelet decomposition approach to motion estimation seems particularly suitable for weather radar maps. In fact, block matching is particularly efficient when the images have a sufficient level of contrast. Though this does not hold for original resolution radar maps, it can be easily obtained by changing the resolution level by means of the wavelet decomposition. The technique first proposed in [2] (TREMC - Tracking of Radar Echoes by means of Multiscale Correlation) adopts a multiscale, multiresolution, and partially overlapped, block grid which adapts to the radar reflec- tivity pattern. Multiresolution decomposition is performed through 2D wavelet based filtering. Correlation coefficients are calculated taking after preliminary screening of unreliable data (e.g. those affected by ground clutter or beam shielding), so as to avoid strong undesired motion estimation biases due to the presence of stationary features. Such features are detected by a previous analysis carried out as discussed in [2]. In this paper, motion fields obtained by analyzing precipitation events over the Arno river basin are compared to the related Doppler velocity fields in order to identify growth and decay areas and orographic effects. Data presented have been collected by the weather radar station POLAR 55C sited in Montagnana (Firenze-Italy), a polarimetric C-band system providing absolute and differential reflectivity maps, mean Doppler velocity and Doppler spread maps with a resolution of 125/250 m [3]. [1] Li L. Schmid W. and Joss J., Nowcasting of motion and growth of precipitation with radar over a complex orography Journal of Applied Meteorology, vol. 34, pp. 1286-1300, 1995. [2] L.Facheris, S. Tanelli, F. Argenti, D.Giuli, SWavelet Applica- & cedil;tions to Multiparameter Weather Radar AnalysisT, to be published on SInformation & cedil;Processing for Remote SensingT, Prof. C.H. Chen Ed. for World Scientific Publish- 1 ing Co., pagg. 187-207, 1999 [3] Scarchilli G. Gorgucci E. Giuli D. Facheris L. Freni A. and Vezzani G., Arno Project: Radar System and objectives., Proceedings 25th In- ternational Conference on Radar Meteorology, Paris, France, 24-28 June 1991, pp. 805-808 2
78 FR 19517 - Receipt of Applications for Endangered Species Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... must receive written data or comments on the applications at the address given below, by May 1, 2013... (Myotis sodalis), gray bat (M. grisescens), Virginia big-eared bat (Corynorhinus townsendii virginianus... collect tissues) Indiana bat (M. sodalis), gray bat (M. grisescens), and Virginia big-eared bat (C. t...
77 FR 2311 - Endangered and Threatened Wildlife and Plants; Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-17
... endangered species in the Code of Federal Regulations (CFR) at 50 CFR 17. Submit your written data, comments..., Ozark big-eared bats (Corynorhinus townsendii ingens), Virginia big-eared bats (Corynorhinus townsendii... requests a permit renewal to take (capture and release) Indiana bats, gray bats, Virginia big-eared bats...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
...-Regulatory Organizations; BATS Y-Exchange, Inc.; Notice of Filing of Proposed Rule Change by BATS Y-Exchange...''),\\1\\ and Rule 19b-4 thereunder,\\2\\ notice is hereby given that on May 9, 2011, BATS Y-Exchange, Inc... the market is a BATS Post Only Order. As defined in Rule 11.9(c)(6), a BATS Post Only Order is ``[a]n...
Serologic evidence of Lyssavirus infections among bats, the Philippines.
Arguin, Paul M; Murray-Lillibridge, Kristy; Miranda, Mary E G; Smith, Jean S; Calaor, Alan B; Rupprecht, Charles E
2002-03-01
Active surveillance for lyssaviruses was conducted among populations of bats in the Philippines. The presence of past or current Lyssavirus infection was determined by use of direct fluorescent antibody assays on bat brains and virus neutralization assays on bat sera. Although no bats were found to have active infection with a Lyssavirus, 22 had evidence of neutralizing antibody against the Australian bat lyssavirus (ABLV). Seropositivity was statistically associated with one species of bat, Miniopterus schreibersi. Results from the virus neutralization assays are consistent with the presence in the Philippines of a naturally occurring Lyssavirus related to ABLV.
Serologic Evidence of Lyssavirus Infections among Bats, the Philippines
Murray-Lillibridge, Kristy; Miranda, Mary E.G.; Smith, Jean S.; Calaor, Alan B.; Rupprecht, Charles E.
2002-01-01
Active surveillance for lyssaviruses was conducted among populations of bats in the Philippines. The presence of past or current Lyssavirus infection was determined by use of direct fluorescent antibody assays on bat brains and virus neutralization assays on bat sera. Although no bats were found to have active infection with a Lyssavirus, 22 had evidence of neutralizing antibody against the Australian bat lyssavirus (ABLV). Seropositivity was statistically associated with one species of bat, Miniopterus schreibersi. Results from the virus neutralization assays are consistent with the presence in the Philippines of a naturally occurring Lyssavirus related to ABLV. PMID:11927022
Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats
Hayman, David T.S.; Pulliam, Juliet R.C.; Marshall, Jonathan C.; Cryan, Paul M.; Webb, Colleen T.
2016-01-01
White-nose syndrome is a fungal disease killing bats in eastern North America, but disease is not seen in European bats and is less severe in some North American species. We show that how bats use energy during hibernation and fungal growth rates under different environmental conditions can explain how some bats are able to survive winter with infection and others are not. Our study shows how simple but nonlinear interactions between fungal growth and bat energetics result in decreased survival times at more humid hibernation sites; however, differences between species such as body size and metabolic rates determine the impact of fungal infection on bat survival, allowing European bat species to survive, whereas North American species can experience dramatic decline.
Swing Weights of Baseball and Softball Bats
NASA Astrophysics Data System (ADS)
Russell, Dan
2010-10-01
Baseball and softball bats are sold according to length in inches and weight in ounces. Much to the consternation of players buying new bats, however, not all bats that weigh the same swing the same. The reason for this has to do with moment of inertia of the bat about a pivot point on the handle, or what the sporting goods industry refers to as swing weight.2-3 A number of recent field studies4-7 have confirmed that the speed with which a player can swing a baseball or softball bat depends more on the bat's moment of inertia than on its mass. In this paper we investigate the moment of inertia (swing weight) of a variety of baseball and softball bats.
Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats.
Hayman, David T S; Pulliam, Juliet R C; Marshall, Jonathan C; Cryan, Paul M; Webb, Colleen T
2016-01-01
White-nose syndrome is a fungal disease killing bats in eastern North America, but disease is not seen in European bats and is less severe in some North American species. We show that how bats use energy during hibernation and fungal growth rates under different environmental conditions can explain how some bats are able to survive winter with infection and others are not. Our study shows how simple but nonlinear interactions between fungal growth and bat energetics result in decreased survival times at more humid hibernation sites; however, differences between species such as body size and metabolic rates determine the impact of fungal infection on bat survival, allowing European bat species to survive, whereas North American species can experience dramatic decline.
Indirect oral immunization of captive vampires, Desmodus rotundus.
Almeida, Marilene F; Martorelli, Luzia F A; Aires, Caroline C; Sallum, P C; Massad, Eduardo
2005-07-01
A vaccinia-rabies glycoprotein recombinant virus (V-RG) vaccine was tested in hematophagous bats (Desmodus rotundus) kept in captivity. The vaccine was applied in a neutral vehicle (Vaseline) spread on the back of one or two vector bats, which were then reintroduced into their groups. Our hypothesis was that, as in the case of vampire bat control by vampiricide paste, the administration of V-RG vaccine through paste to one bat could indirectly protect other bats from the same group. Eight groups were tested. The rabies virus strain used to challenge the bats was isolated from a naturally infected hematophagous bat (Desmodus rotundus). The survival proportion after the virus challenge ranged between 42.8 and 71.4%. The results are encouraging because a significant number of bats that did not receive the vaccine survived the challenge. The vaccine was shown to be safe and immunogenic to hematophagous bats. No adverse effects to vaccinia virus were observed.
Bat activity in harvested and intact forest stands in the allegheny mountains
Owen, S.F.; Menzel, M.A.; Edwards, J.W.; Ford, W.M.; Menzel, J.M.; Chapman, B.R.; Wood, P.B.; Miller, K.V.
2004-01-01
We used Anabat acoustical monitoring devices to examine bat activity in intact canopy forests, complex canopy forests with gaps, forests subjected to diameter-limit harvests, recent deferment harvests, clearcuts and unmanaged forested riparian areas in the Allegheny Mountains of West Virginia in the summer of 1999. We detected eight species of bats, including the endangered Indiana bat (Myotis sodalis). Most bat activity was concentrated in forested riparian areas. Among upland habitats, activity of silver-haired bats (Lasionycteris noctivagans) and hoary bats (Lasiurus cinereus) was higher in open, less cluttered vegetative types such as recent deferment harvests and clearcuts. Our results suggest that bat species in the central Appalachians partially segregate themselves among vegetative conditions based on differences in body morphology and echolocation call characteristics. From the standpoint of conserving bat foraging habitat for the maximum number of species in the central Appalachians, special emphasis should be placed on protecting forested riparian areas.
European Bat Lyssavirus in Scottish Bats
Brookes, Sharon M.; Aegerter, James N.; Smith, Graham C.; Healy, Derek M.; Jolliffe, Tracey A.; Swift, Susan M.; Mackie, Iain J.; Pritchard, J. Stewart; Racey, Paul A.; Moore, Niall P.
2005-01-01
We report the first seroprevalence study of the occurrence of specific antibodies to European bat lyssavirus type 2 (EBLV-2) in Daubenton's bats. Bats were captured from 19 sites across eastern and southern Scotland. Samples from 198 Daubenton's bats, 20 Natterer's bats, and 6 Pipistrelle's bats were tested for EBLV-2. Blood samples (N = 94) were subjected to a modified fluorescent antibody virus neutralization test to determine antibody titer. From 0.05% to 3.8% (95% confidence interval) of Daubenton's bats were seropositive. Antibodies to EBLV-2 were not detected in the 2 other species tested. Mouth swabs (N = 218) were obtained, and RNA was extracted for a reverse transcription–polymerase chain reaction (RT-PCR). The RT-PCR included pan lyssavirus-primers (N gene) and internal PCR control primers for ribosomal RNA. EBLV-2 RNA was not detected in any of the saliva samples tested, and live virus was not detected in virus isolation tests. PMID:15829196
Cryan, Paul M.; Diehl, Robert H.
2009-01-01
T HE MIGRATORY MOVEIvl.ENTS OF BATS have proven ex tremely difficult to determine. Despite extensive efforts during the past century to track the movements of bats across landscapes, efficient methods of following small- to medium-size volant animals <240 gl for extended periods (>8 weeks) over long distances (>100 km) have not been developed. Important questions about bat migration remain unanswered: Which bats migrate? Where do they go? How far do they move? How high and fast do they fly? What are their habitat needs during migration? How do bats orient and navigate during migration? Addressing these apparently simple questions will be a considerable challenge to anyone interested in advancing the study of bat migration. In this chapter, we present direct and indirect methods used to study bat migration as well as techniques that have worked for studying bird migration that could feasibly be adapted to the study of bats.
Detection of group 1 coronaviruses in bats in North America
Dominguez, S.R.; O'Shea, T.J.; Oko, L.M.; Holmes, K.V.
2007-01-01
The epidemic of severe acute respiratory syndrome (SARS) was caused by a newly emerged coronavirus (SARS-CoV). Bats of several species in southern People's Republic of China harbor SARS-like CoVs and may be reservoir hosts for them. To determine whether bats in North America also harbor coronaviruses, we used reverse transcription-PCR to detect coronavirus RNA in bats. We found coronavirus RNA in 6 of 28 fecal specimens from bats of 2 of 7 species tested. The prevalence of viral RNA shedding was high: 17% in Eptesicus fuscus and 50% in Myotis occultus. Sequence analysis of a 440-bp amplicon in gene 1b showed that these Rocky Mountain bat coronaviruses formed 3 clusters in phylogenetic group 1 that were distinct from group 1 coronaviruses of Asian bats. Because of the potential for bat coronaviruses to cause disease in humans and animals, further surveillance and characterization of bat coronaviruses in North America are needed.
Bats are rare reservoirs of Staphylococcus aureus complex in Gabon.
Held, Jana; Gmeiner, Markus; Mordmüller, Benjamin; Matsiégui, Pierre-Blaise; Schaer, Juliane; Eckerle, Isabella; Weber, Natalie; Matuschewski, Kai; Bletz, Stefan; Schaumburg, Frieder
2017-01-01
The colonization of afro-tropical wildlife with Staphylococcus aureus and the derived clade Staphylococcus schweitzeri remains largely unknown. A reservoir in bats could be of importance since bats and humans share overlapping habitats. In addition, bats are food sources in some African regions and can be the cause of zoonotic diseases. Here, we present a cross-sectional survey employing pharyngeal swabs of captured and released bats (n=133) in a forest area of Gabon. We detected low colonization rates of S. aureus (4-6%) and S. schweitzeri (4%) in two out of four species of fruit bats, namely Rousettus aegyptiacus and Micropteropus pusillus, but not in insectivorous bats. Multilocus sequence typing showed that S. aureus from Gabonese bats (ST2984, ST3259, ST3301, ST3302) were distinct from major African human associated clones (ST15, ST121, ST152). S. schweitzeri from bats (ST1697, ST1700) clustered with S. schweitzeri from other species (bats, monkeys) from Nigeria and Côte d'Ivoire. In conclusion, colonization rates of bats with S. aureus and S. schweitzeri were low in our study. Phylogenetic analysis supports an intense geographical dispersal of S. schweitzeri among different mammalian wildlife hosts. Copyright © 2016 Elsevier B.V. All rights reserved.
A controlled study on batted ball speed and available pitcher reaction time in slowpitch softball
McDowell, M; Ciocco, M
2005-01-01
Objectives: To investigate safety risks in slowpitch softball by conducting laboratory and experimental studies on the performance of high tech softball bats with polyurethane softballs. To compare the results with the recommended safety standards. Methods: ASTM standard compression testing of seven softball models was conducted. Using these seven softball models, bat/ball impact testing was performed using seven adult male softball players and six high tech softball bat models to determine mean batted ball speeds. Over 500 bat/ball impact measurements were recorded and analysed. Available pitcher reaction time was calculated from the mean batted ball speed measurements. Results: According to the United States Specialty Sports Association and the Amateur Softball Association, the maximum initial batted ball speed should be 137.2 km/h, which corresponds to a minimum pitcher reaction time of 0.420 second. These experiments produced mean batted ball speeds of 134.0–159.7 km/h, which correspond to available pitcher reaction times of 0.409–0.361 second. Conclusion: The use of high tech softball bats with polyurethane softballs can result in batted ball speeds that exceed the recommended safety limits, which correspond to decreased available pitcher reaction times. PMID:15793092
Hagen, Elizabeth M; Sabo, John L
2011-07-01
River and riparian areas provide an important foraging habitat for insectivorous bats owing to high insect availability along waterways. However, structural characteristics of the riverine landscape may also influence the location of foraging bats. We used bat detectors to compare bat activity longitudinally along river reaches with contrasting channel confinement, ratio of valley floor width to active channel width, and riparian vegetation, and laterally with distance from the river along three different reach types. We measured rates of insect emergence from the river and aerial insect availability above the river and laterally up to 50-m into the riparian habitat in order to assess the relationship between food resources and insectivorous bat activity. Longitudinally, bat activity was concentrated along confined reaches in comparison to unconfined reaches but was not related to insect availability. Laterally, bats tracked exponential declines in aquatic insects with distance from the river. These data suggest that along the lateral dimension bats track food resources, but that along the longitudinal dimension channel shape and landscape structure determine bat distributions more than food resources.
Kading, Rebekah C; Kityo, Robert M; Mossel, Eric C; Borland, Erin M; Nakayiki, Teddie; Nalikka, Betty; Nyakarahuka, Luke; Ledermann, Jeremy P; Panella, Nicholas A; Gilbert, Amy T; Crabtree, Mary B; Peterhans, Julian Kerbis; Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Nichol, Stuart T; Powers, Ann M; Lutwama, Julius J; Miller, Barry R
2018-01-01
Introduction: A number of arboviruses have previously been isolated from naturally-infected East African bats, however the role of bats in arbovirus maintenance is poorly understood. The aim of this study was to investigate the exposure history of Ugandan bats to a panel of arboviruses. Materials and methods: Insectivorous and fruit bats were captured from multiple locations throughout Uganda during 2009 and 2011-2013. All serum samples were tested for neutralizing antibodies against West Nile virus (WNV), yellow fever virus (YFV), dengue 2 virus (DENV-2), Zika virus (ZIKV), Babanki virus (BBKV), and Rift Valley fever virus (RVFV) by plaque reduction neutralization test (PRNT). Sera from up to 626 bats were screened for antibodies against each virus. Results and Discussion: Key findings include the presence of neutralizing antibodies against RVFV in 5/52 (9.6%) of little epauletted fruit bats ( Epomophorus labiatus ) captured from Kawuku and 3/54 (5.6%) Egyptian rousette bats from Kasokero cave. Antibodies reactive to flaviviruses were widespread across bat taxa and sampling locations. Conclusion: The data presented demonstrate the widespread exposure of bats in Uganda to arboviruses, and highlight particular virus-bat associations that warrant further investigation.
Afonso, Eve; Baurand, Pierre-Emmanuel; Tournant, Pierline; Capelli, Nicolas
2014-04-01
Although coccidian parasites of the genus Eimeria are among the best-documented parasites in bats, few Eimeria species found in bats have been characterised using molecular tools, and none of the characterised species are found in European countries. Phylogenetic relationships of Eimeria species that parasitise bats and rodents can be related to the morphology of oocysts, independently from host range, suggesting that these species are derived from common ancestors. In the present study, we isolated a partial sequence of the Eimeria hessei 18S rRNA gene from the lesser horseshoe bat (Rhinolophus hipposideros), a European bat species. Droppings from lesser horseshoe bats were collected from 11 maternity roosts located in France that were positive for the presence of the parasite. Through morphological characterisation, the oocysts detected in the lesser horseshoe bat droppings were confirmed to be E. hessei. The unique E. hessei sequence obtained through molecular analysis belonged to a clade that includes both rodent and bat Eimeria species. However, the E. hessei oocysts isolated from the bat droppings did not show morphological similarities to rodent Eimeria species. Copyright © 2014 Elsevier Inc. All rights reserved.
Hathaway, Jennifer J.M.; Kimble, Jason C.; Buecher, Debbie C.; Valdez, Ernest W.; Young, Jesse M.; Read, Kaitlyn J.H.; Northup, Diana E.
2017-01-01
Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host’s health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens. PMID:29093998
Winter, Ara S; Hathaway, Jennifer J M; Kimble, Jason C; Buecher, Debbie C; Valdez, Ernest W; Porras-Alfaro, Andrea; Young, Jesse M; Read, Kaitlyn J H; Northup, Diana E
2017-01-01
Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host's health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens.
First detection of European bat lyssavirus type 2 (EBLV-2) in Norway.
Moldal, Torfinn; Vikøren, Turid; Cliquet, Florence; Marston, Denise A; van der Kooij, Jeroen; Madslien, Knut; Ørpetveit, Irene
2017-07-11
In Europe, bat rabies is primarily attributed to European bat lyssavirus type 1 (EBLV-1) and European bat lyssavirus type 2 (EBLV-2) which are both strongly host-specific. Approximately thirty cases of infection with EBLV-2 in Daubenton's bats (Myotis daubentonii) and pond bats (M. dasycneme) have been reported. Two human cases of rabies caused by EBLV-2 have also been confirmed during the last thirty years, while natural spill-over to other non-flying mammals has never been reported. Rabies has never been diagnosed in mainland Norway previously. In late September 2015, a subadult male Daubenton's bat was found in a poor condition 800 m above sea level in the southern part of Norway. The bat was brought to the national Bat Care Centre where it eventually displayed signs of neurological disease and died after two days. EBLV-2 was detected in brain tissues by polymerase chain reaction (PCR) followed by sequencing of a part of the nucleoprotein gene, and lyssavirus was isolated in neuroblastoma cells. The detection of EBLV-2 in a bat in Norway broadens the knowledge on the occurrence of this zoonotic agent. Since Norway is considered free of rabies, adequate information to the general public regarding the possibility of human cases of bat-associated rabies should be given. No extensive surveillance of lyssavirus infections in bats has been conducted in the country, and a passive surveillance network to assess rabies prevalence and bat epidemiology is highly desired.
A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?
Luis, Angela D.; Hayman, David T. S.; O'Shea, Thomas J.; Cryan, Paul M.; Gilbert, Amy T.; Pulliam, Juliet R. C.; Mills, James N.; Timonin, Mary E.; Willis, Craig K. R.; Cunningham, Andrew A.; Fooks, Anthony R.; Rupprecht, Charles E.; Wood, James L. N.; Webb, Colleen T.
2013-01-01
Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs. PMID:23378666
Castle, Kevin T.; Weller, Theodore J.; Cryan, Paul M.; Hein, Cris D.; Schirmacher, Michael R.
2015-01-01
1. Determining the detailed movements of individual animals often requires them to carry tracking devices, but tracking broad-scale movement of small bats (< 30g) has been limited by transmitter technology and long-term attachment methods. This limitation inhibits our understanding of bat dispersal and migration, particularly in the context of emerging conservation issues like fatalities at wind turbines and diseases. 2. We tested a novel method of attaching lightweight global positioning system (GPS) tags and geolocating data loggers to small bats. We used monofilament, synthetic, absorbable sutures to secure GPS tags and data loggers to the skin of anesthetized big brown bats (Eptesicus fuscus) in Colorado and hoary bats (Lasiurus cinereus) in California. 3. GPS tags and data loggers were sutured to 17 bats in this study. Three tagged bats were recaptured seven months after initial deployment, with tags still attached; none of these bats showed ill effects from the tag. No severe injuries were apparent upon recapture of 6 additional bats that carried tags up to 26 days after attachment, however one of the bats exhibited skin chafing. 4. Use of absorbable sutures to affix small tracking devices seems to be a safe, effective method for studying movements of bats over multiple months, although additional testing is warranted. This new attachment method has the potential to quickly advance our understanding of small bats, particularly as more-sophisticated miniature tracking devices (e.g., satellite tags) become available.
Castle, Kevin T; Weller, Theodore J; Cryan, Paul M; Hein, Cris D; Schirmacher, Michael R
2015-07-01
Determining the detailed movements of individual animals often requires them to carry tracking devices, but tracking broad-scale movement of small bats (<30 g) has been limited by transmitter technology and long-term attachment methods. This limitation inhibits our understanding of bat dispersal and migration, particularly in the context of emerging conservation issues such as fatalities at wind turbines and diseases. We tested a novel method of attaching lightweight global positioning system (GPS) tags and geolocating data loggers to small bats. We used monofilament, synthetic, absorbable sutures to secure GPS tags and data loggers to the skin of anesthetized big brown bats (Eptesicus fuscus) in Colorado and hoary bats (Lasiurus cinereus) in California. GPS tags and data loggers were sutured to 17 bats in this study. Three tagged bats were recaptured 7 months after initial deployment, with tags still attached; none of these bats showed ill effects from the tag. No severe injuries were apparent upon recapture of 6 additional bats that carried tags up to 26 days after attachment; however, one of the bats exhibited skin chafing. Use of absorbable sutures to affix small tracking devices seems to be a safe, effective method for studying movements of bats over multiple months, although additional testing is warranted. This new attachment method has the potential to quickly advance our understanding of small bats, particularly as more sophisticated miniature tracking devices (e.g., satellite tags) become available.
Winter, Ara S.; Hathaway, Jennifer J. M.; Kimble, Jason C.; Buecher, Debbie C.; Valdez, Ernest W.; Porras-Alfaro, Andrea; Young, Jesse M.; Read, Kaitlyn J. H.; Northup, Diana E.
2017-01-01
Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host’s health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens.
A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?
Luis, Angela D.; Hayman, David T.S.; O'Shea, Thomas J.; Cryan, Paul M.; Gilbert, Amy T.; Pulliam, Juliet R.C.; Mills, James N.; Timonin, Mary E.; Willis, Craig K.R.; Cunningham, Andrew A.; Fooks, Anthony R.; Rupprecht, Charles E.; Wood, James L.N.; Webb, Colleen T.
2013-01-01
Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs.
Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M; Ray, David A; Gilbert, M Thomas P; Myers, Eugene
2018-02-15
Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.
Motiani, Piryanka; Virtanen, Kirsi A; Motiani, Kumail K; Eskelinen, Joonas J; Middelbeek, Roeland J; Goodyear, Laurie J; Savolainen, Anna M; Kemppainen, Jukka; Jensen, Jørgen; Din, Mueez U; Saunavaara, Virva; Parkkola, Riitta; Löyttyniemi, Eliisa; Knuuti, Juhani; Nuutila, Pirjo; Kalliokoski, Kari K; Hannukainen, Jarna C
2017-10-01
To test the hypothesis that high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) improve brown adipose tissue (BAT) insulin sensitivity. Healthy middle-aged men (n = 18, age 47 years [95% confidence interval {CI} 49, 43], body mass index 25.3 kg/m 2 [95% CI 24.1-26.3], peak oxygen uptake (VO 2peak ) 34.8 mL/kg/min [95% CI 32.1, 37.4] ) were recruited and randomized into six HIIT or MICT sessions within 2 weeks. Insulin-stimulated glucose uptake was measured using 2-[ 18 F]flouro-2-deoxy-D-glucose positron-emission tomography in BAT, skeletal muscle, and abdominal and femoral subcutaneous and visceral white adipose tissue (WAT) depots before and after the training interventions. Training improved VO 2peak (P = .0005), insulin-stimulated glucose uptake into the quadriceps femoris muscle (P = .0009) and femoral subcutaneous WAT (P = .02) but not into BAT, with no difference between the training modes. Using pre-intervention BAT glucose uptake, we next stratified subjects into high BAT (>2.9 µmol/100 g/min; n = 6) or low BAT (<2.9 µmol/100 g/min; n = 12) groups. Interestingly, training decreased insulin-stimulated BAT glucose uptake in the high BAT group (4.0 [2.8, 5.5] vs 2.5 [1.7, 3.6]; training*BAT, P = .02), whereas there was no effect of training in the low BAT group (1.5 [1.2, 1.9] vs 1.6 [1.2, 2.0] µmol/100 g/min). Participants in the high BAT group had lower levels of inflammatory markers compared with those in the low BAT group. Participants with functionally active BAT have an improved metabolic profile compared with those with low BAT activity. Short-term exercise training decreased insulin-stimulated BAT glucose uptake in participants with active BAT, suggesting that training does not work as a potent stimulus for BAT activation. © 2017 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
System for beaming power from earth to a high altitude platform
Friedman, Herbert W.; Porter, Terry J.
2002-01-01
Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.
NASA Technical Reports Server (NTRS)
Ryerson, Charles C.
2000-01-01
Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.
Development of Tactical Lightning Avoidance Product for Terminal Weather Support
NASA Astrophysics Data System (ADS)
Yoshikawa, E.; Yoshida, S.; Adachi, T.; Kusunoki, K.; Ushio, T.
2015-12-01
Aircraft initiated or intercepted lightning is one of significant issues for civilian flight operation in Japan. It is much less possible than the past that lightning strikes cause fatal aircraft accidents thanks to both of certifications of aircraft design for lightning strikes and many of weather supports for aircraft operation. However, hundreds of lightning strikes to aircrafts have still been reported in each recent year in Japan, and airlines have been forced to delay or cancel most of those flights and to cost several hundred millions of yen for repair. Especially, lightning discharges during winter in the coastal area of the Sea of Japan frequently cause heavy damages on aircrafts due to their large charge transfer. It is important in actual aircraft operation that observed meteorological parameters are converted to decision-making information. Otherwise, pilots, controllers, or operators need to learn meteorology as much as weather experts, and to owe hard work load to interpret observed meteorological data to their risk. Ideally, it is desired to automatically provide them with predicted operation risk, for example, delay time, possibility of flight cancellation, and repair cost caused by lightning.Our research group has just started development of tactical lightning avoidance product, where a risk index of an aircraft operation due to lightning is calculated mainly from three novel observation devices: The phased array weather radar has potential to detect thunderstorms in their early stage due to the high volume scan rate of 10 - 30 sec. A lightning mapping system, such as Broadband Observation network for Lightning and Thunderstorm, indicates electrical structure inside clouds in concert with a co-located radar data. Aircraft sounding and real-time data downlink, especially high-frequency data provided by Secondary Surveillance Radar mode S, gives in-situ measurements of wind and temperature. Especially the in-situ temperature data can indicate altitudes of electrical charge separation. An integrated data processing method to output the tactical lightning avoidance product will be developed by analyzing data obtained in an observation campaign which will have been conducted until 2017. In the presentation, overview and progress of our research and development will be described.
Allergy to dexchlorpheniramine. Study of a case.
Cáceres Calle, O; Fernández-Benítez, M
2004-01-01
Dexchlorpheniramine (DH) is a classical or first generation antihistamine belonging to the ethanolamine group. Adverse effects related to these antihistamines are frequent, but the hypersensitivity reactions described in the literature since 1940 are exceptional. We report the case of a 32-year-old woman who experienced two episodes of akathisia secondary to intravenous (i.v.) dexchlorpheniramine administration for a possible hypersensitivity reaction to local anesthetics. Allergological study consisted of the following tests: skin prick tests with routine allergens, with a negative result; skin prick and intradermal tests with local anesthetics and DH, with a positive result to DH in the intradermal skin test (+ +); serum specific IgE, which was within normal levels; histamine release test with DH with a negative result, and the basophil activation test (BAT) with local anesthetics and DH, which was positive for DH and weakly positive to Lidocaine. BAT is proving to be a highly useful tool in the field of drug allergy, with a higher sensitivity and specificity than other in vitro tests. Because it avoids the need for provocation tests, this is especially important in drug-induced allergic reactions in which in vivo tests are repeatedly negative despite a clear clinical history.
NASA Astrophysics Data System (ADS)
Tian, Biao; Liu, Yang; Xu, Shiyou; Chen, Zengping
2014-01-01
Interferometric inverse synthetic aperture radar (InISAR) imaging provides complementary information to monostatic inverse synthetic aperture radar (ISAR) imaging. This paper proposes a new InISAR imaging system for space targets based on wideband direct sampling using two antennas. The system is easy to realize in engineering since the motion trajectory of space targets can be known in advance, which is simpler than that of three receivers. In the preprocessing step, high speed movement compensation is carried out by designing an adaptive matched filter containing speed that is obtained from the narrow band information. Then, the coherent processing and keystone transform for ISAR imaging are adopted to reserve the phase history of each antenna. Through appropriate collocation of the system, image registration and phase unwrapping can be avoided. Considering the situation not to be satisfied, the influence of baseline variance is analyzed and compensation method is adopted. The corresponding size can be achieved by interferometric processing of the two complex ISAR images. Experimental results prove the validity of the analysis and the three-dimensional imaging algorithm.
NASA Technical Reports Server (NTRS)
Zelenka, Richard E.
1992-01-01
Avionic systems that depend on digitized terrain elevation data for guidance generation or navigational reference require accurate absolute and relative distance measurements to the terrain, especially as they approach lower altitudes. This is particularly exacting in low-altitude helicopter missions, where aggressive terrain hugging maneuvers create minimal horizontal and vertical clearances and demand precise terrain positioning. Sole reliance on airborne precision navigation and stored terrain elevation data for above-ground-level (AGL) positioning severely limits the operational altitude of such systems. A Kalman filter is presented which blends radar altimeter returns, precision navigation, and stored terrain elevation data for AGL positioning. The filter is evaluated using low-altitude helicopter flight test data acquired over moderately rugged terrain. The proposed Kalman filter is found to remove large disparities in predicted AGL altitude (i.e., from airborne navigation and terrain elevation data) in the presence of measurement anomalies and dropouts. Previous work suggested a minimum clearance altitude of 220 ft AGL for a near-terrain guidance system; integration of a radar altimeter allows for operation of that system below 50 ft, subject to obstacle-avoidance limitations.
Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.
Wang, Dang-wei; Ma, Xiao-yan; Su, Yi
2010-05-01
This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method.
NASA Technical Reports Server (NTRS)
Iwasaki, R.; Dodds, J. G.; Broad, P.
1979-01-01
The physical characteristics of the high gain antenna reflector and feed elements are described. Deficiencies in the sum feed are discussed, and lack of atmospheric venting is posed as a potential problem area. The measured RF performance of the high gain antenna is examined and the high sidelobe levels measured are related to the physical characteristics of the antenna. An examination of the attributes of the feed which might be influenced by temperature extremes shows that the antenna should be insensitive to temperature variations. Because the feed support bipod structure is considered a significant contributor to the high sidelobe levels measured in the azimuth plane, pod relocation, material changes, and shaping are suggested as improvements. Alternate feed designs are presented to further improve system performance. The widebeam horn and potential temperature effects due to the polarizer are discussed as well as in the effects of linear polarization on TDRS acquisition, and the effects of circular polarization on radar sidelobe avoidance. The radar detection probability is analyzed as a function of scan overlap and target range.
Wind energy development: methods for assessing risks to birds and bats pre-construction
Katzner, Todd E.; Bennett, Victoria; Miller, Tricia A.; Duerr, Adam E.; Braham, Melissa A.; Hale, Amanda
2016-01-01
Wind power generation is rapidly expanding. Although wind power is a low-carbon source of energy, it can impact negatively birds and bats, either directly through fatality or indirectly by displacement or habitat loss. Pre-construction risk assessment at wind facilities within the United States is usually required only on public lands. When conducted, it generally involves a 3-tier process, with each step leading to more detailed and rigorous surveys. Preliminary site assessment (U.S. Fish and Wildlife Service, Tier 1) is usually conducted remotely and involves evaluation of existing databases and published materials. If potentially at-risk wildlife are present and the developer wishes to continue the development process, then on-site surveys are conducted (Tier 2) to verify the presence of those species and to assess site-specific features (e.g., topography, land cover) that may influence risk from turbines. The next step in the process (Tier 3) involves quantitative or scientific studies to assess the potential risk of the proposed project to wildlife. Typical Tier-3 research may involve acoustic, aural, observational, radar, capture, tracking, or modeling studies, all designed to understand details of risk to specific species or groups of species at the given site. Our review highlights several features lacking from many risk assessments, particularly the paucity of before-and-after-control- impact (BACI) studies involving modeling and a lack of understanding of cumulative effects of wind facilities on wildlife. Both are essential to understand effective designs for pre-construction monitoring and both would help expand risk assessment beyond eagles.
Characterization of uncultivable bat influenza virus using a replicative synthetic virus.
Zhou, Bin; Ma, Jingjiao; Liu, Qinfang; Bawa, Bhupinder; Wang, Wei; Shabman, Reed S; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B; Richt, Juergen A; Wentworth, David E; Ma, Wenjun
2014-10-01
Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.
Evidence of Australian bat lyssavirus infection in diverse Australian bat taxa.
Field, Hume Ernest
2018-05-21
Historically, Australia was considered free of rabies and rabieslike viruses. Thus, the identification of Australian bat lyssavirus (ABLV) in 1996 in a debilitated bat found by a member of the public precipitated both public health consternation and a revision of lyssavirus taxonomy. Subsequent observational studies sought to elaborate the occurrence and frequency of ABLV infection in Australian bats. This paper describes the taxonomic diversity of bat species showing evidence of ABLV infection to better inform public health considerations. Blood and/or brain samples were collected from two cohorts of bats (wild-caught and diagnostic submissions) from four Australian states or territories between April 1996 and October 2002. Fresh brain impression smears were tested for ABLV antigen using fluorescein-labelled anti-rabies monoclonal globulin (CENTOCOR) in a direct fluorescent antibody test; sera were tested for the presence of neutralising antibodies using a rapid fluorescent focus inhibition test. A total of 3,217 samples from 2,633 bats were collected and screened: brain samples from 1,461 wild-caught bats and 1,086 submitted bats from at least 16 genera and seven families, and blood samples from 656 wild-caught bats and 14 submitted bats from 14 genera and seven families. Evidence of ABLV infection was found in five of the six families of bats occurring in Australia, and in three of the four Australian states/territories surveyed, supporting the historic presence of the virus in Australia. While the infection prevalence in the wild-caught cohort is evidently low, the significantly higher infection prevalence in rescued bats in urban settings represents a clear and present public health significance because of the higher risk of human exposure. © 2018 Blackwell Verlag GmbH.
Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People
Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Chao, Tony; Porter, Craig; Annamalai, Palam; Yfanti, Christina; Labbe, Sebastien M.; Hurren, Nicholas M.; Malagaris, Ioannis; Cesani, Fernardo; Sidossis, Labros S.
2016-01-01
Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT−) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT− group only (−0.34°C, 95% CI: −0.6 to −0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT− subjects (BAT+ vs. BAT−, 0.43°C, 95% CI: 0.20–0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT− group, BAT+ subjects tolerated a lower ambient temperature (BAT−: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114). PMID:27148068
Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus
Bawa, Bhupinder; Wang, Wei; Shabman, Reed S.; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B.; Richt, Juergen A.; Wentworth, David E.; Ma, Wenjun
2014-01-01
Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses. PMID:25275541
Glycinergic inhibition of BAT sympathetic premotor neurons in rostral raphe pallidus.
Conceição, Ellen Paula Santos da; Madden, Christopher J; Morrison, Shaun F
2017-06-01
The rostral raphe pallidus (rRPa) contains sympathetic premotor neurons controlling thermogenesis in brown adipose tissue (BAT). We sought to determine whether a tonic activation of glycine A receptors (Gly A R) in the rRPa contributes to the inhibitory regulation of BAT sympathetic nerve activity (SNA) and of cardiovascular parameters in anesthetized rats. Nanoinjection of the Gly A R antagonist, strychnine (STR), into the rRPa of intact rats increased BAT SNA (peak: +495%), BAT temperature (T BAT , +1.1°C), expired CO 2 , (+0.4%), core body temperature (T CORE , +0.2°C), mean arterial pressure (MAP, +4 mmHg), and heart rate (HR, +57 beats/min). STR into rRPa in rats with a postdorsomedial hypothalamus transection produced similar increases in BAT thermogenic and cardiovascular parameters. Glycine nanoinjection into the rRPa evoked a potent inhibition of the cooling-evoked increases in BAT SNA (nadir: -74%), T BAT (-0.2°C), T CORE (-0.2°C), expired CO 2 (-0.2%), MAP (-8 mmHg), and HR (-22 beats/min) but had no effect on the increases in these variables evoked by STR nanoinjection into rRPa. Nanoinjection of GABA into the rRPa inhibited the STR-evoked BAT SNA (nadir: -86%) and reduced the expired CO 2 (-0.4%). Blockade of glutamate receptors in rRPa reduced the STR-evoked increases in BAT SNA (nadir: -61%), T BAT (-0.5°C), expired CO 2 (-0.3%), MAP (-9 mmHg), and HR (-33 beats/min). We conclude that a tonically active glycinergic input to the rRPa contributes to the inhibitory regulation of the discharge of BAT sympathetic premotor neurons and of BAT thermogenesis and energy expenditure. Copyright © 2017 the American Physiological Society.
Walker, Melissa J; Dorrestein, Annabel; Camacho, Jasmin J; Meckler, Lauren A; Silas, Kirk A; Hiller, Thomas; Haelewaters, Danny
2018-01-01
The Darién province in eastern Panama is one of the most unexplored and biodiverse regions in the world. The Chucantí Nature Reserve, in Serranía de Majé, consists of a diverse tropical cloud forest ecosystem. The aim of this research was to explore and study host associations of a tripartite system of bats, ectoparasitic flies on bats (Diptera, Streblidae), and ectoparasitic fungi (Ascomycota, Laboulbeniales) that use bat flies as hosts. We captured bats at Chucantí, screened each bat for presence of bat flies, and screened collected bat flies for presence of Laboulbeniales. We mistnetted for 68 mistnet hours and captured 227 bats representing 17 species. We captured Micronycteris schmidtorum, a species previously unreported in Darién. In addition, we encountered the rarely collected Platyrrhinus dorsalis, representing the westernmost report for this species. Of all captured bats, 148 carried bat flies (65%). The number of sampled bat flies was 437, representing 16 species. One species represents a new country record (Trichobius anducei) and five species represent first reports for Darién (Basilia anceps, Anatrichobius scorzai, Nycterophilia parnelli, T. johnsonae, T. parasiticus). All 74 bat fly species currently reported in Panama are presented in tabulated form. Of all screened bat flies, 30 bore Laboulbeniales fungi (7%). Based on both morphology and large ribosomal subunit (LSU) sequence data, we delimited 7 species of Laboulbeniales: Gloeandromyces nycteribiidarum (newly reported for Panama), G. pageanus, G. streblae, Nycteromyces streblidinus, and 3 undescribed species. Of the 30 infected flies, 21 were Trichobius joblingi. This species was the only host on which we observed double infections of Laboulbeniales. © M.J. Walker et al., published by EDP Sciences, 2018.
Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M.; Zhang, Shuyi
2014-01-01
Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet. PMID:24824435
Renewed mining and reclamation: Imapacts on bats and potential mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P.E.; Berry, R.D.
Historic mining created new roosting habitat for many bat species. Now the same industry has the potential to adversely impact bats. Contemporary mining operations usually occur in historic districts; consequently the old workings are destroyed by open pit operations. Occasionally, underground techniques are employed, resulting in the enlargement or destruction of the original workings. Even during exploratory operations, historic mine openings can be covered as drill roads are bulldozed, or drills can penetrate and collapse underground workings. Nearby blasting associated with mine construction and operation can disrupt roosting bats. Bats can also be disturbed by the entry of mine personnelmore » to collect ore samples or by recreational mine explorers, since the creation of roads often results in easier access. In addition to roost disturbance, other aspects of renewed mining can have adverse impacts on bat populations, and affect even those bats that do not live in mines. Open cyanide ponds, or other water in which toxic chemicals accumulate, can poison bats and other wildlife. The creation of the pits, roads and processing areas often destroys critical foraging habitat, or change drainage patterns. Finally, at the completion of mining, any historic mines still open may be sealed as part of closure and reclamation activities. The net result can be a loss of bats and bat habitat. Conversely, in some contemporary underground operations, future roosting habitat for bats can be fabricated. An experimental approach to the creation of new roosting habitat is to bury culverts or old tires beneath waste rock. Mining companies can mitigate for impacts to bats by surveying to identify bat-roosting habitat, removing bats prior to renewed mining or closure, protecting non-impacted roost sites with gates and fences, researching to identify habitat requirements and creating new artificial roosts.« less
Ecological factors associated with European bat lyssavirus seroprevalence in spanish bats.
Serra-Cobo, Jordi; López-Roig, Marc; Seguí, Magdalena; Sánchez, Luisa Pilar; Nadal, Jacint; Borrás, Miquel; Lavenir, Rachel; Bourhy, Hervé
2013-01-01
Bats have been proposed as major reservoirs for diverse emerging infectious viral diseases, with rabies being the best known in Europe. However, studies exploring the ecological interaction between lyssaviruses and their natural hosts are scarce. This study completes our active surveillance work on Spanish bat colonies that began in 1992. Herein, we analyzed ecological factors that might affect the infection dynamics observed in those colonies. Between 2001 and 2011, we collected and tested 2,393 blood samples and 45 dead bats from 25 localities and 20 bat species. The results for dead confirmed the presence of EBLV-1 RNA in six species analyzed (for the first time in Myotis capaccinii). Samples positive for European bat lyssavirus-1 (EBLV-1)-neutralizing antibodies were detected in 68% of the localities sampled and in 13 bat species, seven of which were found for the first time (even in Myotis daubentonii, a species to date always linked to EBLV-2). EBLV-1 seroprevalence (20.7%) ranged between 11.1 and 40.2% among bat species and seasonal variation was observed, with significantly higher antibody prevalence in summer (July). EBLV-1 seroprevalence was significantly associated with colony size and species richness. Higher seroprevalence percentages were found in large multispecific colonies, suggesting that intra- and interspecific contacts are major risk factors for EBLV-1 transmission in bat colonies. Although bat-roosting behavior strongly determines EBLV-1 variability, we also found some evidence that bat phylogeny might be involved in bat-species seroprevalence. The results of this study highlight the importance of life history and roost ecology in understanding EBLV-1-prevalence patterns in bat colonies and also provide useful information for public health officials.
Ecological Factors Associated with European Bat Lyssavirus Seroprevalence in Spanish Bats
Serra-Cobo, Jordi; López-Roig, Marc; Seguí, Magdalena; Sánchez, Luisa Pilar; Nadal, Jacint; Borrás, Miquel; Lavenir, Rachel; Bourhy, Hervé
2013-01-01
Bats have been proposed as major reservoirs for diverse emerging infectious viral diseases, with rabies being the best known in Europe. However, studies exploring the ecological interaction between lyssaviruses and their natural hosts are scarce. This study completes our active surveillance work on Spanish bat colonies that began in 1992. Herein, we analyzed ecological factors that might affect the infection dynamics observed in those colonies. Between 2001 and 2011, we collected and tested 2,393 blood samples and 45 dead bats from 25 localities and 20 bat species. The results for dead confirmed the presence of EBLV-1 RNA in six species analyzed (for the first time in Myotis capaccinii). Samples positive for European bat lyssavirus-1 (EBLV-1)–neutralizing antibodies were detected in 68% of the localities sampled and in 13 bat species, seven of which were found for the first time (even in Myotis daubentonii, a species to date always linked to EBLV-2). EBLV-1 seroprevalence (20.7%) ranged between 11.1 and 40.2% among bat species and seasonal variation was observed, with significantly higher antibody prevalence in summer (July). EBLV-1 seroprevalence was significantly associated with colony size and species richness. Higher seroprevalence percentages were found in large multispecific colonies, suggesting that intra- and interspecific contacts are major risk factors for EBLV-1 transmission in bat colonies. Although bat-roosting behavior strongly determines EBLV-1 variability, we also found some evidence that bat phylogeny might be involved in bat-species seroprevalence. The results of this study highlight the importance of life history and roost ecology in understanding EBLV-1–prevalence patterns in bat colonies and also provide useful information for public health officials. PMID:23700480
Reduced adiposity by compensatory WAT browning upon iBAT removal in mice.
Piao, Zhengyu; Zhai, Baiqiang; Jiang, Xiaoxiao; Dong, Meng; Yan, Changguo; Lin, Jun; Jin, Wanzhu
2018-06-27
The strong effects of classic brown adipose tissue (BAT) and recruited beige adipocytes in treatment of obesity and metabolic syndrome have been attracting increasing research interest. Cold treatment is an effective, convenient approach to stimulate BAT activity and induce white adipose tissue (WAT) browning. Here, we utilized prolonged cold exposure (from 2 h to 2 weeks in a 4° cold chamber) to elucidate dynamic changes in BAT and in WAT browning during acute and chronic cold exposure in mice. BAT mass decreased quickly, with reduced lipid droplet sizes within 8 h of cold exposure owing to the utilization of BAT pre-storage triglycerides, and subsequently increased during prolonged cold exposure. These dynamic morphological changes in BAT were confirmed by gene expression changes in ADRB3 and PGC1α, while UCP1 and ELOVL3 expression was continuously up-regulated throughout the entire cold exposure period. Additionally, cold treatment increased BAT secretion of FGF21, which has been reported to activate beige adipocyte formation. Thus, to illustrate potential crosstalk between secreted BAT proteins (so-called BATokines) and beige adipogenesis during cold stress, we performed an interscapular BAT (iBAT) removal experiment in mice. Surprisingly, loss of classic iBAT enhanced WAT browning due to compensatorily increased sympathetic WAT input. Unexpectedly, we observed significantly reduced adiposity in the iBAT removal group compared with the control group. These results further suggest that WAT browning plays an important role in whole-body energy metabolism during cold acclimation, even without iBAT. Furthermore, our data imply that enhanced WAT browning may be an efficient therapeutic tool to combat obesity and related syndromes. Copyright © 2018 Elsevier Inc. All rights reserved.
Walker, Melissa J.; Dorrestein, Annabel; Camacho, Jasmin J.; Meckler, Lauren A.; Silas, Kirk A.; Hiller, Thomas; Haelewaters, Danny
2018-01-01
The Darién province in eastern Panama is one of the most unexplored and biodiverse regions in the world. The Chucantí Nature Reserve, in Serranía de Majé, consists of a diverse tropical cloud forest ecosystem. The aim of this research was to explore and study host associations of a tripartite system of bats, ectoparasitic flies on bats (Diptera, Streblidae), and ectoparasitic fungi (Ascomycota, Laboulbeniales) that use bat flies as hosts. We captured bats at Chucantí, screened each bat for presence of bat flies, and screened collected bat flies for presence of Laboulbeniales. We mistnetted for 68 mistnet hours and captured 227 bats representing 17 species. We captured Micronycteris schmidtorum, a species previously unreported in Darién. In addition, we encountered the rarely collected Platyrrhinus dorsalis, representing the westernmost report for this species. Of all captured bats, 148 carried bat flies (65%). The number of sampled bat flies was 437, representing 16 species. One species represents a new country record (Trichobius anducei) and five species represent first reports for Darién (Basilia anceps, Anatrichobius scorzai, Nycterophilia parnelli, T. johnsonae, T. parasiticus). All 74 bat fly species currently reported in Panama are presented in tabulated form. Of all screened bat flies, 30 bore Laboulbeniales fungi (7%). Based on both morphology and large ribosomal subunit (LSU) sequence data, we delimited 7 species of Laboulbeniales: Gloeandromyces nycteribiidarum (newly reported for Panama), G. pageanus, G. streblae, Nycteromyces streblidinus, and 3 undescribed species. Of the 30 infected flies, 21 were Trichobius joblingi. This species was the only host on which we observed double infections of Laboulbeniales. PMID:29633707
Wibbelt, Gudrun; Puechmaille, Sébastien J.; Ohlendorf, Bernd; Mühldorfer, Kristin; Bosch, Thijs; Görföl, Tamás; Passior, Karsten; Kurth, Andreas; Lacremans, Daniel; Forget, Frédéric
2013-01-01
White-nose syndrome (WNS) has claimed the lives of millions of hibernating insectivorous bats in North America. Its etiologic agent, the psychrophilic fungus Geomyces destructans, causes skin lesions that are the hallmark of the disease. The fungal infection is characterized by a white powdery growth on muzzle, ears and wing membranes. While WNS may threaten some species of North American bats with regional extinction, infection in hibernating bats in Europe seems not to be associated with significant mortality. We performed histopathological investigations on biopsy samples of 11 hibernating European bats, originating from 4 different countries, colonized by G. destructans. One additional bat was euthanized to allow thorough examination of multiple strips of its wing membranes. Molecular analyses of touch imprints, swabs and skin samples confirmed that fungal structures were G. destructans. Additionally, archived field notes on hibernacula monitoring data in the Harz Mountains, Germany, over an 11-year period (2000–2011) revealed multiple capture-recapture events of 8 banded bats repeatedly displaying characteristic fungal colonization. Skin lesions of G. destructans-affected hibernating European bats are intriguingly similar to the epidermal lesions described in North American bats. Nevertheless, deep invasion of fungal hyphae into the dermal connective tissue with resulting ulceration like in North American bats was not observed in the biopsy samples of European bats; all lesions found were restricted to the layers of the epidermis and its adnexae. Two bats had mild epidermal cupping erosions as described for North American bats. The possible mechanisms for any difference in outcomes of G. destructans infection in European and North American bats still need to be elucidated. PMID:24023927
Lau, Susanna K. P.; Feng, Yun; Chen, Honglin; Luk, Hayes K. H.; Yang, Wei-Hong; Li, Kenneth S. M.; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y. Y.; Ahmed, Syed Shakeel; Yeung, Hazel C.; Lam, Carol S. F.; Cai, Jian-Piao; Wong, Samson S. Y.; Chan, Jasper F. W.; Yuen, Kwok-Yung
2015-01-01
ABSTRACT Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS-CoV ORF8 originated from SARSr-CoVs of greater horseshoe bats through recombination, which may be important for animal-to-human transmission. IMPORTANCE Although horseshoe bats are the primary reservoir of SARS-related coronaviruses (SARSr-CoVs), it is still unclear how these bat viruses have evolved to cross the species barrier to infect civets and humans. Most human SARS-CoV epidemic strains contain a signature 29-nucleotide deletion in ORF8, compared to civet SARSr-CoVs, suggesting that ORF8 may be important for interspecies transmission. However, the origin of SARS-CoV ORF8 remains obscure. In particular, SARSr-Rs-BatCoVs from Chinese horseshoe bats (Rhinolophus sinicus) exhibited <40% amino acid identities to human/civet SARS-CoV in the ORF8 protein. We detected diverse alphacoronaviruses and betacoronaviruses among various bat species in Yunnan, China, including two SARSr-Rf-BatCoVs from greater horseshoe bats that possessed ORF8 proteins with exceptionally high amino acid identities to that of human/civet SARSr-CoVs. We demonstrated recombination events around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. Our findings offer insight into the evolutionary origin of SARS-CoV ORF8 protein, which was likely acquired from SARSr-CoVs of greater horseshoe bats through recombination. PMID:26269185
Lau, Susanna K P; Feng, Yun; Chen, Honglin; Luk, Hayes K H; Yang, Wei-Hong; Li, Kenneth S M; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y Y; Ahmed, Syed Shakeel; Yeung, Hazel C; Lam, Carol S F; Cai, Jian-Piao; Wong, Samson S Y; Chan, Jasper F W; Yuen, Kwok-Yung; Zhang, Hai-Lin; Woo, Patrick C Y
2015-10-01
Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS-CoV ORF8 originated from SARSr-CoVs of greater horseshoe bats through recombination, which may be important for animal-to-human transmission. Although horseshoe bats are the primary reservoir of SARS-related coronaviruses (SARSr-CoVs), it is still unclear how these bat viruses have evolved to cross the species barrier to infect civets and humans. Most human SARS-CoV epidemic strains contain a signature 29-nucleotide deletion in ORF8, compared to civet SARSr-CoVs, suggesting that ORF8 may be important for interspecies transmission. However, the origin of SARS-CoV ORF8 remains obscure. In particular, SARSr-Rs-BatCoVs from Chinese horseshoe bats (Rhinolophus sinicus) exhibited <40% amino acid identities to human/civet SARS-CoV in the ORF8 protein. We detected diverse alphacoronaviruses and betacoronaviruses among various bat species in Yunnan, China, including two SARSr-Rf-BatCoVs from greater horseshoe bats that possessed ORF8 proteins with exceptionally high amino acid identities to that of human/civet SARSr-CoVs. We demonstrated recombination events around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. Our findings offer insight into the evolutionary origin of SARS-CoV ORF8 protein, which was likely acquired from SARSr-CoVs of greater horseshoe bats through recombination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A bony connection signals laryngeal echolocation in bats.
Veselka, Nina; McErlain, David D; Holdsworth, David W; Eger, Judith L; Chhem, Rethy K; Mason, Matthew J; Brain, Kirsty L; Faure, Paul A; Fenton, M Brock
2010-02-18
Echolocation is an active form of orientation in which animals emit sounds and then listen to reflected echoes of those sounds to form images of their surroundings in their brains. Although echolocation is usually associated with bats, it is not characteristic of all bats. Most echolocating bats produce signals in the larynx, but within one family of mainly non-echolocating species (Pteropodidae), a few species use echolocation sounds produced by tongue clicks. Here we demonstrate, using data obtained from micro-computed tomography scans of 26 species (n = 35 fluid-preserved bats), that proximal articulation of the stylohyal bone (part of the mammalian hyoid apparatus) with the tympanic bone always distinguishes laryngeally echolocating bats from all other bats (that is, non-echolocating pteropodids and those that echolocate with tongue clicks). In laryngeally echolocating bats, the proximal end of the stylohyal bone directly articulates with the tympanic bone and is often fused with it. Previous research on the morphology of the stylohyal bone in the oldest known fossil bat (Onychonycteris finneyi) suggested that it did not echolocate, but our findings suggest that O. finneyi may have used laryngeal echolocation because its stylohyal bones may have articulated with its tympanic bones. The present findings reopen basic questions about the timing and the origin of flight and echolocation in the early evolution of bats. Our data also provide an independent anatomical character by which to distinguish laryngeally echolocating bats from other bats.
Banerjee, Arinjay; Rapin, Noreen; Miller, Megan; Griebel, Philip; Zhou, Yan; Munster, Vincent; Misra, Vikram
2016-11-01
It is speculated that bats are important reservoir hosts for numerous viruses, with 27 viral families reportedly detected in bats. Majority of these viruses have not been isolated and there is little information regarding their biology in bats. Establishing a well-characterized bat cell line supporting the replication of bat-borne viruses would facilitate the analysis of virus-host interactions in an in vitro model. Currently, few bat cell lines have been developed and only Tb1-Lu, derived from Tadarida brasiliensis is commercially available. Here we describe a method to establish and immortalize big brown bat (Eptesicus fuscus) kidney (Efk3) cells using the Myotis polyomavirus T-antigen. Subclones of this cell line expressed both epithelial and fibroblast markers to varying extents. Cell clones expressed interferon beta in response to poly(I:C) stimulation and supported the replication of four different viruses, namely, vesicular stomatitis virus (VSV), porcine epidemic diarrhea coronavirus (PED-CoV), Middle-East respiratory syndrome coronavirus (MERS-CoV) and herpes simplex virus (HSV). To our knowledge, this is the first bat cell line from a northern latitude insectivorous bat developed using a novel technology. The cell line has the potential to be used for isolation of bat viruses and for studying virus-bat interactions in culture. Copyright © 2016 Elsevier B.V. All rights reserved.
[Trematodes (Trematoda) of bats (Chiroptera) from the Middle Volga Region].
Kirillov, A A; Kirillova, N Iu; Vekhnik, V P
2012-01-01
The data on species diversity of trematodes from bats collected in the Middle Volga Region are summarized. According to original and literary data, 20 trematode species were recorded in bats of the region examined. Plagiorchis elegans, Lecithodendrium skrjabini, L. rysavyi, Prosthodendrium hurkovaae, and Pycnoporus megacotyle are specified for the bat fauna of Russia for the first time. For 11 species of parasites, new hosts are recorded. The analysis of bat helminthes demonstrated that the fauna of trematodes of the northern bat (12 species of trematodes), of the pond, and of the Brandt's bats is the most diverse, constituting more than 10 parasite species per bat species. The largest number of final hosts in the Middle Volga Region is characteristic of Plagiorchis koreanus and Prosthodendrium chilostomum; the latter species were revealed in 8 and 7 bat species, respectively. Trematodes of bats possess a high degree of host specificity. 17 species parasitize exclusively in bats out of 20 parasite species registered for the order Chiroptera. Only 3 species (Plagiorchis elegans, P. vespertilionis, and Prosthodendrium chilostomum) show wide degree of specificity, being found in other animals. Taxonomic position, the circle of hosts, collecting sites, and brief data in biology and geographical distribution for each helminth species are specified. Morphological descriptions and original figures for all the trematode species revealed in bats of the Middle Volga Region are given.
Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats
Hong, Wei; Zhao, Huabin
2014-01-01
The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321
Schountz, Tony; Baker, Michelle L.; Butler, John; Munster, Vincent
2017-01-01
Bats are reservoir hosts of many important viruses that cause substantial disease in humans, including coronaviruses, filoviruses, lyssaviruses, and henipaviruses. Other than the lyssaviruses, they do not appear to cause disease in the reservoir bats, thus an explanation for the dichotomous outcomes of infections of humans and bat reservoirs remains to be determined. Bats appear to have a few unusual features that may account for these differences, including evidence of constitutive interferon (IFN) activation and greater combinatorial diversity in immunoglobulin genes that do not undergo substantial affinity maturation. We propose these features may, in part, account for why bats can host these viruses without disease and how they may contribute to the highly pathogenic nature of bat-borne viruses after spillover into humans. Because of the constitutive IFN activity, bat-borne viruses may be shed at low levels from bat cells. With large naive antibody repertoires, bats may control the limited virus replication without the need for rapid affinity maturation, and this may explain why bats typically have low antibody titers to viruses. However, because bat viruses have evolved in high IFN environments, they have enhanced countermeasures against the IFN response. Thus, upon infection of human cells, where the IFN response is not constitutive, the viruses overwhelm the IFN response, leading to abundant virus replication and pathology. PMID:28959255
Roosting ecology of the pallid bat, Antrozous pallidus
Vaughan, Terry A.; O'Shea, Thomas J.
1976-01-01
Daytime roosting behavior of pallid bats (Antrozous pallidus) was studied in central Arizona. Bats were present in the area from March or April until November and roosted in cliffs in colonies generally including 20 or more individuals. Pallid bats were highly selective in their choice of roost sites and minimized diurnal energy output by adaptive hypothermia and behavioral thermo-regulation. In spring and autumn the bats roosted in vertical crevices responsive to changes in ambient temperatures. Here temperatures remained low and the bats were torpid for much of the day, but when the crevices became heated in the late afternoon the bats were passively warmed prior to emergence. Deep, horizontal crevices were preferred in summer; cliffs function as massive heat sinks, and in summer crevice temperatures remained moderate and relatively stable. Throughout most of the day both the deep parts of the crevices and the body temperatures of the bats remained close to 30ºC; at this body temperature pallid bats have unexpectedly low metabolic rates (Trune, 1974). By adjusting their positions and closeness to other bats in the thermal gradient within the crevice, bats dissipate heat early in the day, maintain a low metabolic rate through most of the fat and elevate the body temperature prior to emergence in the evening. Of vital important to pallid bats in the summer are social behaviors that promote communal roosting at "traditional" crevices.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-25
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-67888; File No. SR-BATS-2012-030] Self-Regulatory Organizations; BATS Exchange, Inc.; Order Granting Approval of Proposed Rule Change To Amend BATS Rule 14.11, Entitled ``Other Securities'' September 19, 2012. I. Introduction On July 20, 2012, BATS...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-61545; File No. SR-BATS-2009-032] Self-Regulatory Organizations; BATS Exchange, Inc.; Order Approving Proposed Rule Change, as Modified by Amendment No. 1 Thereto, To Amend BATS Fee Schedule To Impose Fees for Physical Ports Used To Connect to BATS...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-63969; File No. SR-BATS-2011-007] Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness of Proposed Rule Change by BATS Exchange, Inc. to Adopt BATS Rule 11.21, entitled ``Input of Accurate Information...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-62901; File No. SR-BATS-2010-024] Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness of Proposed Rule Change To Adopt BATS Rule 2.12, Entitled ``BATS Trading, Inc. as Inbound Router'' and To Make Related...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-68752; File No. SR-BATS-2013-003] Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness of Proposed Rule Change To Amend BATS Rules in Connection With the Elimination of Discretionary Orders for BATS Options...
Brown adipose tissue is linked to a distinct thermoregulatory response to mild cold in people
USDA-ARS?s Scientific Manuscript database
Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT-) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated ...
Airplane tracking documents the fastest flight speeds recorded for bats.
McCracken, Gary F; Safi, Kamran; Kunz, Thomas H; Dechmann, Dina K N; Swartz, Sharon M; Wikelski, Martin
2016-11-01
The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appear to be similar in flight dynamics to fast-flying birds that exploit the same aerial niche. Here, we investigate flight behaviour in seven free-flying Brazilian free-tailed bats ( Tadarida brasiliensis ) and report that the maximum ground speeds achieved exceed speeds previously documented for any bat. Regional wind modelling indicates that bats adjusted flight speeds in response to winds by flying more slowly as wind support increased and flying faster when confronted with crosswinds, as demonstrated for insects, birds and other bats. Increased frequency of pauses in wing beats at faster speeds suggests that flap-gliding assists the bats' rapid flight. Our results suggest that flight performance in bats has been underappreciated and that functional differences in the flight abilities of birds and bats require re-evaluation.
Chen, Yi; Liu, Qi; Su, Qianqian; Sun, Yunxiao; Peng, Xingwen; He, Xiangyang; Zhang, Libiao
2016-01-01
Each animal population has its own acoustic signature which facilitates identification, communication and reproduction. The sonar signals of bats can convey social information, such as species identity and contextual information. The goal of this study was to determine whether bats adjust their echolocation call structures to mutually recognize and communicate when they encounter the bats from different colonies. We used the intermediate leaf-nosed bats (Hipposideros larvatus) as a case study to investigate the variations of echolocation calls when bats from one colony were introduced singly into the home cage of a new colony or two bats from different colonies were cohabitated together for one month. Our experiments showed that the single bat individual altered its peak frequency of echolocation calls to approach the call of new colony members and two bats from different colonies adjusted their call frequencies toward each other to a similar frequency after being chronically cohabitated. These results indicate that the 'compromise' in echolocation calls might be used to ensure effective mutual communication among bats.
Chen, Yi; Liu, Qi; Su, Qianqian; Sun, Yunxiao; Peng, Xingwen; He, Xiangyang; Zhang, Libiao
2016-01-01
Each animal population has its own acoustic signature which facilitates identification, communication and reproduction. The sonar signals of bats can convey social information, such as species identity and contextual information. The goal of this study was to determine whether bats adjust their echolocation call structures to mutually recognize and communicate when they encounter the bats from different colonies. We used the intermediate leaf-nosed bats (Hipposideros larvatus) as a case study to investigate the variations of echolocation calls when bats from one colony were introduced singly into the home cage of a new colony or two bats from different colonies were cohabitated together for one month. Our experiments showed that the single bat individual altered its peak frequency of echolocation calls to approach the call of new colony members and two bats from different colonies adjusted their call frequencies toward each other to a similar frequency after being chronically cohabitated. These results indicate that the ‘compromise’ in echolocation calls might be used to ensure effective mutual communication among bats. PMID:27029005
Bat habitat research. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, B.L.; Bosworth, W.R.; Doering, R.W.
This progress report describes activities over the current reporting period to characterize the habitats of bats on the INEL. Research tasks are entitled Monitoring bat habitation of caves on the INEL to determine species present, numbers, and seasons of use; Monitor bat use of man-made ponds at the INEL to determine species present and rates of use of these waters; If the Big Lost River is flowing on the INEL and/or if the Big Lost River sinks contain water, determine species present, numbers and seasons of use; Determine the habitat requirement of Townsend`s big-eared bats, including the microclimate of cavesmore » containing Townsend`s big-eared bats as compared to other caves that do not contain bats; Determine and describe an economical and efficient bat census technique to be used periodically by INEL scientists to determine the status of bats on the INEL; and Provide a suggestive management and protective plan for bat species on the INEL that might, in the future, be added to the endangered and sensitive list;« less
Hernández-Montero, Jesús R.; Saldaña-Vázquez, Romeo A.; Galindo-González, Jorge; Sosa, Vinicio J.
2015-01-01
Forest disturbance causes specialization of plant-frugivore networks and jeopardizes mutualistic interactions through reduction of ecological redundancy. To evaluate how simplification of a forest into an agroecosystem affects plant-disperser mutualistic interactions, we compared bat-fruit interaction indexes of specialization in tropical montane cloud forest fragments (TMCF) and shaded-coffee plantations (SCP). Bat-fruit interactions were surveyed by collection of bat fecal samples. Bat-fruit interactions were more specialized in SCP (mean H2 ' = 0.55) compared to TMCF fragments (mean H2 ' = 0.27), and were negatively correlated to bat abundance in SCP (R = -0.35). The number of shared plant species was higher in the TMCF fragments (mean = 1) compared to the SCP (mean = 0.51) and this was positively correlated to the abundance of frugivorous bats (R= 0.79). The higher specialization in SCP could be explained by lower bat abundance and lower diet overlap among bats. Coffee farmers and conservation policy makers must increase the proportion of land assigned to TMCF within agroecosystem landscapes in order to conserve frugivorous bats and their invaluable seed dispersal service. PMID:25992550
Hernández-Montero, Jesús R; Saldaña-Vázquez, Romeo A; Galindo-González, Jorge; Sosa, Vinicio J
2015-01-01
Forest disturbance causes specialization of plant-frugivore networks and jeopardizes mutualistic interactions through reduction of ecological redundancy. To evaluate how simplification of a forest into an agroecosystem affects plant-disperser mutualistic interactions, we compared bat-fruit interaction indexes of specialization in tropical montane cloud forest fragments (TMCF) and shaded-coffee plantations (SCP). Bat-fruit interactions were surveyed by collection of bat fecal samples. Bat-fruit interactions were more specialized in SCP (mean H2 ' = 0.55) compared to TMCF fragments (mean H2 ' = 0.27), and were negatively correlated to bat abundance in SCP (R = -0.35). The number of shared plant species was higher in the TMCF fragments (mean = 1) compared to the SCP (mean = 0.51) and this was positively correlated to the abundance of frugivorous bats (R= 0.79). The higher specialization in SCP could be explained by lower bat abundance and lower diet overlap among bats. Coffee farmers and conservation policy makers must increase the proportion of land assigned to TMCF within agroecosystem landscapes in order to conserve frugivorous bats and their invaluable seed dispersal service.
NASA Astrophysics Data System (ADS)
Hiryu, Shizuko; Katsura, Koji; Lin, Liang-Kong; Riquimaroux, Hiroshi; Watanabe, Yoshiaki
2005-12-01
Biosonar behavior was examined in Taiwanese leaf-nosed bats (Hipposideros terasensis; CF-FM bats) during flight. Echolocation sounds were recorded using a telemetry microphone mounted on the bat's head. Flight speed and three-dimensional trajectory of the bat were reconstructed from images taken with a dual high-speed video camera system. Bats were observed to change the intensity and emission rate of pulses depending on the distance from the landing site. Frequencies of the dominant second harmonic constant frequency component (CF2) of calls estimated from the bats' flight speed agreed strongly with observed values. Taiwanese leaf-nosed bats changed CF2 frequencies depending on flight speed, which caused the CF2 frequencies of the Doppler-shifted echoes to remain constant. Pulse frequencies were also estimated using echoes returning directly ahead of the bat and from its sides for two different flight conditions: landing and U-turn. Bats in flight may periodically alter their attended angles from the front to the side when emitting echolocation pulses.
Masand, Ruchi; Paulo, Esther; Wu, Dongmei; Wang, Yangmeng; Swaney, Danielle L; Jimenez-Morales, David; Krogan, Nevan J; Wang, Biao
2018-03-06
Brown adipose tissue (BAT) thermogenesis is critical for thermoregulation and contributes to total energy expenditure. However, whether BAT has non-thermogenic functions is largely unknown. Here, we describe that BAT-specific liver kinase b1 knockout (Lkb1 BKO ) mice exhibited impaired BAT mitochondrial respiration and thermogenesis but reduced adiposity and liver triglyceride accumulation under high-fat-diet feeding at room temperature. Importantly, these metabolic benefits were also present in Lkb1 BKO mice at thermoneutrality, where BAT thermogenesis was not required. Mechanistically, decreased mRNA levels of mtDNA-encoded electron transport chain (ETC) subunits and ETC proteome imbalance led to defective BAT mitochondrial respiration in Lkb1 BKO mice. Furthermore, reducing mtDNA gene expression directly in BAT by removing mitochondrial transcription factor A (Tfam) in BAT also showed ETC proteome imbalance and the trade-off between BAT thermogenesis and systemic metabolism at room temperature and thermoneutrality. Collectively, our data demonstrate that ETC proteome imbalance in BAT regulates systemic metabolism independently of thermogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Favourable outcome in a patient bitten by a rabid bat infected with the European bat lyssavirus-1.
Van Gucht, S; Verlinde, R; Colyn, J; Vanderpas, J; Vanhoof, R; Roels, S; Francart, A; Brochier, B; Suin, V
2013-01-01
The classic rabies virus (genotype 1) has been eliminated in Western Europe, but related lyssaviruses still circulate in local bats. In August 2010, a Belgian photographer was bitten upon provocation of a disoriented Eptesicus serotinus bat in Spain. The bat was infected with European bat lyssavirus-1 (genotype 5). The isolate proved highly neurovirulent in mice. The patient had received preventive rabies immunisations years before the incident and received two boosters with the HDCV rabies vaccine afterwards. Available vaccines are based on the classic rabies virus, which is significantly divergent from the European bat lyssavirus-1. Fortunately, the patient's serological immune response demonstrated satisfactory neutralisation of the 2010 EBLV-1 isolate, using an intracerebral challenge model in mice. Most likely, the patient's life was saved thanks to vaccination with the classic rabies vaccine, which proved sufficiently protective against European bat lyssavirus-1. This case highlights the need for preventive rabies vaccination in people, who come in contact with bats and to seek medical council after a scratch or bite from a bat.
Gerngroß, Carlos; Schretter, Johanna; Klingenspor, Martin; Schwaiger, Markus; Fromme, Tobias
2017-07-01
Brown adipose tissue (BAT) provides a means of nonshivering thermogenesis. In humans, active BAT can be visualized by 18 F-FDG uptake as detected by PET combined with CT. The retrospective analysis of clinical scans is a valuable source to identify anthropometric parameters that influence BAT mass and activity and thus the potential efficacy of envisioned drugs targeting this tissue to treat metabolic disease. Methods: We analyzed 2,854 18 F-FDG PET/CT scans from 1,644 patients and identified 98 scans from 81 patients with active BAT. We quantified the volume of active BAT depots (mean values in mL ± SD: total BAT, 162 ± 183 [ n = 98]; cervical, 40 ± 37 [ n = 53]; supraclavicular, 66 ± 68 [ n = 71]; paravertebral, 51 ± 53 [ n = 69]; mediastinal, 43 ± 40 [ n = 51]; subphrenic, 21 ± 21 [ n = 29]). Because only active BAT is detectable by 18 F-FDG uptake, these numbers underestimate the total amount of BAT. Considering only 32 scans of the highest activity as categorized by a visual scoring strategy, we determined a mean total BAT volume of 308 ± 208 mL. In 30 BAT-positive patients with 3 or more repeated scans, we calculated a much higher mean probability to redetect active BAT (52% ± 25%) as compared with the overall prevalence of 4.9%. We calculated a BAT activity index (BFI) based on volume and intensity of individual BAT depots. Results: We detected higher total BFI in younger patients ( P = 0.009), whereas sex, body mass index, height, mass, outdoor temperature, and blood parameters did not affect total or depot-specific BAT activity. Surprisingly, renal creatinine clearance as estimated from mass, age, and plasma creatinine was a significant predictor of BFI on the total ( P = 0.005) as well as on the level of several individual depots. In summary, we detected a high amount of more than 300 mL of BAT tissue. Conclusion: BAT-positive patients represent a group with a higher than usual probability to activate BAT during a scan. Estimated renal creatinine clearance correlated with the extent of activated BAT in a given scan. These data imply an efficacy of drugs targeting BAT to treat metabolic disease that is at the same time higher and subject to a larger individual variation than previously assumed. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Shapiro, Allen M.
2007-01-01
A borehole testing apparatus has been designed to isolate discrete intervals of a bedrock borehole and conduct hydraulic tests or collect water samples for geochemical analyses. This borehole testing apparatus, referred to as the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3), includes two borehole packers, which when inflated can form a pressure-tight seal against smooth borehole walls; a pump apparatus to withdraw water from between the two packers; a fluid-injection apparatus to inject water between the two packers; pressure transducers to monitor fluid pressure between the two packers, as well as above and below the packers; flowmeters to monitor rates of fluid withdrawal or fluid injection; and data-acquisition equipment to record and store digital records from the pressure transducers and flowmeters. The generic design of this apparatus was originally discussed in United States Patent Number 6,761,062 (Shapiro, 2004). The prototype of the apparatus discussed in this report is designed for boreholes that are approximately 6 inches in diameter and can be used to depths of approximately 300 feet below land surface. The apparatus is designed to fit in five hard plastic boxes that can be shipped by overnight freight car-riers. The equipment can be assembled rapidly once it is removed from the shipping boxes, and the length of the test interval (the distance between the two packers) can be adjusted to account for different borehole conditions without reconfiguring the downhole components. The downhole components of the Multifunction BAT3 can be lowered in a borehole using steel pipe or a cable; a truck mounted winch or a winch and tripod can be used for this purpose. The equipment used to raise and lower the downhole components of the Multifunction BAT3 must be supplied on site, along with electrical power, a compressor or cylinders of compressed gas to inflate the packers and operate downhole valves, and the proper length of tubing to connect the packers, the submersible pump, and other downhole components to land surface. Borehole geophysical logging must be conducted prior to deploying the Multifunction BAT3 in bedrock boreholes. In particular, it is important to identify the borehole diameter as a function of depth to avoid placing the packers over rough sections of the borehole, where they may be damaged during inflation. In addition, it is advantageous to identify the location of fractures intersecting the borehole wall, for example, using an acoustic televiewer log or a borehole camera. A knowledge of fracture locations is helpful in designing the length of the test interval and the locations where hydraulic tests and geochemical sampling are to be conducted. The Multifunction BAT3 is configured to conduct both fluid-injection and fluid-withdrawal tests. Fluid-injection tests are used to estimate the hydraulic properties of low-permeability fractures intersecting the borehole. The lower limit of the transmissivity that can be estimated using the configuration of the Multifunction BAT3 described in this report is approximately 10-3 square feet per day (ft2/d). Fluid-withdrawal tests are used to collect water samples for geochemical analyses and estimate the hydraulic properties of high-permeability fractures intersecting the borehole. The Multifunction BAT3 is configured with a submersible pump that can support pumping rates ranging from approximately 0.05 to 2.5 gallons per minute, and the upper limit of the of the transmissivity that can be estimated is approximately 104 ft2/d. The Multifunction BAT3 also can be used to measure the ambient hydraulic head of a section of a bedrock borehole, and to conduct single-hole tracer tests by injecting and later withdrawing a tracer solution.
Suu-Ire, Richard; Begeman, Lineke; Banyard, Ashley C; Breed, Andrew C; Drosten, Christian; Eggerbauer, Elisa; Freuling, Conrad M; Gibson, Louise; Goharriz, Hooman; Horton, Daniel L; Jennings, Daisy; Kuzmin, Ivan V; Marston, Denise; Ntiamoa-Baidu, Yaa; Riesle Sbarbaro, Silke; Selden, David; Wise, Emma L; Kuiken, Thijs; Fooks, Anthony R; Müller, Thomas; Wood, James L N; Cunningham, Andrew A
2018-03-01
Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat.